]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/ARM/ARMFastISel.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / ARM / ARMFastISel.cpp
CommitLineData
223e47cc
LB
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
1a4d82fc 17#include "ARMBaseRegisterInfo.h"
223e47cc 18#include "ARMCallingConv.h"
223e47cc 19#include "ARMConstantPoolValue.h"
1a4d82fc
JJ
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
970d7e83 22#include "ARMSubtarget.h"
223e47cc 23#include "MCTargetDesc/ARMAddressingModes.h"
1a4d82fc 24#include "llvm/ADT/STLExtras.h"
223e47cc
LB
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
223e47cc
LB
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
970d7e83 30#include "llvm/CodeGen/MachineInstrBuilder.h"
223e47cc 31#include "llvm/CodeGen/MachineMemOperand.h"
970d7e83 32#include "llvm/CodeGen/MachineModuleInfo.h"
223e47cc 33#include "llvm/CodeGen/MachineRegisterInfo.h"
1a4d82fc 34#include "llvm/IR/CallSite.h"
970d7e83
LB
35#include "llvm/IR/CallingConv.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DerivedTypes.h"
1a4d82fc 38#include "llvm/IR/GetElementPtrTypeIterator.h"
970d7e83
LB
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Module.h"
43#include "llvm/IR/Operator.h"
223e47cc
LB
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/ErrorHandling.h"
223e47cc
LB
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50using namespace llvm;
51
52extern cl::opt<bool> EnableARMLongCalls;
53
54namespace {
55
56 // All possible address modes, plus some.
57 typedef struct Address {
58 enum {
59 RegBase,
60 FrameIndexBase
61 } BaseType;
62
63 union {
64 unsigned Reg;
65 int FI;
66 } Base;
67
68 int Offset;
69
70 // Innocuous defaults for our address.
71 Address()
72 : BaseType(RegBase), Offset(0) {
73 Base.Reg = 0;
74 }
75 } Address;
76
1a4d82fc 77class ARMFastISel final : public FastISel {
223e47cc
LB
78
79 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
80 /// make the right decision when generating code for different targets.
81 const ARMSubtarget *Subtarget;
1a4d82fc 82 Module &M;
223e47cc
LB
83 const TargetMachine &TM;
84 const TargetInstrInfo &TII;
85 const TargetLowering &TLI;
86 ARMFunctionInfo *AFI;
87
88 // Convenience variables to avoid some queries.
89 bool isThumb2;
90 LLVMContext *Context;
91
92 public:
93 explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
970d7e83 94 const TargetLibraryInfo *libInfo)
1a4d82fc
JJ
95 : FastISel(funcInfo, libInfo),
96 M(const_cast<Module &>(*funcInfo.Fn->getParent())),
97 TM(funcInfo.MF->getTarget()),
98 TII(*TM.getSubtargetImpl()->getInstrInfo()),
99 TLI(*TM.getSubtargetImpl()->getTargetLowering()) {
223e47cc
LB
100 Subtarget = &TM.getSubtarget<ARMSubtarget>();
101 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
102 isThumb2 = AFI->isThumbFunction();
103 Context = &funcInfo.Fn->getContext();
104 }
105
106 // Code from FastISel.cpp.
107 private:
1a4d82fc 108 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
223e47cc
LB
109 const TargetRegisterClass *RC,
110 unsigned Op0, bool Op0IsKill);
1a4d82fc 111 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
223e47cc
LB
112 const TargetRegisterClass *RC,
113 unsigned Op0, bool Op0IsKill,
114 unsigned Op1, bool Op1IsKill);
1a4d82fc 115 unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
223e47cc
LB
116 const TargetRegisterClass *RC,
117 unsigned Op0, bool Op0IsKill,
118 unsigned Op1, bool Op1IsKill,
119 unsigned Op2, bool Op2IsKill);
1a4d82fc 120 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
223e47cc
LB
121 const TargetRegisterClass *RC,
122 unsigned Op0, bool Op0IsKill,
123 uint64_t Imm);
1a4d82fc 124 unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
223e47cc
LB
125 const TargetRegisterClass *RC,
126 unsigned Op0, bool Op0IsKill,
127 unsigned Op1, bool Op1IsKill,
128 uint64_t Imm);
1a4d82fc 129 unsigned fastEmitInst_i(unsigned MachineInstOpcode,
223e47cc
LB
130 const TargetRegisterClass *RC,
131 uint64_t Imm);
223e47cc
LB
132
133 // Backend specific FastISel code.
134 private:
1a4d82fc
JJ
135 bool fastSelectInstruction(const Instruction *I) override;
136 unsigned fastMaterializeConstant(const Constant *C) override;
137 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
138 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
139 const LoadInst *LI) override;
140 bool fastLowerArguments() override;
223e47cc
LB
141 private:
142 #include "ARMGenFastISel.inc"
143
144 // Instruction selection routines.
145 private:
146 bool SelectLoad(const Instruction *I);
147 bool SelectStore(const Instruction *I);
148 bool SelectBranch(const Instruction *I);
149 bool SelectIndirectBr(const Instruction *I);
150 bool SelectCmp(const Instruction *I);
151 bool SelectFPExt(const Instruction *I);
152 bool SelectFPTrunc(const Instruction *I);
153 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
154 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
155 bool SelectIToFP(const Instruction *I, bool isSigned);
156 bool SelectFPToI(const Instruction *I, bool isSigned);
157 bool SelectDiv(const Instruction *I, bool isSigned);
158 bool SelectRem(const Instruction *I, bool isSigned);
159 bool SelectCall(const Instruction *I, const char *IntrMemName);
160 bool SelectIntrinsicCall(const IntrinsicInst &I);
161 bool SelectSelect(const Instruction *I);
162 bool SelectRet(const Instruction *I);
163 bool SelectTrunc(const Instruction *I);
164 bool SelectIntExt(const Instruction *I);
165 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
166
167 // Utility routines.
168 private:
169 bool isTypeLegal(Type *Ty, MVT &VT);
170 bool isLoadTypeLegal(Type *Ty, MVT &VT);
171 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
172 bool isZExt);
970d7e83 173 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
223e47cc
LB
174 unsigned Alignment = 0, bool isZExt = true,
175 bool allocReg = true);
970d7e83 176 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
223e47cc
LB
177 unsigned Alignment = 0);
178 bool ARMComputeAddress(const Value *Obj, Address &Addr);
970d7e83 179 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
223e47cc 180 bool ARMIsMemCpySmall(uint64_t Len);
970d7e83
LB
181 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
182 unsigned Alignment);
183 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
184 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
185 unsigned ARMMaterializeInt(const Constant *C, MVT VT);
186 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
187 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
188 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
223e47cc 189 unsigned ARMSelectCallOp(bool UseReg);
970d7e83 190 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
223e47cc 191
1a4d82fc
JJ
192 const TargetLowering *getTargetLowering() {
193 return TM.getSubtargetImpl()->getTargetLowering();
194 }
195
223e47cc
LB
196 // Call handling routines.
197 private:
198 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
199 bool Return,
200 bool isVarArg);
201 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
202 SmallVectorImpl<unsigned> &ArgRegs,
203 SmallVectorImpl<MVT> &ArgVTs,
204 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
205 SmallVectorImpl<unsigned> &RegArgs,
206 CallingConv::ID CC,
207 unsigned &NumBytes,
208 bool isVarArg);
209 unsigned getLibcallReg(const Twine &Name);
210 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
211 const Instruction *I, CallingConv::ID CC,
212 unsigned &NumBytes, bool isVarArg);
213 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
214
215 // OptionalDef handling routines.
216 private:
217 bool isARMNEONPred(const MachineInstr *MI);
218 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
219 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
970d7e83 220 void AddLoadStoreOperands(MVT VT, Address &Addr,
223e47cc
LB
221 const MachineInstrBuilder &MIB,
222 unsigned Flags, bool useAM3);
223};
224
225} // end anonymous namespace
226
227#include "ARMGenCallingConv.inc"
228
229// DefinesOptionalPredicate - This is different from DefinesPredicate in that
230// we don't care about implicit defs here, just places we'll need to add a
231// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
232bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
233 if (!MI->hasOptionalDef())
234 return false;
235
236 // Look to see if our OptionalDef is defining CPSR or CCR.
237 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
238 const MachineOperand &MO = MI->getOperand(i);
239 if (!MO.isReg() || !MO.isDef()) continue;
240 if (MO.getReg() == ARM::CPSR)
241 *CPSR = true;
242 }
243 return true;
244}
245
246bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
247 const MCInstrDesc &MCID = MI->getDesc();
248
1a4d82fc 249 // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
223e47cc
LB
250 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
251 AFI->isThumb2Function())
1a4d82fc 252 return MI->isPredicable();
223e47cc
LB
253
254 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
255 if (MCID.OpInfo[i].isPredicate())
256 return true;
257
258 return false;
259}
260
261// If the machine is predicable go ahead and add the predicate operands, if
262// it needs default CC operands add those.
263// TODO: If we want to support thumb1 then we'll need to deal with optional
264// CPSR defs that need to be added before the remaining operands. See s_cc_out
265// for descriptions why.
266const MachineInstrBuilder &
267ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
268 MachineInstr *MI = &*MIB;
269
270 // Do we use a predicate? or...
271 // Are we NEON in ARM mode and have a predicate operand? If so, I know
272 // we're not predicable but add it anyways.
1a4d82fc 273 if (isARMNEONPred(MI))
223e47cc
LB
274 AddDefaultPred(MIB);
275
276 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
277 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
278 bool CPSR = false;
279 if (DefinesOptionalPredicate(MI, &CPSR)) {
280 if (CPSR)
281 AddDefaultT1CC(MIB);
282 else
283 AddDefaultCC(MIB);
284 }
285 return MIB;
286}
287
1a4d82fc 288unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
223e47cc
LB
289 const TargetRegisterClass *RC,
290 unsigned Op0, bool Op0IsKill) {
291 unsigned ResultReg = createResultReg(RC);
292 const MCInstrDesc &II = TII.get(MachineInstOpcode);
293
1a4d82fc
JJ
294 // Make sure the input operand is sufficiently constrained to be legal
295 // for this instruction.
296 Op0 = constrainOperandRegClass(II, Op0, 1);
223e47cc 297 if (II.getNumDefs() >= 1) {
1a4d82fc
JJ
298 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
299 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
223e47cc 300 } else {
1a4d82fc 301 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
223e47cc 302 .addReg(Op0, Op0IsKill * RegState::Kill));
1a4d82fc 303 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
304 TII.get(TargetOpcode::COPY), ResultReg)
305 .addReg(II.ImplicitDefs[0]));
306 }
307 return ResultReg;
308}
309
1a4d82fc 310unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
223e47cc
LB
311 const TargetRegisterClass *RC,
312 unsigned Op0, bool Op0IsKill,
313 unsigned Op1, bool Op1IsKill) {
314 unsigned ResultReg = createResultReg(RC);
315 const MCInstrDesc &II = TII.get(MachineInstOpcode);
316
1a4d82fc
JJ
317 // Make sure the input operands are sufficiently constrained to be legal
318 // for this instruction.
319 Op0 = constrainOperandRegClass(II, Op0, 1);
320 Op1 = constrainOperandRegClass(II, Op1, 2);
321
223e47cc 322 if (II.getNumDefs() >= 1) {
1a4d82fc
JJ
323 AddOptionalDefs(
324 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
325 .addReg(Op0, Op0IsKill * RegState::Kill)
326 .addReg(Op1, Op1IsKill * RegState::Kill));
223e47cc 327 } else {
1a4d82fc 328 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
223e47cc
LB
329 .addReg(Op0, Op0IsKill * RegState::Kill)
330 .addReg(Op1, Op1IsKill * RegState::Kill));
1a4d82fc 331 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
332 TII.get(TargetOpcode::COPY), ResultReg)
333 .addReg(II.ImplicitDefs[0]));
334 }
335 return ResultReg;
336}
337
1a4d82fc 338unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
223e47cc
LB
339 const TargetRegisterClass *RC,
340 unsigned Op0, bool Op0IsKill,
341 unsigned Op1, bool Op1IsKill,
342 unsigned Op2, bool Op2IsKill) {
343 unsigned ResultReg = createResultReg(RC);
344 const MCInstrDesc &II = TII.get(MachineInstOpcode);
345
1a4d82fc
JJ
346 // Make sure the input operands are sufficiently constrained to be legal
347 // for this instruction.
348 Op0 = constrainOperandRegClass(II, Op0, 1);
349 Op1 = constrainOperandRegClass(II, Op1, 2);
350 Op2 = constrainOperandRegClass(II, Op1, 3);
351
223e47cc 352 if (II.getNumDefs() >= 1) {
1a4d82fc
JJ
353 AddOptionalDefs(
354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
355 .addReg(Op0, Op0IsKill * RegState::Kill)
356 .addReg(Op1, Op1IsKill * RegState::Kill)
357 .addReg(Op2, Op2IsKill * RegState::Kill));
223e47cc 358 } else {
1a4d82fc 359 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
223e47cc
LB
360 .addReg(Op0, Op0IsKill * RegState::Kill)
361 .addReg(Op1, Op1IsKill * RegState::Kill)
362 .addReg(Op2, Op2IsKill * RegState::Kill));
1a4d82fc 363 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
364 TII.get(TargetOpcode::COPY), ResultReg)
365 .addReg(II.ImplicitDefs[0]));
366 }
367 return ResultReg;
368}
369
1a4d82fc 370unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
223e47cc
LB
371 const TargetRegisterClass *RC,
372 unsigned Op0, bool Op0IsKill,
373 uint64_t Imm) {
374 unsigned ResultReg = createResultReg(RC);
375 const MCInstrDesc &II = TII.get(MachineInstOpcode);
376
1a4d82fc
JJ
377 // Make sure the input operand is sufficiently constrained to be legal
378 // for this instruction.
379 Op0 = constrainOperandRegClass(II, Op0, 1);
223e47cc 380 if (II.getNumDefs() >= 1) {
1a4d82fc
JJ
381 AddOptionalDefs(
382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
383 .addReg(Op0, Op0IsKill * RegState::Kill)
384 .addImm(Imm));
223e47cc 385 } else {
1a4d82fc 386 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
223e47cc
LB
387 .addReg(Op0, Op0IsKill * RegState::Kill)
388 .addImm(Imm));
1a4d82fc 389 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
390 TII.get(TargetOpcode::COPY), ResultReg)
391 .addReg(II.ImplicitDefs[0]));
392 }
393 return ResultReg;
394}
395
1a4d82fc 396unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
223e47cc
LB
397 const TargetRegisterClass *RC,
398 unsigned Op0, bool Op0IsKill,
399 unsigned Op1, bool Op1IsKill,
400 uint64_t Imm) {
401 unsigned ResultReg = createResultReg(RC);
402 const MCInstrDesc &II = TII.get(MachineInstOpcode);
403
1a4d82fc
JJ
404 // Make sure the input operands are sufficiently constrained to be legal
405 // for this instruction.
406 Op0 = constrainOperandRegClass(II, Op0, 1);
407 Op1 = constrainOperandRegClass(II, Op1, 2);
223e47cc 408 if (II.getNumDefs() >= 1) {
1a4d82fc
JJ
409 AddOptionalDefs(
410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
411 .addReg(Op0, Op0IsKill * RegState::Kill)
412 .addReg(Op1, Op1IsKill * RegState::Kill)
413 .addImm(Imm));
223e47cc 414 } else {
1a4d82fc 415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
223e47cc
LB
416 .addReg(Op0, Op0IsKill * RegState::Kill)
417 .addReg(Op1, Op1IsKill * RegState::Kill)
418 .addImm(Imm));
1a4d82fc 419 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
420 TII.get(TargetOpcode::COPY), ResultReg)
421 .addReg(II.ImplicitDefs[0]));
422 }
423 return ResultReg;
424}
425
1a4d82fc 426unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
223e47cc
LB
427 const TargetRegisterClass *RC,
428 uint64_t Imm) {
429 unsigned ResultReg = createResultReg(RC);
430 const MCInstrDesc &II = TII.get(MachineInstOpcode);
431
432 if (II.getNumDefs() >= 1) {
1a4d82fc
JJ
433 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
434 ResultReg).addImm(Imm));
223e47cc 435 } else {
1a4d82fc 436 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
223e47cc 437 .addImm(Imm));
1a4d82fc 438 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
439 TII.get(TargetOpcode::COPY), ResultReg)
440 .addReg(II.ImplicitDefs[0]));
441 }
442 return ResultReg;
443}
444
223e47cc
LB
445// TODO: Don't worry about 64-bit now, but when this is fixed remove the
446// checks from the various callers.
970d7e83 447unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
223e47cc
LB
448 if (VT == MVT::f64) return 0;
449
450 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
1a4d82fc 451 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
452 TII.get(ARM::VMOVSR), MoveReg)
453 .addReg(SrcReg));
454 return MoveReg;
455}
456
970d7e83 457unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
223e47cc
LB
458 if (VT == MVT::i64) return 0;
459
460 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
1a4d82fc 461 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
462 TII.get(ARM::VMOVRS), MoveReg)
463 .addReg(SrcReg));
464 return MoveReg;
465}
466
467// For double width floating point we need to materialize two constants
468// (the high and the low) into integer registers then use a move to get
469// the combined constant into an FP reg.
970d7e83 470unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
223e47cc
LB
471 const APFloat Val = CFP->getValueAPF();
472 bool is64bit = VT == MVT::f64;
473
474 // This checks to see if we can use VFP3 instructions to materialize
475 // a constant, otherwise we have to go through the constant pool.
476 if (TLI.isFPImmLegal(Val, VT)) {
477 int Imm;
478 unsigned Opc;
479 if (is64bit) {
480 Imm = ARM_AM::getFP64Imm(Val);
481 Opc = ARM::FCONSTD;
482 } else {
483 Imm = ARM_AM::getFP32Imm(Val);
484 Opc = ARM::FCONSTS;
485 }
486 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1a4d82fc
JJ
487 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
488 TII.get(Opc), DestReg).addImm(Imm));
223e47cc
LB
489 return DestReg;
490 }
491
492 // Require VFP2 for loading fp constants.
493 if (!Subtarget->hasVFP2()) return false;
494
495 // MachineConstantPool wants an explicit alignment.
1a4d82fc 496 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
223e47cc
LB
497 if (Align == 0) {
498 // TODO: Figure out if this is correct.
1a4d82fc 499 Align = DL.getTypeAllocSize(CFP->getType());
223e47cc
LB
500 }
501 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
502 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
503 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
504
505 // The extra reg is for addrmode5.
1a4d82fc
JJ
506 AddOptionalDefs(
507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
508 .addConstantPoolIndex(Idx)
509 .addReg(0));
223e47cc
LB
510 return DestReg;
511}
512
970d7e83 513unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
223e47cc
LB
514
515 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
1a4d82fc 516 return 0;
223e47cc
LB
517
518 // If we can do this in a single instruction without a constant pool entry
519 // do so now.
520 const ConstantInt *CI = cast<ConstantInt>(C);
521 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
522 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
970d7e83
LB
523 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
524 &ARM::GPRRegClass;
525 unsigned ImmReg = createResultReg(RC);
1a4d82fc 526 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
527 TII.get(Opc), ImmReg)
528 .addImm(CI->getZExtValue()));
529 return ImmReg;
530 }
531
532 // Use MVN to emit negative constants.
533 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
534 unsigned Imm = (unsigned)~(CI->getSExtValue());
535 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
536 (ARM_AM::getSOImmVal(Imm) != -1);
537 if (UseImm) {
538 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
1a4d82fc
JJ
539 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
540 &ARM::GPRRegClass;
541 unsigned ImmReg = createResultReg(RC);
542 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
543 TII.get(Opc), ImmReg)
544 .addImm(Imm));
545 return ImmReg;
546 }
547 }
548
1a4d82fc
JJ
549 unsigned ResultReg = 0;
550 if (Subtarget->useMovt(*FuncInfo.MF))
551 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
552
553 if (ResultReg)
554 return ResultReg;
555
223e47cc
LB
556 // Load from constant pool. For now 32-bit only.
557 if (VT != MVT::i32)
1a4d82fc 558 return 0;
223e47cc
LB
559
560 // MachineConstantPool wants an explicit alignment.
1a4d82fc 561 unsigned Align = DL.getPrefTypeAlignment(C->getType());
223e47cc
LB
562 if (Align == 0) {
563 // TODO: Figure out if this is correct.
1a4d82fc 564 Align = DL.getTypeAllocSize(C->getType());
223e47cc
LB
565 }
566 unsigned Idx = MCP.getConstantPoolIndex(C, Align);
1a4d82fc 567 ResultReg = createResultReg(TLI.getRegClassFor(VT));
223e47cc 568 if (isThumb2)
1a4d82fc
JJ
569 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
570 TII.get(ARM::t2LDRpci), ResultReg)
571 .addConstantPoolIndex(Idx));
572 else {
223e47cc 573 // The extra immediate is for addrmode2.
1a4d82fc
JJ
574 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
575 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
576 TII.get(ARM::LDRcp), ResultReg)
577 .addConstantPoolIndex(Idx)
578 .addImm(0));
579 }
580 return ResultReg;
223e47cc
LB
581}
582
970d7e83 583unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
223e47cc
LB
584 // For now 32-bit only.
585 if (VT != MVT::i32) return 0;
586
587 Reloc::Model RelocM = TM.getRelocationModel();
588 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
85aaf69f
SL
589 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
590 : &ARM::GPRRegClass;
970d7e83 591 unsigned DestReg = createResultReg(RC);
223e47cc 592
1a4d82fc
JJ
593 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
594 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
595 bool IsThreadLocal = GVar && GVar->isThreadLocal();
596 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
597
223e47cc 598 // Use movw+movt when possible, it avoids constant pool entries.
1a4d82fc
JJ
599 // Non-darwin targets only support static movt relocations in FastISel.
600 if (Subtarget->useMovt(*FuncInfo.MF) &&
601 (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) {
223e47cc 602 unsigned Opc;
1a4d82fc
JJ
603 unsigned char TF = 0;
604 if (Subtarget->isTargetMachO())
605 TF = ARMII::MO_NONLAZY;
606
223e47cc
LB
607 switch (RelocM) {
608 case Reloc::PIC_:
609 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
610 break;
223e47cc
LB
611 default:
612 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
613 break;
614 }
1a4d82fc
JJ
615 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
616 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
223e47cc
LB
617 } else {
618 // MachineConstantPool wants an explicit alignment.
1a4d82fc 619 unsigned Align = DL.getPrefTypeAlignment(GV->getType());
223e47cc
LB
620 if (Align == 0) {
621 // TODO: Figure out if this is correct.
1a4d82fc 622 Align = DL.getTypeAllocSize(GV->getType());
223e47cc
LB
623 }
624
625 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
626 return ARMLowerPICELF(GV, Align, VT);
627
628 // Grab index.
629 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
630 (Subtarget->isThumb() ? 4 : 8);
631 unsigned Id = AFI->createPICLabelUId();
632 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
633 ARMCP::CPValue,
634 PCAdj);
635 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
636
637 // Load value.
638 MachineInstrBuilder MIB;
639 if (isThumb2) {
640 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
1a4d82fc
JJ
641 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
642 DestReg).addConstantPoolIndex(Idx);
223e47cc
LB
643 if (RelocM == Reloc::PIC_)
644 MIB.addImm(Id);
645 AddOptionalDefs(MIB);
646 } else {
647 // The extra immediate is for addrmode2.
1a4d82fc
JJ
648 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
649 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
650 TII.get(ARM::LDRcp), DestReg)
651 .addConstantPoolIndex(Idx)
652 .addImm(0);
223e47cc
LB
653 AddOptionalDefs(MIB);
654
655 if (RelocM == Reloc::PIC_) {
656 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
657 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
658
659 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1a4d82fc 660 DbgLoc, TII.get(Opc), NewDestReg)
223e47cc
LB
661 .addReg(DestReg)
662 .addImm(Id);
663 AddOptionalDefs(MIB);
664 return NewDestReg;
665 }
666 }
667 }
668
669 if (IsIndirect) {
670 MachineInstrBuilder MIB;
671 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
672 if (isThumb2)
1a4d82fc 673 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
674 TII.get(ARM::t2LDRi12), NewDestReg)
675 .addReg(DestReg)
676 .addImm(0);
677 else
1a4d82fc
JJ
678 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
679 TII.get(ARM::LDRi12), NewDestReg)
680 .addReg(DestReg)
681 .addImm(0);
223e47cc
LB
682 DestReg = NewDestReg;
683 AddOptionalDefs(MIB);
684 }
685
686 return DestReg;
687}
688
1a4d82fc 689unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
970d7e83 690 EVT CEVT = TLI.getValueType(C->getType(), true);
223e47cc
LB
691
692 // Only handle simple types.
970d7e83
LB
693 if (!CEVT.isSimple()) return 0;
694 MVT VT = CEVT.getSimpleVT();
223e47cc
LB
695
696 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
697 return ARMMaterializeFP(CFP, VT);
698 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
699 return ARMMaterializeGV(GV, VT);
700 else if (isa<ConstantInt>(C))
701 return ARMMaterializeInt(C, VT);
702
703 return 0;
704}
705
706// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
707
1a4d82fc 708unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
223e47cc
LB
709 // Don't handle dynamic allocas.
710 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
711
712 MVT VT;
713 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
714
715 DenseMap<const AllocaInst*, int>::iterator SI =
716 FuncInfo.StaticAllocaMap.find(AI);
717
718 // This will get lowered later into the correct offsets and registers
719 // via rewriteXFrameIndex.
720 if (SI != FuncInfo.StaticAllocaMap.end()) {
1a4d82fc 721 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
223e47cc
LB
722 const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
723 unsigned ResultReg = createResultReg(RC);
1a4d82fc
JJ
724 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
725
726 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
727 TII.get(Opc), ResultReg)
728 .addFrameIndex(SI->second)
729 .addImm(0));
730 return ResultReg;
731 }
732
733 return 0;
734}
735
736bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
737 EVT evt = TLI.getValueType(Ty, true);
738
739 // Only handle simple types.
740 if (evt == MVT::Other || !evt.isSimple()) return false;
741 VT = evt.getSimpleVT();
742
743 // Handle all legal types, i.e. a register that will directly hold this
744 // value.
745 return TLI.isTypeLegal(VT);
746}
747
748bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
749 if (isTypeLegal(Ty, VT)) return true;
750
751 // If this is a type than can be sign or zero-extended to a basic operation
752 // go ahead and accept it now.
753 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
754 return true;
755
756 return false;
757}
758
759// Computes the address to get to an object.
760bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
761 // Some boilerplate from the X86 FastISel.
1a4d82fc 762 const User *U = nullptr;
223e47cc
LB
763 unsigned Opcode = Instruction::UserOp1;
764 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
765 // Don't walk into other basic blocks unless the object is an alloca from
766 // another block, otherwise it may not have a virtual register assigned.
767 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
768 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
769 Opcode = I->getOpcode();
770 U = I;
771 }
772 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
773 Opcode = C->getOpcode();
774 U = C;
775 }
776
777 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
778 if (Ty->getAddressSpace() > 255)
779 // Fast instruction selection doesn't support the special
780 // address spaces.
781 return false;
782
783 switch (Opcode) {
784 default:
785 break;
1a4d82fc 786 case Instruction::BitCast:
223e47cc
LB
787 // Look through bitcasts.
788 return ARMComputeAddress(U->getOperand(0), Addr);
1a4d82fc 789 case Instruction::IntToPtr:
223e47cc
LB
790 // Look past no-op inttoptrs.
791 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
792 return ARMComputeAddress(U->getOperand(0), Addr);
793 break;
1a4d82fc 794 case Instruction::PtrToInt:
223e47cc
LB
795 // Look past no-op ptrtoints.
796 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
797 return ARMComputeAddress(U->getOperand(0), Addr);
798 break;
223e47cc
LB
799 case Instruction::GetElementPtr: {
800 Address SavedAddr = Addr;
801 int TmpOffset = Addr.Offset;
802
803 // Iterate through the GEP folding the constants into offsets where
804 // we can.
805 gep_type_iterator GTI = gep_type_begin(U);
806 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
807 i != e; ++i, ++GTI) {
808 const Value *Op = *i;
809 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1a4d82fc 810 const StructLayout *SL = DL.getStructLayout(STy);
223e47cc
LB
811 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
812 TmpOffset += SL->getElementOffset(Idx);
813 } else {
1a4d82fc 814 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
223e47cc
LB
815 for (;;) {
816 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
817 // Constant-offset addressing.
818 TmpOffset += CI->getSExtValue() * S;
819 break;
820 }
1a4d82fc
JJ
821 if (canFoldAddIntoGEP(U, Op)) {
822 // A compatible add with a constant operand. Fold the constant.
223e47cc
LB
823 ConstantInt *CI =
824 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
825 TmpOffset += CI->getSExtValue() * S;
826 // Iterate on the other operand.
827 Op = cast<AddOperator>(Op)->getOperand(0);
828 continue;
829 }
830 // Unsupported
831 goto unsupported_gep;
832 }
833 }
834 }
835
836 // Try to grab the base operand now.
837 Addr.Offset = TmpOffset;
838 if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
839
840 // We failed, restore everything and try the other options.
841 Addr = SavedAddr;
842
843 unsupported_gep:
844 break;
845 }
846 case Instruction::Alloca: {
847 const AllocaInst *AI = cast<AllocaInst>(Obj);
848 DenseMap<const AllocaInst*, int>::iterator SI =
849 FuncInfo.StaticAllocaMap.find(AI);
850 if (SI != FuncInfo.StaticAllocaMap.end()) {
851 Addr.BaseType = Address::FrameIndexBase;
852 Addr.Base.FI = SI->second;
853 return true;
854 }
855 break;
856 }
857 }
858
859 // Try to get this in a register if nothing else has worked.
860 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
861 return Addr.Base.Reg != 0;
862}
863
970d7e83 864void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
223e47cc 865 bool needsLowering = false;
970d7e83 866 switch (VT.SimpleTy) {
223e47cc
LB
867 default: llvm_unreachable("Unhandled load/store type!");
868 case MVT::i1:
869 case MVT::i8:
870 case MVT::i16:
871 case MVT::i32:
872 if (!useAM3) {
873 // Integer loads/stores handle 12-bit offsets.
874 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
875 // Handle negative offsets.
876 if (needsLowering && isThumb2)
877 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
878 Addr.Offset > -256);
879 } else {
880 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
881 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
882 }
883 break;
884 case MVT::f32:
885 case MVT::f64:
886 // Floating point operands handle 8-bit offsets.
887 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
888 break;
889 }
890
891 // If this is a stack pointer and the offset needs to be simplified then
892 // put the alloca address into a register, set the base type back to
893 // register and continue. This should almost never happen.
894 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
85aaf69f
SL
895 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
896 : &ARM::GPRRegClass;
223e47cc
LB
897 unsigned ResultReg = createResultReg(RC);
898 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
1a4d82fc 899 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
900 TII.get(Opc), ResultReg)
901 .addFrameIndex(Addr.Base.FI)
902 .addImm(0));
903 Addr.Base.Reg = ResultReg;
904 Addr.BaseType = Address::RegBase;
905 }
906
907 // Since the offset is too large for the load/store instruction
908 // get the reg+offset into a register.
909 if (needsLowering) {
1a4d82fc 910 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
223e47cc
LB
911 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
912 Addr.Offset = 0;
913 }
914}
915
970d7e83 916void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
223e47cc
LB
917 const MachineInstrBuilder &MIB,
918 unsigned Flags, bool useAM3) {
919 // addrmode5 output depends on the selection dag addressing dividing the
920 // offset by 4 that it then later multiplies. Do this here as well.
970d7e83 921 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
223e47cc
LB
922 Addr.Offset /= 4;
923
924 // Frame base works a bit differently. Handle it separately.
925 if (Addr.BaseType == Address::FrameIndexBase) {
926 int FI = Addr.Base.FI;
927 int Offset = Addr.Offset;
928 MachineMemOperand *MMO =
929 FuncInfo.MF->getMachineMemOperand(
930 MachinePointerInfo::getFixedStack(FI, Offset),
931 Flags,
932 MFI.getObjectSize(FI),
933 MFI.getObjectAlignment(FI));
934 // Now add the rest of the operands.
935 MIB.addFrameIndex(FI);
936
937 // ARM halfword load/stores and signed byte loads need an additional
938 // operand.
939 if (useAM3) {
940 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
941 MIB.addReg(0);
942 MIB.addImm(Imm);
943 } else {
944 MIB.addImm(Addr.Offset);
945 }
946 MIB.addMemOperand(MMO);
947 } else {
948 // Now add the rest of the operands.
949 MIB.addReg(Addr.Base.Reg);
950
951 // ARM halfword load/stores and signed byte loads need an additional
952 // operand.
953 if (useAM3) {
954 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
955 MIB.addReg(0);
956 MIB.addImm(Imm);
957 } else {
958 MIB.addImm(Addr.Offset);
959 }
960 }
961 AddOptionalDefs(MIB);
962}
963
970d7e83 964bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
223e47cc 965 unsigned Alignment, bool isZExt, bool allocReg) {
223e47cc
LB
966 unsigned Opc;
967 bool useAM3 = false;
968 bool needVMOV = false;
969 const TargetRegisterClass *RC;
970d7e83 970 switch (VT.SimpleTy) {
223e47cc
LB
971 // This is mostly going to be Neon/vector support.
972 default: return false;
973 case MVT::i1:
974 case MVT::i8:
975 if (isThumb2) {
976 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
977 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
978 else
979 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
980 } else {
981 if (isZExt) {
982 Opc = ARM::LDRBi12;
983 } else {
984 Opc = ARM::LDRSB;
985 useAM3 = true;
986 }
987 }
1a4d82fc 988 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
223e47cc
LB
989 break;
990 case MVT::i16:
991 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
992 return false;
993
994 if (isThumb2) {
995 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
996 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
997 else
998 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
999 } else {
1000 Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1001 useAM3 = true;
1002 }
1a4d82fc 1003 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
223e47cc
LB
1004 break;
1005 case MVT::i32:
1006 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1007 return false;
1008
1009 if (isThumb2) {
1010 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1011 Opc = ARM::t2LDRi8;
1012 else
1013 Opc = ARM::t2LDRi12;
1014 } else {
1015 Opc = ARM::LDRi12;
1016 }
1a4d82fc 1017 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
223e47cc
LB
1018 break;
1019 case MVT::f32:
1020 if (!Subtarget->hasVFP2()) return false;
1021 // Unaligned loads need special handling. Floats require word-alignment.
1022 if (Alignment && Alignment < 4) {
1023 needVMOV = true;
1024 VT = MVT::i32;
1025 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1a4d82fc 1026 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
223e47cc
LB
1027 } else {
1028 Opc = ARM::VLDRS;
1029 RC = TLI.getRegClassFor(VT);
1030 }
1031 break;
1032 case MVT::f64:
1033 if (!Subtarget->hasVFP2()) return false;
1034 // FIXME: Unaligned loads need special handling. Doublewords require
1035 // word-alignment.
1036 if (Alignment && Alignment < 4)
1037 return false;
1038
1039 Opc = ARM::VLDRD;
1040 RC = TLI.getRegClassFor(VT);
1041 break;
1042 }
1043 // Simplify this down to something we can handle.
1044 ARMSimplifyAddress(Addr, VT, useAM3);
1045
1046 // Create the base instruction, then add the operands.
1047 if (allocReg)
1048 ResultReg = createResultReg(RC);
1049 assert (ResultReg > 255 && "Expected an allocated virtual register.");
1a4d82fc 1050 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1051 TII.get(Opc), ResultReg);
1052 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1053
1054 // If we had an unaligned load of a float we've converted it to an regular
1055 // load. Now we must move from the GRP to the FP register.
1056 if (needVMOV) {
1057 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1a4d82fc 1058 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1059 TII.get(ARM::VMOVSR), MoveReg)
1060 .addReg(ResultReg));
1061 ResultReg = MoveReg;
1062 }
1063 return true;
1064}
1065
1066bool ARMFastISel::SelectLoad(const Instruction *I) {
1067 // Atomic loads need special handling.
1068 if (cast<LoadInst>(I)->isAtomic())
1069 return false;
1070
1071 // Verify we have a legal type before going any further.
1072 MVT VT;
1073 if (!isLoadTypeLegal(I->getType(), VT))
1074 return false;
1075
1076 // See if we can handle this address.
1077 Address Addr;
1078 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1079
1080 unsigned ResultReg;
1081 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1082 return false;
1a4d82fc 1083 updateValueMap(I, ResultReg);
223e47cc
LB
1084 return true;
1085}
1086
970d7e83 1087bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
223e47cc
LB
1088 unsigned Alignment) {
1089 unsigned StrOpc;
1090 bool useAM3 = false;
970d7e83 1091 switch (VT.SimpleTy) {
223e47cc
LB
1092 // This is mostly going to be Neon/vector support.
1093 default: return false;
1094 case MVT::i1: {
85aaf69f
SL
1095 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1096 : &ARM::GPRRegClass);
223e47cc 1097 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1a4d82fc
JJ
1098 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1099 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1100 TII.get(Opc), Res)
1101 .addReg(SrcReg).addImm(1));
1102 SrcReg = Res;
1103 } // Fallthrough here.
1104 case MVT::i8:
1105 if (isThumb2) {
1106 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1107 StrOpc = ARM::t2STRBi8;
1108 else
1109 StrOpc = ARM::t2STRBi12;
1110 } else {
1111 StrOpc = ARM::STRBi12;
1112 }
1113 break;
1114 case MVT::i16:
1115 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1116 return false;
1117
1118 if (isThumb2) {
1119 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1120 StrOpc = ARM::t2STRHi8;
1121 else
1122 StrOpc = ARM::t2STRHi12;
1123 } else {
1124 StrOpc = ARM::STRH;
1125 useAM3 = true;
1126 }
1127 break;
1128 case MVT::i32:
1129 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1130 return false;
1131
1132 if (isThumb2) {
1133 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1134 StrOpc = ARM::t2STRi8;
1135 else
1136 StrOpc = ARM::t2STRi12;
1137 } else {
1138 StrOpc = ARM::STRi12;
1139 }
1140 break;
1141 case MVT::f32:
1142 if (!Subtarget->hasVFP2()) return false;
1143 // Unaligned stores need special handling. Floats require word-alignment.
1144 if (Alignment && Alignment < 4) {
1145 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1a4d82fc 1146 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1147 TII.get(ARM::VMOVRS), MoveReg)
1148 .addReg(SrcReg));
1149 SrcReg = MoveReg;
1150 VT = MVT::i32;
1151 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1152 } else {
1153 StrOpc = ARM::VSTRS;
1154 }
1155 break;
1156 case MVT::f64:
1157 if (!Subtarget->hasVFP2()) return false;
1158 // FIXME: Unaligned stores need special handling. Doublewords require
1159 // word-alignment.
1160 if (Alignment && Alignment < 4)
1161 return false;
1162
1163 StrOpc = ARM::VSTRD;
1164 break;
1165 }
1166 // Simplify this down to something we can handle.
1167 ARMSimplifyAddress(Addr, VT, useAM3);
1168
1169 // Create the base instruction, then add the operands.
1a4d82fc
JJ
1170 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1171 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1172 TII.get(StrOpc))
1173 .addReg(SrcReg);
1174 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1175 return true;
1176}
1177
1178bool ARMFastISel::SelectStore(const Instruction *I) {
1179 Value *Op0 = I->getOperand(0);
1180 unsigned SrcReg = 0;
1181
1182 // Atomic stores need special handling.
1183 if (cast<StoreInst>(I)->isAtomic())
1184 return false;
1185
1186 // Verify we have a legal type before going any further.
1187 MVT VT;
1188 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1189 return false;
1190
1191 // Get the value to be stored into a register.
1192 SrcReg = getRegForValue(Op0);
1193 if (SrcReg == 0) return false;
1194
1195 // See if we can handle this address.
1196 Address Addr;
1197 if (!ARMComputeAddress(I->getOperand(1), Addr))
1198 return false;
1199
1200 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1201 return false;
1202 return true;
1203}
1204
1205static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1206 switch (Pred) {
1207 // Needs two compares...
1208 case CmpInst::FCMP_ONE:
1209 case CmpInst::FCMP_UEQ:
1210 default:
1211 // AL is our "false" for now. The other two need more compares.
1212 return ARMCC::AL;
1213 case CmpInst::ICMP_EQ:
1214 case CmpInst::FCMP_OEQ:
1215 return ARMCC::EQ;
1216 case CmpInst::ICMP_SGT:
1217 case CmpInst::FCMP_OGT:
1218 return ARMCC::GT;
1219 case CmpInst::ICMP_SGE:
1220 case CmpInst::FCMP_OGE:
1221 return ARMCC::GE;
1222 case CmpInst::ICMP_UGT:
1223 case CmpInst::FCMP_UGT:
1224 return ARMCC::HI;
1225 case CmpInst::FCMP_OLT:
1226 return ARMCC::MI;
1227 case CmpInst::ICMP_ULE:
1228 case CmpInst::FCMP_OLE:
1229 return ARMCC::LS;
1230 case CmpInst::FCMP_ORD:
1231 return ARMCC::VC;
1232 case CmpInst::FCMP_UNO:
1233 return ARMCC::VS;
1234 case CmpInst::FCMP_UGE:
1235 return ARMCC::PL;
1236 case CmpInst::ICMP_SLT:
1237 case CmpInst::FCMP_ULT:
1238 return ARMCC::LT;
1239 case CmpInst::ICMP_SLE:
1240 case CmpInst::FCMP_ULE:
1241 return ARMCC::LE;
1242 case CmpInst::FCMP_UNE:
1243 case CmpInst::ICMP_NE:
1244 return ARMCC::NE;
1245 case CmpInst::ICMP_UGE:
1246 return ARMCC::HS;
1247 case CmpInst::ICMP_ULT:
1248 return ARMCC::LO;
1249 }
1250}
1251
1252bool ARMFastISel::SelectBranch(const Instruction *I) {
1253 const BranchInst *BI = cast<BranchInst>(I);
1254 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1255 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1256
1257 // Simple branch support.
1258
1259 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1260 // behavior.
1261 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1262 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1263
1264 // Get the compare predicate.
1265 // Try to take advantage of fallthrough opportunities.
1266 CmpInst::Predicate Predicate = CI->getPredicate();
1267 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1268 std::swap(TBB, FBB);
1269 Predicate = CmpInst::getInversePredicate(Predicate);
1270 }
1271
1272 ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1273
1274 // We may not handle every CC for now.
1275 if (ARMPred == ARMCC::AL) return false;
1276
1277 // Emit the compare.
1278 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1279 return false;
1280
1281 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1a4d82fc 1282 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
223e47cc 1283 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1a4d82fc 1284 fastEmitBranch(FBB, DbgLoc);
223e47cc
LB
1285 FuncInfo.MBB->addSuccessor(TBB);
1286 return true;
1287 }
1288 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1289 MVT SourceVT;
1290 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1291 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1292 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1293 unsigned OpReg = getRegForValue(TI->getOperand(0));
1a4d82fc
JJ
1294 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1295 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1296 TII.get(TstOpc))
1297 .addReg(OpReg).addImm(1));
1298
1299 unsigned CCMode = ARMCC::NE;
1300 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1301 std::swap(TBB, FBB);
1302 CCMode = ARMCC::EQ;
1303 }
1304
1305 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1a4d82fc 1306 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
223e47cc
LB
1307 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1308
1a4d82fc 1309 fastEmitBranch(FBB, DbgLoc);
223e47cc
LB
1310 FuncInfo.MBB->addSuccessor(TBB);
1311 return true;
1312 }
1313 } else if (const ConstantInt *CI =
1314 dyn_cast<ConstantInt>(BI->getCondition())) {
1315 uint64_t Imm = CI->getZExtValue();
1316 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1a4d82fc 1317 fastEmitBranch(Target, DbgLoc);
223e47cc
LB
1318 return true;
1319 }
1320
1321 unsigned CmpReg = getRegForValue(BI->getCondition());
1322 if (CmpReg == 0) return false;
1323
1324 // We've been divorced from our compare! Our block was split, and
1325 // now our compare lives in a predecessor block. We musn't
1326 // re-compare here, as the children of the compare aren't guaranteed
1327 // live across the block boundary (we *could* check for this).
1328 // Regardless, the compare has been done in the predecessor block,
1329 // and it left a value for us in a virtual register. Ergo, we test
1330 // the one-bit value left in the virtual register.
1331 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1a4d82fc
JJ
1332 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1333 AddOptionalDefs(
1334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1335 .addReg(CmpReg)
1336 .addImm(1));
223e47cc
LB
1337
1338 unsigned CCMode = ARMCC::NE;
1339 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1340 std::swap(TBB, FBB);
1341 CCMode = ARMCC::EQ;
1342 }
1343
1344 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1a4d82fc 1345 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
223e47cc 1346 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1a4d82fc 1347 fastEmitBranch(FBB, DbgLoc);
223e47cc
LB
1348 FuncInfo.MBB->addSuccessor(TBB);
1349 return true;
1350}
1351
1352bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1353 unsigned AddrReg = getRegForValue(I->getOperand(0));
1354 if (AddrReg == 0) return false;
1355
1356 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1a4d82fc
JJ
1357 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1358 TII.get(Opc)).addReg(AddrReg));
970d7e83
LB
1359
1360 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1361 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1362 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1363
223e47cc
LB
1364 return true;
1365}
1366
1367bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1368 bool isZExt) {
1369 Type *Ty = Src1Value->getType();
970d7e83
LB
1370 EVT SrcEVT = TLI.getValueType(Ty, true);
1371 if (!SrcEVT.isSimple()) return false;
1372 MVT SrcVT = SrcEVT.getSimpleVT();
223e47cc
LB
1373
1374 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1375 if (isFloat && !Subtarget->hasVFP2())
1376 return false;
1377
1378 // Check to see if the 2nd operand is a constant that we can encode directly
1379 // in the compare.
1380 int Imm = 0;
1381 bool UseImm = false;
1382 bool isNegativeImm = false;
1383 // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1384 // Thus, Src1Value may be a ConstantInt, but we're missing it.
1385 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1386 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1387 SrcVT == MVT::i1) {
1388 const APInt &CIVal = ConstInt->getValue();
1389 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1390 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1a4d82fc 1391 // then a cmn, because there is no way to represent 2147483648 as a
223e47cc
LB
1392 // signed 32-bit int.
1393 if (Imm < 0 && Imm != (int)0x80000000) {
1394 isNegativeImm = true;
1395 Imm = -Imm;
1396 }
1397 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1398 (ARM_AM::getSOImmVal(Imm) != -1);
1399 }
1400 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1401 if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1402 if (ConstFP->isZero() && !ConstFP->isNegative())
1403 UseImm = true;
1404 }
1405
1406 unsigned CmpOpc;
1407 bool isICmp = true;
1408 bool needsExt = false;
970d7e83 1409 switch (SrcVT.SimpleTy) {
223e47cc
LB
1410 default: return false;
1411 // TODO: Verify compares.
1412 case MVT::f32:
1413 isICmp = false;
1414 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1415 break;
1416 case MVT::f64:
1417 isICmp = false;
1418 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1419 break;
1420 case MVT::i1:
1421 case MVT::i8:
1422 case MVT::i16:
1423 needsExt = true;
1424 // Intentional fall-through.
1425 case MVT::i32:
1426 if (isThumb2) {
1427 if (!UseImm)
1428 CmpOpc = ARM::t2CMPrr;
1429 else
1430 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1431 } else {
1432 if (!UseImm)
1433 CmpOpc = ARM::CMPrr;
1434 else
1435 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1436 }
1437 break;
1438 }
1439
1440 unsigned SrcReg1 = getRegForValue(Src1Value);
1441 if (SrcReg1 == 0) return false;
1442
1443 unsigned SrcReg2 = 0;
1444 if (!UseImm) {
1445 SrcReg2 = getRegForValue(Src2Value);
1446 if (SrcReg2 == 0) return false;
1447 }
1448
1449 // We have i1, i8, or i16, we need to either zero extend or sign extend.
1450 if (needsExt) {
1451 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1452 if (SrcReg1 == 0) return false;
1453 if (!UseImm) {
1454 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1455 if (SrcReg2 == 0) return false;
1456 }
1457 }
1458
1a4d82fc
JJ
1459 const MCInstrDesc &II = TII.get(CmpOpc);
1460 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
223e47cc 1461 if (!UseImm) {
1a4d82fc
JJ
1462 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1463 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
223e47cc
LB
1464 .addReg(SrcReg1).addReg(SrcReg2));
1465 } else {
1466 MachineInstrBuilder MIB;
1a4d82fc 1467 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
223e47cc
LB
1468 .addReg(SrcReg1);
1469
1470 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1471 if (isICmp)
1472 MIB.addImm(Imm);
1473 AddOptionalDefs(MIB);
1474 }
1475
1476 // For floating point we need to move the result to a comparison register
1477 // that we can then use for branches.
1478 if (Ty->isFloatTy() || Ty->isDoubleTy())
1a4d82fc 1479 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1480 TII.get(ARM::FMSTAT)));
1481 return true;
1482}
1483
1484bool ARMFastISel::SelectCmp(const Instruction *I) {
1485 const CmpInst *CI = cast<CmpInst>(I);
1486
1487 // Get the compare predicate.
1488 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1489
1490 // We may not handle every CC for now.
1491 if (ARMPred == ARMCC::AL) return false;
1492
1493 // Emit the compare.
1494 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1495 return false;
1496
1497 // Now set a register based on the comparison. Explicitly set the predicates
1498 // here.
1499 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
85aaf69f
SL
1500 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1501 : &ARM::GPRRegClass;
223e47cc
LB
1502 unsigned DestReg = createResultReg(RC);
1503 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1a4d82fc 1504 unsigned ZeroReg = fastMaterializeConstant(Zero);
223e47cc 1505 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1a4d82fc 1506 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
223e47cc
LB
1507 .addReg(ZeroReg).addImm(1)
1508 .addImm(ARMPred).addReg(ARM::CPSR);
1509
1a4d82fc 1510 updateValueMap(I, DestReg);
223e47cc
LB
1511 return true;
1512}
1513
1514bool ARMFastISel::SelectFPExt(const Instruction *I) {
1515 // Make sure we have VFP and that we're extending float to double.
1516 if (!Subtarget->hasVFP2()) return false;
1517
1518 Value *V = I->getOperand(0);
1519 if (!I->getType()->isDoubleTy() ||
1520 !V->getType()->isFloatTy()) return false;
1521
1522 unsigned Op = getRegForValue(V);
1523 if (Op == 0) return false;
1524
1525 unsigned Result = createResultReg(&ARM::DPRRegClass);
1a4d82fc 1526 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1527 TII.get(ARM::VCVTDS), Result)
1528 .addReg(Op));
1a4d82fc 1529 updateValueMap(I, Result);
223e47cc
LB
1530 return true;
1531}
1532
1533bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1534 // Make sure we have VFP and that we're truncating double to float.
1535 if (!Subtarget->hasVFP2()) return false;
1536
1537 Value *V = I->getOperand(0);
1538 if (!(I->getType()->isFloatTy() &&
1539 V->getType()->isDoubleTy())) return false;
1540
1541 unsigned Op = getRegForValue(V);
1542 if (Op == 0) return false;
1543
1544 unsigned Result = createResultReg(&ARM::SPRRegClass);
1a4d82fc 1545 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1546 TII.get(ARM::VCVTSD), Result)
1547 .addReg(Op));
1a4d82fc 1548 updateValueMap(I, Result);
223e47cc
LB
1549 return true;
1550}
1551
1552bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1553 // Make sure we have VFP.
1554 if (!Subtarget->hasVFP2()) return false;
1555
1556 MVT DstVT;
1557 Type *Ty = I->getType();
1558 if (!isTypeLegal(Ty, DstVT))
1559 return false;
1560
1561 Value *Src = I->getOperand(0);
970d7e83
LB
1562 EVT SrcEVT = TLI.getValueType(Src->getType(), true);
1563 if (!SrcEVT.isSimple())
1564 return false;
1565 MVT SrcVT = SrcEVT.getSimpleVT();
223e47cc
LB
1566 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1567 return false;
1568
1569 unsigned SrcReg = getRegForValue(Src);
1570 if (SrcReg == 0) return false;
1571
1572 // Handle sign-extension.
1573 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
970d7e83 1574 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
223e47cc
LB
1575 /*isZExt*/!isSigned);
1576 if (SrcReg == 0) return false;
1577 }
1578
1579 // The conversion routine works on fp-reg to fp-reg and the operand above
1580 // was an integer, move it to the fp registers if possible.
1581 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1582 if (FP == 0) return false;
1583
1584 unsigned Opc;
1585 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1586 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1587 else return false;
1588
1589 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1a4d82fc
JJ
1590 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1591 TII.get(Opc), ResultReg).addReg(FP));
1592 updateValueMap(I, ResultReg);
223e47cc
LB
1593 return true;
1594}
1595
1596bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1597 // Make sure we have VFP.
1598 if (!Subtarget->hasVFP2()) return false;
1599
1600 MVT DstVT;
1601 Type *RetTy = I->getType();
1602 if (!isTypeLegal(RetTy, DstVT))
1603 return false;
1604
1605 unsigned Op = getRegForValue(I->getOperand(0));
1606 if (Op == 0) return false;
1607
1608 unsigned Opc;
1609 Type *OpTy = I->getOperand(0)->getType();
1610 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1611 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1612 else return false;
1613
1614 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1615 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1a4d82fc
JJ
1616 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1617 TII.get(Opc), ResultReg).addReg(Op));
223e47cc
LB
1618
1619 // This result needs to be in an integer register, but the conversion only
1620 // takes place in fp-regs.
1621 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1622 if (IntReg == 0) return false;
1623
1a4d82fc 1624 updateValueMap(I, IntReg);
223e47cc
LB
1625 return true;
1626}
1627
1628bool ARMFastISel::SelectSelect(const Instruction *I) {
1629 MVT VT;
1630 if (!isTypeLegal(I->getType(), VT))
1631 return false;
1632
1633 // Things need to be register sized for register moves.
1634 if (VT != MVT::i32) return false;
223e47cc
LB
1635
1636 unsigned CondReg = getRegForValue(I->getOperand(0));
1637 if (CondReg == 0) return false;
1638 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1639 if (Op1Reg == 0) return false;
1640
1641 // Check to see if we can use an immediate in the conditional move.
1642 int Imm = 0;
1643 bool UseImm = false;
1644 bool isNegativeImm = false;
1645 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1646 assert (VT == MVT::i32 && "Expecting an i32.");
1647 Imm = (int)ConstInt->getValue().getZExtValue();
1648 if (Imm < 0) {
1649 isNegativeImm = true;
1650 Imm = ~Imm;
1651 }
1652 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1653 (ARM_AM::getSOImmVal(Imm) != -1);
1654 }
1655
1656 unsigned Op2Reg = 0;
1657 if (!UseImm) {
1658 Op2Reg = getRegForValue(I->getOperand(2));
1659 if (Op2Reg == 0) return false;
1660 }
1661
1662 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1a4d82fc
JJ
1663 CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0);
1664 AddOptionalDefs(
1665 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
1666 .addReg(CondReg)
1667 .addImm(0));
223e47cc
LB
1668
1669 unsigned MovCCOpc;
970d7e83 1670 const TargetRegisterClass *RC;
223e47cc 1671 if (!UseImm) {
970d7e83 1672 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
223e47cc
LB
1673 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1674 } else {
970d7e83
LB
1675 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1676 if (!isNegativeImm)
223e47cc 1677 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
970d7e83 1678 else
223e47cc 1679 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
223e47cc
LB
1680 }
1681 unsigned ResultReg = createResultReg(RC);
1a4d82fc
JJ
1682 if (!UseImm) {
1683 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1684 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1685 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1686 ResultReg)
1687 .addReg(Op2Reg)
1688 .addReg(Op1Reg)
1689 .addImm(ARMCC::NE)
1690 .addReg(ARM::CPSR);
1691 } else {
1692 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1694 ResultReg)
1695 .addReg(Op1Reg)
1696 .addImm(Imm)
1697 .addImm(ARMCC::EQ)
1698 .addReg(ARM::CPSR);
1699 }
1700 updateValueMap(I, ResultReg);
223e47cc
LB
1701 return true;
1702}
1703
1704bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1705 MVT VT;
1706 Type *Ty = I->getType();
1707 if (!isTypeLegal(Ty, VT))
1708 return false;
1709
1710 // If we have integer div support we should have selected this automagically.
1711 // In case we have a real miss go ahead and return false and we'll pick
1712 // it up later.
1713 if (Subtarget->hasDivide()) return false;
1714
1715 // Otherwise emit a libcall.
1716 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1717 if (VT == MVT::i8)
1718 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1719 else if (VT == MVT::i16)
1720 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1721 else if (VT == MVT::i32)
1722 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1723 else if (VT == MVT::i64)
1724 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1725 else if (VT == MVT::i128)
1726 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1727 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1728
1729 return ARMEmitLibcall(I, LC);
1730}
1731
1732bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1733 MVT VT;
1734 Type *Ty = I->getType();
1735 if (!isTypeLegal(Ty, VT))
1736 return false;
1737
1738 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1739 if (VT == MVT::i8)
1740 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1741 else if (VT == MVT::i16)
1742 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1743 else if (VT == MVT::i32)
1744 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1745 else if (VT == MVT::i64)
1746 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1747 else if (VT == MVT::i128)
1748 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1749 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1750
1751 return ARMEmitLibcall(I, LC);
1752}
1753
1754bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1755 EVT DestVT = TLI.getValueType(I->getType(), true);
1756
1757 // We can get here in the case when we have a binary operation on a non-legal
1758 // type and the target independent selector doesn't know how to handle it.
1759 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1760 return false;
1761
1762 unsigned Opc;
1763 switch (ISDOpcode) {
1764 default: return false;
1765 case ISD::ADD:
1766 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1767 break;
1768 case ISD::OR:
1769 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1770 break;
1771 case ISD::SUB:
1772 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1773 break;
1774 }
1775
1776 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1777 if (SrcReg1 == 0) return false;
1778
1779 // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1780 // in the instruction, rather then materializing the value in a register.
1781 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1782 if (SrcReg2 == 0) return false;
1783
1a4d82fc
JJ
1784 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1785 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1786 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1787 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1788 TII.get(Opc), ResultReg)
1789 .addReg(SrcReg1).addReg(SrcReg2));
1a4d82fc 1790 updateValueMap(I, ResultReg);
223e47cc
LB
1791 return true;
1792}
1793
1794bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
970d7e83
LB
1795 EVT FPVT = TLI.getValueType(I->getType(), true);
1796 if (!FPVT.isSimple()) return false;
1797 MVT VT = FPVT.getSimpleVT();
223e47cc
LB
1798
1799 // We can get here in the case when we want to use NEON for our fp
1800 // operations, but can't figure out how to. Just use the vfp instructions
1801 // if we have them.
1802 // FIXME: It'd be nice to use NEON instructions.
1803 Type *Ty = I->getType();
1804 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1805 if (isFloat && !Subtarget->hasVFP2())
1806 return false;
1807
1808 unsigned Opc;
1809 bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1810 switch (ISDOpcode) {
1811 default: return false;
1812 case ISD::FADD:
1813 Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1814 break;
1815 case ISD::FSUB:
1816 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1817 break;
1818 case ISD::FMUL:
1819 Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1820 break;
1821 }
1822 unsigned Op1 = getRegForValue(I->getOperand(0));
1823 if (Op1 == 0) return false;
1824
1825 unsigned Op2 = getRegForValue(I->getOperand(1));
1826 if (Op2 == 0) return false;
1827
970d7e83 1828 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1a4d82fc 1829 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1830 TII.get(Opc), ResultReg)
1831 .addReg(Op1).addReg(Op2));
1a4d82fc 1832 updateValueMap(I, ResultReg);
223e47cc
LB
1833 return true;
1834}
1835
1836// Call Handling Code
1837
1838// This is largely taken directly from CCAssignFnForNode
1839// TODO: We may not support all of this.
1840CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1841 bool Return,
1842 bool isVarArg) {
1843 switch (CC) {
1844 default:
1845 llvm_unreachable("Unsupported calling convention");
1846 case CallingConv::Fast:
1847 if (Subtarget->hasVFP2() && !isVarArg) {
1848 if (!Subtarget->isAAPCS_ABI())
1849 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1850 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1851 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1852 }
1853 // Fallthrough
1854 case CallingConv::C:
1855 // Use target triple & subtarget features to do actual dispatch.
1856 if (Subtarget->isAAPCS_ABI()) {
1857 if (Subtarget->hasVFP2() &&
1858 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1859 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1860 else
1861 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1862 } else
1863 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1864 case CallingConv::ARM_AAPCS_VFP:
1865 if (!isVarArg)
1866 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1867 // Fall through to soft float variant, variadic functions don't
1868 // use hard floating point ABI.
1869 case CallingConv::ARM_AAPCS:
1870 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1871 case CallingConv::ARM_APCS:
1872 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1873 case CallingConv::GHC:
1874 if (Return)
1875 llvm_unreachable("Can't return in GHC call convention");
1876 else
1877 return CC_ARM_APCS_GHC;
1878 }
1879}
1880
1881bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1882 SmallVectorImpl<unsigned> &ArgRegs,
1883 SmallVectorImpl<MVT> &ArgVTs,
1884 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1885 SmallVectorImpl<unsigned> &RegArgs,
1886 CallingConv::ID CC,
1887 unsigned &NumBytes,
1888 bool isVarArg) {
1889 SmallVector<CCValAssign, 16> ArgLocs;
1a4d82fc 1890 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
223e47cc
LB
1891 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1892 CCAssignFnForCall(CC, false, isVarArg));
1893
1894 // Check that we can handle all of the arguments. If we can't, then bail out
1895 // now before we add code to the MBB.
1896 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1897 CCValAssign &VA = ArgLocs[i];
1898 MVT ArgVT = ArgVTs[VA.getValNo()];
1899
1900 // We don't handle NEON/vector parameters yet.
1901 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1902 return false;
1903
1904 // Now copy/store arg to correct locations.
1905 if (VA.isRegLoc() && !VA.needsCustom()) {
1906 continue;
1907 } else if (VA.needsCustom()) {
1908 // TODO: We need custom lowering for vector (v2f64) args.
1909 if (VA.getLocVT() != MVT::f64 ||
1910 // TODO: Only handle register args for now.
1911 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1912 return false;
1913 } else {
1a4d82fc 1914 switch (ArgVT.SimpleTy) {
223e47cc
LB
1915 default:
1916 return false;
1917 case MVT::i1:
1918 case MVT::i8:
1919 case MVT::i16:
1920 case MVT::i32:
1921 break;
1922 case MVT::f32:
1923 if (!Subtarget->hasVFP2())
1924 return false;
1925 break;
1926 case MVT::f64:
1927 if (!Subtarget->hasVFP2())
1928 return false;
1929 break;
1930 }
1931 }
1932 }
1933
1934 // At the point, we are able to handle the call's arguments in fast isel.
1935
1936 // Get a count of how many bytes are to be pushed on the stack.
1937 NumBytes = CCInfo.getNextStackOffset();
1938
1939 // Issue CALLSEQ_START
1940 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1a4d82fc 1941 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
1942 TII.get(AdjStackDown))
1943 .addImm(NumBytes));
1944
1945 // Process the args.
1946 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1947 CCValAssign &VA = ArgLocs[i];
1a4d82fc 1948 const Value *ArgVal = Args[VA.getValNo()];
223e47cc
LB
1949 unsigned Arg = ArgRegs[VA.getValNo()];
1950 MVT ArgVT = ArgVTs[VA.getValNo()];
1951
1952 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1953 "We don't handle NEON/vector parameters yet.");
1954
1955 // Handle arg promotion, etc.
1956 switch (VA.getLocInfo()) {
1957 case CCValAssign::Full: break;
1958 case CCValAssign::SExt: {
1959 MVT DestVT = VA.getLocVT();
1960 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1961 assert (Arg != 0 && "Failed to emit a sext");
1962 ArgVT = DestVT;
1963 break;
1964 }
1965 case CCValAssign::AExt:
1966 // Intentional fall-through. Handle AExt and ZExt.
1967 case CCValAssign::ZExt: {
1968 MVT DestVT = VA.getLocVT();
1969 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1a4d82fc 1970 assert (Arg != 0 && "Failed to emit a zext");
223e47cc
LB
1971 ArgVT = DestVT;
1972 break;
1973 }
1974 case CCValAssign::BCvt: {
1a4d82fc 1975 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
223e47cc
LB
1976 /*TODO: Kill=*/false);
1977 assert(BC != 0 && "Failed to emit a bitcast!");
1978 Arg = BC;
1979 ArgVT = VA.getLocVT();
1980 break;
1981 }
1982 default: llvm_unreachable("Unknown arg promotion!");
1983 }
1984
1985 // Now copy/store arg to correct locations.
1986 if (VA.isRegLoc() && !VA.needsCustom()) {
1a4d82fc
JJ
1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1988 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
223e47cc
LB
1989 RegArgs.push_back(VA.getLocReg());
1990 } else if (VA.needsCustom()) {
1991 // TODO: We need custom lowering for vector (v2f64) args.
1992 assert(VA.getLocVT() == MVT::f64 &&
1993 "Custom lowering for v2f64 args not available");
1994
1995 CCValAssign &NextVA = ArgLocs[++i];
1996
1997 assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1998 "We only handle register args!");
1999
1a4d82fc 2000 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
2001 TII.get(ARM::VMOVRRD), VA.getLocReg())
2002 .addReg(NextVA.getLocReg(), RegState::Define)
2003 .addReg(Arg));
2004 RegArgs.push_back(VA.getLocReg());
2005 RegArgs.push_back(NextVA.getLocReg());
2006 } else {
2007 assert(VA.isMemLoc());
2008 // Need to store on the stack.
1a4d82fc
JJ
2009
2010 // Don't emit stores for undef values.
2011 if (isa<UndefValue>(ArgVal))
2012 continue;
2013
223e47cc
LB
2014 Address Addr;
2015 Addr.BaseType = Address::RegBase;
2016 Addr.Base.Reg = ARM::SP;
2017 Addr.Offset = VA.getLocMemOffset();
2018
2019 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2020 assert(EmitRet && "Could not emit a store for argument!");
2021 }
2022 }
2023
2024 return true;
2025}
2026
2027bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2028 const Instruction *I, CallingConv::ID CC,
2029 unsigned &NumBytes, bool isVarArg) {
2030 // Issue CALLSEQ_END
2031 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1a4d82fc 2032 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
2033 TII.get(AdjStackUp))
2034 .addImm(NumBytes).addImm(0));
2035
2036 // Now the return value.
2037 if (RetVT != MVT::isVoid) {
2038 SmallVector<CCValAssign, 16> RVLocs;
1a4d82fc 2039 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
223e47cc
LB
2040 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2041
2042 // Copy all of the result registers out of their specified physreg.
2043 if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2044 // For this move we copy into two registers and then move into the
2045 // double fp reg we want.
970d7e83 2046 MVT DestVT = RVLocs[0].getValVT();
223e47cc
LB
2047 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2048 unsigned ResultReg = createResultReg(DstRC);
1a4d82fc 2049 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
2050 TII.get(ARM::VMOVDRR), ResultReg)
2051 .addReg(RVLocs[0].getLocReg())
2052 .addReg(RVLocs[1].getLocReg()));
2053
2054 UsedRegs.push_back(RVLocs[0].getLocReg());
2055 UsedRegs.push_back(RVLocs[1].getLocReg());
2056
2057 // Finally update the result.
1a4d82fc 2058 updateValueMap(I, ResultReg);
223e47cc
LB
2059 } else {
2060 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
970d7e83 2061 MVT CopyVT = RVLocs[0].getValVT();
223e47cc
LB
2062
2063 // Special handling for extended integers.
2064 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2065 CopyVT = MVT::i32;
2066
2067 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2068
2069 unsigned ResultReg = createResultReg(DstRC);
1a4d82fc
JJ
2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2071 TII.get(TargetOpcode::COPY),
223e47cc
LB
2072 ResultReg).addReg(RVLocs[0].getLocReg());
2073 UsedRegs.push_back(RVLocs[0].getLocReg());
2074
2075 // Finally update the result.
1a4d82fc 2076 updateValueMap(I, ResultReg);
223e47cc
LB
2077 }
2078 }
2079
2080 return true;
2081}
2082
2083bool ARMFastISel::SelectRet(const Instruction *I) {
2084 const ReturnInst *Ret = cast<ReturnInst>(I);
2085 const Function &F = *I->getParent()->getParent();
2086
2087 if (!FuncInfo.CanLowerReturn)
2088 return false;
2089
970d7e83
LB
2090 // Build a list of return value registers.
2091 SmallVector<unsigned, 4> RetRegs;
2092
223e47cc
LB
2093 CallingConv::ID CC = F.getCallingConv();
2094 if (Ret->getNumOperands() > 0) {
2095 SmallVector<ISD::OutputArg, 4> Outs;
970d7e83 2096 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
223e47cc
LB
2097
2098 // Analyze operands of the call, assigning locations to each operand.
2099 SmallVector<CCValAssign, 16> ValLocs;
1a4d82fc 2100 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
223e47cc
LB
2101 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2102 F.isVarArg()));
2103
2104 const Value *RV = Ret->getOperand(0);
2105 unsigned Reg = getRegForValue(RV);
2106 if (Reg == 0)
2107 return false;
2108
2109 // Only handle a single return value for now.
2110 if (ValLocs.size() != 1)
2111 return false;
2112
2113 CCValAssign &VA = ValLocs[0];
2114
2115 // Don't bother handling odd stuff for now.
2116 if (VA.getLocInfo() != CCValAssign::Full)
2117 return false;
2118 // Only handle register returns for now.
2119 if (!VA.isRegLoc())
2120 return false;
2121
2122 unsigned SrcReg = Reg + VA.getValNo();
970d7e83
LB
2123 EVT RVEVT = TLI.getValueType(RV->getType());
2124 if (!RVEVT.isSimple()) return false;
2125 MVT RVVT = RVEVT.getSimpleVT();
2126 MVT DestVT = VA.getValVT();
223e47cc
LB
2127 // Special handling for extended integers.
2128 if (RVVT != DestVT) {
2129 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2130 return false;
2131
2132 assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2133
2134 // Perform extension if flagged as either zext or sext. Otherwise, do
2135 // nothing.
2136 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2137 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2138 if (SrcReg == 0) return false;
2139 }
2140 }
2141
2142 // Make the copy.
2143 unsigned DstReg = VA.getLocReg();
2144 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2145 // Avoid a cross-class copy. This is very unlikely.
2146 if (!SrcRC->contains(DstReg))
2147 return false;
1a4d82fc
JJ
2148 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2149 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
223e47cc 2150
970d7e83
LB
2151 // Add register to return instruction.
2152 RetRegs.push_back(VA.getLocReg());
223e47cc
LB
2153 }
2154
2155 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
1a4d82fc 2156 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
970d7e83
LB
2157 TII.get(RetOpc));
2158 AddOptionalDefs(MIB);
2159 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2160 MIB.addReg(RetRegs[i], RegState::Implicit);
223e47cc
LB
2161 return true;
2162}
2163
2164unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2165 if (UseReg)
2166 return isThumb2 ? ARM::tBLXr : ARM::BLX;
2167 else
2168 return isThumb2 ? ARM::tBL : ARM::BL;
2169}
2170
2171unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
1a4d82fc
JJ
2172 // Manually compute the global's type to avoid building it when unnecessary.
2173 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2174 EVT LCREVT = TLI.getValueType(GVTy);
970d7e83 2175 if (!LCREVT.isSimple()) return 0;
1a4d82fc
JJ
2176
2177 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2178 GlobalValue::ExternalLinkage, nullptr,
2179 Name);
2180 assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
970d7e83 2181 return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
223e47cc
LB
2182}
2183
2184// A quick function that will emit a call for a named libcall in F with the
2185// vector of passed arguments for the Instruction in I. We can assume that we
2186// can emit a call for any libcall we can produce. This is an abridged version
2187// of the full call infrastructure since we won't need to worry about things
2188// like computed function pointers or strange arguments at call sites.
2189// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2190// with X86.
2191bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2192 CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2193
2194 // Handle *simple* calls for now.
2195 Type *RetTy = I->getType();
2196 MVT RetVT;
2197 if (RetTy->isVoidTy())
2198 RetVT = MVT::isVoid;
2199 else if (!isTypeLegal(RetTy, RetVT))
2200 return false;
2201
2202 // Can't handle non-double multi-reg retvals.
2203 if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2204 SmallVector<CCValAssign, 16> RVLocs;
1a4d82fc 2205 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
223e47cc
LB
2206 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2207 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2208 return false;
2209 }
2210
2211 // Set up the argument vectors.
2212 SmallVector<Value*, 8> Args;
2213 SmallVector<unsigned, 8> ArgRegs;
2214 SmallVector<MVT, 8> ArgVTs;
2215 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2216 Args.reserve(I->getNumOperands());
2217 ArgRegs.reserve(I->getNumOperands());
2218 ArgVTs.reserve(I->getNumOperands());
2219 ArgFlags.reserve(I->getNumOperands());
2220 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2221 Value *Op = I->getOperand(i);
2222 unsigned Arg = getRegForValue(Op);
2223 if (Arg == 0) return false;
2224
2225 Type *ArgTy = Op->getType();
2226 MVT ArgVT;
2227 if (!isTypeLegal(ArgTy, ArgVT)) return false;
2228
2229 ISD::ArgFlagsTy Flags;
1a4d82fc 2230 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
223e47cc
LB
2231 Flags.setOrigAlign(OriginalAlignment);
2232
2233 Args.push_back(Op);
2234 ArgRegs.push_back(Arg);
2235 ArgVTs.push_back(ArgVT);
2236 ArgFlags.push_back(Flags);
2237 }
2238
2239 // Handle the arguments now that we've gotten them.
2240 SmallVector<unsigned, 4> RegArgs;
2241 unsigned NumBytes;
2242 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2243 RegArgs, CC, NumBytes, false))
2244 return false;
2245
2246 unsigned CalleeReg = 0;
2247 if (EnableARMLongCalls) {
2248 CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2249 if (CalleeReg == 0) return false;
2250 }
2251
2252 // Issue the call.
2253 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2254 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1a4d82fc 2255 DbgLoc, TII.get(CallOpc));
223e47cc
LB
2256 // BL / BLX don't take a predicate, but tBL / tBLX do.
2257 if (isThumb2)
2258 AddDefaultPred(MIB);
2259 if (EnableARMLongCalls)
2260 MIB.addReg(CalleeReg);
2261 else
2262 MIB.addExternalSymbol(TLI.getLibcallName(Call));
2263
2264 // Add implicit physical register uses to the call.
2265 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2266 MIB.addReg(RegArgs[i], RegState::Implicit);
2267
2268 // Add a register mask with the call-preserved registers.
2269 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2270 MIB.addRegMask(TRI.getCallPreservedMask(CC));
2271
2272 // Finish off the call including any return values.
2273 SmallVector<unsigned, 4> UsedRegs;
2274 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2275
2276 // Set all unused physreg defs as dead.
2277 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2278
2279 return true;
2280}
2281
2282bool ARMFastISel::SelectCall(const Instruction *I,
1a4d82fc 2283 const char *IntrMemName = nullptr) {
223e47cc
LB
2284 const CallInst *CI = cast<CallInst>(I);
2285 const Value *Callee = CI->getCalledValue();
2286
2287 // Can't handle inline asm.
2288 if (isa<InlineAsm>(Callee)) return false;
2289
970d7e83
LB
2290 // Allow SelectionDAG isel to handle tail calls.
2291 if (CI->isTailCall()) return false;
2292
223e47cc
LB
2293 // Check the calling convention.
2294 ImmutableCallSite CS(CI);
2295 CallingConv::ID CC = CS.getCallingConv();
2296
2297 // TODO: Avoid some calling conventions?
2298
2299 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2300 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2301 bool isVarArg = FTy->isVarArg();
2302
2303 // Handle *simple* calls for now.
2304 Type *RetTy = I->getType();
2305 MVT RetVT;
2306 if (RetTy->isVoidTy())
2307 RetVT = MVT::isVoid;
2308 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2309 RetVT != MVT::i8 && RetVT != MVT::i1)
2310 return false;
2311
2312 // Can't handle non-double multi-reg retvals.
2313 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2314 RetVT != MVT::i16 && RetVT != MVT::i32) {
2315 SmallVector<CCValAssign, 16> RVLocs;
1a4d82fc 2316 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
223e47cc
LB
2317 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2318 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2319 return false;
2320 }
2321
2322 // Set up the argument vectors.
2323 SmallVector<Value*, 8> Args;
2324 SmallVector<unsigned, 8> ArgRegs;
2325 SmallVector<MVT, 8> ArgVTs;
2326 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2327 unsigned arg_size = CS.arg_size();
2328 Args.reserve(arg_size);
2329 ArgRegs.reserve(arg_size);
2330 ArgVTs.reserve(arg_size);
2331 ArgFlags.reserve(arg_size);
2332 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2333 i != e; ++i) {
2334 // If we're lowering a memory intrinsic instead of a regular call, skip the
2335 // last two arguments, which shouldn't be passed to the underlying function.
2336 if (IntrMemName && e-i <= 2)
2337 break;
2338
2339 ISD::ArgFlagsTy Flags;
2340 unsigned AttrInd = i - CS.arg_begin() + 1;
2341 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2342 Flags.setSExt();
2343 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2344 Flags.setZExt();
2345
2346 // FIXME: Only handle *easy* calls for now.
2347 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2348 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2349 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2350 CS.paramHasAttr(AttrInd, Attribute::ByVal))
2351 return false;
2352
2353 Type *ArgTy = (*i)->getType();
2354 MVT ArgVT;
2355 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2356 ArgVT != MVT::i1)
2357 return false;
2358
2359 unsigned Arg = getRegForValue(*i);
2360 if (Arg == 0)
2361 return false;
2362
1a4d82fc 2363 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
223e47cc
LB
2364 Flags.setOrigAlign(OriginalAlignment);
2365
2366 Args.push_back(*i);
2367 ArgRegs.push_back(Arg);
2368 ArgVTs.push_back(ArgVT);
2369 ArgFlags.push_back(Flags);
2370 }
2371
2372 // Handle the arguments now that we've gotten them.
2373 SmallVector<unsigned, 4> RegArgs;
2374 unsigned NumBytes;
2375 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2376 RegArgs, CC, NumBytes, isVarArg))
2377 return false;
2378
2379 bool UseReg = false;
2380 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2381 if (!GV || EnableARMLongCalls) UseReg = true;
2382
2383 unsigned CalleeReg = 0;
2384 if (UseReg) {
2385 if (IntrMemName)
2386 CalleeReg = getLibcallReg(IntrMemName);
2387 else
2388 CalleeReg = getRegForValue(Callee);
2389
2390 if (CalleeReg == 0) return false;
2391 }
2392
2393 // Issue the call.
2394 unsigned CallOpc = ARMSelectCallOp(UseReg);
2395 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1a4d82fc
JJ
2396 DbgLoc, TII.get(CallOpc));
2397
2398 unsigned char OpFlags = 0;
2399
2400 // Add MO_PLT for global address or external symbol in the PIC relocation
2401 // model.
2402 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
2403 OpFlags = ARMII::MO_PLT;
223e47cc
LB
2404
2405 // ARM calls don't take a predicate, but tBL / tBLX do.
2406 if(isThumb2)
2407 AddDefaultPred(MIB);
2408 if (UseReg)
2409 MIB.addReg(CalleeReg);
2410 else if (!IntrMemName)
1a4d82fc 2411 MIB.addGlobalAddress(GV, 0, OpFlags);
223e47cc 2412 else
1a4d82fc 2413 MIB.addExternalSymbol(IntrMemName, OpFlags);
223e47cc
LB
2414
2415 // Add implicit physical register uses to the call.
2416 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2417 MIB.addReg(RegArgs[i], RegState::Implicit);
2418
2419 // Add a register mask with the call-preserved registers.
2420 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2421 MIB.addRegMask(TRI.getCallPreservedMask(CC));
2422
2423 // Finish off the call including any return values.
2424 SmallVector<unsigned, 4> UsedRegs;
2425 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2426 return false;
2427
2428 // Set all unused physreg defs as dead.
2429 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2430
2431 return true;
2432}
2433
2434bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2435 return Len <= 16;
2436}
2437
2438bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
970d7e83 2439 uint64_t Len, unsigned Alignment) {
223e47cc
LB
2440 // Make sure we don't bloat code by inlining very large memcpy's.
2441 if (!ARMIsMemCpySmall(Len))
2442 return false;
2443
223e47cc
LB
2444 while (Len) {
2445 MVT VT;
970d7e83
LB
2446 if (!Alignment || Alignment >= 4) {
2447 if (Len >= 4)
2448 VT = MVT::i32;
2449 else if (Len >= 2)
2450 VT = MVT::i16;
2451 else {
2452 assert (Len == 1 && "Expected a length of 1!");
2453 VT = MVT::i8;
2454 }
2455 } else {
2456 // Bound based on alignment.
2457 if (Len >= 2 && Alignment == 2)
2458 VT = MVT::i16;
2459 else {
2460 VT = MVT::i8;
2461 }
223e47cc
LB
2462 }
2463
2464 bool RV;
2465 unsigned ResultReg;
2466 RV = ARMEmitLoad(VT, ResultReg, Src);
2467 assert (RV == true && "Should be able to handle this load.");
2468 RV = ARMEmitStore(VT, ResultReg, Dest);
2469 assert (RV == true && "Should be able to handle this store.");
2470 (void)RV;
2471
2472 unsigned Size = VT.getSizeInBits()/8;
2473 Len -= Size;
2474 Dest.Offset += Size;
2475 Src.Offset += Size;
2476 }
2477
2478 return true;
2479}
2480
2481bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2482 // FIXME: Handle more intrinsics.
2483 switch (I.getIntrinsicID()) {
2484 default: return false;
2485 case Intrinsic::frameaddress: {
2486 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2487 MFI->setFrameAddressIsTaken(true);
2488
85aaf69f
SL
2489 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2490 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2491 : &ARM::GPRRegClass;
223e47cc
LB
2492
2493 const ARMBaseRegisterInfo *RegInfo =
1a4d82fc
JJ
2494 static_cast<const ARMBaseRegisterInfo *>(
2495 TM.getSubtargetImpl()->getRegisterInfo());
223e47cc
LB
2496 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2497 unsigned SrcReg = FramePtr;
2498
2499 // Recursively load frame address
2500 // ldr r0 [fp]
2501 // ldr r0 [r0]
2502 // ldr r0 [r0]
2503 // ...
2504 unsigned DestReg;
2505 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2506 while (Depth--) {
2507 DestReg = createResultReg(RC);
1a4d82fc 2508 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
2509 TII.get(LdrOpc), DestReg)
2510 .addReg(SrcReg).addImm(0));
2511 SrcReg = DestReg;
2512 }
1a4d82fc 2513 updateValueMap(&I, SrcReg);
223e47cc
LB
2514 return true;
2515 }
2516 case Intrinsic::memcpy:
2517 case Intrinsic::memmove: {
2518 const MemTransferInst &MTI = cast<MemTransferInst>(I);
2519 // Don't handle volatile.
2520 if (MTI.isVolatile())
2521 return false;
2522
2523 // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
2524 // we would emit dead code because we don't currently handle memmoves.
2525 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2526 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2527 // Small memcpy's are common enough that we want to do them without a call
2528 // if possible.
2529 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2530 if (ARMIsMemCpySmall(Len)) {
2531 Address Dest, Src;
2532 if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2533 !ARMComputeAddress(MTI.getRawSource(), Src))
2534 return false;
970d7e83
LB
2535 unsigned Alignment = MTI.getAlignment();
2536 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
223e47cc
LB
2537 return true;
2538 }
2539 }
2540
2541 if (!MTI.getLength()->getType()->isIntegerTy(32))
2542 return false;
2543
2544 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2545 return false;
2546
2547 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2548 return SelectCall(&I, IntrMemName);
2549 }
2550 case Intrinsic::memset: {
2551 const MemSetInst &MSI = cast<MemSetInst>(I);
2552 // Don't handle volatile.
2553 if (MSI.isVolatile())
2554 return false;
2555
2556 if (!MSI.getLength()->getType()->isIntegerTy(32))
2557 return false;
2558
2559 if (MSI.getDestAddressSpace() > 255)
2560 return false;
2561
2562 return SelectCall(&I, "memset");
2563 }
2564 case Intrinsic::trap: {
1a4d82fc 2565 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
970d7e83 2566 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
223e47cc
LB
2567 return true;
2568 }
2569 }
2570}
2571
2572bool ARMFastISel::SelectTrunc(const Instruction *I) {
2573 // The high bits for a type smaller than the register size are assumed to be
2574 // undefined.
2575 Value *Op = I->getOperand(0);
2576
2577 EVT SrcVT, DestVT;
2578 SrcVT = TLI.getValueType(Op->getType(), true);
2579 DestVT = TLI.getValueType(I->getType(), true);
2580
2581 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2582 return false;
2583 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2584 return false;
2585
2586 unsigned SrcReg = getRegForValue(Op);
2587 if (!SrcReg) return false;
2588
2589 // Because the high bits are undefined, a truncate doesn't generate
2590 // any code.
1a4d82fc 2591 updateValueMap(I, SrcReg);
223e47cc
LB
2592 return true;
2593}
2594
970d7e83 2595unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
223e47cc
LB
2596 bool isZExt) {
2597 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2598 return 0;
1a4d82fc
JJ
2599 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2600 return 0;
223e47cc 2601
1a4d82fc
JJ
2602 // Table of which combinations can be emitted as a single instruction,
2603 // and which will require two.
2604 static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2605 // ARM Thumb
2606 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
2607 // ext: s z s z s z s z
2608 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2609 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2610 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2611 };
2612
2613 // Target registers for:
2614 // - For ARM can never be PC.
2615 // - For 16-bit Thumb are restricted to lower 8 registers.
2616 // - For 32-bit Thumb are restricted to non-SP and non-PC.
2617 static const TargetRegisterClass *RCTbl[2][2] = {
2618 // Instructions: Two Single
2619 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2620 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
2621 };
2622
2623 // Table governing the instruction(s) to be emitted.
2624 static const struct InstructionTable {
2625 uint32_t Opc : 16;
2626 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
2627 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
2628 uint32_t Imm : 8; // All instructions have either a shift or a mask.
2629 } IT[2][2][3][2] = {
2630 { // Two instructions (first is left shift, second is in this table).
2631 { // ARM Opc S Shift Imm
2632 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
2633 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
2634 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
2635 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
2636 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
2637 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
2638 },
2639 { // Thumb Opc S Shift Imm
2640 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
2641 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
2642 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
2643 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
2644 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
2645 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
2646 }
2647 },
2648 { // Single instruction.
2649 { // ARM Opc S Shift Imm
2650 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2651 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
2652 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
2653 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
2654 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
2655 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
2656 },
2657 { // Thumb Opc S Shift Imm
2658 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2659 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
2660 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
2661 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2662 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
2663 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
2664 }
223e47cc 2665 }
1a4d82fc
JJ
2666 };
2667
2668 unsigned SrcBits = SrcVT.getSizeInBits();
2669 unsigned DestBits = DestVT.getSizeInBits();
2670 (void) DestBits;
2671 assert((SrcBits < DestBits) && "can only extend to larger types");
2672 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2673 "other sizes unimplemented");
2674 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2675 "other sizes unimplemented");
2676
2677 bool hasV6Ops = Subtarget->hasV6Ops();
2678 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
2679 assert((Bitness < 3) && "sanity-check table bounds");
2680
2681 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2682 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2683 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2684 unsigned Opc = ITP->Opc;
2685 assert(ARM::KILL != Opc && "Invalid table entry");
2686 unsigned hasS = ITP->hasS;
2687 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2688 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2689 "only MOVsi has shift operand addressing mode");
2690 unsigned Imm = ITP->Imm;
2691
2692 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2693 bool setsCPSR = &ARM::tGPRRegClass == RC;
2694 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2695 unsigned ResultReg;
2696 // MOVsi encodes shift and immediate in shift operand addressing mode.
2697 // The following condition has the same value when emitting two
2698 // instruction sequences: both are shifts.
2699 bool ImmIsSO = (Shift != ARM_AM::no_shift);
2700
2701 // Either one or two instructions are emitted.
2702 // They're always of the form:
2703 // dst = in OP imm
2704 // CPSR is set only by 16-bit Thumb instructions.
2705 // Predicate, if any, is AL.
2706 // S bit, if available, is always 0.
2707 // When two are emitted the first's result will feed as the second's input,
2708 // that value is then dead.
2709 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2710 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2711 ResultReg = createResultReg(RC);
2712 bool isLsl = (0 == Instr) && !isSingleInstr;
2713 unsigned Opcode = isLsl ? LSLOpc : Opc;
2714 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2715 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2716 bool isKill = 1 == Instr;
2717 MachineInstrBuilder MIB = BuildMI(
2718 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2719 if (setsCPSR)
2720 MIB.addReg(ARM::CPSR, RegState::Define);
2721 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2722 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2723 if (hasS)
2724 AddDefaultCC(MIB);
2725 // Second instruction consumes the first's result.
2726 SrcReg = ResultReg;
223e47cc
LB
2727 }
2728
223e47cc
LB
2729 return ResultReg;
2730}
2731
2732bool ARMFastISel::SelectIntExt(const Instruction *I) {
2733 // On ARM, in general, integer casts don't involve legal types; this code
2734 // handles promotable integers.
2735 Type *DestTy = I->getType();
2736 Value *Src = I->getOperand(0);
2737 Type *SrcTy = Src->getType();
2738
223e47cc
LB
2739 bool isZExt = isa<ZExtInst>(I);
2740 unsigned SrcReg = getRegForValue(Src);
2741 if (!SrcReg) return false;
2742
970d7e83
LB
2743 EVT SrcEVT, DestEVT;
2744 SrcEVT = TLI.getValueType(SrcTy, true);
2745 DestEVT = TLI.getValueType(DestTy, true);
2746 if (!SrcEVT.isSimple()) return false;
2747 if (!DestEVT.isSimple()) return false;
2748
2749 MVT SrcVT = SrcEVT.getSimpleVT();
2750 MVT DestVT = DestEVT.getSimpleVT();
223e47cc
LB
2751 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2752 if (ResultReg == 0) return false;
1a4d82fc 2753 updateValueMap(I, ResultReg);
223e47cc
LB
2754 return true;
2755}
2756
2757bool ARMFastISel::SelectShift(const Instruction *I,
2758 ARM_AM::ShiftOpc ShiftTy) {
2759 // We handle thumb2 mode by target independent selector
2760 // or SelectionDAG ISel.
2761 if (isThumb2)
2762 return false;
2763
2764 // Only handle i32 now.
2765 EVT DestVT = TLI.getValueType(I->getType(), true);
2766 if (DestVT != MVT::i32)
2767 return false;
2768
2769 unsigned Opc = ARM::MOVsr;
2770 unsigned ShiftImm;
2771 Value *Src2Value = I->getOperand(1);
2772 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2773 ShiftImm = CI->getZExtValue();
2774
2775 // Fall back to selection DAG isel if the shift amount
2776 // is zero or greater than the width of the value type.
2777 if (ShiftImm == 0 || ShiftImm >=32)
2778 return false;
2779
2780 Opc = ARM::MOVsi;
2781 }
2782
2783 Value *Src1Value = I->getOperand(0);
2784 unsigned Reg1 = getRegForValue(Src1Value);
2785 if (Reg1 == 0) return false;
2786
2787 unsigned Reg2 = 0;
2788 if (Opc == ARM::MOVsr) {
2789 Reg2 = getRegForValue(Src2Value);
2790 if (Reg2 == 0) return false;
2791 }
2792
1a4d82fc 2793 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
223e47cc
LB
2794 if(ResultReg == 0) return false;
2795
1a4d82fc 2796 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
2797 TII.get(Opc), ResultReg)
2798 .addReg(Reg1);
2799
2800 if (Opc == ARM::MOVsi)
2801 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2802 else if (Opc == ARM::MOVsr) {
2803 MIB.addReg(Reg2);
2804 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2805 }
2806
2807 AddOptionalDefs(MIB);
1a4d82fc 2808 updateValueMap(I, ResultReg);
223e47cc
LB
2809 return true;
2810}
2811
2812// TODO: SoftFP support.
1a4d82fc 2813bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
223e47cc
LB
2814
2815 switch (I->getOpcode()) {
2816 case Instruction::Load:
2817 return SelectLoad(I);
2818 case Instruction::Store:
2819 return SelectStore(I);
2820 case Instruction::Br:
2821 return SelectBranch(I);
2822 case Instruction::IndirectBr:
2823 return SelectIndirectBr(I);
2824 case Instruction::ICmp:
2825 case Instruction::FCmp:
2826 return SelectCmp(I);
2827 case Instruction::FPExt:
2828 return SelectFPExt(I);
2829 case Instruction::FPTrunc:
2830 return SelectFPTrunc(I);
2831 case Instruction::SIToFP:
2832 return SelectIToFP(I, /*isSigned*/ true);
2833 case Instruction::UIToFP:
2834 return SelectIToFP(I, /*isSigned*/ false);
2835 case Instruction::FPToSI:
2836 return SelectFPToI(I, /*isSigned*/ true);
2837 case Instruction::FPToUI:
2838 return SelectFPToI(I, /*isSigned*/ false);
2839 case Instruction::Add:
2840 return SelectBinaryIntOp(I, ISD::ADD);
2841 case Instruction::Or:
2842 return SelectBinaryIntOp(I, ISD::OR);
2843 case Instruction::Sub:
2844 return SelectBinaryIntOp(I, ISD::SUB);
2845 case Instruction::FAdd:
2846 return SelectBinaryFPOp(I, ISD::FADD);
2847 case Instruction::FSub:
2848 return SelectBinaryFPOp(I, ISD::FSUB);
2849 case Instruction::FMul:
2850 return SelectBinaryFPOp(I, ISD::FMUL);
2851 case Instruction::SDiv:
2852 return SelectDiv(I, /*isSigned*/ true);
2853 case Instruction::UDiv:
2854 return SelectDiv(I, /*isSigned*/ false);
2855 case Instruction::SRem:
2856 return SelectRem(I, /*isSigned*/ true);
2857 case Instruction::URem:
2858 return SelectRem(I, /*isSigned*/ false);
2859 case Instruction::Call:
2860 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2861 return SelectIntrinsicCall(*II);
2862 return SelectCall(I);
2863 case Instruction::Select:
2864 return SelectSelect(I);
2865 case Instruction::Ret:
2866 return SelectRet(I);
2867 case Instruction::Trunc:
2868 return SelectTrunc(I);
2869 case Instruction::ZExt:
2870 case Instruction::SExt:
2871 return SelectIntExt(I);
2872 case Instruction::Shl:
2873 return SelectShift(I, ARM_AM::lsl);
2874 case Instruction::LShr:
2875 return SelectShift(I, ARM_AM::lsr);
2876 case Instruction::AShr:
2877 return SelectShift(I, ARM_AM::asr);
2878 default: break;
2879 }
2880 return false;
2881}
2882
1a4d82fc
JJ
2883namespace {
2884// This table describes sign- and zero-extend instructions which can be
2885// folded into a preceding load. All of these extends have an immediate
2886// (sometimes a mask and sometimes a shift) that's applied after
2887// extension.
2888const struct FoldableLoadExtendsStruct {
2889 uint16_t Opc[2]; // ARM, Thumb.
2890 uint8_t ExpectedImm;
2891 uint8_t isZExt : 1;
2892 uint8_t ExpectedVT : 7;
2893} FoldableLoadExtends[] = {
2894 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
2895 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
2896 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
2897 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
2898 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
2899};
2900}
2901
2902/// \brief The specified machine instr operand is a vreg, and that
223e47cc
LB
2903/// vreg is being provided by the specified load instruction. If possible,
2904/// try to fold the load as an operand to the instruction, returning true if
2905/// successful.
1a4d82fc
JJ
2906bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2907 const LoadInst *LI) {
223e47cc
LB
2908 // Verify we have a legal type before going any further.
2909 MVT VT;
2910 if (!isLoadTypeLegal(LI->getType(), VT))
2911 return false;
2912
2913 // Combine load followed by zero- or sign-extend.
2914 // ldrb r1, [r0] ldrb r1, [r0]
2915 // uxtb r2, r1 =>
2916 // mov r3, r2 mov r3, r1
1a4d82fc
JJ
2917 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2918 return false;
2919 const uint64_t Imm = MI->getOperand(2).getImm();
2920
2921 bool Found = false;
2922 bool isZExt;
2923 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2924 i != e; ++i) {
2925 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2926 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
2927 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
2928 Found = true;
2929 isZExt = FoldableLoadExtends[i].isZExt;
2930 }
223e47cc 2931 }
1a4d82fc
JJ
2932 if (!Found) return false;
2933
223e47cc
LB
2934 // See if we can handle this address.
2935 Address Addr;
2936 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2937
2938 unsigned ResultReg = MI->getOperand(0).getReg();
2939 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2940 return false;
2941 MI->eraseFromParent();
2942 return true;
2943}
2944
2945unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
970d7e83 2946 unsigned Align, MVT VT) {
223e47cc
LB
2947 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2948 ARMConstantPoolConstant *CPV =
2949 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2950 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
2951
2952 unsigned Opc;
2953 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
2954 // Load value.
2955 if (isThumb2) {
1a4d82fc
JJ
2956 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0);
2957 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
223e47cc
LB
2958 TII.get(ARM::t2LDRpci), DestReg1)
2959 .addConstantPoolIndex(Idx));
2960 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
2961 } else {
2962 // The extra immediate is for addrmode2.
1a4d82fc 2963 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0);
223e47cc 2964 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1a4d82fc 2965 DbgLoc, TII.get(ARM::LDRcp), DestReg1)
223e47cc
LB
2966 .addConstantPoolIndex(Idx).addImm(0));
2967 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
2968 }
2969
2970 unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
2971 if (GlobalBaseReg == 0) {
2972 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
2973 AFI->setGlobalBaseReg(GlobalBaseReg);
2974 }
2975
2976 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
1a4d82fc
JJ
2977 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0);
2978 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1);
2979 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2);
223e47cc 2980 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1a4d82fc 2981 DbgLoc, TII.get(Opc), DestReg2)
223e47cc
LB
2982 .addReg(DestReg1)
2983 .addReg(GlobalBaseReg);
2984 if (!UseGOTOFF)
2985 MIB.addImm(0);
2986 AddOptionalDefs(MIB);
2987
2988 return DestReg2;
2989}
2990
1a4d82fc 2991bool ARMFastISel::fastLowerArguments() {
970d7e83
LB
2992 if (!FuncInfo.CanLowerReturn)
2993 return false;
2994
2995 const Function *F = FuncInfo.Fn;
2996 if (F->isVarArg())
2997 return false;
2998
2999 CallingConv::ID CC = F->getCallingConv();
3000 switch (CC) {
3001 default:
3002 return false;
3003 case CallingConv::Fast:
3004 case CallingConv::C:
3005 case CallingConv::ARM_AAPCS_VFP:
3006 case CallingConv::ARM_AAPCS:
3007 case CallingConv::ARM_APCS:
3008 break;
3009 }
3010
3011 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3012 // which are passed in r0 - r3.
3013 unsigned Idx = 1;
3014 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3015 I != E; ++I, ++Idx) {
3016 if (Idx > 4)
3017 return false;
3018
3019 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3020 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
3021 F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
3022 return false;
3023
3024 Type *ArgTy = I->getType();
3025 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3026 return false;
3027
3028 EVT ArgVT = TLI.getValueType(ArgTy);
3029 if (!ArgVT.isSimple()) return false;
3030 switch (ArgVT.getSimpleVT().SimpleTy) {
3031 case MVT::i8:
3032 case MVT::i16:
3033 case MVT::i32:
3034 break;
3035 default:
3036 return false;
3037 }
3038 }
3039
3040
3041 static const uint16_t GPRArgRegs[] = {
3042 ARM::R0, ARM::R1, ARM::R2, ARM::R3
3043 };
3044
1a4d82fc 3045 const TargetRegisterClass *RC = &ARM::rGPRRegClass;
970d7e83
LB
3046 Idx = 0;
3047 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3048 I != E; ++I, ++Idx) {
970d7e83
LB
3049 unsigned SrcReg = GPRArgRegs[Idx];
3050 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3051 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3052 // Without this, EmitLiveInCopies may eliminate the livein if its only
3053 // use is a bitcast (which isn't turned into an instruction).
3054 unsigned ResultReg = createResultReg(RC);
1a4d82fc
JJ
3055 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3056 TII.get(TargetOpcode::COPY),
970d7e83 3057 ResultReg).addReg(DstReg, getKillRegState(true));
1a4d82fc 3058 updateValueMap(I, ResultReg);
970d7e83
LB
3059 }
3060
3061 return true;
3062}
3063
223e47cc
LB
3064namespace llvm {
3065 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
970d7e83 3066 const TargetLibraryInfo *libInfo) {
223e47cc
LB
3067 const TargetMachine &TM = funcInfo.MF->getTarget();
3068
223e47cc 3069 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1a4d82fc
JJ
3070 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
3071 bool UseFastISel = false;
3072 UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only();
3073 UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb();
3074 UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb();
3075
3076 if (UseFastISel) {
3077 // iOS always has a FP for backtracking, force other targets
3078 // to keep their FP when doing FastISel. The emitted code is
3079 // currently superior, and in cases like test-suite's lencod
3080 // FastISel isn't quite correct when FP is eliminated.
3081 TM.Options.NoFramePointerElim = true;
970d7e83 3082 return new ARMFastISel(funcInfo, libInfo);
1a4d82fc
JJ
3083 }
3084 return nullptr;
223e47cc
LB
3085 }
3086}