]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/X86/X86ISelLowering.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / X86ISelLowering.h
CommitLineData
223e47cc
LB
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
1a4d82fc
JJ
15#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
16#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
223e47cc 17
970d7e83 18#include "llvm/CodeGen/CallingConvLower.h"
223e47cc 19#include "llvm/CodeGen/SelectionDAG.h"
970d7e83
LB
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetOptions.h"
223e47cc
LB
22
23namespace llvm {
1a4d82fc
JJ
24 class X86Subtarget;
25 class X86TargetMachine;
26
223e47cc
LB
27 namespace X86ISD {
28 // X86 Specific DAG Nodes
29 enum NodeType {
30 // Start the numbering where the builtin ops leave off.
31 FIRST_NUMBER = ISD::BUILTIN_OP_END,
32
33 /// BSF - Bit scan forward.
34 /// BSR - Bit scan reverse.
35 BSF,
36 BSR,
37
38 /// SHLD, SHRD - Double shift instructions. These correspond to
39 /// X86::SHLDxx and X86::SHRDxx instructions.
40 SHLD,
41 SHRD,
42
43 /// FAND - Bitwise logical AND of floating point values. This corresponds
44 /// to X86::ANDPS or X86::ANDPD.
45 FAND,
46
47 /// FOR - Bitwise logical OR of floating point values. This corresponds
48 /// to X86::ORPS or X86::ORPD.
49 FOR,
50
51 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
52 /// to X86::XORPS or X86::XORPD.
53 FXOR,
54
1a4d82fc
JJ
55 /// FANDN - Bitwise logical ANDNOT of floating point values. This
56 /// corresponds to X86::ANDNPS or X86::ANDNPD.
57 FANDN,
58
223e47cc
LB
59 /// FSRL - Bitwise logical right shift of floating point values. These
60 /// corresponds to X86::PSRLDQ.
61 FSRL,
62
63 /// CALL - These operations represent an abstract X86 call
64 /// instruction, which includes a bunch of information. In particular the
65 /// operands of these node are:
66 ///
67 /// #0 - The incoming token chain
68 /// #1 - The callee
69 /// #2 - The number of arg bytes the caller pushes on the stack.
70 /// #3 - The number of arg bytes the callee pops off the stack.
71 /// #4 - The value to pass in AL/AX/EAX (optional)
72 /// #5 - The value to pass in DL/DX/EDX (optional)
73 ///
74 /// The result values of these nodes are:
75 ///
76 /// #0 - The outgoing token chain
77 /// #1 - The first register result value (optional)
78 /// #2 - The second register result value (optional)
79 ///
80 CALL,
81
82 /// RDTSC_DAG - This operation implements the lowering for
83 /// readcyclecounter
84 RDTSC_DAG,
85
1a4d82fc
JJ
86 /// X86 Read Time-Stamp Counter and Processor ID.
87 RDTSCP_DAG,
88
89 /// X86 Read Performance Monitoring Counters.
90 RDPMC_DAG,
91
223e47cc
LB
92 /// X86 compare and logical compare instructions.
93 CMP, COMI, UCOMI,
94
95 /// X86 bit-test instructions.
96 BT,
97
98 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
99 /// operand, usually produced by a CMP instruction.
100 SETCC,
101
1a4d82fc
JJ
102 /// X86 Select
103 SELECT,
104
223e47cc
LB
105 // Same as SETCC except it's materialized with a sbb and the value is all
106 // one's or all zero's.
107 SETCC_CARRY, // R = carry_bit ? ~0 : 0
108
109 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
110 /// Operands are two FP values to compare; result is a mask of
111 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
1a4d82fc 112 FSETCC,
223e47cc
LB
113
114 /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
115 /// result in an integer GPR. Needs masking for scalar result.
116 FGETSIGNx86,
117
118 /// X86 conditional moves. Operand 0 and operand 1 are the two values
119 /// to select from. Operand 2 is the condition code, and operand 3 is the
120 /// flag operand produced by a CMP or TEST instruction. It also writes a
121 /// flag result.
122 CMOV,
123
124 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
125 /// is the block to branch if condition is true, operand 2 is the
126 /// condition code, and operand 3 is the flag operand produced by a CMP
127 /// or TEST instruction.
128 BRCOND,
129
130 /// Return with a flag operand. Operand 0 is the chain operand, operand
131 /// 1 is the number of bytes of stack to pop.
132 RET_FLAG,
133
134 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
135 REP_STOS,
136
137 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
138 REP_MOVS,
139
140 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
141 /// at function entry, used for PIC code.
142 GlobalBaseReg,
143
144 /// Wrapper - A wrapper node for TargetConstantPool,
145 /// TargetExternalSymbol, and TargetGlobalAddress.
146 Wrapper,
147
148 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
149 /// relative displacements.
150 WrapperRIP,
151
152 /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
153 /// to an MMX vector. If you think this is too close to the previous
154 /// mnemonic, so do I; blame Intel.
155 MOVDQ2Q,
156
970d7e83
LB
157 /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
158 /// vector to a GPR.
159 MMX_MOVD2W,
160
223e47cc
LB
161 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
162 /// i32, corresponds to X86::PEXTRB.
163 PEXTRB,
164
165 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
166 /// i32, corresponds to X86::PEXTRW.
167 PEXTRW,
168
169 /// INSERTPS - Insert any element of a 4 x float vector into any element
170 /// of a destination 4 x floatvector.
171 INSERTPS,
172
173 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
174 /// corresponds to X86::PINSRB.
175 PINSRB,
176
177 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
178 /// corresponds to X86::PINSRW.
179 PINSRW, MMX_PINSRW,
180
181 /// PSHUFB - Shuffle 16 8-bit values within a vector.
182 PSHUFB,
183
184 /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
185 ANDNP,
186
187 /// PSIGN - Copy integer sign.
188 PSIGN,
189
970d7e83
LB
190 /// BLENDI - Blend where the selector is an immediate.
191 BLENDI,
192
85aaf69f
SL
193 /// SHRUNKBLEND - Blend where the condition has been shrunk.
194 /// This is used to emphasize that the condition mask is
195 /// no more valid for generic VSELECT optimizations.
196 SHRUNKBLEND,
197
1a4d82fc
JJ
198 /// ADDSUB - Combined add and sub on an FP vector.
199 ADDSUB,
200
970d7e83
LB
201 // SUBUS - Integer sub with unsigned saturation.
202 SUBUS,
223e47cc
LB
203
204 /// HADD - Integer horizontal add.
205 HADD,
206
207 /// HSUB - Integer horizontal sub.
208 HSUB,
209
210 /// FHADD - Floating point horizontal add.
211 FHADD,
212
213 /// FHSUB - Floating point horizontal sub.
214 FHSUB,
215
970d7e83
LB
216 /// UMAX, UMIN - Unsigned integer max and min.
217 UMAX, UMIN,
218
219 /// SMAX, SMIN - Signed integer max and min.
220 SMAX, SMIN,
221
223e47cc
LB
222 /// FMAX, FMIN - Floating point max and min.
223 ///
224 FMAX, FMIN,
225
226 /// FMAXC, FMINC - Commutative FMIN and FMAX.
227 FMAXC, FMINC,
228
229 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
230 /// approximation. Note that these typically require refinement
231 /// in order to obtain suitable precision.
232 FRSQRT, FRCP,
233
234 // TLSADDR - Thread Local Storage.
235 TLSADDR,
236
237 // TLSBASEADDR - Thread Local Storage. A call to get the start address
238 // of the TLS block for the current module.
239 TLSBASEADDR,
240
241 // TLSCALL - Thread Local Storage. When calling to an OS provided
242 // thunk at the address from an earlier relocation.
243 TLSCALL,
244
245 // EH_RETURN - Exception Handling helpers.
246 EH_RETURN,
247
970d7e83
LB
248 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
249 EH_SJLJ_SETJMP,
250
251 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
252 EH_SJLJ_LONGJMP,
253
254 /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
255 /// the list of operands.
223e47cc
LB
256 TC_RETURN,
257
1a4d82fc 258 // VZEXT_MOVL - Vector move to low scalar and zero higher vector elements.
223e47cc
LB
259 VZEXT_MOVL,
260
970d7e83
LB
261 // VZEXT - Vector integer zero-extend.
262 VZEXT,
263
264 // VSEXT - Vector integer signed-extend.
265 VSEXT,
266
1a4d82fc
JJ
267 // VTRUNC - Vector integer truncate.
268 VTRUNC,
269
270 // VTRUNC - Vector integer truncate with mask.
271 VTRUNCM,
272
223e47cc
LB
273 // VFPEXT - Vector FP extend.
274 VFPEXT,
275
970d7e83
LB
276 // VFPROUND - Vector FP round.
277 VFPROUND,
278
223e47cc
LB
279 // VSHL, VSRL - 128-bit vector logical left / right shift
280 VSHLDQ, VSRLDQ,
281
282 // VSHL, VSRL, VSRA - Vector shift elements
283 VSHL, VSRL, VSRA,
284
285 // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
286 VSHLI, VSRLI, VSRAI,
287
288 // CMPP - Vector packed double/float comparison.
289 CMPP,
290
291 // PCMP* - Vector integer comparisons.
292 PCMPEQ, PCMPGT,
1a4d82fc
JJ
293 // PCMP*M - Vector integer comparisons, the result is in a mask vector.
294 PCMPEQM, PCMPGTM,
295
296 /// CMPM, CMPMU - Vector comparison generating mask bits for fp and
297 /// integer signed and unsigned data types.
298 CMPM,
299 CMPMU,
223e47cc
LB
300
301 // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
302 ADD, SUB, ADC, SBB, SMUL,
303 INC, DEC, OR, XOR, AND,
304
1a4d82fc 305 BEXTR, // BEXTR - Bit field extract
223e47cc
LB
306
307 UMUL, // LOW, HI, FLAGS = umul LHS, RHS
308
85aaf69f
SL
309 // 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS
310 SMUL8, UMUL8,
311
312 // 8-bit divrem that zero-extend the high result (AH).
313 UDIVREM8_ZEXT_HREG,
314 SDIVREM8_SEXT_HREG,
315
223e47cc
LB
316 // MUL_IMM - X86 specific multiply by immediate.
317 MUL_IMM,
318
1a4d82fc 319 // PTEST - Vector bitwise comparisons.
223e47cc
LB
320 PTEST,
321
1a4d82fc 322 // TESTP - Vector packed fp sign bitwise comparisons.
223e47cc
LB
323 TESTP,
324
1a4d82fc
JJ
325 // TESTM, TESTNM - Vector "test" in AVX-512, the result is in a mask vector.
326 TESTM,
327 TESTNM,
328
329 // OR/AND test for masks
330 KORTEST,
331
223e47cc 332 // Several flavors of instructions with vector shuffle behaviors.
1a4d82fc
JJ
333 PACKSS,
334 PACKUS,
335 // Intra-lane alignr
970d7e83 336 PALIGNR,
1a4d82fc
JJ
337 // AVX512 inter-lane alignr
338 VALIGN,
223e47cc
LB
339 PSHUFD,
340 PSHUFHW,
341 PSHUFLW,
342 SHUFP,
343 MOVDDUP,
344 MOVSHDUP,
345 MOVSLDUP,
346 MOVLHPS,
347 MOVLHPD,
348 MOVHLPS,
349 MOVLPS,
350 MOVLPD,
351 MOVSD,
352 MOVSS,
353 UNPCKL,
354 UNPCKH,
1a4d82fc
JJ
355 VPERMILPV,
356 VPERMILPI,
223e47cc 357 VPERMV,
1a4d82fc
JJ
358 VPERMV3,
359 VPERMIV3,
223e47cc
LB
360 VPERMI,
361 VPERM2X128,
362 VBROADCAST,
1a4d82fc
JJ
363 // masked broadcast
364 VBROADCASTM,
365 // Insert/Extract vector element
366 VINSERT,
367 VEXTRACT,
223e47cc 368
85aaf69f 369 // Vector multiply packed unsigned doubleword integers
223e47cc 370 PMULUDQ,
85aaf69f 371 // Vector multiply packed signed doubleword integers
1a4d82fc 372 PMULDQ,
223e47cc
LB
373
374 // FMA nodes
375 FMADD,
376 FNMADD,
377 FMSUB,
378 FNMSUB,
379 FMADDSUB,
380 FMSUBADD,
381
85aaf69f
SL
382 // Compress and expand
383 COMPRESS,
384 EXPAND,
385
386 // Save xmm argument registers to the stack, according to %al. An operator
387 // is needed so that this can be expanded with control flow.
223e47cc
LB
388 VASTART_SAVE_XMM_REGS,
389
85aaf69f 390 // Windows's _chkstk call to do stack probing.
223e47cc
LB
391 WIN_ALLOCA,
392
85aaf69f 393 // For allocating variable amounts of stack space when using
223e47cc
LB
394 // segmented stacks. Check if the current stacklet has enough space, and
395 // falls back to heap allocation if not.
396 SEG_ALLOCA,
397
85aaf69f 398 // Windows's _ftol2 runtime routine to do fptoui.
223e47cc
LB
399 WIN_FTOL,
400
401 // Memory barrier
402 MEMBARRIER,
403 MFENCE,
404 SFENCE,
405 LFENCE,
406
85aaf69f 407 // Store FP status word into i16 register.
223e47cc
LB
408 FNSTSW16r,
409
85aaf69f 410 // Store contents of %ah into %eflags.
223e47cc
LB
411 SAHF,
412
85aaf69f 413 // Get a random integer and indicate whether it is valid in CF.
223e47cc
LB
414 RDRAND,
415
85aaf69f 416 // Get a NIST SP800-90B & C compliant random integer and
1a4d82fc
JJ
417 // indicate whether it is valid in CF.
418 RDSEED,
419
223e47cc
LB
420 PCMPISTRI,
421 PCMPESTRI,
422
85aaf69f 423 // Test if in transactional execution.
1a4d82fc 424 XTEST,
223e47cc 425
85aaf69f
SL
426 // ERI instructions
427 RSQRT28, RCP28, EXP2,
428
429 // Compare and swap.
1a4d82fc 430 LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
223e47cc
LB
431 LCMPXCHG8_DAG,
432 LCMPXCHG16_DAG,
433
85aaf69f 434 // Load, scalar_to_vector, and zero extend.
223e47cc
LB
435 VZEXT_LOAD,
436
85aaf69f 437 // Store FP control world into i16 memory.
223e47cc
LB
438 FNSTCW16m,
439
85aaf69f 440 /// This instruction implements FP_TO_SINT with the
223e47cc
LB
441 /// integer destination in memory and a FP reg source. This corresponds
442 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
443 /// has two inputs (token chain and address) and two outputs (int value
444 /// and token chain).
445 FP_TO_INT16_IN_MEM,
446 FP_TO_INT32_IN_MEM,
447 FP_TO_INT64_IN_MEM,
448
85aaf69f 449 /// This instruction implements SINT_TO_FP with the
223e47cc
LB
450 /// integer source in memory and FP reg result. This corresponds to the
451 /// X86::FILD*m instructions. It has three inputs (token chain, address,
452 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
453 /// also produces a flag).
454 FILD,
455 FILD_FLAG,
456
85aaf69f 457 /// This instruction implements an extending load to FP stack slots.
223e47cc
LB
458 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
459 /// operand, ptr to load from, and a ValueType node indicating the type
460 /// to load to.
461 FLD,
462
85aaf69f 463 /// This instruction implements a truncating store to FP stack
223e47cc
LB
464 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
465 /// chain operand, value to store, address, and a ValueType to store it
466 /// as.
467 FST,
468
85aaf69f 469 /// This instruction grabs the address of the next argument
223e47cc
LB
470 /// from a va_list. (reads and modifies the va_list in memory)
471 VAARG_64
472
473 // WARNING: Do not add anything in the end unless you want the node to
474 // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
475 // thought as target memory ops!
476 };
477 }
478
479 /// Define some predicates that are used for node matching.
480 namespace X86 {
85aaf69f 481 /// Return true if the specified
1a4d82fc
JJ
482 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
483 /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
484 bool isVEXTRACT128Index(SDNode *N);
485
85aaf69f 486 /// Return true if the specified
1a4d82fc
JJ
487 /// INSERT_SUBVECTOR operand specifies a subvector insert that is
488 /// suitable for input to VINSERTF128, VINSERTI128 instructions.
489 bool isVINSERT128Index(SDNode *N);
490
85aaf69f 491 /// Return true if the specified
223e47cc 492 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
1a4d82fc
JJ
493 /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
494 bool isVEXTRACT256Index(SDNode *N);
223e47cc 495
85aaf69f 496 /// Return true if the specified
223e47cc 497 /// INSERT_SUBVECTOR operand specifies a subvector insert that is
1a4d82fc
JJ
498 /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
499 bool isVINSERT256Index(SDNode *N);
223e47cc 500
85aaf69f 501 /// Return the appropriate
223e47cc 502 /// immediate to extract the specified EXTRACT_SUBVECTOR index
1a4d82fc
JJ
503 /// with VEXTRACTF128, VEXTRACTI128 instructions.
504 unsigned getExtractVEXTRACT128Immediate(SDNode *N);
223e47cc 505
85aaf69f 506 /// Return the appropriate
223e47cc 507 /// immediate to insert at the specified INSERT_SUBVECTOR index
1a4d82fc
JJ
508 /// with VINSERTF128, VINSERT128 instructions.
509 unsigned getInsertVINSERT128Immediate(SDNode *N);
510
85aaf69f 511 /// Return the appropriate
1a4d82fc
JJ
512 /// immediate to extract the specified EXTRACT_SUBVECTOR index
513 /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
514 unsigned getExtractVEXTRACT256Immediate(SDNode *N);
515
85aaf69f 516 /// Return the appropriate
1a4d82fc
JJ
517 /// immediate to insert at the specified INSERT_SUBVECTOR index
518 /// with VINSERTF64x4, VINSERTI64x4 instructions.
519 unsigned getInsertVINSERT256Immediate(SDNode *N);
223e47cc 520
85aaf69f 521 /// Returns true if Elt is a constant zero or floating point constant +0.0.
223e47cc
LB
522 bool isZeroNode(SDValue Elt);
523
85aaf69f 524 /// Returns true of the given offset can be
223e47cc
LB
525 /// fit into displacement field of the instruction.
526 bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
527 bool hasSymbolicDisplacement = true);
528
529
85aaf69f 530 /// Determines whether the callee is required to pop its
223e47cc
LB
531 /// own arguments. Callee pop is necessary to support tail calls.
532 bool isCalleePop(CallingConv::ID CallingConv,
533 bool is64Bit, bool IsVarArg, bool TailCallOpt);
1a4d82fc
JJ
534
535 /// AVX512 static rounding constants. These need to match the values in
536 /// avx512fintrin.h.
537 enum STATIC_ROUNDING {
538 TO_NEAREST_INT = 0,
539 TO_NEG_INF = 1,
540 TO_POS_INF = 2,
541 TO_ZERO = 3,
542 CUR_DIRECTION = 4
543 };
223e47cc
LB
544 }
545
546 //===--------------------------------------------------------------------===//
85aaf69f 547 // X86 Implementation of the TargetLowering interface
1a4d82fc 548 class X86TargetLowering final : public TargetLowering {
223e47cc 549 public:
85aaf69f 550 explicit X86TargetLowering(const X86TargetMachine &TM);
223e47cc 551
1a4d82fc 552 unsigned getJumpTableEncoding() const override;
223e47cc 553
1a4d82fc 554 MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
223e47cc 555
1a4d82fc 556 const MCExpr *
223e47cc
LB
557 LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
558 const MachineBasicBlock *MBB, unsigned uid,
1a4d82fc 559 MCContext &Ctx) const override;
223e47cc 560
85aaf69f 561 /// Returns relocation base for the given PIC jumptable.
1a4d82fc
JJ
562 SDValue getPICJumpTableRelocBase(SDValue Table,
563 SelectionDAG &DAG) const override;
564 const MCExpr *
223e47cc 565 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1a4d82fc 566 unsigned JTI, MCContext &Ctx) const override;
223e47cc 567
85aaf69f 568 /// Return the desired alignment for ByVal aggregate
223e47cc
LB
569 /// function arguments in the caller parameter area. For X86, aggregates
570 /// that contains are placed at 16-byte boundaries while the rest are at
571 /// 4-byte boundaries.
1a4d82fc 572 unsigned getByValTypeAlignment(Type *Ty) const override;
223e47cc 573
85aaf69f 574 /// Returns the target specific optimal type for load
223e47cc
LB
575 /// and store operations as a result of memset, memcpy, and memmove
576 /// lowering. If DstAlign is zero that means it's safe to destination
577 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
578 /// means there isn't a need to check it against alignment requirement,
970d7e83
LB
579 /// probably because the source does not need to be loaded. If 'IsMemset' is
580 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
581 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
582 /// source is constant so it does not need to be loaded.
223e47cc
LB
583 /// It returns EVT::Other if the type should be determined using generic
584 /// target-independent logic.
1a4d82fc
JJ
585 EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
586 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
587 MachineFunction &MF) const override;
223e47cc 588
85aaf69f 589 /// Returns true if it's safe to use load / store of the
970d7e83
LB
590 /// specified type to expand memcpy / memset inline. This is mostly true
591 /// for all types except for some special cases. For example, on X86
592 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
593 /// also does type conversion. Note the specified type doesn't have to be
594 /// legal as the hook is used before type legalization.
1a4d82fc 595 bool isSafeMemOpType(MVT VT) const override;
970d7e83 596
85aaf69f 597 /// Returns true if the target allows
970d7e83
LB
598 /// unaligned memory accesses. of the specified type. Returns whether it
599 /// is "fast" by reference in the second argument.
1a4d82fc
JJ
600 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
601 bool *Fast) const override;
223e47cc 602
85aaf69f 603 /// Provide custom lowering hooks for some operations.
223e47cc 604 ///
1a4d82fc 605 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
223e47cc 606
85aaf69f 607 /// Replace the results of node with an illegal result
223e47cc
LB
608 /// type with new values built out of custom code.
609 ///
1a4d82fc
JJ
610 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
611 SelectionDAG &DAG) const override;
223e47cc
LB
612
613
1a4d82fc 614 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
223e47cc 615
85aaf69f 616 /// Return true if the target has native support for
223e47cc
LB
617 /// the specified value type and it is 'desirable' to use the type for the
618 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
619 /// instruction encodings are longer and some i16 instructions are slow.
1a4d82fc 620 bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
223e47cc 621
85aaf69f 622 /// Return true if the target has native support for the
223e47cc
LB
623 /// specified value type and it is 'desirable' to use the type. e.g. On x86
624 /// i16 is legal, but undesirable since i16 instruction encodings are longer
625 /// and some i16 instructions are slow.
1a4d82fc 626 bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
223e47cc 627
1a4d82fc 628 MachineBasicBlock *
223e47cc 629 EmitInstrWithCustomInserter(MachineInstr *MI,
1a4d82fc 630 MachineBasicBlock *MBB) const override;
223e47cc
LB
631
632
85aaf69f 633 /// This method returns the name of a target specific DAG node.
1a4d82fc 634 const char *getTargetNodeName(unsigned Opcode) const override;
223e47cc 635
85aaf69f
SL
636 bool isCheapToSpeculateCttz() const override;
637
638 bool isCheapToSpeculateCtlz() const override;
639
640 /// Return the value type to use for ISD::SETCC.
1a4d82fc 641 EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
223e47cc 642
85aaf69f
SL
643 /// Determine which of the bits specified in Mask are known to be either
644 /// zero or one and return them in the KnownZero/KnownOne bitsets.
1a4d82fc
JJ
645 void computeKnownBitsForTargetNode(const SDValue Op,
646 APInt &KnownZero,
647 APInt &KnownOne,
648 const SelectionDAG &DAG,
649 unsigned Depth = 0) const override;
223e47cc 650
85aaf69f 651 /// Determine the number of bits in the operation that are sign bits.
1a4d82fc
JJ
652 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
653 const SelectionDAG &DAG,
654 unsigned Depth) const override;
223e47cc 655
1a4d82fc
JJ
656 bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
657 int64_t &Offset) const override;
223e47cc
LB
658
659 SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
660
1a4d82fc 661 bool ExpandInlineAsm(CallInst *CI) const override;
223e47cc 662
1a4d82fc
JJ
663 ConstraintType
664 getConstraintType(const std::string &Constraint) const override;
223e47cc
LB
665
666 /// Examine constraint string and operand type and determine a weight value.
667 /// The operand object must already have been set up with the operand type.
1a4d82fc
JJ
668 ConstraintWeight
669 getSingleConstraintMatchWeight(AsmOperandInfo &info,
670 const char *constraint) const override;
223e47cc 671
1a4d82fc 672 const char *LowerXConstraint(EVT ConstraintVT) const override;
223e47cc 673
85aaf69f
SL
674 /// Lower the specified operand into the Ops vector. If it is invalid, don't
675 /// add anything to Ops. If hasMemory is true it means one of the asm
676 /// constraint of the inline asm instruction being processed is 'm'.
1a4d82fc
JJ
677 void LowerAsmOperandForConstraint(SDValue Op,
678 std::string &Constraint,
679 std::vector<SDValue> &Ops,
680 SelectionDAG &DAG) const override;
223e47cc 681
85aaf69f 682 /// Given a physical register constraint
223e47cc
LB
683 /// (e.g. {edx}), return the register number and the register class for the
684 /// register. This should only be used for C_Register constraints. On
685 /// error, this returns a register number of 0.
686 std::pair<unsigned, const TargetRegisterClass*>
687 getRegForInlineAsmConstraint(const std::string &Constraint,
1a4d82fc 688 MVT VT) const override;
223e47cc 689
85aaf69f 690 /// Return true if the addressing mode represented
223e47cc 691 /// by AM is legal for this target, for a load/store of the specified type.
1a4d82fc 692 bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
223e47cc 693
85aaf69f 694 /// Return true if the specified immediate is legal
223e47cc
LB
695 /// icmp immediate, that is the target has icmp instructions which can
696 /// compare a register against the immediate without having to materialize
697 /// the immediate into a register.
1a4d82fc 698 bool isLegalICmpImmediate(int64_t Imm) const override;
223e47cc 699
85aaf69f 700 /// Return true if the specified immediate is legal
223e47cc
LB
701 /// add immediate, that is the target has add instructions which can
702 /// add a register and the immediate without having to materialize
703 /// the immediate into a register.
1a4d82fc
JJ
704 bool isLegalAddImmediate(int64_t Imm) const override;
705
706 /// \brief Return the cost of the scaling factor used in the addressing
707 /// mode represented by AM for this target, for a load/store
708 /// of the specified type.
709 /// If the AM is supported, the return value must be >= 0.
710 /// If the AM is not supported, it returns a negative value.
711 int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override;
712
713 bool isVectorShiftByScalarCheap(Type *Ty) const override;
223e47cc 714
85aaf69f 715 /// Return true if it's free to truncate a value of
223e47cc
LB
716 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
717 /// register EAX to i16 by referencing its sub-register AX.
1a4d82fc
JJ
718 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
719 bool isTruncateFree(EVT VT1, EVT VT2) const override;
720
721 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
223e47cc 722
85aaf69f 723 /// Return true if any actual instruction that defines a
223e47cc
LB
724 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
725 /// register. This does not necessarily include registers defined in
726 /// unknown ways, such as incoming arguments, or copies from unknown
727 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
728 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
729 /// all instructions that define 32-bit values implicit zero-extend the
730 /// result out to 64 bits.
1a4d82fc
JJ
731 bool isZExtFree(Type *Ty1, Type *Ty2) const override;
732 bool isZExtFree(EVT VT1, EVT VT2) const override;
733 bool isZExtFree(SDValue Val, EVT VT2) const override;
223e47cc 734
85aaf69f
SL
735 /// Return true if an FMA operation is faster than a pair of fmul and fadd
736 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
737 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1a4d82fc 738 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
223e47cc 739
85aaf69f 740 /// Return true if it's profitable to narrow
223e47cc
LB
741 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
742 /// from i32 to i8 but not from i32 to i16.
1a4d82fc 743 bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
223e47cc 744
85aaf69f 745 /// Returns true if the target can instruction select the
223e47cc
LB
746 /// specified FP immediate natively. If false, the legalizer will
747 /// materialize the FP immediate as a load from a constant pool.
1a4d82fc 748 bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
223e47cc 749
85aaf69f
SL
750 /// Targets can use this to indicate that they only support *some*
751 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
752 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
753 /// be legal.
1a4d82fc
JJ
754 bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
755 EVT VT) const override;
223e47cc 756
85aaf69f
SL
757 /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
758 /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to
759 /// replace a VAND with a constant pool entry.
1a4d82fc
JJ
760 bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
761 EVT VT) const override;
223e47cc 762
85aaf69f 763 /// If true, then instruction selection should
223e47cc
LB
764 /// seek to shrink the FP constant of the specified type to a smaller type
765 /// in order to save space and / or reduce runtime.
1a4d82fc 766 bool ShouldShrinkFPConstant(EVT VT) const override {
223e47cc
LB
767 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
768 // expensive than a straight movsd. On the other hand, it's important to
769 // shrink long double fp constant since fldt is very slow.
770 return !X86ScalarSSEf64 || VT == MVT::f80;
771 }
772
85aaf69f
SL
773 /// Return true if we believe it is correct and profitable to reduce the
774 /// load node to a smaller type.
775 bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
776 EVT NewVT) const override;
777
223e47cc
LB
778 const X86Subtarget* getSubtarget() const {
779 return Subtarget;
780 }
781
85aaf69f
SL
782 /// Return true if the specified scalar FP type is computed in an SSE
783 /// register, not on the X87 floating point stack.
223e47cc
LB
784 bool isScalarFPTypeInSSEReg(EVT VT) const {
785 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
786 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
787 }
788
85aaf69f 789 /// Return true if the target uses the MSVC _ftol2 routine for fptoui.
1a4d82fc 790 bool isTargetFTOL() const;
223e47cc 791
85aaf69f
SL
792 /// Return true if the MSVC _ftol2 routine should be used for fptoui to the
793 /// given type.
223e47cc
LB
794 bool isIntegerTypeFTOL(EVT VT) const {
795 return isTargetFTOL() && VT == MVT::i64;
796 }
797
1a4d82fc
JJ
798 /// \brief Returns true if it is beneficial to convert a load of a constant
799 /// to just the constant itself.
800 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
801 Type *Ty) const override;
802
85aaf69f
SL
803 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
804 /// with this index.
805 bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override;
806
1a4d82fc
JJ
807 /// Intel processors have a unified instruction and data cache
808 const char * getClearCacheBuiltinName() const override {
809 return nullptr; // nothing to do, move along.
810 }
811
812 unsigned getRegisterByName(const char* RegName, EVT VT) const override;
813
85aaf69f 814 /// This method returns a target specific FastISel object,
223e47cc 815 /// or null if the target does not support "fast" ISel.
1a4d82fc
JJ
816 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
817 const TargetLibraryInfo *libInfo) const override;
223e47cc 818
85aaf69f
SL
819 /// Return true if the target stores stack protector cookies at a fixed
820 /// offset in some non-standard address space, and populates the address
821 /// space and offset as appropriate.
1a4d82fc
JJ
822 bool getStackCookieLocation(unsigned &AddressSpace,
823 unsigned &Offset) const override;
223e47cc
LB
824
825 SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
826 SelectionDAG &DAG) const;
827
1a4d82fc
JJ
828 bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
829
830 /// \brief Reset the operation actions based on target options.
831 void resetOperationActions() override;
832
833 bool useLoadStackGuardNode() const override;
834 /// \brief Customize the preferred legalization strategy for certain types.
835 LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
836
223e47cc
LB
837 protected:
838 std::pair<const TargetRegisterClass*, uint8_t>
1a4d82fc 839 findRepresentativeClass(MVT VT) const override;
223e47cc
LB
840
841 private:
85aaf69f 842 /// Keep a pointer to the X86Subtarget around so that we can
223e47cc
LB
843 /// make the right decision when generating code for different targets.
844 const X86Subtarget *Subtarget;
970d7e83 845 const DataLayout *TD;
223e47cc 846
1a4d82fc
JJ
847 /// Used to store the TargetOptions so that we don't waste time resetting
848 /// the operation actions unless we have to.
849 TargetOptions TO;
850
85aaf69f 851 /// Select between SSE or x87 floating point ops.
223e47cc
LB
852 /// When SSE is available, use it for f32 operations.
853 /// When SSE2 is available, use it for f64 operations.
854 bool X86ScalarSSEf32;
855 bool X86ScalarSSEf64;
856
85aaf69f 857 /// A list of legal FP immediates.
223e47cc
LB
858 std::vector<APFloat> LegalFPImmediates;
859
85aaf69f 860 /// Indicate that this x86 target can instruction
223e47cc
LB
861 /// select the specified FP immediate natively.
862 void addLegalFPImmediate(const APFloat& Imm) {
863 LegalFPImmediates.push_back(Imm);
864 }
865
866 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
867 CallingConv::ID CallConv, bool isVarArg,
868 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc 869 SDLoc dl, SelectionDAG &DAG,
223e47cc
LB
870 SmallVectorImpl<SDValue> &InVals) const;
871 SDValue LowerMemArgument(SDValue Chain,
872 CallingConv::ID CallConv,
873 const SmallVectorImpl<ISD::InputArg> &ArgInfo,
1a4d82fc 874 SDLoc dl, SelectionDAG &DAG,
223e47cc
LB
875 const CCValAssign &VA, MachineFrameInfo *MFI,
876 unsigned i) const;
877 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
1a4d82fc 878 SDLoc dl, SelectionDAG &DAG,
223e47cc
LB
879 const CCValAssign &VA,
880 ISD::ArgFlagsTy Flags) const;
881
882 // Call lowering helpers.
883
85aaf69f
SL
884 /// Check whether the call is eligible for tail call optimization. Targets
885 /// that want to do tail call optimization should implement this function.
223e47cc
LB
886 bool IsEligibleForTailCallOptimization(SDValue Callee,
887 CallingConv::ID CalleeCC,
888 bool isVarArg,
889 bool isCalleeStructRet,
890 bool isCallerStructRet,
891 Type *RetTy,
892 const SmallVectorImpl<ISD::OutputArg> &Outs,
893 const SmallVectorImpl<SDValue> &OutVals,
894 const SmallVectorImpl<ISD::InputArg> &Ins,
895 SelectionDAG& DAG) const;
896 bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
897 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
898 SDValue Chain, bool IsTailCall, bool Is64Bit,
1a4d82fc 899 int FPDiff, SDLoc dl) const;
223e47cc
LB
900
901 unsigned GetAlignedArgumentStackSize(unsigned StackSize,
902 SelectionDAG &DAG) const;
903
904 std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
905 bool isSigned,
906 bool isReplace) const;
907
223e47cc 908 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1a4d82fc 909 SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
223e47cc 910 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1a4d82fc 911 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
223e47cc 912 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1a4d82fc
JJ
913 SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
914 SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
915
223e47cc 916 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
223e47cc
LB
917 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
918 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1a4d82fc 919 SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
223e47cc
LB
920 int64_t Offset, SelectionDAG &DAG) const;
921 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
922 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
923 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
223e47cc
LB
924 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
925 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
926 SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
927 SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
970d7e83
LB
928 SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
929 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
223e47cc
LB
930 SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
931 SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
223e47cc 932 SDValue LowerToBT(SDValue And, ISD::CondCode CC,
1a4d82fc 933 SDLoc dl, SelectionDAG &DAG) const;
223e47cc 934 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
223e47cc
LB
935 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
936 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
937 SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
938 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
939 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
940 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
941 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
942 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
943 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
944 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
945 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
970d7e83
LB
946 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
947 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
223e47cc
LB
948 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
949 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
223e47cc 950 SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
1a4d82fc 951 SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
223e47cc 952
1a4d82fc 953 SDValue
223e47cc
LB
954 LowerFormalArguments(SDValue Chain,
955 CallingConv::ID CallConv, bool isVarArg,
956 const SmallVectorImpl<ISD::InputArg> &Ins,
1a4d82fc
JJ
957 SDLoc dl, SelectionDAG &DAG,
958 SmallVectorImpl<SDValue> &InVals) const override;
959 SDValue LowerCall(CallLoweringInfo &CLI,
960 SmallVectorImpl<SDValue> &InVals) const override;
223e47cc 961
1a4d82fc
JJ
962 SDValue LowerReturn(SDValue Chain,
963 CallingConv::ID CallConv, bool isVarArg,
964 const SmallVectorImpl<ISD::OutputArg> &Outs,
965 const SmallVectorImpl<SDValue> &OutVals,
966 SDLoc dl, SelectionDAG &DAG) const override;
223e47cc 967
1a4d82fc 968 bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
223e47cc 969
1a4d82fc 970 bool mayBeEmittedAsTailCall(CallInst *CI) const override;
223e47cc 971
1a4d82fc
JJ
972 EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
973 ISD::NodeType ExtendKind) const override;
223e47cc 974
1a4d82fc
JJ
975 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
976 bool isVarArg,
977 const SmallVectorImpl<ISD::OutputArg> &Outs,
978 LLVMContext &Context) const override;
979
980 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
981
982 bool shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
983 bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
984 bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
985
986 LoadInst *
987 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
988
989 bool needsCmpXchgNb(const Type *MemType) const;
223e47cc 990
223e47cc
LB
991 /// Utility function to emit atomic-load-arith operations (and, or, xor,
992 /// nand, max, min, umax, umin). It takes the corresponding instruction to
993 /// expand, the associated machine basic block, and the associated X86
994 /// opcodes for reg/reg.
995 MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
996 MachineBasicBlock *MBB) const;
997
998 /// Utility function to emit atomic-load-arith operations (and, or, xor,
999 /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
1000 MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
1001 MachineBasicBlock *MBB) const;
1002
1003 // Utility function to emit the low-level va_arg code for X86-64.
1004 MachineBasicBlock *EmitVAARG64WithCustomInserter(
1005 MachineInstr *MI,
1006 MachineBasicBlock *MBB) const;
1007
1008 /// Utility function to emit the xmm reg save portion of va_start.
1009 MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
1010 MachineInstr *BInstr,
1011 MachineBasicBlock *BB) const;
1012
1013 MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
1014 MachineBasicBlock *BB) const;
1015
1016 MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
1017 MachineBasicBlock *BB) const;
1018
1019 MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
1a4d82fc 1020 MachineBasicBlock *BB) const;
223e47cc
LB
1021
1022 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
1023 MachineBasicBlock *BB) const;
1024
1025 MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
1026 MachineBasicBlock *BB) const;
1027
970d7e83
LB
1028 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
1029 MachineBasicBlock *MBB) const;
1030
1031 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
1032 MachineBasicBlock *MBB) const;
1033
1a4d82fc
JJ
1034 MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
1035 MachineBasicBlock *MBB) const;
1036
223e47cc
LB
1037 /// Emit nodes that will be selected as "test Op0,Op0", or something
1038 /// equivalent, for use with the given x86 condition code.
1a4d82fc
JJ
1039 SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl,
1040 SelectionDAG &DAG) const;
223e47cc
LB
1041
1042 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1043 /// equivalent, for use with the given x86 condition code.
1a4d82fc 1044 SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl,
223e47cc
LB
1045 SelectionDAG &DAG) const;
1046
1047 /// Convert a comparison if required by the subtarget.
1048 SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
85aaf69f
SL
1049
1050 /// Use rsqrt* to speed up sqrt calculations.
1051 SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
1052 unsigned &RefinementSteps,
1053 bool &UseOneConstNR) const override;
1054
1055 /// Use rcp* to speed up fdiv calculations.
1056 SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
1057 unsigned &RefinementSteps) const override;
223e47cc
LB
1058 };
1059
1060 namespace X86 {
1061 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
970d7e83 1062 const TargetLibraryInfo *libInfo);
223e47cc
LB
1063 }
1064}
1065
1066#endif // X86ISELLOWERING_H