]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/X86/X86InstrFPStack.td
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / X86InstrFPStack.td
CommitLineData
223e47cc
LB
1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 x87 FPU instruction set, defining the
11// instructions, and properties of the instructions which are needed for code
12// generation, machine code emission, and analysis.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17// FPStack specific DAG Nodes.
18//===----------------------------------------------------------------------===//
19
85aaf69f 20def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
223e47cc
LB
21 SDTCisVT<1, f80>]>;
22def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>,
85aaf69f 23 SDTCisPtrTy<1>,
223e47cc
LB
24 SDTCisVT<2, OtherVT>]>;
25def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>,
85aaf69f 26 SDTCisPtrTy<1>,
223e47cc
LB
27 SDTCisVT<2, OtherVT>]>;
28def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
29 SDTCisVT<2, OtherVT>]>;
30def SDTX86Fnstsw : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
31def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
32
33def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
34
35def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld,
36 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
37def X86fst : SDNode<"X86ISD::FST", SDTX86Fst,
38 [SDNPHasChain, SDNPInGlue, SDNPMayStore,
39 SDNPMemOperand]>;
40def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild,
41 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
42def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
43 [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
44 SDNPMemOperand]>;
45def X86fp_stsw : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
46def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
47 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
48def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
49 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
50def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
51 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
52def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore,
53 [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
54 SDNPMemOperand]>;
55
56//===----------------------------------------------------------------------===//
57// FPStack pattern fragments
58//===----------------------------------------------------------------------===//
59
60def fpimm0 : PatLeaf<(fpimm), [{
61 return N->isExactlyValue(+0.0);
62}]>;
63
64def fpimmneg0 : PatLeaf<(fpimm), [{
65 return N->isExactlyValue(-0.0);
66}]>;
67
68def fpimm1 : PatLeaf<(fpimm), [{
69 return N->isExactlyValue(+1.0);
70}]>;
71
72def fpimmneg1 : PatLeaf<(fpimm), [{
73 return N->isExactlyValue(-1.0);
74}]>;
75
76// Some 'special' instructions
77let usesCustomInserter = 1 in { // Expanded after instruction selection.
78 def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
79 [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
80 def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
81 [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
82 def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
83 [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
84 def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
85 [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
86 def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
87 [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
88 def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
89 [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
90 def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
91 [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
92 def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
93 [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
94 def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
95 [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
96}
97
98// All FP Stack operations are represented with four instructions here. The
99// first three instructions, generated by the instruction selector, use "RFP32"
100// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
85aaf69f 101// 64-bit or 80-bit floating point values. These sizes apply to the values,
223e47cc
LB
102// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
103// copied to each other without losing information. These instructions are all
104// pseudo instructions and use the "_Fp" suffix.
105// In some cases there are additional variants with a mixture of different
106// register sizes.
107// The second instruction is defined with FPI, which is the actual instruction
108// emitted by the assembler. These use "RST" registers, although frequently
109// the actual register(s) used are implicit. These are always 80 bits.
85aaf69f 110// The FP stackifier pass converts one to the other after register allocation
223e47cc
LB
111// occurs.
112//
113// Note that the FpI instruction should have instruction selection info (e.g.
114// a pattern) and the FPI instruction should have emission info (e.g. opcode
115// encoding and asm printing info).
116
223e47cc
LB
117// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
118// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
119// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
120// f80 instructions cannot use SSE and use neither of these.
121class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
122 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
123class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
124 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
125
126// Factoring for arithmetic.
127multiclass FPBinary_rr<SDNode OpNode> {
128// Register op register -> register
129// These are separated out because they have no reversed form.
130def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
131 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
132def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
133 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
134def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
135 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
136}
137// The FopST0 series are not included here because of the irregularities
138// in where the 'r' goes in assembly output.
139// These instructions cannot address 80-bit memory.
140multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
141// ST(0) = ST(0) + [mem]
85aaf69f 142def _Fp32m : FpIf32<(outs RFP32:$dst),
223e47cc 143 (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
85aaf69f 144 [(set RFP32:$dst,
223e47cc 145 (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
85aaf69f 146def _Fp64m : FpIf64<(outs RFP64:$dst),
223e47cc 147 (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
85aaf69f 148 [(set RFP64:$dst,
223e47cc 149 (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
85aaf69f 150def _Fp64m32: FpIf64<(outs RFP64:$dst),
223e47cc 151 (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
85aaf69f 152 [(set RFP64:$dst,
223e47cc 153 (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
85aaf69f 154def _Fp80m32: FpI_<(outs RFP80:$dst),
223e47cc 155 (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
85aaf69f 156 [(set RFP80:$dst,
223e47cc 157 (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
85aaf69f 158def _Fp80m64: FpI_<(outs RFP80:$dst),
223e47cc 159 (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
85aaf69f 160 [(set RFP80:$dst,
223e47cc 161 (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
85aaf69f
SL
162def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src),
163 !strconcat("f", asmstring, "{s}\t$src")> {
164 let mayLoad = 1;
223e47cc 165}
85aaf69f
SL
166def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src),
167 !strconcat("f", asmstring, "{l}\t$src")> {
168 let mayLoad = 1;
223e47cc
LB
169}
170// ST(0) = ST(0) + [memint]
85aaf69f 171def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
223e47cc
LB
172 OneArgFPRW,
173 [(set RFP32:$dst, (OpNode RFP32:$src1,
174 (X86fild addr:$src2, i16)))]>;
85aaf69f 175def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
223e47cc
LB
176 OneArgFPRW,
177 [(set RFP32:$dst, (OpNode RFP32:$src1,
178 (X86fild addr:$src2, i32)))]>;
85aaf69f 179def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
223e47cc
LB
180 OneArgFPRW,
181 [(set RFP64:$dst, (OpNode RFP64:$src1,
182 (X86fild addr:$src2, i16)))]>;
85aaf69f 183def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
223e47cc
LB
184 OneArgFPRW,
185 [(set RFP64:$dst, (OpNode RFP64:$src1,
186 (X86fild addr:$src2, i32)))]>;
85aaf69f 187def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
223e47cc
LB
188 OneArgFPRW,
189 [(set RFP80:$dst, (OpNode RFP80:$src1,
190 (X86fild addr:$src2, i16)))]>;
85aaf69f 191def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
223e47cc
LB
192 OneArgFPRW,
193 [(set RFP80:$dst, (OpNode RFP80:$src1,
194 (X86fild addr:$src2, i32)))]>;
85aaf69f
SL
195def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src),
196 !strconcat("fi", asmstring, "{s}\t$src")> {
197 let mayLoad = 1;
223e47cc 198}
85aaf69f
SL
199def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src),
200 !strconcat("fi", asmstring, "{l}\t$src")> {
201 let mayLoad = 1;
223e47cc
LB
202}
203}
204
205let Defs = [FPSW] in {
1a4d82fc
JJ
206// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
207// resources.
223e47cc
LB
208defm ADD : FPBinary_rr<fadd>;
209defm SUB : FPBinary_rr<fsub>;
210defm MUL : FPBinary_rr<fmul>;
211defm DIV : FPBinary_rr<fdiv>;
1a4d82fc
JJ
212// Sets the scheduling resources for the actual NAME#_F<size>m defintions.
213let SchedRW = [WriteFAddLd] in {
223e47cc
LB
214defm ADD : FPBinary<fadd, MRM0m, "add">;
215defm SUB : FPBinary<fsub, MRM4m, "sub">;
216defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
1a4d82fc
JJ
217}
218let SchedRW = [WriteFMulLd] in {
223e47cc 219defm MUL : FPBinary<fmul, MRM1m, "mul">;
1a4d82fc
JJ
220}
221let SchedRW = [WriteFDivLd] in {
223e47cc
LB
222defm DIV : FPBinary<fdiv, MRM6m, "div">;
223defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
224}
1a4d82fc 225}
223e47cc 226
1a4d82fc
JJ
227class FPST0rInst<Format fp, string asm>
228 : FPI<0xD8, fp, (outs), (ins RST:$op), asm>;
229class FPrST0Inst<Format fp, string asm>
230 : FPI<0xDC, fp, (outs), (ins RST:$op), asm>;
231class FPrST0PInst<Format fp, string asm>
232 : FPI<0xDE, fp, (outs), (ins RST:$op), asm>;
223e47cc
LB
233
234// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
235// of some of the 'reverse' forms of the fsub and fdiv instructions. As such,
236// we have to put some 'r's in and take them out of weird places.
1a4d82fc
JJ
237let SchedRW = [WriteFAdd] in {
238def ADD_FST0r : FPST0rInst <MRM0r, "fadd\t$op">;
239def ADD_FrST0 : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">;
240def ADD_FPrST0 : FPrST0PInst<MRM0r, "faddp\t$op">;
241def SUBR_FST0r : FPST0rInst <MRM5r, "fsubr\t$op">;
242def SUB_FrST0 : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">;
243def SUB_FPrST0 : FPrST0PInst<MRM5r, "fsub{r}p\t$op">;
244def SUB_FST0r : FPST0rInst <MRM4r, "fsub\t$op">;
245def SUBR_FrST0 : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">;
246def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">;
247} // SchedRW
248let SchedRW = [WriteFMul] in {
249def MUL_FST0r : FPST0rInst <MRM1r, "fmul\t$op">;
250def MUL_FrST0 : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">;
251def MUL_FPrST0 : FPrST0PInst<MRM1r, "fmulp\t$op">;
252} // SchedRW
253let SchedRW = [WriteFDiv] in {
254def DIVR_FST0r : FPST0rInst <MRM7r, "fdivr\t$op">;
255def DIV_FrST0 : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">;
256def DIV_FPrST0 : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">;
257def DIV_FST0r : FPST0rInst <MRM6r, "fdiv\t$op">;
258def DIVR_FrST0 : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">;
259def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">;
260} // SchedRW
261
262def COM_FST0r : FPST0rInst <MRM2r, "fcom\t$op">;
263def COMP_FST0r : FPST0rInst <MRM3r, "fcomp\t$op">;
223e47cc
LB
264
265// Unary operations.
1a4d82fc 266multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
223e47cc
LB
267def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
268 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
269def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
270 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
271def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
272 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
1a4d82fc 273def _F : FPI<0xD9, fp, (outs), (ins), asmstring>;
223e47cc
LB
274}
275
276let Defs = [FPSW] in {
1a4d82fc
JJ
277defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
278defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
279let SchedRW = [WriteFSqrt] in {
280defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
281}
282defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
283defm COS : FPUnary<fcos, MRM_FF, "fcos">;
223e47cc 284
85aaf69f 285let hasSideEffects = 0 in {
223e47cc
LB
286def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
287def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
288def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
289}
1a4d82fc 290def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
223e47cc
LB
291} // Defs = [FPSW]
292
293// Versions of FP instructions that take a single memory operand. Added for the
294// disassembler; remove as they are included with patterns elsewhere.
295def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
296def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
297
298def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
299def FSTENVm : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;
300
301def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
302def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
303
304def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
305def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
306
307def FRSTORm : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
308def FSAVEm : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
309def FNSTSWm : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">;
310
311def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
312def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
313
314def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
315def FBSTPm : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
316
317// Floating point cmovs.
318class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
319 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
320class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
321 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
322
323multiclass FPCMov<PatLeaf cc> {
324 def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
325 CondMovFP,
326 [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
327 cc, EFLAGS))]>;
328 def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
329 CondMovFP,
330 [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
331 cc, EFLAGS))]>;
332 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
333 CondMovFP,
334 [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
335 cc, EFLAGS))]>,
336 Requires<[HasCMov]>;
337}
338
339let Defs = [FPSW] in {
340let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
341defm CMOVB : FPCMov<X86_COND_B>;
342defm CMOVBE : FPCMov<X86_COND_BE>;
343defm CMOVE : FPCMov<X86_COND_E>;
344defm CMOVP : FPCMov<X86_COND_P>;
345defm CMOVNB : FPCMov<X86_COND_AE>;
346defm CMOVNBE: FPCMov<X86_COND_A>;
347defm CMOVNE : FPCMov<X86_COND_NE>;
348defm CMOVNP : FPCMov<X86_COND_NP>;
349} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
350
351let Predicates = [HasCMov] in {
352// These are not factored because there's no clean way to pass DA/DB.
1a4d82fc
JJ
353def CMOVB_F : FPI<0xDA, MRM0r, (outs RST:$op), (ins),
354 "fcmovb\t{$op, %st(0)|st(0), $op}">;
355def CMOVBE_F : FPI<0xDA, MRM2r, (outs RST:$op), (ins),
356 "fcmovbe\t{$op, %st(0)|st(0), $op}">;
357def CMOVE_F : FPI<0xDA, MRM1r, (outs RST:$op), (ins),
358 "fcmove\t{$op, %st(0)|st(0), $op}">;
359def CMOVP_F : FPI<0xDA, MRM3r, (outs RST:$op), (ins),
360 "fcmovu\t{$op, %st(0)|st(0), $op}">;
361def CMOVNB_F : FPI<0xDB, MRM0r, (outs RST:$op), (ins),
362 "fcmovnb\t{$op, %st(0)|st(0), $op}">;
363def CMOVNBE_F: FPI<0xDB, MRM2r, (outs RST:$op), (ins),
364 "fcmovnbe\t{$op, %st(0)|st(0), $op}">;
365def CMOVNE_F : FPI<0xDB, MRM1r, (outs RST:$op), (ins),
366 "fcmovne\t{$op, %st(0)|st(0), $op}">;
367def CMOVNP_F : FPI<0xDB, MRM3r, (outs RST:$op), (ins),
368 "fcmovnu\t{$op, %st(0)|st(0), $op}">;
223e47cc
LB
369} // Predicates = [HasCMov]
370
371// Floating point loads & stores.
372let canFoldAsLoad = 1 in {
373def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
374 [(set RFP32:$dst, (loadf32 addr:$src))]>;
375let isReMaterializable = 1 in
376 def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
377 [(set RFP64:$dst, (loadf64 addr:$src))]>;
378def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
379 [(set RFP80:$dst, (loadf80 addr:$src))]>;
380}
381def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
382 [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
383def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
384 [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
385def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
386 [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
387def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
388 [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
389def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
390 [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
391def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
392 [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
393def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
394 [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
395def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
396 [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
397def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
398 [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
399def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
400 [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
401def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
402 [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
403def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
404 [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
405
406def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
407 [(store RFP32:$src, addr:$op)]>;
408def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
409 [(truncstoref32 RFP64:$src, addr:$op)]>;
410def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
411 [(store RFP64:$src, addr:$op)]>;
412def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
413 [(truncstoref32 RFP80:$src, addr:$op)]>;
414def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
415 [(truncstoref64 RFP80:$src, addr:$op)]>;
416// FST does not support 80-bit memory target; FSTP must be used.
417
85aaf69f 418let mayStore = 1, hasSideEffects = 0 in {
223e47cc
LB
419def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
420def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
421def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
422def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
423def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
424}
425def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
426 [(store RFP80:$src, addr:$op)]>;
85aaf69f 427let mayStore = 1, hasSideEffects = 0 in {
223e47cc
LB
428def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
429def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
430def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
431def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
432def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
433def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
434def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
435def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
436def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
437}
438
1a4d82fc 439let mayLoad = 1, SchedRW = [WriteLoad] in {
223e47cc
LB
440def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
441 IIC_FLD>;
442def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
443 IIC_FLD>;
444def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
445 IIC_FLD80>;
446def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
447 IIC_FILD>;
448def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
449 IIC_FILD>;
450def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
451 IIC_FILD>;
452}
1a4d82fc 453let mayStore = 1, SchedRW = [WriteStore] in {
223e47cc
LB
454def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
455 IIC_FST>;
456def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
457 IIC_FST>;
458def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
459 IIC_FST>;
460def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
461 IIC_FST>;
462def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
463 IIC_FST80>;
464def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
465 IIC_FIST>;
466def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
467 IIC_FIST>;
468def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
469 IIC_FIST>;
470def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
471 IIC_FIST>;
472def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
473 IIC_FIST>;
474}
475
476// FISTTP requires SSE3 even though it's a FPStack op.
477let Predicates = [HasSSE3] in {
478def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
479 [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
480def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
481 [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
482def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
483 [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
484def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
485 [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
486def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
487 [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
488def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
489 [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
490def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
491 [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
492def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
493 [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
494def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
495 [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
496} // Predicates = [HasSSE3]
497
1a4d82fc 498let mayStore = 1, SchedRW = [WriteStore] in {
223e47cc
LB
499def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
500 IIC_FST>;
501def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
502 IIC_FST>;
85aaf69f 503def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
223e47cc
LB
504 "fisttp{ll}\t$dst", IIC_FST>;
505}
506
507// FP Stack manipulation instructions.
1a4d82fc
JJ
508let SchedRW = [WriteMove] in {
509def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>;
510def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op", IIC_FST>;
511def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>;
512def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>;
513}
223e47cc
LB
514
515// Floating point constant loads.
516let isReMaterializable = 1 in {
517def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
518 [(set RFP32:$dst, fpimm0)]>;
519def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
520 [(set RFP32:$dst, fpimm1)]>;
521def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
522 [(set RFP64:$dst, fpimm0)]>;
523def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
524 [(set RFP64:$dst, fpimm1)]>;
525def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
526 [(set RFP80:$dst, fpimm0)]>;
527def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
528 [(set RFP80:$dst, fpimm1)]>;
529}
530
1a4d82fc
JJ
531let SchedRW = [WriteZero] in {
532def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz", IIC_FLDZ>;
533def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1", IIC_FIST>;
534}
223e47cc
LB
535
536// Floating point compares.
1a4d82fc 537let SchedRW = [WriteFAdd] in {
223e47cc
LB
538def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
539 [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
540def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
541 [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
542def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
543 [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
1a4d82fc 544} // SchedRW
223e47cc
LB
545} // Defs = [FPSW]
546
1a4d82fc 547let SchedRW = [WriteFAdd] in {
223e47cc
LB
548// CC = ST(0) cmp ST(i)
549let Defs = [EFLAGS, FPSW] in {
550def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
551 [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
552def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
553 [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
554def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
555 [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
556}
557
558let Defs = [FPSW], Uses = [ST0] in {
1a4d82fc
JJ
559def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i)
560 (outs), (ins RST:$reg), "fucom\t$reg", IIC_FUCOM>;
561def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop
562 (outs), (ins RST:$reg), "fucomp\t$reg", IIC_FUCOM>;
563def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop
564 (outs), (ins), "fucompp", IIC_FUCOM>;
223e47cc
LB
565}
566
567let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
1a4d82fc
JJ
568def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i)
569 (outs), (ins RST:$reg), "fucomi\t$reg", IIC_FUCOMI>;
570def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop
571 (outs), (ins RST:$reg), "fucompi\t$reg", IIC_FUCOMI>;
223e47cc
LB
572}
573
574let Defs = [EFLAGS, FPSW] in {
1a4d82fc
JJ
575def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg),
576 "fcomi\t$reg", IIC_FCOMI>;
577def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg),
578 "fcompi\t$reg", IIC_FCOMI>;
223e47cc 579}
1a4d82fc 580} // SchedRW
223e47cc
LB
581
582// Floating point flag ops.
1a4d82fc 583let SchedRW = [WriteALU] in {
223e47cc 584let Defs = [AX], Uses = [FPSW] in
1a4d82fc
JJ
585def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags
586 (outs), (ins), "fnstsw\t{%ax|ax}",
587 [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>;
223e47cc
LB
588
589def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world
590 (outs), (ins i16mem:$dst), "fnstcw\t$dst",
591 [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
1a4d82fc 592} // SchedRW
223e47cc
LB
593let mayLoad = 1 in
594def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16]
1a4d82fc
JJ
595 (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>,
596 Sched<[WriteLoad]>;
223e47cc
LB
597
598// FPU control instructions
1a4d82fc 599let SchedRW = [WriteMicrocoded] in {
223e47cc 600let Defs = [FPSW] in
1a4d82fc
JJ
601def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", [], IIC_FNINIT>;
602def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg),
603 "ffree\t$reg", IIC_FFREE>;
223e47cc
LB
604// Clear exceptions
605
606let Defs = [FPSW] in
1a4d82fc
JJ
607def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", [], IIC_FNCLEX>;
608} // SchedRW
223e47cc
LB
609
610// Operandless floating-point instructions for the disassembler.
1a4d82fc 611let SchedRW = [WriteMicrocoded] in {
223e47cc
LB
612def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
613
1a4d82fc
JJ
614def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", [], IIC_FNOP>;
615def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", [], IIC_FXAM>;
616def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", [], IIC_FLDL>;
617def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", [], IIC_FLDL>;
618def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", [], IIC_FLDL>;
619def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", [], IIC_FLDL>;
620def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", [], IIC_FLDL>;
621def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", [], IIC_F2XM1>;
622def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", [], IIC_FYL2X>;
623def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", [], IIC_FPTAN>;
624def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", [], IIC_FPATAN>;
625def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", [], IIC_FXTRACT>;
626def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", [], IIC_FPREM1>;
627def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", [], IIC_FPSTP>;
628def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", [], IIC_FPSTP>;
629def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", [], IIC_FPREM>;
630def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>;
631def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", [], IIC_FSINCOS>;
632def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", [], IIC_FRNDINT>;
633def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", [], IIC_FSCALE>;
634def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>;
223e47cc
LB
635
636def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
637 "fxsave\t$dst", [], IIC_FXSAVE>, TB;
1a4d82fc 638def FXSAVE64 : RI<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
85aaf69f 639 "fxsave{q|64}\t$dst", [], IIC_FXSAVE>, TB,
1a4d82fc 640 Requires<[In64BitMode]>;
223e47cc
LB
641def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
642 "fxrstor\t$src", [], IIC_FXRSTOR>, TB;
1a4d82fc
JJ
643def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
644 "fxrstor{q|64}\t$src", [], IIC_FXRSTOR>, TB,
223e47cc 645 Requires<[In64BitMode]>;
1a4d82fc 646} // SchedRW
223e47cc
LB
647
648//===----------------------------------------------------------------------===//
649// Non-Instruction Patterns
650//===----------------------------------------------------------------------===//
651
652// Required for RET of f32 / f64 / f80 values.
653def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
654def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
655def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
656
657// Required for CALL which return f32 / f64 / f80 values.
658def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
85aaf69f 659def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
223e47cc
LB
660 RFP64:$src)>;
661def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
85aaf69f 662def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
223e47cc 663 RFP80:$src)>;
85aaf69f 664def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
223e47cc
LB
665 RFP80:$src)>;
666def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
667 RFP80:$src)>;
668
669// Floating point constant -0.0 and -1.0
670def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
671def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
672def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
673def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
674def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
675def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
676
677// Used to conv. i64 to f64 since there isn't a SSE version.
678def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
679
680// FP extensions map onto simple pseudo-value conversions if they are to/from
681// the FP stack.
682def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
683 Requires<[FPStackf32]>;
684def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
685 Requires<[FPStackf32]>;
686def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
687 Requires<[FPStackf64]>;
688
689// FP truncations map onto simple pseudo-value conversions if they are to/from
690// the FP stack. We have validated that only value-preserving truncations make
691// it through isel.
692def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
693 Requires<[FPStackf32]>;
694def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
695 Requires<[FPStackf32]>;
696def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
697 Requires<[FPStackf64]>;