]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/X86/X86ScheduleSLM.td
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / X86 / X86ScheduleSLM.td
CommitLineData
1a4d82fc
JJ
1//=- X86ScheduleSLM.td - X86 Silvermont Scheduling -----------*- tablegen -*-=//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the machine model for Intel Silvermont to support
11// instruction scheduling and other instruction cost heuristics.
12//
13//===----------------------------------------------------------------------===//
14
15def SLMModel : SchedMachineModel {
16 // All x86 instructions are modeled as a single micro-op, and SLM can decode 2
17 // instructions per cycle.
18 let IssueWidth = 2;
19 let MicroOpBufferSize = 32; // Based on the reorder buffer.
20 let LoadLatency = 3;
21 let MispredictPenalty = 10;
22 let PostRAScheduler = 1;
23
24 // For small loops, expand by a small factor to hide the backedge cost.
25 let LoopMicroOpBufferSize = 10;
26
27 // FIXME: SSE4 is unimplemented. This flag is set to allow
28 // the scheduler to assign a default model to unrecognized opcodes.
29 let CompleteModel = 0;
30}
31
32let SchedModel = SLMModel in {
33
34// Silvermont has 5 reservation stations for micro-ops
35
36def IEC_RSV0 : ProcResource<1>;
37def IEC_RSV1 : ProcResource<1>;
38def FPC_RSV0 : ProcResource<1> { let BufferSize = 1; }
39def FPC_RSV1 : ProcResource<1> { let BufferSize = 1; }
40def MEC_RSV : ProcResource<1>;
41
42// Many micro-ops are capable of issuing on multiple ports.
43def IEC_RSV01 : ProcResGroup<[IEC_RSV0, IEC_RSV1]>;
44def FPC_RSV01 : ProcResGroup<[FPC_RSV0, FPC_RSV1]>;
45
46def SMDivider : ProcResource<1>;
47def SMFPMultiplier : ProcResource<1>;
48def SMFPDivider : ProcResource<1>;
49
50// Loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
51// cycles after the memory operand.
52def : ReadAdvance<ReadAfterLd, 3>;
53
54// Many SchedWrites are defined in pairs with and without a folded load.
55// Instructions with folded loads are usually micro-fused, so they only appear
56// as two micro-ops when queued in the reservation station.
57// This multiclass defines the resource usage for variants with and without
58// folded loads.
59multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW,
60 ProcResourceKind ExePort,
61 int Lat> {
62 // Register variant is using a single cycle on ExePort.
63 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
64
65 // Memory variant also uses a cycle on MEC_RSV and adds 3 cycles to the
66 // latency.
67 def : WriteRes<SchedRW.Folded, [MEC_RSV, ExePort]> {
68 let Latency = !add(Lat, 3);
69 }
70}
71
72// A folded store needs a cycle on MEC_RSV for the store data, but it does not
73// need an extra port cycle to recompute the address.
74def : WriteRes<WriteRMW, [MEC_RSV]>;
75
76def : WriteRes<WriteStore, [IEC_RSV01, MEC_RSV]>;
77def : WriteRes<WriteLoad, [MEC_RSV]> { let Latency = 3; }
78def : WriteRes<WriteMove, [IEC_RSV01]>;
79def : WriteRes<WriteZero, []>;
80
81defm : SMWriteResPair<WriteALU, IEC_RSV01, 1>;
82defm : SMWriteResPair<WriteIMul, IEC_RSV1, 3>;
83defm : SMWriteResPair<WriteShift, IEC_RSV0, 1>;
84defm : SMWriteResPair<WriteJump, IEC_RSV1, 1>;
85
86// This is for simple LEAs with one or two input operands.
87// The complex ones can only execute on port 1, and they require two cycles on
88// the port to read all inputs. We don't model that.
89def : WriteRes<WriteLEA, [IEC_RSV1]>;
90
91// This is quite rough, latency depends on the dividend.
92def : WriteRes<WriteIDiv, [IEC_RSV01, SMDivider]> {
93 let Latency = 25;
94 let ResourceCycles = [1, 25];
95}
96def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> {
97 let Latency = 29;
98 let ResourceCycles = [1, 1, 25];
99}
100
101// Scalar and vector floating point.
102defm : SMWriteResPair<WriteFAdd, FPC_RSV1, 3>;
103defm : SMWriteResPair<WriteFRcp, FPC_RSV0, 5>;
104defm : SMWriteResPair<WriteFRsqrt, FPC_RSV0, 5>;
105defm : SMWriteResPair<WriteFSqrt, FPC_RSV0, 15>;
106defm : SMWriteResPair<WriteCvtF2I, FPC_RSV01, 4>;
107defm : SMWriteResPair<WriteCvtI2F, FPC_RSV01, 4>;
108defm : SMWriteResPair<WriteCvtF2F, FPC_RSV01, 4>;
109defm : SMWriteResPair<WriteFShuffle, FPC_RSV0, 1>;
110defm : SMWriteResPair<WriteFBlend, FPC_RSV0, 1>;
111
112// This is quite rough, latency depends on precision
113def : WriteRes<WriteFMul, [FPC_RSV0, SMFPMultiplier]> {
114 let Latency = 5;
115 let ResourceCycles = [1, 2];
116}
117def : WriteRes<WriteFMulLd, [MEC_RSV, FPC_RSV0, SMFPMultiplier]> {
118 let Latency = 8;
119 let ResourceCycles = [1, 1, 2];
120}
121
122def : WriteRes<WriteFDiv, [FPC_RSV0, SMFPDivider]> {
123 let Latency = 34;
124 let ResourceCycles = [1, 34];
125}
126def : WriteRes<WriteFDivLd, [MEC_RSV, FPC_RSV0, SMFPDivider]> {
127 let Latency = 37;
128 let ResourceCycles = [1, 1, 34];
129}
130
131// Vector integer operations.
132defm : SMWriteResPair<WriteVecShift, FPC_RSV0, 1>;
133defm : SMWriteResPair<WriteVecLogic, FPC_RSV01, 1>;
134defm : SMWriteResPair<WriteVecALU, FPC_RSV01, 1>;
135defm : SMWriteResPair<WriteVecIMul, FPC_RSV0, 4>;
136defm : SMWriteResPair<WriteShuffle, FPC_RSV0, 1>;
137defm : SMWriteResPair<WriteBlend, FPC_RSV0, 1>;
138defm : SMWriteResPair<WriteMPSAD, FPC_RSV0, 7>;
139
140// String instructions.
141// Packed Compare Implicit Length Strings, Return Mask
142def : WriteRes<WritePCmpIStrM, [FPC_RSV0]> {
143 let Latency = 13;
144 let ResourceCycles = [13];
145}
146def : WriteRes<WritePCmpIStrMLd, [FPC_RSV0, MEC_RSV]> {
147 let Latency = 13;
148 let ResourceCycles = [13, 1];
149}
150
151// Packed Compare Explicit Length Strings, Return Mask
152def : WriteRes<WritePCmpEStrM, [FPC_RSV0]> {
153 let Latency = 17;
154 let ResourceCycles = [17];
155}
156def : WriteRes<WritePCmpEStrMLd, [FPC_RSV0, MEC_RSV]> {
157 let Latency = 17;
158 let ResourceCycles = [17, 1];
159}
160
161// Packed Compare Implicit Length Strings, Return Index
162def : WriteRes<WritePCmpIStrI, [FPC_RSV0]> {
163 let Latency = 17;
164 let ResourceCycles = [17];
165}
166def : WriteRes<WritePCmpIStrILd, [FPC_RSV0, MEC_RSV]> {
167 let Latency = 17;
168 let ResourceCycles = [17, 1];
169}
170
171// Packed Compare Explicit Length Strings, Return Index
172def : WriteRes<WritePCmpEStrI, [FPC_RSV0]> {
173 let Latency = 21;
174 let ResourceCycles = [21];
175}
176def : WriteRes<WritePCmpEStrILd, [FPC_RSV0, MEC_RSV]> {
177 let Latency = 21;
178 let ResourceCycles = [21, 1];
179}
180
181// AES Instructions.
182def : WriteRes<WriteAESDecEnc, [FPC_RSV0]> {
183 let Latency = 8;
184 let ResourceCycles = [5];
185}
186def : WriteRes<WriteAESDecEncLd, [FPC_RSV0, MEC_RSV]> {
187 let Latency = 8;
188 let ResourceCycles = [5, 1];
189}
190
191def : WriteRes<WriteAESIMC, [FPC_RSV0]> {
192 let Latency = 8;
193 let ResourceCycles = [5];
194}
195def : WriteRes<WriteAESIMCLd, [FPC_RSV0, MEC_RSV]> {
196 let Latency = 8;
197 let ResourceCycles = [5, 1];
198}
199
200def : WriteRes<WriteAESKeyGen, [FPC_RSV0]> {
201 let Latency = 8;
202 let ResourceCycles = [5];
203}
204def : WriteRes<WriteAESKeyGenLd, [FPC_RSV0, MEC_RSV]> {
205 let Latency = 8;
206 let ResourceCycles = [5, 1];
207}
208
209// Carry-less multiplication instructions.
210def : WriteRes<WriteCLMul, [FPC_RSV0]> {
211 let Latency = 10;
212 let ResourceCycles = [10];
213}
214def : WriteRes<WriteCLMulLd, [FPC_RSV0, MEC_RSV]> {
215 let Latency = 10;
216 let ResourceCycles = [10, 1];
217}
218
219
220def : WriteRes<WriteSystem, [FPC_RSV0]> { let Latency = 100; }
221def : WriteRes<WriteMicrocoded, [FPC_RSV0]> { let Latency = 100; }
222def : WriteRes<WriteFence, [MEC_RSV]>;
223def : WriteRes<WriteNop, []>;
224
225// AVX is not supported on that architecture, but we should define the basic
226// scheduling resources anyway.
227def : WriteRes<WriteIMulH, [FPC_RSV0]>;
228defm : SMWriteResPair<WriteVarBlend, FPC_RSV0, 1>;
229defm : SMWriteResPair<WriteFVarBlend, FPC_RSV0, 1>;
230defm : SMWriteResPair<WriteFShuffle256, FPC_RSV0, 1>;
231defm : SMWriteResPair<WriteShuffle256, FPC_RSV0, 1>;
232defm : SMWriteResPair<WriteVarVecShift, FPC_RSV0, 1>;
233} // SchedModel