]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / ARM / MCTargetDesc / ARMAddressingModes.h
CommitLineData
223e47cc
LB
1//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the ARM addressing mode implementation stuff.
11//
12//===----------------------------------------------------------------------===//
13
1a4d82fc
JJ
14#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
15#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
223e47cc
LB
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/APInt.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
24
25/// ARM_AM - ARM Addressing Mode Stuff
26namespace ARM_AM {
27 enum ShiftOpc {
28 no_shift = 0,
29 asr,
30 lsl,
31 lsr,
32 ror,
33 rrx
34 };
35
36 enum AddrOpc {
37 sub = 0,
38 add
39 };
40
41 static inline const char *getAddrOpcStr(AddrOpc Op) {
42 return Op == sub ? "-" : "";
43 }
44
45 static inline const char *getShiftOpcStr(ShiftOpc Op) {
46 switch (Op) {
47 default: llvm_unreachable("Unknown shift opc!");
48 case ARM_AM::asr: return "asr";
49 case ARM_AM::lsl: return "lsl";
50 case ARM_AM::lsr: return "lsr";
51 case ARM_AM::ror: return "ror";
52 case ARM_AM::rrx: return "rrx";
53 }
54 }
55
56 static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
57 switch (Op) {
58 default: llvm_unreachable("Unknown shift opc!");
59 case ARM_AM::asr: return 2;
60 case ARM_AM::lsl: return 0;
61 case ARM_AM::lsr: return 1;
62 case ARM_AM::ror: return 3;
63 }
64 }
65
66 enum AMSubMode {
67 bad_am_submode = 0,
68 ia,
69 ib,
70 da,
71 db
72 };
73
74 static inline const char *getAMSubModeStr(AMSubMode Mode) {
75 switch (Mode) {
76 default: llvm_unreachable("Unknown addressing sub-mode!");
77 case ARM_AM::ia: return "ia";
78 case ARM_AM::ib: return "ib";
79 case ARM_AM::da: return "da";
80 case ARM_AM::db: return "db";
81 }
82 }
83
84 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
85 ///
86 static inline unsigned rotr32(unsigned Val, unsigned Amt) {
87 assert(Amt < 32 && "Invalid rotate amount");
88 return (Val >> Amt) | (Val << ((32-Amt)&31));
89 }
90
91 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
92 ///
93 static inline unsigned rotl32(unsigned Val, unsigned Amt) {
94 assert(Amt < 32 && "Invalid rotate amount");
95 return (Val << Amt) | (Val >> ((32-Amt)&31));
96 }
97
98 //===--------------------------------------------------------------------===//
99 // Addressing Mode #1: shift_operand with registers
100 //===--------------------------------------------------------------------===//
101 //
102 // This 'addressing mode' is used for arithmetic instructions. It can
103 // represent things like:
104 // reg
105 // reg [asr|lsl|lsr|ror|rrx] reg
106 // reg [asr|lsl|lsr|ror|rrx] imm
107 //
108 // This is stored three operands [rega, regb, opc]. The first is the base
109 // reg, the second is the shift amount (or reg0 if not present or imm). The
110 // third operand encodes the shift opcode and the imm if a reg isn't present.
111 //
112 static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
113 return ShOp | (Imm << 3);
114 }
115 static inline unsigned getSORegOffset(unsigned Op) {
116 return Op >> 3;
117 }
118 static inline ShiftOpc getSORegShOp(unsigned Op) {
119 return (ShiftOpc)(Op & 7);
120 }
121
122 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
123 /// the 8-bit imm value.
124 static inline unsigned getSOImmValImm(unsigned Imm) {
125 return Imm & 0xFF;
126 }
127 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
128 /// the rotate amount.
129 static inline unsigned getSOImmValRot(unsigned Imm) {
130 return (Imm >> 8) * 2;
131 }
132
133 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
134 /// computing the rotate amount to use. If this immediate value cannot be
135 /// handled with a single shifter-op, determine a good rotate amount that will
136 /// take a maximal chunk of bits out of the immediate.
137 static inline unsigned getSOImmValRotate(unsigned Imm) {
138 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
139 // of zero.
140 if ((Imm & ~255U) == 0) return 0;
141
142 // Use CTZ to compute the rotate amount.
1a4d82fc 143 unsigned TZ = countTrailingZeros(Imm);
223e47cc
LB
144
145 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
146 // not 9.
147 unsigned RotAmt = TZ & ~1;
148
149 // If we can handle this spread, return it.
150 if ((rotr32(Imm, RotAmt) & ~255U) == 0)
151 return (32-RotAmt)&31; // HW rotates right, not left.
152
153 // For values like 0xF000000F, we should ignore the low 6 bits, then
154 // retry the hunt.
155 if (Imm & 63U) {
1a4d82fc 156 unsigned TZ2 = countTrailingZeros(Imm & ~63U);
223e47cc
LB
157 unsigned RotAmt2 = TZ2 & ~1;
158 if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
159 return (32-RotAmt2)&31; // HW rotates right, not left.
160 }
161
162 // Otherwise, we have no way to cover this span of bits with a single
163 // shifter_op immediate. Return a chunk of bits that will be useful to
164 // handle.
165 return (32-RotAmt)&31; // HW rotates right, not left.
166 }
167
168 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
169 /// into an shifter_operand immediate operand, return the 12-bit encoding for
170 /// it. If not, return -1.
171 static inline int getSOImmVal(unsigned Arg) {
172 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
173 // of zero.
174 if ((Arg & ~255U) == 0) return Arg;
175
176 unsigned RotAmt = getSOImmValRotate(Arg);
177
178 // If this cannot be handled with a single shifter_op, bail out.
179 if (rotr32(~255U, RotAmt) & Arg)
180 return -1;
181
182 // Encode this correctly.
183 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
184 }
185
186 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
187 /// or'ing together two SOImmVal's.
188 static inline bool isSOImmTwoPartVal(unsigned V) {
189 // If this can be handled with a single shifter_op, bail out.
190 V = rotr32(~255U, getSOImmValRotate(V)) & V;
191 if (V == 0)
192 return false;
193
194 // If this can be handled with two shifter_op's, accept.
195 V = rotr32(~255U, getSOImmValRotate(V)) & V;
196 return V == 0;
197 }
198
199 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
200 /// return the first chunk of it.
201 static inline unsigned getSOImmTwoPartFirst(unsigned V) {
202 return rotr32(255U, getSOImmValRotate(V)) & V;
203 }
204
205 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
206 /// return the second chunk of it.
207 static inline unsigned getSOImmTwoPartSecond(unsigned V) {
208 // Mask out the first hunk.
209 V = rotr32(~255U, getSOImmValRotate(V)) & V;
210
211 // Take what's left.
212 assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
213 return V;
214 }
215
216 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
217 /// by a left shift. Returns the shift amount to use.
218 static inline unsigned getThumbImmValShift(unsigned Imm) {
219 // 8-bit (or less) immediates are trivially immediate operand with a shift
220 // of zero.
221 if ((Imm & ~255U) == 0) return 0;
222
223 // Use CTZ to compute the shift amount.
1a4d82fc 224 return countTrailingZeros(Imm);
223e47cc
LB
225 }
226
227 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
228 /// by left shifting a 8-bit immediate.
229 static inline bool isThumbImmShiftedVal(unsigned V) {
230 // If this can be handled with
231 V = (~255U << getThumbImmValShift(V)) & V;
232 return V == 0;
233 }
234
235 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
236 /// by a left shift. Returns the shift amount to use.
237 static inline unsigned getThumbImm16ValShift(unsigned Imm) {
238 // 16-bit (or less) immediates are trivially immediate operand with a shift
239 // of zero.
240 if ((Imm & ~65535U) == 0) return 0;
241
242 // Use CTZ to compute the shift amount.
1a4d82fc 243 return countTrailingZeros(Imm);
223e47cc
LB
244 }
245
246 /// isThumbImm16ShiftedVal - Return true if the specified value can be
247 /// obtained by left shifting a 16-bit immediate.
248 static inline bool isThumbImm16ShiftedVal(unsigned V) {
249 // If this can be handled with
250 V = (~65535U << getThumbImm16ValShift(V)) & V;
251 return V == 0;
252 }
253
254 /// getThumbImmNonShiftedVal - If V is a value that satisfies
255 /// isThumbImmShiftedVal, return the non-shiftd value.
256 static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
257 return V >> getThumbImmValShift(V);
258 }
259
260
261 /// getT2SOImmValSplat - Return the 12-bit encoded representation
262 /// if the specified value can be obtained by splatting the low 8 bits
263 /// into every other byte or every byte of a 32-bit value. i.e.,
264 /// 00000000 00000000 00000000 abcdefgh control = 0
265 /// 00000000 abcdefgh 00000000 abcdefgh control = 1
266 /// abcdefgh 00000000 abcdefgh 00000000 control = 2
267 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
268 /// Return -1 if none of the above apply.
269 /// See ARM Reference Manual A6.3.2.
270 static inline int getT2SOImmValSplatVal(unsigned V) {
271 unsigned u, Vs, Imm;
272 // control = 0
273 if ((V & 0xffffff00) == 0)
274 return V;
275
276 // If the value is zeroes in the first byte, just shift those off
277 Vs = ((V & 0xff) == 0) ? V >> 8 : V;
278 // Any passing value only has 8 bits of payload, splatted across the word
279 Imm = Vs & 0xff;
280 // Likewise, any passing values have the payload splatted into the 3rd byte
281 u = Imm | (Imm << 16);
282
283 // control = 1 or 2
284 if (Vs == u)
285 return (((Vs == V) ? 1 : 2) << 8) | Imm;
286
287 // control = 3
288 if (Vs == (u | (u << 8)))
289 return (3 << 8) | Imm;
290
291 return -1;
292 }
293
294 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
295 /// specified value is a rotated 8-bit value. Return -1 if no rotation
296 /// encoding is possible.
297 /// See ARM Reference Manual A6.3.2.
298 static inline int getT2SOImmValRotateVal(unsigned V) {
1a4d82fc 299 unsigned RotAmt = countLeadingZeros(V);
223e47cc
LB
300 if (RotAmt >= 24)
301 return -1;
302
303 // If 'Arg' can be handled with a single shifter_op return the value.
304 if ((rotr32(0xff000000U, RotAmt) & V) == V)
305 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
306
307 return -1;
308 }
309
310 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
311 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
312 /// encoding for it. If not, return -1.
313 /// See ARM Reference Manual A6.3.2.
314 static inline int getT2SOImmVal(unsigned Arg) {
315 // If 'Arg' is an 8-bit splat, then get the encoded value.
316 int Splat = getT2SOImmValSplatVal(Arg);
317 if (Splat != -1)
318 return Splat;
319
320 // If 'Arg' can be handled with a single shifter_op return the value.
321 int Rot = getT2SOImmValRotateVal(Arg);
322 if (Rot != -1)
323 return Rot;
324
325 return -1;
326 }
327
328 static inline unsigned getT2SOImmValRotate(unsigned V) {
329 if ((V & ~255U) == 0) return 0;
330 // Use CTZ to compute the rotate amount.
1a4d82fc 331 unsigned RotAmt = countTrailingZeros(V);
223e47cc
LB
332 return (32 - RotAmt) & 31;
333 }
334
335 static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
336 unsigned V = Imm;
337 // Passing values can be any combination of splat values and shifter
338 // values. If this can be handled with a single shifter or splat, bail
339 // out. Those should be handled directly, not with a two-part val.
340 if (getT2SOImmValSplatVal(V) != -1)
341 return false;
342 V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
343 if (V == 0)
344 return false;
345
346 // If this can be handled as an immediate, accept.
347 if (getT2SOImmVal(V) != -1) return true;
348
349 // Likewise, try masking out a splat value first.
350 V = Imm;
351 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
352 V &= ~0xff00ff00U;
353 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
354 V &= ~0x00ff00ffU;
355 // If what's left can be handled as an immediate, accept.
356 if (getT2SOImmVal(V) != -1) return true;
357
358 // Otherwise, do not accept.
359 return false;
360 }
361
362 static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
363 assert (isT2SOImmTwoPartVal(Imm) &&
364 "Immedate cannot be encoded as two part immediate!");
365 // Try a shifter operand as one part
366 unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
367 // If the rest is encodable as an immediate, then return it.
368 if (getT2SOImmVal(V) != -1) return V;
369
370 // Try masking out a splat value first.
371 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
372 return Imm & 0xff00ff00U;
373
374 // The other splat is all that's left as an option.
375 assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
376 return Imm & 0x00ff00ffU;
377 }
378
379 static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
380 // Mask out the first hunk
381 Imm ^= getT2SOImmTwoPartFirst(Imm);
382 // Return what's left
383 assert (getT2SOImmVal(Imm) != -1 &&
384 "Unable to encode second part of T2 two part SO immediate");
385 return Imm;
386 }
387
388
389 //===--------------------------------------------------------------------===//
390 // Addressing Mode #2
391 //===--------------------------------------------------------------------===//
392 //
393 // This is used for most simple load/store instructions.
394 //
395 // addrmode2 := reg +/- reg shop imm
396 // addrmode2 := reg +/- imm12
397 //
398 // The first operand is always a Reg. The second operand is a reg if in
399 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
400 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
401 // fourth operand 16-17 encodes the index mode.
402 //
403 // If this addressing mode is a frame index (before prolog/epilog insertion
404 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
405 // with no shift amount for the frame offset.
406 //
407 static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
408 unsigned IdxMode = 0) {
409 assert(Imm12 < (1 << 12) && "Imm too large!");
410 bool isSub = Opc == sub;
411 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
412 }
413 static inline unsigned getAM2Offset(unsigned AM2Opc) {
414 return AM2Opc & ((1 << 12)-1);
415 }
416 static inline AddrOpc getAM2Op(unsigned AM2Opc) {
417 return ((AM2Opc >> 12) & 1) ? sub : add;
418 }
419 static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
420 return (ShiftOpc)((AM2Opc >> 13) & 7);
421 }
422 static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
423 return (AM2Opc >> 16);
424 }
425
426
427 //===--------------------------------------------------------------------===//
428 // Addressing Mode #3
429 //===--------------------------------------------------------------------===//
430 //
431 // This is used for sign-extending loads, and load/store-pair instructions.
432 //
433 // addrmode3 := reg +/- reg
434 // addrmode3 := reg +/- imm8
435 //
436 // The first operand is always a Reg. The second operand is a reg if in
437 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
438 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
439 // index mode.
440
441 /// getAM3Opc - This function encodes the addrmode3 opc field.
442 static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
443 unsigned IdxMode = 0) {
444 bool isSub = Opc == sub;
445 return ((int)isSub << 8) | Offset | (IdxMode << 9);
446 }
447 static inline unsigned char getAM3Offset(unsigned AM3Opc) {
448 return AM3Opc & 0xFF;
449 }
450 static inline AddrOpc getAM3Op(unsigned AM3Opc) {
451 return ((AM3Opc >> 8) & 1) ? sub : add;
452 }
453 static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
454 return (AM3Opc >> 9);
455 }
456
457 //===--------------------------------------------------------------------===//
458 // Addressing Mode #4
459 //===--------------------------------------------------------------------===//
460 //
461 // This is used for load / store multiple instructions.
462 //
463 // addrmode4 := reg, <mode>
464 //
465 // The four modes are:
466 // IA - Increment after
467 // IB - Increment before
468 // DA - Decrement after
469 // DB - Decrement before
470 // For VFP instructions, only the IA and DB modes are valid.
471
472 static inline AMSubMode getAM4SubMode(unsigned Mode) {
473 return (AMSubMode)(Mode & 0x7);
474 }
475
476 static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
477 return (int)SubMode;
478 }
479
480 //===--------------------------------------------------------------------===//
481 // Addressing Mode #5
482 //===--------------------------------------------------------------------===//
483 //
484 // This is used for coprocessor instructions, such as FP load/stores.
485 //
486 // addrmode5 := reg +/- imm8*4
487 //
488 // The first operand is always a Reg. The second operand encodes the
489 // operation in bit 8 and the immediate in bits 0-7.
490
491 /// getAM5Opc - This function encodes the addrmode5 opc field.
492 static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
493 bool isSub = Opc == sub;
494 return ((int)isSub << 8) | Offset;
495 }
496 static inline unsigned char getAM5Offset(unsigned AM5Opc) {
497 return AM5Opc & 0xFF;
498 }
499 static inline AddrOpc getAM5Op(unsigned AM5Opc) {
500 return ((AM5Opc >> 8) & 1) ? sub : add;
501 }
502
503 //===--------------------------------------------------------------------===//
504 // Addressing Mode #6
505 //===--------------------------------------------------------------------===//
506 //
507 // This is used for NEON load / store instructions.
508 //
509 // addrmode6 := reg with optional alignment
510 //
511 // This is stored in two operands [regaddr, align]. The first is the
512 // address register. The second operand is the value of the alignment
513 // specifier in bytes or zero if no explicit alignment.
514 // Valid alignments depend on the specific instruction.
515
516 //===--------------------------------------------------------------------===//
517 // NEON Modified Immediates
518 //===--------------------------------------------------------------------===//
519 //
520 // Several NEON instructions (e.g., VMOV) take a "modified immediate"
521 // vector operand, where a small immediate encoded in the instruction
522 // specifies a full NEON vector value. These modified immediates are
523 // represented here as encoded integers. The low 8 bits hold the immediate
524 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
525 // the "Cmode" field of the instruction. The interfaces below treat the
526 // Op and Cmode values as a single 5-bit value.
527
528 static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
529 return (OpCmode << 8) | Val;
530 }
531 static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
532 return (ModImm >> 8) & 0x1f;
533 }
534 static inline unsigned getNEONModImmVal(unsigned ModImm) {
535 return ModImm & 0xff;
536 }
537
538 /// decodeNEONModImm - Decode a NEON modified immediate value into the
539 /// element value and the element size in bits. (If the element size is
540 /// smaller than the vector, it is splatted into all the elements.)
541 static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
542 unsigned OpCmode = getNEONModImmOpCmode(ModImm);
543 unsigned Imm8 = getNEONModImmVal(ModImm);
544 uint64_t Val = 0;
545
546 if (OpCmode == 0xe) {
547 // 8-bit vector elements
548 Val = Imm8;
549 EltBits = 8;
550 } else if ((OpCmode & 0xc) == 0x8) {
551 // 16-bit vector elements
552 unsigned ByteNum = (OpCmode & 0x6) >> 1;
553 Val = Imm8 << (8 * ByteNum);
554 EltBits = 16;
555 } else if ((OpCmode & 0x8) == 0) {
556 // 32-bit vector elements, zero with one byte set
557 unsigned ByteNum = (OpCmode & 0x6) >> 1;
558 Val = Imm8 << (8 * ByteNum);
559 EltBits = 32;
560 } else if ((OpCmode & 0xe) == 0xc) {
561 // 32-bit vector elements, one byte with low bits set
562 unsigned ByteNum = 1 + (OpCmode & 0x1);
563 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
564 EltBits = 32;
565 } else if (OpCmode == 0x1e) {
566 // 64-bit vector elements
567 for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
568 if ((ModImm >> ByteNum) & 1)
569 Val |= (uint64_t)0xff << (8 * ByteNum);
570 }
571 EltBits = 64;
572 } else {
573 llvm_unreachable("Unsupported NEON immediate");
574 }
575 return Val;
576 }
577
1a4d82fc
JJ
578 // Generic validation for single-byte immediate (0X00, 00X0, etc).
579 static inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
580 assert(Size >= 1 && Size <= 4 && "Invalid size");
581 unsigned count = 0;
582 for (unsigned i = 0; i < Size; ++i) {
583 if (Value & 0xff) count++;
584 Value >>= 8;
585 }
586 return count == 1;
587 }
588
589 /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
590 static inline bool isNEONi16splat(unsigned Value) {
591 if (Value > 0xffff)
592 return false;
593 // i16 value with set bits only in one byte X0 or 0X.
594 return Value == 0 || isNEONBytesplat(Value, 2);
595 }
596
597 // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
598 static inline unsigned encodeNEONi16splat(unsigned Value) {
599 assert(isNEONi16splat(Value) && "Invalid NEON splat value");
600 if (Value >= 0x100)
601 Value = (Value >> 8) | 0xa00;
602 else
603 Value |= 0x800;
604 return Value;
605 }
606
607 /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
608 static inline bool isNEONi32splat(unsigned Value) {
609 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
610 return Value == 0 || isNEONBytesplat(Value, 4);
611 }
612
613 /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
614 static inline unsigned encodeNEONi32splat(unsigned Value) {
615 assert(isNEONi32splat(Value) && "Invalid NEON splat value");
616 if (Value >= 0x100 && Value <= 0xff00)
617 Value = (Value >> 8) | 0x200;
618 else if (Value > 0xffff && Value <= 0xff0000)
619 Value = (Value >> 16) | 0x400;
620 else if (Value > 0xffffff)
621 Value = (Value >> 24) | 0x600;
622 return Value;
623 }
624
223e47cc
LB
625 AMSubMode getLoadStoreMultipleSubMode(int Opcode);
626
627 //===--------------------------------------------------------------------===//
628 // Floating-point Immediates
629 //
630 static inline float getFPImmFloat(unsigned Imm) {
631 // We expect an 8-bit binary encoding of a floating-point number here.
632 union {
633 uint32_t I;
634 float F;
635 } FPUnion;
636
637 uint8_t Sign = (Imm >> 7) & 0x1;
638 uint8_t Exp = (Imm >> 4) & 0x7;
639 uint8_t Mantissa = Imm & 0xf;
640
641 // 8-bit FP iEEEE Float Encoding
642 // abcd efgh aBbbbbbc defgh000 00000000 00000000
643 //
644 // where B = NOT(b);
645
646 FPUnion.I = 0;
647 FPUnion.I |= Sign << 31;
648 FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
649 FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
650 FPUnion.I |= (Exp & 0x3) << 23;
651 FPUnion.I |= Mantissa << 19;
652 return FPUnion.F;
653 }
654
655 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
656 /// floating-point value. If the value cannot be represented as an 8-bit
657 /// floating-point value, then return -1.
658 static inline int getFP32Imm(const APInt &Imm) {
659 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
660 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
661 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
662
663 // We can handle 4 bits of mantissa.
664 // mantissa = (16+UInt(e:f:g:h))/16.
665 if (Mantissa & 0x7ffff)
666 return -1;
667 Mantissa >>= 19;
668 if ((Mantissa & 0xf) != Mantissa)
669 return -1;
670
671 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
672 if (Exp < -3 || Exp > 4)
673 return -1;
674 Exp = ((Exp+3) & 0x7) ^ 4;
675
676 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
677 }
678
679 static inline int getFP32Imm(const APFloat &FPImm) {
680 return getFP32Imm(FPImm.bitcastToAPInt());
681 }
682
683 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
684 /// floating-point value. If the value cannot be represented as an 8-bit
685 /// floating-point value, then return -1.
686 static inline int getFP64Imm(const APInt &Imm) {
687 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
688 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
689 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
690
691 // We can handle 4 bits of mantissa.
692 // mantissa = (16+UInt(e:f:g:h))/16.
693 if (Mantissa & 0xffffffffffffULL)
694 return -1;
695 Mantissa >>= 48;
696 if ((Mantissa & 0xf) != Mantissa)
697 return -1;
698
699 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
700 if (Exp < -3 || Exp > 4)
701 return -1;
702 Exp = ((Exp+3) & 0x7) ^ 4;
703
704 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
705 }
706
707 static inline int getFP64Imm(const APFloat &FPImm) {
708 return getFP64Imm(FPImm.bitcastToAPInt());
709 }
710
711} // end namespace ARM_AM
712} // end namespace llvm
713
714#endif
715