]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/X86/Disassembler/X86Disassembler.h
Imported Upstream version 0.7
[rustc.git] / src / llvm / lib / Target / X86 / Disassembler / X86Disassembler.h
CommitLineData
223e47cc
LB
1//===-- X86Disassembler.h - Disassembler for x86 and x86_64 -----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
11// 64-bit X86 instruction sets. The main decode sequence for an assembly
12// instruction in this disassembler is:
13//
14// 1. Read the prefix bytes and determine the attributes of the instruction.
15// These attributes, recorded in enum attributeBits
16// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
17// provides a mapping from bitmasks to contexts, which are represented by
18// enum InstructionContext (ibid.).
19//
20// 2. Read the opcode, and determine what kind of opcode it is. The
21// disassembler distinguishes four kinds of opcodes, which are enumerated in
22// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
23// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
24// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
25//
26// 3. Depending on the opcode type, look in one of four ClassDecision structures
27// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
28// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
29// a ModRMDecision (ibid.).
30//
31// 4. Some instructions, such as escape opcodes or extended opcodes, or even
32// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
33// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
34// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
35// ModR/M byte is required and how to interpret it.
36//
37// 5. After resolving the ModRMDecision, the disassembler has a unique ID
38// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
39// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
40// meanings of its operands.
41//
42// 6. For each operand, its encoding is an entry from OperandEncoding
43// (X86DisassemblerDecoderCommon.h) and its type is an entry from
44// OperandType (ibid.). The encoding indicates how to read it from the
45// instruction; the type indicates how to interpret the value once it has
46// been read. For example, a register operand could be stored in the R/M
47// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
48// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
49// register, for instance). Given this information, the operands can be
50// extracted and interpreted.
51//
52// 7. As the last step, the disassembler translates the instruction information
53// and operands into a format understandable by the client - in this case, an
54// MCInst for use by the MC infrastructure.
55//
56// The disassembler is broken broadly into two parts: the table emitter that
57// emits the instruction decode tables discussed above during compilation, and
58// the disassembler itself. The table emitter is documented in more detail in
59// utils/TableGen/X86DisassemblerEmitter.h.
60//
61// X86Disassembler.h contains the public interface for the disassembler,
62// adhering to the MCDisassembler interface.
63// X86Disassembler.cpp contains the code responsible for step 7, and for
64// invoking the decoder to execute steps 1-6.
65// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
66// table emitter and the disassembler.
67// X86DisassemblerDecoder.h contains the public interface of the decoder,
68// factored out into C for possible use by other projects.
69// X86DisassemblerDecoder.c contains the source code of the decoder, which is
70// responsible for steps 1-6.
71//
72//===----------------------------------------------------------------------===//
73
74#ifndef X86DISASSEMBLER_H
75#define X86DISASSEMBLER_H
76
77#define INSTRUCTION_SPECIFIER_FIELDS \
78 uint16_t operands;
79
80#define INSTRUCTION_IDS \
81 uint16_t instructionIDs;
82
83#include "X86DisassemblerDecoderCommon.h"
84
85#undef INSTRUCTION_SPECIFIER_FIELDS
86#undef INSTRUCTION_IDS
87
88#include "llvm/MC/MCDisassembler.h"
89
90namespace llvm {
91
92class MCInst;
93class MCInstrInfo;
94class MCSubtargetInfo;
95class MemoryObject;
96class raw_ostream;
97
223e47cc
LB
98namespace X86Disassembler {
99
100/// X86GenericDisassembler - Generic disassembler for all X86 platforms.
101/// All each platform class should have to do is subclass the constructor, and
102/// provide a different disassemblerMode value.
103class X86GenericDisassembler : public MCDisassembler {
104 const MCInstrInfo *MII;
105public:
106 /// Constructor - Initializes the disassembler.
107 ///
108 /// @param mode - The X86 architecture mode to decode for.
109 X86GenericDisassembler(const MCSubtargetInfo &STI, DisassemblerMode mode,
110 const MCInstrInfo *MII);
111private:
112 ~X86GenericDisassembler();
113public:
114
115 /// getInstruction - See MCDisassembler.
116 DecodeStatus getInstruction(MCInst &instr,
117 uint64_t &size,
118 const MemoryObject &region,
119 uint64_t address,
120 raw_ostream &vStream,
121 raw_ostream &cStream) const;
122
223e47cc
LB
123private:
124 DisassemblerMode fMode;
125};
126
127} // namespace X86Disassembler
128
129} // namespace llvm
130
131#endif