]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/PowerPC/PPCISelLowering.h
Imported Upstream version 1.0.0~0alpha
[rustc.git] / src / llvm / lib / Target / PowerPC / PPCISelLowering.h
CommitLineData
223e47cc
LB
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
1a4d82fc
JJ
15#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
223e47cc
LB
17
18#include "PPC.h"
1a4d82fc
JJ
19#include "PPCInstrInfo.h"
20#include "PPCRegisterInfo.h"
21#include "llvm/CodeGen/CallingConvLower.h"
223e47cc 22#include "llvm/CodeGen/SelectionDAG.h"
970d7e83 23#include "llvm/Target/TargetLowering.h"
223e47cc
LB
24
25namespace llvm {
26 namespace PPCISD {
27 enum NodeType {
28 // Start the numbering where the builtin ops and target ops leave off.
29 FIRST_NUMBER = ISD::BUILTIN_OP_END,
30
31 /// FSEL - Traditional three-operand fsel node.
32 ///
33 FSEL,
34
35 /// FCFID - The FCFID instruction, taking an f64 operand and producing
36 /// and f64 value containing the FP representation of the integer that
37 /// was temporarily in the f64 operand.
38 FCFID,
39
1a4d82fc
JJ
40 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
41 /// unsigned integers and single-precision outputs.
42 FCFIDU, FCFIDS, FCFIDUS,
43
223e47cc
LB
44 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
45 /// operand, producing an f64 value containing the integer representation
46 /// of that FP value.
47 FCTIDZ, FCTIWZ,
48
1a4d82fc
JJ
49 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
50 /// unsigned integers.
51 FCTIDUZ, FCTIWUZ,
52
53 /// Reciprocal estimate instructions (unary FP ops).
54 FRE, FRSQRTE,
223e47cc
LB
55
56 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
57 // three v4f32 operands and producing a v4f32 result.
58 VMADDFP, VNMSUBFP,
59
60 /// VPERM - The PPC VPERM Instruction.
61 ///
62 VPERM,
63
64 /// Hi/Lo - These represent the high and low 16-bit parts of a global
65 /// address respectively. These nodes have two operands, the first of
66 /// which must be a TargetGlobalAddress, and the second of which must be a
67 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
68 /// though these are usually folded into other nodes.
69 Hi, Lo,
70
71 TOC_ENTRY,
72
1a4d82fc 73 /// The following two target-specific nodes are used for calls through
223e47cc
LB
74 /// function pointers in the 64-bit SVR4 ABI.
75
223e47cc
LB
76 /// Like a regular LOAD but additionally taking/producing a flag.
77 LOAD,
78
1a4d82fc
JJ
79 /// Like LOAD (taking/producing a flag), but using r2 as hard-coded
80 /// destination.
223e47cc
LB
81 LOAD_TOC,
82
83 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
84 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
85 /// compute an allocation on the stack.
86 DYNALLOC,
87
88 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
89 /// at function entry, used for PIC code.
90 GlobalBaseReg,
91
92 /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
93 /// shift amounts. These nodes are generated by the multi-precision shift
94 /// code.
95 SRL, SRA, SHL,
96
223e47cc 97 /// CALL - A direct function call.
1a4d82fc 98 /// CALL_NOP is a call with the special NOP which follows 64-bit
223e47cc 99 /// SVR4 calls.
1a4d82fc 100 CALL, CALL_NOP,
223e47cc
LB
101
102 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
103 /// MTCTR instruction.
104 MTCTR,
105
106 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
107 /// BCTRL instruction.
1a4d82fc 108 BCTRL,
223e47cc
LB
109
110 /// Return with a flag operand, matched by 'blr'
111 RET_FLAG,
112
1a4d82fc
JJ
113 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
114 /// This copies the bits corresponding to the specified CRREG into the
115 /// resultant GPR. Bits corresponding to other CR regs are undefined.
116 MFOCRF,
117
118 // FIXME: Remove these once the ANDI glue bug is fixed:
119 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
120 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
121 /// implement truncation of i32 or i64 to i1.
122 ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
123
124 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
125 EH_SJLJ_SETJMP,
126
127 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
128 EH_SJLJ_LONGJMP,
223e47cc
LB
129
130 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
131 /// instructions. For lack of better number, we use the opcode number
132 /// encoding for the OPC field to identify the compare. For example, 838
133 /// is VCMPGTSH.
134 VCMP,
135
136 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
137 /// altivec VCMP*o instructions. For lack of better number, we use the
138 /// opcode number encoding for the OPC field to identify the compare. For
139 /// example, 838 is VCMPGTSH.
140 VCMPo,
141
142 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
143 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
144 /// condition register to branch on, OPC is the branch opcode to use (e.g.
145 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
146 /// an optional input flag argument.
147 COND_BRANCH,
148
1a4d82fc
JJ
149 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
150 /// loops.
151 BDNZ, BDZ,
223e47cc 152
1a4d82fc
JJ
153 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
154 /// towards zero. Used only as part of the long double-to-int
155 /// conversion sequence.
223e47cc
LB
156 FADDRTZ,
157
1a4d82fc
JJ
158 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
159 MFFS,
223e47cc
LB
160
161 /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
162 /// reserve indexed. This is used to implement atomic operations.
163 LARX,
164
165 /// STCX = This corresponds to PPC stcx. instrcution: store conditional
166 /// indexed. This is used to implement atomic operations.
167 STCX,
168
169 /// TC_RETURN - A tail call return.
170 /// operand #0 chain
171 /// operand #1 callee (register or absolute)
172 /// operand #2 stack adjustment
173 /// operand #3 optional in flag
174 TC_RETURN,
175
176 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
177 CR6SET,
178 CR6UNSET,
179
1a4d82fc
JJ
180 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
181 /// on PPC32.
182 PPC32_GOT,
183
184 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
185 /// local dynamic TLS on PPC32.
186 PPC32_PICGOT,
187
970d7e83
LB
188 /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
189 /// TLS model, produces an ADDIS8 instruction that adds the GOT
1a4d82fc 190 /// base to sym\@got\@tprel\@ha.
970d7e83
LB
191 ADDIS_GOT_TPREL_HA,
192
193 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
194 /// TLS model, produces a LD instruction with base register G8RReg
1a4d82fc 195 /// and offset sym\@got\@tprel\@l. This completes the addition that
970d7e83
LB
196 /// finds the offset of "sym" relative to the thread pointer.
197 LD_GOT_TPREL_L,
198
199 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
200 /// model, produces an ADD instruction that adds the contents of
201 /// G8RReg to the thread pointer. Symbol contains a relocation
1a4d82fc 202 /// sym\@tls which is to be replaced by the thread pointer and
970d7e83
LB
203 /// identifies to the linker that the instruction is part of a
204 /// TLS sequence.
205 ADD_TLS,
206
207 /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
208 /// model, produces an ADDIS8 instruction that adds the GOT base
1a4d82fc 209 /// register to sym\@got\@tlsgd\@ha.
970d7e83
LB
210 ADDIS_TLSGD_HA,
211
212 /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
213 /// model, produces an ADDI8 instruction that adds G8RReg to
1a4d82fc 214 /// sym\@got\@tlsgd\@l.
970d7e83
LB
215 ADDI_TLSGD_L,
216
217 /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
1a4d82fc 218 /// model, produces a call to __tls_get_addr(sym\@tlsgd).
970d7e83
LB
219 GET_TLS_ADDR,
220
221 /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
222 /// model, produces an ADDIS8 instruction that adds the GOT base
1a4d82fc 223 /// register to sym\@got\@tlsld\@ha.
970d7e83
LB
224 ADDIS_TLSLD_HA,
225
226 /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
227 /// model, produces an ADDI8 instruction that adds G8RReg to
1a4d82fc 228 /// sym\@got\@tlsld\@l.
970d7e83
LB
229 ADDI_TLSLD_L,
230
231 /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
1a4d82fc 232 /// model, produces a call to __tls_get_addr(sym\@tlsld).
970d7e83
LB
233 GET_TLSLD_ADDR,
234
235 /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
236 /// local-dynamic TLS model, produces an ADDIS8 instruction
1a4d82fc 237 /// that adds X3 to sym\@dtprel\@ha. The Chain operand is needed
970d7e83
LB
238 /// to tie this in place following a copy to %X3 from the result
239 /// of a GET_TLSLD_ADDR.
240 ADDIS_DTPREL_HA,
241
242 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
243 /// model, produces an ADDI8 instruction that adds G8RReg to
1a4d82fc 244 /// sym\@got\@dtprel\@l.
970d7e83
LB
245 ADDI_DTPREL_L,
246
247 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
248 /// during instruction selection to optimize a BUILD_VECTOR into
249 /// operations on splats. This is necessary to avoid losing these
250 /// optimizations due to constant folding.
251 VADD_SPLAT,
252
1a4d82fc
JJ
253 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
254 /// operand identifies the operating system entry point.
255 SC,
223e47cc
LB
256
257 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
258 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
259 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
260 /// i32.
1a4d82fc 261 STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
223e47cc
LB
262
263 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
264 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
265 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
266 /// or i32.
970d7e83
LB
267 LBRX,
268
1a4d82fc
JJ
269 /// STFIWX - The STFIWX instruction. The first operand is an input token
270 /// chain, then an f64 value to store, then an address to store it to.
271 STFIWX,
272
273 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
274 /// load which sign-extends from a 32-bit integer value into the
275 /// destination 64-bit register.
276 LFIWAX,
277
278 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
279 /// load which zero-extends from a 32-bit integer value into the
280 /// destination 64-bit register.
281 LFIWZX,
282
970d7e83
LB
283 /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
284 /// produces an ADDIS8 instruction that adds the TOC base register to
1a4d82fc 285 /// sym\@toc\@ha.
970d7e83
LB
286 ADDIS_TOC_HA,
287
288 /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
289 /// produces a LD instruction with base register G8RReg and offset
1a4d82fc 290 /// sym\@toc\@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
970d7e83
LB
291 LD_TOC_L,
292
293 /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
1a4d82fc 294 /// an ADDI8 instruction that adds G8RReg to sym\@toc\@l.
970d7e83
LB
295 /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
296 ADDI_TOC_L
223e47cc
LB
297 };
298 }
299
300 /// Define some predicates that are used for node matching.
301 namespace PPC {
302 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
303 /// VPKUHUM instruction.
1a4d82fc
JJ
304 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
305 SelectionDAG &DAG);
223e47cc
LB
306
307 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
308 /// VPKUWUM instruction.
1a4d82fc
JJ
309 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
310 SelectionDAG &DAG);
223e47cc
LB
311
312 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
313 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
314 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1a4d82fc 315 unsigned ShuffleKind, SelectionDAG &DAG);
223e47cc
LB
316
317 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
318 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
319 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1a4d82fc 320 unsigned ShuffleKind, SelectionDAG &DAG);
223e47cc 321
1a4d82fc
JJ
322 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
323 /// shift amount, otherwise return -1.
324 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
325 SelectionDAG &DAG);
223e47cc
LB
326
327 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
328 /// specifies a splat of a single element that is suitable for input to
329 /// VSPLTB/VSPLTH/VSPLTW.
330 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
331
332 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
333 /// are -0.0.
334 bool isAllNegativeZeroVector(SDNode *N);
335
336 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
337 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1a4d82fc 338 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
223e47cc
LB
339
340 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
341 /// formed by using a vspltis[bhw] instruction of the specified element
342 /// size, return the constant being splatted. The ByteSize field indicates
343 /// the number of bytes of each element [124] -> [bhw].
344 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
345 }
346
1a4d82fc 347 class PPCSubtarget;
223e47cc 348 class PPCTargetLowering : public TargetLowering {
1a4d82fc 349 const PPCSubtarget &Subtarget;
223e47cc
LB
350
351 public:
352 explicit PPCTargetLowering(PPCTargetMachine &TM);
353
354 /// getTargetNodeName() - This method returns the name of a target specific
355 /// DAG node.
1a4d82fc 356 const char *getTargetNodeName(unsigned Opcode) const override;
223e47cc 357
1a4d82fc 358 MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
223e47cc
LB
359
360 /// getSetCCResultType - Return the ISD::SETCC ValueType
1a4d82fc
JJ
361 EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
362
363 /// Return true if target always beneficiates from combining into FMA for a
364 /// given value type. This must typically return false on targets where FMA
365 /// takes more cycles to execute than FADD.
366 bool enableAggressiveFMAFusion(EVT VT) const override;
223e47cc
LB
367
368 /// getPreIndexedAddressParts - returns true by value, base pointer and
369 /// offset pointer and addressing mode by reference if the node's address
370 /// can be legally represented as pre-indexed load / store address.
1a4d82fc
JJ
371 bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
372 SDValue &Offset,
373 ISD::MemIndexedMode &AM,
374 SelectionDAG &DAG) const override;
223e47cc
LB
375
376 /// SelectAddressRegReg - Given the specified addressed, check to see if it
377 /// can be represented as an indexed [r+r] operation. Returns false if it
378 /// can be more efficiently represented with [r+imm].
379 bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
380 SelectionDAG &DAG) const;
381
382 /// SelectAddressRegImm - Returns true if the address N can be represented
383 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
1a4d82fc
JJ
384 /// is not better represented as reg+reg. If Aligned is true, only accept
385 /// displacements suitable for STD and friends, i.e. multiples of 4.
223e47cc 386 bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
1a4d82fc 387 SelectionDAG &DAG, bool Aligned) const;
223e47cc
LB
388
389 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
390 /// represented as an indexed [r+r] operation.
391 bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
392 SelectionDAG &DAG) const;
393
1a4d82fc 394 Sched::Preference getSchedulingPreference(SDNode *N) const override;
223e47cc
LB
395
396 /// LowerOperation - Provide custom lowering hooks for some operations.
397 ///
1a4d82fc 398 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
223e47cc
LB
399
400 /// ReplaceNodeResults - Replace the results of node with an illegal result
401 /// type with new values built out of custom code.
402 ///
1a4d82fc
JJ
403 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
404 SelectionDAG &DAG) const override;
405
406 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
223e47cc 407
1a4d82fc 408 unsigned getRegisterByName(const char* RegName, EVT VT) const override;
223e47cc 409
1a4d82fc
JJ
410 void computeKnownBitsForTargetNode(const SDValue Op,
411 APInt &KnownZero,
412 APInt &KnownOne,
413 const SelectionDAG &DAG,
414 unsigned Depth = 0) const override;
223e47cc 415
1a4d82fc
JJ
416 Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
417 bool IsStore, bool IsLoad) const override;
418 Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
419 bool IsStore, bool IsLoad) const override;
420
421 MachineBasicBlock *
223e47cc 422 EmitInstrWithCustomInserter(MachineInstr *MI,
1a4d82fc 423 MachineBasicBlock *MBB) const override;
223e47cc
LB
424 MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
425 MachineBasicBlock *MBB, bool is64Bit,
426 unsigned BinOpcode) const;
427 MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
428 MachineBasicBlock *MBB,
429 bool is8bit, unsigned Opcode) const;
430
1a4d82fc
JJ
431 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
432 MachineBasicBlock *MBB) const;
433
434 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
435 MachineBasicBlock *MBB) const;
436
437 ConstraintType
438 getConstraintType(const std::string &Constraint) const override;
223e47cc
LB
439
440 /// Examine constraint string and operand type and determine a weight value.
441 /// The operand object must already have been set up with the operand type.
442 ConstraintWeight getSingleConstraintMatchWeight(
1a4d82fc 443 AsmOperandInfo &info, const char *constraint) const override;
223e47cc
LB
444
445 std::pair<unsigned, const TargetRegisterClass*>
446 getRegForInlineAsmConstraint(const std::string &Constraint,
1a4d82fc 447 MVT VT) const override;
223e47cc
LB
448
449 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
450 /// function arguments in the caller parameter area. This is the actual
451 /// alignment, not its logarithm.
1a4d82fc 452 unsigned getByValTypeAlignment(Type *Ty) const override;
223e47cc
LB
453
454 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
455 /// vector. If it is invalid, don't add anything to Ops.
1a4d82fc
JJ
456 void LowerAsmOperandForConstraint(SDValue Op,
457 std::string &Constraint,
458 std::vector<SDValue> &Ops,
459 SelectionDAG &DAG) const override;
223e47cc
LB
460
461 /// isLegalAddressingMode - Return true if the addressing mode represented
462 /// by AM is legal for this target, for a load/store of the specified type.
1a4d82fc 463 bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
223e47cc 464
1a4d82fc
JJ
465 /// isLegalICmpImmediate - Return true if the specified immediate is legal
466 /// icmp immediate, that is the target has icmp instructions which can
467 /// compare a register against the immediate without having to materialize
468 /// the immediate into a register.
469 bool isLegalICmpImmediate(int64_t Imm) const override;
223e47cc 470
1a4d82fc
JJ
471 /// isLegalAddImmediate - Return true if the specified immediate is legal
472 /// add immediate, that is the target has add instructions which can
473 /// add a register and the immediate without having to materialize
474 /// the immediate into a register.
475 bool isLegalAddImmediate(int64_t Imm) const override;
223e47cc 476
1a4d82fc
JJ
477 /// isTruncateFree - Return true if it's free to truncate a value of
478 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
479 /// register X1 to i32 by referencing its sub-register R1.
480 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
481 bool isTruncateFree(EVT VT1, EVT VT2) const override;
482
483 /// \brief Returns true if it is beneficial to convert a load of a constant
484 /// to just the constant itself.
485 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
486 Type *Ty) const override;
487
488 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
489
490 bool getTgtMemIntrinsic(IntrinsicInfo &Info,
491 const CallInst &I,
492 unsigned Intrinsic) const override;
223e47cc
LB
493
494 /// getOptimalMemOpType - Returns the target specific optimal type for load
495 /// and store operations as a result of memset, memcpy, and memmove
496 /// lowering. If DstAlign is zero that means it's safe to destination
497 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
498 /// means there isn't a need to check it against alignment requirement,
970d7e83
LB
499 /// probably because the source does not need to be loaded. If 'IsMemset' is
500 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
501 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
502 /// source is constant so it does not need to be loaded.
223e47cc
LB
503 /// It returns EVT::Other if the type should be determined using generic
504 /// target-independent logic.
1a4d82fc
JJ
505 EVT
506 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
970d7e83 507 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
1a4d82fc 508 MachineFunction &MF) const override;
223e47cc 509
970d7e83
LB
510 /// Is unaligned memory access allowed for the given type, and is it fast
511 /// relative to software emulation.
1a4d82fc
JJ
512 bool allowsMisalignedMemoryAccesses(EVT VT,
513 unsigned AddrSpace,
514 unsigned Align = 1,
515 bool *Fast = nullptr) const override;
516
517 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
518 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
519 /// expanded to FMAs when this method returns true, otherwise fmuladd is
520 /// expanded to fmul + fadd.
521 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
522
523 // Should we expand the build vector with shuffles?
524 bool
525 shouldExpandBuildVectorWithShuffles(EVT VT,
526 unsigned DefinedValues) const override;
527
528 /// createFastISel - This method returns a target-specific FastISel object,
529 /// or null if the target does not support "fast" instruction selection.
530 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
531 const TargetLibraryInfo *LibInfo) const override;
532
533 /// \brief Returns true if an argument of type Ty needs to be passed in a
534 /// contiguous block of registers in calling convention CallConv.
535 bool functionArgumentNeedsConsecutiveRegisters(
536 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
537 // We support any array type as "consecutive" block in the parameter
538 // save area. The element type defines the alignment requirement and
539 // whether the argument should go in GPRs, FPRs, or VRs if available.
540 //
541 // Note that clang uses this capability both to implement the ELFv2
542 // homogeneous float/vector aggregate ABI, and to avoid having to use
543 // "byval" when passing aggregates that might fully fit in registers.
544 return Ty->isArrayTy();
545 }
223e47cc
LB
546
547 private:
548 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
549 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
550
551 bool
552 IsEligibleForTailCallOptimization(SDValue Callee,
553 CallingConv::ID CalleeCC,
554 bool isVarArg,
555 const SmallVectorImpl<ISD::InputArg> &Ins,
556 SelectionDAG& DAG) const;
557
558 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
559 int SPDiff,
560 SDValue Chain,
561 SDValue &LROpOut,
562 SDValue &FPOpOut,
563 bool isDarwinABI,
1a4d82fc 564 SDLoc dl) const;
223e47cc
LB
565
566 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
567 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
568 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
569 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
570 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
571 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
572 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
573 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
574 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
575 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
576 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
577 const PPCSubtarget &Subtarget) const;
578 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
579 const PPCSubtarget &Subtarget) const;
1a4d82fc
JJ
580 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
581 const PPCSubtarget &Subtarget) const;
223e47cc
LB
582 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
583 const PPCSubtarget &Subtarget) const;
584 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
585 const PPCSubtarget &Subtarget) const;
1a4d82fc
JJ
586 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
587 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
588 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
223e47cc 589 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1a4d82fc
JJ
590 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
591 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
223e47cc
LB
592 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
593 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
594 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
595 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
596 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
597 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
598 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
599 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1a4d82fc 600 SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
223e47cc
LB
601 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
602
603 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
604 CallingConv::ID CallConv, bool isVarArg,
605 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc 606 SDLoc dl, SelectionDAG &DAG,
223e47cc 607 SmallVectorImpl<SDValue> &InVals) const;
1a4d82fc 608 SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
223e47cc
LB
609 bool isVarArg,
610 SelectionDAG &DAG,
611 SmallVector<std::pair<unsigned, SDValue>, 8>
612 &RegsToPass,
613 SDValue InFlag, SDValue Chain,
614 SDValue &Callee,
615 int SPDiff, unsigned NumBytes,
616 const SmallVectorImpl<ISD::InputArg> &Ins,
617 SmallVectorImpl<SDValue> &InVals) const;
618
1a4d82fc 619 SDValue
223e47cc
LB
620 LowerFormalArguments(SDValue Chain,
621 CallingConv::ID CallConv, bool isVarArg,
622 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc
JJ
623 SDLoc dl, SelectionDAG &DAG,
624 SmallVectorImpl<SDValue> &InVals) const override;
223e47cc 625
1a4d82fc 626 SDValue
223e47cc 627 LowerCall(TargetLowering::CallLoweringInfo &CLI,
1a4d82fc 628 SmallVectorImpl<SDValue> &InVals) const override;
223e47cc 629
1a4d82fc 630 bool
223e47cc
LB
631 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
632 bool isVarArg,
633 const SmallVectorImpl<ISD::OutputArg> &Outs,
1a4d82fc 634 LLVMContext &Context) const override;
223e47cc 635
1a4d82fc 636 SDValue
223e47cc
LB
637 LowerReturn(SDValue Chain,
638 CallingConv::ID CallConv, bool isVarArg,
639 const SmallVectorImpl<ISD::OutputArg> &Outs,
640 const SmallVectorImpl<SDValue> &OutVals,
1a4d82fc 641 SDLoc dl, SelectionDAG &DAG) const override;
223e47cc
LB
642
643 SDValue
970d7e83 644 extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
1a4d82fc 645 SDValue ArgVal, SDLoc dl) const;
970d7e83
LB
646
647 SDValue
648 LowerFormalArguments_Darwin(SDValue Chain,
649 CallingConv::ID CallConv, bool isVarArg,
650 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc 651 SDLoc dl, SelectionDAG &DAG,
970d7e83
LB
652 SmallVectorImpl<SDValue> &InVals) const;
653 SDValue
654 LowerFormalArguments_64SVR4(SDValue Chain,
223e47cc
LB
655 CallingConv::ID CallConv, bool isVarArg,
656 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc 657 SDLoc dl, SelectionDAG &DAG,
223e47cc
LB
658 SmallVectorImpl<SDValue> &InVals) const;
659 SDValue
660 LowerFormalArguments_32SVR4(SDValue Chain,
661 CallingConv::ID CallConv, bool isVarArg,
662 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc 663 SDLoc dl, SelectionDAG &DAG,
223e47cc
LB
664 SmallVectorImpl<SDValue> &InVals) const;
665
666 SDValue
970d7e83
LB
667 createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
668 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
1a4d82fc 669 SelectionDAG &DAG, SDLoc dl) const;
970d7e83
LB
670
671 SDValue
672 LowerCall_Darwin(SDValue Chain, SDValue Callee,
673 CallingConv::ID CallConv,
674 bool isVarArg, bool isTailCall,
675 const SmallVectorImpl<ISD::OutputArg> &Outs,
676 const SmallVectorImpl<SDValue> &OutVals,
677 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc 678 SDLoc dl, SelectionDAG &DAG,
970d7e83
LB
679 SmallVectorImpl<SDValue> &InVals) const;
680 SDValue
681 LowerCall_64SVR4(SDValue Chain, SDValue Callee,
223e47cc
LB
682 CallingConv::ID CallConv,
683 bool isVarArg, bool isTailCall,
684 const SmallVectorImpl<ISD::OutputArg> &Outs,
685 const SmallVectorImpl<SDValue> &OutVals,
686 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc 687 SDLoc dl, SelectionDAG &DAG,
223e47cc
LB
688 SmallVectorImpl<SDValue> &InVals) const;
689 SDValue
690 LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
691 bool isVarArg, bool isTailCall,
692 const SmallVectorImpl<ISD::OutputArg> &Outs,
693 const SmallVectorImpl<SDValue> &OutVals,
694 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc 695 SDLoc dl, SelectionDAG &DAG,
223e47cc 696 SmallVectorImpl<SDValue> &InVals) const;
1a4d82fc
JJ
697
698 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
699 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
700
701 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
702 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
703
704 SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
705 unsigned &RefinementSteps) const override;
706 SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
707 unsigned &RefinementSteps) const override;
708
709 CCAssignFn *useFastISelCCs(unsigned Flag) const;
223e47cc 710 };
1a4d82fc
JJ
711
712 namespace PPC {
713 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
714 const TargetLibraryInfo *LibInfo);
715 }
716
717 bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
718 CCValAssign::LocInfo &LocInfo,
719 ISD::ArgFlagsTy &ArgFlags,
720 CCState &State);
721
722 bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
723 MVT &LocVT,
724 CCValAssign::LocInfo &LocInfo,
725 ISD::ArgFlagsTy &ArgFlags,
726 CCState &State);
727
728 bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
729 MVT &LocVT,
730 CCValAssign::LocInfo &LocInfo,
731 ISD::ArgFlagsTy &ArgFlags,
732 CCState &State);
223e47cc
LB
733}
734
735#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H