]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / AArch64 / AArch64ISelLowering.cpp
CommitLineData
1a4d82fc 1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
970d7e83
LB
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
1a4d82fc 10// This file implements the AArch64TargetLowering class.
970d7e83
LB
11//
12//===----------------------------------------------------------------------===//
13
970d7e83 14#include "AArch64ISelLowering.h"
85aaf69f 15#include "AArch64CallingConvention.h"
970d7e83 16#include "AArch64MachineFunctionInfo.h"
1a4d82fc
JJ
17#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
970d7e83
LB
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
1a4d82fc
JJ
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
970d7e83
LB
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
1a4d82fc
JJ
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Type.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
970d7e83
LB
35using namespace llvm;
36
1a4d82fc 37#define DEBUG_TYPE "aarch64-lower"
970d7e83 38
1a4d82fc
JJ
39STATISTIC(NumTailCalls, "Number of tail calls");
40STATISTIC(NumShiftInserts, "Number of vector shift inserts");
970d7e83 41
1a4d82fc
JJ
42namespace {
43enum AlignMode {
44 StrictAlign,
45 NoStrictAlign
46};
47}
970d7e83 48
1a4d82fc
JJ
49static cl::opt<AlignMode>
50Align(cl::desc("Load/store alignment support"),
51 cl::Hidden, cl::init(NoStrictAlign),
52 cl::values(
53 clEnumValN(StrictAlign, "aarch64-strict-align",
54 "Disallow all unaligned memory accesses"),
55 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
56 "Allow unaligned memory accesses"),
57 clEnumValEnd));
58
59// Place holder until extr generation is tested fully.
60static cl::opt<bool>
61EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
62 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
63 cl::init(true));
64
65static cl::opt<bool>
66EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
67 cl::desc("Allow AArch64 SLI/SRI formation"),
68 cl::init(false));
970d7e83 69
970d7e83 70
85aaf69f
SL
71AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM)
72 : TargetLowering(TM) {
1a4d82fc 73 Subtarget = &TM.getSubtarget<AArch64Subtarget>();
970d7e83 74
1a4d82fc
JJ
75 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
76 // we have to make something up. Arbitrarily, choose ZeroOrOne.
77 setBooleanContents(ZeroOrOneBooleanContent);
78 // When comparing vectors the result sets the different elements in the
79 // vector to all-one or all-zero.
80 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
970d7e83 81
1a4d82fc
JJ
82 // Set up the register classes.
83 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
84 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
970d7e83 85
1a4d82fc
JJ
86 if (Subtarget->hasFPARMv8()) {
87 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
88 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
89 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
90 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
91 }
970d7e83 92
1a4d82fc
JJ
93 if (Subtarget->hasNEON()) {
94 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
95 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
96 // Someone set us up the NEON.
97 addDRTypeForNEON(MVT::v2f32);
98 addDRTypeForNEON(MVT::v8i8);
99 addDRTypeForNEON(MVT::v4i16);
100 addDRTypeForNEON(MVT::v2i32);
101 addDRTypeForNEON(MVT::v1i64);
102 addDRTypeForNEON(MVT::v1f64);
103 addDRTypeForNEON(MVT::v4f16);
104
105 addQRTypeForNEON(MVT::v4f32);
106 addQRTypeForNEON(MVT::v2f64);
107 addQRTypeForNEON(MVT::v16i8);
108 addQRTypeForNEON(MVT::v8i16);
109 addQRTypeForNEON(MVT::v4i32);
110 addQRTypeForNEON(MVT::v2i64);
111 addQRTypeForNEON(MVT::v8f16);
112 }
970d7e83 113
1a4d82fc
JJ
114 // Compute derived properties from the register classes
115 computeRegisterProperties();
970d7e83 116
1a4d82fc 117 // Provide all sorts of operation actions
970d7e83
LB
118 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
119 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
1a4d82fc
JJ
120 setOperationAction(ISD::SETCC, MVT::i32, Custom);
121 setOperationAction(ISD::SETCC, MVT::i64, Custom);
122 setOperationAction(ISD::SETCC, MVT::f32, Custom);
123 setOperationAction(ISD::SETCC, MVT::f64, Custom);
124 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
970d7e83
LB
125 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
126 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
127 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
128 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
970d7e83
LB
129 setOperationAction(ISD::SELECT, MVT::i32, Custom);
130 setOperationAction(ISD::SELECT, MVT::i64, Custom);
131 setOperationAction(ISD::SELECT, MVT::f32, Custom);
132 setOperationAction(ISD::SELECT, MVT::f64, Custom);
970d7e83
LB
133 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
134 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
135 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
136 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
970d7e83 137 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
970d7e83
LB
138 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
139
1a4d82fc
JJ
140 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
141 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
142 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
970d7e83
LB
143
144 setOperationAction(ISD::FREM, MVT::f32, Expand);
145 setOperationAction(ISD::FREM, MVT::f64, Expand);
1a4d82fc 146 setOperationAction(ISD::FREM, MVT::f80, Expand);
970d7e83 147
1a4d82fc
JJ
148 // Custom lowering hooks are needed for XOR
149 // to fold it into CSINC/CSINV.
150 setOperationAction(ISD::XOR, MVT::i32, Custom);
151 setOperationAction(ISD::XOR, MVT::i64, Custom);
970d7e83
LB
152
153 // Virtually no operation on f128 is legal, but LLVM can't expand them when
154 // there's a valid register class, so we need custom operations in most cases.
1a4d82fc
JJ
155 setOperationAction(ISD::FABS, MVT::f128, Expand);
156 setOperationAction(ISD::FADD, MVT::f128, Custom);
157 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
158 setOperationAction(ISD::FCOS, MVT::f128, Expand);
159 setOperationAction(ISD::FDIV, MVT::f128, Custom);
160 setOperationAction(ISD::FMA, MVT::f128, Expand);
161 setOperationAction(ISD::FMUL, MVT::f128, Custom);
162 setOperationAction(ISD::FNEG, MVT::f128, Expand);
163 setOperationAction(ISD::FPOW, MVT::f128, Expand);
164 setOperationAction(ISD::FREM, MVT::f128, Expand);
165 setOperationAction(ISD::FRINT, MVT::f128, Expand);
166 setOperationAction(ISD::FSIN, MVT::f128, Expand);
167 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
168 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
169 setOperationAction(ISD::FSUB, MVT::f128, Custom);
170 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
171 setOperationAction(ISD::SETCC, MVT::f128, Custom);
172 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
173 setOperationAction(ISD::SELECT, MVT::f128, Custom);
174 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
175 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
970d7e83
LB
176
177 // Lowering for many of the conversions is actually specified by the non-f128
178 // type. The LowerXXX function will be trivial when f128 isn't involved.
179 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
180 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
181 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
182 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
183 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
184 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
185 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
186 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
187 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
188 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
189 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
190 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
1a4d82fc
JJ
191 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
192 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
970d7e83 193
1a4d82fc
JJ
194 // Variable arguments.
195 setOperationAction(ISD::VASTART, MVT::Other, Custom);
196 setOperationAction(ISD::VAARG, MVT::Other, Custom);
197 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
198 setOperationAction(ISD::VAEND, MVT::Other, Expand);
970d7e83 199
1a4d82fc
JJ
200 // Variable-sized objects.
201 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
202 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
203 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
970d7e83 204
1a4d82fc
JJ
205 // Exception handling.
206 // FIXME: These are guesses. Has this been defined yet?
970d7e83
LB
207 setExceptionPointerRegister(AArch64::X0);
208 setExceptionSelectorRegister(AArch64::X1);
970d7e83 209
1a4d82fc
JJ
210 // Constant pool entries
211 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
970d7e83 212
1a4d82fc
JJ
213 // BlockAddress
214 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
970d7e83 215
1a4d82fc
JJ
216 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
217 setOperationAction(ISD::ADDC, MVT::i32, Custom);
218 setOperationAction(ISD::ADDE, MVT::i32, Custom);
219 setOperationAction(ISD::SUBC, MVT::i32, Custom);
220 setOperationAction(ISD::SUBE, MVT::i32, Custom);
221 setOperationAction(ISD::ADDC, MVT::i64, Custom);
222 setOperationAction(ISD::ADDE, MVT::i64, Custom);
223 setOperationAction(ISD::SUBC, MVT::i64, Custom);
224 setOperationAction(ISD::SUBE, MVT::i64, Custom);
225
226 // AArch64 lacks both left-rotate and popcount instructions.
227 setOperationAction(ISD::ROTL, MVT::i32, Expand);
228 setOperationAction(ISD::ROTL, MVT::i64, Expand);
970d7e83 229
1a4d82fc
JJ
230 // AArch64 doesn't have {U|S}MUL_LOHI.
231 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
232 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
970d7e83 233
970d7e83 234
1a4d82fc
JJ
235 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
236 // counterparts, which AArch64 supports directly.
237 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
238 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
239 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
240 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
970d7e83 241
1a4d82fc
JJ
242 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
243 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
970d7e83 244
1a4d82fc
JJ
245 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
246 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
247 setOperationAction(ISD::SREM, MVT::i32, Expand);
248 setOperationAction(ISD::SREM, MVT::i64, Expand);
249 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
250 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
251 setOperationAction(ISD::UREM, MVT::i32, Expand);
252 setOperationAction(ISD::UREM, MVT::i64, Expand);
970d7e83 253
1a4d82fc
JJ
254 // Custom lower Add/Sub/Mul with overflow.
255 setOperationAction(ISD::SADDO, MVT::i32, Custom);
256 setOperationAction(ISD::SADDO, MVT::i64, Custom);
257 setOperationAction(ISD::UADDO, MVT::i32, Custom);
258 setOperationAction(ISD::UADDO, MVT::i64, Custom);
259 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
260 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
261 setOperationAction(ISD::USUBO, MVT::i32, Custom);
262 setOperationAction(ISD::USUBO, MVT::i64, Custom);
263 setOperationAction(ISD::SMULO, MVT::i32, Custom);
264 setOperationAction(ISD::SMULO, MVT::i64, Custom);
265 setOperationAction(ISD::UMULO, MVT::i32, Custom);
266 setOperationAction(ISD::UMULO, MVT::i64, Custom);
970d7e83 267
1a4d82fc
JJ
268 setOperationAction(ISD::FSIN, MVT::f32, Expand);
269 setOperationAction(ISD::FSIN, MVT::f64, Expand);
270 setOperationAction(ISD::FCOS, MVT::f32, Expand);
271 setOperationAction(ISD::FCOS, MVT::f64, Expand);
272 setOperationAction(ISD::FPOW, MVT::f32, Expand);
273 setOperationAction(ISD::FPOW, MVT::f64, Expand);
274 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
275 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
276
277 // f16 is storage-only, so we promote operations to f32 if we know this is
278 // valid, and ignore them otherwise. The operations not mentioned here will
279 // fail to select, but this is not a major problem as no source language
280 // should be emitting native f16 operations yet.
281 setOperationAction(ISD::FADD, MVT::f16, Promote);
282 setOperationAction(ISD::FDIV, MVT::f16, Promote);
283 setOperationAction(ISD::FMUL, MVT::f16, Promote);
284 setOperationAction(ISD::FSUB, MVT::f16, Promote);
285
286 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
287 // known to be safe.
288 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
289 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
290 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
291 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
292 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
293 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
294 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
295 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
296 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
297 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
298 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
299 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
300
301 // Expand all other v4f16 operations.
302 // FIXME: We could generate better code by promoting some operations to
303 // a pair of v4f32s
304 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
305 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
306 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
307 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
308 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
309 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
310 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
311 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
312 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
313 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
314 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
315 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
316 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
317 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
318 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
319 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
320 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
321 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
322 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
323 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
324 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
325 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
326 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
327 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
328 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
329 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
330
331
332 // v8f16 is also a storage-only type, so expand it.
333 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
334 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
335 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
336 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
337 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
338 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
339 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
340 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
341 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
342 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
343 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
344 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
345 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
346 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
347 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
348 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
349 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
350 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
351 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
352 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
353 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
354 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
355 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
356 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
357 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
358 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
359 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
360 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
361 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
362 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
363 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
364
365 // AArch64 has implementations of a lot of rounding-like FP operations.
366 static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
367 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
368 MVT Ty = RoundingTypes[I];
369 setOperationAction(ISD::FFLOOR, Ty, Legal);
370 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
371 setOperationAction(ISD::FCEIL, Ty, Legal);
372 setOperationAction(ISD::FRINT, Ty, Legal);
373 setOperationAction(ISD::FTRUNC, Ty, Legal);
374 setOperationAction(ISD::FROUND, Ty, Legal);
375 }
970d7e83 376
1a4d82fc 377 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
970d7e83 378
1a4d82fc
JJ
379 if (Subtarget->isTargetMachO()) {
380 // For iOS, we don't want to the normal expansion of a libcall to
381 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
382 // traffic.
383 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
384 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
970d7e83 385 } else {
1a4d82fc
JJ
386 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
387 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
388 }
389
85aaf69f
SL
390 // Make floating-point constants legal for the large code model, so they don't
391 // become loads from the constant pool.
392 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
393 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
394 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
395 }
396
1a4d82fc
JJ
397 // AArch64 does not have floating-point extending loads, i1 sign-extending
398 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
85aaf69f
SL
399 for (MVT VT : MVT::fp_valuetypes()) {
400 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
401 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
402 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
403 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
404 }
405 for (MVT VT : MVT::integer_valuetypes())
406 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
407
1a4d82fc
JJ
408 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
409 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
410 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
411 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
412 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
413 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
414 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
415
416 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
417 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
418
419 // Indexed loads and stores are supported.
420 for (unsigned im = (unsigned)ISD::PRE_INC;
421 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
422 setIndexedLoadAction(im, MVT::i8, Legal);
423 setIndexedLoadAction(im, MVT::i16, Legal);
424 setIndexedLoadAction(im, MVT::i32, Legal);
425 setIndexedLoadAction(im, MVT::i64, Legal);
426 setIndexedLoadAction(im, MVT::f64, Legal);
427 setIndexedLoadAction(im, MVT::f32, Legal);
428 setIndexedStoreAction(im, MVT::i8, Legal);
429 setIndexedStoreAction(im, MVT::i16, Legal);
430 setIndexedStoreAction(im, MVT::i32, Legal);
431 setIndexedStoreAction(im, MVT::i64, Legal);
432 setIndexedStoreAction(im, MVT::f64, Legal);
433 setIndexedStoreAction(im, MVT::f32, Legal);
970d7e83
LB
434 }
435
1a4d82fc
JJ
436 // Trap.
437 setOperationAction(ISD::TRAP, MVT::Other, Legal);
438
439 // We combine OR nodes for bitfield operations.
440 setTargetDAGCombine(ISD::OR);
441
442 // Vector add and sub nodes may conceal a high-half opportunity.
443 // Also, try to fold ADD into CSINC/CSINV..
444 setTargetDAGCombine(ISD::ADD);
445 setTargetDAGCombine(ISD::SUB);
446
447 setTargetDAGCombine(ISD::XOR);
448 setTargetDAGCombine(ISD::SINT_TO_FP);
449 setTargetDAGCombine(ISD::UINT_TO_FP);
450
451 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
452
453 setTargetDAGCombine(ISD::ANY_EXTEND);
454 setTargetDAGCombine(ISD::ZERO_EXTEND);
455 setTargetDAGCombine(ISD::SIGN_EXTEND);
456 setTargetDAGCombine(ISD::BITCAST);
457 setTargetDAGCombine(ISD::CONCAT_VECTORS);
458 setTargetDAGCombine(ISD::STORE);
459
460 setTargetDAGCombine(ISD::MUL);
461
462 setTargetDAGCombine(ISD::SELECT);
463 setTargetDAGCombine(ISD::VSELECT);
464
465 setTargetDAGCombine(ISD::INTRINSIC_VOID);
466 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
467 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
468
469 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
470 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
471 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
472
473 setStackPointerRegisterToSaveRestore(AArch64::SP);
474
475 setSchedulingPreference(Sched::Hybrid);
476
477 // Enable TBZ/TBNZ
478 MaskAndBranchFoldingIsLegal = true;
479
480 setMinFunctionAlignment(2);
481
482 RequireStrictAlign = (Align == StrictAlign);
483
484 setHasExtractBitsInsn(true);
485
486 if (Subtarget->hasNEON()) {
487 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
488 // silliness like this:
489 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
490 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
491 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
492 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
493 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
494 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
495 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
496 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
497 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
498 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
499 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
500 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
501 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
502 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
503 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
504 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
505 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
506 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
507 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
508 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
509 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
510 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
511 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
512 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
513 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
514
515 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
516 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
517 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
518 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
519 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
520
521 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
522
523 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
524 // elements smaller than i32, so promote the input to i32 first.
525 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
526 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
527 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
528 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
529 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
530 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
531 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
532 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
533 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
534
535 // AArch64 doesn't have MUL.2d:
536 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
85aaf69f
SL
537 // Custom handling for some quad-vector types to detect MULL.
538 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
539 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
540 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
541
1a4d82fc
JJ
542 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
543 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
544 // Likewise, narrowing and extending vector loads/stores aren't handled
545 // directly.
85aaf69f
SL
546 for (MVT VT : MVT::vector_valuetypes()) {
547 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
548
549 setOperationAction(ISD::MULHS, VT, Expand);
550 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
551 setOperationAction(ISD::MULHU, VT, Expand);
552 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
553
554 setOperationAction(ISD::BSWAP, VT, Expand);
555
556 for (MVT InnerVT : MVT::vector_valuetypes()) {
557 setTruncStoreAction(VT, InnerVT, Expand);
558 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
559 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
560 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
561 }
1a4d82fc
JJ
562 }
563
564 // AArch64 has implementations of a lot of rounding-like FP operations.
565 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
566 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
567 MVT Ty = RoundingVecTypes[I];
568 setOperationAction(ISD::FFLOOR, Ty, Legal);
569 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
570 setOperationAction(ISD::FCEIL, Ty, Legal);
571 setOperationAction(ISD::FRINT, Ty, Legal);
572 setOperationAction(ISD::FTRUNC, Ty, Legal);
573 setOperationAction(ISD::FROUND, Ty, Legal);
574 }
575 }
970d7e83 576
1a4d82fc
JJ
577 // Prefer likely predicted branches to selects on out-of-order cores.
578 if (Subtarget->isCortexA57())
579 PredictableSelectIsExpensive = true;
580}
970d7e83 581
1a4d82fc
JJ
582void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
583 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
584 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
585 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
970d7e83 586
1a4d82fc
JJ
587 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
588 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
589 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
590 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
591 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
970d7e83 592
1a4d82fc
JJ
593 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
594 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
595 }
970d7e83 596
1a4d82fc
JJ
597 // Mark vector float intrinsics as expand.
598 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
599 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
600 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
601 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
602 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
603 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
604 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
605 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
606 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
607 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
608 }
970d7e83 609
1a4d82fc
JJ
610 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
611 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
612 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
613 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
614 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
615 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
616 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
617 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
618 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
619 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
620 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
621 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
622
623 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
624 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
625 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
85aaf69f
SL
626 for (MVT InnerVT : MVT::all_valuetypes())
627 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
1a4d82fc
JJ
628
629 // CNT supports only B element sizes.
630 if (VT != MVT::v8i8 && VT != MVT::v16i8)
631 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
632
633 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
634 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
635 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
636 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
637 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
638
639 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
640 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
641
642 if (Subtarget->isLittleEndian()) {
643 for (unsigned im = (unsigned)ISD::PRE_INC;
644 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
645 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
646 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
647 }
648 }
649}
970d7e83 650
1a4d82fc
JJ
651void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
652 addRegisterClass(VT, &AArch64::FPR64RegClass);
653 addTypeForNEON(VT, MVT::v2i32);
654}
970d7e83 655
1a4d82fc
JJ
656void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
657 addRegisterClass(VT, &AArch64::FPR128RegClass);
658 addTypeForNEON(VT, MVT::v4i32);
659}
970d7e83 660
1a4d82fc
JJ
661EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
662 if (!VT.isVector())
663 return MVT::i32;
664 return VT.changeVectorElementTypeToInteger();
665}
970d7e83 666
1a4d82fc
JJ
667/// computeKnownBitsForTargetNode - Determine which of the bits specified in
668/// Mask are known to be either zero or one and return them in the
669/// KnownZero/KnownOne bitsets.
670void AArch64TargetLowering::computeKnownBitsForTargetNode(
671 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
672 const SelectionDAG &DAG, unsigned Depth) const {
673 switch (Op.getOpcode()) {
674 default:
675 break;
676 case AArch64ISD::CSEL: {
677 APInt KnownZero2, KnownOne2;
678 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
679 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
680 KnownZero &= KnownZero2;
681 KnownOne &= KnownOne2;
682 break;
683 }
684 case ISD::INTRINSIC_W_CHAIN: {
685 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
686 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
687 switch (IntID) {
688 default: return;
689 case Intrinsic::aarch64_ldaxr:
690 case Intrinsic::aarch64_ldxr: {
691 unsigned BitWidth = KnownOne.getBitWidth();
692 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
693 unsigned MemBits = VT.getScalarType().getSizeInBits();
694 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
695 return;
696 }
697 }
698 break;
699 }
700 case ISD::INTRINSIC_WO_CHAIN:
701 case ISD::INTRINSIC_VOID: {
702 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
703 switch (IntNo) {
704 default:
705 break;
706 case Intrinsic::aarch64_neon_umaxv:
707 case Intrinsic::aarch64_neon_uminv: {
708 // Figure out the datatype of the vector operand. The UMINV instruction
709 // will zero extend the result, so we can mark as known zero all the
710 // bits larger than the element datatype. 32-bit or larget doesn't need
711 // this as those are legal types and will be handled by isel directly.
712 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
713 unsigned BitWidth = KnownZero.getBitWidth();
714 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
715 assert(BitWidth >= 8 && "Unexpected width!");
716 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
717 KnownZero |= Mask;
718 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
719 assert(BitWidth >= 16 && "Unexpected width!");
720 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
721 KnownZero |= Mask;
722 }
723 break;
724 } break;
725 }
726 }
727 }
728}
970d7e83 729
1a4d82fc
JJ
730MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
731 return MVT::i64;
732}
970d7e83 733
1a4d82fc
JJ
734unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
735 // FIXME: On AArch64, this depends on the type.
736 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
737 // and the offset has to be a multiple of the related size in bytes.
738 return 4095;
739}
970d7e83 740
1a4d82fc
JJ
741FastISel *
742AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
743 const TargetLibraryInfo *libInfo) const {
744 return AArch64::createFastISel(funcInfo, libInfo);
970d7e83
LB
745}
746
1a4d82fc
JJ
747const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
748 switch (Opcode) {
749 default:
750 return nullptr;
751 case AArch64ISD::CALL: return "AArch64ISD::CALL";
752 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
753 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
754 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
755 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
756 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
757 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
758 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
759 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
760 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
761 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
762 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
763 case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
764 case AArch64ISD::ADC: return "AArch64ISD::ADC";
765 case AArch64ISD::SBC: return "AArch64ISD::SBC";
766 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
767 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
768 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
769 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
770 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
771 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
772 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
773 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
774 case AArch64ISD::DUP: return "AArch64ISD::DUP";
775 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
776 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
777 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
778 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
779 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
780 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
781 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
782 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
783 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
784 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
785 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
786 case AArch64ISD::BICi: return "AArch64ISD::BICi";
787 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
788 case AArch64ISD::BSL: return "AArch64ISD::BSL";
789 case AArch64ISD::NEG: return "AArch64ISD::NEG";
790 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
791 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
792 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
793 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
794 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
795 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
796 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
797 case AArch64ISD::REV16: return "AArch64ISD::REV16";
798 case AArch64ISD::REV32: return "AArch64ISD::REV32";
799 case AArch64ISD::REV64: return "AArch64ISD::REV64";
800 case AArch64ISD::EXT: return "AArch64ISD::EXT";
801 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
802 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
803 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
804 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
805 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
806 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
807 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
808 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
809 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
810 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
811 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
812 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
813 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
814 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
815 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
816 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
817 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
818 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
819 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
820 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
821 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
822 case AArch64ISD::NOT: return "AArch64ISD::NOT";
823 case AArch64ISD::BIT: return "AArch64ISD::BIT";
824 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
825 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
826 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
827 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
828 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
829 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
830 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
831 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
832 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
833 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
834 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
835 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
836 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
837 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
838 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
839 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
840 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
841 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
842 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
843 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
844 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
845 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
846 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
847 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
848 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
849 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
850 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
851 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
852 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
853 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
854 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
855 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
856 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
857 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
858 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
859 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
860 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
85aaf69f
SL
861 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
862 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
1a4d82fc 863 }
970d7e83
LB
864}
865
866MachineBasicBlock *
867AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
868 MachineBasicBlock *MBB) const {
1a4d82fc
JJ
869 // We materialise the F128CSEL pseudo-instruction as some control flow and a
870 // phi node:
871
872 // OrigBB:
873 // [... previous instrs leading to comparison ...]
874 // b.ne TrueBB
875 // b EndBB
876 // TrueBB:
877 // ; Fallthrough
878 // EndBB:
879 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
880
881 const TargetInstrInfo *TII =
882 getTargetMachine().getSubtargetImpl()->getInstrInfo();
970d7e83
LB
883 MachineFunction *MF = MBB->getParent();
884 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
885 DebugLoc DL = MI->getDebugLoc();
886 MachineFunction::iterator It = MBB;
887 ++It;
888
889 unsigned DestReg = MI->getOperand(0).getReg();
890 unsigned IfTrueReg = MI->getOperand(1).getReg();
891 unsigned IfFalseReg = MI->getOperand(2).getReg();
892 unsigned CondCode = MI->getOperand(3).getImm();
893 bool NZCVKilled = MI->getOperand(4).isKill();
894
895 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
896 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
897 MF->insert(It, TrueBB);
898 MF->insert(It, EndBB);
899
900 // Transfer rest of current basic-block to EndBB
1a4d82fc 901 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
970d7e83
LB
902 MBB->end());
903 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
904
1a4d82fc
JJ
905 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
906 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
970d7e83
LB
907 MBB->addSuccessor(TrueBB);
908 MBB->addSuccessor(EndBB);
909
1a4d82fc 910 // TrueBB falls through to the end.
970d7e83
LB
911 TrueBB->addSuccessor(EndBB);
912
1a4d82fc
JJ
913 if (!NZCVKilled) {
914 TrueBB->addLiveIn(AArch64::NZCV);
970d7e83 915 EndBB->addLiveIn(AArch64::NZCV);
1a4d82fc
JJ
916 }
917
918 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
919 .addReg(IfTrueReg)
920 .addMBB(TrueBB)
921 .addReg(IfFalseReg)
922 .addMBB(MBB);
970d7e83
LB
923
924 MI->eraseFromParent();
925 return EndBB;
926}
927
928MachineBasicBlock *
929AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1a4d82fc 930 MachineBasicBlock *BB) const {
970d7e83 931 switch (MI->getOpcode()) {
1a4d82fc
JJ
932 default:
933#ifndef NDEBUG
934 MI->dump();
935#endif
936 llvm_unreachable("Unexpected instruction for custom inserter!");
937
970d7e83 938 case AArch64::F128CSEL:
1a4d82fc
JJ
939 return EmitF128CSEL(MI, BB);
940
941 case TargetOpcode::STACKMAP:
942 case TargetOpcode::PATCHPOINT:
943 return emitPatchPoint(MI, BB);
970d7e83
LB
944 }
945}
946
1a4d82fc
JJ
947//===----------------------------------------------------------------------===//
948// AArch64 Lowering private implementation.
949//===----------------------------------------------------------------------===//
970d7e83 950
1a4d82fc
JJ
951//===----------------------------------------------------------------------===//
952// Lowering Code
953//===----------------------------------------------------------------------===//
970d7e83 954
1a4d82fc
JJ
955/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
956/// CC
957static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
958 switch (CC) {
959 default:
960 llvm_unreachable("Unknown condition code!");
961 case ISD::SETNE:
962 return AArch64CC::NE;
963 case ISD::SETEQ:
964 return AArch64CC::EQ;
965 case ISD::SETGT:
966 return AArch64CC::GT;
967 case ISD::SETGE:
968 return AArch64CC::GE;
969 case ISD::SETLT:
970 return AArch64CC::LT;
971 case ISD::SETLE:
972 return AArch64CC::LE;
973 case ISD::SETUGT:
974 return AArch64CC::HI;
975 case ISD::SETUGE:
976 return AArch64CC::HS;
977 case ISD::SETULT:
978 return AArch64CC::LO;
979 case ISD::SETULE:
980 return AArch64CC::LS;
981 }
970d7e83
LB
982}
983
1a4d82fc
JJ
984/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
985static void changeFPCCToAArch64CC(ISD::CondCode CC,
986 AArch64CC::CondCode &CondCode,
987 AArch64CC::CondCode &CondCode2) {
988 CondCode2 = AArch64CC::AL;
989 switch (CC) {
990 default:
991 llvm_unreachable("Unknown FP condition!");
992 case ISD::SETEQ:
993 case ISD::SETOEQ:
994 CondCode = AArch64CC::EQ;
995 break;
996 case ISD::SETGT:
997 case ISD::SETOGT:
998 CondCode = AArch64CC::GT;
999 break;
1000 case ISD::SETGE:
1001 case ISD::SETOGE:
1002 CondCode = AArch64CC::GE;
1003 break;
1004 case ISD::SETOLT:
1005 CondCode = AArch64CC::MI;
1006 break;
1007 case ISD::SETOLE:
1008 CondCode = AArch64CC::LS;
1009 break;
1010 case ISD::SETONE:
1011 CondCode = AArch64CC::MI;
1012 CondCode2 = AArch64CC::GT;
1013 break;
1014 case ISD::SETO:
1015 CondCode = AArch64CC::VC;
1016 break;
1017 case ISD::SETUO:
1018 CondCode = AArch64CC::VS;
1019 break;
1020 case ISD::SETUEQ:
1021 CondCode = AArch64CC::EQ;
1022 CondCode2 = AArch64CC::VS;
1023 break;
1024 case ISD::SETUGT:
1025 CondCode = AArch64CC::HI;
1026 break;
1027 case ISD::SETUGE:
1028 CondCode = AArch64CC::PL;
1029 break;
1030 case ISD::SETLT:
1031 case ISD::SETULT:
1032 CondCode = AArch64CC::LT;
1033 break;
1034 case ISD::SETLE:
1035 case ISD::SETULE:
1036 CondCode = AArch64CC::LE;
1037 break;
1038 case ISD::SETNE:
1039 case ISD::SETUNE:
1040 CondCode = AArch64CC::NE;
1041 break;
970d7e83
LB
1042 }
1043}
1044
1a4d82fc
JJ
1045/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1046/// CC usable with the vector instructions. Fewer operations are available
1047/// without a real NZCV register, so we have to use less efficient combinations
1048/// to get the same effect.
1049static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1050 AArch64CC::CondCode &CondCode,
1051 AArch64CC::CondCode &CondCode2,
1052 bool &Invert) {
1053 Invert = false;
1054 switch (CC) {
1055 default:
1056 // Mostly the scalar mappings work fine.
1057 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1058 break;
1059 case ISD::SETUO:
1060 Invert = true; // Fallthrough
1061 case ISD::SETO:
1062 CondCode = AArch64CC::MI;
1063 CondCode2 = AArch64CC::GE;
1064 break;
1065 case ISD::SETUEQ:
1066 case ISD::SETULT:
1067 case ISD::SETULE:
1068 case ISD::SETUGT:
1069 case ISD::SETUGE:
1070 // All of the compare-mask comparisons are ordered, but we can switch
1071 // between the two by a double inversion. E.g. ULE == !OGT.
1072 Invert = true;
1073 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1074 break;
1075 }
1076}
970d7e83 1077
1a4d82fc
JJ
1078static bool isLegalArithImmed(uint64_t C) {
1079 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1080 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1081}
970d7e83 1082
1a4d82fc
JJ
1083static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1084 SDLoc dl, SelectionDAG &DAG) {
1085 EVT VT = LHS.getValueType();
1086
1087 if (VT.isFloatingPoint())
1088 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1089
1090 // The CMP instruction is just an alias for SUBS, and representing it as
1091 // SUBS means that it's possible to get CSE with subtract operations.
1092 // A later phase can perform the optimization of setting the destination
1093 // register to WZR/XZR if it ends up being unused.
1094 unsigned Opcode = AArch64ISD::SUBS;
1095
1096 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1097 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1098 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1099 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1100 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1101 // can be set differently by this operation. It comes down to whether
1102 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1103 // everything is fine. If not then the optimization is wrong. Thus general
1104 // comparisons are only valid if op2 != 0.
1105
1106 // So, finally, the only LLVM-native comparisons that don't mention C and V
1107 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1108 // the absence of information about op2.
1109 Opcode = AArch64ISD::ADDS;
1110 RHS = RHS.getOperand(1);
1111 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1112 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1113 !isUnsignedIntSetCC(CC)) {
1114 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1115 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1116 // of the signed comparisons.
1117 Opcode = AArch64ISD::ANDS;
1118 RHS = LHS.getOperand(1);
1119 LHS = LHS.getOperand(0);
970d7e83
LB
1120 }
1121
1a4d82fc
JJ
1122 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1123 .getValue(1);
1124}
970d7e83 1125
1a4d82fc
JJ
1126static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1127 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1128 SDValue Cmp;
1129 AArch64CC::CondCode AArch64CC;
1130 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1131 EVT VT = RHS.getValueType();
1132 uint64_t C = RHSC->getZExtValue();
1133 if (!isLegalArithImmed(C)) {
1134 // Constant does not fit, try adjusting it by one?
1135 switch (CC) {
1136 default:
1137 break;
1138 case ISD::SETLT:
1139 case ISD::SETGE:
1140 if ((VT == MVT::i32 && C != 0x80000000 &&
1141 isLegalArithImmed((uint32_t)(C - 1))) ||
1142 (VT == MVT::i64 && C != 0x80000000ULL &&
1143 isLegalArithImmed(C - 1ULL))) {
1144 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1145 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1146 RHS = DAG.getConstant(C, VT);
1147 }
1148 break;
1149 case ISD::SETULT:
1150 case ISD::SETUGE:
1151 if ((VT == MVT::i32 && C != 0 &&
1152 isLegalArithImmed((uint32_t)(C - 1))) ||
1153 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1154 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1155 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1156 RHS = DAG.getConstant(C, VT);
1157 }
1158 break;
1159 case ISD::SETLE:
1160 case ISD::SETGT:
85aaf69f 1161 if ((VT == MVT::i32 && C != INT32_MAX &&
1a4d82fc 1162 isLegalArithImmed((uint32_t)(C + 1))) ||
85aaf69f 1163 (VT == MVT::i64 && C != INT64_MAX &&
1a4d82fc
JJ
1164 isLegalArithImmed(C + 1ULL))) {
1165 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1166 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1167 RHS = DAG.getConstant(C, VT);
1168 }
1169 break;
1170 case ISD::SETULE:
1171 case ISD::SETUGT:
85aaf69f 1172 if ((VT == MVT::i32 && C != UINT32_MAX &&
1a4d82fc 1173 isLegalArithImmed((uint32_t)(C + 1))) ||
85aaf69f 1174 (VT == MVT::i64 && C != UINT64_MAX &&
1a4d82fc
JJ
1175 isLegalArithImmed(C + 1ULL))) {
1176 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1177 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1178 RHS = DAG.getConstant(C, VT);
1179 }
1180 break;
1181 }
1182 }
1183 }
1184 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1185 // For the i8 operand, the largest immediate is 255, so this can be easily
1186 // encoded in the compare instruction. For the i16 operand, however, the
1187 // largest immediate cannot be encoded in the compare.
1188 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1189 // constant. For example,
1190 // movz w1, #65535
1191 // ldrh w0, [x0, #0]
1192 // cmp w0, w1
1193 // >
1194 // ldrsh w0, [x0, #0]
1195 // cmn w0, #1
1196 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1197 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1198 // both the LHS and RHS are truely zero extended and to make sure the
1199 // transformation is profitable.
1200 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1201 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1202 isa<LoadSDNode>(LHS)) {
1203 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1204 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1205 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1206 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1207 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1208 SDValue SExt =
1209 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1210 DAG.getValueType(MVT::i16));
1211 Cmp = emitComparison(SExt,
1212 DAG.getConstant(ValueofRHS, RHS.getValueType()),
1213 CC, dl, DAG);
1214 AArch64CC = changeIntCCToAArch64CC(CC);
1215 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1216 return Cmp;
1217 }
1218 }
970d7e83
LB
1219 }
1220 }
1a4d82fc
JJ
1221 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1222 AArch64CC = changeIntCCToAArch64CC(CC);
1223 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1224 return Cmp;
1225}
970d7e83 1226
1a4d82fc
JJ
1227static std::pair<SDValue, SDValue>
1228getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1229 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1230 "Unsupported value type");
1231 SDValue Value, Overflow;
1232 SDLoc DL(Op);
1233 SDValue LHS = Op.getOperand(0);
1234 SDValue RHS = Op.getOperand(1);
1235 unsigned Opc = 0;
1236 switch (Op.getOpcode()) {
1237 default:
1238 llvm_unreachable("Unknown overflow instruction!");
1239 case ISD::SADDO:
1240 Opc = AArch64ISD::ADDS;
1241 CC = AArch64CC::VS;
1242 break;
1243 case ISD::UADDO:
1244 Opc = AArch64ISD::ADDS;
1245 CC = AArch64CC::HS;
1246 break;
1247 case ISD::SSUBO:
1248 Opc = AArch64ISD::SUBS;
1249 CC = AArch64CC::VS;
1250 break;
1251 case ISD::USUBO:
1252 Opc = AArch64ISD::SUBS;
1253 CC = AArch64CC::LO;
1254 break;
1255 // Multiply needs a little bit extra work.
1256 case ISD::SMULO:
1257 case ISD::UMULO: {
1258 CC = AArch64CC::NE;
1259 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1260 if (Op.getValueType() == MVT::i32) {
1261 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1262 // For a 32 bit multiply with overflow check we want the instruction
1263 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1264 // need to generate the following pattern:
1265 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1266 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1267 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1268 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1269 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1270 DAG.getConstant(0, MVT::i64));
1271 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1272 // operation. We need to clear out the upper 32 bits, because we used a
1273 // widening multiply that wrote all 64 bits. In the end this should be a
1274 // noop.
1275 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1276 if (IsSigned) {
1277 // The signed overflow check requires more than just a simple check for
1278 // any bit set in the upper 32 bits of the result. These bits could be
1279 // just the sign bits of a negative number. To perform the overflow
1280 // check we have to arithmetic shift right the 32nd bit of the result by
1281 // 31 bits. Then we compare the result to the upper 32 bits.
1282 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1283 DAG.getConstant(32, MVT::i64));
1284 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1285 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1286 DAG.getConstant(31, MVT::i64));
1287 // It is important that LowerBits is last, otherwise the arithmetic
1288 // shift will not be folded into the compare (SUBS).
1289 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1290 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1291 .getValue(1);
1292 } else {
1293 // The overflow check for unsigned multiply is easy. We only need to
1294 // check if any of the upper 32 bits are set. This can be done with a
1295 // CMP (shifted register). For that we need to generate the following
1296 // pattern:
1297 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1298 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1299 DAG.getConstant(32, MVT::i64));
1300 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1301 Overflow =
1302 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1303 UpperBits).getValue(1);
1304 }
1305 break;
1306 }
1307 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1308 // For the 64 bit multiply
1309 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1310 if (IsSigned) {
1311 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1312 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1313 DAG.getConstant(63, MVT::i64));
1314 // It is important that LowerBits is last, otherwise the arithmetic
1315 // shift will not be folded into the compare (SUBS).
1316 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1317 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1318 .getValue(1);
1319 } else {
1320 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1321 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1322 Overflow =
1323 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1324 UpperBits).getValue(1);
1325 }
1326 break;
1327 }
1328 } // switch (...)
970d7e83 1329
1a4d82fc
JJ
1330 if (Opc) {
1331 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
970d7e83 1332
1a4d82fc
JJ
1333 // Emit the AArch64 operation with overflow check.
1334 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1335 Overflow = Value.getValue(1);
970d7e83 1336 }
1a4d82fc 1337 return std::make_pair(Value, Overflow);
970d7e83
LB
1338}
1339
1a4d82fc
JJ
1340SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1341 RTLIB::Libcall Call) const {
1342 SmallVector<SDValue, 2> Ops;
1343 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1344 Ops.push_back(Op.getOperand(i));
970d7e83 1345
1a4d82fc
JJ
1346 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1347 SDLoc(Op)).first;
1348}
970d7e83 1349
1a4d82fc
JJ
1350static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1351 SDValue Sel = Op.getOperand(0);
1352 SDValue Other = Op.getOperand(1);
970d7e83 1353
1a4d82fc
JJ
1354 // If neither operand is a SELECT_CC, give up.
1355 if (Sel.getOpcode() != ISD::SELECT_CC)
1356 std::swap(Sel, Other);
1357 if (Sel.getOpcode() != ISD::SELECT_CC)
1358 return Op;
970d7e83 1359
1a4d82fc
JJ
1360 // The folding we want to perform is:
1361 // (xor x, (select_cc a, b, cc, 0, -1) )
1362 // -->
1363 // (csel x, (xor x, -1), cc ...)
1364 //
1365 // The latter will get matched to a CSINV instruction.
970d7e83 1366
1a4d82fc
JJ
1367 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1368 SDValue LHS = Sel.getOperand(0);
1369 SDValue RHS = Sel.getOperand(1);
1370 SDValue TVal = Sel.getOperand(2);
1371 SDValue FVal = Sel.getOperand(3);
1372 SDLoc dl(Sel);
970d7e83 1373
1a4d82fc
JJ
1374 // FIXME: This could be generalized to non-integer comparisons.
1375 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1376 return Op;
970d7e83 1377
1a4d82fc
JJ
1378 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1379 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
970d7e83 1380
1a4d82fc
JJ
1381 // The the values aren't constants, this isn't the pattern we're looking for.
1382 if (!CFVal || !CTVal)
1383 return Op;
970d7e83 1384
1a4d82fc
JJ
1385 // We can commute the SELECT_CC by inverting the condition. This
1386 // might be needed to make this fit into a CSINV pattern.
1387 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1388 std::swap(TVal, FVal);
1389 std::swap(CTVal, CFVal);
1390 CC = ISD::getSetCCInverse(CC, true);
1391 }
970d7e83 1392
1a4d82fc
JJ
1393 // If the constants line up, perform the transform!
1394 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1395 SDValue CCVal;
1396 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
970d7e83 1397
1a4d82fc
JJ
1398 FVal = Other;
1399 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1400 DAG.getConstant(-1ULL, Other.getValueType()));
970d7e83 1401
1a4d82fc
JJ
1402 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1403 CCVal, Cmp);
1404 }
970d7e83 1405
1a4d82fc
JJ
1406 return Op;
1407}
970d7e83 1408
1a4d82fc
JJ
1409static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1410 EVT VT = Op.getValueType();
1411
1412 // Let legalize expand this if it isn't a legal type yet.
1413 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1414 return SDValue();
1415
1416 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
970d7e83 1417
1a4d82fc
JJ
1418 unsigned Opc;
1419 bool ExtraOp = false;
1420 switch (Op.getOpcode()) {
1421 default:
1422 llvm_unreachable("Invalid code");
1423 case ISD::ADDC:
1424 Opc = AArch64ISD::ADDS;
1425 break;
1426 case ISD::SUBC:
1427 Opc = AArch64ISD::SUBS;
1428 break;
1429 case ISD::ADDE:
1430 Opc = AArch64ISD::ADCS;
1431 ExtraOp = true;
1432 break;
1433 case ISD::SUBE:
1434 Opc = AArch64ISD::SBCS;
1435 ExtraOp = true;
1436 break;
970d7e83
LB
1437 }
1438
1a4d82fc
JJ
1439 if (!ExtraOp)
1440 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1441 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1442 Op.getOperand(2));
1443}
970d7e83 1444
1a4d82fc
JJ
1445static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1446 // Let legalize expand this if it isn't a legal type yet.
1447 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1448 return SDValue();
970d7e83 1449
1a4d82fc
JJ
1450 AArch64CC::CondCode CC;
1451 // The actual operation that sets the overflow or carry flag.
1452 SDValue Value, Overflow;
1453 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
970d7e83 1454
1a4d82fc
JJ
1455 // We use 0 and 1 as false and true values.
1456 SDValue TVal = DAG.getConstant(1, MVT::i32);
1457 SDValue FVal = DAG.getConstant(0, MVT::i32);
970d7e83 1458
1a4d82fc
JJ
1459 // We use an inverted condition, because the conditional select is inverted
1460 // too. This will allow it to be selected to a single instruction:
1461 // CSINC Wd, WZR, WZR, invert(cond).
1462 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1463 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1464 CCVal, Overflow);
1465
1466 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1467 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
970d7e83
LB
1468}
1469
1a4d82fc
JJ
1470// Prefetch operands are:
1471// 1: Address to prefetch
1472// 2: bool isWrite
1473// 3: int locality (0 = no locality ... 3 = extreme locality)
1474// 4: bool isDataCache
1475static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1476 SDLoc DL(Op);
1477 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1478 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1479 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1480
1481 bool IsStream = !Locality;
1482 // When the locality number is set
1483 if (Locality) {
1484 // The front-end should have filtered out the out-of-range values
1485 assert(Locality <= 3 && "Prefetch locality out-of-range");
1486 // The locality degree is the opposite of the cache speed.
1487 // Put the number the other way around.
1488 // The encoding starts at 0 for level 1
1489 Locality = 3 - Locality;
1490 }
970d7e83 1491
1a4d82fc
JJ
1492 // built the mask value encoding the expected behavior.
1493 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
1494 (!IsData << 3) | // IsDataCache bit
1495 (Locality << 1) | // Cache level bits
1496 (unsigned)IsStream; // Stream bit
1497 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1498 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1499}
970d7e83 1500
1a4d82fc
JJ
1501SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1502 SelectionDAG &DAG) const {
1503 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
970d7e83 1504
1a4d82fc
JJ
1505 RTLIB::Libcall LC;
1506 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
970d7e83 1507
1a4d82fc
JJ
1508 return LowerF128Call(Op, DAG, LC);
1509}
1510
1511SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1512 SelectionDAG &DAG) const {
1513 if (Op.getOperand(0).getValueType() != MVT::f128) {
1514 // It's legal except when f128 is involved
1515 return Op;
1516 }
970d7e83 1517
1a4d82fc
JJ
1518 RTLIB::Libcall LC;
1519 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
970d7e83 1520
1a4d82fc
JJ
1521 // FP_ROUND node has a second operand indicating whether it is known to be
1522 // precise. That doesn't take part in the LibCall so we can't directly use
1523 // LowerF128Call.
1524 SDValue SrcVal = Op.getOperand(0);
1525 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1526 /*isSigned*/ false, SDLoc(Op)).first;
1527}
970d7e83 1528
1a4d82fc
JJ
1529static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1530 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1531 // Any additional optimization in this function should be recorded
1532 // in the cost tables.
1533 EVT InVT = Op.getOperand(0).getValueType();
1534 EVT VT = Op.getValueType();
970d7e83 1535
1a4d82fc
JJ
1536 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1537 SDLoc dl(Op);
1538 SDValue Cv =
1539 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1540 Op.getOperand(0));
1541 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
970d7e83
LB
1542 }
1543
1a4d82fc
JJ
1544 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1545 SDLoc dl(Op);
1546 MVT ExtVT =
1547 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1548 VT.getVectorNumElements());
1549 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
1550 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1551 }
970d7e83 1552
1a4d82fc
JJ
1553 // Type changing conversions are illegal.
1554 return Op;
970d7e83
LB
1555}
1556
1a4d82fc
JJ
1557SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1558 SelectionDAG &DAG) const {
1559 if (Op.getOperand(0).getValueType().isVector())
1560 return LowerVectorFP_TO_INT(Op, DAG);
970d7e83 1561
1a4d82fc
JJ
1562 if (Op.getOperand(0).getValueType() != MVT::f128) {
1563 // It's legal except when f128 is involved
1564 return Op;
1565 }
970d7e83 1566
1a4d82fc
JJ
1567 RTLIB::Libcall LC;
1568 if (Op.getOpcode() == ISD::FP_TO_SINT)
1569 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1570 else
1571 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
970d7e83 1572
1a4d82fc
JJ
1573 SmallVector<SDValue, 2> Ops;
1574 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1575 Ops.push_back(Op.getOperand(i));
970d7e83 1576
1a4d82fc
JJ
1577 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1578 SDLoc(Op)).first;
1579}
970d7e83 1580
1a4d82fc
JJ
1581static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1582 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1583 // Any additional optimization in this function should be recorded
1584 // in the cost tables.
1585 EVT VT = Op.getValueType();
1586 SDLoc dl(Op);
1587 SDValue In = Op.getOperand(0);
1588 EVT InVT = In.getValueType();
1589
1590 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1591 MVT CastVT =
1592 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1593 InVT.getVectorNumElements());
1594 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1595 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
970d7e83
LB
1596 }
1597
1a4d82fc
JJ
1598 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1599 unsigned CastOpc =
1600 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1601 EVT CastVT = VT.changeVectorElementTypeToInteger();
1602 In = DAG.getNode(CastOpc, dl, CastVT, In);
1603 return DAG.getNode(Op.getOpcode(), dl, VT, In);
1604 }
970d7e83 1605
1a4d82fc
JJ
1606 return Op;
1607}
970d7e83 1608
1a4d82fc
JJ
1609SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1610 SelectionDAG &DAG) const {
1611 if (Op.getValueType().isVector())
1612 return LowerVectorINT_TO_FP(Op, DAG);
970d7e83 1613
1a4d82fc
JJ
1614 // i128 conversions are libcalls.
1615 if (Op.getOperand(0).getValueType() == MVT::i128)
1616 return SDValue();
970d7e83 1617
1a4d82fc
JJ
1618 // Other conversions are legal, unless it's to the completely software-based
1619 // fp128.
1620 if (Op.getValueType() != MVT::f128)
1621 return Op;
970d7e83 1622
1a4d82fc
JJ
1623 RTLIB::Libcall LC;
1624 if (Op.getOpcode() == ISD::SINT_TO_FP)
1625 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1626 else
1627 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
970d7e83 1628
1a4d82fc
JJ
1629 return LowerF128Call(Op, DAG, LC);
1630}
970d7e83 1631
1a4d82fc
JJ
1632SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1633 SelectionDAG &DAG) const {
1634 // For iOS, we want to call an alternative entry point: __sincos_stret,
1635 // which returns the values in two S / D registers.
1636 SDLoc dl(Op);
1637 SDValue Arg = Op.getOperand(0);
1638 EVT ArgVT = Arg.getValueType();
1639 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
970d7e83 1640
1a4d82fc
JJ
1641 ArgListTy Args;
1642 ArgListEntry Entry;
970d7e83 1643
1a4d82fc
JJ
1644 Entry.Node = Arg;
1645 Entry.Ty = ArgTy;
1646 Entry.isSExt = false;
1647 Entry.isZExt = false;
1648 Args.push_back(Entry);
970d7e83 1649
1a4d82fc
JJ
1650 const char *LibcallName =
1651 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1652 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
970d7e83 1653
85aaf69f 1654 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
1a4d82fc
JJ
1655 TargetLowering::CallLoweringInfo CLI(DAG);
1656 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
1657 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
970d7e83 1658
1a4d82fc
JJ
1659 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1660 return CallResult.first;
1661}
970d7e83 1662
1a4d82fc
JJ
1663static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1664 if (Op.getValueType() != MVT::f16)
1665 return SDValue();
970d7e83 1666
1a4d82fc
JJ
1667 assert(Op.getOperand(0).getValueType() == MVT::i16);
1668 SDLoc DL(Op);
970d7e83 1669
1a4d82fc
JJ
1670 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1671 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1672 return SDValue(
1673 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1674 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1675 0);
1676}
970d7e83 1677
85aaf69f
SL
1678static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1679 if (OrigVT.getSizeInBits() >= 64)
1680 return OrigVT;
1681
1682 assert(OrigVT.isSimple() && "Expecting a simple value type");
1683
1684 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1685 switch (OrigSimpleTy) {
1686 default: llvm_unreachable("Unexpected Vector Type");
1687 case MVT::v2i8:
1688 case MVT::v2i16:
1689 return MVT::v2i32;
1690 case MVT::v4i8:
1691 return MVT::v4i16;
1692 }
1693}
1694
1695static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1696 const EVT &OrigTy,
1697 const EVT &ExtTy,
1698 unsigned ExtOpcode) {
1699 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1700 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1701 // 64-bits we need to insert a new extension so that it will be 64-bits.
1702 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1703 if (OrigTy.getSizeInBits() >= 64)
1704 return N;
1705
1706 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1707 EVT NewVT = getExtensionTo64Bits(OrigTy);
1708
1709 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1710}
1711
1712static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1713 bool isSigned) {
1714 EVT VT = N->getValueType(0);
1715
1716 if (N->getOpcode() != ISD::BUILD_VECTOR)
1717 return false;
1718
1719 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1720 SDNode *Elt = N->getOperand(i).getNode();
1721 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1722 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1723 unsigned HalfSize = EltSize / 2;
1724 if (isSigned) {
1725 if (!isIntN(HalfSize, C->getSExtValue()))
1726 return false;
1727 } else {
1728 if (!isUIntN(HalfSize, C->getZExtValue()))
1729 return false;
1730 }
1731 continue;
1732 }
1733 return false;
1734 }
1735
1736 return true;
1737}
1738
1739static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1740 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1741 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1742 N->getOperand(0)->getValueType(0),
1743 N->getValueType(0),
1744 N->getOpcode());
1745
1746 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1747 EVT VT = N->getValueType(0);
1748 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1749 unsigned NumElts = VT.getVectorNumElements();
1750 MVT TruncVT = MVT::getIntegerVT(EltSize);
1751 SmallVector<SDValue, 8> Ops;
1752 for (unsigned i = 0; i != NumElts; ++i) {
1753 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1754 const APInt &CInt = C->getAPIntValue();
1755 // Element types smaller than 32 bits are not legal, so use i32 elements.
1756 // The values are implicitly truncated so sext vs. zext doesn't matter.
1757 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
1758 }
1759 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
1760 MVT::getVectorVT(TruncVT, NumElts), Ops);
1761}
1762
1763static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1764 if (N->getOpcode() == ISD::SIGN_EXTEND)
1765 return true;
1766 if (isExtendedBUILD_VECTOR(N, DAG, true))
1767 return true;
1768 return false;
1769}
1770
1771static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1772 if (N->getOpcode() == ISD::ZERO_EXTEND)
1773 return true;
1774 if (isExtendedBUILD_VECTOR(N, DAG, false))
1775 return true;
1776 return false;
1777}
1778
1779static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1780 unsigned Opcode = N->getOpcode();
1781 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1782 SDNode *N0 = N->getOperand(0).getNode();
1783 SDNode *N1 = N->getOperand(1).getNode();
1784 return N0->hasOneUse() && N1->hasOneUse() &&
1785 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1786 }
1787 return false;
1788}
1789
1790static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1791 unsigned Opcode = N->getOpcode();
1792 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1793 SDNode *N0 = N->getOperand(0).getNode();
1794 SDNode *N1 = N->getOperand(1).getNode();
1795 return N0->hasOneUse() && N1->hasOneUse() &&
1796 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1797 }
1798 return false;
1799}
1800
1801static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1802 // Multiplications are only custom-lowered for 128-bit vectors so that
1803 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
1804 EVT VT = Op.getValueType();
1805 assert(VT.is128BitVector() && VT.isInteger() &&
1806 "unexpected type for custom-lowering ISD::MUL");
1807 SDNode *N0 = Op.getOperand(0).getNode();
1808 SDNode *N1 = Op.getOperand(1).getNode();
1809 unsigned NewOpc = 0;
1810 bool isMLA = false;
1811 bool isN0SExt = isSignExtended(N0, DAG);
1812 bool isN1SExt = isSignExtended(N1, DAG);
1813 if (isN0SExt && isN1SExt)
1814 NewOpc = AArch64ISD::SMULL;
1815 else {
1816 bool isN0ZExt = isZeroExtended(N0, DAG);
1817 bool isN1ZExt = isZeroExtended(N1, DAG);
1818 if (isN0ZExt && isN1ZExt)
1819 NewOpc = AArch64ISD::UMULL;
1820 else if (isN1SExt || isN1ZExt) {
1821 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1822 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1823 if (isN1SExt && isAddSubSExt(N0, DAG)) {
1824 NewOpc = AArch64ISD::SMULL;
1825 isMLA = true;
1826 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1827 NewOpc = AArch64ISD::UMULL;
1828 isMLA = true;
1829 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1830 std::swap(N0, N1);
1831 NewOpc = AArch64ISD::UMULL;
1832 isMLA = true;
1833 }
1834 }
1835
1836 if (!NewOpc) {
1837 if (VT == MVT::v2i64)
1838 // Fall through to expand this. It is not legal.
1839 return SDValue();
1840 else
1841 // Other vector multiplications are legal.
1842 return Op;
1843 }
1844 }
1845
1846 // Legalize to a S/UMULL instruction
1847 SDLoc DL(Op);
1848 SDValue Op0;
1849 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1850 if (!isMLA) {
1851 Op0 = skipExtensionForVectorMULL(N0, DAG);
1852 assert(Op0.getValueType().is64BitVector() &&
1853 Op1.getValueType().is64BitVector() &&
1854 "unexpected types for extended operands to VMULL");
1855 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1856 }
1857 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1858 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1859 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1860 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1861 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1862 EVT Op1VT = Op1.getValueType();
1863 return DAG.getNode(N0->getOpcode(), DL, VT,
1864 DAG.getNode(NewOpc, DL, VT,
1865 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1866 DAG.getNode(NewOpc, DL, VT,
1867 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1868}
970d7e83 1869
1a4d82fc
JJ
1870SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1871 SelectionDAG &DAG) const {
1872 switch (Op.getOpcode()) {
1873 default:
1874 llvm_unreachable("unimplemented operand");
1875 return SDValue();
1876 case ISD::BITCAST:
1877 return LowerBITCAST(Op, DAG);
1878 case ISD::GlobalAddress:
1879 return LowerGlobalAddress(Op, DAG);
1880 case ISD::GlobalTLSAddress:
1881 return LowerGlobalTLSAddress(Op, DAG);
1882 case ISD::SETCC:
1883 return LowerSETCC(Op, DAG);
1884 case ISD::BR_CC:
1885 return LowerBR_CC(Op, DAG);
1886 case ISD::SELECT:
1887 return LowerSELECT(Op, DAG);
1888 case ISD::SELECT_CC:
1889 return LowerSELECT_CC(Op, DAG);
1890 case ISD::JumpTable:
1891 return LowerJumpTable(Op, DAG);
1892 case ISD::ConstantPool:
1893 return LowerConstantPool(Op, DAG);
1894 case ISD::BlockAddress:
1895 return LowerBlockAddress(Op, DAG);
1896 case ISD::VASTART:
1897 return LowerVASTART(Op, DAG);
1898 case ISD::VACOPY:
1899 return LowerVACOPY(Op, DAG);
1900 case ISD::VAARG:
1901 return LowerVAARG(Op, DAG);
1902 case ISD::ADDC:
1903 case ISD::ADDE:
1904 case ISD::SUBC:
1905 case ISD::SUBE:
1906 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1907 case ISD::SADDO:
1908 case ISD::UADDO:
1909 case ISD::SSUBO:
1910 case ISD::USUBO:
1911 case ISD::SMULO:
1912 case ISD::UMULO:
1913 return LowerXALUO(Op, DAG);
1914 case ISD::FADD:
1915 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1916 case ISD::FSUB:
1917 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1918 case ISD::FMUL:
1919 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1920 case ISD::FDIV:
1921 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1922 case ISD::FP_ROUND:
1923 return LowerFP_ROUND(Op, DAG);
1924 case ISD::FP_EXTEND:
1925 return LowerFP_EXTEND(Op, DAG);
1926 case ISD::FRAMEADDR:
1927 return LowerFRAMEADDR(Op, DAG);
1928 case ISD::RETURNADDR:
1929 return LowerRETURNADDR(Op, DAG);
1930 case ISD::INSERT_VECTOR_ELT:
1931 return LowerINSERT_VECTOR_ELT(Op, DAG);
1932 case ISD::EXTRACT_VECTOR_ELT:
1933 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1934 case ISD::BUILD_VECTOR:
1935 return LowerBUILD_VECTOR(Op, DAG);
1936 case ISD::VECTOR_SHUFFLE:
1937 return LowerVECTOR_SHUFFLE(Op, DAG);
1938 case ISD::EXTRACT_SUBVECTOR:
1939 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1940 case ISD::SRA:
1941 case ISD::SRL:
1942 case ISD::SHL:
1943 return LowerVectorSRA_SRL_SHL(Op, DAG);
1944 case ISD::SHL_PARTS:
1945 return LowerShiftLeftParts(Op, DAG);
1946 case ISD::SRL_PARTS:
1947 case ISD::SRA_PARTS:
1948 return LowerShiftRightParts(Op, DAG);
1949 case ISD::CTPOP:
1950 return LowerCTPOP(Op, DAG);
1951 case ISD::FCOPYSIGN:
1952 return LowerFCOPYSIGN(Op, DAG);
1953 case ISD::AND:
1954 return LowerVectorAND(Op, DAG);
1955 case ISD::OR:
1956 return LowerVectorOR(Op, DAG);
1957 case ISD::XOR:
1958 return LowerXOR(Op, DAG);
1959 case ISD::PREFETCH:
1960 return LowerPREFETCH(Op, DAG);
1961 case ISD::SINT_TO_FP:
1962 case ISD::UINT_TO_FP:
1963 return LowerINT_TO_FP(Op, DAG);
1964 case ISD::FP_TO_SINT:
1965 case ISD::FP_TO_UINT:
1966 return LowerFP_TO_INT(Op, DAG);
1967 case ISD::FSINCOS:
1968 return LowerFSINCOS(Op, DAG);
85aaf69f
SL
1969 case ISD::MUL:
1970 return LowerMUL(Op, DAG);
970d7e83 1971 }
1a4d82fc 1972}
970d7e83 1973
1a4d82fc
JJ
1974/// getFunctionAlignment - Return the Log2 alignment of this function.
1975unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1976 return 2;
1977}
970d7e83 1978
1a4d82fc
JJ
1979//===----------------------------------------------------------------------===//
1980// Calling Convention Implementation
1981//===----------------------------------------------------------------------===//
970d7e83 1982
1a4d82fc 1983#include "AArch64GenCallingConv.inc"
970d7e83 1984
1a4d82fc
JJ
1985/// Selects the correct CCAssignFn for a given CallingConvention value.
1986CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1987 bool IsVarArg) const {
1988 switch (CC) {
1989 default:
1990 llvm_unreachable("Unsupported calling convention.");
1991 case CallingConv::WebKit_JS:
1992 return CC_AArch64_WebKit_JS;
85aaf69f
SL
1993 case CallingConv::GHC:
1994 return CC_AArch64_GHC;
1a4d82fc
JJ
1995 case CallingConv::C:
1996 case CallingConv::Fast:
1997 if (!Subtarget->isTargetDarwin())
1998 return CC_AArch64_AAPCS;
1999 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
970d7e83 2000 }
1a4d82fc 2001}
970d7e83 2002
1a4d82fc
JJ
2003SDValue AArch64TargetLowering::LowerFormalArguments(
2004 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2005 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2006 SmallVectorImpl<SDValue> &InVals) const {
2007 MachineFunction &MF = DAG.getMachineFunction();
2008 MachineFrameInfo *MFI = MF.getFrameInfo();
2009
2010 // Assign locations to all of the incoming arguments.
2011 SmallVector<CCValAssign, 16> ArgLocs;
2012 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2013 *DAG.getContext());
2014
2015 // At this point, Ins[].VT may already be promoted to i32. To correctly
2016 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2017 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2018 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2019 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2020 // LocVT.
2021 unsigned NumArgs = Ins.size();
2022 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2023 unsigned CurArgIdx = 0;
2024 for (unsigned i = 0; i != NumArgs; ++i) {
2025 MVT ValVT = Ins[i].VT;
2026 std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
2027 CurArgIdx = Ins[i].OrigArgIndex;
2028
2029 // Get type of the original argument.
2030 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2031 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2032 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2033 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2034 ValVT = MVT::i8;
2035 else if (ActualMVT == MVT::i16)
2036 ValVT = MVT::i16;
2037
2038 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2039 bool Res =
2040 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
2041 assert(!Res && "Call operand has unhandled type");
2042 (void)Res;
970d7e83 2043 }
1a4d82fc
JJ
2044 assert(ArgLocs.size() == Ins.size());
2045 SmallVector<SDValue, 16> ArgValues;
2046 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2047 CCValAssign &VA = ArgLocs[i];
970d7e83 2048
1a4d82fc
JJ
2049 if (Ins[i].Flags.isByVal()) {
2050 // Byval is used for HFAs in the PCS, but the system should work in a
2051 // non-compliant manner for larger structs.
2052 EVT PtrTy = getPointerTy();
2053 int Size = Ins[i].Flags.getByValSize();
2054 unsigned NumRegs = (Size + 7) / 8;
970d7e83 2055
1a4d82fc
JJ
2056 // FIXME: This works on big-endian for composite byvals, which are the common
2057 // case. It should also work for fundamental types too.
2058 unsigned FrameIdx =
2059 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2060 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2061 InVals.push_back(FrameIdxN);
970d7e83 2062
1a4d82fc
JJ
2063 continue;
2064 }
2065
2066 if (VA.isRegLoc()) {
2067 // Arguments stored in registers.
2068 EVT RegVT = VA.getLocVT();
2069
2070 SDValue ArgValue;
2071 const TargetRegisterClass *RC;
2072
2073 if (RegVT == MVT::i32)
2074 RC = &AArch64::GPR32RegClass;
2075 else if (RegVT == MVT::i64)
2076 RC = &AArch64::GPR64RegClass;
2077 else if (RegVT == MVT::f16)
2078 RC = &AArch64::FPR16RegClass;
2079 else if (RegVT == MVT::f32)
2080 RC = &AArch64::FPR32RegClass;
2081 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2082 RC = &AArch64::FPR64RegClass;
2083 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2084 RC = &AArch64::FPR128RegClass;
2085 else
2086 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2087
2088 // Transform the arguments in physical registers into virtual ones.
2089 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2090 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2091
2092 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2093 // to 64 bits. Insert an assert[sz]ext to capture this, then
2094 // truncate to the right size.
2095 switch (VA.getLocInfo()) {
2096 default:
2097 llvm_unreachable("Unknown loc info!");
2098 case CCValAssign::Full:
2099 break;
2100 case CCValAssign::BCvt:
2101 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2102 break;
2103 case CCValAssign::AExt:
2104 case CCValAssign::SExt:
2105 case CCValAssign::ZExt:
2106 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2107 // nodes after our lowering.
2108 assert(RegVT == Ins[i].VT && "incorrect register location selected");
2109 break;
2110 }
970d7e83 2111
1a4d82fc 2112 InVals.push_back(ArgValue);
970d7e83 2113
1a4d82fc
JJ
2114 } else { // VA.isRegLoc()
2115 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2116 unsigned ArgOffset = VA.getLocMemOffset();
2117 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
970d7e83 2118
1a4d82fc 2119 uint32_t BEAlign = 0;
85aaf69f
SL
2120 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2121 !Ins[i].Flags.isInConsecutiveRegs())
1a4d82fc 2122 BEAlign = 8 - ArgSize;
970d7e83 2123
1a4d82fc 2124 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
970d7e83 2125
1a4d82fc
JJ
2126 // Create load nodes to retrieve arguments from the stack.
2127 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2128 SDValue ArgValue;
2129
2130 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2131 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2132 MVT MemVT = VA.getValVT();
2133
2134 switch (VA.getLocInfo()) {
2135 default:
2136 break;
2137 case CCValAssign::BCvt:
2138 MemVT = VA.getLocVT();
2139 break;
2140 case CCValAssign::SExt:
2141 ExtType = ISD::SEXTLOAD;
2142 break;
2143 case CCValAssign::ZExt:
2144 ExtType = ISD::ZEXTLOAD;
2145 break;
2146 case CCValAssign::AExt:
2147 ExtType = ISD::EXTLOAD;
2148 break;
2149 }
2150
2151 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
2152 MachinePointerInfo::getFixedStack(FI),
85aaf69f 2153 MemVT, false, false, false, 0);
1a4d82fc
JJ
2154
2155 InVals.push_back(ArgValue);
2156 }
970d7e83
LB
2157 }
2158
1a4d82fc
JJ
2159 // varargs
2160 if (isVarArg) {
2161 if (!Subtarget->isTargetDarwin()) {
2162 // The AAPCS variadic function ABI is identical to the non-variadic
2163 // one. As a result there may be more arguments in registers and we should
2164 // save them for future reference.
2165 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2166 }
970d7e83 2167
1a4d82fc
JJ
2168 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2169 // This will point to the next argument passed via stack.
2170 unsigned StackOffset = CCInfo.getNextStackOffset();
2171 // We currently pass all varargs at 8-byte alignment.
2172 StackOffset = ((StackOffset + 7) & ~7);
2173 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2174 }
970d7e83 2175
1a4d82fc
JJ
2176 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2177 unsigned StackArgSize = CCInfo.getNextStackOffset();
2178 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2179 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2180 // This is a non-standard ABI so by fiat I say we're allowed to make full
2181 // use of the stack area to be popped, which must be aligned to 16 bytes in
2182 // any case:
2183 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2184
2185 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2186 // a multiple of 16.
2187 FuncInfo->setArgumentStackToRestore(StackArgSize);
2188
2189 // This realignment carries over to the available bytes below. Our own
2190 // callers will guarantee the space is free by giving an aligned value to
2191 // CALLSEQ_START.
970d7e83 2192 }
1a4d82fc
JJ
2193 // Even if we're not expected to free up the space, it's useful to know how
2194 // much is there while considering tail calls (because we can reuse it).
2195 FuncInfo->setBytesInStackArgArea(StackArgSize);
970d7e83 2196
1a4d82fc 2197 return Chain;
970d7e83
LB
2198}
2199
1a4d82fc
JJ
2200void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2201 SelectionDAG &DAG, SDLoc DL,
2202 SDValue &Chain) const {
2203 MachineFunction &MF = DAG.getMachineFunction();
2204 MachineFrameInfo *MFI = MF.getFrameInfo();
2205 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2206
2207 SmallVector<SDValue, 8> MemOps;
2208
2209 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2210 AArch64::X3, AArch64::X4, AArch64::X5,
2211 AArch64::X6, AArch64::X7 };
2212 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2213 unsigned FirstVariadicGPR =
2214 CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
2215
2216 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2217 int GPRIdx = 0;
2218 if (GPRSaveSize != 0) {
2219 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2220
2221 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2222
2223 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2224 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2225 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2226 SDValue Store =
2227 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2228 MachinePointerInfo::getStack(i * 8), false, false, 0);
2229 MemOps.push_back(Store);
2230 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2231 DAG.getConstant(8, getPointerTy()));
2232 }
2233 }
2234 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2235 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2236
2237 if (Subtarget->hasFPARMv8()) {
2238 static const MCPhysReg FPRArgRegs[] = {
2239 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2240 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2241 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2242 unsigned FirstVariadicFPR =
2243 CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
2244
2245 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2246 int FPRIdx = 0;
2247 if (FPRSaveSize != 0) {
2248 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2249
2250 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2251
2252 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2253 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2254 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2255
2256 SDValue Store =
2257 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2258 MachinePointerInfo::getStack(i * 16), false, false, 0);
2259 MemOps.push_back(Store);
2260 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2261 DAG.getConstant(16, getPointerTy()));
2262 }
2263 }
2264 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2265 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2266 }
2267
2268 if (!MemOps.empty()) {
2269 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2270 }
2271}
2272
2273/// LowerCallResult - Lower the result values of a call into the
2274/// appropriate copies out of appropriate physical registers.
2275SDValue AArch64TargetLowering::LowerCallResult(
2276 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2277 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2278 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2279 SDValue ThisVal) const {
2280 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2281 ? RetCC_AArch64_WebKit_JS
2282 : RetCC_AArch64_AAPCS;
970d7e83
LB
2283 // Assign locations to each value returned by this call.
2284 SmallVector<CCValAssign, 16> RVLocs;
1a4d82fc
JJ
2285 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2286 *DAG.getContext());
2287 CCInfo.AnalyzeCallResult(Ins, RetCC);
970d7e83 2288
1a4d82fc 2289 // Copy all of the result registers out of their specified physreg.
970d7e83
LB
2290 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2291 CCValAssign VA = RVLocs[i];
2292
1a4d82fc
JJ
2293 // Pass 'this' value directly from the argument to return value, to avoid
2294 // reg unit interference
2295 if (i == 0 && isThisReturn) {
2296 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2297 "unexpected return calling convention register assignment");
2298 InVals.push_back(ThisVal);
2299 continue;
2300 }
970d7e83 2301
1a4d82fc
JJ
2302 SDValue Val =
2303 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
970d7e83
LB
2304 Chain = Val.getValue(1);
2305 InFlag = Val.getValue(2);
2306
2307 switch (VA.getLocInfo()) {
1a4d82fc
JJ
2308 default:
2309 llvm_unreachable("Unknown loc info!");
2310 case CCValAssign::Full:
970d7e83 2311 break;
1a4d82fc
JJ
2312 case CCValAssign::BCvt:
2313 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
970d7e83
LB
2314 break;
2315 }
2316
2317 InVals.push_back(Val);
2318 }
2319
2320 return Chain;
2321}
2322
1a4d82fc
JJ
2323bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2324 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2325 bool isCalleeStructRet, bool isCallerStructRet,
2326 const SmallVectorImpl<ISD::OutputArg> &Outs,
2327 const SmallVectorImpl<SDValue> &OutVals,
2328 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
970d7e83
LB
2329 // For CallingConv::C this function knows whether the ABI needs
2330 // changing. That's not true for other conventions so they will have to opt in
2331 // manually.
2332 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2333 return false;
2334
2335 const MachineFunction &MF = DAG.getMachineFunction();
2336 const Function *CallerF = MF.getFunction();
2337 CallingConv::ID CallerCC = CallerF->getCallingConv();
2338 bool CCMatch = CallerCC == CalleeCC;
2339
2340 // Byval parameters hand the function a pointer directly into the stack area
2341 // we want to reuse during a tail call. Working around this *is* possible (see
2342 // X86) but less efficient and uglier in LowerCall.
2343 for (Function::const_arg_iterator i = CallerF->arg_begin(),
1a4d82fc
JJ
2344 e = CallerF->arg_end();
2345 i != e; ++i)
970d7e83
LB
2346 if (i->hasByValAttr())
2347 return false;
2348
2349 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2350 if (IsTailCallConvention(CalleeCC) && CCMatch)
2351 return true;
2352 return false;
2353 }
2354
1a4d82fc
JJ
2355 // Externally-defined functions with weak linkage should not be
2356 // tail-called on AArch64 when the OS does not support dynamic
2357 // pre-emption of symbols, as the AAELF spec requires normal calls
2358 // to undefined weak functions to be replaced with a NOP or jump to the
2359 // next instruction. The behaviour of branch instructions in this
2360 // situation (as used for tail calls) is implementation-defined, so we
2361 // cannot rely on the linker replacing the tail call with a return.
2362 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2363 const GlobalValue *GV = G->getGlobal();
85aaf69f
SL
2364 const Triple TT(getTargetMachine().getTargetTriple());
2365 if (GV->hasExternalWeakLinkage() &&
2366 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
1a4d82fc
JJ
2367 return false;
2368 }
2369
970d7e83
LB
2370 // Now we search for cases where we can use a tail call without changing the
2371 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2372 // concept.
2373
2374 // I want anyone implementing a new calling convention to think long and hard
2375 // about this assert.
1a4d82fc
JJ
2376 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2377 "Unexpected variadic calling convention");
970d7e83 2378
1a4d82fc 2379 if (isVarArg && !Outs.empty()) {
970d7e83
LB
2380 // At least two cases here: if caller is fastcc then we can't have any
2381 // memory arguments (we'd be expected to clean up the stack afterwards). If
2382 // caller is C then we could potentially use its argument area.
2383
2384 // FIXME: for now we take the most conservative of these in both cases:
2385 // disallow all variadic memory operands.
2386 SmallVector<CCValAssign, 16> ArgLocs;
1a4d82fc
JJ
2387 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2388 *DAG.getContext());
970d7e83 2389
1a4d82fc 2390 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
970d7e83
LB
2391 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2392 if (!ArgLocs[i].isRegLoc())
2393 return false;
2394 }
2395
2396 // If the calling conventions do not match, then we'd better make sure the
2397 // results are returned in the same way as what the caller expects.
2398 if (!CCMatch) {
2399 SmallVector<CCValAssign, 16> RVLocs1;
1a4d82fc
JJ
2400 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2401 *DAG.getContext());
2402 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
970d7e83
LB
2403
2404 SmallVector<CCValAssign, 16> RVLocs2;
1a4d82fc
JJ
2405 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2406 *DAG.getContext());
2407 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
970d7e83
LB
2408
2409 if (RVLocs1.size() != RVLocs2.size())
2410 return false;
2411 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2412 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2413 return false;
2414 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2415 return false;
2416 if (RVLocs1[i].isRegLoc()) {
2417 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2418 return false;
2419 } else {
2420 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2421 return false;
2422 }
2423 }
2424 }
2425
2426 // Nothing more to check if the callee is taking no arguments
2427 if (Outs.empty())
2428 return true;
2429
2430 SmallVector<CCValAssign, 16> ArgLocs;
1a4d82fc
JJ
2431 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2432 *DAG.getContext());
970d7e83 2433
1a4d82fc 2434 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
970d7e83 2435
1a4d82fc 2436 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
970d7e83
LB
2437
2438 // If the stack arguments for this call would fit into our own save area then
2439 // the call can be made tail.
2440 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2441}
2442
970d7e83
LB
2443SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2444 SelectionDAG &DAG,
2445 MachineFrameInfo *MFI,
2446 int ClobberedFI) const {
2447 SmallVector<SDValue, 8> ArgChains;
2448 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2449 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2450
2451 // Include the original chain at the beginning of the list. When this is
2452 // used by target LowerCall hooks, this helps legalize find the
2453 // CALLSEQ_BEGIN node.
2454 ArgChains.push_back(Chain);
2455
2456 // Add a chain value for each stack argument corresponding
2457 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1a4d82fc
JJ
2458 UE = DAG.getEntryNode().getNode()->use_end();
2459 U != UE; ++U)
970d7e83
LB
2460 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2461 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2462 if (FI->getIndex() < 0) {
2463 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2464 int64_t InLastByte = InFirstByte;
2465 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2466
2467 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2468 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2469 ArgChains.push_back(SDValue(L, 1));
2470 }
2471
1a4d82fc
JJ
2472 // Build a tokenfactor for all the chains.
2473 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
970d7e83
LB
2474}
2475
1a4d82fc
JJ
2476bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2477 bool TailCallOpt) const {
2478 return CallCC == CallingConv::Fast && TailCallOpt;
970d7e83
LB
2479}
2480
1a4d82fc
JJ
2481bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2482 return CallCC == CallingConv::Fast;
970d7e83
LB
2483}
2484
1a4d82fc
JJ
2485/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2486/// and add input and output parameter nodes.
970d7e83 2487SDValue
1a4d82fc
JJ
2488AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2489 SmallVectorImpl<SDValue> &InVals) const {
2490 SelectionDAG &DAG = CLI.DAG;
2491 SDLoc &DL = CLI.DL;
2492 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2493 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2494 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2495 SDValue Chain = CLI.Chain;
2496 SDValue Callee = CLI.Callee;
2497 bool &IsTailCall = CLI.IsTailCall;
2498 CallingConv::ID CallConv = CLI.CallConv;
2499 bool IsVarArg = CLI.IsVarArg;
970d7e83 2500
1a4d82fc
JJ
2501 MachineFunction &MF = DAG.getMachineFunction();
2502 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2503 bool IsThisReturn = false;
970d7e83 2504
1a4d82fc
JJ
2505 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2506 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2507 bool IsSibCall = false;
970d7e83 2508
1a4d82fc
JJ
2509 if (IsTailCall) {
2510 // Check if it's really possible to do a tail call.
2511 IsTailCall = isEligibleForTailCallOptimization(
2512 Callee, CallConv, IsVarArg, IsStructRet,
2513 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2514 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2515 report_fatal_error("failed to perform tail call elimination on a call "
2516 "site marked musttail");
970d7e83 2517
1a4d82fc
JJ
2518 // A sibling call is one where we're under the usual C ABI and not planning
2519 // to change that but can still do a tail call:
2520 if (!TailCallOpt && IsTailCall)
2521 IsSibCall = true;
970d7e83 2522
1a4d82fc
JJ
2523 if (IsTailCall)
2524 ++NumTailCalls;
2525 }
970d7e83 2526
1a4d82fc
JJ
2527 // Analyze operands of the call, assigning locations to each operand.
2528 SmallVector<CCValAssign, 16> ArgLocs;
2529 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2530 *DAG.getContext());
2531
2532 if (IsVarArg) {
2533 // Handle fixed and variable vector arguments differently.
2534 // Variable vector arguments always go into memory.
2535 unsigned NumArgs = Outs.size();
2536
2537 for (unsigned i = 0; i != NumArgs; ++i) {
2538 MVT ArgVT = Outs[i].VT;
2539 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2540 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2541 /*IsVarArg=*/ !Outs[i].IsFixed);
2542 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2543 assert(!Res && "Call operand has unhandled type");
2544 (void)Res;
2545 }
2546 } else {
2547 // At this point, Outs[].VT may already be promoted to i32. To correctly
2548 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2549 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2550 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2551 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2552 // LocVT.
2553 unsigned NumArgs = Outs.size();
2554 for (unsigned i = 0; i != NumArgs; ++i) {
2555 MVT ValVT = Outs[i].VT;
2556 // Get type of the original argument.
2557 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2558 /*AllowUnknown*/ true);
2559 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2560 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2561 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2562 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2563 ValVT = MVT::i8;
2564 else if (ActualMVT == MVT::i16)
2565 ValVT = MVT::i16;
2566
2567 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2568 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
2569 assert(!Res && "Call operand has unhandled type");
2570 (void)Res;
970d7e83
LB
2571 }
2572 }
2573
1a4d82fc
JJ
2574 // Get a count of how many bytes are to be pushed on the stack.
2575 unsigned NumBytes = CCInfo.getNextStackOffset();
970d7e83 2576
1a4d82fc
JJ
2577 if (IsSibCall) {
2578 // Since we're not changing the ABI to make this a tail call, the memory
2579 // operands are already available in the caller's incoming argument space.
2580 NumBytes = 0;
970d7e83
LB
2581 }
2582
1a4d82fc
JJ
2583 // FPDiff is the byte offset of the call's argument area from the callee's.
2584 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2585 // by this amount for a tail call. In a sibling call it must be 0 because the
2586 // caller will deallocate the entire stack and the callee still expects its
2587 // arguments to begin at SP+0. Completely unused for non-tail calls.
2588 int FPDiff = 0;
970d7e83 2589
1a4d82fc
JJ
2590 if (IsTailCall && !IsSibCall) {
2591 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
970d7e83 2592
1a4d82fc
JJ
2593 // Since callee will pop argument stack as a tail call, we must keep the
2594 // popped size 16-byte aligned.
2595 NumBytes = RoundUpToAlignment(NumBytes, 16);
970d7e83 2596
1a4d82fc
JJ
2597 // FPDiff will be negative if this tail call requires more space than we
2598 // would automatically have in our incoming argument space. Positive if we
2599 // can actually shrink the stack.
2600 FPDiff = NumReusableBytes - NumBytes;
970d7e83 2601
1a4d82fc
JJ
2602 // The stack pointer must be 16-byte aligned at all times it's used for a
2603 // memory operation, which in practice means at *all* times and in
2604 // particular across call boundaries. Therefore our own arguments started at
2605 // a 16-byte aligned SP and the delta applied for the tail call should
2606 // satisfy the same constraint.
2607 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
970d7e83 2608 }
970d7e83 2609
1a4d82fc
JJ
2610 // Adjust the stack pointer for the new arguments...
2611 // These operations are automatically eliminated by the prolog/epilog pass
2612 if (!IsSibCall)
2613 Chain =
2614 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
970d7e83 2615
1a4d82fc 2616 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
970d7e83 2617
1a4d82fc
JJ
2618 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2619 SmallVector<SDValue, 8> MemOpChains;
970d7e83 2620
1a4d82fc
JJ
2621 // Walk the register/memloc assignments, inserting copies/loads.
2622 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2623 ++i, ++realArgIdx) {
2624 CCValAssign &VA = ArgLocs[i];
2625 SDValue Arg = OutVals[realArgIdx];
2626 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2627
2628 // Promote the value if needed.
2629 switch (VA.getLocInfo()) {
2630 default:
2631 llvm_unreachable("Unknown loc info!");
2632 case CCValAssign::Full:
2633 break;
2634 case CCValAssign::SExt:
2635 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2636 break;
2637 case CCValAssign::ZExt:
2638 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2639 break;
2640 case CCValAssign::AExt:
2641 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2642 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2643 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2644 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2645 }
2646 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2647 break;
2648 case CCValAssign::BCvt:
2649 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2650 break;
2651 case CCValAssign::FPExt:
2652 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2653 break;
2654 }
2655
2656 if (VA.isRegLoc()) {
2657 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2658 assert(VA.getLocVT() == MVT::i64 &&
2659 "unexpected calling convention register assignment");
2660 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2661 "unexpected use of 'returned'");
2662 IsThisReturn = true;
2663 }
2664 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2665 } else {
2666 assert(VA.isMemLoc());
2667
2668 SDValue DstAddr;
2669 MachinePointerInfo DstInfo;
2670
2671 // FIXME: This works on big-endian for composite byvals, which are the
2672 // common case. It should also work for fundamental types too.
2673 uint32_t BEAlign = 0;
2674 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
2675 : VA.getValVT().getSizeInBits();
2676 OpSize = (OpSize + 7) / 8;
85aaf69f
SL
2677 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2678 !Flags.isInConsecutiveRegs()) {
1a4d82fc
JJ
2679 if (OpSize < 8)
2680 BEAlign = 8 - OpSize;
2681 }
2682 unsigned LocMemOffset = VA.getLocMemOffset();
2683 int32_t Offset = LocMemOffset + BEAlign;
2684 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2685 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2686
2687 if (IsTailCall) {
2688 Offset = Offset + FPDiff;
2689 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2690
2691 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2692 DstInfo = MachinePointerInfo::getFixedStack(FI);
2693
2694 // Make sure any stack arguments overlapping with where we're storing
2695 // are loaded before this eventual operation. Otherwise they'll be
2696 // clobbered.
2697 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2698 } else {
2699 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2700
2701 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2702 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2703 }
2704
2705 if (Outs[i].Flags.isByVal()) {
2706 SDValue SizeNode =
2707 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2708 SDValue Cpy = DAG.getMemcpy(
2709 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2710 /*isVol = */ false,
2711 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
2712
2713 MemOpChains.push_back(Cpy);
2714 } else {
2715 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2716 // promoted to a legal register type i32, we should truncate Arg back to
2717 // i1/i8/i16.
2718 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2719 VA.getValVT() == MVT::i16)
2720 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
2721
2722 SDValue Store =
2723 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2724 MemOpChains.push_back(Store);
2725 }
2726 }
2727 }
2728
2729 if (!MemOpChains.empty())
2730 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2731
2732 // Build a sequence of copy-to-reg nodes chained together with token chain
2733 // and flag operands which copy the outgoing args into the appropriate regs.
2734 SDValue InFlag;
2735 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2736 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2737 RegsToPass[i].second, InFlag);
2738 InFlag = Chain.getValue(1);
2739 }
2740
2741 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2742 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2743 // node so that legalize doesn't hack it.
2744 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2745 Subtarget->isTargetMachO()) {
2746 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2747 const GlobalValue *GV = G->getGlobal();
2748 bool InternalLinkage = GV->hasInternalLinkage();
2749 if (InternalLinkage)
2750 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2751 else {
2752 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2753 AArch64II::MO_GOT);
2754 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2755 }
2756 } else if (ExternalSymbolSDNode *S =
2757 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2758 const char *Sym = S->getSymbol();
2759 Callee =
2760 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2761 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2762 }
2763 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2764 const GlobalValue *GV = G->getGlobal();
2765 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2766 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2767 const char *Sym = S->getSymbol();
2768 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2769 }
2770
2771 // We don't usually want to end the call-sequence here because we would tidy
2772 // the frame up *after* the call, however in the ABI-changing tail-call case
2773 // we've carefully laid out the parameters so that when sp is reset they'll be
2774 // in the correct location.
2775 if (IsTailCall && !IsSibCall) {
2776 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2777 DAG.getIntPtrConstant(0, true), InFlag, DL);
2778 InFlag = Chain.getValue(1);
2779 }
2780
2781 std::vector<SDValue> Ops;
2782 Ops.push_back(Chain);
2783 Ops.push_back(Callee);
2784
2785 if (IsTailCall) {
2786 // Each tail call may have to adjust the stack by a different amount, so
2787 // this information must travel along with the operation for eventual
2788 // consumption by emitEpilogue.
2789 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2790 }
2791
2792 // Add argument registers to the end of the list so that they are known live
2793 // into the call.
2794 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2795 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2796 RegsToPass[i].second.getValueType()));
2797
2798 // Add a register mask operand representing the call-preserved registers.
2799 const uint32_t *Mask;
2800 const TargetRegisterInfo *TRI =
2801 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
2802 const AArch64RegisterInfo *ARI =
2803 static_cast<const AArch64RegisterInfo *>(TRI);
2804 if (IsThisReturn) {
2805 // For 'this' returns, use the X0-preserving mask if applicable
2806 Mask = ARI->getThisReturnPreservedMask(CallConv);
2807 if (!Mask) {
2808 IsThisReturn = false;
2809 Mask = ARI->getCallPreservedMask(CallConv);
2810 }
2811 } else
2812 Mask = ARI->getCallPreservedMask(CallConv);
2813
2814 assert(Mask && "Missing call preserved mask for calling convention");
2815 Ops.push_back(DAG.getRegisterMask(Mask));
2816
2817 if (InFlag.getNode())
2818 Ops.push_back(InFlag);
2819
2820 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2821
2822 // If we're doing a tall call, use a TC_RETURN here rather than an
2823 // actual call instruction.
2824 if (IsTailCall)
2825 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2826
2827 // Returns a chain and a flag for retval copy to use.
2828 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2829 InFlag = Chain.getValue(1);
2830
2831 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2832 ? RoundUpToAlignment(NumBytes, 16)
2833 : 0;
2834
2835 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2836 DAG.getIntPtrConstant(CalleePopBytes, true),
2837 InFlag, DL);
2838 if (!Ins.empty())
2839 InFlag = Chain.getValue(1);
2840
2841 // Handle result values, copying them out of physregs into vregs that we
2842 // return.
2843 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2844 InVals, IsThisReturn,
2845 IsThisReturn ? OutVals[0] : SDValue());
2846}
2847
2848bool AArch64TargetLowering::CanLowerReturn(
2849 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2850 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2851 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2852 ? RetCC_AArch64_WebKit_JS
2853 : RetCC_AArch64_AAPCS;
2854 SmallVector<CCValAssign, 16> RVLocs;
2855 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2856 return CCInfo.CheckReturn(Outs, RetCC);
2857}
970d7e83
LB
2858
2859SDValue
1a4d82fc
JJ
2860AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2861 bool isVarArg,
2862 const SmallVectorImpl<ISD::OutputArg> &Outs,
2863 const SmallVectorImpl<SDValue> &OutVals,
2864 SDLoc DL, SelectionDAG &DAG) const {
2865 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2866 ? RetCC_AArch64_WebKit_JS
2867 : RetCC_AArch64_AAPCS;
2868 SmallVector<CCValAssign, 16> RVLocs;
2869 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2870 *DAG.getContext());
2871 CCInfo.AnalyzeReturn(Outs, RetCC);
2872
2873 // Copy the result values into the output registers.
2874 SDValue Flag;
2875 SmallVector<SDValue, 4> RetOps(1, Chain);
2876 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2877 ++i, ++realRVLocIdx) {
2878 CCValAssign &VA = RVLocs[i];
2879 assert(VA.isRegLoc() && "Can only return in registers!");
2880 SDValue Arg = OutVals[realRVLocIdx];
2881
2882 switch (VA.getLocInfo()) {
2883 default:
2884 llvm_unreachable("Unknown loc info!");
2885 case CCValAssign::Full:
2886 if (Outs[i].ArgVT == MVT::i1) {
2887 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2888 // value. This is strictly redundant on Darwin (which uses "zeroext
2889 // i1"), but will be optimised out before ISel.
2890 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2891 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2892 }
2893 break;
2894 case CCValAssign::BCvt:
2895 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2896 break;
2897 }
2898
2899 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2900 Flag = Chain.getValue(1);
2901 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
970d7e83
LB
2902 }
2903
1a4d82fc 2904 RetOps[0] = Chain; // Update chain.
970d7e83 2905
1a4d82fc
JJ
2906 // Add the flag if we have it.
2907 if (Flag.getNode())
2908 RetOps.push_back(Flag);
2909
2910 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2911}
2912
2913//===----------------------------------------------------------------------===//
2914// Other Lowering Code
2915//===----------------------------------------------------------------------===//
2916
2917SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2918 SelectionDAG &DAG) const {
2919 EVT PtrVT = getPointerTy();
2920 SDLoc DL(Op);
2921 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2922 const GlobalValue *GV = GN->getGlobal();
2923 unsigned char OpFlags =
2924 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2925
2926 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2927 "unexpected offset in global node");
2928
2929 // This also catched the large code model case for Darwin.
2930 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2931 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2932 // FIXME: Once remat is capable of dealing with instructions with register
2933 // operands, expand this into two nodes instead of using a wrapper node.
2934 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2935 }
2936
2937 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2938 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2939 "use of MO_CONSTPOOL only supported on small model");
2940 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2941 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2942 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2943 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2944 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2945 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
2946 MachinePointerInfo::getConstantPool(),
2947 /*isVolatile=*/ false,
2948 /*isNonTemporal=*/ true,
2949 /*isInvariant=*/ true, 8);
2950 if (GN->getOffset() != 0)
2951 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
2952 DAG.getConstant(GN->getOffset(), PtrVT));
2953 return GlobalAddr;
2954 }
2955
2956 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2957 const unsigned char MO_NC = AArch64II::MO_NC;
2958 return DAG.getNode(
2959 AArch64ISD::WrapperLarge, DL, PtrVT,
2960 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2961 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2962 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2963 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2964 } else {
2965 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2966 // the only correct model on Darwin.
2967 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2968 OpFlags | AArch64II::MO_PAGE);
2969 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2970 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2971
2972 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2973 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2974 }
970d7e83
LB
2975}
2976
1a4d82fc
JJ
2977/// \brief Convert a TLS address reference into the correct sequence of loads
2978/// and calls to compute the variable's address (for Darwin, currently) and
2979/// return an SDValue containing the final node.
2980
2981/// Darwin only has one TLS scheme which must be capable of dealing with the
2982/// fully general situation, in the worst case. This means:
2983/// + "extern __thread" declaration.
2984/// + Defined in a possibly unknown dynamic library.
2985///
2986/// The general system is that each __thread variable has a [3 x i64] descriptor
2987/// which contains information used by the runtime to calculate the address. The
2988/// only part of this the compiler needs to know about is the first xword, which
2989/// contains a function pointer that must be called with the address of the
2990/// entire descriptor in "x0".
2991///
2992/// Since this descriptor may be in a different unit, in general even the
2993/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2994/// is:
2995/// adrp x0, _var@TLVPPAGE
2996/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2997/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2998/// ; the function pointer
2999/// blr x1 ; Uses descriptor address in x0
3000/// ; Address of _var is now in x0.
3001///
3002/// If the address of _var's descriptor *is* known to the linker, then it can
3003/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3004/// a slight efficiency gain.
970d7e83 3005SDValue
1a4d82fc
JJ
3006AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3007 SelectionDAG &DAG) const {
3008 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3009
3010 SDLoc DL(Op);
3011 MVT PtrVT = getPointerTy();
3012 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3013
3014 SDValue TLVPAddr =
3015 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3016 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3017
3018 // The first entry in the descriptor is a function pointer that we must call
3019 // to obtain the address of the variable.
3020 SDValue Chain = DAG.getEntryNode();
3021 SDValue FuncTLVGet =
3022 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3023 false, true, true, 8);
3024 Chain = FuncTLVGet.getValue(1);
3025
3026 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3027 MFI->setAdjustsStack(true);
3028
3029 // TLS calls preserve all registers except those that absolutely must be
3030 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3031 // silly).
3032 const TargetRegisterInfo *TRI =
3033 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
3034 const AArch64RegisterInfo *ARI =
3035 static_cast<const AArch64RegisterInfo *>(TRI);
3036 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
3037
3038 // Finally, we can make the call. This is just a degenerate version of a
3039 // normal AArch64 call node: x0 takes the address of the descriptor, and
3040 // returns the address of the variable in this thread.
3041 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3042 Chain =
3043 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3044 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3045 DAG.getRegisterMask(Mask), Chain.getValue(1));
3046 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3047}
970d7e83 3048
1a4d82fc
JJ
3049/// When accessing thread-local variables under either the general-dynamic or
3050/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3051/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3052/// is a function pointer to carry out the resolution. This function takes the
3053/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
3054/// other registers (except LR, NZCV) are preserved.
3055///
3056/// Thus, the ideal call sequence on AArch64 is:
3057///
3058/// adrp x0, :tlsdesc:thread_var
3059/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
3060/// add x0, x0, :tlsdesc_lo12:thread_var
3061/// .tlsdesccall thread_var
3062/// blr x8
3063/// (TPIDR_EL0 offset now in x0).
3064///
3065/// The ".tlsdesccall" directive instructs the assembler to insert a particular
3066/// relocation to help the linker relax this sequence if it turns out to be too
3067/// conservative.
3068///
3069/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
3070/// is harmless.
3071SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
3072 SDValue DescAddr, SDLoc DL,
3073 SelectionDAG &DAG) const {
3074 EVT PtrVT = getPointerTy();
3075
3076 // The function we need to call is simply the first entry in the GOT for this
3077 // descriptor, load it in preparation.
3078 SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
3079
3080 // TLS calls preserve all registers except those that absolutely must be
3081 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3082 // silly).
3083 const TargetRegisterInfo *TRI =
3084 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
3085 const AArch64RegisterInfo *ARI =
3086 static_cast<const AArch64RegisterInfo *>(TRI);
3087 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
970d7e83 3088
1a4d82fc
JJ
3089 // The function takes only one argument: the address of the descriptor itself
3090 // in X0.
3091 SDValue Glue, Chain;
3092 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
3093 Glue = Chain.getValue(1);
3094
3095 // We're now ready to populate the argument list, as with a normal call:
3096 SmallVector<SDValue, 6> Ops;
3097 Ops.push_back(Chain);
3098 Ops.push_back(Func);
3099 Ops.push_back(SymAddr);
3100 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
3101 Ops.push_back(DAG.getRegisterMask(Mask));
3102 Ops.push_back(Glue);
3103
3104 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3105 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
3106 Glue = Chain.getValue(1);
3107
3108 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
970d7e83
LB
3109}
3110
3111SDValue
1a4d82fc
JJ
3112AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3113 SelectionDAG &DAG) const {
3114 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3115 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3116 "ELF TLS only supported in small memory model");
3117 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3118
3119 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3120
3121 SDValue TPOff;
3122 EVT PtrVT = getPointerTy();
3123 SDLoc DL(Op);
3124 const GlobalValue *GV = GA->getGlobal();
3125
3126 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3127
3128 if (Model == TLSModel::LocalExec) {
3129 SDValue HiVar = DAG.getTargetGlobalAddress(
3130 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
3131 SDValue LoVar = DAG.getTargetGlobalAddress(
3132 GV, DL, PtrVT, 0,
3133 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
3134
3135 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
3136 DAG.getTargetConstant(16, MVT::i32)),
3137 0);
3138 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
3139 DAG.getTargetConstant(0, MVT::i32)),
3140 0);
3141 } else if (Model == TLSModel::InitialExec) {
3142 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3143 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3144 } else if (Model == TLSModel::LocalDynamic) {
3145 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3146 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3147 // the beginning of the module's TLS region, followed by a DTPREL offset
3148 // calculation.
3149
3150 // These accesses will need deduplicating if there's more than one.
3151 AArch64FunctionInfo *MFI =
3152 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3153 MFI->incNumLocalDynamicTLSAccesses();
3154
3155 // Accesses used in this sequence go via the TLS descriptor which lives in
3156 // the GOT. Prepare an address we can use to handle this.
3157 SDValue HiDesc = DAG.getTargetExternalSymbol(
3158 "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
3159 SDValue LoDesc = DAG.getTargetExternalSymbol(
3160 "_TLS_MODULE_BASE_", PtrVT,
3161 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3162
3163 // First argument to the descriptor call is the address of the descriptor
3164 // itself.
3165 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3166 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3167
3168 // The call needs a relocation too for linker relaxation. It doesn't make
3169 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3170 // the address.
3171 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3172 AArch64II::MO_TLS);
3173
3174 // Now we can calculate the offset from TPIDR_EL0 to this module's
3175 // thread-local area.
3176 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3177
3178 // Now use :dtprel_whatever: operations to calculate this variable's offset
3179 // in its thread-storage area.
3180 SDValue HiVar = DAG.getTargetGlobalAddress(
3181 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
3182 SDValue LoVar = DAG.getTargetGlobalAddress(
3183 GV, DL, MVT::i64, 0,
3184 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
3185
3186 SDValue DTPOff =
3187 SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
3188 DAG.getTargetConstant(16, MVT::i32)),
3189 0);
3190 DTPOff =
3191 SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
3192 DAG.getTargetConstant(0, MVT::i32)),
3193 0);
3194
3195 TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
3196 } else if (Model == TLSModel::GeneralDynamic) {
3197 // Accesses used in this sequence go via the TLS descriptor which lives in
3198 // the GOT. Prepare an address we can use to handle this.
3199 SDValue HiDesc = DAG.getTargetGlobalAddress(
3200 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
3201 SDValue LoDesc = DAG.getTargetGlobalAddress(
3202 GV, DL, PtrVT, 0,
3203 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3204
3205 // First argument to the descriptor call is the address of the descriptor
3206 // itself.
3207 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3208 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3209
3210 // The call needs a relocation too for linker relaxation. It doesn't make
3211 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3212 // the address.
3213 SDValue SymAddr =
3214 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3215
3216 // Finally we can make a call to calculate the offset from tpidr_el0.
3217 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3218 } else
3219 llvm_unreachable("Unsupported ELF TLS access model");
3220
3221 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3222}
3223
3224SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3225 SelectionDAG &DAG) const {
3226 if (Subtarget->isTargetDarwin())
3227 return LowerDarwinGlobalTLSAddress(Op, DAG);
3228 else if (Subtarget->isTargetELF())
3229 return LowerELFGlobalTLSAddress(Op, DAG);
3230
3231 llvm_unreachable("Unexpected platform trying to use TLS");
3232}
3233SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3234 SDValue Chain = Op.getOperand(0);
3235 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3236 SDValue LHS = Op.getOperand(2);
3237 SDValue RHS = Op.getOperand(3);
3238 SDValue Dest = Op.getOperand(4);
3239 SDLoc dl(Op);
3240
3241 // Handle f128 first, since lowering it will result in comparing the return
3242 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3243 // is expecting to deal with.
3244 if (LHS.getValueType() == MVT::f128) {
3245 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3246
3247 // If softenSetCCOperands returned a scalar, we need to compare the result
3248 // against zero to select between true and false values.
3249 if (!RHS.getNode()) {
3250 RHS = DAG.getConstant(0, LHS.getValueType());
3251 CC = ISD::SETNE;
3252 }
970d7e83
LB
3253 }
3254
1a4d82fc
JJ
3255 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3256 // instruction.
3257 unsigned Opc = LHS.getOpcode();
3258 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3259 cast<ConstantSDNode>(RHS)->isOne() &&
3260 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3261 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3262 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3263 "Unexpected condition code.");
3264 // Only lower legal XALUO ops.
3265 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3266 return SDValue();
3267
3268 // The actual operation with overflow check.
3269 AArch64CC::CondCode OFCC;
3270 SDValue Value, Overflow;
3271 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3272
3273 if (CC == ISD::SETNE)
3274 OFCC = getInvertedCondCode(OFCC);
3275 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3276
3277 return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
3278 CCVal, Overflow);
3279 }
3280
3281 if (LHS.getValueType().isInteger()) {
3282 assert((LHS.getValueType() == RHS.getValueType()) &&
3283 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3284
3285 // If the RHS of the comparison is zero, we can potentially fold this
3286 // to a specialized branch.
3287 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3288 if (RHSC && RHSC->getZExtValue() == 0) {
3289 if (CC == ISD::SETEQ) {
3290 // See if we can use a TBZ to fold in an AND as well.
3291 // TBZ has a smaller branch displacement than CBZ. If the offset is
3292 // out of bounds, a late MI-layer pass rewrites branches.
3293 // 403.gcc is an example that hits this case.
3294 if (LHS.getOpcode() == ISD::AND &&
3295 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3296 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3297 SDValue Test = LHS.getOperand(0);
3298 uint64_t Mask = LHS.getConstantOperandVal(1);
3299 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3300 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3301 }
3302
3303 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3304 } else if (CC == ISD::SETNE) {
3305 // See if we can use a TBZ to fold in an AND as well.
3306 // TBZ has a smaller branch displacement than CBZ. If the offset is
3307 // out of bounds, a late MI-layer pass rewrites branches.
3308 // 403.gcc is an example that hits this case.
3309 if (LHS.getOpcode() == ISD::AND &&
3310 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3311 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3312 SDValue Test = LHS.getOperand(0);
3313 uint64_t Mask = LHS.getConstantOperandVal(1);
3314 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3315 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3316 }
3317
3318 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
3319 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3320 // Don't combine AND since emitComparison converts the AND to an ANDS
3321 // (a.k.a. TST) and the test in the test bit and branch instruction
3322 // becomes redundant. This would also increase register pressure.
3323 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3324 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3325 DAG.getConstant(Mask, MVT::i64), Dest);
3326 }
3327 }
3328 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3329 LHS.getOpcode() != ISD::AND) {
3330 // Don't combine AND since emitComparison converts the AND to an ANDS
3331 // (a.k.a. TST) and the test in the test bit and branch instruction
3332 // becomes redundant. This would also increase register pressure.
3333 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3334 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3335 DAG.getConstant(Mask, MVT::i64), Dest);
3336 }
3337
3338 SDValue CCVal;
3339 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3340 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3341 Cmp);
3342 }
3343
3344 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3345
3346 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3347 // clean. Some of them require two branches to implement.
3348 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3349 AArch64CC::CondCode CC1, CC2;
3350 changeFPCCToAArch64CC(CC, CC1, CC2);
3351 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3352 SDValue BR1 =
3353 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3354 if (CC2 != AArch64CC::AL) {
3355 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3356 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3357 Cmp);
3358 }
3359
3360 return BR1;
3361}
3362
3363SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3364 SelectionDAG &DAG) const {
3365 EVT VT = Op.getValueType();
3366 SDLoc DL(Op);
3367
3368 SDValue In1 = Op.getOperand(0);
3369 SDValue In2 = Op.getOperand(1);
3370 EVT SrcVT = In2.getValueType();
3371 if (SrcVT != VT) {
3372 if (SrcVT == MVT::f32 && VT == MVT::f64)
3373 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3374 else if (SrcVT == MVT::f64 && VT == MVT::f32)
3375 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3376 else
3377 // FIXME: Src type is different, bail out for now. Can VT really be a
3378 // vector type?
3379 return SDValue();
3380 }
3381
3382 EVT VecVT;
3383 EVT EltVT;
3384 SDValue EltMask, VecVal1, VecVal2;
3385 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3386 EltVT = MVT::i32;
3387 VecVT = MVT::v4i32;
3388 EltMask = DAG.getConstant(0x80000000ULL, EltVT);
3389
3390 if (!VT.isVector()) {
3391 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3392 DAG.getUNDEF(VecVT), In1);
3393 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3394 DAG.getUNDEF(VecVT), In2);
3395 } else {
3396 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3397 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3398 }
3399 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3400 EltVT = MVT::i64;
3401 VecVT = MVT::v2i64;
3402
3403 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3404 // immediate moves cannot materialize that in a single instruction for
3405 // 64-bit elements. Instead, materialize zero and then negate it.
3406 EltMask = DAG.getConstant(0, EltVT);
3407
3408 if (!VT.isVector()) {
3409 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3410 DAG.getUNDEF(VecVT), In1);
3411 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3412 DAG.getUNDEF(VecVT), In2);
3413 } else {
3414 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3415 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3416 }
3417 } else {
3418 llvm_unreachable("Invalid type for copysign!");
3419 }
3420
3421 std::vector<SDValue> BuildVectorOps;
3422 for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
3423 BuildVectorOps.push_back(EltMask);
3424
3425 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
3426
3427 // If we couldn't materialize the mask above, then the mask vector will be
3428 // the zero vector, and we need to negate it here.
3429 if (VT == MVT::f64 || VT == MVT::v2f64) {
3430 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3431 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3432 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3433 }
3434
3435 SDValue Sel =
3436 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3437
3438 if (VT == MVT::f32)
3439 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3440 else if (VT == MVT::f64)
3441 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3442 else
3443 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3444}
3445
3446SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3447 if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
3448 AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
3449 return SDValue();
3450
85aaf69f
SL
3451 if (!Subtarget->hasNEON())
3452 return SDValue();
3453
1a4d82fc
JJ
3454 // While there is no integer popcount instruction, it can
3455 // be more efficiently lowered to the following sequence that uses
3456 // AdvSIMD registers/instructions as long as the copies to/from
3457 // the AdvSIMD registers are cheap.
3458 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3459 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3460 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3461 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3462 SDValue Val = Op.getOperand(0);
3463 SDLoc DL(Op);
3464 EVT VT = Op.getValueType();
3465 SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
3466
3467 SDValue VecVal;
3468 if (VT == MVT::i32) {
3469 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
3470 VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
3471 VecVal);
3472 } else {
3473 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3474 }
3475
3476 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
3477 SDValue UaddLV = DAG.getNode(
3478 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3479 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3480
3481 if (VT == MVT::i64)
3482 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3483 return UaddLV;
3484}
3485
3486SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3487
3488 if (Op.getValueType().isVector())
3489 return LowerVSETCC(Op, DAG);
3490
3491 SDValue LHS = Op.getOperand(0);
3492 SDValue RHS = Op.getOperand(1);
3493 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3494 SDLoc dl(Op);
3495
3496 // We chose ZeroOrOneBooleanContents, so use zero and one.
3497 EVT VT = Op.getValueType();
3498 SDValue TVal = DAG.getConstant(1, VT);
3499 SDValue FVal = DAG.getConstant(0, VT);
3500
3501 // Handle f128 first, since one possible outcome is a normal integer
3502 // comparison which gets picked up by the next if statement.
3503 if (LHS.getValueType() == MVT::f128) {
3504 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3505
3506 // If softenSetCCOperands returned a scalar, use it.
3507 if (!RHS.getNode()) {
3508 assert(LHS.getValueType() == Op.getValueType() &&
3509 "Unexpected setcc expansion!");
3510 return LHS;
3511 }
3512 }
3513
3514 if (LHS.getValueType().isInteger()) {
3515 SDValue CCVal;
3516 SDValue Cmp =
3517 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3518
3519 // Note that we inverted the condition above, so we reverse the order of
3520 // the true and false operands here. This will allow the setcc to be
3521 // matched to a single CSINC instruction.
3522 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3523 }
3524
3525 // Now we know we're dealing with FP values.
3526 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3527
3528 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3529 // and do the comparison.
3530 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3531
3532 AArch64CC::CondCode CC1, CC2;
3533 changeFPCCToAArch64CC(CC, CC1, CC2);
3534 if (CC2 == AArch64CC::AL) {
3535 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3536 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3537
3538 // Note that we inverted the condition above, so we reverse the order of
3539 // the true and false operands here. This will allow the setcc to be
3540 // matched to a single CSINC instruction.
3541 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3542 } else {
3543 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3544 // totally clean. Some of them require two CSELs to implement. As is in
3545 // this case, we emit the first CSEL and then emit a second using the output
3546 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3547
3548 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3549 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3550 SDValue CS1 =
3551 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3552
3553 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3554 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3555 }
3556}
3557
3558/// A SELECT_CC operation is really some kind of max or min if both values being
3559/// compared are, in some sense, equal to the results in either case. However,
3560/// it is permissible to compare f32 values and produce directly extended f64
3561/// values.
3562///
3563/// Extending the comparison operands would also be allowed, but is less likely
3564/// to happen in practice since their use is right here. Note that truncate
3565/// operations would *not* be semantically equivalent.
3566static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3567 if (Cmp == Result)
3568 return true;
3569
3570 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3571 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3572 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3573 Result.getValueType() == MVT::f64) {
3574 bool Lossy;
3575 APFloat CmpVal = CCmp->getValueAPF();
3576 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3577 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3578 }
3579
3580 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3581}
3582
3583SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3584 SelectionDAG &DAG) const {
3585 SDValue CC = Op->getOperand(0);
3586 SDValue TVal = Op->getOperand(1);
3587 SDValue FVal = Op->getOperand(2);
3588 SDLoc DL(Op);
3589
3590 unsigned Opc = CC.getOpcode();
3591 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3592 // instruction.
3593 if (CC.getResNo() == 1 &&
3594 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3595 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3596 // Only lower legal XALUO ops.
3597 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3598 return SDValue();
3599
3600 AArch64CC::CondCode OFCC;
3601 SDValue Value, Overflow;
3602 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3603 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3604
3605 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3606 CCVal, Overflow);
3607 }
3608
3609 if (CC.getOpcode() == ISD::SETCC)
3610 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3611 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3612 else
3613 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3614 FVal, ISD::SETNE);
3615}
3616
3617SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3618 SelectionDAG &DAG) const {
3619 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3620 SDValue LHS = Op.getOperand(0);
3621 SDValue RHS = Op.getOperand(1);
3622 SDValue TVal = Op.getOperand(2);
3623 SDValue FVal = Op.getOperand(3);
3624 SDLoc dl(Op);
3625
3626 // Handle f128 first, because it will result in a comparison of some RTLIB
3627 // call result against zero.
3628 if (LHS.getValueType() == MVT::f128) {
3629 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3630
3631 // If softenSetCCOperands returned a scalar, we need to compare the result
3632 // against zero to select between true and false values.
3633 if (!RHS.getNode()) {
3634 RHS = DAG.getConstant(0, LHS.getValueType());
3635 CC = ISD::SETNE;
3636 }
3637 }
3638
3639 // Handle integers first.
3640 if (LHS.getValueType().isInteger()) {
3641 assert((LHS.getValueType() == RHS.getValueType()) &&
3642 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3643
3644 unsigned Opcode = AArch64ISD::CSEL;
3645
3646 // If both the TVal and the FVal are constants, see if we can swap them in
3647 // order to for a CSINV or CSINC out of them.
3648 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3649 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3650
3651 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3652 std::swap(TVal, FVal);
3653 std::swap(CTVal, CFVal);
3654 CC = ISD::getSetCCInverse(CC, true);
3655 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3656 std::swap(TVal, FVal);
3657 std::swap(CTVal, CFVal);
3658 CC = ISD::getSetCCInverse(CC, true);
3659 } else if (TVal.getOpcode() == ISD::XOR) {
3660 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3661 // with a CSINV rather than a CSEL.
3662 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3663
3664 if (CVal && CVal->isAllOnesValue()) {
3665 std::swap(TVal, FVal);
3666 std::swap(CTVal, CFVal);
3667 CC = ISD::getSetCCInverse(CC, true);
3668 }
3669 } else if (TVal.getOpcode() == ISD::SUB) {
3670 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3671 // that we can match with a CSNEG rather than a CSEL.
3672 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3673
3674 if (CVal && CVal->isNullValue()) {
3675 std::swap(TVal, FVal);
3676 std::swap(CTVal, CFVal);
3677 CC = ISD::getSetCCInverse(CC, true);
3678 }
3679 } else if (CTVal && CFVal) {
3680 const int64_t TrueVal = CTVal->getSExtValue();
3681 const int64_t FalseVal = CFVal->getSExtValue();
3682 bool Swap = false;
3683
3684 // If both TVal and FVal are constants, see if FVal is the
3685 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3686 // instead of a CSEL in that case.
3687 if (TrueVal == ~FalseVal) {
3688 Opcode = AArch64ISD::CSINV;
3689 } else if (TrueVal == -FalseVal) {
3690 Opcode = AArch64ISD::CSNEG;
3691 } else if (TVal.getValueType() == MVT::i32) {
3692 // If our operands are only 32-bit wide, make sure we use 32-bit
3693 // arithmetic for the check whether we can use CSINC. This ensures that
3694 // the addition in the check will wrap around properly in case there is
3695 // an overflow (which would not be the case if we do the check with
3696 // 64-bit arithmetic).
3697 const uint32_t TrueVal32 = CTVal->getZExtValue();
3698 const uint32_t FalseVal32 = CFVal->getZExtValue();
3699
3700 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3701 Opcode = AArch64ISD::CSINC;
3702
3703 if (TrueVal32 > FalseVal32) {
3704 Swap = true;
3705 }
3706 }
3707 // 64-bit check whether we can use CSINC.
3708 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3709 Opcode = AArch64ISD::CSINC;
3710
3711 if (TrueVal > FalseVal) {
3712 Swap = true;
3713 }
3714 }
3715
3716 // Swap TVal and FVal if necessary.
3717 if (Swap) {
3718 std::swap(TVal, FVal);
3719 std::swap(CTVal, CFVal);
3720 CC = ISD::getSetCCInverse(CC, true);
3721 }
3722
3723 if (Opcode != AArch64ISD::CSEL) {
3724 // Drop FVal since we can get its value by simply inverting/negating
3725 // TVal.
3726 FVal = TVal;
3727 }
3728 }
3729
3730 SDValue CCVal;
3731 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3732
3733 EVT VT = Op.getValueType();
3734 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3735 }
3736
3737 // Now we know we're dealing with FP values.
3738 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3739 assert(LHS.getValueType() == RHS.getValueType());
3740 EVT VT = Op.getValueType();
3741
3742 // Try to match this select into a max/min operation, which have dedicated
3743 // opcode in the instruction set.
3744 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3745 // in no-NaNs mode.
3746 if (getTargetMachine().Options.NoNaNsFPMath) {
3747 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3748 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3749 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3750 CC = ISD::getSetCCSwappedOperands(CC);
3751 std::swap(MinMaxLHS, MinMaxRHS);
3752 }
3753
3754 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3755 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3756 switch (CC) {
3757 default:
3758 break;
3759 case ISD::SETGT:
3760 case ISD::SETGE:
3761 case ISD::SETUGT:
3762 case ISD::SETUGE:
3763 case ISD::SETOGT:
3764 case ISD::SETOGE:
3765 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3766 break;
3767 case ISD::SETLT:
3768 case ISD::SETLE:
3769 case ISD::SETULT:
3770 case ISD::SETULE:
3771 case ISD::SETOLT:
3772 case ISD::SETOLE:
3773 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3774 break;
3775 }
3776 }
3777 }
3778
3779 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3780 // and do the comparison.
3781 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3782
3783 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3784 // clean. Some of them require two CSELs to implement.
3785 AArch64CC::CondCode CC1, CC2;
3786 changeFPCCToAArch64CC(CC, CC1, CC2);
3787 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3788 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3789
3790 // If we need a second CSEL, emit it, using the output of the first as the
3791 // RHS. We're effectively OR'ing the two CC's together.
3792 if (CC2 != AArch64CC::AL) {
3793 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3794 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3795 }
3796
3797 // Otherwise, return the output of the first CSEL.
3798 return CS1;
3799}
3800
3801SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3802 SelectionDAG &DAG) const {
3803 // Jump table entries as PC relative offsets. No additional tweaking
3804 // is necessary here. Just get the address of the jump table.
3805 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3806 EVT PtrVT = getPointerTy();
3807 SDLoc DL(Op);
3808
3809 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3810 !Subtarget->isTargetMachO()) {
3811 const unsigned char MO_NC = AArch64II::MO_NC;
3812 return DAG.getNode(
3813 AArch64ISD::WrapperLarge, DL, PtrVT,
3814 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3815 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3816 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3817 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3818 AArch64II::MO_G0 | MO_NC));
3819 }
3820
3821 SDValue Hi =
3822 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3823 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3824 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3825 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3826 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3827}
3828
3829SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3830 SelectionDAG &DAG) const {
3831 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3832 EVT PtrVT = getPointerTy();
3833 SDLoc DL(Op);
3834
3835 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3836 // Use the GOT for the large code model on iOS.
3837 if (Subtarget->isTargetMachO()) {
3838 SDValue GotAddr = DAG.getTargetConstantPool(
3839 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3840 AArch64II::MO_GOT);
3841 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3842 }
3843
3844 const unsigned char MO_NC = AArch64II::MO_NC;
3845 return DAG.getNode(
3846 AArch64ISD::WrapperLarge, DL, PtrVT,
3847 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3848 CP->getOffset(), AArch64II::MO_G3),
3849 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3850 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3851 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3852 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3853 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3854 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3855 } else {
3856 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3857 // ELF, the only valid one on Darwin.
3858 SDValue Hi =
3859 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3860 CP->getOffset(), AArch64II::MO_PAGE);
3861 SDValue Lo = DAG.getTargetConstantPool(
3862 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3863 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3864
3865 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3866 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3867 }
3868}
3869
3870SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3871 SelectionDAG &DAG) const {
3872 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3873 EVT PtrVT = getPointerTy();
3874 SDLoc DL(Op);
3875 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3876 !Subtarget->isTargetMachO()) {
3877 const unsigned char MO_NC = AArch64II::MO_NC;
3878 return DAG.getNode(
3879 AArch64ISD::WrapperLarge, DL, PtrVT,
3880 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3881 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3882 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3883 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3884 } else {
3885 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3886 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3887 AArch64II::MO_NC);
3888 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3889 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3890 }
3891}
3892
3893SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3894 SelectionDAG &DAG) const {
3895 AArch64FunctionInfo *FuncInfo =
3896 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3897
3898 SDLoc DL(Op);
3899 SDValue FR =
3900 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3901 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3902 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3903 MachinePointerInfo(SV), false, false, 0);
3904}
3905
3906SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3907 SelectionDAG &DAG) const {
3908 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3909 // Standard, section B.3.
3910 MachineFunction &MF = DAG.getMachineFunction();
3911 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3912 SDLoc DL(Op);
3913
3914 SDValue Chain = Op.getOperand(0);
3915 SDValue VAList = Op.getOperand(1);
3916 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3917 SmallVector<SDValue, 4> MemOps;
3918
3919 // void *__stack at offset 0
3920 SDValue Stack =
3921 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3922 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3923 MachinePointerInfo(SV), false, false, 8));
3924
3925 // void *__gr_top at offset 8
3926 int GPRSize = FuncInfo->getVarArgsGPRSize();
3927 if (GPRSize > 0) {
3928 SDValue GRTop, GRTopAddr;
3929
3930 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3931 DAG.getConstant(8, getPointerTy()));
3932
3933 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3934 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3935 DAG.getConstant(GPRSize, getPointerTy()));
3936
3937 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3938 MachinePointerInfo(SV, 8), false, false, 8));
3939 }
3940
3941 // void *__vr_top at offset 16
3942 int FPRSize = FuncInfo->getVarArgsFPRSize();
3943 if (FPRSize > 0) {
3944 SDValue VRTop, VRTopAddr;
3945 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3946 DAG.getConstant(16, getPointerTy()));
3947
3948 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3949 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3950 DAG.getConstant(FPRSize, getPointerTy()));
3951
3952 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3953 MachinePointerInfo(SV, 16), false, false, 8));
3954 }
3955
3956 // int __gr_offs at offset 24
3957 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3958 DAG.getConstant(24, getPointerTy()));
3959 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3960 GROffsAddr, MachinePointerInfo(SV, 24), false,
3961 false, 4));
3962
3963 // int __vr_offs at offset 28
3964 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3965 DAG.getConstant(28, getPointerTy()));
3966 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3967 VROffsAddr, MachinePointerInfo(SV, 28), false,
3968 false, 4));
3969
3970 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3971}
3972
3973SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3974 SelectionDAG &DAG) const {
3975 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3976 : LowerAAPCS_VASTART(Op, DAG);
3977}
3978
3979SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3980 SelectionDAG &DAG) const {
3981 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3982 // pointer.
3983 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3984 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3985 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3986
3987 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3988 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3989 8, false, false, MachinePointerInfo(DestSV),
3990 MachinePointerInfo(SrcSV));
3991}
3992
3993SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3994 assert(Subtarget->isTargetDarwin() &&
3995 "automatic va_arg instruction only works on Darwin");
3996
3997 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3998 EVT VT = Op.getValueType();
3999 SDLoc DL(Op);
4000 SDValue Chain = Op.getOperand(0);
4001 SDValue Addr = Op.getOperand(1);
4002 unsigned Align = Op.getConstantOperandVal(3);
4003
4004 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
4005 MachinePointerInfo(V), false, false, false, 0);
4006 Chain = VAList.getValue(1);
4007
4008 if (Align > 8) {
4009 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4010 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
4011 DAG.getConstant(Align - 1, getPointerTy()));
4012 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
4013 DAG.getConstant(-(int64_t)Align, getPointerTy()));
4014 }
4015
4016 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4017 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
4018
4019 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4020 // up to 64 bits. At the very least, we have to increase the striding of the
4021 // vaargs list to match this, and for FP values we need to introduce
4022 // FP_ROUND nodes as well.
4023 if (VT.isInteger() && !VT.isVector())
4024 ArgSize = 8;
4025 bool NeedFPTrunc = false;
4026 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4027 ArgSize = 8;
4028 NeedFPTrunc = true;
4029 }
4030
4031 // Increment the pointer, VAList, to the next vaarg
4032 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
4033 DAG.getConstant(ArgSize, getPointerTy()));
4034 // Store the incremented VAList to the legalized pointer
4035 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4036 false, false, 0);
4037
4038 // Load the actual argument out of the pointer VAList
4039 if (NeedFPTrunc) {
4040 // Load the value as an f64.
4041 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4042 MachinePointerInfo(), false, false, false, 0);
4043 // Round the value down to an f32.
4044 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4045 DAG.getIntPtrConstant(1));
4046 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4047 // Merge the rounded value with the chain output of the load.
4048 return DAG.getMergeValues(Ops, DL);
4049 }
4050
4051 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4052 false, false, 0);
4053}
4054
4055SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4056 SelectionDAG &DAG) const {
4057 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4058 MFI->setFrameAddressIsTaken(true);
4059
4060 EVT VT = Op.getValueType();
4061 SDLoc DL(Op);
4062 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4063 SDValue FrameAddr =
4064 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4065 while (Depth--)
4066 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4067 MachinePointerInfo(), false, false, false, 0);
4068 return FrameAddr;
4069}
4070
4071// FIXME? Maybe this could be a TableGen attribute on some registers and
4072// this table could be generated automatically from RegInfo.
4073unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4074 EVT VT) const {
4075 unsigned Reg = StringSwitch<unsigned>(RegName)
4076 .Case("sp", AArch64::SP)
4077 .Default(0);
4078 if (Reg)
4079 return Reg;
4080 report_fatal_error("Invalid register name global variable");
4081}
4082
4083SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4084 SelectionDAG &DAG) const {
4085 MachineFunction &MF = DAG.getMachineFunction();
4086 MachineFrameInfo *MFI = MF.getFrameInfo();
4087 MFI->setReturnAddressIsTaken(true);
4088
4089 EVT VT = Op.getValueType();
4090 SDLoc DL(Op);
4091 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4092 if (Depth) {
4093 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4094 SDValue Offset = DAG.getConstant(8, getPointerTy());
4095 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4096 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4097 MachinePointerInfo(), false, false, false, 0);
4098 }
4099
4100 // Return LR, which contains the return address. Mark it an implicit live-in.
4101 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4102 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4103}
4104
4105/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4106/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4107SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4108 SelectionDAG &DAG) const {
4109 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4110 EVT VT = Op.getValueType();
4111 unsigned VTBits = VT.getSizeInBits();
4112 SDLoc dl(Op);
4113 SDValue ShOpLo = Op.getOperand(0);
4114 SDValue ShOpHi = Op.getOperand(1);
4115 SDValue ShAmt = Op.getOperand(2);
4116 SDValue ARMcc;
4117 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4118
4119 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4120
4121 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4122 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4123 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4124 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4125 DAG.getConstant(VTBits, MVT::i64));
4126 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4127
4128 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4129 ISD::SETGE, dl, DAG);
4130 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4131
4132 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4133 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4134 SDValue Lo =
4135 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4136
4137 // AArch64 shifts larger than the register width are wrapped rather than
4138 // clamped, so we can't just emit "hi >> x".
4139 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4140 SDValue TrueValHi = Opc == ISD::SRA
4141 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4142 DAG.getConstant(VTBits - 1, MVT::i64))
4143 : DAG.getConstant(0, VT);
4144 SDValue Hi =
4145 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4146
4147 SDValue Ops[2] = { Lo, Hi };
4148 return DAG.getMergeValues(Ops, dl);
4149}
4150
4151/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4152/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4153SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4154 SelectionDAG &DAG) const {
4155 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4156 EVT VT = Op.getValueType();
4157 unsigned VTBits = VT.getSizeInBits();
4158 SDLoc dl(Op);
4159 SDValue ShOpLo = Op.getOperand(0);
4160 SDValue ShOpHi = Op.getOperand(1);
4161 SDValue ShAmt = Op.getOperand(2);
4162 SDValue ARMcc;
4163
4164 assert(Op.getOpcode() == ISD::SHL_PARTS);
4165 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4166 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4167 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4168 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4169 DAG.getConstant(VTBits, MVT::i64));
4170 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4171 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4172
4173 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4174
4175 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4176 ISD::SETGE, dl, DAG);
4177 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4178 SDValue Hi =
4179 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4180
4181 // AArch64 shifts of larger than register sizes are wrapped rather than
4182 // clamped, so we can't just emit "lo << a" if a is too big.
4183 SDValue TrueValLo = DAG.getConstant(0, VT);
4184 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4185 SDValue Lo =
4186 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4187
4188 SDValue Ops[2] = { Lo, Hi };
4189 return DAG.getMergeValues(Ops, dl);
4190}
4191
4192bool AArch64TargetLowering::isOffsetFoldingLegal(
4193 const GlobalAddressSDNode *GA) const {
4194 // The AArch64 target doesn't support folding offsets into global addresses.
4195 return false;
4196}
4197
4198bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4199 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4200 // FIXME: We should be able to handle f128 as well with a clever lowering.
4201 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4202 return true;
4203
4204 if (VT == MVT::f64)
4205 return AArch64_AM::getFP64Imm(Imm) != -1;
4206 else if (VT == MVT::f32)
4207 return AArch64_AM::getFP32Imm(Imm) != -1;
4208 return false;
4209}
4210
4211//===----------------------------------------------------------------------===//
4212// AArch64 Optimization Hooks
4213//===----------------------------------------------------------------------===//
4214
4215//===----------------------------------------------------------------------===//
4216// AArch64 Inline Assembly Support
4217//===----------------------------------------------------------------------===//
4218
4219// Table of Constraints
4220// TODO: This is the current set of constraints supported by ARM for the
4221// compiler, not all of them may make sense, e.g. S may be difficult to support.
4222//
4223// r - A general register
4224// w - An FP/SIMD register of some size in the range v0-v31
4225// x - An FP/SIMD register of some size in the range v0-v15
4226// I - Constant that can be used with an ADD instruction
4227// J - Constant that can be used with a SUB instruction
4228// K - Constant that can be used with a 32-bit logical instruction
4229// L - Constant that can be used with a 64-bit logical instruction
4230// M - Constant that can be used as a 32-bit MOV immediate
4231// N - Constant that can be used as a 64-bit MOV immediate
4232// Q - A memory reference with base register and no offset
4233// S - A symbolic address
4234// Y - Floating point constant zero
4235// Z - Integer constant zero
4236//
4237// Note that general register operands will be output using their 64-bit x
4238// register name, whatever the size of the variable, unless the asm operand
4239// is prefixed by the %w modifier. Floating-point and SIMD register operands
4240// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4241// %q modifier.
4242
4243/// getConstraintType - Given a constraint letter, return the type of
4244/// constraint it is for this target.
4245AArch64TargetLowering::ConstraintType
4246AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4247 if (Constraint.size() == 1) {
4248 switch (Constraint[0]) {
4249 default:
4250 break;
4251 case 'z':
4252 return C_Other;
4253 case 'x':
4254 case 'w':
4255 return C_RegisterClass;
4256 // An address with a single base register. Due to the way we
4257 // currently handle addresses it is the same as 'r'.
4258 case 'Q':
4259 return C_Memory;
4260 }
4261 }
4262 return TargetLowering::getConstraintType(Constraint);
4263}
4264
4265/// Examine constraint type and operand type and determine a weight value.
4266/// This object must already have been set up with the operand type
4267/// and the current alternative constraint selected.
4268TargetLowering::ConstraintWeight
4269AArch64TargetLowering::getSingleConstraintMatchWeight(
4270 AsmOperandInfo &info, const char *constraint) const {
4271 ConstraintWeight weight = CW_Invalid;
4272 Value *CallOperandVal = info.CallOperandVal;
4273 // If we don't have a value, we can't do a match,
4274 // but allow it at the lowest weight.
4275 if (!CallOperandVal)
4276 return CW_Default;
4277 Type *type = CallOperandVal->getType();
4278 // Look at the constraint type.
4279 switch (*constraint) {
4280 default:
4281 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4282 break;
4283 case 'x':
4284 case 'w':
4285 if (type->isFloatingPointTy() || type->isVectorTy())
4286 weight = CW_Register;
4287 break;
4288 case 'z':
4289 weight = CW_Constant;
4290 break;
4291 }
4292 return weight;
4293}
4294
4295std::pair<unsigned, const TargetRegisterClass *>
4296AArch64TargetLowering::getRegForInlineAsmConstraint(
4297 const std::string &Constraint, MVT VT) const {
4298 if (Constraint.size() == 1) {
4299 switch (Constraint[0]) {
4300 case 'r':
4301 if (VT.getSizeInBits() == 64)
4302 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4303 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4304 case 'w':
4305 if (VT == MVT::f32)
4306 return std::make_pair(0U, &AArch64::FPR32RegClass);
4307 if (VT.getSizeInBits() == 64)
4308 return std::make_pair(0U, &AArch64::FPR64RegClass);
4309 if (VT.getSizeInBits() == 128)
4310 return std::make_pair(0U, &AArch64::FPR128RegClass);
4311 break;
4312 // The instructions that this constraint is designed for can
4313 // only take 128-bit registers so just use that regclass.
4314 case 'x':
4315 if (VT.getSizeInBits() == 128)
4316 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4317 break;
4318 }
4319 }
4320 if (StringRef("{cc}").equals_lower(Constraint))
4321 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4322
4323 // Use the default implementation in TargetLowering to convert the register
4324 // constraint into a member of a register class.
4325 std::pair<unsigned, const TargetRegisterClass *> Res;
4326 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4327
4328 // Not found as a standard register?
4329 if (!Res.second) {
4330 unsigned Size = Constraint.size();
4331 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4332 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4333 const std::string Reg =
4334 std::string(&Constraint[2], &Constraint[Size - 1]);
4335 int RegNo = atoi(Reg.c_str());
4336 if (RegNo >= 0 && RegNo <= 31) {
4337 // v0 - v31 are aliases of q0 - q31.
4338 // By default we'll emit v0-v31 for this unless there's a modifier where
4339 // we'll emit the correct register as well.
4340 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4341 Res.second = &AArch64::FPR128RegClass;
4342 }
4343 }
4344 }
4345
4346 return Res;
4347}
4348
4349/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4350/// vector. If it is invalid, don't add anything to Ops.
4351void AArch64TargetLowering::LowerAsmOperandForConstraint(
4352 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4353 SelectionDAG &DAG) const {
4354 SDValue Result;
4355
4356 // Currently only support length 1 constraints.
4357 if (Constraint.length() != 1)
4358 return;
4359
4360 char ConstraintLetter = Constraint[0];
4361 switch (ConstraintLetter) {
4362 default:
4363 break;
4364
4365 // This set of constraints deal with valid constants for various instructions.
4366 // Validate and return a target constant for them if we can.
4367 case 'z': {
4368 // 'z' maps to xzr or wzr so it needs an input of 0.
4369 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4370 if (!C || C->getZExtValue() != 0)
4371 return;
4372
4373 if (Op.getValueType() == MVT::i64)
4374 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4375 else
4376 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4377 break;
4378 }
4379
4380 case 'I':
4381 case 'J':
4382 case 'K':
4383 case 'L':
4384 case 'M':
4385 case 'N':
4386 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4387 if (!C)
4388 return;
4389
4390 // Grab the value and do some validation.
4391 uint64_t CVal = C->getZExtValue();
4392 switch (ConstraintLetter) {
4393 // The I constraint applies only to simple ADD or SUB immediate operands:
4394 // i.e. 0 to 4095 with optional shift by 12
4395 // The J constraint applies only to ADD or SUB immediates that would be
4396 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4397 // instruction [or vice versa], in other words -1 to -4095 with optional
4398 // left shift by 12.
4399 case 'I':
4400 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4401 break;
4402 return;
4403 case 'J': {
4404 uint64_t NVal = -C->getSExtValue();
4405 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4406 CVal = C->getSExtValue();
4407 break;
4408 }
4409 return;
4410 }
4411 // The K and L constraints apply *only* to logical immediates, including
4412 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4413 // been removed and MOV should be used). So these constraints have to
4414 // distinguish between bit patterns that are valid 32-bit or 64-bit
4415 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4416 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4417 // versa.
4418 case 'K':
4419 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4420 break;
4421 return;
4422 case 'L':
4423 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4424 break;
4425 return;
4426 // The M and N constraints are a superset of K and L respectively, for use
4427 // with the MOV (immediate) alias. As well as the logical immediates they
4428 // also match 32 or 64-bit immediates that can be loaded either using a
4429 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4430 // (M) or 64-bit 0x1234000000000000 (N) etc.
4431 // As a note some of this code is liberally stolen from the asm parser.
4432 case 'M': {
4433 if (!isUInt<32>(CVal))
4434 return;
4435 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4436 break;
4437 if ((CVal & 0xFFFF) == CVal)
4438 break;
4439 if ((CVal & 0xFFFF0000ULL) == CVal)
4440 break;
4441 uint64_t NCVal = ~(uint32_t)CVal;
4442 if ((NCVal & 0xFFFFULL) == NCVal)
4443 break;
4444 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4445 break;
4446 return;
4447 }
4448 case 'N': {
4449 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4450 break;
4451 if ((CVal & 0xFFFFULL) == CVal)
4452 break;
4453 if ((CVal & 0xFFFF0000ULL) == CVal)
4454 break;
4455 if ((CVal & 0xFFFF00000000ULL) == CVal)
4456 break;
4457 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4458 break;
4459 uint64_t NCVal = ~CVal;
4460 if ((NCVal & 0xFFFFULL) == NCVal)
4461 break;
4462 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4463 break;
4464 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4465 break;
4466 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4467 break;
4468 return;
4469 }
4470 default:
4471 return;
4472 }
4473
4474 // All assembler immediates are 64-bit integers.
4475 Result = DAG.getTargetConstant(CVal, MVT::i64);
4476 break;
4477 }
4478
4479 if (Result.getNode()) {
4480 Ops.push_back(Result);
4481 return;
4482 }
4483
4484 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4485}
4486
4487//===----------------------------------------------------------------------===//
4488// AArch64 Advanced SIMD Support
4489//===----------------------------------------------------------------------===//
4490
4491/// WidenVector - Given a value in the V64 register class, produce the
4492/// equivalent value in the V128 register class.
4493static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4494 EVT VT = V64Reg.getValueType();
4495 unsigned NarrowSize = VT.getVectorNumElements();
4496 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4497 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4498 SDLoc DL(V64Reg);
4499
4500 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4501 V64Reg, DAG.getConstant(0, MVT::i32));
4502}
4503
4504/// getExtFactor - Determine the adjustment factor for the position when
4505/// generating an "extract from vector registers" instruction.
4506static unsigned getExtFactor(SDValue &V) {
4507 EVT EltType = V.getValueType().getVectorElementType();
4508 return EltType.getSizeInBits() / 8;
4509}
4510
4511/// NarrowVector - Given a value in the V128 register class, produce the
4512/// equivalent value in the V64 register class.
4513static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4514 EVT VT = V128Reg.getValueType();
4515 unsigned WideSize = VT.getVectorNumElements();
4516 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4517 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4518 SDLoc DL(V128Reg);
4519
4520 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4521}
4522
4523// Gather data to see if the operation can be modelled as a
4524// shuffle in combination with VEXTs.
4525SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4526 SelectionDAG &DAG) const {
4527 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
4528 SDLoc dl(Op);
4529 EVT VT = Op.getValueType();
4530 unsigned NumElts = VT.getVectorNumElements();
4531
4532 struct ShuffleSourceInfo {
4533 SDValue Vec;
4534 unsigned MinElt;
4535 unsigned MaxElt;
4536
4537 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4538 // be compatible with the shuffle we intend to construct. As a result
4539 // ShuffleVec will be some sliding window into the original Vec.
4540 SDValue ShuffleVec;
4541
4542 // Code should guarantee that element i in Vec starts at element "WindowBase
4543 // + i * WindowScale in ShuffleVec".
4544 int WindowBase;
4545 int WindowScale;
4546
4547 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4548 ShuffleSourceInfo(SDValue Vec)
4549 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4550 WindowScale(1) {}
4551 };
4552
4553 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4554 // node.
4555 SmallVector<ShuffleSourceInfo, 2> Sources;
4556 for (unsigned i = 0; i < NumElts; ++i) {
4557 SDValue V = Op.getOperand(i);
4558 if (V.getOpcode() == ISD::UNDEF)
4559 continue;
4560 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4561 // A shuffle can only come from building a vector from various
4562 // elements of other vectors.
4563 return SDValue();
4564 }
4565
4566 // Add this element source to the list if it's not already there.
4567 SDValue SourceVec = V.getOperand(0);
4568 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4569 if (Source == Sources.end())
85aaf69f 4570 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
1a4d82fc
JJ
4571
4572 // Update the minimum and maximum lane number seen.
4573 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4574 Source->MinElt = std::min(Source->MinElt, EltNo);
4575 Source->MaxElt = std::max(Source->MaxElt, EltNo);
4576 }
4577
4578 // Currently only do something sane when at most two source vectors
4579 // are involved.
4580 if (Sources.size() > 2)
4581 return SDValue();
4582
4583 // Find out the smallest element size among result and two sources, and use
4584 // it as element size to build the shuffle_vector.
4585 EVT SmallestEltTy = VT.getVectorElementType();
4586 for (auto &Source : Sources) {
4587 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
4588 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4589 SmallestEltTy = SrcEltTy;
4590 }
4591 }
4592 unsigned ResMultiplier =
4593 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
4594 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4595 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
4596
4597 // If the source vector is too wide or too narrow, we may nevertheless be able
4598 // to construct a compatible shuffle either by concatenating it with UNDEF or
4599 // extracting a suitable range of elements.
4600 for (auto &Src : Sources) {
4601 EVT SrcVT = Src.ShuffleVec.getValueType();
4602
4603 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
4604 continue;
4605
4606 // This stage of the search produces a source with the same element type as
4607 // the original, but with a total width matching the BUILD_VECTOR output.
4608 EVT EltVT = SrcVT.getVectorElementType();
85aaf69f
SL
4609 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4610 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
1a4d82fc
JJ
4611
4612 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4613 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
4614 // We can pad out the smaller vector for free, so if it's part of a
4615 // shuffle...
4616 Src.ShuffleVec =
4617 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4618 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
4619 continue;
4620 }
4621
4622 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
4623
85aaf69f 4624 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
1a4d82fc
JJ
4625 // Span too large for a VEXT to cope
4626 return SDValue();
4627 }
4628
85aaf69f 4629 if (Src.MinElt >= NumSrcElts) {
1a4d82fc
JJ
4630 // The extraction can just take the second half
4631 Src.ShuffleVec =
4632 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
85aaf69f
SL
4633 DAG.getConstant(NumSrcElts, MVT::i64));
4634 Src.WindowBase = -NumSrcElts;
4635 } else if (Src.MaxElt < NumSrcElts) {
1a4d82fc 4636 // The extraction can just take the first half
85aaf69f
SL
4637 Src.ShuffleVec =
4638 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4639 DAG.getConstant(0, MVT::i64));
1a4d82fc
JJ
4640 } else {
4641 // An actual VEXT is needed
85aaf69f
SL
4642 SDValue VEXTSrc1 =
4643 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4644 DAG.getConstant(0, MVT::i64));
1a4d82fc
JJ
4645 SDValue VEXTSrc2 =
4646 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
85aaf69f 4647 DAG.getConstant(NumSrcElts, MVT::i64));
1a4d82fc
JJ
4648 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4649
4650 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
4651 VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
4652 Src.WindowBase = -Src.MinElt;
4653 }
4654 }
4655
4656 // Another possible incompatibility occurs from the vector element types. We
4657 // can fix this by bitcasting the source vectors to the same type we intend
4658 // for the shuffle.
4659 for (auto &Src : Sources) {
4660 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4661 if (SrcEltTy == SmallestEltTy)
4662 continue;
4663 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4664 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4665 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4666 Src.WindowBase *= Src.WindowScale;
4667 }
4668
4669 // Final sanity check before we try to actually produce a shuffle.
4670 DEBUG(
4671 for (auto Src : Sources)
4672 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4673 );
4674
4675 // The stars all align, our next step is to produce the mask for the shuffle.
4676 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4677 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
4678 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
4679 SDValue Entry = Op.getOperand(i);
4680 if (Entry.getOpcode() == ISD::UNDEF)
4681 continue;
4682
4683 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4684 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4685
4686 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4687 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4688 // segment.
4689 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4690 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4691 VT.getVectorElementType().getSizeInBits());
4692 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4693
4694 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4695 // starting at the appropriate offset.
4696 int *LaneMask = &Mask[i * ResMultiplier];
4697
4698 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4699 ExtractBase += NumElts * (Src - Sources.begin());
4700 for (int j = 0; j < LanesDefined; ++j)
4701 LaneMask[j] = ExtractBase + j;
4702 }
4703
4704 // Final check before we try to produce nonsense...
4705 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4706 return SDValue();
4707
4708 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4709 for (unsigned i = 0; i < Sources.size(); ++i)
4710 ShuffleOps[i] = Sources[i].ShuffleVec;
4711
4712 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4713 ShuffleOps[1], &Mask[0]);
4714 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
4715}
4716
4717// check if an EXT instruction can handle the shuffle mask when the
4718// vector sources of the shuffle are the same.
4719static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4720 unsigned NumElts = VT.getVectorNumElements();
4721
4722 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4723 if (M[0] < 0)
4724 return false;
4725
4726 Imm = M[0];
4727
4728 // If this is a VEXT shuffle, the immediate value is the index of the first
4729 // element. The other shuffle indices must be the successive elements after
4730 // the first one.
4731 unsigned ExpectedElt = Imm;
4732 for (unsigned i = 1; i < NumElts; ++i) {
4733 // Increment the expected index. If it wraps around, just follow it
4734 // back to index zero and keep going.
4735 ++ExpectedElt;
4736 if (ExpectedElt == NumElts)
4737 ExpectedElt = 0;
4738
4739 if (M[i] < 0)
4740 continue; // ignore UNDEF indices
4741 if (ExpectedElt != static_cast<unsigned>(M[i]))
4742 return false;
4743 }
4744
4745 return true;
4746}
4747
4748// check if an EXT instruction can handle the shuffle mask when the
4749// vector sources of the shuffle are different.
4750static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4751 unsigned &Imm) {
4752 // Look for the first non-undef element.
4753 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4754 [](int Elt) {return Elt >= 0;});
4755
4756 // Benefit form APInt to handle overflow when calculating expected element.
4757 unsigned NumElts = VT.getVectorNumElements();
4758 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4759 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4760 // The following shuffle indices must be the successive elements after the
4761 // first real element.
4762 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4763 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4764 if (FirstWrongElt != M.end())
4765 return false;
4766
4767 // The index of an EXT is the first element if it is not UNDEF.
4768 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4769 // value of the first element. E.g.
4770 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4771 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4772 // ExpectedElt is the last mask index plus 1.
4773 Imm = ExpectedElt.getZExtValue();
4774
4775 // There are two difference cases requiring to reverse input vectors.
4776 // For example, for vector <4 x i32> we have the following cases,
4777 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4778 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4779 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4780 // to reverse two input vectors.
4781 if (Imm < NumElts)
4782 ReverseEXT = true;
4783 else
4784 Imm -= NumElts;
4785
4786 return true;
4787}
4788
4789/// isREVMask - Check if a vector shuffle corresponds to a REV
4790/// instruction with the specified blocksize. (The order of the elements
4791/// within each block of the vector is reversed.)
4792static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4793 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4794 "Only possible block sizes for REV are: 16, 32, 64");
4795
4796 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4797 if (EltSz == 64)
4798 return false;
4799
4800 unsigned NumElts = VT.getVectorNumElements();
4801 unsigned BlockElts = M[0] + 1;
4802 // If the first shuffle index is UNDEF, be optimistic.
4803 if (M[0] < 0)
4804 BlockElts = BlockSize / EltSz;
4805
4806 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4807 return false;
4808
4809 for (unsigned i = 0; i < NumElts; ++i) {
4810 if (M[i] < 0)
4811 continue; // ignore UNDEF indices
4812 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4813 return false;
4814 }
4815
4816 return true;
4817}
4818
4819static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4820 unsigned NumElts = VT.getVectorNumElements();
4821 WhichResult = (M[0] == 0 ? 0 : 1);
4822 unsigned Idx = WhichResult * NumElts / 2;
4823 for (unsigned i = 0; i != NumElts; i += 2) {
4824 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4825 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4826 return false;
4827 Idx += 1;
4828 }
4829
4830 return true;
4831}
4832
4833static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4834 unsigned NumElts = VT.getVectorNumElements();
4835 WhichResult = (M[0] == 0 ? 0 : 1);
4836 for (unsigned i = 0; i != NumElts; ++i) {
4837 if (M[i] < 0)
4838 continue; // ignore UNDEF indices
4839 if ((unsigned)M[i] != 2 * i + WhichResult)
4840 return false;
4841 }
4842
4843 return true;
4844}
4845
4846static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4847 unsigned NumElts = VT.getVectorNumElements();
4848 WhichResult = (M[0] == 0 ? 0 : 1);
4849 for (unsigned i = 0; i < NumElts; i += 2) {
4850 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4851 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4852 return false;
4853 }
4854 return true;
4855}
4856
4857/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4858/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4859/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4860static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4861 unsigned NumElts = VT.getVectorNumElements();
4862 WhichResult = (M[0] == 0 ? 0 : 1);
4863 unsigned Idx = WhichResult * NumElts / 2;
4864 for (unsigned i = 0; i != NumElts; i += 2) {
4865 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4866 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4867 return false;
4868 Idx += 1;
4869 }
4870
4871 return true;
4872}
4873
4874/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4875/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4876/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4877static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4878 unsigned Half = VT.getVectorNumElements() / 2;
4879 WhichResult = (M[0] == 0 ? 0 : 1);
4880 for (unsigned j = 0; j != 2; ++j) {
4881 unsigned Idx = WhichResult;
4882 for (unsigned i = 0; i != Half; ++i) {
4883 int MIdx = M[i + j * Half];
4884 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4885 return false;
4886 Idx += 2;
4887 }
4888 }
4889
4890 return true;
4891}
4892
4893/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4894/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4895/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4896static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4897 unsigned NumElts = VT.getVectorNumElements();
4898 WhichResult = (M[0] == 0 ? 0 : 1);
4899 for (unsigned i = 0; i < NumElts; i += 2) {
4900 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4901 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4902 return false;
4903 }
4904 return true;
4905}
4906
4907static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4908 bool &DstIsLeft, int &Anomaly) {
4909 if (M.size() != static_cast<size_t>(NumInputElements))
4910 return false;
4911
4912 int NumLHSMatch = 0, NumRHSMatch = 0;
4913 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4914
4915 for (int i = 0; i < NumInputElements; ++i) {
4916 if (M[i] == -1) {
4917 ++NumLHSMatch;
4918 ++NumRHSMatch;
4919 continue;
4920 }
4921
4922 if (M[i] == i)
4923 ++NumLHSMatch;
4924 else
4925 LastLHSMismatch = i;
4926
4927 if (M[i] == i + NumInputElements)
4928 ++NumRHSMatch;
4929 else
4930 LastRHSMismatch = i;
4931 }
4932
4933 if (NumLHSMatch == NumInputElements - 1) {
4934 DstIsLeft = true;
4935 Anomaly = LastLHSMismatch;
4936 return true;
4937 } else if (NumRHSMatch == NumInputElements - 1) {
4938 DstIsLeft = false;
4939 Anomaly = LastRHSMismatch;
4940 return true;
4941 }
4942
4943 return false;
4944}
4945
4946static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4947 if (VT.getSizeInBits() != 128)
4948 return false;
4949
4950 unsigned NumElts = VT.getVectorNumElements();
4951
4952 for (int I = 0, E = NumElts / 2; I != E; I++) {
4953 if (Mask[I] != I)
4954 return false;
4955 }
4956
4957 int Offset = NumElts / 2;
4958 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4959 if (Mask[I] != I + SplitLHS * Offset)
4960 return false;
4961 }
4962
4963 return true;
4964}
4965
4966static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4967 SDLoc DL(Op);
4968 EVT VT = Op.getValueType();
4969 SDValue V0 = Op.getOperand(0);
4970 SDValue V1 = Op.getOperand(1);
4971 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4972
4973 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4974 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4975 return SDValue();
4976
4977 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4978
4979 if (!isConcatMask(Mask, VT, SplitV0))
4980 return SDValue();
4981
4982 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4983 VT.getVectorNumElements() / 2);
4984 if (SplitV0) {
4985 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4986 DAG.getConstant(0, MVT::i64));
4987 }
4988 if (V1.getValueType().getSizeInBits() == 128) {
4989 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4990 DAG.getConstant(0, MVT::i64));
4991 }
4992 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4993}
4994
4995/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4996/// the specified operations to build the shuffle.
4997static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4998 SDValue RHS, SelectionDAG &DAG,
4999 SDLoc dl) {
5000 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5001 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5002 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5003
5004 enum {
5005 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5006 OP_VREV,
5007 OP_VDUP0,
5008 OP_VDUP1,
5009 OP_VDUP2,
5010 OP_VDUP3,
5011 OP_VEXT1,
5012 OP_VEXT2,
5013 OP_VEXT3,
5014 OP_VUZPL, // VUZP, left result
5015 OP_VUZPR, // VUZP, right result
5016 OP_VZIPL, // VZIP, left result
5017 OP_VZIPR, // VZIP, right result
5018 OP_VTRNL, // VTRN, left result
5019 OP_VTRNR // VTRN, right result
5020 };
5021
5022 if (OpNum == OP_COPY) {
5023 if (LHSID == (1 * 9 + 2) * 9 + 3)
5024 return LHS;
5025 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5026 return RHS;
5027 }
5028
5029 SDValue OpLHS, OpRHS;
5030 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5031 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5032 EVT VT = OpLHS.getValueType();
5033
5034 switch (OpNum) {
5035 default:
5036 llvm_unreachable("Unknown shuffle opcode!");
5037 case OP_VREV:
5038 // VREV divides the vector in half and swaps within the half.
5039 if (VT.getVectorElementType() == MVT::i32 ||
5040 VT.getVectorElementType() == MVT::f32)
5041 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5042 // vrev <4 x i16> -> REV32
5043 if (VT.getVectorElementType() == MVT::i16 ||
5044 VT.getVectorElementType() == MVT::f16)
5045 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5046 // vrev <4 x i8> -> REV16
5047 assert(VT.getVectorElementType() == MVT::i8);
5048 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5049 case OP_VDUP0:
5050 case OP_VDUP1:
5051 case OP_VDUP2:
5052 case OP_VDUP3: {
5053 EVT EltTy = VT.getVectorElementType();
5054 unsigned Opcode;
5055 if (EltTy == MVT::i8)
5056 Opcode = AArch64ISD::DUPLANE8;
5057 else if (EltTy == MVT::i16)
5058 Opcode = AArch64ISD::DUPLANE16;
5059 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5060 Opcode = AArch64ISD::DUPLANE32;
5061 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5062 Opcode = AArch64ISD::DUPLANE64;
5063 else
5064 llvm_unreachable("Invalid vector element type?");
5065
5066 if (VT.getSizeInBits() == 64)
5067 OpLHS = WidenVector(OpLHS, DAG);
5068 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
5069 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5070 }
5071 case OP_VEXT1:
5072 case OP_VEXT2:
5073 case OP_VEXT3: {
5074 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5075 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5076 DAG.getConstant(Imm, MVT::i32));
5077 }
5078 case OP_VUZPL:
5079 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5080 OpRHS);
5081 case OP_VUZPR:
5082 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5083 OpRHS);
5084 case OP_VZIPL:
5085 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5086 OpRHS);
5087 case OP_VZIPR:
5088 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5089 OpRHS);
5090 case OP_VTRNL:
5091 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5092 OpRHS);
5093 case OP_VTRNR:
5094 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5095 OpRHS);
5096 }
5097}
5098
5099static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5100 SelectionDAG &DAG) {
5101 // Check to see if we can use the TBL instruction.
5102 SDValue V1 = Op.getOperand(0);
5103 SDValue V2 = Op.getOperand(1);
5104 SDLoc DL(Op);
5105
5106 EVT EltVT = Op.getValueType().getVectorElementType();
5107 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5108
5109 SmallVector<SDValue, 8> TBLMask;
5110 for (int Val : ShuffleMask) {
5111 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5112 unsigned Offset = Byte + Val * BytesPerElt;
5113 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
5114 }
5115 }
5116
5117 MVT IndexVT = MVT::v8i8;
5118 unsigned IndexLen = 8;
5119 if (Op.getValueType().getSizeInBits() == 128) {
5120 IndexVT = MVT::v16i8;
5121 IndexLen = 16;
5122 }
5123
5124 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5125 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5126
5127 SDValue Shuffle;
5128 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5129 if (IndexLen == 8)
5130 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5131 Shuffle = DAG.getNode(
5132 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5133 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5134 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5135 makeArrayRef(TBLMask.data(), IndexLen)));
5136 } else {
5137 if (IndexLen == 8) {
5138 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5139 Shuffle = DAG.getNode(
5140 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5141 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5142 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5143 makeArrayRef(TBLMask.data(), IndexLen)));
5144 } else {
5145 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5146 // cannot currently represent the register constraints on the input
5147 // table registers.
5148 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5149 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5150 // &TBLMask[0], IndexLen));
5151 Shuffle = DAG.getNode(
5152 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5153 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
5154 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5155 makeArrayRef(TBLMask.data(), IndexLen)));
5156 }
5157 }
5158 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5159}
5160
5161static unsigned getDUPLANEOp(EVT EltType) {
5162 if (EltType == MVT::i8)
5163 return AArch64ISD::DUPLANE8;
5164 if (EltType == MVT::i16 || EltType == MVT::f16)
5165 return AArch64ISD::DUPLANE16;
5166 if (EltType == MVT::i32 || EltType == MVT::f32)
5167 return AArch64ISD::DUPLANE32;
5168 if (EltType == MVT::i64 || EltType == MVT::f64)
5169 return AArch64ISD::DUPLANE64;
5170
5171 llvm_unreachable("Invalid vector element type?");
5172}
5173
5174SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5175 SelectionDAG &DAG) const {
5176 SDLoc dl(Op);
5177 EVT VT = Op.getValueType();
5178
5179 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5180
5181 // Convert shuffles that are directly supported on NEON to target-specific
5182 // DAG nodes, instead of keeping them as shuffles and matching them again
5183 // during code selection. This is more efficient and avoids the possibility
5184 // of inconsistencies between legalization and selection.
5185 ArrayRef<int> ShuffleMask = SVN->getMask();
5186
5187 SDValue V1 = Op.getOperand(0);
5188 SDValue V2 = Op.getOperand(1);
5189
5190 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5191 V1.getValueType().getSimpleVT())) {
5192 int Lane = SVN->getSplatIndex();
5193 // If this is undef splat, generate it via "just" vdup, if possible.
5194 if (Lane == -1)
5195 Lane = 0;
5196
5197 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5198 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5199 V1.getOperand(0));
5200 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5201 // constant. If so, we can just reference the lane's definition directly.
5202 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5203 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5204 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5205
5206 // Otherwise, duplicate from the lane of the input vector.
5207 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5208
5209 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5210 // to make a vector of the same size as this SHUFFLE. We can ignore the
5211 // extract entirely, and canonicalise the concat using WidenVector.
5212 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5213 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5214 V1 = V1.getOperand(0);
5215 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5216 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5217 Lane -= Idx * VT.getVectorNumElements() / 2;
5218 V1 = WidenVector(V1.getOperand(Idx), DAG);
5219 } else if (VT.getSizeInBits() == 64)
5220 V1 = WidenVector(V1, DAG);
5221
5222 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
5223 }
5224
5225 if (isREVMask(ShuffleMask, VT, 64))
5226 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5227 if (isREVMask(ShuffleMask, VT, 32))
5228 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5229 if (isREVMask(ShuffleMask, VT, 16))
5230 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5231
5232 bool ReverseEXT = false;
5233 unsigned Imm;
5234 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5235 if (ReverseEXT)
5236 std::swap(V1, V2);
5237 Imm *= getExtFactor(V1);
5238 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5239 DAG.getConstant(Imm, MVT::i32));
5240 } else if (V2->getOpcode() == ISD::UNDEF &&
5241 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5242 Imm *= getExtFactor(V1);
5243 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5244 DAG.getConstant(Imm, MVT::i32));
5245 }
5246
5247 unsigned WhichResult;
5248 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5249 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5250 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5251 }
5252 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5253 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5254 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5255 }
5256 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5257 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5258 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5259 }
5260
5261 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5262 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5263 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5264 }
5265 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5266 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5267 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5268 }
5269 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5270 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5271 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5272 }
5273
5274 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5275 if (Concat.getNode())
5276 return Concat;
5277
5278 bool DstIsLeft;
5279 int Anomaly;
5280 int NumInputElements = V1.getValueType().getVectorNumElements();
5281 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5282 SDValue DstVec = DstIsLeft ? V1 : V2;
5283 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5284
5285 SDValue SrcVec = V1;
5286 int SrcLane = ShuffleMask[Anomaly];
5287 if (SrcLane >= NumInputElements) {
5288 SrcVec = V2;
5289 SrcLane -= VT.getVectorNumElements();
5290 }
5291 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5292
5293 EVT ScalarVT = VT.getVectorElementType();
5294
5295 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
5296 ScalarVT = MVT::i32;
5297
5298 return DAG.getNode(
5299 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5300 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5301 DstLaneV);
5302 }
5303
5304 // If the shuffle is not directly supported and it has 4 elements, use
5305 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5306 unsigned NumElts = VT.getVectorNumElements();
5307 if (NumElts == 4) {
5308 unsigned PFIndexes[4];
5309 for (unsigned i = 0; i != 4; ++i) {
5310 if (ShuffleMask[i] < 0)
5311 PFIndexes[i] = 8;
5312 else
5313 PFIndexes[i] = ShuffleMask[i];
5314 }
5315
5316 // Compute the index in the perfect shuffle table.
5317 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5318 PFIndexes[2] * 9 + PFIndexes[3];
5319 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5320 unsigned Cost = (PFEntry >> 30);
5321
5322 if (Cost <= 4)
5323 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5324 }
5325
5326 return GenerateTBL(Op, ShuffleMask, DAG);
5327}
5328
5329static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5330 APInt &UndefBits) {
5331 EVT VT = BVN->getValueType(0);
5332 APInt SplatBits, SplatUndef;
5333 unsigned SplatBitSize;
5334 bool HasAnyUndefs;
5335 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5336 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5337
5338 for (unsigned i = 0; i < NumSplats; ++i) {
5339 CnstBits <<= SplatBitSize;
5340 UndefBits <<= SplatBitSize;
5341 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5342 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5343 }
5344
5345 return true;
5346 }
5347
5348 return false;
5349}
5350
5351SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5352 SelectionDAG &DAG) const {
5353 BuildVectorSDNode *BVN =
5354 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5355 SDValue LHS = Op.getOperand(0);
5356 SDLoc dl(Op);
5357 EVT VT = Op.getValueType();
5358
5359 if (!BVN)
5360 return Op;
5361
5362 APInt CnstBits(VT.getSizeInBits(), 0);
5363 APInt UndefBits(VT.getSizeInBits(), 0);
5364 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5365 // We only have BIC vector immediate instruction, which is and-not.
5366 CnstBits = ~CnstBits;
5367
5368 // We make use of a little bit of goto ickiness in order to avoid having to
5369 // duplicate the immediate matching logic for the undef toggled case.
5370 bool SecondTry = false;
5371 AttemptModImm:
5372
5373 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5374 CnstBits = CnstBits.zextOrTrunc(64);
5375 uint64_t CnstVal = CnstBits.getZExtValue();
5376
5377 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5378 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5379 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5380 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5381 DAG.getConstant(CnstVal, MVT::i32),
5382 DAG.getConstant(0, MVT::i32));
5383 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5384 }
5385
5386 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5387 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5388 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5389 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5390 DAG.getConstant(CnstVal, MVT::i32),
5391 DAG.getConstant(8, MVT::i32));
5392 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5393 }
5394
5395 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5396 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5397 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5398 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5399 DAG.getConstant(CnstVal, MVT::i32),
5400 DAG.getConstant(16, MVT::i32));
5401 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5402 }
5403
5404 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5405 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5406 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5407 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5408 DAG.getConstant(CnstVal, MVT::i32),
5409 DAG.getConstant(24, MVT::i32));
5410 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5411 }
5412
5413 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5414 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5415 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5416 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5417 DAG.getConstant(CnstVal, MVT::i32),
5418 DAG.getConstant(0, MVT::i32));
5419 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5420 }
5421
5422 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5423 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5424 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5425 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5426 DAG.getConstant(CnstVal, MVT::i32),
5427 DAG.getConstant(8, MVT::i32));
5428 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5429 }
5430 }
5431
5432 if (SecondTry)
5433 goto FailedModImm;
5434 SecondTry = true;
5435 CnstBits = ~UndefBits;
5436 goto AttemptModImm;
5437 }
5438
5439// We can always fall back to a non-immediate AND.
5440FailedModImm:
5441 return Op;
5442}
5443
5444// Specialized code to quickly find if PotentialBVec is a BuildVector that
5445// consists of only the same constant int value, returned in reference arg
5446// ConstVal
5447static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5448 uint64_t &ConstVal) {
5449 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5450 if (!Bvec)
5451 return false;
5452 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5453 if (!FirstElt)
5454 return false;
5455 EVT VT = Bvec->getValueType(0);
5456 unsigned NumElts = VT.getVectorNumElements();
5457 for (unsigned i = 1; i < NumElts; ++i)
5458 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5459 return false;
5460 ConstVal = FirstElt->getZExtValue();
5461 return true;
5462}
5463
5464static unsigned getIntrinsicID(const SDNode *N) {
5465 unsigned Opcode = N->getOpcode();
5466 switch (Opcode) {
5467 default:
5468 return Intrinsic::not_intrinsic;
5469 case ISD::INTRINSIC_WO_CHAIN: {
5470 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5471 if (IID < Intrinsic::num_intrinsics)
5472 return IID;
5473 return Intrinsic::not_intrinsic;
5474 }
5475 }
5476}
5477
5478// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5479// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5480// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5481// Also, logical shift right -> sri, with the same structure.
5482static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5483 EVT VT = N->getValueType(0);
5484
5485 if (!VT.isVector())
5486 return SDValue();
5487
5488 SDLoc DL(N);
5489
5490 // Is the first op an AND?
5491 const SDValue And = N->getOperand(0);
5492 if (And.getOpcode() != ISD::AND)
5493 return SDValue();
5494
5495 // Is the second op an shl or lshr?
5496 SDValue Shift = N->getOperand(1);
5497 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5498 // or AArch64ISD::VLSHR vector, #shift
5499 unsigned ShiftOpc = Shift.getOpcode();
5500 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5501 return SDValue();
5502 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5503
5504 // Is the shift amount constant?
5505 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5506 if (!C2node)
5507 return SDValue();
5508
5509 // Is the and mask vector all constant?
5510 uint64_t C1;
5511 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5512 return SDValue();
5513
5514 // Is C1 == ~C2, taking into account how much one can shift elements of a
5515 // particular size?
5516 uint64_t C2 = C2node->getZExtValue();
5517 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5518 if (C2 > ElemSizeInBits)
5519 return SDValue();
5520 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5521 if ((C1 & ElemMask) != (~C2 & ElemMask))
5522 return SDValue();
5523
5524 SDValue X = And.getOperand(0);
5525 SDValue Y = Shift.getOperand(0);
5526
5527 unsigned Intrin =
5528 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5529 SDValue ResultSLI =
5530 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5531 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5532
5533 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5534 DEBUG(N->dump(&DAG));
5535 DEBUG(dbgs() << "into: \n");
5536 DEBUG(ResultSLI->dump(&DAG));
5537
5538 ++NumShiftInserts;
5539 return ResultSLI;
5540}
5541
5542SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5543 SelectionDAG &DAG) const {
5544 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5545 if (EnableAArch64SlrGeneration) {
5546 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5547 if (Res.getNode())
5548 return Res;
5549 }
5550
5551 BuildVectorSDNode *BVN =
5552 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5553 SDValue LHS = Op.getOperand(1);
5554 SDLoc dl(Op);
5555 EVT VT = Op.getValueType();
5556
5557 // OR commutes, so try swapping the operands.
5558 if (!BVN) {
5559 LHS = Op.getOperand(0);
5560 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5561 }
5562 if (!BVN)
5563 return Op;
5564
5565 APInt CnstBits(VT.getSizeInBits(), 0);
5566 APInt UndefBits(VT.getSizeInBits(), 0);
5567 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5568 // We make use of a little bit of goto ickiness in order to avoid having to
5569 // duplicate the immediate matching logic for the undef toggled case.
5570 bool SecondTry = false;
5571 AttemptModImm:
5572
5573 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5574 CnstBits = CnstBits.zextOrTrunc(64);
5575 uint64_t CnstVal = CnstBits.getZExtValue();
5576
5577 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5578 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5579 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5580 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5581 DAG.getConstant(CnstVal, MVT::i32),
5582 DAG.getConstant(0, MVT::i32));
5583 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5584 }
5585
5586 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5587 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5588 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5589 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5590 DAG.getConstant(CnstVal, MVT::i32),
5591 DAG.getConstant(8, MVT::i32));
5592 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5593 }
5594
5595 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5596 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5597 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5598 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5599 DAG.getConstant(CnstVal, MVT::i32),
5600 DAG.getConstant(16, MVT::i32));
5601 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5602 }
5603
5604 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5605 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5606 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5607 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5608 DAG.getConstant(CnstVal, MVT::i32),
5609 DAG.getConstant(24, MVT::i32));
5610 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5611 }
5612
5613 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5614 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5615 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5616 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5617 DAG.getConstant(CnstVal, MVT::i32),
5618 DAG.getConstant(0, MVT::i32));
5619 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5620 }
5621
5622 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5623 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5624 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5625 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5626 DAG.getConstant(CnstVal, MVT::i32),
5627 DAG.getConstant(8, MVT::i32));
5628 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5629 }
5630 }
5631
5632 if (SecondTry)
5633 goto FailedModImm;
5634 SecondTry = true;
5635 CnstBits = UndefBits;
5636 goto AttemptModImm;
5637 }
5638
5639// We can always fall back to a non-immediate OR.
5640FailedModImm:
5641 return Op;
5642}
5643
5644// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5645// be truncated to fit element width.
5646static SDValue NormalizeBuildVector(SDValue Op,
5647 SelectionDAG &DAG) {
5648 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5649 SDLoc dl(Op);
5650 EVT VT = Op.getValueType();
5651 EVT EltTy= VT.getVectorElementType();
5652
5653 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5654 return Op;
5655
5656 SmallVector<SDValue, 16> Ops;
5657 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5658 SDValue Lane = Op.getOperand(I);
5659 if (Lane.getOpcode() == ISD::Constant) {
5660 APInt LowBits(EltTy.getSizeInBits(),
5661 cast<ConstantSDNode>(Lane)->getZExtValue());
5662 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5663 }
5664 Ops.push_back(Lane);
5665 }
5666 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5667}
5668
5669SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5670 SelectionDAG &DAG) const {
5671 SDLoc dl(Op);
5672 EVT VT = Op.getValueType();
5673 Op = NormalizeBuildVector(Op, DAG);
5674 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5675
5676 APInt CnstBits(VT.getSizeInBits(), 0);
5677 APInt UndefBits(VT.getSizeInBits(), 0);
5678 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5679 // We make use of a little bit of goto ickiness in order to avoid having to
5680 // duplicate the immediate matching logic for the undef toggled case.
5681 bool SecondTry = false;
5682 AttemptModImm:
5683
5684 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5685 CnstBits = CnstBits.zextOrTrunc(64);
5686 uint64_t CnstVal = CnstBits.getZExtValue();
5687
5688 // Certain magic vector constants (used to express things like NOT
5689 // and NEG) are passed through unmodified. This allows codegen patterns
5690 // for these operations to match. Special-purpose patterns will lower
5691 // these immediates to MOVIs if it proves necessary.
5692 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5693 return Op;
5694
5695 // The many faces of MOVI...
5696 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5697 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5698 if (VT.getSizeInBits() == 128) {
5699 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5700 DAG.getConstant(CnstVal, MVT::i32));
5701 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5702 }
5703
5704 // Support the V64 version via subregister insertion.
5705 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5706 DAG.getConstant(CnstVal, MVT::i32));
5707 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5708 }
5709
5710 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5711 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5712 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5713 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5714 DAG.getConstant(CnstVal, MVT::i32),
5715 DAG.getConstant(0, MVT::i32));
5716 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5717 }
5718
5719 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5720 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5721 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5722 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5723 DAG.getConstant(CnstVal, MVT::i32),
5724 DAG.getConstant(8, MVT::i32));
5725 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5726 }
5727
5728 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5729 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5730 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5731 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5732 DAG.getConstant(CnstVal, MVT::i32),
5733 DAG.getConstant(16, MVT::i32));
5734 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5735 }
5736
5737 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5738 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5739 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5740 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5741 DAG.getConstant(CnstVal, MVT::i32),
5742 DAG.getConstant(24, MVT::i32));
5743 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5744 }
5745
5746 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5747 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5748 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5749 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5750 DAG.getConstant(CnstVal, MVT::i32),
5751 DAG.getConstant(0, MVT::i32));
5752 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5753 }
5754
5755 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5756 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5757 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5758 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5759 DAG.getConstant(CnstVal, MVT::i32),
5760 DAG.getConstant(8, MVT::i32));
5761 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5762 }
5763
5764 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5765 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5766 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5767 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5768 DAG.getConstant(CnstVal, MVT::i32),
5769 DAG.getConstant(264, MVT::i32));
5770 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5771 }
5772
5773 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5774 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5775 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5776 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5777 DAG.getConstant(CnstVal, MVT::i32),
5778 DAG.getConstant(272, MVT::i32));
5779 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5780 }
5781
5782 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5783 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5784 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5785 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5786 DAG.getConstant(CnstVal, MVT::i32));
5787 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5788 }
5789
5790 // The few faces of FMOV...
5791 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5792 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5793 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5794 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5795 DAG.getConstant(CnstVal, MVT::i32));
5796 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5797 }
5798
5799 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5800 VT.getSizeInBits() == 128) {
5801 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5802 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5803 DAG.getConstant(CnstVal, MVT::i32));
5804 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5805 }
5806
5807 // The many faces of MVNI...
5808 CnstVal = ~CnstVal;
5809 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5810 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5811 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5812 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5813 DAG.getConstant(CnstVal, MVT::i32),
5814 DAG.getConstant(0, MVT::i32));
5815 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5816 }
5817
5818 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5819 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5820 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5821 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5822 DAG.getConstant(CnstVal, MVT::i32),
5823 DAG.getConstant(8, MVT::i32));
5824 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5825 }
5826
5827 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5828 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5829 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5830 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5831 DAG.getConstant(CnstVal, MVT::i32),
5832 DAG.getConstant(16, MVT::i32));
5833 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5834 }
5835
5836 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5837 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5838 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5839 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5840 DAG.getConstant(CnstVal, MVT::i32),
5841 DAG.getConstant(24, MVT::i32));
5842 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5843 }
5844
5845 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5846 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5847 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5848 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5849 DAG.getConstant(CnstVal, MVT::i32),
5850 DAG.getConstant(0, MVT::i32));
5851 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5852 }
5853
5854 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5855 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5856 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5857 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5858 DAG.getConstant(CnstVal, MVT::i32),
5859 DAG.getConstant(8, MVT::i32));
5860 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5861 }
5862
5863 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5864 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5865 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5866 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5867 DAG.getConstant(CnstVal, MVT::i32),
5868 DAG.getConstant(264, MVT::i32));
5869 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5870 }
5871
5872 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5873 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5874 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5875 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5876 DAG.getConstant(CnstVal, MVT::i32),
5877 DAG.getConstant(272, MVT::i32));
5878 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5879 }
5880 }
5881
5882 if (SecondTry)
5883 goto FailedModImm;
5884 SecondTry = true;
5885 CnstBits = UndefBits;
5886 goto AttemptModImm;
5887 }
5888FailedModImm:
5889
5890 // Scan through the operands to find some interesting properties we can
5891 // exploit:
5892 // 1) If only one value is used, we can use a DUP, or
5893 // 2) if only the low element is not undef, we can just insert that, or
5894 // 3) if only one constant value is used (w/ some non-constant lanes),
5895 // we can splat the constant value into the whole vector then fill
5896 // in the non-constant lanes.
5897 // 4) FIXME: If different constant values are used, but we can intelligently
5898 // select the values we'll be overwriting for the non-constant
5899 // lanes such that we can directly materialize the vector
5900 // some other way (MOVI, e.g.), we can be sneaky.
5901 unsigned NumElts = VT.getVectorNumElements();
5902 bool isOnlyLowElement = true;
5903 bool usesOnlyOneValue = true;
5904 bool usesOnlyOneConstantValue = true;
5905 bool isConstant = true;
5906 unsigned NumConstantLanes = 0;
5907 SDValue Value;
5908 SDValue ConstantValue;
5909 for (unsigned i = 0; i < NumElts; ++i) {
5910 SDValue V = Op.getOperand(i);
5911 if (V.getOpcode() == ISD::UNDEF)
5912 continue;
5913 if (i > 0)
5914 isOnlyLowElement = false;
5915 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5916 isConstant = false;
5917
5918 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5919 ++NumConstantLanes;
5920 if (!ConstantValue.getNode())
5921 ConstantValue = V;
5922 else if (ConstantValue != V)
5923 usesOnlyOneConstantValue = false;
5924 }
5925
5926 if (!Value.getNode())
5927 Value = V;
5928 else if (V != Value)
5929 usesOnlyOneValue = false;
5930 }
5931
5932 if (!Value.getNode())
5933 return DAG.getUNDEF(VT);
5934
5935 if (isOnlyLowElement)
5936 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5937
5938 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5939 // i32 and try again.
5940 if (usesOnlyOneValue) {
5941 if (!isConstant) {
5942 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5943 Value.getValueType() != VT)
5944 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5945
5946 // This is actually a DUPLANExx operation, which keeps everything vectory.
5947
5948 // DUPLANE works on 128-bit vectors, widen it if necessary.
5949 SDValue Lane = Value.getOperand(1);
5950 Value = Value.getOperand(0);
5951 if (Value.getValueType().getSizeInBits() == 64)
5952 Value = WidenVector(Value, DAG);
5953
5954 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5955 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5956 }
5957
5958 if (VT.getVectorElementType().isFloatingPoint()) {
5959 SmallVector<SDValue, 8> Ops;
5960 MVT NewType =
5961 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5962 for (unsigned i = 0; i < NumElts; ++i)
5963 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5964 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5965 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5966 Val = LowerBUILD_VECTOR(Val, DAG);
5967 if (Val.getNode())
5968 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5969 }
5970 }
5971
5972 // If there was only one constant value used and for more than one lane,
5973 // start by splatting that value, then replace the non-constant lanes. This
5974 // is better than the default, which will perform a separate initialization
5975 // for each lane.
5976 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5977 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5978 // Now insert the non-constant lanes.
5979 for (unsigned i = 0; i < NumElts; ++i) {
5980 SDValue V = Op.getOperand(i);
5981 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5982 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5983 // Note that type legalization likely mucked about with the VT of the
5984 // source operand, so we may have to convert it here before inserting.
5985 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5986 }
5987 }
5988 return Val;
5989 }
5990
5991 // If all elements are constants and the case above didn't get hit, fall back
5992 // to the default expansion, which will generate a load from the constant
5993 // pool.
5994 if (isConstant)
5995 return SDValue();
5996
5997 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5998 if (NumElts >= 4) {
5999 SDValue shuffle = ReconstructShuffle(Op, DAG);
6000 if (shuffle != SDValue())
6001 return shuffle;
6002 }
6003
6004 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6005 // know the default expansion would otherwise fall back on something even
6006 // worse. For a vector with one or two non-undef values, that's
6007 // scalar_to_vector for the elements followed by a shuffle (provided the
6008 // shuffle is valid for the target) and materialization element by element
6009 // on the stack followed by a load for everything else.
6010 if (!isConstant && !usesOnlyOneValue) {
6011 SDValue Vec = DAG.getUNDEF(VT);
6012 SDValue Op0 = Op.getOperand(0);
6013 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6014 unsigned i = 0;
6015 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6016 // a) Avoid a RMW dependency on the full vector register, and
6017 // b) Allow the register coalescer to fold away the copy if the
6018 // value is already in an S or D register.
6019 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
6020 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6021 MachineSDNode *N =
6022 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
6023 DAG.getTargetConstant(SubIdx, MVT::i32));
6024 Vec = SDValue(N, 0);
6025 ++i;
6026 }
6027 for (; i < NumElts; ++i) {
6028 SDValue V = Op.getOperand(i);
6029 if (V.getOpcode() == ISD::UNDEF)
6030 continue;
6031 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
6032 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6033 }
6034 return Vec;
6035 }
6036
6037 // Just use the default expansion. We failed to find a better alternative.
6038 return SDValue();
6039}
6040
6041SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6042 SelectionDAG &DAG) const {
6043 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6044
6045 // Check for non-constant or out of range lane.
6046 EVT VT = Op.getOperand(0).getValueType();
6047 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6048 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6049 return SDValue();
6050
6051
6052 // Insertion/extraction are legal for V128 types.
6053 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6054 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6055 VT == MVT::v8f16)
6056 return Op;
6057
6058 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6059 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6060 return SDValue();
6061
6062 // For V64 types, we perform insertion by expanding the value
6063 // to a V128 type and perform the insertion on that.
6064 SDLoc DL(Op);
6065 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6066 EVT WideTy = WideVec.getValueType();
6067
6068 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6069 Op.getOperand(1), Op.getOperand(2));
6070 // Re-narrow the resultant vector.
6071 return NarrowVector(Node, DAG);
6072}
6073
6074SDValue
6075AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6076 SelectionDAG &DAG) const {
6077 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6078
6079 // Check for non-constant or out of range lane.
6080 EVT VT = Op.getOperand(0).getValueType();
6081 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6082 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6083 return SDValue();
6084
6085
6086 // Insertion/extraction are legal for V128 types.
6087 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6088 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6089 VT == MVT::v8f16)
6090 return Op;
6091
6092 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6093 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6094 return SDValue();
6095
6096 // For V64 types, we perform extraction by expanding the value
6097 // to a V128 type and perform the extraction on that.
6098 SDLoc DL(Op);
6099 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6100 EVT WideTy = WideVec.getValueType();
6101
6102 EVT ExtrTy = WideTy.getVectorElementType();
6103 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6104 ExtrTy = MVT::i32;
6105
6106 // For extractions, we just return the result directly.
6107 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6108 Op.getOperand(1));
6109}
6110
6111SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6112 SelectionDAG &DAG) const {
6113 EVT VT = Op.getOperand(0).getValueType();
6114 SDLoc dl(Op);
6115 // Just in case...
6116 if (!VT.isVector())
6117 return SDValue();
6118
6119 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6120 if (!Cst)
6121 return SDValue();
6122 unsigned Val = Cst->getZExtValue();
6123
6124 unsigned Size = Op.getValueType().getSizeInBits();
6125 if (Val == 0) {
6126 switch (Size) {
6127 case 8:
6128 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6129 Op.getOperand(0));
6130 case 16:
6131 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6132 Op.getOperand(0));
6133 case 32:
6134 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6135 Op.getOperand(0));
6136 case 64:
6137 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6138 Op.getOperand(0));
6139 default:
6140 llvm_unreachable("Unexpected vector type in extract_subvector!");
6141 }
6142 }
6143 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6144 // that directly.
6145 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6146 return Op;
6147
6148 return SDValue();
6149}
6150
6151bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6152 EVT VT) const {
6153 if (VT.getVectorNumElements() == 4 &&
6154 (VT.is128BitVector() || VT.is64BitVector())) {
6155 unsigned PFIndexes[4];
6156 for (unsigned i = 0; i != 4; ++i) {
6157 if (M[i] < 0)
6158 PFIndexes[i] = 8;
6159 else
6160 PFIndexes[i] = M[i];
6161 }
6162
6163 // Compute the index in the perfect shuffle table.
6164 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6165 PFIndexes[2] * 9 + PFIndexes[3];
6166 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6167 unsigned Cost = (PFEntry >> 30);
6168
6169 if (Cost <= 4)
6170 return true;
6171 }
6172
6173 bool DummyBool;
6174 int DummyInt;
6175 unsigned DummyUnsigned;
6176
6177 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6178 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6179 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6180 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6181 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6182 isZIPMask(M, VT, DummyUnsigned) ||
6183 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6184 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6185 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6186 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6187 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6188}
6189
6190/// getVShiftImm - Check if this is a valid build_vector for the immediate
6191/// operand of a vector shift operation, where all the elements of the
6192/// build_vector must have the same constant integer value.
6193static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6194 // Ignore bit_converts.
6195 while (Op.getOpcode() == ISD::BITCAST)
6196 Op = Op.getOperand(0);
6197 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6198 APInt SplatBits, SplatUndef;
6199 unsigned SplatBitSize;
6200 bool HasAnyUndefs;
6201 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6202 HasAnyUndefs, ElementBits) ||
6203 SplatBitSize > ElementBits)
6204 return false;
6205 Cnt = SplatBits.getSExtValue();
6206 return true;
6207}
6208
6209/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6210/// operand of a vector shift left operation. That value must be in the range:
6211/// 0 <= Value < ElementBits for a left shift; or
6212/// 0 <= Value <= ElementBits for a long left shift.
6213static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6214 assert(VT.isVector() && "vector shift count is not a vector type");
6215 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6216 if (!getVShiftImm(Op, ElementBits, Cnt))
6217 return false;
6218 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6219}
6220
6221/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6222/// operand of a vector shift right operation. For a shift opcode, the value
6223/// is positive, but for an intrinsic the value count must be negative. The
6224/// absolute value must be in the range:
6225/// 1 <= |Value| <= ElementBits for a right shift; or
6226/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6227static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6228 int64_t &Cnt) {
6229 assert(VT.isVector() && "vector shift count is not a vector type");
6230 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6231 if (!getVShiftImm(Op, ElementBits, Cnt))
6232 return false;
6233 if (isIntrinsic)
6234 Cnt = -Cnt;
6235 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6236}
6237
6238SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6239 SelectionDAG &DAG) const {
6240 EVT VT = Op.getValueType();
6241 SDLoc DL(Op);
6242 int64_t Cnt;
6243
6244 if (!Op.getOperand(1).getValueType().isVector())
6245 return Op;
6246 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6247
6248 switch (Op.getOpcode()) {
6249 default:
6250 llvm_unreachable("unexpected shift opcode");
6251
6252 case ISD::SHL:
6253 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6254 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6255 DAG.getConstant(Cnt, MVT::i32));
6256 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6257 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6258 Op.getOperand(0), Op.getOperand(1));
6259 case ISD::SRA:
6260 case ISD::SRL:
6261 // Right shift immediate
6262 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6263 Cnt < EltSize) {
6264 unsigned Opc =
6265 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6266 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6267 DAG.getConstant(Cnt, MVT::i32));
6268 }
6269
6270 // Right shift register. Note, there is not a shift right register
6271 // instruction, but the shift left register instruction takes a signed
6272 // value, where negative numbers specify a right shift.
6273 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6274 : Intrinsic::aarch64_neon_ushl;
6275 // negate the shift amount
6276 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6277 SDValue NegShiftLeft =
6278 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6279 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6280 return NegShiftLeft;
6281 }
6282
6283 return SDValue();
6284}
6285
6286static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6287 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6288 SDLoc dl, SelectionDAG &DAG) {
6289 EVT SrcVT = LHS.getValueType();
85aaf69f
SL
6290 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6291 "function only supposed to emit natural comparisons");
1a4d82fc
JJ
6292
6293 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6294 APInt CnstBits(VT.getSizeInBits(), 0);
6295 APInt UndefBits(VT.getSizeInBits(), 0);
6296 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6297 bool IsZero = IsCnst && (CnstBits == 0);
6298
6299 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6300 switch (CC) {
6301 default:
6302 return SDValue();
6303 case AArch64CC::NE: {
6304 SDValue Fcmeq;
6305 if (IsZero)
6306 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6307 else
6308 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6309 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6310 }
6311 case AArch64CC::EQ:
6312 if (IsZero)
6313 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6314 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6315 case AArch64CC::GE:
6316 if (IsZero)
6317 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6318 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6319 case AArch64CC::GT:
6320 if (IsZero)
6321 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6322 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6323 case AArch64CC::LS:
6324 if (IsZero)
6325 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6326 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6327 case AArch64CC::LT:
6328 if (!NoNans)
6329 return SDValue();
6330 // If we ignore NaNs then we can use to the MI implementation.
6331 // Fallthrough.
6332 case AArch64CC::MI:
6333 if (IsZero)
6334 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6335 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6336 }
6337 }
6338
6339 switch (CC) {
6340 default:
6341 return SDValue();
6342 case AArch64CC::NE: {
6343 SDValue Cmeq;
6344 if (IsZero)
6345 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6346 else
6347 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6348 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6349 }
6350 case AArch64CC::EQ:
6351 if (IsZero)
6352 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6353 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6354 case AArch64CC::GE:
6355 if (IsZero)
6356 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6357 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6358 case AArch64CC::GT:
6359 if (IsZero)
6360 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6361 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6362 case AArch64CC::LE:
6363 if (IsZero)
6364 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6365 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6366 case AArch64CC::LS:
6367 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6368 case AArch64CC::LO:
6369 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6370 case AArch64CC::LT:
6371 if (IsZero)
6372 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6373 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6374 case AArch64CC::HI:
6375 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6376 case AArch64CC::HS:
6377 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6378 }
6379}
6380
6381SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6382 SelectionDAG &DAG) const {
6383 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6384 SDValue LHS = Op.getOperand(0);
6385 SDValue RHS = Op.getOperand(1);
85aaf69f 6386 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
1a4d82fc
JJ
6387 SDLoc dl(Op);
6388
6389 if (LHS.getValueType().getVectorElementType().isInteger()) {
6390 assert(LHS.getValueType() == RHS.getValueType());
6391 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
85aaf69f
SL
6392 SDValue Cmp =
6393 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6394 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
1a4d82fc
JJ
6395 }
6396
6397 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6398 LHS.getValueType().getVectorElementType() == MVT::f64);
6399
6400 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6401 // clean. Some of them require two branches to implement.
6402 AArch64CC::CondCode CC1, CC2;
6403 bool ShouldInvert;
6404 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6405
6406 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6407 SDValue Cmp =
85aaf69f 6408 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
1a4d82fc
JJ
6409 if (!Cmp.getNode())
6410 return SDValue();
6411
6412 if (CC2 != AArch64CC::AL) {
6413 SDValue Cmp2 =
85aaf69f 6414 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
1a4d82fc
JJ
6415 if (!Cmp2.getNode())
6416 return SDValue();
6417
85aaf69f 6418 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
1a4d82fc
JJ
6419 }
6420
85aaf69f
SL
6421 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6422
1a4d82fc
JJ
6423 if (ShouldInvert)
6424 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6425
6426 return Cmp;
6427}
6428
6429/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6430/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6431/// specified in the intrinsic calls.
6432bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6433 const CallInst &I,
6434 unsigned Intrinsic) const {
6435 switch (Intrinsic) {
6436 case Intrinsic::aarch64_neon_ld2:
6437 case Intrinsic::aarch64_neon_ld3:
6438 case Intrinsic::aarch64_neon_ld4:
6439 case Intrinsic::aarch64_neon_ld1x2:
6440 case Intrinsic::aarch64_neon_ld1x3:
6441 case Intrinsic::aarch64_neon_ld1x4:
6442 case Intrinsic::aarch64_neon_ld2lane:
6443 case Intrinsic::aarch64_neon_ld3lane:
6444 case Intrinsic::aarch64_neon_ld4lane:
6445 case Intrinsic::aarch64_neon_ld2r:
6446 case Intrinsic::aarch64_neon_ld3r:
6447 case Intrinsic::aarch64_neon_ld4r: {
6448 Info.opc = ISD::INTRINSIC_W_CHAIN;
6449 // Conservatively set memVT to the entire set of vectors loaded.
6450 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6451 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6452 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6453 Info.offset = 0;
6454 Info.align = 0;
6455 Info.vol = false; // volatile loads with NEON intrinsics not supported
6456 Info.readMem = true;
6457 Info.writeMem = false;
6458 return true;
6459 }
6460 case Intrinsic::aarch64_neon_st2:
6461 case Intrinsic::aarch64_neon_st3:
6462 case Intrinsic::aarch64_neon_st4:
6463 case Intrinsic::aarch64_neon_st1x2:
6464 case Intrinsic::aarch64_neon_st1x3:
6465 case Intrinsic::aarch64_neon_st1x4:
6466 case Intrinsic::aarch64_neon_st2lane:
6467 case Intrinsic::aarch64_neon_st3lane:
6468 case Intrinsic::aarch64_neon_st4lane: {
6469 Info.opc = ISD::INTRINSIC_VOID;
6470 // Conservatively set memVT to the entire set of vectors stored.
6471 unsigned NumElts = 0;
6472 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6473 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6474 if (!ArgTy->isVectorTy())
6475 break;
6476 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6477 }
6478 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6479 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6480 Info.offset = 0;
6481 Info.align = 0;
6482 Info.vol = false; // volatile stores with NEON intrinsics not supported
6483 Info.readMem = false;
6484 Info.writeMem = true;
6485 return true;
6486 }
6487 case Intrinsic::aarch64_ldaxr:
6488 case Intrinsic::aarch64_ldxr: {
6489 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6490 Info.opc = ISD::INTRINSIC_W_CHAIN;
6491 Info.memVT = MVT::getVT(PtrTy->getElementType());
6492 Info.ptrVal = I.getArgOperand(0);
6493 Info.offset = 0;
6494 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6495 Info.vol = true;
6496 Info.readMem = true;
6497 Info.writeMem = false;
6498 return true;
6499 }
6500 case Intrinsic::aarch64_stlxr:
6501 case Intrinsic::aarch64_stxr: {
6502 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6503 Info.opc = ISD::INTRINSIC_W_CHAIN;
6504 Info.memVT = MVT::getVT(PtrTy->getElementType());
6505 Info.ptrVal = I.getArgOperand(1);
6506 Info.offset = 0;
6507 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6508 Info.vol = true;
6509 Info.readMem = false;
6510 Info.writeMem = true;
6511 return true;
6512 }
6513 case Intrinsic::aarch64_ldaxp:
6514 case Intrinsic::aarch64_ldxp: {
6515 Info.opc = ISD::INTRINSIC_W_CHAIN;
6516 Info.memVT = MVT::i128;
6517 Info.ptrVal = I.getArgOperand(0);
6518 Info.offset = 0;
6519 Info.align = 16;
6520 Info.vol = true;
6521 Info.readMem = true;
6522 Info.writeMem = false;
6523 return true;
6524 }
6525 case Intrinsic::aarch64_stlxp:
6526 case Intrinsic::aarch64_stxp: {
6527 Info.opc = ISD::INTRINSIC_W_CHAIN;
6528 Info.memVT = MVT::i128;
6529 Info.ptrVal = I.getArgOperand(2);
6530 Info.offset = 0;
6531 Info.align = 16;
6532 Info.vol = true;
6533 Info.readMem = false;
6534 Info.writeMem = true;
6535 return true;
6536 }
6537 default:
6538 break;
6539 }
6540
6541 return false;
6542}
6543
6544// Truncations from 64-bit GPR to 32-bit GPR is free.
6545bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6546 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6547 return false;
6548 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6549 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6550 return NumBits1 > NumBits2;
6551}
6552bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
6553 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6554 return false;
6555 unsigned NumBits1 = VT1.getSizeInBits();
6556 unsigned NumBits2 = VT2.getSizeInBits();
6557 return NumBits1 > NumBits2;
6558}
6559
6560// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6561// 64-bit GPR.
6562bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6563 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6564 return false;
6565 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6566 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6567 return NumBits1 == 32 && NumBits2 == 64;
6568}
6569bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
6570 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6571 return false;
6572 unsigned NumBits1 = VT1.getSizeInBits();
6573 unsigned NumBits2 = VT2.getSizeInBits();
6574 return NumBits1 == 32 && NumBits2 == 64;
6575}
6576
6577bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6578 EVT VT1 = Val.getValueType();
6579 if (isZExtFree(VT1, VT2)) {
6580 return true;
6581 }
6582
6583 if (Val.getOpcode() != ISD::LOAD)
6584 return false;
6585
6586 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
6587 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6588 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6589 VT1.getSizeInBits() <= 32);
6590}
6591
6592bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6593 unsigned &RequiredAligment) const {
6594 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6595 return false;
6596 // Cyclone supports unaligned accesses.
6597 RequiredAligment = 0;
6598 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6599 return NumBits == 32 || NumBits == 64;
6600}
6601
6602bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6603 unsigned &RequiredAligment) const {
6604 if (!LoadedType.isSimple() ||
6605 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6606 return false;
6607 // Cyclone supports unaligned accesses.
6608 RequiredAligment = 0;
6609 unsigned NumBits = LoadedType.getSizeInBits();
6610 return NumBits == 32 || NumBits == 64;
6611}
6612
6613static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6614 unsigned AlignCheck) {
6615 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6616 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6617}
6618
6619EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6620 unsigned SrcAlign, bool IsMemset,
6621 bool ZeroMemset,
6622 bool MemcpyStrSrc,
6623 MachineFunction &MF) const {
6624 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6625 // instruction to materialize the v2i64 zero and one store (with restrictive
6626 // addressing mode). Just do two i64 store of zero-registers.
6627 bool Fast;
6628 const Function *F = MF.getFunction();
6629 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6630 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
6631 Attribute::NoImplicitFloat) &&
6632 (memOpAlign(SrcAlign, DstAlign, 16) ||
6633 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
6634 return MVT::f128;
6635
6636 return Size >= 8 ? MVT::i64 : MVT::i32;
6637}
6638
6639// 12-bit optionally shifted immediates are legal for adds.
6640bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6641 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6642 return true;
6643 return false;
6644}
6645
6646// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6647// immediates is the same as for an add or a sub.
6648bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6649 if (Immed < 0)
6650 Immed *= -1;
6651 return isLegalAddImmediate(Immed);
6652}
6653
6654/// isLegalAddressingMode - Return true if the addressing mode represented
6655/// by AM is legal for this target, for a load/store of the specified type.
6656bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6657 Type *Ty) const {
6658 // AArch64 has five basic addressing modes:
6659 // reg
6660 // reg + 9-bit signed offset
6661 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6662 // reg1 + reg2
6663 // reg + SIZE_IN_BYTES * reg
6664
6665 // No global is ever allowed as a base.
6666 if (AM.BaseGV)
6667 return false;
6668
6669 // No reg+reg+imm addressing.
6670 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6671 return false;
6672
6673 // check reg + imm case:
6674 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6675 uint64_t NumBytes = 0;
6676 if (Ty->isSized()) {
6677 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6678 NumBytes = NumBits / 8;
6679 if (!isPowerOf2_64(NumBits))
6680 NumBytes = 0;
6681 }
6682
6683 if (!AM.Scale) {
6684 int64_t Offset = AM.BaseOffs;
6685
6686 // 9-bit signed offset
6687 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6688 return true;
6689
6690 // 12-bit unsigned offset
6691 unsigned shift = Log2_64(NumBytes);
6692 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6693 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6694 (Offset >> shift) << shift == Offset)
6695 return true;
6696 return false;
6697 }
6698
6699 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6700
6701 if (!AM.Scale || AM.Scale == 1 ||
6702 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6703 return true;
6704 return false;
6705}
6706
6707int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6708 Type *Ty) const {
6709 // Scaling factors are not free at all.
6710 // Operands | Rt Latency
6711 // -------------------------------------------
6712 // Rt, [Xn, Xm] | 4
6713 // -------------------------------------------
6714 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6715 // Rt, [Xn, Wm, <extend> #imm] |
6716 if (isLegalAddressingMode(AM, Ty))
6717 // Scale represents reg2 * scale, thus account for 1 if
6718 // it is not equal to 0 or 1.
6719 return AM.Scale != 0 && AM.Scale != 1;
6720 return -1;
6721}
6722
6723bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6724 VT = VT.getScalarType();
6725
6726 if (!VT.isSimple())
6727 return false;
6728
6729 switch (VT.getSimpleVT().SimpleTy) {
6730 case MVT::f32:
6731 case MVT::f64:
6732 return true;
6733 default:
6734 break;
6735 }
6736
6737 return false;
6738}
6739
6740const MCPhysReg *
6741AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6742 // LR is a callee-save register, but we must treat it as clobbered by any call
6743 // site. Hence we include LR in the scratch registers, which are in turn added
6744 // as implicit-defs for stackmaps and patchpoints.
6745 static const MCPhysReg ScratchRegs[] = {
6746 AArch64::X16, AArch64::X17, AArch64::LR, 0
6747 };
6748 return ScratchRegs;
6749}
6750
6751bool
6752AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6753 EVT VT = N->getValueType(0);
6754 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6755 // it with shift to let it be lowered to UBFX.
6756 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6757 isa<ConstantSDNode>(N->getOperand(1))) {
6758 uint64_t TruncMask = N->getConstantOperandVal(1);
6759 if (isMask_64(TruncMask) &&
6760 N->getOperand(0).getOpcode() == ISD::SRL &&
6761 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6762 return false;
6763 }
6764 return true;
6765}
6766
6767bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6768 Type *Ty) const {
6769 assert(Ty->isIntegerTy());
6770
6771 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6772 if (BitSize == 0)
6773 return false;
6774
6775 int64_t Val = Imm.getSExtValue();
6776 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6777 return true;
6778
6779 if ((int64_t)Val < 0)
6780 Val = ~Val;
6781 if (BitSize == 32)
6782 Val &= (1LL << 32) - 1;
6783
6784 unsigned LZ = countLeadingZeros((uint64_t)Val);
6785 unsigned Shift = (63 - LZ) / 16;
6786 // MOVZ is free so return true for one or fewer MOVK.
6787 return (Shift < 3) ? true : false;
6788}
6789
6790// Generate SUBS and CSEL for integer abs.
6791static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6792 EVT VT = N->getValueType(0);
6793
6794 SDValue N0 = N->getOperand(0);
6795 SDValue N1 = N->getOperand(1);
6796 SDLoc DL(N);
6797
6798 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6799 // and change it to SUB and CSEL.
6800 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6801 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6802 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6803 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6804 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6805 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6806 N0.getOperand(0));
6807 // Generate SUBS & CSEL.
6808 SDValue Cmp =
6809 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6810 N0.getOperand(0), DAG.getConstant(0, VT));
6811 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6812 DAG.getConstant(AArch64CC::PL, MVT::i32),
6813 SDValue(Cmp.getNode(), 1));
6814 }
6815 return SDValue();
6816}
6817
6818// performXorCombine - Attempts to handle integer ABS.
6819static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6820 TargetLowering::DAGCombinerInfo &DCI,
6821 const AArch64Subtarget *Subtarget) {
6822 if (DCI.isBeforeLegalizeOps())
6823 return SDValue();
6824
6825 return performIntegerAbsCombine(N, DAG);
6826}
6827
6828SDValue
6829AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6830 SelectionDAG &DAG,
6831 std::vector<SDNode *> *Created) const {
6832 // fold (sdiv X, pow2)
6833 EVT VT = N->getValueType(0);
6834 if ((VT != MVT::i32 && VT != MVT::i64) ||
6835 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6836 return SDValue();
6837
6838 SDLoc DL(N);
6839 SDValue N0 = N->getOperand(0);
6840 unsigned Lg2 = Divisor.countTrailingZeros();
6841 SDValue Zero = DAG.getConstant(0, VT);
85aaf69f 6842 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
1a4d82fc
JJ
6843
6844 // Add (N0 < 0) ? Pow2 - 1 : 0;
6845 SDValue CCVal;
6846 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6847 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6848 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6849
6850 if (Created) {
6851 Created->push_back(Cmp.getNode());
6852 Created->push_back(Add.getNode());
6853 Created->push_back(CSel.getNode());
6854 }
6855
6856 // Divide by pow2.
6857 SDValue SRA =
6858 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6859
6860 // If we're dividing by a positive value, we're done. Otherwise, we must
6861 // negate the result.
6862 if (Divisor.isNonNegative())
6863 return SRA;
6864
6865 if (Created)
6866 Created->push_back(SRA.getNode());
6867 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6868}
6869
6870static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6871 TargetLowering::DAGCombinerInfo &DCI,
6872 const AArch64Subtarget *Subtarget) {
6873 if (DCI.isBeforeLegalizeOps())
6874 return SDValue();
6875
6876 // Multiplication of a power of two plus/minus one can be done more
6877 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6878 // future CPUs have a cheaper MADD instruction, this may need to be
6879 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6880 // 64-bit is 5 cycles, so this is always a win.
6881 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6882 APInt Value = C->getAPIntValue();
6883 EVT VT = N->getValueType(0);
6884 if (Value.isNonNegative()) {
6885 // (mul x, 2^N + 1) => (add (shl x, N), x)
6886 APInt VM1 = Value - 1;
6887 if (VM1.isPowerOf2()) {
6888 SDValue ShiftedVal =
6889 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6890 DAG.getConstant(VM1.logBase2(), MVT::i64));
6891 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6892 N->getOperand(0));
6893 }
6894 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6895 APInt VP1 = Value + 1;
6896 if (VP1.isPowerOf2()) {
6897 SDValue ShiftedVal =
6898 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6899 DAG.getConstant(VP1.logBase2(), MVT::i64));
6900 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6901 N->getOperand(0));
6902 }
6903 } else {
6904 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6905 APInt VNM1 = -Value - 1;
6906 if (VNM1.isPowerOf2()) {
6907 SDValue ShiftedVal =
6908 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6909 DAG.getConstant(VNM1.logBase2(), MVT::i64));
6910 SDValue Add =
6911 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6912 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6913 }
6914 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6915 APInt VNP1 = -Value + 1;
6916 if (VNP1.isPowerOf2()) {
6917 SDValue ShiftedVal =
6918 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6919 DAG.getConstant(VNP1.logBase2(), MVT::i64));
6920 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6921 ShiftedVal);
6922 }
6923 }
6924 }
6925 return SDValue();
6926}
6927
6928static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
6929 SelectionDAG &DAG) {
6930 // Take advantage of vector comparisons producing 0 or -1 in each lane to
6931 // optimize away operation when it's from a constant.
6932 //
6933 // The general transformation is:
6934 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
6935 // AND(VECTOR_CMP(x,y), constant2)
6936 // constant2 = UNARYOP(constant)
6937
6938 // Early exit if this isn't a vector operation, the operand of the
6939 // unary operation isn't a bitwise AND, or if the sizes of the operations
6940 // aren't the same.
6941 EVT VT = N->getValueType(0);
6942 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
6943 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
6944 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
6945 return SDValue();
6946
6947 // Now check that the other operand of the AND is a constant. We could
6948 // make the transformation for non-constant splats as well, but it's unclear
6949 // that would be a benefit as it would not eliminate any operations, just
6950 // perform one more step in scalar code before moving to the vector unit.
6951 if (BuildVectorSDNode *BV =
6952 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
6953 // Bail out if the vector isn't a constant.
6954 if (!BV->isConstant())
6955 return SDValue();
6956
6957 // Everything checks out. Build up the new and improved node.
6958 SDLoc DL(N);
6959 EVT IntVT = BV->getValueType(0);
6960 // Create a new constant of the appropriate type for the transformed
6961 // DAG.
6962 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
6963 // The AND node needs bitcasts to/from an integer vector type around it.
6964 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
6965 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
6966 N->getOperand(0)->getOperand(0), MaskConst);
6967 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
6968 return Res;
6969 }
6970
6971 return SDValue();
6972}
6973
85aaf69f
SL
6974static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
6975 const AArch64Subtarget *Subtarget) {
1a4d82fc
JJ
6976 // First try to optimize away the conversion when it's conditionally from
6977 // a constant. Vectors only.
6978 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
6979 if (Res != SDValue())
6980 return Res;
6981
6982 EVT VT = N->getValueType(0);
6983 if (VT != MVT::f32 && VT != MVT::f64)
6984 return SDValue();
6985
6986 // Only optimize when the source and destination types have the same width.
6987 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6988 return SDValue();
6989
6990 // If the result of an integer load is only used by an integer-to-float
6991 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6992 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6993 SDValue N0 = N->getOperand(0);
85aaf69f 6994 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
1a4d82fc
JJ
6995 // Do not change the width of a volatile load.
6996 !cast<LoadSDNode>(N0)->isVolatile()) {
6997 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6998 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6999 LN0->getPointerInfo(), LN0->isVolatile(),
7000 LN0->isNonTemporal(), LN0->isInvariant(),
7001 LN0->getAlignment());
7002
7003 // Make sure successors of the original load stay after it by updating them
7004 // to use the new Chain.
7005 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7006
7007 unsigned Opcode =
7008 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7009 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7010 }
7011
7012 return SDValue();
7013}
7014
7015/// An EXTR instruction is made up of two shifts, ORed together. This helper
7016/// searches for and classifies those shifts.
7017static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7018 bool &FromHi) {
7019 if (N.getOpcode() == ISD::SHL)
7020 FromHi = false;
7021 else if (N.getOpcode() == ISD::SRL)
7022 FromHi = true;
7023 else
7024 return false;
7025
7026 if (!isa<ConstantSDNode>(N.getOperand(1)))
7027 return false;
7028
7029 ShiftAmount = N->getConstantOperandVal(1);
7030 Src = N->getOperand(0);
7031 return true;
7032}
7033
7034/// EXTR instruction extracts a contiguous chunk of bits from two existing
7035/// registers viewed as a high/low pair. This function looks for the pattern:
7036/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7037/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7038/// independent.
7039static SDValue tryCombineToEXTR(SDNode *N,
7040 TargetLowering::DAGCombinerInfo &DCI) {
7041 SelectionDAG &DAG = DCI.DAG;
7042 SDLoc DL(N);
7043 EVT VT = N->getValueType(0);
7044
7045 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7046
7047 if (VT != MVT::i32 && VT != MVT::i64)
7048 return SDValue();
7049
7050 SDValue LHS;
7051 uint32_t ShiftLHS = 0;
7052 bool LHSFromHi = 0;
7053 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7054 return SDValue();
7055
7056 SDValue RHS;
7057 uint32_t ShiftRHS = 0;
7058 bool RHSFromHi = 0;
7059 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7060 return SDValue();
7061
7062 // If they're both trying to come from the high part of the register, they're
7063 // not really an EXTR.
7064 if (LHSFromHi == RHSFromHi)
7065 return SDValue();
7066
7067 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7068 return SDValue();
7069
7070 if (LHSFromHi) {
7071 std::swap(LHS, RHS);
7072 std::swap(ShiftLHS, ShiftRHS);
7073 }
7074
7075 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7076 DAG.getConstant(ShiftRHS, MVT::i64));
7077}
7078
7079static SDValue tryCombineToBSL(SDNode *N,
7080 TargetLowering::DAGCombinerInfo &DCI) {
7081 EVT VT = N->getValueType(0);
7082 SelectionDAG &DAG = DCI.DAG;
7083 SDLoc DL(N);
7084
7085 if (!VT.isVector())
7086 return SDValue();
7087
7088 SDValue N0 = N->getOperand(0);
7089 if (N0.getOpcode() != ISD::AND)
7090 return SDValue();
7091
7092 SDValue N1 = N->getOperand(1);
7093 if (N1.getOpcode() != ISD::AND)
7094 return SDValue();
7095
7096 // We only have to look for constant vectors here since the general, variable
7097 // case can be handled in TableGen.
7098 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7099 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7100 for (int i = 1; i >= 0; --i)
7101 for (int j = 1; j >= 0; --j) {
7102 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7103 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7104 if (!BVN0 || !BVN1)
7105 continue;
7106
7107 bool FoundMatch = true;
7108 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7109 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7110 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7111 if (!CN0 || !CN1 ||
7112 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7113 FoundMatch = false;
7114 break;
7115 }
7116 }
7117
7118 if (FoundMatch)
7119 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7120 N0->getOperand(1 - i), N1->getOperand(1 - j));
7121 }
7122
7123 return SDValue();
7124}
7125
7126static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7127 const AArch64Subtarget *Subtarget) {
7128 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7129 if (!EnableAArch64ExtrGeneration)
7130 return SDValue();
7131 SelectionDAG &DAG = DCI.DAG;
7132 EVT VT = N->getValueType(0);
7133
7134 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7135 return SDValue();
7136
7137 SDValue Res = tryCombineToEXTR(N, DCI);
7138 if (Res.getNode())
7139 return Res;
7140
7141 Res = tryCombineToBSL(N, DCI);
7142 if (Res.getNode())
7143 return Res;
7144
7145 return SDValue();
7146}
7147
7148static SDValue performBitcastCombine(SDNode *N,
7149 TargetLowering::DAGCombinerInfo &DCI,
7150 SelectionDAG &DAG) {
7151 // Wait 'til after everything is legalized to try this. That way we have
7152 // legal vector types and such.
7153 if (DCI.isBeforeLegalizeOps())
7154 return SDValue();
7155
7156 // Remove extraneous bitcasts around an extract_subvector.
7157 // For example,
7158 // (v4i16 (bitconvert
7159 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7160 // becomes
7161 // (extract_subvector ((v8i16 ...), (i64 4)))
7162
7163 // Only interested in 64-bit vectors as the ultimate result.
7164 EVT VT = N->getValueType(0);
7165 if (!VT.isVector())
7166 return SDValue();
7167 if (VT.getSimpleVT().getSizeInBits() != 64)
7168 return SDValue();
7169 // Is the operand an extract_subvector starting at the beginning or halfway
7170 // point of the vector? A low half may also come through as an
7171 // EXTRACT_SUBREG, so look for that, too.
7172 SDValue Op0 = N->getOperand(0);
7173 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7174 !(Op0->isMachineOpcode() &&
7175 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7176 return SDValue();
7177 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7178 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7179 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7180 return SDValue();
7181 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7182 if (idx != AArch64::dsub)
7183 return SDValue();
7184 // The dsub reference is equivalent to a lane zero subvector reference.
7185 idx = 0;
7186 }
7187 // Look through the bitcast of the input to the extract.
7188 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7189 return SDValue();
7190 SDValue Source = Op0->getOperand(0)->getOperand(0);
7191 // If the source type has twice the number of elements as our destination
7192 // type, we know this is an extract of the high or low half of the vector.
7193 EVT SVT = Source->getValueType(0);
7194 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7195 return SDValue();
7196
7197 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7198
7199 // Create the simplified form to just extract the low or high half of the
7200 // vector directly rather than bothering with the bitcasts.
7201 SDLoc dl(N);
7202 unsigned NumElements = VT.getVectorNumElements();
7203 if (idx) {
7204 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
7205 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7206 } else {
7207 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
7208 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7209 Source, SubReg),
7210 0);
7211 }
7212}
7213
7214static SDValue performConcatVectorsCombine(SDNode *N,
7215 TargetLowering::DAGCombinerInfo &DCI,
7216 SelectionDAG &DAG) {
7217 // Wait 'til after everything is legalized to try this. That way we have
7218 // legal vector types and such.
7219 if (DCI.isBeforeLegalizeOps())
7220 return SDValue();
7221
7222 SDLoc dl(N);
7223 EVT VT = N->getValueType(0);
7224
7225 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7226 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7227 // canonicalise to that.
7228 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
7229 assert(VT.getVectorElementType().getSizeInBits() == 64);
7230 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
7231 WidenVector(N->getOperand(0), DAG),
7232 DAG.getConstant(0, MVT::i64));
7233 }
7234
7235 // Canonicalise concat_vectors so that the right-hand vector has as few
7236 // bit-casts as possible before its real operation. The primary matching
7237 // destination for these operations will be the narrowing "2" instructions,
7238 // which depend on the operation being performed on this right-hand vector.
7239 // For example,
7240 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7241 // becomes
7242 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7243
7244 SDValue Op1 = N->getOperand(1);
7245 if (Op1->getOpcode() != ISD::BITCAST)
7246 return SDValue();
7247 SDValue RHS = Op1->getOperand(0);
7248 MVT RHSTy = RHS.getValueType().getSimpleVT();
7249 // If the RHS is not a vector, this is not the pattern we're looking for.
7250 if (!RHSTy.isVector())
7251 return SDValue();
7252
7253 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7254
7255 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7256 RHSTy.getVectorNumElements() * 2);
7257 return DAG.getNode(
7258 ISD::BITCAST, dl, VT,
7259 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7260 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
7261}
7262
7263static SDValue tryCombineFixedPointConvert(SDNode *N,
7264 TargetLowering::DAGCombinerInfo &DCI,
7265 SelectionDAG &DAG) {
7266 // Wait 'til after everything is legalized to try this. That way we have
7267 // legal vector types and such.
7268 if (DCI.isBeforeLegalizeOps())
7269 return SDValue();
7270 // Transform a scalar conversion of a value from a lane extract into a
7271 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7272 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7273 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7274 //
7275 // The second form interacts better with instruction selection and the
7276 // register allocator to avoid cross-class register copies that aren't
7277 // coalescable due to a lane reference.
7278
7279 // Check the operand and see if it originates from a lane extract.
7280 SDValue Op1 = N->getOperand(1);
7281 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7282 // Yep, no additional predication needed. Perform the transform.
7283 SDValue IID = N->getOperand(0);
7284 SDValue Shift = N->getOperand(2);
7285 SDValue Vec = Op1.getOperand(0);
7286 SDValue Lane = Op1.getOperand(1);
7287 EVT ResTy = N->getValueType(0);
7288 EVT VecResTy;
7289 SDLoc DL(N);
7290
7291 // The vector width should be 128 bits by the time we get here, even
7292 // if it started as 64 bits (the extract_vector handling will have
7293 // done so).
7294 assert(Vec.getValueType().getSizeInBits() == 128 &&
7295 "unexpected vector size on extract_vector_elt!");
7296 if (Vec.getValueType() == MVT::v4i32)
7297 VecResTy = MVT::v4f32;
7298 else if (Vec.getValueType() == MVT::v2i64)
7299 VecResTy = MVT::v2f64;
7300 else
7301 llvm_unreachable("unexpected vector type!");
7302
7303 SDValue Convert =
7304 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7305 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7306 }
7307 return SDValue();
7308}
7309
7310// AArch64 high-vector "long" operations are formed by performing the non-high
7311// version on an extract_subvector of each operand which gets the high half:
7312//
7313// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7314//
7315// However, there are cases which don't have an extract_high explicitly, but
7316// have another operation that can be made compatible with one for free. For
7317// example:
7318//
7319// (dupv64 scalar) --> (extract_high (dup128 scalar))
7320//
7321// This routine does the actual conversion of such DUPs, once outer routines
7322// have determined that everything else is in order.
7323static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7324 // We can handle most types of duplicate, but the lane ones have an extra
7325 // operand saying *which* lane, so we need to know.
7326 bool IsDUPLANE;
7327 switch (N.getOpcode()) {
7328 case AArch64ISD::DUP:
7329 IsDUPLANE = false;
7330 break;
7331 case AArch64ISD::DUPLANE8:
7332 case AArch64ISD::DUPLANE16:
7333 case AArch64ISD::DUPLANE32:
7334 case AArch64ISD::DUPLANE64:
7335 IsDUPLANE = true;
7336 break;
7337 default:
7338 return SDValue();
7339 }
7340
7341 MVT NarrowTy = N.getSimpleValueType();
7342 if (!NarrowTy.is64BitVector())
7343 return SDValue();
7344
7345 MVT ElementTy = NarrowTy.getVectorElementType();
7346 unsigned NumElems = NarrowTy.getVectorNumElements();
7347 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7348
7349 SDValue NewDUP;
7350 if (IsDUPLANE)
7351 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7352 N.getOperand(1));
970d7e83 7353 else
1a4d82fc 7354 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
970d7e83 7355
1a4d82fc
JJ
7356 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7357 NewDUP, DAG.getConstant(NumElems, MVT::i64));
970d7e83
LB
7358}
7359
1a4d82fc
JJ
7360static bool isEssentiallyExtractSubvector(SDValue N) {
7361 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7362 return true;
970d7e83 7363
1a4d82fc
JJ
7364 return N.getOpcode() == ISD::BITCAST &&
7365 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7366}
970d7e83 7367
1a4d82fc
JJ
7368/// \brief Helper structure to keep track of ISD::SET_CC operands.
7369struct GenericSetCCInfo {
7370 const SDValue *Opnd0;
7371 const SDValue *Opnd1;
7372 ISD::CondCode CC;
7373};
970d7e83 7374
1a4d82fc
JJ
7375/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7376struct AArch64SetCCInfo {
7377 const SDValue *Cmp;
7378 AArch64CC::CondCode CC;
7379};
970d7e83 7380
1a4d82fc
JJ
7381/// \brief Helper structure to keep track of SetCC information.
7382union SetCCInfo {
7383 GenericSetCCInfo Generic;
7384 AArch64SetCCInfo AArch64;
7385};
970d7e83 7386
1a4d82fc
JJ
7387/// \brief Helper structure to be able to read SetCC information. If set to
7388/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7389/// GenericSetCCInfo.
7390struct SetCCInfoAndKind {
7391 SetCCInfo Info;
7392 bool IsAArch64;
7393};
970d7e83 7394
1a4d82fc
JJ
7395/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7396/// an
7397/// AArch64 lowered one.
7398/// \p SetCCInfo is filled accordingly.
7399/// \post SetCCInfo is meanginfull only when this function returns true.
7400/// \return True when Op is a kind of SET_CC operation.
7401static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7402 // If this is a setcc, this is straight forward.
7403 if (Op.getOpcode() == ISD::SETCC) {
7404 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7405 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7406 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7407 SetCCInfo.IsAArch64 = false;
7408 return true;
970d7e83 7409 }
1a4d82fc
JJ
7410 // Otherwise, check if this is a matching csel instruction.
7411 // In other words:
7412 // - csel 1, 0, cc
7413 // - csel 0, 1, !cc
7414 if (Op.getOpcode() != AArch64ISD::CSEL)
7415 return false;
7416 // Set the information about the operands.
7417 // TODO: we want the operands of the Cmp not the csel
7418 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7419 SetCCInfo.IsAArch64 = true;
7420 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7421 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7422
7423 // Check that the operands matches the constraints:
7424 // (1) Both operands must be constants.
7425 // (2) One must be 1 and the other must be 0.
7426 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7427 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7428
7429 // Check (1).
7430 if (!TValue || !FValue)
7431 return false;
970d7e83 7432
1a4d82fc
JJ
7433 // Check (2).
7434 if (!TValue->isOne()) {
7435 // Update the comparison when we are interested in !cc.
7436 std::swap(TValue, FValue);
7437 SetCCInfo.Info.AArch64.CC =
7438 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
970d7e83 7439 }
1a4d82fc
JJ
7440 return TValue->isOne() && FValue->isNullValue();
7441}
970d7e83 7442
1a4d82fc
JJ
7443// Returns true if Op is setcc or zext of setcc.
7444static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7445 if (isSetCC(Op, Info))
7446 return true;
7447 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7448 isSetCC(Op->getOperand(0), Info));
970d7e83
LB
7449}
7450
1a4d82fc
JJ
7451// The folding we want to perform is:
7452// (add x, [zext] (setcc cc ...) )
7453// -->
7454// (csel x, (add x, 1), !cc ...)
7455//
7456// The latter will get matched to a CSINC instruction.
7457static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7458 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7459 SDValue LHS = Op->getOperand(0);
7460 SDValue RHS = Op->getOperand(1);
7461 SetCCInfoAndKind InfoAndKind;
7462
7463 // If neither operand is a SET_CC, give up.
7464 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7465 std::swap(LHS, RHS);
7466 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7467 return SDValue();
7468 }
970d7e83 7469
1a4d82fc
JJ
7470 // FIXME: This could be generatized to work for FP comparisons.
7471 EVT CmpVT = InfoAndKind.IsAArch64
7472 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7473 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7474 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7475 return SDValue();
970d7e83 7476
1a4d82fc
JJ
7477 SDValue CCVal;
7478 SDValue Cmp;
7479 SDLoc dl(Op);
7480 if (InfoAndKind.IsAArch64) {
7481 CCVal = DAG.getConstant(
7482 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7483 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7484 } else
7485 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7486 *InfoAndKind.Info.Generic.Opnd1,
7487 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7488 CCVal, DAG, dl);
7489
7490 EVT VT = Op->getValueType(0);
7491 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7492 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7493}
970d7e83 7494
1a4d82fc
JJ
7495// The basic add/sub long vector instructions have variants with "2" on the end
7496// which act on the high-half of their inputs. They are normally matched by
7497// patterns like:
7498//
7499// (add (zeroext (extract_high LHS)),
7500// (zeroext (extract_high RHS)))
7501// -> uaddl2 vD, vN, vM
7502//
7503// However, if one of the extracts is something like a duplicate, this
7504// instruction can still be used profitably. This function puts the DAG into a
7505// more appropriate form for those patterns to trigger.
7506static SDValue performAddSubLongCombine(SDNode *N,
7507 TargetLowering::DAGCombinerInfo &DCI,
7508 SelectionDAG &DAG) {
7509 if (DCI.isBeforeLegalizeOps())
7510 return SDValue();
970d7e83 7511
1a4d82fc
JJ
7512 MVT VT = N->getSimpleValueType(0);
7513 if (!VT.is128BitVector()) {
7514 if (N->getOpcode() == ISD::ADD)
7515 return performSetccAddFolding(N, DAG);
7516 return SDValue();
7517 }
970d7e83 7518
1a4d82fc
JJ
7519 // Make sure both branches are extended in the same way.
7520 SDValue LHS = N->getOperand(0);
7521 SDValue RHS = N->getOperand(1);
7522 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7523 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7524 LHS.getOpcode() != RHS.getOpcode())
7525 return SDValue();
970d7e83 7526
1a4d82fc 7527 unsigned ExtType = LHS.getOpcode();
970d7e83 7528
1a4d82fc
JJ
7529 // It's not worth doing if at least one of the inputs isn't already an
7530 // extract, but we don't know which it'll be so we have to try both.
7531 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7532 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7533 if (!RHS.getNode())
7534 return SDValue();
970d7e83 7535
1a4d82fc
JJ
7536 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7537 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7538 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7539 if (!LHS.getNode())
7540 return SDValue();
970d7e83 7541
1a4d82fc
JJ
7542 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7543 }
970d7e83 7544
1a4d82fc
JJ
7545 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7546}
970d7e83 7547
1a4d82fc
JJ
7548// Massage DAGs which we can use the high-half "long" operations on into
7549// something isel will recognize better. E.g.
7550//
7551// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7552// (aarch64_neon_umull (extract_high (v2i64 vec)))
7553// (extract_high (v2i64 (dup128 scalar)))))
7554//
7555static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7556 TargetLowering::DAGCombinerInfo &DCI,
7557 SelectionDAG &DAG) {
7558 if (DCI.isBeforeLegalizeOps())
7559 return SDValue();
970d7e83 7560
1a4d82fc
JJ
7561 SDValue LHS = N->getOperand(1);
7562 SDValue RHS = N->getOperand(2);
7563 assert(LHS.getValueType().is64BitVector() &&
7564 RHS.getValueType().is64BitVector() &&
7565 "unexpected shape for long operation");
7566
7567 // Either node could be a DUP, but it's not worth doing both of them (you'd
7568 // just as well use the non-high version) so look for a corresponding extract
7569 // operation on the other "wing".
7570 if (isEssentiallyExtractSubvector(LHS)) {
7571 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7572 if (!RHS.getNode())
7573 return SDValue();
7574 } else if (isEssentiallyExtractSubvector(RHS)) {
7575 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7576 if (!LHS.getNode())
7577 return SDValue();
7578 }
970d7e83 7579
1a4d82fc
JJ
7580 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7581 N->getOperand(0), LHS, RHS);
7582}
970d7e83 7583
1a4d82fc
JJ
7584static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7585 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7586 unsigned ElemBits = ElemTy.getSizeInBits();
7587
7588 int64_t ShiftAmount;
7589 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7590 APInt SplatValue, SplatUndef;
7591 unsigned SplatBitSize;
7592 bool HasAnyUndefs;
7593 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7594 HasAnyUndefs, ElemBits) ||
7595 SplatBitSize != ElemBits)
7596 return SDValue();
7597
7598 ShiftAmount = SplatValue.getSExtValue();
7599 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7600 ShiftAmount = CVN->getSExtValue();
970d7e83 7601 } else
1a4d82fc 7602 return SDValue();
970d7e83 7603
1a4d82fc
JJ
7604 unsigned Opcode;
7605 bool IsRightShift;
7606 switch (IID) {
7607 default:
7608 llvm_unreachable("Unknown shift intrinsic");
7609 case Intrinsic::aarch64_neon_sqshl:
7610 Opcode = AArch64ISD::SQSHL_I;
7611 IsRightShift = false;
7612 break;
7613 case Intrinsic::aarch64_neon_uqshl:
7614 Opcode = AArch64ISD::UQSHL_I;
7615 IsRightShift = false;
7616 break;
7617 case Intrinsic::aarch64_neon_srshl:
7618 Opcode = AArch64ISD::SRSHR_I;
7619 IsRightShift = true;
7620 break;
7621 case Intrinsic::aarch64_neon_urshl:
7622 Opcode = AArch64ISD::URSHR_I;
7623 IsRightShift = true;
7624 break;
7625 case Intrinsic::aarch64_neon_sqshlu:
7626 Opcode = AArch64ISD::SQSHLU_I;
7627 IsRightShift = false;
7628 break;
970d7e83
LB
7629 }
7630
1a4d82fc
JJ
7631 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7632 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7633 DAG.getConstant(-ShiftAmount, MVT::i32));
7634 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
7635 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7636 DAG.getConstant(ShiftAmount, MVT::i32));
970d7e83 7637
1a4d82fc 7638 return SDValue();
970d7e83
LB
7639}
7640
1a4d82fc
JJ
7641// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7642// the intrinsics must be legal and take an i32, this means there's almost
7643// certainly going to be a zext in the DAG which we can eliminate.
7644static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7645 SDValue AndN = N->getOperand(2);
7646 if (AndN.getOpcode() != ISD::AND)
7647 return SDValue();
970d7e83 7648
1a4d82fc
JJ
7649 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7650 if (!CMask || CMask->getZExtValue() != Mask)
7651 return SDValue();
970d7e83 7652
1a4d82fc
JJ
7653 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7654 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
970d7e83
LB
7655}
7656
1a4d82fc
JJ
7657static SDValue performIntrinsicCombine(SDNode *N,
7658 TargetLowering::DAGCombinerInfo &DCI,
7659 const AArch64Subtarget *Subtarget) {
7660 SelectionDAG &DAG = DCI.DAG;
7661 unsigned IID = getIntrinsicID(N);
7662 switch (IID) {
7663 default:
7664 break;
7665 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7666 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7667 return tryCombineFixedPointConvert(N, DCI, DAG);
7668 break;
7669 case Intrinsic::aarch64_neon_fmax:
7670 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7671 N->getOperand(1), N->getOperand(2));
7672 case Intrinsic::aarch64_neon_fmin:
7673 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7674 N->getOperand(1), N->getOperand(2));
7675 case Intrinsic::aarch64_neon_smull:
7676 case Intrinsic::aarch64_neon_umull:
7677 case Intrinsic::aarch64_neon_pmull:
7678 case Intrinsic::aarch64_neon_sqdmull:
7679 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7680 case Intrinsic::aarch64_neon_sqshl:
7681 case Intrinsic::aarch64_neon_uqshl:
7682 case Intrinsic::aarch64_neon_sqshlu:
7683 case Intrinsic::aarch64_neon_srshl:
7684 case Intrinsic::aarch64_neon_urshl:
7685 return tryCombineShiftImm(IID, N, DAG);
7686 case Intrinsic::aarch64_crc32b:
7687 case Intrinsic::aarch64_crc32cb:
7688 return tryCombineCRC32(0xff, N, DAG);
7689 case Intrinsic::aarch64_crc32h:
7690 case Intrinsic::aarch64_crc32ch:
7691 return tryCombineCRC32(0xffff, N, DAG);
7692 }
7693 return SDValue();
7694}
970d7e83 7695
1a4d82fc
JJ
7696static SDValue performExtendCombine(SDNode *N,
7697 TargetLowering::DAGCombinerInfo &DCI,
7698 SelectionDAG &DAG) {
7699 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7700 // we can convert that DUP into another extract_high (of a bigger DUP), which
7701 // helps the backend to decide that an sabdl2 would be useful, saving a real
7702 // extract_high operation.
7703 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7704 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7705 SDNode *ABDNode = N->getOperand(0).getNode();
7706 unsigned IID = getIntrinsicID(ABDNode);
7707 if (IID == Intrinsic::aarch64_neon_sabd ||
7708 IID == Intrinsic::aarch64_neon_uabd) {
7709 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7710 if (!NewABD.getNode())
7711 return SDValue();
7712
7713 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7714 NewABD);
970d7e83
LB
7715 }
7716 }
7717
1a4d82fc
JJ
7718 // This is effectively a custom type legalization for AArch64.
7719 //
7720 // Type legalization will split an extend of a small, legal, type to a larger
7721 // illegal type by first splitting the destination type, often creating
7722 // illegal source types, which then get legalized in isel-confusing ways,
7723 // leading to really terrible codegen. E.g.,
7724 // %result = v8i32 sext v8i8 %value
7725 // becomes
7726 // %losrc = extract_subreg %value, ...
7727 // %hisrc = extract_subreg %value, ...
7728 // %lo = v4i32 sext v4i8 %losrc
7729 // %hi = v4i32 sext v4i8 %hisrc
7730 // Things go rapidly downhill from there.
7731 //
7732 // For AArch64, the [sz]ext vector instructions can only go up one element
7733 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7734 // take two instructions.
7735 //
7736 // This implies that the most efficient way to do the extend from v8i8
7737 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7738 // the normal splitting to happen for the v8i16->v8i32.
970d7e83 7739
1a4d82fc
JJ
7740 // This is pre-legalization to catch some cases where the default
7741 // type legalization will create ill-tempered code.
7742 if (!DCI.isBeforeLegalizeOps())
7743 return SDValue();
970d7e83 7744
1a4d82fc
JJ
7745 // We're only interested in cleaning things up for non-legal vector types
7746 // here. If both the source and destination are legal, things will just
7747 // work naturally without any fiddling.
7748 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7749 EVT ResVT = N->getValueType(0);
7750 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7751 return SDValue();
7752 // If the vector type isn't a simple VT, it's beyond the scope of what
7753 // we're worried about here. Let legalization do its thing and hope for
7754 // the best.
7755 SDValue Src = N->getOperand(0);
7756 EVT SrcVT = Src->getValueType(0);
7757 if (!ResVT.isSimple() || !SrcVT.isSimple())
7758 return SDValue();
970d7e83 7759
1a4d82fc
JJ
7760 // If the source VT is a 64-bit vector, we can play games and get the
7761 // better results we want.
7762 if (SrcVT.getSizeInBits() != 64)
7763 return SDValue();
970d7e83 7764
1a4d82fc
JJ
7765 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7766 unsigned ElementCount = SrcVT.getVectorNumElements();
7767 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7768 SDLoc DL(N);
7769 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7770
7771 // Now split the rest of the operation into two halves, each with a 64
7772 // bit source.
7773 EVT LoVT, HiVT;
7774 SDValue Lo, Hi;
7775 unsigned NumElements = ResVT.getVectorNumElements();
7776 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7777 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7778 ResVT.getVectorElementType(), NumElements / 2);
7779
7780 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7781 LoVT.getVectorNumElements());
7782 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
85aaf69f 7783 DAG.getConstant(0, MVT::i64));
1a4d82fc 7784 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
85aaf69f 7785 DAG.getConstant(InNVT.getVectorNumElements(), MVT::i64));
1a4d82fc
JJ
7786 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7787 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7788
7789 // Now combine the parts back together so we still have a single result
7790 // like the combiner expects.
7791 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
970d7e83
LB
7792}
7793
1a4d82fc
JJ
7794/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7795/// value. The load store optimizer pass will merge them to store pair stores.
7796/// This has better performance than a splat of the scalar followed by a split
7797/// vector store. Even if the stores are not merged it is four stores vs a dup,
7798/// followed by an ext.b and two stores.
7799static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7800 SDValue StVal = St->getValue();
7801 EVT VT = StVal.getValueType();
7802
7803 // Don't replace floating point stores, they possibly won't be transformed to
7804 // stp because of the store pair suppress pass.
7805 if (VT.isFloatingPoint())
7806 return SDValue();
970d7e83 7807
1a4d82fc
JJ
7808 // Check for insert vector elements.
7809 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7810 return SDValue();
970d7e83 7811
1a4d82fc
JJ
7812 // We can express a splat as store pair(s) for 2 or 4 elements.
7813 unsigned NumVecElts = VT.getVectorNumElements();
7814 if (NumVecElts != 4 && NumVecElts != 2)
7815 return SDValue();
7816 SDValue SplatVal = StVal.getOperand(1);
7817 unsigned RemainInsertElts = NumVecElts - 1;
7818
7819 // Check that this is a splat.
7820 while (--RemainInsertElts) {
7821 SDValue NextInsertElt = StVal.getOperand(0);
7822 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7823 return SDValue();
7824 if (NextInsertElt.getOperand(1) != SplatVal)
7825 return SDValue();
7826 StVal = NextInsertElt;
970d7e83 7827 }
1a4d82fc
JJ
7828 unsigned OrigAlignment = St->getAlignment();
7829 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7830 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7831
7832 // Create scalar stores. This is at least as good as the code sequence for a
7833 // split unaligned store wich is a dup.s, ext.b, and two stores.
7834 // Most of the time the three stores should be replaced by store pair
7835 // instructions (stp).
7836 SDLoc DL(St);
7837 SDValue BasePtr = St->getBasePtr();
7838 SDValue NewST1 =
7839 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7840 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7841
7842 unsigned Offset = EltOffset;
7843 while (--NumVecElts) {
7844 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7845 DAG.getConstant(Offset, MVT::i64));
7846 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7847 St->getPointerInfo(), St->isVolatile(),
7848 St->isNonTemporal(), Alignment);
7849 Offset += EltOffset;
7850 }
7851 return NewST1;
7852}
970d7e83 7853
1a4d82fc
JJ
7854static SDValue performSTORECombine(SDNode *N,
7855 TargetLowering::DAGCombinerInfo &DCI,
7856 SelectionDAG &DAG,
7857 const AArch64Subtarget *Subtarget) {
7858 if (!DCI.isBeforeLegalize())
7859 return SDValue();
970d7e83 7860
1a4d82fc
JJ
7861 StoreSDNode *S = cast<StoreSDNode>(N);
7862 if (S->isVolatile())
7863 return SDValue();
970d7e83 7864
1a4d82fc
JJ
7865 // Cyclone has bad performance on unaligned 16B stores when crossing line and
7866 // page boundries. We want to split such stores.
7867 if (!Subtarget->isCyclone())
7868 return SDValue();
970d7e83 7869
1a4d82fc
JJ
7870 // Don't split at Oz.
7871 MachineFunction &MF = DAG.getMachineFunction();
7872 bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
7873 AttributeSet::FunctionIndex, Attribute::MinSize);
7874 if (IsMinSize)
7875 return SDValue();
970d7e83 7876
1a4d82fc
JJ
7877 SDValue StVal = S->getValue();
7878 EVT VT = StVal.getValueType();
970d7e83 7879
1a4d82fc
JJ
7880 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7881 // those up regresses performance on micro-benchmarks and olden/bh.
7882 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7883 return SDValue();
970d7e83 7884
1a4d82fc
JJ
7885 // Split unaligned 16B stores. They are terrible for performance.
7886 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7887 // extensions can use this to mark that it does not want splitting to happen
7888 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7889 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7890 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7891 S->getAlignment() <= 2)
7892 return SDValue();
970d7e83 7893
1a4d82fc
JJ
7894 // If we get a splat of a scalar convert this vector store to a store of
7895 // scalars. They will be merged into store pairs thereby removing two
7896 // instructions.
7897 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7898 if (ReplacedSplat != SDValue())
7899 return ReplacedSplat;
7900
7901 SDLoc DL(S);
7902 unsigned NumElts = VT.getVectorNumElements() / 2;
7903 // Split VT into two.
7904 EVT HalfVT =
7905 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7906 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
85aaf69f 7907 DAG.getConstant(0, MVT::i64));
1a4d82fc 7908 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
85aaf69f 7909 DAG.getConstant(NumElts, MVT::i64));
1a4d82fc
JJ
7910 SDValue BasePtr = S->getBasePtr();
7911 SDValue NewST1 =
7912 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7913 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7914 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7915 DAG.getConstant(8, MVT::i64));
7916 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7917 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7918 S->getAlignment());
970d7e83
LB
7919}
7920
1a4d82fc
JJ
7921/// Target-specific DAG combine function for post-increment LD1 (lane) and
7922/// post-increment LD1R.
7923static SDValue performPostLD1Combine(SDNode *N,
7924 TargetLowering::DAGCombinerInfo &DCI,
7925 bool IsLaneOp) {
7926 if (DCI.isBeforeLegalizeOps())
7927 return SDValue();
970d7e83 7928
1a4d82fc
JJ
7929 SelectionDAG &DAG = DCI.DAG;
7930 EVT VT = N->getValueType(0);
970d7e83 7931
1a4d82fc
JJ
7932 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7933 SDNode *LD = N->getOperand(LoadIdx).getNode();
7934 // If it is not LOAD, can not do such combine.
7935 if (LD->getOpcode() != ISD::LOAD)
7936 return SDValue();
970d7e83 7937
1a4d82fc
JJ
7938 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7939 EVT MemVT = LoadSDN->getMemoryVT();
7940 // Check if memory operand is the same type as the vector element.
7941 if (MemVT != VT.getVectorElementType())
7942 return SDValue();
970d7e83 7943
1a4d82fc
JJ
7944 // Check if there are other uses. If so, do not combine as it will introduce
7945 // an extra load.
7946 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7947 ++UI) {
7948 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7949 continue;
7950 if (*UI != N)
7951 return SDValue();
7952 }
970d7e83 7953
1a4d82fc
JJ
7954 SDValue Addr = LD->getOperand(1);
7955 SDValue Vector = N->getOperand(0);
7956 // Search for a use of the address operand that is an increment.
7957 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7958 Addr.getNode()->use_end(); UI != UE; ++UI) {
7959 SDNode *User = *UI;
7960 if (User->getOpcode() != ISD::ADD
7961 || UI.getUse().getResNo() != Addr.getResNo())
7962 continue;
970d7e83 7963
1a4d82fc
JJ
7964 // Check that the add is independent of the load. Otherwise, folding it
7965 // would create a cycle.
7966 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7967 continue;
7968 // Also check that add is not used in the vector operand. This would also
7969 // create a cycle.
7970 if (User->isPredecessorOf(Vector.getNode()))
7971 continue;
970d7e83 7972
1a4d82fc
JJ
7973 // If the increment is a constant, it must match the memory ref size.
7974 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7975 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7976 uint32_t IncVal = CInc->getZExtValue();
7977 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7978 if (IncVal != NumBytes)
7979 continue;
7980 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7981 }
970d7e83 7982
1a4d82fc
JJ
7983 SmallVector<SDValue, 8> Ops;
7984 Ops.push_back(LD->getOperand(0)); // Chain
7985 if (IsLaneOp) {
7986 Ops.push_back(Vector); // The vector to be inserted
7987 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7988 }
7989 Ops.push_back(Addr);
7990 Ops.push_back(Inc);
7991
7992 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
7993 SDVTList SDTys = DAG.getVTList(Tys);
7994 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7995 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7996 MemVT,
7997 LoadSDN->getMemOperand());
7998
7999 // Update the uses.
8000 std::vector<SDValue> NewResults;
8001 NewResults.push_back(SDValue(LD, 0)); // The result of load
8002 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8003 DCI.CombineTo(LD, NewResults);
8004 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8005 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
970d7e83 8006
1a4d82fc 8007 break;
970d7e83 8008 }
1a4d82fc
JJ
8009 return SDValue();
8010}
970d7e83 8011
1a4d82fc
JJ
8012/// Target-specific DAG combine function for NEON load/store intrinsics
8013/// to merge base address updates.
8014static SDValue performNEONPostLDSTCombine(SDNode *N,
8015 TargetLowering::DAGCombinerInfo &DCI,
8016 SelectionDAG &DAG) {
8017 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8018 return SDValue();
970d7e83 8019
1a4d82fc
JJ
8020 unsigned AddrOpIdx = N->getNumOperands() - 1;
8021 SDValue Addr = N->getOperand(AddrOpIdx);
8022
8023 // Search for a use of the address operand that is an increment.
8024 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8025 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8026 SDNode *User = *UI;
8027 if (User->getOpcode() != ISD::ADD ||
8028 UI.getUse().getResNo() != Addr.getResNo())
8029 continue;
8030
8031 // Check that the add is independent of the load/store. Otherwise, folding
8032 // it would create a cycle.
8033 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8034 continue;
8035
8036 // Find the new opcode for the updating load/store.
8037 bool IsStore = false;
8038 bool IsLaneOp = false;
8039 bool IsDupOp = false;
8040 unsigned NewOpc = 0;
8041 unsigned NumVecs = 0;
8042 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8043 switch (IntNo) {
8044 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8045 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8046 NumVecs = 2; break;
8047 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8048 NumVecs = 3; break;
8049 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8050 NumVecs = 4; break;
8051 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8052 NumVecs = 2; IsStore = true; break;
8053 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8054 NumVecs = 3; IsStore = true; break;
8055 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8056 NumVecs = 4; IsStore = true; break;
8057 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8058 NumVecs = 2; break;
8059 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8060 NumVecs = 3; break;
8061 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8062 NumVecs = 4; break;
8063 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8064 NumVecs = 2; IsStore = true; break;
8065 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8066 NumVecs = 3; IsStore = true; break;
8067 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8068 NumVecs = 4; IsStore = true; break;
8069 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8070 NumVecs = 2; IsDupOp = true; break;
8071 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8072 NumVecs = 3; IsDupOp = true; break;
8073 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8074 NumVecs = 4; IsDupOp = true; break;
8075 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8076 NumVecs = 2; IsLaneOp = true; break;
8077 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8078 NumVecs = 3; IsLaneOp = true; break;
8079 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8080 NumVecs = 4; IsLaneOp = true; break;
8081 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8082 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8083 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8084 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8085 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8086 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8087 }
8088
8089 EVT VecTy;
8090 if (IsStore)
8091 VecTy = N->getOperand(2).getValueType();
8092 else
8093 VecTy = N->getValueType(0);
8094
8095 // If the increment is a constant, it must match the memory ref size.
8096 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8097 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8098 uint32_t IncVal = CInc->getZExtValue();
8099 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8100 if (IsLaneOp || IsDupOp)
8101 NumBytes /= VecTy.getVectorNumElements();
8102 if (IncVal != NumBytes)
8103 continue;
8104 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8105 }
8106 SmallVector<SDValue, 8> Ops;
8107 Ops.push_back(N->getOperand(0)); // Incoming chain
8108 // Load lane and store have vector list as input.
8109 if (IsLaneOp || IsStore)
8110 for (unsigned i = 2; i < AddrOpIdx; ++i)
8111 Ops.push_back(N->getOperand(i));
8112 Ops.push_back(Addr); // Base register
8113 Ops.push_back(Inc);
8114
8115 // Return Types.
8116 EVT Tys[6];
8117 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8118 unsigned n;
8119 for (n = 0; n < NumResultVecs; ++n)
8120 Tys[n] = VecTy;
8121 Tys[n++] = MVT::i64; // Type of write back register
8122 Tys[n] = MVT::Other; // Type of the chain
8123 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
8124
8125 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8126 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8127 MemInt->getMemoryVT(),
8128 MemInt->getMemOperand());
8129
8130 // Update the uses.
8131 std::vector<SDValue> NewResults;
8132 for (unsigned i = 0; i < NumResultVecs; ++i) {
8133 NewResults.push_back(SDValue(UpdN.getNode(), i));
8134 }
8135 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8136 DCI.CombineTo(N, NewResults);
8137 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
970d7e83 8138
1a4d82fc
JJ
8139 break;
8140 }
8141 return SDValue();
970d7e83
LB
8142}
8143
1a4d82fc
JJ
8144// Checks to see if the value is the prescribed width and returns information
8145// about its extension mode.
8146static
8147bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8148 ExtType = ISD::NON_EXTLOAD;
8149 switch(V.getNode()->getOpcode()) {
8150 default:
8151 return false;
8152 case ISD::LOAD: {
8153 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8154 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8155 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8156 ExtType = LoadNode->getExtensionType();
8157 return true;
8158 }
8159 return false;
8160 }
8161 case ISD::AssertSext: {
8162 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8163 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8164 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8165 ExtType = ISD::SEXTLOAD;
8166 return true;
8167 }
8168 return false;
8169 }
8170 case ISD::AssertZext: {
8171 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8172 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8173 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8174 ExtType = ISD::ZEXTLOAD;
8175 return true;
8176 }
8177 return false;
8178 }
8179 case ISD::Constant:
8180 case ISD::TargetConstant: {
8181 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
8182 1LL << (width - 1))
8183 return true;
8184 return false;
8185 }
970d7e83
LB
8186 }
8187
1a4d82fc 8188 return true;
970d7e83
LB
8189}
8190
1a4d82fc
JJ
8191// This function does a whole lot of voodoo to determine if the tests are
8192// equivalent without and with a mask. Essentially what happens is that given a
8193// DAG resembling:
8194//
8195// +-------------+ +-------------+ +-------------+ +-------------+
8196// | Input | | AddConstant | | CompConstant| | CC |
8197// +-------------+ +-------------+ +-------------+ +-------------+
8198// | | | |
8199// V V | +----------+
8200// +-------------+ +----+ | |
8201// | ADD | |0xff| | |
8202// +-------------+ +----+ | |
8203// | | | |
8204// V V | |
8205// +-------------+ | |
8206// | AND | | |
8207// +-------------+ | |
8208// | | |
8209// +-----+ | |
8210// | | |
8211// V V V
8212// +-------------+
8213// | CMP |
8214// +-------------+
8215//
8216// The AND node may be safely removed for some combinations of inputs. In
8217// particular we need to take into account the extension type of the Input,
8218// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8219// width of the input (this can work for any width inputs, the above graph is
8220// specific to 8 bits.
8221//
8222// The specific equations were worked out by generating output tables for each
8223// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8224// problem was simplified by working with 4 bit inputs, which means we only
8225// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8226// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8227// patterns present in both extensions (0,7). For every distinct set of
8228// AddConstant and CompConstants bit patterns we can consider the masked and
8229// unmasked versions to be equivalent if the result of this function is true for
8230// all 16 distinct bit patterns of for the current extension type of Input (w0).
8231//
8232// sub w8, w0, w1
8233// and w10, w8, #0x0f
8234// cmp w8, w2
8235// cset w9, AArch64CC
8236// cmp w10, w2
8237// cset w11, AArch64CC
8238// cmp w9, w11
8239// cset w0, eq
8240// ret
8241//
8242// Since the above function shows when the outputs are equivalent it defines
8243// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8244// would be expensive to run during compiles. The equations below were written
8245// in a test harness that confirmed they gave equivalent outputs to the above
8246// for all inputs function, so they can be used determine if the removal is
8247// legal instead.
8248//
8249// isEquivalentMaskless() is the code for testing if the AND can be removed
8250// factored out of the DAG recognition as the DAG can take several forms.
8251
8252static
8253bool isEquivalentMaskless(unsigned CC, unsigned width,
8254 ISD::LoadExtType ExtType, signed AddConstant,
8255 signed CompConstant) {
8256 // By being careful about our equations and only writing the in term
8257 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8258 // make them generally applicable to all bit widths.
8259 signed MaxUInt = (1 << width);
8260
8261 // For the purposes of these comparisons sign extending the type is
8262 // equivalent to zero extending the add and displacing it by half the integer
8263 // width. Provided we are careful and make sure our equations are valid over
8264 // the whole range we can just adjust the input and avoid writing equations
8265 // for sign extended inputs.
8266 if (ExtType == ISD::SEXTLOAD)
8267 AddConstant -= (1 << (width-1));
970d7e83 8268
1a4d82fc
JJ
8269 switch(CC) {
8270 case AArch64CC::LE:
8271 case AArch64CC::GT: {
8272 if ((AddConstant == 0) ||
8273 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8274 (AddConstant >= 0 && CompConstant < 0) ||
8275 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8276 return true;
8277 } break;
8278 case AArch64CC::LT:
8279 case AArch64CC::GE: {
8280 if ((AddConstant == 0) ||
8281 (AddConstant >= 0 && CompConstant <= 0) ||
8282 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8283 return true;
8284 } break;
8285 case AArch64CC::HI:
8286 case AArch64CC::LS: {
8287 if ((AddConstant >= 0 && CompConstant < 0) ||
8288 (AddConstant <= 0 && CompConstant >= -1 &&
8289 CompConstant < AddConstant + MaxUInt))
8290 return true;
8291 } break;
8292 case AArch64CC::PL:
8293 case AArch64CC::MI: {
8294 if ((AddConstant == 0) ||
8295 (AddConstant > 0 && CompConstant <= 0) ||
8296 (AddConstant < 0 && CompConstant <= AddConstant))
8297 return true;
8298 } break;
8299 case AArch64CC::LO:
8300 case AArch64CC::HS: {
8301 if ((AddConstant >= 0 && CompConstant <= 0) ||
8302 (AddConstant <= 0 && CompConstant >= 0 &&
8303 CompConstant <= AddConstant + MaxUInt))
8304 return true;
8305 } break;
8306 case AArch64CC::EQ:
8307 case AArch64CC::NE: {
8308 if ((AddConstant > 0 && CompConstant < 0) ||
8309 (AddConstant < 0 && CompConstant >= 0 &&
8310 CompConstant < AddConstant + MaxUInt) ||
8311 (AddConstant >= 0 && CompConstant >= 0 &&
8312 CompConstant >= AddConstant) ||
8313 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
970d7e83 8314
1a4d82fc
JJ
8315 return true;
8316 } break;
8317 case AArch64CC::VS:
8318 case AArch64CC::VC:
8319 case AArch64CC::AL:
8320 case AArch64CC::NV:
8321 return true;
8322 case AArch64CC::Invalid:
8323 break;
8324 }
970d7e83 8325
1a4d82fc
JJ
8326 return false;
8327}
970d7e83 8328
1a4d82fc
JJ
8329static
8330SDValue performCONDCombine(SDNode *N,
8331 TargetLowering::DAGCombinerInfo &DCI,
8332 SelectionDAG &DAG, unsigned CCIndex,
8333 unsigned CmpIndex) {
8334 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8335 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8336 unsigned CondOpcode = SubsNode->getOpcode();
970d7e83 8337
1a4d82fc 8338 if (CondOpcode != AArch64ISD::SUBS)
970d7e83
LB
8339 return SDValue();
8340
1a4d82fc
JJ
8341 // There is a SUBS feeding this condition. Is it fed by a mask we can
8342 // use?
970d7e83 8343
1a4d82fc
JJ
8344 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8345 unsigned MaskBits = 0;
970d7e83 8346
1a4d82fc 8347 if (AndNode->getOpcode() != ISD::AND)
970d7e83
LB
8348 return SDValue();
8349
1a4d82fc
JJ
8350 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8351 uint32_t CNV = CN->getZExtValue();
8352 if (CNV == 255)
8353 MaskBits = 8;
8354 else if (CNV == 65535)
8355 MaskBits = 16;
8356 }
970d7e83 8357
1a4d82fc 8358 if (!MaskBits)
970d7e83
LB
8359 return SDValue();
8360
1a4d82fc 8361 SDValue AddValue = AndNode->getOperand(0);
970d7e83 8362
1a4d82fc 8363 if (AddValue.getOpcode() != ISD::ADD)
970d7e83
LB
8364 return SDValue();
8365
1a4d82fc 8366 // The basic dag structure is correct, grab the inputs and validate them.
970d7e83 8367
1a4d82fc
JJ
8368 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8369 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8370 SDValue SubsInputValue = SubsNode->getOperand(1);
970d7e83 8371
1a4d82fc
JJ
8372 // The mask is present and the provenance of all the values is a smaller type,
8373 // lets see if the mask is superfluous.
970d7e83 8374
1a4d82fc
JJ
8375 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8376 !isa<ConstantSDNode>(SubsInputValue.getNode()))
970d7e83
LB
8377 return SDValue();
8378
1a4d82fc 8379 ISD::LoadExtType ExtType;
970d7e83 8380
1a4d82fc
JJ
8381 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8382 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8383 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
970d7e83
LB
8384 return SDValue();
8385
1a4d82fc
JJ
8386 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8387 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8388 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8389 return SDValue();
970d7e83 8390
1a4d82fc 8391 // The AND is not necessary, remove it.
970d7e83 8392
1a4d82fc
JJ
8393 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8394 SubsNode->getValueType(1));
8395 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
970d7e83 8396
1a4d82fc
JJ
8397 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8398 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
970d7e83 8399
1a4d82fc 8400 return SDValue(N, 0);
970d7e83
LB
8401}
8402
1a4d82fc
JJ
8403// Optimize compare with zero and branch.
8404static SDValue performBRCONDCombine(SDNode *N,
8405 TargetLowering::DAGCombinerInfo &DCI,
8406 SelectionDAG &DAG) {
8407 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8408 if (NV.getNode())
8409 N = NV.getNode();
8410 SDValue Chain = N->getOperand(0);
8411 SDValue Dest = N->getOperand(1);
8412 SDValue CCVal = N->getOperand(2);
8413 SDValue Cmp = N->getOperand(3);
8414
8415 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8416 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8417 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
970d7e83
LB
8418 return SDValue();
8419
1a4d82fc
JJ
8420 unsigned CmpOpc = Cmp.getOpcode();
8421 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
970d7e83
LB
8422 return SDValue();
8423
1a4d82fc
JJ
8424 // Only attempt folding if there is only one use of the flag and no use of the
8425 // value.
8426 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
970d7e83
LB
8427 return SDValue();
8428
1a4d82fc
JJ
8429 SDValue LHS = Cmp.getOperand(0);
8430 SDValue RHS = Cmp.getOperand(1);
970d7e83 8431
1a4d82fc
JJ
8432 assert(LHS.getValueType() == RHS.getValueType() &&
8433 "Expected the value type to be the same for both operands!");
8434 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
970d7e83
LB
8435 return SDValue();
8436
1a4d82fc 8437 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
970d7e83 8438 std::swap(LHS, RHS);
970d7e83 8439
1a4d82fc 8440 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
970d7e83
LB
8441 return SDValue();
8442
1a4d82fc
JJ
8443 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8444 LHS.getOpcode() == ISD::SRL)
8445 return SDValue();
970d7e83 8446
1a4d82fc
JJ
8447 // Fold the compare into the branch instruction.
8448 SDValue BR;
8449 if (CC == AArch64CC::EQ)
8450 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8451 else
8452 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
970d7e83 8453
1a4d82fc
JJ
8454 // Do not add new nodes to DAG combiner worklist.
8455 DCI.CombineTo(N, BR, false);
970d7e83 8456
1a4d82fc 8457 return SDValue();
970d7e83
LB
8458}
8459
1a4d82fc
JJ
8460// vselect (v1i1 setcc) ->
8461// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8462// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8463// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8464// such VSELECT.
8465static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8466 SDValue N0 = N->getOperand(0);
8467 EVT CCVT = N0.getValueType();
8468
8469 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8470 CCVT.getVectorElementType() != MVT::i1)
970d7e83
LB
8471 return SDValue();
8472
1a4d82fc
JJ
8473 EVT ResVT = N->getValueType(0);
8474 EVT CmpVT = N0.getOperand(0).getValueType();
8475 // Only combine when the result type is of the same size as the compared
8476 // operands.
8477 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
970d7e83
LB
8478 return SDValue();
8479
1a4d82fc
JJ
8480 SDValue IfTrue = N->getOperand(1);
8481 SDValue IfFalse = N->getOperand(2);
8482 SDValue SetCC =
8483 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8484 N0.getOperand(0), N0.getOperand(1),
8485 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8486 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8487 IfTrue, IfFalse);
8488}
970d7e83 8489
1a4d82fc
JJ
8490/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8491/// the compare-mask instructions rather than going via NZCV, even if LHS and
8492/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8493/// with a vector one followed by a DUP shuffle on the result.
8494static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
8495 SDValue N0 = N->getOperand(0);
8496 EVT ResVT = N->getValueType(0);
970d7e83 8497
1a4d82fc 8498 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
970d7e83
LB
8499 return SDValue();
8500
1a4d82fc
JJ
8501 // If NumMaskElts == 0, the comparison is larger than select result. The
8502 // largest real NEON comparison is 64-bits per lane, which means the result is
8503 // at most 32-bits and an illegal vector. Just bail out for now.
8504 EVT SrcVT = N0.getOperand(0).getValueType();
85aaf69f
SL
8505
8506 // Don't try to do this optimization when the setcc itself has i1 operands.
8507 // There are no legal vectors of i1, so this would be pointless.
8508 if (SrcVT == MVT::i1)
8509 return SDValue();
8510
1a4d82fc
JJ
8511 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
8512 if (!ResVT.isVector() || NumMaskElts == 0)
8513 return SDValue();
970d7e83 8514
1a4d82fc
JJ
8515 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
8516 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8517
8518 // First perform a vector comparison, where lane 0 is the one we're interested
8519 // in.
8520 SDLoc DL(N0);
8521 SDValue LHS =
8522 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8523 SDValue RHS =
8524 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8525 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8526
8527 // Now duplicate the comparison mask we want across all other lanes.
8528 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8529 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
8530 Mask = DAG.getNode(ISD::BITCAST, DL,
8531 ResVT.changeVectorElementTypeToInteger(), Mask);
8532
8533 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8534}
970d7e83 8535
1a4d82fc
JJ
8536SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8537 DAGCombinerInfo &DCI) const {
8538 SelectionDAG &DAG = DCI.DAG;
8539 switch (N->getOpcode()) {
8540 default:
8541 break;
8542 case ISD::ADD:
8543 case ISD::SUB:
8544 return performAddSubLongCombine(N, DCI, DAG);
8545 case ISD::XOR:
8546 return performXorCombine(N, DAG, DCI, Subtarget);
8547 case ISD::MUL:
8548 return performMulCombine(N, DAG, DCI, Subtarget);
8549 case ISD::SINT_TO_FP:
8550 case ISD::UINT_TO_FP:
85aaf69f 8551 return performIntToFpCombine(N, DAG, Subtarget);
1a4d82fc
JJ
8552 case ISD::OR:
8553 return performORCombine(N, DCI, Subtarget);
8554 case ISD::INTRINSIC_WO_CHAIN:
8555 return performIntrinsicCombine(N, DCI, Subtarget);
8556 case ISD::ANY_EXTEND:
8557 case ISD::ZERO_EXTEND:
8558 case ISD::SIGN_EXTEND:
8559 return performExtendCombine(N, DCI, DAG);
8560 case ISD::BITCAST:
8561 return performBitcastCombine(N, DCI, DAG);
8562 case ISD::CONCAT_VECTORS:
8563 return performConcatVectorsCombine(N, DCI, DAG);
8564 case ISD::SELECT:
8565 return performSelectCombine(N, DAG);
8566 case ISD::VSELECT:
8567 return performVSelectCombine(N, DCI.DAG);
8568 case ISD::STORE:
8569 return performSTORECombine(N, DCI, DAG, Subtarget);
8570 case AArch64ISD::BRCOND:
8571 return performBRCONDCombine(N, DCI, DAG);
8572 case AArch64ISD::CSEL:
8573 return performCONDCombine(N, DCI, DAG, 2, 3);
8574 case AArch64ISD::DUP:
8575 return performPostLD1Combine(N, DCI, false);
8576 case ISD::INSERT_VECTOR_ELT:
8577 return performPostLD1Combine(N, DCI, true);
8578 case ISD::INTRINSIC_VOID:
8579 case ISD::INTRINSIC_W_CHAIN:
8580 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8581 case Intrinsic::aarch64_neon_ld2:
8582 case Intrinsic::aarch64_neon_ld3:
8583 case Intrinsic::aarch64_neon_ld4:
8584 case Intrinsic::aarch64_neon_ld1x2:
8585 case Intrinsic::aarch64_neon_ld1x3:
8586 case Intrinsic::aarch64_neon_ld1x4:
8587 case Intrinsic::aarch64_neon_ld2lane:
8588 case Intrinsic::aarch64_neon_ld3lane:
8589 case Intrinsic::aarch64_neon_ld4lane:
8590 case Intrinsic::aarch64_neon_ld2r:
8591 case Intrinsic::aarch64_neon_ld3r:
8592 case Intrinsic::aarch64_neon_ld4r:
8593 case Intrinsic::aarch64_neon_st2:
8594 case Intrinsic::aarch64_neon_st3:
8595 case Intrinsic::aarch64_neon_st4:
8596 case Intrinsic::aarch64_neon_st1x2:
8597 case Intrinsic::aarch64_neon_st1x3:
8598 case Intrinsic::aarch64_neon_st1x4:
8599 case Intrinsic::aarch64_neon_st2lane:
8600 case Intrinsic::aarch64_neon_st3lane:
8601 case Intrinsic::aarch64_neon_st4lane:
8602 return performNEONPostLDSTCombine(N, DCI, DAG);
8603 default:
8604 break;
8605 }
8606 }
8607 return SDValue();
970d7e83
LB
8608}
8609
1a4d82fc
JJ
8610// Check if the return value is used as only a return value, as otherwise
8611// we can't perform a tail-call. In particular, we need to check for
8612// target ISD nodes that are returns and any other "odd" constructs
8613// that the generic analysis code won't necessarily catch.
8614bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8615 SDValue &Chain) const {
8616 if (N->getNumValues() != 1)
970d7e83 8617 return false;
1a4d82fc 8618 if (!N->hasNUsesOfValue(1, 0))
970d7e83
LB
8619 return false;
8620
1a4d82fc
JJ
8621 SDValue TCChain = Chain;
8622 SDNode *Copy = *N->use_begin();
8623 if (Copy->getOpcode() == ISD::CopyToReg) {
8624 // If the copy has a glue operand, we conservatively assume it isn't safe to
8625 // perform a tail call.
8626 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8627 MVT::Glue)
8628 return false;
8629 TCChain = Copy->getOperand(0);
8630 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8631 return false;
970d7e83 8632
1a4d82fc
JJ
8633 bool HasRet = false;
8634 for (SDNode *Node : Copy->uses()) {
8635 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8636 return false;
8637 HasRet = true;
8638 }
970d7e83 8639
1a4d82fc
JJ
8640 if (!HasRet)
8641 return false;
970d7e83 8642
1a4d82fc
JJ
8643 Chain = TCChain;
8644 return true;
8645}
970d7e83 8646
1a4d82fc
JJ
8647// Return whether the an instruction can potentially be optimized to a tail
8648// call. This will cause the optimizers to attempt to move, or duplicate,
8649// return instructions to help enable tail call optimizations for this
8650// instruction.
8651bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8652 if (!CI->isTailCall())
8653 return false;
970d7e83 8654
1a4d82fc
JJ
8655 return true;
8656}
970d7e83 8657
1a4d82fc
JJ
8658bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8659 SDValue &Offset,
8660 ISD::MemIndexedMode &AM,
8661 bool &IsInc,
8662 SelectionDAG &DAG) const {
8663 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8664 return false;
970d7e83 8665
1a4d82fc
JJ
8666 Base = Op->getOperand(0);
8667 // All of the indexed addressing mode instructions take a signed
8668 // 9 bit immediate offset.
8669 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8670 int64_t RHSC = (int64_t)RHS->getZExtValue();
8671 if (RHSC >= 256 || RHSC <= -256)
8672 return false;
8673 IsInc = (Op->getOpcode() == ISD::ADD);
8674 Offset = Op->getOperand(1);
8675 return true;
970d7e83 8676 }
1a4d82fc 8677 return false;
970d7e83
LB
8678}
8679
1a4d82fc
JJ
8680bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8681 SDValue &Offset,
8682 ISD::MemIndexedMode &AM,
8683 SelectionDAG &DAG) const {
8684 EVT VT;
8685 SDValue Ptr;
8686 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8687 VT = LD->getMemoryVT();
8688 Ptr = LD->getBasePtr();
8689 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8690 VT = ST->getMemoryVT();
8691 Ptr = ST->getBasePtr();
8692 } else
8693 return false;
970d7e83 8694
1a4d82fc
JJ
8695 bool IsInc;
8696 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8697 return false;
8698 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8699 return true;
970d7e83
LB
8700}
8701
1a4d82fc
JJ
8702bool AArch64TargetLowering::getPostIndexedAddressParts(
8703 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8704 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8705 EVT VT;
8706 SDValue Ptr;
8707 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8708 VT = LD->getMemoryVT();
8709 Ptr = LD->getBasePtr();
8710 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8711 VT = ST->getMemoryVT();
8712 Ptr = ST->getBasePtr();
8713 } else
8714 return false;
970d7e83 8715
1a4d82fc
JJ
8716 bool IsInc;
8717 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8718 return false;
8719 // Post-indexing updates the base, so it's not a valid transform
8720 // if that's not the same as the load's pointer.
8721 if (Ptr != Base)
8722 return false;
8723 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8724 return true;
8725}
970d7e83 8726
1a4d82fc
JJ
8727static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8728 SelectionDAG &DAG) {
1a4d82fc
JJ
8729 SDLoc DL(N);
8730 SDValue Op = N->getOperand(0);
85aaf69f
SL
8731
8732 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
8733 return;
8734
1a4d82fc
JJ
8735 Op = SDValue(
8736 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8737 DAG.getUNDEF(MVT::i32), Op,
8738 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8739 0);
8740 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8741 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
970d7e83
LB
8742}
8743
1a4d82fc
JJ
8744void AArch64TargetLowering::ReplaceNodeResults(
8745 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
970d7e83 8746 switch (N->getOpcode()) {
1a4d82fc
JJ
8747 default:
8748 llvm_unreachable("Don't know how to custom expand this");
8749 case ISD::BITCAST:
8750 ReplaceBITCASTResults(N, Results, DAG);
8751 return;
8752 case ISD::FP_TO_UINT:
8753 case ISD::FP_TO_SINT:
8754 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8755 // Let normal code take care of it by not adding anything to Results.
8756 return;
970d7e83 8757 }
970d7e83
LB
8758}
8759
1a4d82fc
JJ
8760bool AArch64TargetLowering::useLoadStackGuardNode() const {
8761 return true;
970d7e83
LB
8762}
8763
85aaf69f
SL
8764bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
8765 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
8766 // reciprocal if there are three or more FDIVs.
8767 return NumUsers > 2;
8768}
8769
1a4d82fc
JJ
8770TargetLoweringBase::LegalizeTypeAction
8771AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8772 MVT SVT = VT.getSimpleVT();
8773 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
8774 // v4i16, v2i32 instead of to promote.
8775 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8776 || SVT == MVT::v1f32)
8777 return TypeWidenVector;
970d7e83 8778
1a4d82fc 8779 return TargetLoweringBase::getPreferredVectorAction(VT);
970d7e83
LB
8780}
8781
1a4d82fc
JJ
8782// Loads and stores less than 128-bits are already atomic; ones above that
8783// are doomed anyway, so defer to the default libcall and blame the OS when
8784// things go wrong.
8785bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
8786 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
8787 return Size == 128;
8788}
970d7e83 8789
1a4d82fc
JJ
8790// Loads and stores less than 128-bits are already atomic; ones above that
8791// are doomed anyway, so defer to the default libcall and blame the OS when
8792// things go wrong.
8793bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
8794 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
8795 return Size == 128;
8796}
970d7e83 8797
1a4d82fc
JJ
8798// For the real atomic operations, we have ldxr/stxr up to 128 bits,
8799bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8800 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8801 return Size <= 128;
8802}
970d7e83 8803
1a4d82fc
JJ
8804bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
8805 return true;
8806}
970d7e83 8807
1a4d82fc
JJ
8808Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8809 AtomicOrdering Ord) const {
8810 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8811 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
8812 bool IsAcquire = isAtLeastAcquire(Ord);
8813
8814 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8815 // intrinsic must return {i64, i64} and we have to recombine them into a
8816 // single i128 here.
8817 if (ValTy->getPrimitiveSizeInBits() == 128) {
8818 Intrinsic::ID Int =
8819 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8820 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8821
8822 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8823 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8824
8825 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8826 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
8827 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
8828 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
8829 return Builder.CreateOr(
8830 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
970d7e83
LB
8831 }
8832
1a4d82fc
JJ
8833 Type *Tys[] = { Addr->getType() };
8834 Intrinsic::ID Int =
8835 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
8836 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
970d7e83 8837
1a4d82fc
JJ
8838 return Builder.CreateTruncOrBitCast(
8839 Builder.CreateCall(Ldxr, Addr),
8840 cast<PointerType>(Addr->getType())->getElementType());
970d7e83
LB
8841}
8842
1a4d82fc
JJ
8843Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
8844 Value *Val, Value *Addr,
8845 AtomicOrdering Ord) const {
8846 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8847 bool IsRelease = isAtLeastRelease(Ord);
8848
8849 // Since the intrinsics must have legal type, the i128 intrinsics take two
8850 // parameters: "i64, i64". We must marshal Val into the appropriate form
8851 // before the call.
8852 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
8853 Intrinsic::ID Int =
8854 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
8855 Function *Stxr = Intrinsic::getDeclaration(M, Int);
8856 Type *Int64Ty = Type::getInt64Ty(M->getContext());
8857
8858 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
8859 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
8860 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8861 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
970d7e83
LB
8862 }
8863
1a4d82fc
JJ
8864 Intrinsic::ID Int =
8865 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
8866 Type *Tys[] = { Addr->getType() };
8867 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
8868
8869 return Builder.CreateCall2(
8870 Stxr, Builder.CreateZExtOrBitCast(
8871 Val, Stxr->getFunctionType()->getParamType(0)),
8872 Addr);
970d7e83 8873}
85aaf69f
SL
8874
8875bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
8876 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
8877 return Ty->isArrayTy();
8878}