]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / ARM / ARMISelDAGToDAG.cpp
CommitLineData
223e47cc
LB
1//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
223e47cc
LB
14#include "ARM.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMTargetMachine.h"
17#include "MCTargetDesc/ARMAddressingModes.h"
223e47cc
LB
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
970d7e83 21#include "llvm/CodeGen/MachineRegisterInfo.h"
223e47cc
LB
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
970d7e83
LB
24#include "llvm/IR/CallingConv.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/LLVMContext.h"
223e47cc
LB
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
970d7e83
LB
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
223e47cc
LB
36
37using namespace llvm;
38
1a4d82fc
JJ
39#define DEBUG_TYPE "arm-isel"
40
223e47cc
LB
41static cl::opt<bool>
42DisableShifterOp("disable-shifter-op", cl::Hidden,
43 cl::desc("Disable isel of shifter-op"),
44 cl::init(false));
45
46static cl::opt<bool>
47CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
48 cl::desc("Check fp vmla / vmls hazard at isel time"),
49 cl::init(true));
50
51//===--------------------------------------------------------------------===//
52/// ARMDAGToDAGISel - ARM specific code to select ARM machine
53/// instructions for SelectionDAG operations.
54///
55namespace {
56
57enum AddrMode2Type {
58 AM2_BASE, // Simple AM2 (+-imm12)
59 AM2_SHOP // Shifter-op AM2
60};
61
62class ARMDAGToDAGISel : public SelectionDAGISel {
223e47cc
LB
63 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
64 /// make the right decision when generating code for different targets.
65 const ARMSubtarget *Subtarget;
66
67public:
1a4d82fc
JJ
68 explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
69 : SelectionDAGISel(tm, OptLevel) {}
70
71 bool runOnMachineFunction(MachineFunction &MF) override {
72 // Reset the subtarget each time through.
73 Subtarget = &MF.getTarget().getSubtarget<ARMSubtarget>();
74 SelectionDAGISel::runOnMachineFunction(MF);
75 return true;
223e47cc
LB
76 }
77
1a4d82fc 78 const char *getPassName() const override {
223e47cc
LB
79 return "ARM Instruction Selection";
80 }
81
1a4d82fc 82 void PreprocessISelDAG() override;
970d7e83 83
223e47cc
LB
84 /// getI32Imm - Return a target constant of type i32 with the specified
85 /// value.
86 inline SDValue getI32Imm(unsigned Imm) {
87 return CurDAG->getTargetConstant(Imm, MVT::i32);
88 }
89
1a4d82fc 90 SDNode *Select(SDNode *N) override;
223e47cc
LB
91
92
93 bool hasNoVMLxHazardUse(SDNode *N) const;
94 bool isShifterOpProfitable(const SDValue &Shift,
95 ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
96 bool SelectRegShifterOperand(SDValue N, SDValue &A,
97 SDValue &B, SDValue &C,
98 bool CheckProfitability = true);
99 bool SelectImmShifterOperand(SDValue N, SDValue &A,
100 SDValue &B, bool CheckProfitability = true);
101 bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
102 SDValue &B, SDValue &C) {
103 // Don't apply the profitability check
104 return SelectRegShifterOperand(N, A, B, C, false);
105 }
106 bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
107 SDValue &B) {
108 // Don't apply the profitability check
109 return SelectImmShifterOperand(N, A, B, false);
110 }
111
112 bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
113 bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
114
115 AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
116 SDValue &Offset, SDValue &Opc);
117 bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
118 SDValue &Opc) {
119 return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
120 }
121
122 bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
123 SDValue &Opc) {
124 return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
125 }
126
127 bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
128 SDValue &Opc) {
129 SelectAddrMode2Worker(N, Base, Offset, Opc);
130// return SelectAddrMode2ShOp(N, Base, Offset, Opc);
131 // This always matches one way or another.
132 return true;
133 }
134
1a4d82fc
JJ
135 bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
136 const ConstantSDNode *CN = cast<ConstantSDNode>(N);
137 Pred = CurDAG->getTargetConstant(CN->getZExtValue(), MVT::i32);
138 Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
139 return true;
140 }
141
223e47cc
LB
142 bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
143 SDValue &Offset, SDValue &Opc);
144 bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
145 SDValue &Offset, SDValue &Opc);
146 bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
147 SDValue &Offset, SDValue &Opc);
148 bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
149 bool SelectAddrMode3(SDValue N, SDValue &Base,
150 SDValue &Offset, SDValue &Opc);
151 bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
152 SDValue &Offset, SDValue &Opc);
153 bool SelectAddrMode5(SDValue N, SDValue &Base,
154 SDValue &Offset);
155 bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
156 bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
157
158 bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
159
160 // Thumb Addressing Modes:
161 bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
162 bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
163 unsigned Scale);
164 bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
165 bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
166 bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
167 bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
168 SDValue &OffImm);
169 bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
170 SDValue &OffImm);
171 bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
172 SDValue &OffImm);
173 bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
174 SDValue &OffImm);
175 bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
176
177 // Thumb 2 Addressing Modes:
178 bool SelectT2ShifterOperandReg(SDValue N,
179 SDValue &BaseReg, SDValue &Opc);
180 bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
181 bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
182 SDValue &OffImm);
183 bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
184 SDValue &OffImm);
185 bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
186 SDValue &OffReg, SDValue &ShImm);
1a4d82fc 187 bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
223e47cc
LB
188
189 inline bool is_so_imm(unsigned Imm) const {
190 return ARM_AM::getSOImmVal(Imm) != -1;
191 }
192
193 inline bool is_so_imm_not(unsigned Imm) const {
194 return ARM_AM::getSOImmVal(~Imm) != -1;
195 }
196
197 inline bool is_t2_so_imm(unsigned Imm) const {
198 return ARM_AM::getT2SOImmVal(Imm) != -1;
199 }
200
201 inline bool is_t2_so_imm_not(unsigned Imm) const {
202 return ARM_AM::getT2SOImmVal(~Imm) != -1;
203 }
204
205 // Include the pieces autogenerated from the target description.
206#include "ARMGenDAGISel.inc"
207
208private:
209 /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
210 /// ARM.
211 SDNode *SelectARMIndexedLoad(SDNode *N);
212 SDNode *SelectT2IndexedLoad(SDNode *N);
213
214 /// SelectVLD - Select NEON load intrinsics. NumVecs should be
215 /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
216 /// loads of D registers and even subregs and odd subregs of Q registers.
217 /// For NumVecs <= 2, QOpcodes1 is not used.
218 SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
219 const uint16_t *DOpcodes,
220 const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
221
222 /// SelectVST - Select NEON store intrinsics. NumVecs should
223 /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
224 /// stores of D registers and even subregs and odd subregs of Q registers.
225 /// For NumVecs <= 2, QOpcodes1 is not used.
226 SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
227 const uint16_t *DOpcodes,
228 const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
229
230 /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
231 /// be 2, 3 or 4. The opcode arrays specify the instructions used for
232 /// load/store of D registers and Q registers.
233 SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
234 bool isUpdating, unsigned NumVecs,
235 const uint16_t *DOpcodes, const uint16_t *QOpcodes);
236
237 /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
238 /// should be 2, 3 or 4. The opcode array specifies the instructions used
239 /// for loading D registers. (Q registers are not supported.)
240 SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
241 const uint16_t *Opcodes);
242
243 /// SelectVTBL - Select NEON VTBL and VTBX intrinsics. NumVecs should be 2,
244 /// 3 or 4. These are custom-selected so that a REG_SEQUENCE can be
245 /// generated to force the table registers to be consecutive.
246 SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
247
248 /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
249 SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
250
223e47cc
LB
251 // Select special operations if node forms integer ABS pattern
252 SDNode *SelectABSOp(SDNode *N);
253
970d7e83
LB
254 SDNode *SelectInlineAsm(SDNode *N);
255
223e47cc
LB
256 SDNode *SelectConcatVector(SDNode *N);
257
223e47cc
LB
258 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
259 /// inline asm expressions.
1a4d82fc
JJ
260 bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
261 std::vector<SDValue> &OutOps) override;
223e47cc 262
970d7e83
LB
263 // Form pairs of consecutive R, S, D, or Q registers.
264 SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
265 SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
266 SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
267 SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
223e47cc
LB
268
269 // Form sequences of 4 consecutive S, D, or Q registers.
970d7e83
LB
270 SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
271 SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
272 SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
223e47cc
LB
273
274 // Get the alignment operand for a NEON VLD or VST instruction.
275 SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
276};
277}
278
279/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
280/// operand. If so Imm will receive the 32-bit value.
281static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
282 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
283 Imm = cast<ConstantSDNode>(N)->getZExtValue();
284 return true;
285 }
286 return false;
287}
288
289// isInt32Immediate - This method tests to see if a constant operand.
290// If so Imm will receive the 32 bit value.
291static bool isInt32Immediate(SDValue N, unsigned &Imm) {
292 return isInt32Immediate(N.getNode(), Imm);
293}
294
295// isOpcWithIntImmediate - This method tests to see if the node is a specific
296// opcode and that it has a immediate integer right operand.
297// If so Imm will receive the 32 bit value.
298static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
299 return N->getOpcode() == Opc &&
300 isInt32Immediate(N->getOperand(1).getNode(), Imm);
301}
302
303/// \brief Check whether a particular node is a constant value representable as
304/// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
305///
306/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
307static bool isScaledConstantInRange(SDValue Node, int Scale,
308 int RangeMin, int RangeMax,
309 int &ScaledConstant) {
310 assert(Scale > 0 && "Invalid scale!");
311
312 // Check that this is a constant.
313 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
314 if (!C)
315 return false;
316
317 ScaledConstant = (int) C->getZExtValue();
318 if ((ScaledConstant % Scale) != 0)
319 return false;
320
321 ScaledConstant /= Scale;
322 return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
323}
324
970d7e83
LB
325void ARMDAGToDAGISel::PreprocessISelDAG() {
326 if (!Subtarget->hasV6T2Ops())
327 return;
328
329 bool isThumb2 = Subtarget->isThumb();
330 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
331 E = CurDAG->allnodes_end(); I != E; ) {
332 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
333
334 if (N->getOpcode() != ISD::ADD)
335 continue;
336
337 // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
338 // leading zeros, followed by consecutive set bits, followed by 1 or 2
339 // trailing zeros, e.g. 1020.
340 // Transform the expression to
341 // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
342 // of trailing zeros of c2. The left shift would be folded as an shifter
343 // operand of 'add' and the 'and' and 'srl' would become a bits extraction
344 // node (UBFX).
345
346 SDValue N0 = N->getOperand(0);
347 SDValue N1 = N->getOperand(1);
348 unsigned And_imm = 0;
349 if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
350 if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
351 std::swap(N0, N1);
352 }
353 if (!And_imm)
354 continue;
355
356 // Check if the AND mask is an immediate of the form: 000.....1111111100
1a4d82fc 357 unsigned TZ = countTrailingZeros(And_imm);
970d7e83
LB
358 if (TZ != 1 && TZ != 2)
359 // Be conservative here. Shifter operands aren't always free. e.g. On
360 // Swift, left shifter operand of 1 / 2 for free but others are not.
361 // e.g.
362 // ubfx r3, r1, #16, #8
363 // ldr.w r3, [r0, r3, lsl #2]
364 // vs.
365 // mov.w r9, #1020
366 // and.w r2, r9, r1, lsr #14
367 // ldr r2, [r0, r2]
368 continue;
369 And_imm >>= TZ;
370 if (And_imm & (And_imm + 1))
371 continue;
372
373 // Look for (and (srl X, c1), c2).
374 SDValue Srl = N1.getOperand(0);
375 unsigned Srl_imm = 0;
376 if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
377 (Srl_imm <= 2))
378 continue;
379
380 // Make sure first operand is not a shifter operand which would prevent
381 // folding of the left shift.
382 SDValue CPTmp0;
383 SDValue CPTmp1;
384 SDValue CPTmp2;
385 if (isThumb2) {
386 if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1))
387 continue;
388 } else {
389 if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
390 SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
391 continue;
392 }
393
394 // Now make the transformation.
1a4d82fc 395 Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
970d7e83
LB
396 Srl.getOperand(0),
397 CurDAG->getConstant(Srl_imm+TZ, MVT::i32));
1a4d82fc 398 N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
970d7e83 399 Srl, CurDAG->getConstant(And_imm, MVT::i32));
1a4d82fc 400 N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
970d7e83
LB
401 N1, CurDAG->getConstant(TZ, MVT::i32));
402 CurDAG->UpdateNodeOperands(N, N0, N1);
1a4d82fc 403 }
970d7e83
LB
404}
405
223e47cc
LB
406/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
407/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
408/// least on current ARM implementations) which should be avoidded.
409bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
410 if (OptLevel == CodeGenOpt::None)
411 return true;
412
413 if (!CheckVMLxHazard)
414 return true;
415
1a4d82fc
JJ
416 if (!Subtarget->isCortexA7() && !Subtarget->isCortexA8() &&
417 !Subtarget->isCortexA9() && !Subtarget->isSwift())
223e47cc
LB
418 return true;
419
420 if (!N->hasOneUse())
421 return false;
422
423 SDNode *Use = *N->use_begin();
424 if (Use->getOpcode() == ISD::CopyToReg)
425 return true;
426 if (Use->isMachineOpcode()) {
1a4d82fc
JJ
427 const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
428 CurDAG->getSubtarget().getInstrInfo());
429
223e47cc
LB
430 const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
431 if (MCID.mayStore())
432 return true;
433 unsigned Opcode = MCID.getOpcode();
434 if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
435 return true;
436 // vmlx feeding into another vmlx. We actually want to unfold
437 // the use later in the MLxExpansion pass. e.g.
438 // vmla
439 // vmla (stall 8 cycles)
440 //
441 // vmul (5 cycles)
442 // vadd (5 cycles)
443 // vmla
444 // This adds up to about 18 - 19 cycles.
445 //
446 // vmla
447 // vmul (stall 4 cycles)
448 // vadd adds up to about 14 cycles.
449 return TII->isFpMLxInstruction(Opcode);
450 }
451
452 return false;
453}
454
455bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
456 ARM_AM::ShiftOpc ShOpcVal,
457 unsigned ShAmt) {
458 if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
459 return true;
460 if (Shift.hasOneUse())
461 return true;
462 // R << 2 is free.
463 return ShOpcVal == ARM_AM::lsl &&
464 (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
465}
466
467bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
468 SDValue &BaseReg,
469 SDValue &Opc,
470 bool CheckProfitability) {
471 if (DisableShifterOp)
472 return false;
473
474 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
475
476 // Don't match base register only case. That is matched to a separate
477 // lower complexity pattern with explicit register operand.
478 if (ShOpcVal == ARM_AM::no_shift) return false;
479
480 BaseReg = N.getOperand(0);
481 unsigned ShImmVal = 0;
482 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
483 if (!RHS) return false;
484 ShImmVal = RHS->getZExtValue() & 31;
485 Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
486 MVT::i32);
487 return true;
488}
489
490bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
491 SDValue &BaseReg,
492 SDValue &ShReg,
493 SDValue &Opc,
494 bool CheckProfitability) {
495 if (DisableShifterOp)
496 return false;
497
498 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
499
500 // Don't match base register only case. That is matched to a separate
501 // lower complexity pattern with explicit register operand.
502 if (ShOpcVal == ARM_AM::no_shift) return false;
503
504 BaseReg = N.getOperand(0);
505 unsigned ShImmVal = 0;
506 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
507 if (RHS) return false;
508
509 ShReg = N.getOperand(1);
510 if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
511 return false;
512 Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
513 MVT::i32);
514 return true;
515}
516
517
518bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
519 SDValue &Base,
520 SDValue &OffImm) {
521 // Match simple R + imm12 operands.
522
523 // Base only.
524 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
525 !CurDAG->isBaseWithConstantOffset(N)) {
526 if (N.getOpcode() == ISD::FrameIndex) {
527 // Match frame index.
528 int FI = cast<FrameIndexSDNode>(N)->getIndex();
85aaf69f 529 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
530 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
531 return true;
532 }
533
534 if (N.getOpcode() == ARMISD::Wrapper &&
1a4d82fc 535 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
223e47cc
LB
536 Base = N.getOperand(0);
537 } else
538 Base = N;
539 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
540 return true;
541 }
542
543 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1a4d82fc 544 int RHSC = (int)RHS->getSExtValue();
223e47cc
LB
545 if (N.getOpcode() == ISD::SUB)
546 RHSC = -RHSC;
547
1a4d82fc 548 if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
223e47cc
LB
549 Base = N.getOperand(0);
550 if (Base.getOpcode() == ISD::FrameIndex) {
551 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
85aaf69f 552 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
553 }
554 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
555 return true;
556 }
557 }
558
559 // Base only.
560 Base = N;
561 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
562 return true;
563}
564
565
566
567bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
568 SDValue &Opc) {
569 if (N.getOpcode() == ISD::MUL &&
570 ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
571 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
572 // X * [3,5,9] -> X + X * [2,4,8] etc.
573 int RHSC = (int)RHS->getZExtValue();
574 if (RHSC & 1) {
575 RHSC = RHSC & ~1;
576 ARM_AM::AddrOpc AddSub = ARM_AM::add;
577 if (RHSC < 0) {
578 AddSub = ARM_AM::sub;
579 RHSC = - RHSC;
580 }
581 if (isPowerOf2_32(RHSC)) {
582 unsigned ShAmt = Log2_32(RHSC);
583 Base = Offset = N.getOperand(0);
584 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
585 ARM_AM::lsl),
586 MVT::i32);
587 return true;
588 }
589 }
590 }
591 }
592
593 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
594 // ISD::OR that is equivalent to an ISD::ADD.
595 !CurDAG->isBaseWithConstantOffset(N))
596 return false;
597
598 // Leave simple R +/- imm12 operands for LDRi12
599 if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
600 int RHSC;
601 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
602 -0x1000+1, 0x1000, RHSC)) // 12 bits.
603 return false;
604 }
605
606 // Otherwise this is R +/- [possibly shifted] R.
607 ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
608 ARM_AM::ShiftOpc ShOpcVal =
609 ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
610 unsigned ShAmt = 0;
611
612 Base = N.getOperand(0);
613 Offset = N.getOperand(1);
614
615 if (ShOpcVal != ARM_AM::no_shift) {
616 // Check to see if the RHS of the shift is a constant, if not, we can't fold
617 // it.
618 if (ConstantSDNode *Sh =
619 dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
620 ShAmt = Sh->getZExtValue();
621 if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
622 Offset = N.getOperand(1).getOperand(0);
623 else {
624 ShAmt = 0;
625 ShOpcVal = ARM_AM::no_shift;
626 }
627 } else {
628 ShOpcVal = ARM_AM::no_shift;
629 }
630 }
631
632 // Try matching (R shl C) + (R).
633 if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
634 !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
635 N.getOperand(0).hasOneUse())) {
636 ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
637 if (ShOpcVal != ARM_AM::no_shift) {
638 // Check to see if the RHS of the shift is a constant, if not, we can't
639 // fold it.
640 if (ConstantSDNode *Sh =
641 dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
642 ShAmt = Sh->getZExtValue();
643 if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
644 Offset = N.getOperand(0).getOperand(0);
645 Base = N.getOperand(1);
646 } else {
647 ShAmt = 0;
648 ShOpcVal = ARM_AM::no_shift;
649 }
650 } else {
651 ShOpcVal = ARM_AM::no_shift;
652 }
653 }
654 }
655
656 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
657 MVT::i32);
658 return true;
659}
660
661
662//-----
663
664AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
665 SDValue &Base,
666 SDValue &Offset,
667 SDValue &Opc) {
668 if (N.getOpcode() == ISD::MUL &&
669 (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
670 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
671 // X * [3,5,9] -> X + X * [2,4,8] etc.
672 int RHSC = (int)RHS->getZExtValue();
673 if (RHSC & 1) {
674 RHSC = RHSC & ~1;
675 ARM_AM::AddrOpc AddSub = ARM_AM::add;
676 if (RHSC < 0) {
677 AddSub = ARM_AM::sub;
678 RHSC = - RHSC;
679 }
680 if (isPowerOf2_32(RHSC)) {
681 unsigned ShAmt = Log2_32(RHSC);
682 Base = Offset = N.getOperand(0);
683 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
684 ARM_AM::lsl),
685 MVT::i32);
686 return AM2_SHOP;
687 }
688 }
689 }
690 }
691
692 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
693 // ISD::OR that is equivalent to an ADD.
694 !CurDAG->isBaseWithConstantOffset(N)) {
695 Base = N;
696 if (N.getOpcode() == ISD::FrameIndex) {
697 int FI = cast<FrameIndexSDNode>(N)->getIndex();
85aaf69f 698 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc 699 } else if (N.getOpcode() == ARMISD::Wrapper &&
1a4d82fc 700 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
223e47cc
LB
701 Base = N.getOperand(0);
702 }
703 Offset = CurDAG->getRegister(0, MVT::i32);
704 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
705 ARM_AM::no_shift),
706 MVT::i32);
707 return AM2_BASE;
708 }
709
710 // Match simple R +/- imm12 operands.
711 if (N.getOpcode() != ISD::SUB) {
712 int RHSC;
713 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
714 -0x1000+1, 0x1000, RHSC)) { // 12 bits.
715 Base = N.getOperand(0);
716 if (Base.getOpcode() == ISD::FrameIndex) {
717 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
85aaf69f 718 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
719 }
720 Offset = CurDAG->getRegister(0, MVT::i32);
721
722 ARM_AM::AddrOpc AddSub = ARM_AM::add;
723 if (RHSC < 0) {
724 AddSub = ARM_AM::sub;
725 RHSC = - RHSC;
726 }
727 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
728 ARM_AM::no_shift),
729 MVT::i32);
730 return AM2_BASE;
731 }
732 }
733
734 if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
735 // Compute R +/- (R << N) and reuse it.
736 Base = N;
737 Offset = CurDAG->getRegister(0, MVT::i32);
738 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
739 ARM_AM::no_shift),
740 MVT::i32);
741 return AM2_BASE;
742 }
743
744 // Otherwise this is R +/- [possibly shifted] R.
745 ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
746 ARM_AM::ShiftOpc ShOpcVal =
747 ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
748 unsigned ShAmt = 0;
749
750 Base = N.getOperand(0);
751 Offset = N.getOperand(1);
752
753 if (ShOpcVal != ARM_AM::no_shift) {
754 // Check to see if the RHS of the shift is a constant, if not, we can't fold
755 // it.
756 if (ConstantSDNode *Sh =
757 dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
758 ShAmt = Sh->getZExtValue();
759 if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
760 Offset = N.getOperand(1).getOperand(0);
761 else {
762 ShAmt = 0;
763 ShOpcVal = ARM_AM::no_shift;
764 }
765 } else {
766 ShOpcVal = ARM_AM::no_shift;
767 }
768 }
769
770 // Try matching (R shl C) + (R).
771 if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
772 !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
773 N.getOperand(0).hasOneUse())) {
774 ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
775 if (ShOpcVal != ARM_AM::no_shift) {
776 // Check to see if the RHS of the shift is a constant, if not, we can't
777 // fold it.
778 if (ConstantSDNode *Sh =
779 dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
780 ShAmt = Sh->getZExtValue();
781 if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
782 Offset = N.getOperand(0).getOperand(0);
783 Base = N.getOperand(1);
784 } else {
785 ShAmt = 0;
786 ShOpcVal = ARM_AM::no_shift;
787 }
788 } else {
789 ShOpcVal = ARM_AM::no_shift;
790 }
791 }
792 }
793
794 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
795 MVT::i32);
796 return AM2_SHOP;
797}
798
799bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
800 SDValue &Offset, SDValue &Opc) {
801 unsigned Opcode = Op->getOpcode();
802 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
803 ? cast<LoadSDNode>(Op)->getAddressingMode()
804 : cast<StoreSDNode>(Op)->getAddressingMode();
805 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
806 ? ARM_AM::add : ARM_AM::sub;
807 int Val;
808 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
809 return false;
810
811 Offset = N;
812 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
813 unsigned ShAmt = 0;
814 if (ShOpcVal != ARM_AM::no_shift) {
815 // Check to see if the RHS of the shift is a constant, if not, we can't fold
816 // it.
817 if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
818 ShAmt = Sh->getZExtValue();
819 if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
820 Offset = N.getOperand(0);
821 else {
822 ShAmt = 0;
823 ShOpcVal = ARM_AM::no_shift;
824 }
825 } else {
826 ShOpcVal = ARM_AM::no_shift;
827 }
828 }
829
830 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
831 MVT::i32);
832 return true;
833}
834
835bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
836 SDValue &Offset, SDValue &Opc) {
837 unsigned Opcode = Op->getOpcode();
838 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
839 ? cast<LoadSDNode>(Op)->getAddressingMode()
840 : cast<StoreSDNode>(Op)->getAddressingMode();
841 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
842 ? ARM_AM::add : ARM_AM::sub;
843 int Val;
844 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
845 if (AddSub == ARM_AM::sub) Val *= -1;
846 Offset = CurDAG->getRegister(0, MVT::i32);
847 Opc = CurDAG->getTargetConstant(Val, MVT::i32);
848 return true;
849 }
850
851 return false;
852}
853
854
855bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
856 SDValue &Offset, SDValue &Opc) {
857 unsigned Opcode = Op->getOpcode();
858 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
859 ? cast<LoadSDNode>(Op)->getAddressingMode()
860 : cast<StoreSDNode>(Op)->getAddressingMode();
861 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
862 ? ARM_AM::add : ARM_AM::sub;
863 int Val;
864 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
865 Offset = CurDAG->getRegister(0, MVT::i32);
866 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
867 ARM_AM::no_shift),
868 MVT::i32);
869 return true;
870 }
871
872 return false;
873}
874
875bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
876 Base = N;
877 return true;
878}
879
880bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
881 SDValue &Base, SDValue &Offset,
882 SDValue &Opc) {
883 if (N.getOpcode() == ISD::SUB) {
884 // X - C is canonicalize to X + -C, no need to handle it here.
885 Base = N.getOperand(0);
886 Offset = N.getOperand(1);
887 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
888 return true;
889 }
890
891 if (!CurDAG->isBaseWithConstantOffset(N)) {
892 Base = N;
893 if (N.getOpcode() == ISD::FrameIndex) {
894 int FI = cast<FrameIndexSDNode>(N)->getIndex();
85aaf69f 895 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
896 }
897 Offset = CurDAG->getRegister(0, MVT::i32);
898 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
899 return true;
900 }
901
902 // If the RHS is +/- imm8, fold into addr mode.
903 int RHSC;
904 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
905 -256 + 1, 256, RHSC)) { // 8 bits.
906 Base = N.getOperand(0);
907 if (Base.getOpcode() == ISD::FrameIndex) {
908 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
85aaf69f 909 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
910 }
911 Offset = CurDAG->getRegister(0, MVT::i32);
912
913 ARM_AM::AddrOpc AddSub = ARM_AM::add;
914 if (RHSC < 0) {
915 AddSub = ARM_AM::sub;
916 RHSC = -RHSC;
917 }
918 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
919 return true;
920 }
921
922 Base = N.getOperand(0);
923 Offset = N.getOperand(1);
924 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
925 return true;
926}
927
928bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
929 SDValue &Offset, SDValue &Opc) {
930 unsigned Opcode = Op->getOpcode();
931 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
932 ? cast<LoadSDNode>(Op)->getAddressingMode()
933 : cast<StoreSDNode>(Op)->getAddressingMode();
934 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
935 ? ARM_AM::add : ARM_AM::sub;
936 int Val;
937 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
938 Offset = CurDAG->getRegister(0, MVT::i32);
939 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
940 return true;
941 }
942
943 Offset = N;
944 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
945 return true;
946}
947
948bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
949 SDValue &Base, SDValue &Offset) {
950 if (!CurDAG->isBaseWithConstantOffset(N)) {
951 Base = N;
952 if (N.getOpcode() == ISD::FrameIndex) {
953 int FI = cast<FrameIndexSDNode>(N)->getIndex();
85aaf69f 954 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc 955 } else if (N.getOpcode() == ARMISD::Wrapper &&
1a4d82fc 956 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
223e47cc
LB
957 Base = N.getOperand(0);
958 }
959 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
960 MVT::i32);
961 return true;
962 }
963
964 // If the RHS is +/- imm8, fold into addr mode.
965 int RHSC;
966 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
967 -256 + 1, 256, RHSC)) {
968 Base = N.getOperand(0);
969 if (Base.getOpcode() == ISD::FrameIndex) {
970 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
85aaf69f 971 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
972 }
973
974 ARM_AM::AddrOpc AddSub = ARM_AM::add;
975 if (RHSC < 0) {
976 AddSub = ARM_AM::sub;
977 RHSC = -RHSC;
978 }
979 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
980 MVT::i32);
981 return true;
982 }
983
984 Base = N;
985 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
986 MVT::i32);
987 return true;
988}
989
990bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
991 SDValue &Align) {
992 Addr = N;
993
994 unsigned Alignment = 0;
995 if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
996 // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
997 // The maximum alignment is equal to the memory size being referenced.
998 unsigned LSNAlign = LSN->getAlignment();
999 unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
1000 if (LSNAlign >= MemSize && MemSize > 1)
1001 Alignment = MemSize;
1002 } else {
1003 // All other uses of addrmode6 are for intrinsics. For now just record
1004 // the raw alignment value; it will be refined later based on the legal
1005 // alignment operands for the intrinsic.
1006 Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
1007 }
1008
1009 Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
1010 return true;
1011}
1012
1013bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
1014 SDValue &Offset) {
1015 LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
1016 ISD::MemIndexedMode AM = LdSt->getAddressingMode();
1017 if (AM != ISD::POST_INC)
1018 return false;
1019 Offset = N;
1020 if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
1021 if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
1022 Offset = CurDAG->getRegister(0, MVT::i32);
1023 }
1024 return true;
1025}
1026
1027bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
1028 SDValue &Offset, SDValue &Label) {
1029 if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
1030 Offset = N.getOperand(0);
1031 SDValue N1 = N.getOperand(1);
1032 Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
1033 MVT::i32);
1034 return true;
1035 }
1036
1037 return false;
1038}
1039
1040
1041//===----------------------------------------------------------------------===//
1042// Thumb Addressing Modes
1043//===----------------------------------------------------------------------===//
1044
1045bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
1046 SDValue &Base, SDValue &Offset){
1047 if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
1048 ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
1049 if (!NC || !NC->isNullValue())
1050 return false;
1051
1052 Base = Offset = N;
1053 return true;
1054 }
1055
1056 Base = N.getOperand(0);
1057 Offset = N.getOperand(1);
1058 return true;
1059}
1060
1061bool
1062ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
1063 SDValue &Offset, unsigned Scale) {
1064 if (Scale == 4) {
1065 SDValue TmpBase, TmpOffImm;
1066 if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
1067 return false; // We want to select tLDRspi / tSTRspi instead.
1068
1069 if (N.getOpcode() == ARMISD::Wrapper &&
1070 N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
1071 return false; // We want to select tLDRpci instead.
1072 }
1073
1074 if (!CurDAG->isBaseWithConstantOffset(N))
1075 return false;
1076
1077 // Thumb does not have [sp, r] address mode.
1078 RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1079 RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1080 if ((LHSR && LHSR->getReg() == ARM::SP) ||
1081 (RHSR && RHSR->getReg() == ARM::SP))
1082 return false;
1083
1084 // FIXME: Why do we explicitly check for a match here and then return false?
1085 // Presumably to allow something else to match, but shouldn't this be
1086 // documented?
1087 int RHSC;
1088 if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
1089 return false;
1090
1091 Base = N.getOperand(0);
1092 Offset = N.getOperand(1);
1093 return true;
1094}
1095
1096bool
1097ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
1098 SDValue &Base,
1099 SDValue &Offset) {
1100 return SelectThumbAddrModeRI(N, Base, Offset, 1);
1101}
1102
1103bool
1104ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
1105 SDValue &Base,
1106 SDValue &Offset) {
1107 return SelectThumbAddrModeRI(N, Base, Offset, 2);
1108}
1109
1110bool
1111ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
1112 SDValue &Base,
1113 SDValue &Offset) {
1114 return SelectThumbAddrModeRI(N, Base, Offset, 4);
1115}
1116
1117bool
1118ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1119 SDValue &Base, SDValue &OffImm) {
1120 if (Scale == 4) {
1121 SDValue TmpBase, TmpOffImm;
1122 if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
1123 return false; // We want to select tLDRspi / tSTRspi instead.
1124
1125 if (N.getOpcode() == ARMISD::Wrapper &&
1126 N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
1127 return false; // We want to select tLDRpci instead.
1128 }
1129
1130 if (!CurDAG->isBaseWithConstantOffset(N)) {
1131 if (N.getOpcode() == ARMISD::Wrapper &&
1a4d82fc 1132 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
223e47cc
LB
1133 Base = N.getOperand(0);
1134 } else {
1135 Base = N;
1136 }
1137
1138 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1139 return true;
1140 }
1141
1142 RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1143 RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1144 if ((LHSR && LHSR->getReg() == ARM::SP) ||
1145 (RHSR && RHSR->getReg() == ARM::SP)) {
1146 ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
1147 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1148 unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
1149 unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
1150
1151 // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
1152 if (LHSC != 0 || RHSC != 0) return false;
1153
1154 Base = N;
1155 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1156 return true;
1157 }
1158
1159 // If the RHS is + imm5 * scale, fold into addr mode.
1160 int RHSC;
1161 if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1162 Base = N.getOperand(0);
1163 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1164 return true;
1165 }
1166
1167 Base = N.getOperand(0);
1168 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1169 return true;
1170}
1171
1172bool
1173ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1174 SDValue &OffImm) {
1175 return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1176}
1177
1178bool
1179ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1180 SDValue &OffImm) {
1181 return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1182}
1183
1184bool
1185ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1186 SDValue &OffImm) {
1187 return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1188}
1189
1190bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1191 SDValue &Base, SDValue &OffImm) {
1192 if (N.getOpcode() == ISD::FrameIndex) {
1193 int FI = cast<FrameIndexSDNode>(N)->getIndex();
85aaf69f 1194 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
1195 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1196 return true;
1197 }
1198
1199 if (!CurDAG->isBaseWithConstantOffset(N))
1200 return false;
1201
1202 RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1203 if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
1204 (LHSR && LHSR->getReg() == ARM::SP)) {
1205 // If the RHS is + imm8 * scale, fold into addr mode.
1206 int RHSC;
1207 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1208 Base = N.getOperand(0);
1209 if (Base.getOpcode() == ISD::FrameIndex) {
1210 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
85aaf69f 1211 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
1212 }
1213 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1214 return true;
1215 }
1216 }
1217
1218 return false;
1219}
1220
1221
1222//===----------------------------------------------------------------------===//
1223// Thumb 2 Addressing Modes
1224//===----------------------------------------------------------------------===//
1225
1226
1227bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
1228 SDValue &Opc) {
1229 if (DisableShifterOp)
1230 return false;
1231
1232 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
1233
1234 // Don't match base register only case. That is matched to a separate
1235 // lower complexity pattern with explicit register operand.
1236 if (ShOpcVal == ARM_AM::no_shift) return false;
1237
1238 BaseReg = N.getOperand(0);
1239 unsigned ShImmVal = 0;
1240 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1241 ShImmVal = RHS->getZExtValue() & 31;
1242 Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
1243 return true;
1244 }
1245
1246 return false;
1247}
1248
1249bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1250 SDValue &Base, SDValue &OffImm) {
1251 // Match simple R + imm12 operands.
1252
1253 // Base only.
1254 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1255 !CurDAG->isBaseWithConstantOffset(N)) {
1256 if (N.getOpcode() == ISD::FrameIndex) {
1257 // Match frame index.
1258 int FI = cast<FrameIndexSDNode>(N)->getIndex();
85aaf69f 1259 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
1260 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1261 return true;
1262 }
1263
1264 if (N.getOpcode() == ARMISD::Wrapper &&
1a4d82fc 1265 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
223e47cc
LB
1266 Base = N.getOperand(0);
1267 if (Base.getOpcode() == ISD::TargetConstantPool)
1268 return false; // We want to select t2LDRpci instead.
1269 } else
1270 Base = N;
1271 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1272 return true;
1273 }
1274
1275 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1276 if (SelectT2AddrModeImm8(N, Base, OffImm))
1277 // Let t2LDRi8 handle (R - imm8).
1278 return false;
1279
1280 int RHSC = (int)RHS->getZExtValue();
1281 if (N.getOpcode() == ISD::SUB)
1282 RHSC = -RHSC;
1283
1284 if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1285 Base = N.getOperand(0);
1286 if (Base.getOpcode() == ISD::FrameIndex) {
1287 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
85aaf69f 1288 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
1289 }
1290 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1291 return true;
1292 }
1293 }
1294
1295 // Base only.
1296 Base = N;
1297 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1298 return true;
1299}
1300
1301bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1302 SDValue &Base, SDValue &OffImm) {
1303 // Match simple R - imm8 operands.
1304 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1305 !CurDAG->isBaseWithConstantOffset(N))
1306 return false;
1307
1308 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1309 int RHSC = (int)RHS->getSExtValue();
1310 if (N.getOpcode() == ISD::SUB)
1311 RHSC = -RHSC;
1312
1313 if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1314 Base = N.getOperand(0);
1315 if (Base.getOpcode() == ISD::FrameIndex) {
1316 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
85aaf69f 1317 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc
LB
1318 }
1319 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1320 return true;
1321 }
1322 }
1323
1324 return false;
1325}
1326
1327bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1328 SDValue &OffImm){
1329 unsigned Opcode = Op->getOpcode();
1330 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1331 ? cast<LoadSDNode>(Op)->getAddressingMode()
1332 : cast<StoreSDNode>(Op)->getAddressingMode();
1333 int RHSC;
1334 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1335 OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1336 ? CurDAG->getTargetConstant(RHSC, MVT::i32)
1337 : CurDAG->getTargetConstant(-RHSC, MVT::i32);
1338 return true;
1339 }
1340
1341 return false;
1342}
1343
1344bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1345 SDValue &Base,
1346 SDValue &OffReg, SDValue &ShImm) {
1347 // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1348 if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1349 return false;
1350
1351 // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1352 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1353 int RHSC = (int)RHS->getZExtValue();
1354 if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1355 return false;
1356 else if (RHSC < 0 && RHSC >= -255) // 8 bits
1357 return false;
1358 }
1359
1360 // Look for (R + R) or (R + (R << [1,2,3])).
1361 unsigned ShAmt = 0;
1362 Base = N.getOperand(0);
1363 OffReg = N.getOperand(1);
1364
1365 // Swap if it is ((R << c) + R).
1366 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1367 if (ShOpcVal != ARM_AM::lsl) {
1368 ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1369 if (ShOpcVal == ARM_AM::lsl)
1370 std::swap(Base, OffReg);
1371 }
1372
1373 if (ShOpcVal == ARM_AM::lsl) {
1374 // Check to see if the RHS of the shift is a constant, if not, we can't fold
1375 // it.
1376 if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1377 ShAmt = Sh->getZExtValue();
1378 if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1379 OffReg = OffReg.getOperand(0);
1380 else {
1381 ShAmt = 0;
223e47cc 1382 }
223e47cc
LB
1383 }
1384 }
1385
1386 ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
1387
1388 return true;
1389}
1390
1a4d82fc
JJ
1391bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
1392 SDValue &OffImm) {
1393 // This *must* succeed since it's used for the irreplaceable ldrex and strex
1394 // instructions.
1395 Base = N;
1396 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1397
1398 if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
1399 return true;
1400
1401 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1402 if (!RHS)
1403 return true;
1404
1405 uint32_t RHSC = (int)RHS->getZExtValue();
1406 if (RHSC > 1020 || RHSC % 4 != 0)
1407 return true;
1408
1409 Base = N.getOperand(0);
1410 if (Base.getOpcode() == ISD::FrameIndex) {
1411 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
85aaf69f 1412 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
1a4d82fc
JJ
1413 }
1414
1415 OffImm = CurDAG->getTargetConstant(RHSC / 4, MVT::i32);
1416 return true;
1417}
1418
223e47cc
LB
1419//===--------------------------------------------------------------------===//
1420
1421/// getAL - Returns a ARMCC::AL immediate node.
1422static inline SDValue getAL(SelectionDAG *CurDAG) {
1423 return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
1424}
1425
1426SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
1427 LoadSDNode *LD = cast<LoadSDNode>(N);
1428 ISD::MemIndexedMode AM = LD->getAddressingMode();
1429 if (AM == ISD::UNINDEXED)
1a4d82fc 1430 return nullptr;
223e47cc
LB
1431
1432 EVT LoadedVT = LD->getMemoryVT();
1433 SDValue Offset, AMOpc;
1434 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1435 unsigned Opcode = 0;
1436 bool Match = false;
1437 if (LoadedVT == MVT::i32 && isPre &&
1438 SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1439 Opcode = ARM::LDR_PRE_IMM;
1440 Match = true;
1441 } else if (LoadedVT == MVT::i32 && !isPre &&
1442 SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1443 Opcode = ARM::LDR_POST_IMM;
1444 Match = true;
1445 } else if (LoadedVT == MVT::i32 &&
1446 SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1447 Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1448 Match = true;
1449
1450 } else if (LoadedVT == MVT::i16 &&
1451 SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1452 Match = true;
1453 Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1454 ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1455 : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1456 } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1457 if (LD->getExtensionType() == ISD::SEXTLOAD) {
1458 if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1459 Match = true;
1460 Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1461 }
1462 } else {
1463 if (isPre &&
1464 SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1465 Match = true;
1466 Opcode = ARM::LDRB_PRE_IMM;
1467 } else if (!isPre &&
1468 SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1469 Match = true;
1470 Opcode = ARM::LDRB_POST_IMM;
1471 } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1472 Match = true;
1473 Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1474 }
1475 }
1476 }
1477
1478 if (Match) {
1479 if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1480 SDValue Chain = LD->getChain();
1481 SDValue Base = LD->getBasePtr();
1482 SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
1483 CurDAG->getRegister(0, MVT::i32), Chain };
1a4d82fc
JJ
1484 return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
1485 MVT::i32, MVT::Other, Ops);
223e47cc
LB
1486 } else {
1487 SDValue Chain = LD->getChain();
1488 SDValue Base = LD->getBasePtr();
1489 SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
1490 CurDAG->getRegister(0, MVT::i32), Chain };
1a4d82fc
JJ
1491 return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
1492 MVT::i32, MVT::Other, Ops);
223e47cc
LB
1493 }
1494 }
1495
1a4d82fc 1496 return nullptr;
223e47cc
LB
1497}
1498
1499SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
1500 LoadSDNode *LD = cast<LoadSDNode>(N);
1501 ISD::MemIndexedMode AM = LD->getAddressingMode();
1502 if (AM == ISD::UNINDEXED)
1a4d82fc 1503 return nullptr;
223e47cc
LB
1504
1505 EVT LoadedVT = LD->getMemoryVT();
1506 bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1507 SDValue Offset;
1508 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1509 unsigned Opcode = 0;
1510 bool Match = false;
1511 if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1512 switch (LoadedVT.getSimpleVT().SimpleTy) {
1513 case MVT::i32:
1514 Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1515 break;
1516 case MVT::i16:
1517 if (isSExtLd)
1518 Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1519 else
1520 Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1521 break;
1522 case MVT::i8:
1523 case MVT::i1:
1524 if (isSExtLd)
1525 Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1526 else
1527 Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1528 break;
1529 default:
1a4d82fc 1530 return nullptr;
223e47cc
LB
1531 }
1532 Match = true;
1533 }
1534
1535 if (Match) {
1536 SDValue Chain = LD->getChain();
1537 SDValue Base = LD->getBasePtr();
1538 SDValue Ops[]= { Base, Offset, getAL(CurDAG),
1539 CurDAG->getRegister(0, MVT::i32), Chain };
1a4d82fc
JJ
1540 return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1541 MVT::Other, Ops);
223e47cc
LB
1542 }
1543
1a4d82fc 1544 return nullptr;
223e47cc
LB
1545}
1546
970d7e83
LB
1547/// \brief Form a GPRPair pseudo register from a pair of GPR regs.
1548SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
1a4d82fc 1549 SDLoc dl(V0.getNode());
970d7e83
LB
1550 SDValue RegClass =
1551 CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32);
1552 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
1553 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
1554 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1a4d82fc 1555 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
970d7e83
LB
1556}
1557
1558/// \brief Form a D register from a pair of S registers.
1559SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1a4d82fc 1560 SDLoc dl(V0.getNode());
223e47cc
LB
1561 SDValue RegClass =
1562 CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
1563 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1564 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1565 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1a4d82fc 1566 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
223e47cc
LB
1567}
1568
970d7e83
LB
1569/// \brief Form a quad register from a pair of D registers.
1570SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1a4d82fc 1571 SDLoc dl(V0.getNode());
223e47cc
LB
1572 SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
1573 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1574 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1575 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1a4d82fc 1576 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
223e47cc
LB
1577}
1578
970d7e83
LB
1579/// \brief Form 4 consecutive D registers from a pair of Q registers.
1580SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1a4d82fc 1581 SDLoc dl(V0.getNode());
223e47cc
LB
1582 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1583 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1584 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1585 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1a4d82fc 1586 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
223e47cc
LB
1587}
1588
970d7e83
LB
1589/// \brief Form 4 consecutive S registers.
1590SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
223e47cc 1591 SDValue V2, SDValue V3) {
1a4d82fc 1592 SDLoc dl(V0.getNode());
223e47cc
LB
1593 SDValue RegClass =
1594 CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
1595 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1596 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1597 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
1598 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
1599 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1600 V2, SubReg2, V3, SubReg3 };
1a4d82fc 1601 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
223e47cc
LB
1602}
1603
970d7e83
LB
1604/// \brief Form 4 consecutive D registers.
1605SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
223e47cc 1606 SDValue V2, SDValue V3) {
1a4d82fc 1607 SDLoc dl(V0.getNode());
223e47cc
LB
1608 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1609 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1610 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1611 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1612 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1613 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1614 V2, SubReg2, V3, SubReg3 };
1a4d82fc 1615 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
223e47cc
LB
1616}
1617
970d7e83
LB
1618/// \brief Form 4 consecutive Q registers.
1619SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
223e47cc 1620 SDValue V2, SDValue V3) {
1a4d82fc 1621 SDLoc dl(V0.getNode());
223e47cc
LB
1622 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
1623 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1624 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1625 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
1626 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
1627 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1628 V2, SubReg2, V3, SubReg3 };
1a4d82fc 1629 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
223e47cc
LB
1630}
1631
1632/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1633/// of a NEON VLD or VST instruction. The supported values depend on the
1634/// number of registers being loaded.
1635SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
1636 bool is64BitVector) {
1637 unsigned NumRegs = NumVecs;
1638 if (!is64BitVector && NumVecs < 3)
1639 NumRegs *= 2;
1640
1641 unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1642 if (Alignment >= 32 && NumRegs == 4)
1643 Alignment = 32;
1644 else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1645 Alignment = 16;
1646 else if (Alignment >= 8)
1647 Alignment = 8;
1648 else
1649 Alignment = 0;
1650
1651 return CurDAG->getTargetConstant(Alignment, MVT::i32);
1652}
1653
1a4d82fc
JJ
1654static bool isVLDfixed(unsigned Opc)
1655{
1656 switch (Opc) {
1657 default: return false;
1658 case ARM::VLD1d8wb_fixed : return true;
1659 case ARM::VLD1d16wb_fixed : return true;
1660 case ARM::VLD1d64Qwb_fixed : return true;
1661 case ARM::VLD1d32wb_fixed : return true;
1662 case ARM::VLD1d64wb_fixed : return true;
1663 case ARM::VLD1d64TPseudoWB_fixed : return true;
1664 case ARM::VLD1d64QPseudoWB_fixed : return true;
1665 case ARM::VLD1q8wb_fixed : return true;
1666 case ARM::VLD1q16wb_fixed : return true;
1667 case ARM::VLD1q32wb_fixed : return true;
1668 case ARM::VLD1q64wb_fixed : return true;
1669 case ARM::VLD2d8wb_fixed : return true;
1670 case ARM::VLD2d16wb_fixed : return true;
1671 case ARM::VLD2d32wb_fixed : return true;
1672 case ARM::VLD2q8PseudoWB_fixed : return true;
1673 case ARM::VLD2q16PseudoWB_fixed : return true;
1674 case ARM::VLD2q32PseudoWB_fixed : return true;
1675 case ARM::VLD2DUPd8wb_fixed : return true;
1676 case ARM::VLD2DUPd16wb_fixed : return true;
1677 case ARM::VLD2DUPd32wb_fixed : return true;
1678 }
1679}
1680
1681static bool isVSTfixed(unsigned Opc)
1682{
1683 switch (Opc) {
1684 default: return false;
1685 case ARM::VST1d8wb_fixed : return true;
1686 case ARM::VST1d16wb_fixed : return true;
1687 case ARM::VST1d32wb_fixed : return true;
1688 case ARM::VST1d64wb_fixed : return true;
1689 case ARM::VST1q8wb_fixed : return true;
1690 case ARM::VST1q16wb_fixed : return true;
1691 case ARM::VST1q32wb_fixed : return true;
1692 case ARM::VST1q64wb_fixed : return true;
1693 case ARM::VST1d64TPseudoWB_fixed : return true;
1694 case ARM::VST1d64QPseudoWB_fixed : return true;
1695 case ARM::VST2d8wb_fixed : return true;
1696 case ARM::VST2d16wb_fixed : return true;
1697 case ARM::VST2d32wb_fixed : return true;
1698 case ARM::VST2q8PseudoWB_fixed : return true;
1699 case ARM::VST2q16PseudoWB_fixed : return true;
1700 case ARM::VST2q32PseudoWB_fixed : return true;
1701 }
1702}
1703
223e47cc
LB
1704// Get the register stride update opcode of a VLD/VST instruction that
1705// is otherwise equivalent to the given fixed stride updating instruction.
1706static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
1a4d82fc
JJ
1707 assert((isVLDfixed(Opc) || isVSTfixed(Opc))
1708 && "Incorrect fixed stride updating instruction.");
223e47cc
LB
1709 switch (Opc) {
1710 default: break;
1711 case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
1712 case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
1713 case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
1714 case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
1715 case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
1716 case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
1717 case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
1718 case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
1a4d82fc
JJ
1719 case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
1720 case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
1721 case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
1722 case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
223e47cc
LB
1723
1724 case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
1725 case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
1726 case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
1727 case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
1728 case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
1729 case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
1730 case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
1731 case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
1732 case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
1733 case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
1734
1735 case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
1736 case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
1737 case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
1738 case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
1739 case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
1740 case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
1741
1742 case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
1743 case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
1744 case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
1745 case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
1746 case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
1747 case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
1748
1749 case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
1750 case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
1751 case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
1752 }
1753 return Opc; // If not one we handle, return it unchanged.
1754}
1755
1756SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
1757 const uint16_t *DOpcodes,
1758 const uint16_t *QOpcodes0,
1759 const uint16_t *QOpcodes1) {
1760 assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1a4d82fc 1761 SDLoc dl(N);
223e47cc
LB
1762
1763 SDValue MemAddr, Align;
1764 unsigned AddrOpIdx = isUpdating ? 1 : 2;
1765 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1a4d82fc 1766 return nullptr;
223e47cc
LB
1767
1768 SDValue Chain = N->getOperand(0);
1769 EVT VT = N->getValueType(0);
1770 bool is64BitVector = VT.is64BitVector();
1771 Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1772
1773 unsigned OpcodeIndex;
1774 switch (VT.getSimpleVT().SimpleTy) {
1775 default: llvm_unreachable("unhandled vld type");
1776 // Double-register operations:
1777 case MVT::v8i8: OpcodeIndex = 0; break;
1778 case MVT::v4i16: OpcodeIndex = 1; break;
1779 case MVT::v2f32:
1780 case MVT::v2i32: OpcodeIndex = 2; break;
1781 case MVT::v1i64: OpcodeIndex = 3; break;
1782 // Quad-register operations:
1783 case MVT::v16i8: OpcodeIndex = 0; break;
1784 case MVT::v8i16: OpcodeIndex = 1; break;
1785 case MVT::v4f32:
1786 case MVT::v4i32: OpcodeIndex = 2; break;
85aaf69f 1787 case MVT::v2f64:
223e47cc
LB
1788 case MVT::v2i64: OpcodeIndex = 3;
1789 assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
1790 break;
1791 }
1792
1793 EVT ResTy;
1794 if (NumVecs == 1)
1795 ResTy = VT;
1796 else {
1797 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1798 if (!is64BitVector)
1799 ResTyElts *= 2;
1800 ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
1801 }
1802 std::vector<EVT> ResTys;
1803 ResTys.push_back(ResTy);
1804 if (isUpdating)
1805 ResTys.push_back(MVT::i32);
1806 ResTys.push_back(MVT::Other);
1807
1808 SDValue Pred = getAL(CurDAG);
1809 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1810 SDNode *VLd;
1811 SmallVector<SDValue, 7> Ops;
1812
1813 // Double registers and VLD1/VLD2 quad registers are directly supported.
1814 if (is64BitVector || NumVecs <= 2) {
1815 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1816 QOpcodes0[OpcodeIndex]);
1817 Ops.push_back(MemAddr);
1818 Ops.push_back(Align);
1819 if (isUpdating) {
1820 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1821 // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
1822 // case entirely when the rest are updated to that form, too.
1a4d82fc 1823 if ((NumVecs <= 2) && !isa<ConstantSDNode>(Inc.getNode()))
223e47cc 1824 Opc = getVLDSTRegisterUpdateOpcode(Opc);
1a4d82fc 1825 // FIXME: We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
223e47cc 1826 // check for that explicitly too. Horribly hacky, but temporary.
1a4d82fc 1827 if ((NumVecs > 2 && !isVLDfixed(Opc)) ||
223e47cc
LB
1828 !isa<ConstantSDNode>(Inc.getNode()))
1829 Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1830 }
1831 Ops.push_back(Pred);
1832 Ops.push_back(Reg0);
1833 Ops.push_back(Chain);
1a4d82fc 1834 VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
223e47cc
LB
1835
1836 } else {
1837 // Otherwise, quad registers are loaded with two separate instructions,
1838 // where one loads the even registers and the other loads the odd registers.
1839 EVT AddrTy = MemAddr.getValueType();
1840
1841 // Load the even subregs. This is always an updating load, so that it
1842 // provides the address to the second load for the odd subregs.
1843 SDValue ImplDef =
1844 SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
1845 const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
1846 SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1a4d82fc 1847 ResTy, AddrTy, MVT::Other, OpsA);
223e47cc
LB
1848 Chain = SDValue(VLdA, 2);
1849
1850 // Load the odd subregs.
1851 Ops.push_back(SDValue(VLdA, 1));
1852 Ops.push_back(Align);
1853 if (isUpdating) {
1854 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1855 assert(isa<ConstantSDNode>(Inc.getNode()) &&
1856 "only constant post-increment update allowed for VLD3/4");
1857 (void)Inc;
1858 Ops.push_back(Reg0);
1859 }
1860 Ops.push_back(SDValue(VLdA, 0));
1861 Ops.push_back(Pred);
1862 Ops.push_back(Reg0);
1863 Ops.push_back(Chain);
1a4d82fc 1864 VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
223e47cc
LB
1865 }
1866
1867 // Transfer memoperands.
1868 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1869 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1870 cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
1871
1872 if (NumVecs == 1)
1873 return VLd;
1874
1875 // Extract out the subregisters.
1876 SDValue SuperReg = SDValue(VLd, 0);
1877 assert(ARM::dsub_7 == ARM::dsub_0+7 &&
1878 ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1879 unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
1880 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1881 ReplaceUses(SDValue(N, Vec),
1882 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
1883 ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
1884 if (isUpdating)
1885 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
1a4d82fc 1886 return nullptr;
223e47cc
LB
1887}
1888
1889SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
1890 const uint16_t *DOpcodes,
1891 const uint16_t *QOpcodes0,
1892 const uint16_t *QOpcodes1) {
1893 assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1a4d82fc 1894 SDLoc dl(N);
223e47cc
LB
1895
1896 SDValue MemAddr, Align;
1897 unsigned AddrOpIdx = isUpdating ? 1 : 2;
1898 unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1899 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1a4d82fc 1900 return nullptr;
223e47cc
LB
1901
1902 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1903 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1904
1905 SDValue Chain = N->getOperand(0);
1906 EVT VT = N->getOperand(Vec0Idx).getValueType();
1907 bool is64BitVector = VT.is64BitVector();
1908 Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1909
1910 unsigned OpcodeIndex;
1911 switch (VT.getSimpleVT().SimpleTy) {
1912 default: llvm_unreachable("unhandled vst type");
1913 // Double-register operations:
1914 case MVT::v8i8: OpcodeIndex = 0; break;
1915 case MVT::v4i16: OpcodeIndex = 1; break;
1916 case MVT::v2f32:
1917 case MVT::v2i32: OpcodeIndex = 2; break;
1918 case MVT::v1i64: OpcodeIndex = 3; break;
1919 // Quad-register operations:
1920 case MVT::v16i8: OpcodeIndex = 0; break;
1921 case MVT::v8i16: OpcodeIndex = 1; break;
1922 case MVT::v4f32:
1923 case MVT::v4i32: OpcodeIndex = 2; break;
85aaf69f 1924 case MVT::v2f64:
223e47cc
LB
1925 case MVT::v2i64: OpcodeIndex = 3;
1926 assert(NumVecs == 1 && "v2i64 type only supported for VST1");
1927 break;
1928 }
1929
1930 std::vector<EVT> ResTys;
1931 if (isUpdating)
1932 ResTys.push_back(MVT::i32);
1933 ResTys.push_back(MVT::Other);
1934
1935 SDValue Pred = getAL(CurDAG);
1936 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1937 SmallVector<SDValue, 7> Ops;
1938
1939 // Double registers and VST1/VST2 quad registers are directly supported.
1940 if (is64BitVector || NumVecs <= 2) {
1941 SDValue SrcReg;
1942 if (NumVecs == 1) {
1943 SrcReg = N->getOperand(Vec0Idx);
1944 } else if (is64BitVector) {
1945 // Form a REG_SEQUENCE to force register allocation.
1946 SDValue V0 = N->getOperand(Vec0Idx + 0);
1947 SDValue V1 = N->getOperand(Vec0Idx + 1);
1948 if (NumVecs == 2)
970d7e83 1949 SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
223e47cc
LB
1950 else {
1951 SDValue V2 = N->getOperand(Vec0Idx + 2);
1952 // If it's a vst3, form a quad D-register and leave the last part as
1953 // an undef.
1954 SDValue V3 = (NumVecs == 3)
1955 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1956 : N->getOperand(Vec0Idx + 3);
970d7e83 1957 SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
223e47cc
LB
1958 }
1959 } else {
1960 // Form a QQ register.
1961 SDValue Q0 = N->getOperand(Vec0Idx);
1962 SDValue Q1 = N->getOperand(Vec0Idx + 1);
970d7e83 1963 SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
223e47cc
LB
1964 }
1965
1966 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1967 QOpcodes0[OpcodeIndex]);
1968 Ops.push_back(MemAddr);
1969 Ops.push_back(Align);
1970 if (isUpdating) {
1971 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1972 // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
1973 // case entirely when the rest are updated to that form, too.
1974 if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
1975 Opc = getVLDSTRegisterUpdateOpcode(Opc);
1a4d82fc 1976 // FIXME: We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
223e47cc 1977 // check for that explicitly too. Horribly hacky, but temporary.
1a4d82fc
JJ
1978 if (!isa<ConstantSDNode>(Inc.getNode()))
1979 Ops.push_back(Inc);
1980 else if (NumVecs > 2 && !isVSTfixed(Opc))
1981 Ops.push_back(Reg0);
223e47cc
LB
1982 }
1983 Ops.push_back(SrcReg);
1984 Ops.push_back(Pred);
1985 Ops.push_back(Reg0);
1986 Ops.push_back(Chain);
1a4d82fc 1987 SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
223e47cc
LB
1988
1989 // Transfer memoperands.
1990 cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
1991
1992 return VSt;
1993 }
1994
1995 // Otherwise, quad registers are stored with two separate instructions,
1996 // where one stores the even registers and the other stores the odd registers.
1997
1998 // Form the QQQQ REG_SEQUENCE.
1999 SDValue V0 = N->getOperand(Vec0Idx + 0);
2000 SDValue V1 = N->getOperand(Vec0Idx + 1);
2001 SDValue V2 = N->getOperand(Vec0Idx + 2);
2002 SDValue V3 = (NumVecs == 3)
2003 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2004 : N->getOperand(Vec0Idx + 3);
970d7e83 2005 SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
223e47cc
LB
2006
2007 // Store the even D registers. This is always an updating store, so that it
2008 // provides the address to the second store for the odd subregs.
2009 const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
2010 SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
2011 MemAddr.getValueType(),
1a4d82fc 2012 MVT::Other, OpsA);
223e47cc
LB
2013 cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
2014 Chain = SDValue(VStA, 1);
2015
2016 // Store the odd D registers.
2017 Ops.push_back(SDValue(VStA, 0));
2018 Ops.push_back(Align);
2019 if (isUpdating) {
2020 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2021 assert(isa<ConstantSDNode>(Inc.getNode()) &&
2022 "only constant post-increment update allowed for VST3/4");
2023 (void)Inc;
2024 Ops.push_back(Reg0);
2025 }
2026 Ops.push_back(RegSeq);
2027 Ops.push_back(Pred);
2028 Ops.push_back(Reg0);
2029 Ops.push_back(Chain);
2030 SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
1a4d82fc 2031 Ops);
223e47cc
LB
2032 cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
2033 return VStB;
2034}
2035
2036SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
2037 bool isUpdating, unsigned NumVecs,
2038 const uint16_t *DOpcodes,
2039 const uint16_t *QOpcodes) {
2040 assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
1a4d82fc 2041 SDLoc dl(N);
223e47cc
LB
2042
2043 SDValue MemAddr, Align;
2044 unsigned AddrOpIdx = isUpdating ? 1 : 2;
2045 unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2046 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1a4d82fc 2047 return nullptr;
223e47cc
LB
2048
2049 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2050 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2051
2052 SDValue Chain = N->getOperand(0);
2053 unsigned Lane =
2054 cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
2055 EVT VT = N->getOperand(Vec0Idx).getValueType();
2056 bool is64BitVector = VT.is64BitVector();
2057
2058 unsigned Alignment = 0;
2059 if (NumVecs != 3) {
2060 Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2061 unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
2062 if (Alignment > NumBytes)
2063 Alignment = NumBytes;
2064 if (Alignment < 8 && Alignment < NumBytes)
2065 Alignment = 0;
2066 // Alignment must be a power of two; make sure of that.
2067 Alignment = (Alignment & -Alignment);
2068 if (Alignment == 1)
2069 Alignment = 0;
2070 }
2071 Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
2072
2073 unsigned OpcodeIndex;
2074 switch (VT.getSimpleVT().SimpleTy) {
2075 default: llvm_unreachable("unhandled vld/vst lane type");
2076 // Double-register operations:
2077 case MVT::v8i8: OpcodeIndex = 0; break;
2078 case MVT::v4i16: OpcodeIndex = 1; break;
2079 case MVT::v2f32:
2080 case MVT::v2i32: OpcodeIndex = 2; break;
2081 // Quad-register operations:
2082 case MVT::v8i16: OpcodeIndex = 0; break;
2083 case MVT::v4f32:
2084 case MVT::v4i32: OpcodeIndex = 1; break;
2085 }
2086
2087 std::vector<EVT> ResTys;
2088 if (IsLoad) {
2089 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2090 if (!is64BitVector)
2091 ResTyElts *= 2;
2092 ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
2093 MVT::i64, ResTyElts));
2094 }
2095 if (isUpdating)
2096 ResTys.push_back(MVT::i32);
2097 ResTys.push_back(MVT::Other);
2098
2099 SDValue Pred = getAL(CurDAG);
2100 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2101
2102 SmallVector<SDValue, 8> Ops;
2103 Ops.push_back(MemAddr);
2104 Ops.push_back(Align);
2105 if (isUpdating) {
2106 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2107 Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
2108 }
2109
2110 SDValue SuperReg;
2111 SDValue V0 = N->getOperand(Vec0Idx + 0);
2112 SDValue V1 = N->getOperand(Vec0Idx + 1);
2113 if (NumVecs == 2) {
2114 if (is64BitVector)
970d7e83 2115 SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
223e47cc 2116 else
970d7e83 2117 SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
223e47cc
LB
2118 } else {
2119 SDValue V2 = N->getOperand(Vec0Idx + 2);
2120 SDValue V3 = (NumVecs == 3)
2121 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2122 : N->getOperand(Vec0Idx + 3);
2123 if (is64BitVector)
970d7e83 2124 SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
223e47cc 2125 else
970d7e83 2126 SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
223e47cc
LB
2127 }
2128 Ops.push_back(SuperReg);
2129 Ops.push_back(getI32Imm(Lane));
2130 Ops.push_back(Pred);
2131 Ops.push_back(Reg0);
2132 Ops.push_back(Chain);
2133
2134 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2135 QOpcodes[OpcodeIndex]);
1a4d82fc 2136 SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
223e47cc
LB
2137 cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
2138 if (!IsLoad)
2139 return VLdLn;
2140
2141 // Extract the subregisters.
2142 SuperReg = SDValue(VLdLn, 0);
2143 assert(ARM::dsub_7 == ARM::dsub_0+7 &&
2144 ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
2145 unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2146 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2147 ReplaceUses(SDValue(N, Vec),
2148 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2149 ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
2150 if (isUpdating)
2151 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
1a4d82fc 2152 return nullptr;
223e47cc
LB
2153}
2154
2155SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
2156 unsigned NumVecs,
2157 const uint16_t *Opcodes) {
2158 assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
1a4d82fc 2159 SDLoc dl(N);
223e47cc
LB
2160
2161 SDValue MemAddr, Align;
2162 if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
1a4d82fc 2163 return nullptr;
223e47cc
LB
2164
2165 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2166 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2167
2168 SDValue Chain = N->getOperand(0);
2169 EVT VT = N->getValueType(0);
2170
2171 unsigned Alignment = 0;
2172 if (NumVecs != 3) {
2173 Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2174 unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
2175 if (Alignment > NumBytes)
2176 Alignment = NumBytes;
2177 if (Alignment < 8 && Alignment < NumBytes)
2178 Alignment = 0;
2179 // Alignment must be a power of two; make sure of that.
2180 Alignment = (Alignment & -Alignment);
2181 if (Alignment == 1)
2182 Alignment = 0;
2183 }
2184 Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
2185
2186 unsigned OpcodeIndex;
2187 switch (VT.getSimpleVT().SimpleTy) {
2188 default: llvm_unreachable("unhandled vld-dup type");
2189 case MVT::v8i8: OpcodeIndex = 0; break;
2190 case MVT::v4i16: OpcodeIndex = 1; break;
2191 case MVT::v2f32:
2192 case MVT::v2i32: OpcodeIndex = 2; break;
2193 }
2194
2195 SDValue Pred = getAL(CurDAG);
2196 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2197 SDValue SuperReg;
2198 unsigned Opc = Opcodes[OpcodeIndex];
2199 SmallVector<SDValue, 6> Ops;
2200 Ops.push_back(MemAddr);
2201 Ops.push_back(Align);
2202 if (isUpdating) {
2203 // fixed-stride update instructions don't have an explicit writeback
2204 // operand. It's implicit in the opcode itself.
2205 SDValue Inc = N->getOperand(2);
2206 if (!isa<ConstantSDNode>(Inc.getNode()))
2207 Ops.push_back(Inc);
2208 // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
2209 else if (NumVecs > 2)
2210 Ops.push_back(Reg0);
2211 }
2212 Ops.push_back(Pred);
2213 Ops.push_back(Reg0);
2214 Ops.push_back(Chain);
2215
2216 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2217 std::vector<EVT> ResTys;
2218 ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
2219 if (isUpdating)
2220 ResTys.push_back(MVT::i32);
2221 ResTys.push_back(MVT::Other);
1a4d82fc 2222 SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
223e47cc
LB
2223 cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
2224 SuperReg = SDValue(VLdDup, 0);
2225
2226 // Extract the subregisters.
2227 assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
2228 unsigned SubIdx = ARM::dsub_0;
2229 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2230 ReplaceUses(SDValue(N, Vec),
2231 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
2232 ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
2233 if (isUpdating)
2234 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
1a4d82fc 2235 return nullptr;
223e47cc
LB
2236}
2237
2238SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
2239 unsigned Opc) {
2240 assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
1a4d82fc 2241 SDLoc dl(N);
223e47cc
LB
2242 EVT VT = N->getValueType(0);
2243 unsigned FirstTblReg = IsExt ? 2 : 1;
2244
2245 // Form a REG_SEQUENCE to force register allocation.
2246 SDValue RegSeq;
2247 SDValue V0 = N->getOperand(FirstTblReg + 0);
2248 SDValue V1 = N->getOperand(FirstTblReg + 1);
2249 if (NumVecs == 2)
970d7e83 2250 RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
223e47cc
LB
2251 else {
2252 SDValue V2 = N->getOperand(FirstTblReg + 2);
2253 // If it's a vtbl3, form a quad D-register and leave the last part as
2254 // an undef.
2255 SDValue V3 = (NumVecs == 3)
2256 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2257 : N->getOperand(FirstTblReg + 3);
970d7e83 2258 RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
223e47cc
LB
2259 }
2260
2261 SmallVector<SDValue, 6> Ops;
2262 if (IsExt)
2263 Ops.push_back(N->getOperand(1));
2264 Ops.push_back(RegSeq);
2265 Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
2266 Ops.push_back(getAL(CurDAG)); // predicate
2267 Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
1a4d82fc 2268 return CurDAG->getMachineNode(Opc, dl, VT, Ops);
223e47cc
LB
2269}
2270
2271SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
2272 bool isSigned) {
2273 if (!Subtarget->hasV6T2Ops())
1a4d82fc 2274 return nullptr;
223e47cc 2275
970d7e83
LB
2276 unsigned Opc = isSigned
2277 ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
223e47cc
LB
2278 : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
2279
223e47cc
LB
2280 // For unsigned extracts, check for a shift right and mask
2281 unsigned And_imm = 0;
2282 if (N->getOpcode() == ISD::AND) {
2283 if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
2284
2285 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2286 if (And_imm & (And_imm + 1))
1a4d82fc 2287 return nullptr;
223e47cc
LB
2288
2289 unsigned Srl_imm = 0;
2290 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
2291 Srl_imm)) {
2292 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2293
2294 // Note: The width operand is encoded as width-1.
2295 unsigned Width = CountTrailingOnes_32(And_imm) - 1;
2296 unsigned LSB = Srl_imm;
970d7e83 2297
223e47cc 2298 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
970d7e83
LB
2299
2300 if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
2301 // It's cheaper to use a right shift to extract the top bits.
2302 if (Subtarget->isThumb()) {
2303 Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
2304 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2305 CurDAG->getTargetConstant(LSB, MVT::i32),
2306 getAL(CurDAG), Reg0, Reg0 };
1a4d82fc 2307 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
970d7e83
LB
2308 }
2309
2310 // ARM models shift instructions as MOVsi with shifter operand.
2311 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
2312 SDValue ShOpc =
2313 CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB),
2314 MVT::i32);
2315 SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
2316 getAL(CurDAG), Reg0, Reg0 };
1a4d82fc 2317 return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
970d7e83
LB
2318 }
2319
223e47cc
LB
2320 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2321 CurDAG->getTargetConstant(LSB, MVT::i32),
2322 CurDAG->getTargetConstant(Width, MVT::i32),
1a4d82fc
JJ
2323 getAL(CurDAG), Reg0 };
2324 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
223e47cc
LB
2325 }
2326 }
1a4d82fc 2327 return nullptr;
223e47cc
LB
2328 }
2329
2330 // Otherwise, we're looking for a shift of a shift
2331 unsigned Shl_imm = 0;
2332 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
2333 assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
2334 unsigned Srl_imm = 0;
2335 if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
2336 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2337 // Note: The width operand is encoded as width-1.
2338 unsigned Width = 32 - Srl_imm - 1;
2339 int LSB = Srl_imm - Shl_imm;
2340 if (LSB < 0)
1a4d82fc 2341 return nullptr;
223e47cc
LB
2342 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2343 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2344 CurDAG->getTargetConstant(LSB, MVT::i32),
2345 CurDAG->getTargetConstant(Width, MVT::i32),
2346 getAL(CurDAG), Reg0 };
1a4d82fc 2347 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
223e47cc
LB
2348 }
2349 }
223e47cc 2350
1a4d82fc
JJ
2351 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
2352 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2353 unsigned LSB = 0;
2354 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
2355 !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
2356 return nullptr;
2357
2358 if (LSB + Width > 32)
2359 return nullptr;
2360
2361 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2362 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2363 CurDAG->getTargetConstant(LSB, MVT::i32),
2364 CurDAG->getTargetConstant(Width - 1, MVT::i32),
2365 getAL(CurDAG), Reg0 };
2366 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
223e47cc 2367 }
1a4d82fc
JJ
2368
2369 return nullptr;
223e47cc
LB
2370}
2371
2372/// Target-specific DAG combining for ISD::XOR.
2373/// Target-independent combining lowers SELECT_CC nodes of the form
2374/// select_cc setg[ge] X, 0, X, -X
2375/// select_cc setgt X, -1, X, -X
2376/// select_cc setl[te] X, 0, -X, X
2377/// select_cc setlt X, 1, -X, X
2378/// which represent Integer ABS into:
2379/// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2380/// ARM instruction selection detects the latter and matches it to
2381/// ARM::ABS or ARM::t2ABS machine node.
2382SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
2383 SDValue XORSrc0 = N->getOperand(0);
2384 SDValue XORSrc1 = N->getOperand(1);
2385 EVT VT = N->getValueType(0);
2386
2387 if (Subtarget->isThumb1Only())
1a4d82fc 2388 return nullptr;
223e47cc
LB
2389
2390 if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
1a4d82fc 2391 return nullptr;
223e47cc
LB
2392
2393 SDValue ADDSrc0 = XORSrc0.getOperand(0);
2394 SDValue ADDSrc1 = XORSrc0.getOperand(1);
2395 SDValue SRASrc0 = XORSrc1.getOperand(0);
2396 SDValue SRASrc1 = XORSrc1.getOperand(1);
2397 ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1);
2398 EVT XType = SRASrc0.getValueType();
2399 unsigned Size = XType.getSizeInBits() - 1;
2400
2401 if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
1a4d82fc 2402 XType.isInteger() && SRAConstant != nullptr &&
223e47cc
LB
2403 Size == SRAConstant->getZExtValue()) {
2404 unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
2405 return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
2406 }
2407
1a4d82fc 2408 return nullptr;
223e47cc
LB
2409}
2410
2411SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
2412 // The only time a CONCAT_VECTORS operation can have legal types is when
2413 // two 64-bit vectors are concatenated to a 128-bit vector.
2414 EVT VT = N->getValueType(0);
2415 if (!VT.is128BitVector() || N->getNumOperands() != 2)
2416 llvm_unreachable("unexpected CONCAT_VECTORS");
970d7e83 2417 return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1));
223e47cc
LB
2418}
2419
223e47cc 2420SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
1a4d82fc 2421 SDLoc dl(N);
223e47cc 2422
1a4d82fc
JJ
2423 if (N->isMachineOpcode()) {
2424 N->setNodeId(-1);
2425 return nullptr; // Already selected.
2426 }
223e47cc
LB
2427
2428 switch (N->getOpcode()) {
2429 default: break;
970d7e83
LB
2430 case ISD::INLINEASM: {
2431 SDNode *ResNode = SelectInlineAsm(N);
2432 if (ResNode)
2433 return ResNode;
2434 break;
2435 }
223e47cc
LB
2436 case ISD::XOR: {
2437 // Select special operations if XOR node forms integer ABS pattern
2438 SDNode *ResNode = SelectABSOp(N);
2439 if (ResNode)
2440 return ResNode;
2441 // Other cases are autogenerated.
2442 break;
2443 }
2444 case ISD::Constant: {
2445 unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
2446 bool UseCP = true;
1a4d82fc 2447 if (Subtarget->useMovt(*MF))
223e47cc
LB
2448 // Thumb2-aware targets have the MOVT instruction, so all immediates can
2449 // be done with MOV + MOVT, at worst.
1a4d82fc 2450 UseCP = false;
223e47cc
LB
2451 else {
2452 if (Subtarget->isThumb()) {
1a4d82fc
JJ
2453 UseCP = (Val > 255 && // MOV
2454 ~Val > 255 && // MOV + MVN
2455 !ARM_AM::isThumbImmShiftedVal(Val) && // MOV + LSL
2456 !(Subtarget->hasV6T2Ops() && Val <= 0xffff)); // MOVW
223e47cc 2457 } else
1a4d82fc
JJ
2458 UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
2459 ARM_AM::getSOImmVal(~Val) == -1 && // MVN
2460 !ARM_AM::isSOImmTwoPartVal(Val) && // two instrs.
2461 !(Subtarget->hasV6T2Ops() && Val <= 0xffff)); // MOVW
223e47cc
LB
2462 }
2463
2464 if (UseCP) {
85aaf69f
SL
2465 SDValue CPIdx = CurDAG->getTargetConstantPool(
2466 ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
2467 TLI->getPointerTy());
223e47cc
LB
2468
2469 SDNode *ResNode;
1a4d82fc 2470 if (Subtarget->isThumb()) {
223e47cc
LB
2471 SDValue Pred = getAL(CurDAG);
2472 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2473 SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
2474 ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
1a4d82fc 2475 Ops);
223e47cc
LB
2476 } else {
2477 SDValue Ops[] = {
2478 CPIdx,
2479 CurDAG->getTargetConstant(0, MVT::i32),
2480 getAL(CurDAG),
2481 CurDAG->getRegister(0, MVT::i32),
2482 CurDAG->getEntryNode()
2483 };
2484 ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
1a4d82fc 2485 Ops);
223e47cc
LB
2486 }
2487 ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
1a4d82fc 2488 return nullptr;
223e47cc
LB
2489 }
2490
2491 // Other cases are autogenerated.
2492 break;
2493 }
2494 case ISD::FrameIndex: {
2495 // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2496 int FI = cast<FrameIndexSDNode>(N)->getIndex();
85aaf69f 2497 SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
223e47cc 2498 if (Subtarget->isThumb1Only()) {
85aaf69f
SL
2499 return CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
2500 CurDAG->getTargetConstant(0, MVT::i32));
223e47cc
LB
2501 } else {
2502 unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
2503 ARM::t2ADDri : ARM::ADDri);
2504 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
2505 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2506 CurDAG->getRegister(0, MVT::i32) };
1a4d82fc 2507 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
223e47cc
LB
2508 }
2509 }
2510 case ISD::SRL:
2511 if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2512 return I;
2513 break;
1a4d82fc 2514 case ISD::SIGN_EXTEND_INREG:
223e47cc
LB
2515 case ISD::SRA:
2516 if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
2517 return I;
2518 break;
2519 case ISD::MUL:
2520 if (Subtarget->isThumb1Only())
2521 break;
2522 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
2523 unsigned RHSV = C->getZExtValue();
2524 if (!RHSV) break;
2525 if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
2526 unsigned ShImm = Log2_32(RHSV-1);
2527 if (ShImm >= 32)
2528 break;
2529 SDValue V = N->getOperand(0);
2530 ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2531 SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2532 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2533 if (Subtarget->isThumb()) {
2534 SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1a4d82fc 2535 return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
223e47cc
LB
2536 } else {
2537 SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1a4d82fc 2538 return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
223e47cc
LB
2539 }
2540 }
2541 if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
2542 unsigned ShImm = Log2_32(RHSV+1);
2543 if (ShImm >= 32)
2544 break;
2545 SDValue V = N->getOperand(0);
2546 ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2547 SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2548 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2549 if (Subtarget->isThumb()) {
2550 SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1a4d82fc 2551 return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
223e47cc
LB
2552 } else {
2553 SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1a4d82fc 2554 return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
223e47cc
LB
2555 }
2556 }
2557 }
2558 break;
2559 case ISD::AND: {
2560 // Check for unsigned bitfield extract
2561 if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2562 return I;
2563
2564 // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2565 // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2566 // are entirely contributed by c2 and lower 16-bits are entirely contributed
2567 // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2568 // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2569 EVT VT = N->getValueType(0);
2570 if (VT != MVT::i32)
2571 break;
2572 unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
2573 ? ARM::t2MOVTi16
2574 : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
2575 if (!Opc)
2576 break;
2577 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2578 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2579 if (!N1C)
2580 break;
2581 if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
2582 SDValue N2 = N0.getOperand(1);
2583 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2584 if (!N2C)
2585 break;
2586 unsigned N1CVal = N1C->getZExtValue();
2587 unsigned N2CVal = N2C->getZExtValue();
2588 if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
2589 (N1CVal & 0xffffU) == 0xffffU &&
2590 (N2CVal & 0xffffU) == 0x0U) {
2591 SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
2592 MVT::i32);
2593 SDValue Ops[] = { N0.getOperand(0), Imm16,
2594 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
1a4d82fc 2595 return CurDAG->getMachineNode(Opc, dl, VT, Ops);
223e47cc
LB
2596 }
2597 }
2598 break;
2599 }
2600 case ARMISD::VMOVRRD:
2601 return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
2602 N->getOperand(0), getAL(CurDAG),
2603 CurDAG->getRegister(0, MVT::i32));
2604 case ISD::UMUL_LOHI: {
2605 if (Subtarget->isThumb1Only())
2606 break;
2607 if (Subtarget->isThumb()) {
2608 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
1a4d82fc
JJ
2609 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2610 return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops);
223e47cc
LB
2611 } else {
2612 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2613 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2614 CurDAG->getRegister(0, MVT::i32) };
2615 return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2616 ARM::UMULL : ARM::UMULLv5,
1a4d82fc 2617 dl, MVT::i32, MVT::i32, Ops);
223e47cc
LB
2618 }
2619 }
2620 case ISD::SMUL_LOHI: {
2621 if (Subtarget->isThumb1Only())
2622 break;
2623 if (Subtarget->isThumb()) {
2624 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2625 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
1a4d82fc 2626 return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops);
223e47cc
LB
2627 } else {
2628 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2629 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2630 CurDAG->getRegister(0, MVT::i32) };
2631 return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2632 ARM::SMULL : ARM::SMULLv5,
1a4d82fc 2633 dl, MVT::i32, MVT::i32, Ops);
223e47cc
LB
2634 }
2635 }
2636 case ARMISD::UMLAL:{
2637 if (Subtarget->isThumb()) {
2638 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2639 N->getOperand(3), getAL(CurDAG),
2640 CurDAG->getRegister(0, MVT::i32)};
1a4d82fc 2641 return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops);
223e47cc
LB
2642 }else{
2643 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2644 N->getOperand(3), getAL(CurDAG),
2645 CurDAG->getRegister(0, MVT::i32),
2646 CurDAG->getRegister(0, MVT::i32) };
2647 return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2648 ARM::UMLAL : ARM::UMLALv5,
1a4d82fc 2649 dl, MVT::i32, MVT::i32, Ops);
223e47cc
LB
2650 }
2651 }
2652 case ARMISD::SMLAL:{
2653 if (Subtarget->isThumb()) {
2654 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2655 N->getOperand(3), getAL(CurDAG),
2656 CurDAG->getRegister(0, MVT::i32)};
1a4d82fc 2657 return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops);
223e47cc
LB
2658 }else{
2659 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2660 N->getOperand(3), getAL(CurDAG),
2661 CurDAG->getRegister(0, MVT::i32),
2662 CurDAG->getRegister(0, MVT::i32) };
2663 return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2664 ARM::SMLAL : ARM::SMLALv5,
1a4d82fc 2665 dl, MVT::i32, MVT::i32, Ops);
223e47cc
LB
2666 }
2667 }
2668 case ISD::LOAD: {
1a4d82fc 2669 SDNode *ResNode = nullptr;
223e47cc
LB
2670 if (Subtarget->isThumb() && Subtarget->hasThumb2())
2671 ResNode = SelectT2IndexedLoad(N);
2672 else
2673 ResNode = SelectARMIndexedLoad(N);
2674 if (ResNode)
2675 return ResNode;
2676 // Other cases are autogenerated.
2677 break;
2678 }
2679 case ARMISD::BRCOND: {
2680 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2681 // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2682 // Pattern complexity = 6 cost = 1 size = 0
2683
2684 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2685 // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2686 // Pattern complexity = 6 cost = 1 size = 0
2687
2688 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2689 // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2690 // Pattern complexity = 6 cost = 1 size = 0
2691
2692 unsigned Opc = Subtarget->isThumb() ?
2693 ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2694 SDValue Chain = N->getOperand(0);
2695 SDValue N1 = N->getOperand(1);
2696 SDValue N2 = N->getOperand(2);
2697 SDValue N3 = N->getOperand(3);
2698 SDValue InFlag = N->getOperand(4);
2699 assert(N1.getOpcode() == ISD::BasicBlock);
2700 assert(N2.getOpcode() == ISD::Constant);
2701 assert(N3.getOpcode() == ISD::Register);
2702
2703 SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2704 cast<ConstantSDNode>(N2)->getZExtValue()),
2705 MVT::i32);
2706 SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2707 SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
1a4d82fc 2708 MVT::Glue, Ops);
223e47cc
LB
2709 Chain = SDValue(ResNode, 0);
2710 if (N->getNumValues() == 2) {
2711 InFlag = SDValue(ResNode, 1);
2712 ReplaceUses(SDValue(N, 1), InFlag);
2713 }
2714 ReplaceUses(SDValue(N, 0),
2715 SDValue(Chain.getNode(), Chain.getResNo()));
1a4d82fc 2716 return nullptr;
223e47cc 2717 }
223e47cc
LB
2718 case ARMISD::VZIP: {
2719 unsigned Opc = 0;
2720 EVT VT = N->getValueType(0);
2721 switch (VT.getSimpleVT().SimpleTy) {
1a4d82fc 2722 default: return nullptr;
223e47cc
LB
2723 case MVT::v8i8: Opc = ARM::VZIPd8; break;
2724 case MVT::v4i16: Opc = ARM::VZIPd16; break;
2725 case MVT::v2f32:
2726 // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
2727 case MVT::v2i32: Opc = ARM::VTRNd32; break;
2728 case MVT::v16i8: Opc = ARM::VZIPq8; break;
2729 case MVT::v8i16: Opc = ARM::VZIPq16; break;
2730 case MVT::v4f32:
2731 case MVT::v4i32: Opc = ARM::VZIPq32; break;
2732 }
2733 SDValue Pred = getAL(CurDAG);
2734 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2735 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
1a4d82fc 2736 return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
223e47cc
LB
2737 }
2738 case ARMISD::VUZP: {
2739 unsigned Opc = 0;
2740 EVT VT = N->getValueType(0);
2741 switch (VT.getSimpleVT().SimpleTy) {
1a4d82fc 2742 default: return nullptr;
223e47cc
LB
2743 case MVT::v8i8: Opc = ARM::VUZPd8; break;
2744 case MVT::v4i16: Opc = ARM::VUZPd16; break;
2745 case MVT::v2f32:
2746 // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
2747 case MVT::v2i32: Opc = ARM::VTRNd32; break;
2748 case MVT::v16i8: Opc = ARM::VUZPq8; break;
2749 case MVT::v8i16: Opc = ARM::VUZPq16; break;
2750 case MVT::v4f32:
2751 case MVT::v4i32: Opc = ARM::VUZPq32; break;
2752 }
2753 SDValue Pred = getAL(CurDAG);
2754 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2755 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
1a4d82fc 2756 return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
223e47cc
LB
2757 }
2758 case ARMISD::VTRN: {
2759 unsigned Opc = 0;
2760 EVT VT = N->getValueType(0);
2761 switch (VT.getSimpleVT().SimpleTy) {
1a4d82fc 2762 default: return nullptr;
223e47cc
LB
2763 case MVT::v8i8: Opc = ARM::VTRNd8; break;
2764 case MVT::v4i16: Opc = ARM::VTRNd16; break;
2765 case MVT::v2f32:
2766 case MVT::v2i32: Opc = ARM::VTRNd32; break;
2767 case MVT::v16i8: Opc = ARM::VTRNq8; break;
2768 case MVT::v8i16: Opc = ARM::VTRNq16; break;
2769 case MVT::v4f32:
2770 case MVT::v4i32: Opc = ARM::VTRNq32; break;
2771 }
2772 SDValue Pred = getAL(CurDAG);
2773 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2774 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
1a4d82fc 2775 return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
223e47cc
LB
2776 }
2777 case ARMISD::BUILD_VECTOR: {
2778 EVT VecVT = N->getValueType(0);
2779 EVT EltVT = VecVT.getVectorElementType();
2780 unsigned NumElts = VecVT.getVectorNumElements();
2781 if (EltVT == MVT::f64) {
2782 assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
970d7e83 2783 return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
223e47cc
LB
2784 }
2785 assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
2786 if (NumElts == 2)
970d7e83 2787 return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
223e47cc 2788 assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
970d7e83 2789 return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
223e47cc
LB
2790 N->getOperand(2), N->getOperand(3));
2791 }
2792
2793 case ARMISD::VLD2DUP: {
2794 static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
2795 ARM::VLD2DUPd32 };
2796 return SelectVLDDup(N, false, 2, Opcodes);
2797 }
2798
2799 case ARMISD::VLD3DUP: {
2800 static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
2801 ARM::VLD3DUPd16Pseudo,
2802 ARM::VLD3DUPd32Pseudo };
2803 return SelectVLDDup(N, false, 3, Opcodes);
2804 }
2805
2806 case ARMISD::VLD4DUP: {
2807 static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
2808 ARM::VLD4DUPd16Pseudo,
2809 ARM::VLD4DUPd32Pseudo };
2810 return SelectVLDDup(N, false, 4, Opcodes);
2811 }
2812
2813 case ARMISD::VLD2DUP_UPD: {
2814 static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
2815 ARM::VLD2DUPd16wb_fixed,
2816 ARM::VLD2DUPd32wb_fixed };
2817 return SelectVLDDup(N, true, 2, Opcodes);
2818 }
2819
2820 case ARMISD::VLD3DUP_UPD: {
2821 static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
2822 ARM::VLD3DUPd16Pseudo_UPD,
2823 ARM::VLD3DUPd32Pseudo_UPD };
2824 return SelectVLDDup(N, true, 3, Opcodes);
2825 }
2826
2827 case ARMISD::VLD4DUP_UPD: {
2828 static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
2829 ARM::VLD4DUPd16Pseudo_UPD,
2830 ARM::VLD4DUPd32Pseudo_UPD };
2831 return SelectVLDDup(N, true, 4, Opcodes);
2832 }
2833
2834 case ARMISD::VLD1_UPD: {
2835 static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
2836 ARM::VLD1d16wb_fixed,
2837 ARM::VLD1d32wb_fixed,
2838 ARM::VLD1d64wb_fixed };
2839 static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
2840 ARM::VLD1q16wb_fixed,
2841 ARM::VLD1q32wb_fixed,
2842 ARM::VLD1q64wb_fixed };
1a4d82fc 2843 return SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
223e47cc
LB
2844 }
2845
2846 case ARMISD::VLD2_UPD: {
2847 static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
2848 ARM::VLD2d16wb_fixed,
2849 ARM::VLD2d32wb_fixed,
2850 ARM::VLD1q64wb_fixed};
2851 static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
2852 ARM::VLD2q16PseudoWB_fixed,
2853 ARM::VLD2q32PseudoWB_fixed };
1a4d82fc 2854 return SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
223e47cc
LB
2855 }
2856
2857 case ARMISD::VLD3_UPD: {
2858 static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
2859 ARM::VLD3d16Pseudo_UPD,
2860 ARM::VLD3d32Pseudo_UPD,
1a4d82fc 2861 ARM::VLD1d64TPseudoWB_fixed};
223e47cc
LB
2862 static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
2863 ARM::VLD3q16Pseudo_UPD,
2864 ARM::VLD3q32Pseudo_UPD };
2865 static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
2866 ARM::VLD3q16oddPseudo_UPD,
2867 ARM::VLD3q32oddPseudo_UPD };
2868 return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2869 }
2870
2871 case ARMISD::VLD4_UPD: {
2872 static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
2873 ARM::VLD4d16Pseudo_UPD,
2874 ARM::VLD4d32Pseudo_UPD,
1a4d82fc 2875 ARM::VLD1d64QPseudoWB_fixed};
223e47cc
LB
2876 static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
2877 ARM::VLD4q16Pseudo_UPD,
2878 ARM::VLD4q32Pseudo_UPD };
2879 static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
2880 ARM::VLD4q16oddPseudo_UPD,
2881 ARM::VLD4q32oddPseudo_UPD };
2882 return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2883 }
2884
2885 case ARMISD::VLD2LN_UPD: {
2886 static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
2887 ARM::VLD2LNd16Pseudo_UPD,
2888 ARM::VLD2LNd32Pseudo_UPD };
2889 static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
2890 ARM::VLD2LNq32Pseudo_UPD };
2891 return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
2892 }
2893
2894 case ARMISD::VLD3LN_UPD: {
2895 static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
2896 ARM::VLD3LNd16Pseudo_UPD,
2897 ARM::VLD3LNd32Pseudo_UPD };
2898 static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
2899 ARM::VLD3LNq32Pseudo_UPD };
2900 return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
2901 }
2902
2903 case ARMISD::VLD4LN_UPD: {
2904 static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
2905 ARM::VLD4LNd16Pseudo_UPD,
2906 ARM::VLD4LNd32Pseudo_UPD };
2907 static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
2908 ARM::VLD4LNq32Pseudo_UPD };
2909 return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
2910 }
2911
2912 case ARMISD::VST1_UPD: {
2913 static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
2914 ARM::VST1d16wb_fixed,
2915 ARM::VST1d32wb_fixed,
2916 ARM::VST1d64wb_fixed };
2917 static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
2918 ARM::VST1q16wb_fixed,
2919 ARM::VST1q32wb_fixed,
2920 ARM::VST1q64wb_fixed };
1a4d82fc 2921 return SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
223e47cc
LB
2922 }
2923
2924 case ARMISD::VST2_UPD: {
2925 static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
2926 ARM::VST2d16wb_fixed,
2927 ARM::VST2d32wb_fixed,
2928 ARM::VST1q64wb_fixed};
2929 static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
2930 ARM::VST2q16PseudoWB_fixed,
2931 ARM::VST2q32PseudoWB_fixed };
1a4d82fc 2932 return SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
223e47cc
LB
2933 }
2934
2935 case ARMISD::VST3_UPD: {
2936 static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
2937 ARM::VST3d16Pseudo_UPD,
2938 ARM::VST3d32Pseudo_UPD,
2939 ARM::VST1d64TPseudoWB_fixed};
2940 static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
2941 ARM::VST3q16Pseudo_UPD,
2942 ARM::VST3q32Pseudo_UPD };
2943 static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
2944 ARM::VST3q16oddPseudo_UPD,
2945 ARM::VST3q32oddPseudo_UPD };
2946 return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2947 }
2948
2949 case ARMISD::VST4_UPD: {
2950 static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
2951 ARM::VST4d16Pseudo_UPD,
2952 ARM::VST4d32Pseudo_UPD,
2953 ARM::VST1d64QPseudoWB_fixed};
2954 static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
2955 ARM::VST4q16Pseudo_UPD,
2956 ARM::VST4q32Pseudo_UPD };
2957 static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
2958 ARM::VST4q16oddPseudo_UPD,
2959 ARM::VST4q32oddPseudo_UPD };
2960 return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2961 }
2962
2963 case ARMISD::VST2LN_UPD: {
2964 static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
2965 ARM::VST2LNd16Pseudo_UPD,
2966 ARM::VST2LNd32Pseudo_UPD };
2967 static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
2968 ARM::VST2LNq32Pseudo_UPD };
2969 return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
2970 }
2971
2972 case ARMISD::VST3LN_UPD: {
2973 static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
2974 ARM::VST3LNd16Pseudo_UPD,
2975 ARM::VST3LNd32Pseudo_UPD };
2976 static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
2977 ARM::VST3LNq32Pseudo_UPD };
2978 return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
2979 }
2980
2981 case ARMISD::VST4LN_UPD: {
2982 static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
2983 ARM::VST4LNd16Pseudo_UPD,
2984 ARM::VST4LNd32Pseudo_UPD };
2985 static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
2986 ARM::VST4LNq32Pseudo_UPD };
2987 return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
2988 }
2989
2990 case ISD::INTRINSIC_VOID:
2991 case ISD::INTRINSIC_W_CHAIN: {
2992 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2993 switch (IntNo) {
2994 default:
2995 break;
2996
1a4d82fc 2997 case Intrinsic::arm_ldaexd:
223e47cc 2998 case Intrinsic::arm_ldrexd: {
1a4d82fc 2999 SDLoc dl(N);
223e47cc 3000 SDValue Chain = N->getOperand(0);
1a4d82fc 3001 SDValue MemAddr = N->getOperand(2);
970d7e83 3002 bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
1a4d82fc
JJ
3003
3004 bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
3005 unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
3006 : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
223e47cc
LB
3007
3008 // arm_ldrexd returns a i64 value in {i32, i32}
3009 std::vector<EVT> ResTys;
970d7e83
LB
3010 if (isThumb) {
3011 ResTys.push_back(MVT::i32);
3012 ResTys.push_back(MVT::i32);
3013 } else
3014 ResTys.push_back(MVT::Untyped);
223e47cc
LB
3015 ResTys.push_back(MVT::Other);
3016
970d7e83 3017 // Place arguments in the right order.
223e47cc
LB
3018 SmallVector<SDValue, 7> Ops;
3019 Ops.push_back(MemAddr);
3020 Ops.push_back(getAL(CurDAG));
3021 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3022 Ops.push_back(Chain);
1a4d82fc 3023 SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
223e47cc
LB
3024 // Transfer memoperands.
3025 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3026 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3027 cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
3028
223e47cc 3029 // Remap uses.
970d7e83 3030 SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
223e47cc 3031 if (!SDValue(N, 0).use_empty()) {
970d7e83
LB
3032 SDValue Result;
3033 if (isThumb)
3034 Result = SDValue(Ld, 0);
3035 else {
3036 SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
3037 SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3038 dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3039 Result = SDValue(ResNode,0);
3040 }
223e47cc
LB
3041 ReplaceUses(SDValue(N, 0), Result);
3042 }
3043 if (!SDValue(N, 1).use_empty()) {
970d7e83
LB
3044 SDValue Result;
3045 if (isThumb)
3046 Result = SDValue(Ld, 1);
3047 else {
3048 SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
3049 SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3050 dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3051 Result = SDValue(ResNode,0);
3052 }
223e47cc
LB
3053 ReplaceUses(SDValue(N, 1), Result);
3054 }
970d7e83 3055 ReplaceUses(SDValue(N, 2), OutChain);
1a4d82fc 3056 return nullptr;
223e47cc 3057 }
1a4d82fc 3058 case Intrinsic::arm_stlexd:
223e47cc 3059 case Intrinsic::arm_strexd: {
1a4d82fc 3060 SDLoc dl(N);
223e47cc
LB
3061 SDValue Chain = N->getOperand(0);
3062 SDValue Val0 = N->getOperand(2);
3063 SDValue Val1 = N->getOperand(3);
3064 SDValue MemAddr = N->getOperand(4);
3065
223e47cc
LB
3066 // Store exclusive double return a i32 value which is the return status
3067 // of the issued store.
970d7e83 3068 EVT ResTys[] = { MVT::i32, MVT::Other };
223e47cc 3069
970d7e83
LB
3070 bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
3071 // Place arguments in the right order.
223e47cc 3072 SmallVector<SDValue, 7> Ops;
970d7e83
LB
3073 if (isThumb) {
3074 Ops.push_back(Val0);
3075 Ops.push_back(Val1);
3076 } else
3077 // arm_strexd uses GPRPair.
3078 Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
223e47cc
LB
3079 Ops.push_back(MemAddr);
3080 Ops.push_back(getAL(CurDAG));
3081 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3082 Ops.push_back(Chain);
3083
1a4d82fc
JJ
3084 bool IsRelease = IntNo == Intrinsic::arm_stlexd;
3085 unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
3086 : (IsRelease ? ARM::STLEXD : ARM::STREXD);
223e47cc 3087
1a4d82fc 3088 SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
223e47cc
LB
3089 // Transfer memoperands.
3090 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3091 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3092 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
3093
3094 return St;
3095 }
3096
3097 case Intrinsic::arm_neon_vld1: {
3098 static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
3099 ARM::VLD1d32, ARM::VLD1d64 };
3100 static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
3101 ARM::VLD1q32, ARM::VLD1q64};
1a4d82fc 3102 return SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
223e47cc
LB
3103 }
3104
3105 case Intrinsic::arm_neon_vld2: {
3106 static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
3107 ARM::VLD2d32, ARM::VLD1q64 };
3108 static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
3109 ARM::VLD2q32Pseudo };
1a4d82fc 3110 return SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
223e47cc
LB
3111 }
3112
3113 case Intrinsic::arm_neon_vld3: {
3114 static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
3115 ARM::VLD3d16Pseudo,
3116 ARM::VLD3d32Pseudo,
3117 ARM::VLD1d64TPseudo };
3118 static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
3119 ARM::VLD3q16Pseudo_UPD,
3120 ARM::VLD3q32Pseudo_UPD };
3121 static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
3122 ARM::VLD3q16oddPseudo,
3123 ARM::VLD3q32oddPseudo };
3124 return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3125 }
3126
3127 case Intrinsic::arm_neon_vld4: {
3128 static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
3129 ARM::VLD4d16Pseudo,
3130 ARM::VLD4d32Pseudo,
3131 ARM::VLD1d64QPseudo };
3132 static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3133 ARM::VLD4q16Pseudo_UPD,
3134 ARM::VLD4q32Pseudo_UPD };
3135 static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
3136 ARM::VLD4q16oddPseudo,
3137 ARM::VLD4q32oddPseudo };
3138 return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3139 }
3140
3141 case Intrinsic::arm_neon_vld2lane: {
3142 static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
3143 ARM::VLD2LNd16Pseudo,
3144 ARM::VLD2LNd32Pseudo };
3145 static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
3146 ARM::VLD2LNq32Pseudo };
3147 return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
3148 }
3149
3150 case Intrinsic::arm_neon_vld3lane: {
3151 static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
3152 ARM::VLD3LNd16Pseudo,
3153 ARM::VLD3LNd32Pseudo };
3154 static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
3155 ARM::VLD3LNq32Pseudo };
3156 return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
3157 }
3158
3159 case Intrinsic::arm_neon_vld4lane: {
3160 static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
3161 ARM::VLD4LNd16Pseudo,
3162 ARM::VLD4LNd32Pseudo };
3163 static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
3164 ARM::VLD4LNq32Pseudo };
3165 return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
3166 }
3167
3168 case Intrinsic::arm_neon_vst1: {
3169 static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
3170 ARM::VST1d32, ARM::VST1d64 };
3171 static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
3172 ARM::VST1q32, ARM::VST1q64 };
1a4d82fc 3173 return SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
223e47cc
LB
3174 }
3175
3176 case Intrinsic::arm_neon_vst2: {
3177 static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
3178 ARM::VST2d32, ARM::VST1q64 };
3179 static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
3180 ARM::VST2q32Pseudo };
1a4d82fc 3181 return SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
223e47cc
LB
3182 }
3183
3184 case Intrinsic::arm_neon_vst3: {
3185 static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
3186 ARM::VST3d16Pseudo,
3187 ARM::VST3d32Pseudo,
3188 ARM::VST1d64TPseudo };
3189 static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3190 ARM::VST3q16Pseudo_UPD,
3191 ARM::VST3q32Pseudo_UPD };
3192 static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
3193 ARM::VST3q16oddPseudo,
3194 ARM::VST3q32oddPseudo };
3195 return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3196 }
3197
3198 case Intrinsic::arm_neon_vst4: {
3199 static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
3200 ARM::VST4d16Pseudo,
3201 ARM::VST4d32Pseudo,
3202 ARM::VST1d64QPseudo };
3203 static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3204 ARM::VST4q16Pseudo_UPD,
3205 ARM::VST4q32Pseudo_UPD };
3206 static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
3207 ARM::VST4q16oddPseudo,
3208 ARM::VST4q32oddPseudo };
3209 return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3210 }
3211
3212 case Intrinsic::arm_neon_vst2lane: {
3213 static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
3214 ARM::VST2LNd16Pseudo,
3215 ARM::VST2LNd32Pseudo };
3216 static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
3217 ARM::VST2LNq32Pseudo };
3218 return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
3219 }
3220
3221 case Intrinsic::arm_neon_vst3lane: {
3222 static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
3223 ARM::VST3LNd16Pseudo,
3224 ARM::VST3LNd32Pseudo };
3225 static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
3226 ARM::VST3LNq32Pseudo };
3227 return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
3228 }
3229
3230 case Intrinsic::arm_neon_vst4lane: {
3231 static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
3232 ARM::VST4LNd16Pseudo,
3233 ARM::VST4LNd32Pseudo };
3234 static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
3235 ARM::VST4LNq32Pseudo };
3236 return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
3237 }
3238 }
3239 break;
3240 }
3241
3242 case ISD::INTRINSIC_WO_CHAIN: {
3243 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3244 switch (IntNo) {
3245 default:
3246 break;
3247
3248 case Intrinsic::arm_neon_vtbl2:
3249 return SelectVTBL(N, false, 2, ARM::VTBL2);
3250 case Intrinsic::arm_neon_vtbl3:
3251 return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
3252 case Intrinsic::arm_neon_vtbl4:
3253 return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
3254
3255 case Intrinsic::arm_neon_vtbx2:
3256 return SelectVTBL(N, true, 2, ARM::VTBX2);
3257 case Intrinsic::arm_neon_vtbx3:
3258 return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
3259 case Intrinsic::arm_neon_vtbx4:
3260 return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
3261 }
3262 break;
3263 }
3264
3265 case ARMISD::VTBL1: {
1a4d82fc 3266 SDLoc dl(N);
223e47cc
LB
3267 EVT VT = N->getValueType(0);
3268 SmallVector<SDValue, 6> Ops;
3269
3270 Ops.push_back(N->getOperand(0));
3271 Ops.push_back(N->getOperand(1));
3272 Ops.push_back(getAL(CurDAG)); // Predicate
3273 Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
1a4d82fc 3274 return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops);
223e47cc
LB
3275 }
3276 case ARMISD::VTBL2: {
1a4d82fc 3277 SDLoc dl(N);
223e47cc
LB
3278 EVT VT = N->getValueType(0);
3279
3280 // Form a REG_SEQUENCE to force register allocation.
3281 SDValue V0 = N->getOperand(0);
3282 SDValue V1 = N->getOperand(1);
970d7e83 3283 SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
223e47cc
LB
3284
3285 SmallVector<SDValue, 6> Ops;
3286 Ops.push_back(RegSeq);
3287 Ops.push_back(N->getOperand(2));
3288 Ops.push_back(getAL(CurDAG)); // Predicate
3289 Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
1a4d82fc 3290 return CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops);
223e47cc
LB
3291 }
3292
3293 case ISD::CONCAT_VECTORS:
3294 return SelectConcatVector(N);
223e47cc
LB
3295 }
3296
3297 return SelectCode(N);
3298}
3299
970d7e83
LB
3300SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
3301 std::vector<SDValue> AsmNodeOperands;
3302 unsigned Flag, Kind;
3303 bool Changed = false;
3304 unsigned NumOps = N->getNumOperands();
3305
970d7e83
LB
3306 // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
3307 // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
3308 // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
3309 // respectively. Since there is no constraint to explicitly specify a
1a4d82fc
JJ
3310 // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
3311 // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
3312 // them into a GPRPair.
970d7e83 3313
1a4d82fc
JJ
3314 SDLoc dl(N);
3315 SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1)
3316 : SDValue(nullptr,0);
970d7e83 3317
1a4d82fc 3318 SmallVector<bool, 8> OpChanged;
970d7e83 3319 // Glue node will be appended late.
1a4d82fc 3320 for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
970d7e83
LB
3321 SDValue op = N->getOperand(i);
3322 AsmNodeOperands.push_back(op);
3323
3324 if (i < InlineAsm::Op_FirstOperand)
3325 continue;
3326
3327 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
3328 Flag = C->getZExtValue();
3329 Kind = InlineAsm::getKind(Flag);
3330 }
3331 else
3332 continue;
3333
1a4d82fc
JJ
3334 // Immediate operands to inline asm in the SelectionDAG are modeled with
3335 // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
3336 // the second is a constant with the value of the immediate. If we get here
3337 // and we have a Kind_Imm, skip the next operand, and continue.
3338 if (Kind == InlineAsm::Kind_Imm) {
3339 SDValue op = N->getOperand(++i);
3340 AsmNodeOperands.push_back(op);
3341 continue;
3342 }
3343
3344 unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
3345 if (NumRegs)
3346 OpChanged.push_back(false);
3347
3348 unsigned DefIdx = 0;
3349 bool IsTiedToChangedOp = false;
3350 // If it's a use that is tied with a previous def, it has no
3351 // reg class constraint.
3352 if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
3353 IsTiedToChangedOp = OpChanged[DefIdx];
3354
970d7e83
LB
3355 if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
3356 && Kind != InlineAsm::Kind_RegDefEarlyClobber)
3357 continue;
3358
970d7e83
LB
3359 unsigned RC;
3360 bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
1a4d82fc
JJ
3361 if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
3362 || NumRegs != 2)
970d7e83
LB
3363 continue;
3364
1a4d82fc 3365 assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
970d7e83
LB
3366 SDValue V0 = N->getOperand(i+1);
3367 SDValue V1 = N->getOperand(i+2);
3368 unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
3369 unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
3370 SDValue PairedReg;
3371 MachineRegisterInfo &MRI = MF->getRegInfo();
3372
3373 if (Kind == InlineAsm::Kind_RegDef ||
3374 Kind == InlineAsm::Kind_RegDefEarlyClobber) {
3375 // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
3376 // the original GPRs.
3377
3378 unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
3379 PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
3380 SDValue Chain = SDValue(N,0);
3381
3382 SDNode *GU = N->getGluedUser();
3383 SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
3384 Chain.getValue(1));
3385
3386 // Extract values from a GPRPair reg and copy to the original GPR reg.
3387 SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
3388 RegCopy);
3389 SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
3390 RegCopy);
3391 SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
3392 RegCopy.getValue(1));
3393 SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
3394
3395 // Update the original glue user.
3396 std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
3397 Ops.push_back(T1.getValue(1));
1a4d82fc 3398 CurDAG->UpdateNodeOperands(GU, Ops);
970d7e83
LB
3399 }
3400 else {
3401 // For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
3402 // GPRPair and then pass the GPRPair to the inline asm.
3403 SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
3404
3405 // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
3406 SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
3407 Chain.getValue(1));
3408 SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
3409 T0.getValue(1));
3410 SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
3411
3412 // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
3413 // i32 VRs of inline asm with it.
3414 unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
3415 PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
3416 Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
3417
3418 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
3419 Glue = Chain.getValue(1);
3420 }
3421
3422 Changed = true;
3423
3424 if(PairedReg.getNode()) {
1a4d82fc 3425 OpChanged[OpChanged.size() -1 ] = true;
970d7e83 3426 Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
1a4d82fc
JJ
3427 if (IsTiedToChangedOp)
3428 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
3429 else
3430 Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
970d7e83
LB
3431 // Replace the current flag.
3432 AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
3433 Flag, MVT::i32);
3434 // Add the new register node and skip the original two GPRs.
3435 AsmNodeOperands.push_back(PairedReg);
3436 // Skip the next two GPRs.
3437 i += 2;
3438 }
3439 }
3440
1a4d82fc
JJ
3441 if (Glue.getNode())
3442 AsmNodeOperands.push_back(Glue);
970d7e83 3443 if (!Changed)
1a4d82fc 3444 return nullptr;
970d7e83 3445
1a4d82fc
JJ
3446 SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
3447 CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
970d7e83
LB
3448 New->setNodeId(-1);
3449 return New.getNode();
3450}
3451
3452
223e47cc
LB
3453bool ARMDAGToDAGISel::
3454SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
3455 std::vector<SDValue> &OutOps) {
3456 assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
3457 // Require the address to be in a register. That is safe for all ARM
3458 // variants and it is hard to do anything much smarter without knowing
3459 // how the operand is used.
3460 OutOps.push_back(Op);
3461 return false;
3462}
3463
3464/// createARMISelDag - This pass converts a legalized DAG into a
3465/// ARM-specific DAG, ready for instruction scheduling.
3466///
3467FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
3468 CodeGenOpt::Level OptLevel) {
3469 return new ARMDAGToDAGISel(TM, OptLevel);
3470}