]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Transforms/IPO/GlobalOpt.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / IPO / GlobalOpt.cpp
CommitLineData
223e47cc
LB
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken. If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
223e47cc 16#include "llvm/Transforms/IPO.h"
970d7e83
LB
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
1a4d82fc 20#include "llvm/ADT/SmallSet.h"
970d7e83
LB
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
223e47cc
LB
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
1a4d82fc 25#include "llvm/IR/CallSite.h"
970d7e83
LB
26#include "llvm/IR/CallingConv.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DerivedTypes.h"
1a4d82fc 30#include "llvm/IR/GetElementPtrTypeIterator.h"
970d7e83
LB
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/Operator.h"
1a4d82fc 35#include "llvm/IR/ValueHandle.h"
970d7e83 36#include "llvm/Pass.h"
223e47cc
LB
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
223e47cc
LB
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/raw_ostream.h"
970d7e83 41#include "llvm/Target/TargetLibraryInfo.h"
1a4d82fc
JJ
42#include "llvm/Transforms/Utils/CtorUtils.h"
43#include "llvm/Transforms/Utils/GlobalStatus.h"
44#include "llvm/Transforms/Utils/ModuleUtils.h"
223e47cc 45#include <algorithm>
1a4d82fc 46#include <deque>
223e47cc
LB
47using namespace llvm;
48
1a4d82fc
JJ
49#define DEBUG_TYPE "globalopt"
50
223e47cc
LB
51STATISTIC(NumMarked , "Number of globals marked constant");
52STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
53STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
54STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
55STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
56STATISTIC(NumDeleted , "Number of globals deleted");
57STATISTIC(NumFnDeleted , "Number of functions deleted");
58STATISTIC(NumGlobUses , "Number of global uses devirtualized");
59STATISTIC(NumLocalized , "Number of globals localized");
60STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
61STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
62STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
63STATISTIC(NumNestRemoved , "Number of nest attributes removed");
64STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
65STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
66STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
67
68namespace {
223e47cc 69 struct GlobalOpt : public ModulePass {
1a4d82fc 70 void getAnalysisUsage(AnalysisUsage &AU) const override {
223e47cc
LB
71 AU.addRequired<TargetLibraryInfo>();
72 }
73 static char ID; // Pass identification, replacement for typeid
74 GlobalOpt() : ModulePass(ID) {
75 initializeGlobalOptPass(*PassRegistry::getPassRegistry());
76 }
77
1a4d82fc 78 bool runOnModule(Module &M) override;
223e47cc
LB
79
80 private:
223e47cc
LB
81 bool OptimizeFunctions(Module &M);
82 bool OptimizeGlobalVars(Module &M);
83 bool OptimizeGlobalAliases(Module &M);
223e47cc
LB
84 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
85 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
223e47cc
LB
86 const GlobalStatus &GS);
87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
88
1a4d82fc 89 const DataLayout *DL;
223e47cc 90 TargetLibraryInfo *TLI;
85aaf69f 91 SmallSet<const Comdat *, 8> NotDiscardableComdats;
223e47cc
LB
92 };
93}
94
95char GlobalOpt::ID = 0;
96INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
97 "Global Variable Optimizer", false, false)
98INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
99INITIALIZE_PASS_END(GlobalOpt, "globalopt",
100 "Global Variable Optimizer", false, false)
101
102ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
103
223e47cc
LB
104/// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
105/// as a root? If so, we might not really want to eliminate the stores to it.
106static bool isLeakCheckerRoot(GlobalVariable *GV) {
107 // A global variable is a root if it is a pointer, or could plausibly contain
108 // a pointer. There are two challenges; one is that we could have a struct
109 // the has an inner member which is a pointer. We recurse through the type to
110 // detect these (up to a point). The other is that we may actually be a union
111 // of a pointer and another type, and so our LLVM type is an integer which
112 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
113 // potentially contained here.
114
115 if (GV->hasPrivateLinkage())
116 return false;
117
118 SmallVector<Type *, 4> Types;
119 Types.push_back(cast<PointerType>(GV->getType())->getElementType());
120
121 unsigned Limit = 20;
122 do {
123 Type *Ty = Types.pop_back_val();
124 switch (Ty->getTypeID()) {
125 default: break;
126 case Type::PointerTyID: return true;
127 case Type::ArrayTyID:
128 case Type::VectorTyID: {
129 SequentialType *STy = cast<SequentialType>(Ty);
130 Types.push_back(STy->getElementType());
131 break;
132 }
133 case Type::StructTyID: {
134 StructType *STy = cast<StructType>(Ty);
135 if (STy->isOpaque()) return true;
136 for (StructType::element_iterator I = STy->element_begin(),
137 E = STy->element_end(); I != E; ++I) {
138 Type *InnerTy = *I;
139 if (isa<PointerType>(InnerTy)) return true;
140 if (isa<CompositeType>(InnerTy))
141 Types.push_back(InnerTy);
142 }
143 break;
144 }
145 }
146 if (--Limit == 0) return true;
147 } while (!Types.empty());
148 return false;
149}
150
151/// Given a value that is stored to a global but never read, determine whether
152/// it's safe to remove the store and the chain of computation that feeds the
153/// store.
154static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
155 do {
156 if (isa<Constant>(V))
157 return true;
158 if (!V->hasOneUse())
159 return false;
160 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
161 isa<GlobalValue>(V))
162 return false;
163 if (isAllocationFn(V, TLI))
164 return true;
165
166 Instruction *I = cast<Instruction>(V);
167 if (I->mayHaveSideEffects())
168 return false;
169 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
170 if (!GEP->hasAllConstantIndices())
171 return false;
172 } else if (I->getNumOperands() != 1) {
173 return false;
174 }
175
176 V = I->getOperand(0);
177 } while (1);
178}
179
180/// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users
181/// of the global and clean up any that obviously don't assign the global a
182/// value that isn't dynamically allocated.
183///
184static bool CleanupPointerRootUsers(GlobalVariable *GV,
185 const TargetLibraryInfo *TLI) {
186 // A brief explanation of leak checkers. The goal is to find bugs where
187 // pointers are forgotten, causing an accumulating growth in memory
188 // usage over time. The common strategy for leak checkers is to whitelist the
189 // memory pointed to by globals at exit. This is popular because it also
190 // solves another problem where the main thread of a C++ program may shut down
191 // before other threads that are still expecting to use those globals. To
192 // handle that case, we expect the program may create a singleton and never
193 // destroy it.
194
195 bool Changed = false;
196
197 // If Dead[n].first is the only use of a malloc result, we can delete its
198 // chain of computation and the store to the global in Dead[n].second.
199 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
200
201 // Constants can't be pointers to dynamically allocated memory.
1a4d82fc 202 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
223e47cc
LB
203 UI != E;) {
204 User *U = *UI++;
205 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
206 Value *V = SI->getValueOperand();
207 if (isa<Constant>(V)) {
208 Changed = true;
209 SI->eraseFromParent();
210 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
211 if (I->hasOneUse())
212 Dead.push_back(std::make_pair(I, SI));
213 }
214 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
215 if (isa<Constant>(MSI->getValue())) {
216 Changed = true;
217 MSI->eraseFromParent();
218 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
219 if (I->hasOneUse())
220 Dead.push_back(std::make_pair(I, MSI));
221 }
222 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
223 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
224 if (MemSrc && MemSrc->isConstant()) {
225 Changed = true;
226 MTI->eraseFromParent();
227 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
228 if (I->hasOneUse())
229 Dead.push_back(std::make_pair(I, MTI));
230 }
231 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
232 if (CE->use_empty()) {
233 CE->destroyConstant();
234 Changed = true;
235 }
236 } else if (Constant *C = dyn_cast<Constant>(U)) {
1a4d82fc 237 if (isSafeToDestroyConstant(C)) {
223e47cc
LB
238 C->destroyConstant();
239 // This could have invalidated UI, start over from scratch.
240 Dead.clear();
241 CleanupPointerRootUsers(GV, TLI);
242 return true;
243 }
244 }
245 }
246
247 for (int i = 0, e = Dead.size(); i != e; ++i) {
248 if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
249 Dead[i].second->eraseFromParent();
250 Instruction *I = Dead[i].first;
251 do {
970d7e83
LB
252 if (isAllocationFn(I, TLI))
253 break;
223e47cc
LB
254 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
255 if (!J)
256 break;
257 I->eraseFromParent();
258 I = J;
259 } while (1);
260 I->eraseFromParent();
261 }
262 }
263
264 return Changed;
265}
266
267/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
268/// users of the global, cleaning up the obvious ones. This is largely just a
269/// quick scan over the use list to clean up the easy and obvious cruft. This
270/// returns true if it made a change.
271static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
1a4d82fc
JJ
272 const DataLayout *DL,
273 TargetLibraryInfo *TLI) {
223e47cc 274 bool Changed = false;
1a4d82fc
JJ
275 // Note that we need to use a weak value handle for the worklist items. When
276 // we delete a constant array, we may also be holding pointer to one of its
277 // elements (or an element of one of its elements if we're dealing with an
278 // array of arrays) in the worklist.
279 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
280 while (!WorkList.empty()) {
281 Value *UV = WorkList.pop_back_val();
282 if (!UV)
283 continue;
284
285 User *U = cast<User>(UV);
223e47cc
LB
286
287 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
288 if (Init) {
289 // Replace the load with the initializer.
290 LI->replaceAllUsesWith(Init);
291 LI->eraseFromParent();
292 Changed = true;
293 }
294 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
295 // Store must be unreachable or storing Init into the global.
296 SI->eraseFromParent();
297 Changed = true;
298 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
299 if (CE->getOpcode() == Instruction::GetElementPtr) {
1a4d82fc 300 Constant *SubInit = nullptr;
223e47cc
LB
301 if (Init)
302 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
1a4d82fc
JJ
303 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
304 } else if ((CE->getOpcode() == Instruction::BitCast &&
305 CE->getType()->isPointerTy()) ||
306 CE->getOpcode() == Instruction::AddrSpaceCast) {
223e47cc 307 // Pointer cast, delete any stores and memsets to the global.
1a4d82fc 308 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
223e47cc
LB
309 }
310
311 if (CE->use_empty()) {
312 CE->destroyConstant();
313 Changed = true;
314 }
315 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
316 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
317 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
318 // and will invalidate our notion of what Init is.
1a4d82fc 319 Constant *SubInit = nullptr;
223e47cc
LB
320 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
321 ConstantExpr *CE =
1a4d82fc 322 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, DL, TLI));
223e47cc
LB
323 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
324 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
325
326 // If the initializer is an all-null value and we have an inbounds GEP,
327 // we already know what the result of any load from that GEP is.
328 // TODO: Handle splats.
329 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
330 SubInit = Constant::getNullValue(GEP->getType()->getElementType());
331 }
1a4d82fc 332 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
223e47cc
LB
333
334 if (GEP->use_empty()) {
335 GEP->eraseFromParent();
336 Changed = true;
337 }
338 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
339 if (MI->getRawDest() == V) {
340 MI->eraseFromParent();
341 Changed = true;
342 }
343
344 } else if (Constant *C = dyn_cast<Constant>(U)) {
345 // If we have a chain of dead constantexprs or other things dangling from
346 // us, and if they are all dead, nuke them without remorse.
1a4d82fc 347 if (isSafeToDestroyConstant(C)) {
223e47cc 348 C->destroyConstant();
1a4d82fc 349 CleanupConstantGlobalUsers(V, Init, DL, TLI);
223e47cc
LB
350 return true;
351 }
352 }
353 }
354 return Changed;
355}
356
357/// isSafeSROAElementUse - Return true if the specified instruction is a safe
358/// user of a derived expression from a global that we want to SROA.
359static bool isSafeSROAElementUse(Value *V) {
360 // We might have a dead and dangling constant hanging off of here.
361 if (Constant *C = dyn_cast<Constant>(V))
1a4d82fc 362 return isSafeToDestroyConstant(C);
223e47cc
LB
363
364 Instruction *I = dyn_cast<Instruction>(V);
365 if (!I) return false;
366
367 // Loads are ok.
368 if (isa<LoadInst>(I)) return true;
369
370 // Stores *to* the pointer are ok.
371 if (StoreInst *SI = dyn_cast<StoreInst>(I))
372 return SI->getOperand(0) != V;
373
374 // Otherwise, it must be a GEP.
375 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
1a4d82fc 376 if (!GEPI) return false;
223e47cc
LB
377
378 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
379 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
380 return false;
381
1a4d82fc
JJ
382 for (User *U : GEPI->users())
383 if (!isSafeSROAElementUse(U))
223e47cc
LB
384 return false;
385 return true;
386}
387
388
389/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
390/// Look at it and its uses and decide whether it is safe to SROA this global.
391///
392static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
393 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
394 if (!isa<GetElementPtrInst>(U) &&
395 (!isa<ConstantExpr>(U) ||
396 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
397 return false;
398
399 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
400 // don't like < 3 operand CE's, and we don't like non-constant integer
401 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
402 // value of C.
403 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
404 !cast<Constant>(U->getOperand(1))->isNullValue() ||
405 !isa<ConstantInt>(U->getOperand(2)))
406 return false;
407
408 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
409 ++GEPI; // Skip over the pointer index.
410
411 // If this is a use of an array allocation, do a bit more checking for sanity.
412 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
413 uint64_t NumElements = AT->getNumElements();
414 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
415
416 // Check to make sure that index falls within the array. If not,
417 // something funny is going on, so we won't do the optimization.
418 //
419 if (Idx->getZExtValue() >= NumElements)
420 return false;
421
422 // We cannot scalar repl this level of the array unless any array
423 // sub-indices are in-range constants. In particular, consider:
424 // A[0][i]. We cannot know that the user isn't doing invalid things like
425 // allowing i to index an out-of-range subscript that accesses A[1].
426 //
427 // Scalar replacing *just* the outer index of the array is probably not
428 // going to be a win anyway, so just give up.
429 for (++GEPI; // Skip array index.
430 GEPI != E;
431 ++GEPI) {
432 uint64_t NumElements;
433 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
434 NumElements = SubArrayTy->getNumElements();
435 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
436 NumElements = SubVectorTy->getNumElements();
437 else {
438 assert((*GEPI)->isStructTy() &&
439 "Indexed GEP type is not array, vector, or struct!");
440 continue;
441 }
442
443 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
444 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
445 return false;
446 }
447 }
448
1a4d82fc
JJ
449 for (User *UU : U->users())
450 if (!isSafeSROAElementUse(UU))
223e47cc 451 return false;
1a4d82fc 452
223e47cc
LB
453 return true;
454}
455
456/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
457/// is safe for us to perform this transformation.
458///
459static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
1a4d82fc
JJ
460 for (User *U : GV->users())
461 if (!IsUserOfGlobalSafeForSRA(U, GV))
223e47cc 462 return false;
1a4d82fc 463
223e47cc
LB
464 return true;
465}
466
467
468/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
469/// variable. This opens the door for other optimizations by exposing the
470/// behavior of the program in a more fine-grained way. We have determined that
471/// this transformation is safe already. We return the first global variable we
472/// insert so that the caller can reprocess it.
1a4d82fc 473static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
223e47cc
LB
474 // Make sure this global only has simple uses that we can SRA.
475 if (!GlobalUsersSafeToSRA(GV))
1a4d82fc 476 return nullptr;
223e47cc
LB
477
478 assert(GV->hasLocalLinkage() && !GV->isConstant());
479 Constant *Init = GV->getInitializer();
480 Type *Ty = Init->getType();
481
482 std::vector<GlobalVariable*> NewGlobals;
483 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
484
485 // Get the alignment of the global, either explicit or target-specific.
486 unsigned StartAlignment = GV->getAlignment();
487 if (StartAlignment == 0)
1a4d82fc 488 StartAlignment = DL.getABITypeAlignment(GV->getType());
223e47cc
LB
489
490 if (StructType *STy = dyn_cast<StructType>(Ty)) {
491 NewGlobals.reserve(STy->getNumElements());
1a4d82fc 492 const StructLayout &Layout = *DL.getStructLayout(STy);
223e47cc
LB
493 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
494 Constant *In = Init->getAggregateElement(i);
495 assert(In && "Couldn't get element of initializer?");
496 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
497 GlobalVariable::InternalLinkage,
498 In, GV->getName()+"."+Twine(i),
499 GV->getThreadLocalMode(),
500 GV->getType()->getAddressSpace());
501 Globals.insert(GV, NGV);
502 NewGlobals.push_back(NGV);
503
504 // Calculate the known alignment of the field. If the original aggregate
505 // had 256 byte alignment for example, something might depend on that:
506 // propagate info to each field.
507 uint64_t FieldOffset = Layout.getElementOffset(i);
508 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
1a4d82fc 509 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
223e47cc
LB
510 NGV->setAlignment(NewAlign);
511 }
512 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
513 unsigned NumElements = 0;
514 if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
515 NumElements = ATy->getNumElements();
516 else
517 NumElements = cast<VectorType>(STy)->getNumElements();
518
519 if (NumElements > 16 && GV->hasNUsesOrMore(16))
1a4d82fc 520 return nullptr; // It's not worth it.
223e47cc
LB
521 NewGlobals.reserve(NumElements);
522
1a4d82fc
JJ
523 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
524 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
223e47cc
LB
525 for (unsigned i = 0, e = NumElements; i != e; ++i) {
526 Constant *In = Init->getAggregateElement(i);
527 assert(In && "Couldn't get element of initializer?");
528
529 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
530 GlobalVariable::InternalLinkage,
531 In, GV->getName()+"."+Twine(i),
532 GV->getThreadLocalMode(),
533 GV->getType()->getAddressSpace());
534 Globals.insert(GV, NGV);
535 NewGlobals.push_back(NGV);
536
537 // Calculate the known alignment of the field. If the original aggregate
538 // had 256 byte alignment for example, something might depend on that:
539 // propagate info to each field.
540 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
541 if (NewAlign > EltAlign)
542 NGV->setAlignment(NewAlign);
543 }
544 }
545
546 if (NewGlobals.empty())
1a4d82fc 547 return nullptr;
223e47cc
LB
548
549 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
550
551 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
552
553 // Loop over all of the uses of the global, replacing the constantexpr geps,
554 // with smaller constantexpr geps or direct references.
555 while (!GV->use_empty()) {
1a4d82fc 556 User *GEP = GV->user_back();
223e47cc
LB
557 assert(((isa<ConstantExpr>(GEP) &&
558 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
559 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
560
561 // Ignore the 1th operand, which has to be zero or else the program is quite
562 // broken (undefined). Get the 2nd operand, which is the structure or array
563 // index.
564 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
565 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
566
567 Value *NewPtr = NewGlobals[Val];
568
569 // Form a shorter GEP if needed.
570 if (GEP->getNumOperands() > 3) {
571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
572 SmallVector<Constant*, 8> Idxs;
573 Idxs.push_back(NullInt);
574 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
575 Idxs.push_back(CE->getOperand(i));
576 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
577 } else {
578 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
579 SmallVector<Value*, 8> Idxs;
580 Idxs.push_back(NullInt);
581 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
582 Idxs.push_back(GEPI->getOperand(i));
583 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
584 GEPI->getName()+"."+Twine(Val),GEPI);
585 }
586 }
587 GEP->replaceAllUsesWith(NewPtr);
588
589 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
590 GEPI->eraseFromParent();
591 else
592 cast<ConstantExpr>(GEP)->destroyConstant();
593 }
594
595 // Delete the old global, now that it is dead.
596 Globals.erase(GV);
597 ++NumSRA;
598
599 // Loop over the new globals array deleting any globals that are obviously
600 // dead. This can arise due to scalarization of a structure or an array that
601 // has elements that are dead.
602 unsigned FirstGlobal = 0;
603 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
604 if (NewGlobals[i]->use_empty()) {
605 Globals.erase(NewGlobals[i]);
606 if (FirstGlobal == i) ++FirstGlobal;
607 }
608
1a4d82fc 609 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
223e47cc
LB
610}
611
612/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
613/// value will trap if the value is dynamically null. PHIs keeps track of any
614/// phi nodes we've seen to avoid reprocessing them.
615static bool AllUsesOfValueWillTrapIfNull(const Value *V,
1a4d82fc
JJ
616 SmallPtrSetImpl<const PHINode*> &PHIs) {
617 for (const User *U : V->users())
223e47cc
LB
618 if (isa<LoadInst>(U)) {
619 // Will trap.
620 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
621 if (SI->getOperand(0) == V) {
622 //cerr << "NONTRAPPING USE: " << *U;
623 return false; // Storing the value.
624 }
625 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
626 if (CI->getCalledValue() != V) {
627 //cerr << "NONTRAPPING USE: " << *U;
628 return false; // Not calling the ptr
629 }
630 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
631 if (II->getCalledValue() != V) {
632 //cerr << "NONTRAPPING USE: " << *U;
633 return false; // Not calling the ptr
634 }
635 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
636 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
637 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
638 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
639 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
640 // If we've already seen this phi node, ignore it, it has already been
641 // checked.
85aaf69f 642 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
223e47cc
LB
643 return false;
644 } else if (isa<ICmpInst>(U) &&
1a4d82fc 645 isa<ConstantPointerNull>(U->getOperand(1))) {
223e47cc
LB
646 // Ignore icmp X, null
647 } else {
648 //cerr << "NONTRAPPING USE: " << *U;
649 return false;
650 }
1a4d82fc 651
223e47cc
LB
652 return true;
653}
654
655/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
656/// from GV will trap if the loaded value is null. Note that this also permits
657/// comparisons of the loaded value against null, as a special case.
658static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
1a4d82fc 659 for (const User *U : GV->users())
223e47cc
LB
660 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
661 SmallPtrSet<const PHINode*, 8> PHIs;
662 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
663 return false;
664 } else if (isa<StoreInst>(U)) {
665 // Ignore stores to the global.
666 } else {
667 // We don't know or understand this user, bail out.
668 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
669 return false;
670 }
223e47cc
LB
671 return true;
672}
673
674static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
675 bool Changed = false;
1a4d82fc 676 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
223e47cc
LB
677 Instruction *I = cast<Instruction>(*UI++);
678 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
679 LI->setOperand(0, NewV);
680 Changed = true;
681 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
682 if (SI->getOperand(1) == V) {
683 SI->setOperand(1, NewV);
684 Changed = true;
685 }
686 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
687 CallSite CS(I);
688 if (CS.getCalledValue() == V) {
689 // Calling through the pointer! Turn into a direct call, but be careful
690 // that the pointer is not also being passed as an argument.
691 CS.setCalledFunction(NewV);
692 Changed = true;
693 bool PassedAsArg = false;
694 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
695 if (CS.getArgument(i) == V) {
696 PassedAsArg = true;
697 CS.setArgument(i, NewV);
698 }
699
700 if (PassedAsArg) {
701 // Being passed as an argument also. Be careful to not invalidate UI!
1a4d82fc 702 UI = V->user_begin();
223e47cc
LB
703 }
704 }
705 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
706 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
707 ConstantExpr::getCast(CI->getOpcode(),
708 NewV, CI->getType()));
709 if (CI->use_empty()) {
710 Changed = true;
711 CI->eraseFromParent();
712 }
713 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
714 // Should handle GEP here.
715 SmallVector<Constant*, 8> Idxs;
716 Idxs.reserve(GEPI->getNumOperands()-1);
717 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
718 i != e; ++i)
719 if (Constant *C = dyn_cast<Constant>(*i))
720 Idxs.push_back(C);
721 else
722 break;
723 if (Idxs.size() == GEPI->getNumOperands()-1)
724 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
725 ConstantExpr::getGetElementPtr(NewV, Idxs));
726 if (GEPI->use_empty()) {
727 Changed = true;
728 GEPI->eraseFromParent();
729 }
730 }
731 }
732
733 return Changed;
734}
735
736
737/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
738/// value stored into it. If there are uses of the loaded value that would trap
739/// if the loaded value is dynamically null, then we know that they cannot be
740/// reachable with a null optimize away the load.
741static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
1a4d82fc 742 const DataLayout *DL,
223e47cc
LB
743 TargetLibraryInfo *TLI) {
744 bool Changed = false;
745
746 // Keep track of whether we are able to remove all the uses of the global
747 // other than the store that defines it.
748 bool AllNonStoreUsesGone = true;
749
750 // Replace all uses of loads with uses of uses of the stored value.
1a4d82fc 751 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
223e47cc
LB
752 User *GlobalUser = *GUI++;
753 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
754 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
755 // If we were able to delete all uses of the loads
756 if (LI->use_empty()) {
757 LI->eraseFromParent();
758 Changed = true;
759 } else {
760 AllNonStoreUsesGone = false;
761 }
762 } else if (isa<StoreInst>(GlobalUser)) {
763 // Ignore the store that stores "LV" to the global.
764 assert(GlobalUser->getOperand(1) == GV &&
765 "Must be storing *to* the global");
766 } else {
767 AllNonStoreUsesGone = false;
768
769 // If we get here we could have other crazy uses that are transitively
770 // loaded.
771 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
772 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
773 isa<BitCastInst>(GlobalUser) ||
774 isa<GetElementPtrInst>(GlobalUser)) &&
775 "Only expect load and stores!");
776 }
777 }
778
779 if (Changed) {
780 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
781 ++NumGlobUses;
782 }
783
784 // If we nuked all of the loads, then none of the stores are needed either,
785 // nor is the global.
786 if (AllNonStoreUsesGone) {
787 if (isLeakCheckerRoot(GV)) {
788 Changed |= CleanupPointerRootUsers(GV, TLI);
789 } else {
790 Changed = true;
1a4d82fc 791 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
223e47cc
LB
792 }
793 if (GV->use_empty()) {
794 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
795 Changed = true;
796 GV->eraseFromParent();
797 ++NumDeleted;
798 }
799 }
800 return Changed;
801}
802
803/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
804/// instructions that are foldable.
1a4d82fc
JJ
805static void ConstantPropUsersOf(Value *V, const DataLayout *DL,
806 TargetLibraryInfo *TLI) {
807 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
223e47cc 808 if (Instruction *I = dyn_cast<Instruction>(*UI++))
1a4d82fc 809 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
223e47cc
LB
810 I->replaceAllUsesWith(NewC);
811
812 // Advance UI to the next non-I use to avoid invalidating it!
813 // Instructions could multiply use V.
814 while (UI != E && *UI == I)
815 ++UI;
816 I->eraseFromParent();
817 }
818}
819
820/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
821/// variable, and transforms the program as if it always contained the result of
822/// the specified malloc. Because it is always the result of the specified
823/// malloc, there is no reason to actually DO the malloc. Instead, turn the
824/// malloc into a global, and any loads of GV as uses of the new global.
825static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
826 CallInst *CI,
827 Type *AllocTy,
828 ConstantInt *NElements,
1a4d82fc 829 const DataLayout *DL,
223e47cc
LB
830 TargetLibraryInfo *TLI) {
831 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
832
833 Type *GlobalType;
834 if (NElements->getZExtValue() == 1)
835 GlobalType = AllocTy;
836 else
837 // If we have an array allocation, the global variable is of an array.
838 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
839
840 // Create the new global variable. The contents of the malloc'd memory is
841 // undefined, so initialize with an undef value.
842 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
843 GlobalType, false,
844 GlobalValue::InternalLinkage,
845 UndefValue::get(GlobalType),
846 GV->getName()+".body",
847 GV,
848 GV->getThreadLocalMode());
849
850 // If there are bitcast users of the malloc (which is typical, usually we have
851 // a malloc + bitcast) then replace them with uses of the new global. Update
852 // other users to use the global as well.
1a4d82fc 853 BitCastInst *TheBC = nullptr;
223e47cc 854 while (!CI->use_empty()) {
1a4d82fc 855 Instruction *User = cast<Instruction>(CI->user_back());
223e47cc
LB
856 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
857 if (BCI->getType() == NewGV->getType()) {
858 BCI->replaceAllUsesWith(NewGV);
859 BCI->eraseFromParent();
860 } else {
861 BCI->setOperand(0, NewGV);
862 }
863 } else {
1a4d82fc 864 if (!TheBC)
223e47cc
LB
865 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
866 User->replaceUsesOfWith(CI, TheBC);
867 }
868 }
869
870 Constant *RepValue = NewGV;
871 if (NewGV->getType() != GV->getType()->getElementType())
872 RepValue = ConstantExpr::getBitCast(RepValue,
873 GV->getType()->getElementType());
874
875 // If there is a comparison against null, we will insert a global bool to
876 // keep track of whether the global was initialized yet or not.
877 GlobalVariable *InitBool =
878 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
879 GlobalValue::InternalLinkage,
880 ConstantInt::getFalse(GV->getContext()),
881 GV->getName()+".init", GV->getThreadLocalMode());
882 bool InitBoolUsed = false;
883
884 // Loop over all uses of GV, processing them in turn.
885 while (!GV->use_empty()) {
1a4d82fc 886 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
223e47cc
LB
887 // The global is initialized when the store to it occurs.
888 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
889 SI->getOrdering(), SI->getSynchScope(), SI);
890 SI->eraseFromParent();
891 continue;
892 }
893
1a4d82fc 894 LoadInst *LI = cast<LoadInst>(GV->user_back());
223e47cc 895 while (!LI->use_empty()) {
1a4d82fc
JJ
896 Use &LoadUse = *LI->use_begin();
897 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
898 if (!ICI) {
223e47cc
LB
899 LoadUse = RepValue;
900 continue;
901 }
902
223e47cc
LB
903 // Replace the cmp X, 0 with a use of the bool value.
904 // Sink the load to where the compare was, if atomic rules allow us to.
905 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
906 LI->getOrdering(), LI->getSynchScope(),
907 LI->isUnordered() ? (Instruction*)ICI : LI);
908 InitBoolUsed = true;
909 switch (ICI->getPredicate()) {
910 default: llvm_unreachable("Unknown ICmp Predicate!");
911 case ICmpInst::ICMP_ULT:
912 case ICmpInst::ICMP_SLT: // X < null -> always false
913 LV = ConstantInt::getFalse(GV->getContext());
914 break;
915 case ICmpInst::ICMP_ULE:
916 case ICmpInst::ICMP_SLE:
917 case ICmpInst::ICMP_EQ:
918 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
919 break;
920 case ICmpInst::ICMP_NE:
921 case ICmpInst::ICMP_UGE:
922 case ICmpInst::ICMP_SGE:
923 case ICmpInst::ICMP_UGT:
924 case ICmpInst::ICMP_SGT:
925 break; // no change.
926 }
927 ICI->replaceAllUsesWith(LV);
928 ICI->eraseFromParent();
929 }
930 LI->eraseFromParent();
931 }
932
933 // If the initialization boolean was used, insert it, otherwise delete it.
934 if (!InitBoolUsed) {
935 while (!InitBool->use_empty()) // Delete initializations
1a4d82fc 936 cast<StoreInst>(InitBool->user_back())->eraseFromParent();
223e47cc
LB
937 delete InitBool;
938 } else
939 GV->getParent()->getGlobalList().insert(GV, InitBool);
940
941 // Now the GV is dead, nuke it and the malloc..
942 GV->eraseFromParent();
943 CI->eraseFromParent();
944
945 // To further other optimizations, loop over all users of NewGV and try to
946 // constant prop them. This will promote GEP instructions with constant
947 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1a4d82fc 948 ConstantPropUsersOf(NewGV, DL, TLI);
223e47cc 949 if (RepValue != NewGV)
1a4d82fc 950 ConstantPropUsersOf(RepValue, DL, TLI);
223e47cc
LB
951
952 return NewGV;
953}
954
955/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
956/// to make sure that there are no complex uses of V. We permit simple things
957/// like dereferencing the pointer, but not storing through the address, unless
958/// it is to the specified global.
959static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
960 const GlobalVariable *GV,
1a4d82fc
JJ
961 SmallPtrSetImpl<const PHINode*> &PHIs) {
962 for (const User *U : V->users()) {
963 const Instruction *Inst = cast<Instruction>(U);
223e47cc
LB
964
965 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
966 continue; // Fine, ignore.
967 }
968
969 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
970 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
971 return false; // Storing the pointer itself... bad.
972 continue; // Otherwise, storing through it, or storing into GV... fine.
973 }
974
975 // Must index into the array and into the struct.
976 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
977 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
978 return false;
979 continue;
980 }
981
982 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
983 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
984 // cycles.
85aaf69f 985 if (PHIs.insert(PN).second)
223e47cc
LB
986 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
987 return false;
988 continue;
989 }
990
991 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
992 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
993 return false;
994 continue;
995 }
996
997 return false;
998 }
999 return true;
1000}
1001
1002/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1003/// somewhere. Transform all uses of the allocation into loads from the
1004/// global and uses of the resultant pointer. Further, delete the store into
1005/// GV. This assumes that these value pass the
1006/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1007static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1008 GlobalVariable *GV) {
1009 while (!Alloc->use_empty()) {
1a4d82fc 1010 Instruction *U = cast<Instruction>(*Alloc->user_begin());
223e47cc
LB
1011 Instruction *InsertPt = U;
1012 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1013 // If this is the store of the allocation into the global, remove it.
1014 if (SI->getOperand(1) == GV) {
1015 SI->eraseFromParent();
1016 continue;
1017 }
1018 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1019 // Insert the load in the corresponding predecessor, not right before the
1020 // PHI.
1a4d82fc 1021 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
223e47cc
LB
1022 } else if (isa<BitCastInst>(U)) {
1023 // Must be bitcast between the malloc and store to initialize the global.
1024 ReplaceUsesOfMallocWithGlobal(U, GV);
1025 U->eraseFromParent();
1026 continue;
1027 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1028 // If this is a "GEP bitcast" and the user is a store to the global, then
1029 // just process it as a bitcast.
1030 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1a4d82fc 1031 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
223e47cc
LB
1032 if (SI->getOperand(1) == GV) {
1033 // Must be bitcast GEP between the malloc and store to initialize
1034 // the global.
1035 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1036 GEPI->eraseFromParent();
1037 continue;
1038 }
1039 }
1040
1041 // Insert a load from the global, and use it instead of the malloc.
1042 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1043 U->replaceUsesOfWith(Alloc, NL);
1044 }
1045}
1046
1047/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1048/// of a load) are simple enough to perform heap SRA on. This permits GEP's
1049/// that index through the array and struct field, icmps of null, and PHIs.
1050static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1a4d82fc
JJ
1051 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1052 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
223e47cc
LB
1053 // We permit two users of the load: setcc comparing against the null
1054 // pointer, and a getelementptr of a specific form.
1a4d82fc
JJ
1055 for (const User *U : V->users()) {
1056 const Instruction *UI = cast<Instruction>(U);
223e47cc
LB
1057
1058 // Comparison against null is ok.
1a4d82fc 1059 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
223e47cc
LB
1060 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1061 return false;
1062 continue;
1063 }
1064
1065 // getelementptr is also ok, but only a simple form.
1a4d82fc 1066 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
223e47cc
LB
1067 // Must index into the array and into the struct.
1068 if (GEPI->getNumOperands() < 3)
1069 return false;
1070
1071 // Otherwise the GEP is ok.
1072 continue;
1073 }
1074
1a4d82fc 1075 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
85aaf69f 1076 if (!LoadUsingPHIsPerLoad.insert(PN).second)
223e47cc
LB
1077 // This means some phi nodes are dependent on each other.
1078 // Avoid infinite looping!
1079 return false;
85aaf69f 1080 if (!LoadUsingPHIs.insert(PN).second)
223e47cc
LB
1081 // If we have already analyzed this PHI, then it is safe.
1082 continue;
1083
1084 // Make sure all uses of the PHI are simple enough to transform.
1085 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1086 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1087 return false;
1088
1089 continue;
1090 }
1091
1092 // Otherwise we don't know what this is, not ok.
1093 return false;
1094 }
1095
1096 return true;
1097}
1098
1099
1100/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1101/// GV are simple enough to perform HeapSRA, return true.
1102static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1103 Instruction *StoredVal) {
1104 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1105 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1a4d82fc
JJ
1106 for (const User *U : GV->users())
1107 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
223e47cc
LB
1108 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1109 LoadUsingPHIsPerLoad))
1110 return false;
1111 LoadUsingPHIsPerLoad.clear();
1112 }
1113
1114 // If we reach here, we know that all uses of the loads and transitive uses
1115 // (through PHI nodes) are simple enough to transform. However, we don't know
1116 // that all inputs the to the PHI nodes are in the same equivalence sets.
1117 // Check to verify that all operands of the PHIs are either PHIS that can be
1118 // transformed, loads from GV, or MI itself.
1a4d82fc 1119 for (const PHINode *PN : LoadUsingPHIs) {
223e47cc
LB
1120 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1121 Value *InVal = PN->getIncomingValue(op);
1122
1123 // PHI of the stored value itself is ok.
1124 if (InVal == StoredVal) continue;
1125
1126 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1127 // One of the PHIs in our set is (optimistically) ok.
1128 if (LoadUsingPHIs.count(InPN))
1129 continue;
1130 return false;
1131 }
1132
1133 // Load from GV is ok.
1134 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1135 if (LI->getOperand(0) == GV)
1136 continue;
1137
1138 // UNDEF? NULL?
1139
1140 // Anything else is rejected.
1141 return false;
1142 }
1143 }
1144
1145 return true;
1146}
1147
1148static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1149 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1150 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1151 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1152
1153 if (FieldNo >= FieldVals.size())
1154 FieldVals.resize(FieldNo+1);
1155
1156 // If we already have this value, just reuse the previously scalarized
1157 // version.
1158 if (Value *FieldVal = FieldVals[FieldNo])
1159 return FieldVal;
1160
1161 // Depending on what instruction this is, we have several cases.
1162 Value *Result;
1163 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1164 // This is a scalarized version of the load from the global. Just create
1165 // a new Load of the scalarized global.
1166 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1167 InsertedScalarizedValues,
1168 PHIsToRewrite),
1169 LI->getName()+".f"+Twine(FieldNo), LI);
1170 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1171 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1172 // field.
223e47cc 1173
1a4d82fc
JJ
1174 PointerType *PTy = cast<PointerType>(PN->getType());
1175 StructType *ST = cast<StructType>(PTy->getElementType());
1176
1177 unsigned AS = PTy->getAddressSpace();
223e47cc 1178 PHINode *NewPN =
1a4d82fc 1179 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
223e47cc
LB
1180 PN->getNumIncomingValues(),
1181 PN->getName()+".f"+Twine(FieldNo), PN);
1182 Result = NewPN;
1183 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1184 } else {
1185 llvm_unreachable("Unknown usable value");
1186 }
1187
1188 return FieldVals[FieldNo] = Result;
1189}
1190
1191/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1192/// the load, rewrite the derived value to use the HeapSRoA'd load.
1193static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1194 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1195 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1196 // If this is a comparison against null, handle it.
1197 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1198 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1199 // If we have a setcc of the loaded pointer, we can use a setcc of any
1200 // field.
1201 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1202 InsertedScalarizedValues, PHIsToRewrite);
1203
1204 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1205 Constant::getNullValue(NPtr->getType()),
1206 SCI->getName());
1207 SCI->replaceAllUsesWith(New);
1208 SCI->eraseFromParent();
1209 return;
1210 }
1211
1212 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1213 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1214 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1215 && "Unexpected GEPI!");
1216
1217 // Load the pointer for this field.
1218 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1219 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1220 InsertedScalarizedValues, PHIsToRewrite);
1221
1222 // Create the new GEP idx vector.
1223 SmallVector<Value*, 8> GEPIdx;
1224 GEPIdx.push_back(GEPI->getOperand(1));
1225 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1226
1227 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1228 GEPI->getName(), GEPI);
1229 GEPI->replaceAllUsesWith(NGEPI);
1230 GEPI->eraseFromParent();
1231 return;
1232 }
1233
1234 // Recursively transform the users of PHI nodes. This will lazily create the
1235 // PHIs that are needed for individual elements. Keep track of what PHIs we
1236 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1237 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1238 // already been seen first by another load, so its uses have already been
1239 // processed.
1240 PHINode *PN = cast<PHINode>(LoadUser);
1241 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1242 std::vector<Value*>())).second)
1243 return;
1244
1245 // If this is the first time we've seen this PHI, recursively process all
1246 // users.
1a4d82fc 1247 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
223e47cc
LB
1248 Instruction *User = cast<Instruction>(*UI++);
1249 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1250 }
1251}
1252
1253/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1254/// is a value loaded from the global. Eliminate all uses of Ptr, making them
1255/// use FieldGlobals instead. All uses of loaded values satisfy
1256/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1257static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1258 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1259 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1a4d82fc 1260 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
223e47cc
LB
1261 Instruction *User = cast<Instruction>(*UI++);
1262 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1263 }
1264
1265 if (Load->use_empty()) {
1266 Load->eraseFromParent();
1267 InsertedScalarizedValues.erase(Load);
1268 }
1269}
1270
1271/// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
1272/// it up into multiple allocations of arrays of the fields.
1273static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1a4d82fc 1274 Value *NElems, const DataLayout *DL,
223e47cc
LB
1275 const TargetLibraryInfo *TLI) {
1276 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
1277 Type *MAT = getMallocAllocatedType(CI, TLI);
1278 StructType *STy = cast<StructType>(MAT);
1279
1280 // There is guaranteed to be at least one use of the malloc (storing
1281 // it into GV). If there are other uses, change them to be uses of
1282 // the global to simplify later code. This also deletes the store
1283 // into GV.
1284 ReplaceUsesOfMallocWithGlobal(CI, GV);
1285
1286 // Okay, at this point, there are no users of the malloc. Insert N
1287 // new mallocs at the same place as CI, and N globals.
1288 std::vector<Value*> FieldGlobals;
1289 std::vector<Value*> FieldMallocs;
1290
1a4d82fc 1291 unsigned AS = GV->getType()->getPointerAddressSpace();
223e47cc
LB
1292 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1293 Type *FieldTy = STy->getElementType(FieldNo);
1a4d82fc 1294 PointerType *PFieldTy = PointerType::get(FieldTy, AS);
223e47cc
LB
1295
1296 GlobalVariable *NGV =
1297 new GlobalVariable(*GV->getParent(),
1298 PFieldTy, false, GlobalValue::InternalLinkage,
1299 Constant::getNullValue(PFieldTy),
1300 GV->getName() + ".f" + Twine(FieldNo), GV,
1301 GV->getThreadLocalMode());
1302 FieldGlobals.push_back(NGV);
1303
1a4d82fc 1304 unsigned TypeSize = DL->getTypeAllocSize(FieldTy);
223e47cc 1305 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1a4d82fc
JJ
1306 TypeSize = DL->getStructLayout(ST)->getSizeInBytes();
1307 Type *IntPtrTy = DL->getIntPtrType(CI->getType());
223e47cc
LB
1308 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1309 ConstantInt::get(IntPtrTy, TypeSize),
1a4d82fc 1310 NElems, nullptr,
223e47cc
LB
1311 CI->getName() + ".f" + Twine(FieldNo));
1312 FieldMallocs.push_back(NMI);
1313 new StoreInst(NMI, NGV, CI);
1314 }
1315
1316 // The tricky aspect of this transformation is handling the case when malloc
1317 // fails. In the original code, malloc failing would set the result pointer
1318 // of malloc to null. In this case, some mallocs could succeed and others
1319 // could fail. As such, we emit code that looks like this:
1320 // F0 = malloc(field0)
1321 // F1 = malloc(field1)
1322 // F2 = malloc(field2)
1323 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1324 // if (F0) { free(F0); F0 = 0; }
1325 // if (F1) { free(F1); F1 = 0; }
1326 // if (F2) { free(F2); F2 = 0; }
1327 // }
1328 // The malloc can also fail if its argument is too large.
1329 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1330 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1331 ConstantZero, "isneg");
1332 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1333 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1334 Constant::getNullValue(FieldMallocs[i]->getType()),
1335 "isnull");
1336 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1337 }
1338
1339 // Split the basic block at the old malloc.
1340 BasicBlock *OrigBB = CI->getParent();
1341 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1342
1343 // Create the block to check the first condition. Put all these blocks at the
1344 // end of the function as they are unlikely to be executed.
1345 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1346 "malloc_ret_null",
1347 OrigBB->getParent());
1348
1349 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1350 // branch on RunningOr.
1351 OrigBB->getTerminator()->eraseFromParent();
1352 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1353
1354 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1355 // pointer, because some may be null while others are not.
1356 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1357 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1358 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1359 Constant::getNullValue(GVVal->getType()));
1360 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1361 OrigBB->getParent());
1362 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1363 OrigBB->getParent());
1364 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1365 Cmp, NullPtrBlock);
1366
1367 // Fill in FreeBlock.
1368 CallInst::CreateFree(GVVal, BI);
1369 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1370 FreeBlock);
1371 BranchInst::Create(NextBlock, FreeBlock);
1372
1373 NullPtrBlock = NextBlock;
1374 }
1375
1376 BranchInst::Create(ContBB, NullPtrBlock);
1377
1378 // CI is no longer needed, remove it.
1379 CI->eraseFromParent();
1380
1381 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1382 /// update all uses of the load, keep track of what scalarized loads are
1383 /// inserted for a given load.
1384 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1385 InsertedScalarizedValues[GV] = FieldGlobals;
1386
1387 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1388
1389 // Okay, the malloc site is completely handled. All of the uses of GV are now
1390 // loads, and all uses of those loads are simple. Rewrite them to use loads
1391 // of the per-field globals instead.
1a4d82fc 1392 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
223e47cc
LB
1393 Instruction *User = cast<Instruction>(*UI++);
1394
1395 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1396 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1397 continue;
1398 }
1399
1400 // Must be a store of null.
1401 StoreInst *SI = cast<StoreInst>(User);
1402 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1403 "Unexpected heap-sra user!");
1404
1405 // Insert a store of null into each global.
1406 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1407 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1408 Constant *Null = Constant::getNullValue(PT->getElementType());
1409 new StoreInst(Null, FieldGlobals[i], SI);
1410 }
1411 // Erase the original store.
1412 SI->eraseFromParent();
1413 }
1414
1415 // While we have PHIs that are interesting to rewrite, do it.
1416 while (!PHIsToRewrite.empty()) {
1417 PHINode *PN = PHIsToRewrite.back().first;
1418 unsigned FieldNo = PHIsToRewrite.back().second;
1419 PHIsToRewrite.pop_back();
1420 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1421 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1422
1423 // Add all the incoming values. This can materialize more phis.
1424 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1425 Value *InVal = PN->getIncomingValue(i);
1426 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1427 PHIsToRewrite);
1428 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1429 }
1430 }
1431
1432 // Drop all inter-phi links and any loads that made it this far.
1433 for (DenseMap<Value*, std::vector<Value*> >::iterator
1434 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1435 I != E; ++I) {
1436 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1437 PN->dropAllReferences();
1438 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1439 LI->dropAllReferences();
1440 }
1441
1442 // Delete all the phis and loads now that inter-references are dead.
1443 for (DenseMap<Value*, std::vector<Value*> >::iterator
1444 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1445 I != E; ++I) {
1446 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1447 PN->eraseFromParent();
1448 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1449 LI->eraseFromParent();
1450 }
1451
1452 // The old global is now dead, remove it.
1453 GV->eraseFromParent();
1454
1455 ++NumHeapSRA;
1456 return cast<GlobalVariable>(FieldGlobals[0]);
1457}
1458
1459/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1460/// pointer global variable with a single value stored it that is a malloc or
1461/// cast of malloc.
1462static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1463 CallInst *CI,
1464 Type *AllocTy,
1465 AtomicOrdering Ordering,
1466 Module::global_iterator &GVI,
1a4d82fc 1467 const DataLayout *DL,
223e47cc 1468 TargetLibraryInfo *TLI) {
1a4d82fc 1469 if (!DL)
223e47cc
LB
1470 return false;
1471
1472 // If this is a malloc of an abstract type, don't touch it.
1473 if (!AllocTy->isSized())
1474 return false;
1475
1476 // We can't optimize this global unless all uses of it are *known* to be
1477 // of the malloc value, not of the null initializer value (consider a use
1478 // that compares the global's value against zero to see if the malloc has
1479 // been reached). To do this, we check to see if all uses of the global
1480 // would trap if the global were null: this proves that they must all
1481 // happen after the malloc.
1482 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1483 return false;
1484
1485 // We can't optimize this if the malloc itself is used in a complex way,
1486 // for example, being stored into multiple globals. This allows the
1487 // malloc to be stored into the specified global, loaded icmp'd, and
1488 // GEP'd. These are all things we could transform to using the global
1489 // for.
1490 SmallPtrSet<const PHINode*, 8> PHIs;
1491 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1492 return false;
1493
1494 // If we have a global that is only initialized with a fixed size malloc,
1495 // transform the program to use global memory instead of malloc'd memory.
1496 // This eliminates dynamic allocation, avoids an indirection accessing the
1497 // data, and exposes the resultant global to further GlobalOpt.
1498 // We cannot optimize the malloc if we cannot determine malloc array size.
1a4d82fc 1499 Value *NElems = getMallocArraySize(CI, DL, TLI, true);
223e47cc
LB
1500 if (!NElems)
1501 return false;
1502
1503 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1504 // Restrict this transformation to only working on small allocations
1505 // (2048 bytes currently), as we don't want to introduce a 16M global or
1506 // something.
1a4d82fc
JJ
1507 if (NElements->getZExtValue() * DL->getTypeAllocSize(AllocTy) < 2048) {
1508 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
223e47cc
LB
1509 return true;
1510 }
1511
1512 // If the allocation is an array of structures, consider transforming this
1513 // into multiple malloc'd arrays, one for each field. This is basically
1514 // SRoA for malloc'd memory.
1515
1516 if (Ordering != NotAtomic)
1517 return false;
1518
1519 // If this is an allocation of a fixed size array of structs, analyze as a
1520 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1521 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1522 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1523 AllocTy = AT->getElementType();
1524
1525 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1526 if (!AllocSTy)
1527 return false;
1528
1529 // This the structure has an unreasonable number of fields, leave it
1530 // alone.
1531 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1532 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1533
1534 // If this is a fixed size array, transform the Malloc to be an alloc of
1535 // structs. malloc [100 x struct],1 -> malloc struct, 100
1536 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1a4d82fc
JJ
1537 Type *IntPtrTy = DL->getIntPtrType(CI->getType());
1538 unsigned TypeSize = DL->getStructLayout(AllocSTy)->getSizeInBytes();
223e47cc
LB
1539 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1540 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1541 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1542 AllocSize, NumElements,
1a4d82fc 1543 nullptr, CI->getName());
223e47cc
LB
1544 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1545 CI->replaceAllUsesWith(Cast);
1546 CI->eraseFromParent();
1547 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1548 CI = cast<CallInst>(BCI->getOperand(0));
1549 else
1550 CI = cast<CallInst>(Malloc);
1551 }
1552
1a4d82fc
JJ
1553 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
1554 DL, TLI);
223e47cc
LB
1555 return true;
1556 }
1557
1558 return false;
1559}
1560
1561// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1562// that only one value (besides its initializer) is ever stored to the global.
1563static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1564 AtomicOrdering Ordering,
1565 Module::global_iterator &GVI,
1a4d82fc
JJ
1566 const DataLayout *DL,
1567 TargetLibraryInfo *TLI) {
223e47cc
LB
1568 // Ignore no-op GEPs and bitcasts.
1569 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1570
1571 // If we are dealing with a pointer global that is initialized to null and
1572 // only has one (non-null) value stored into it, then we can optimize any
1573 // users of the loaded value (often calls and loads) that would trap if the
1574 // value was null.
1575 if (GV->getInitializer()->getType()->isPointerTy() &&
1576 GV->getInitializer()->isNullValue()) {
1577 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1578 if (GV->getInitializer()->getType() != SOVC->getType())
1579 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1580
1581 // Optimize away any trapping uses of the loaded value.
1a4d82fc 1582 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
223e47cc
LB
1583 return true;
1584 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1585 Type *MallocType = getMallocAllocatedType(CI, TLI);
1586 if (MallocType &&
1587 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1a4d82fc 1588 DL, TLI))
223e47cc
LB
1589 return true;
1590 }
1591 }
1592
1593 return false;
1594}
1595
1596/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1597/// two values ever stored into GV are its initializer and OtherVal. See if we
1598/// can shrink the global into a boolean and select between the two values
1599/// whenever it is used. This exposes the values to other scalar optimizations.
1600static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1601 Type *GVElType = GV->getType()->getElementType();
1602
1603 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1604 // an FP value, pointer or vector, don't do this optimization because a select
1605 // between them is very expensive and unlikely to lead to later
1606 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1607 // where v1 and v2 both require constant pool loads, a big loss.
1608 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1609 GVElType->isFloatingPointTy() ||
1610 GVElType->isPointerTy() || GVElType->isVectorTy())
1611 return false;
1612
1613 // Walk the use list of the global seeing if all the uses are load or store.
1614 // If there is anything else, bail out.
1a4d82fc 1615 for (User *U : GV->users())
223e47cc
LB
1616 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1617 return false;
223e47cc
LB
1618
1619 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV);
1620
1621 // Create the new global, initializing it to false.
1622 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1623 false,
1624 GlobalValue::InternalLinkage,
1625 ConstantInt::getFalse(GV->getContext()),
1626 GV->getName()+".b",
970d7e83
LB
1627 GV->getThreadLocalMode(),
1628 GV->getType()->getAddressSpace());
223e47cc
LB
1629 GV->getParent()->getGlobalList().insert(GV, NewGV);
1630
1631 Constant *InitVal = GV->getInitializer();
1632 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1633 "No reason to shrink to bool!");
1634
1635 // If initialized to zero and storing one into the global, we can use a cast
1636 // instead of a select to synthesize the desired value.
1637 bool IsOneZero = false;
1638 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1639 IsOneZero = InitVal->isNullValue() && CI->isOne();
1640
1641 while (!GV->use_empty()) {
1a4d82fc 1642 Instruction *UI = cast<Instruction>(GV->user_back());
223e47cc
LB
1643 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1644 // Change the store into a boolean store.
1645 bool StoringOther = SI->getOperand(0) == OtherVal;
1646 // Only do this if we weren't storing a loaded value.
1647 Value *StoreVal;
970d7e83 1648 if (StoringOther || SI->getOperand(0) == InitVal) {
223e47cc
LB
1649 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1650 StoringOther);
970d7e83 1651 } else {
223e47cc
LB
1652 // Otherwise, we are storing a previously loaded copy. To do this,
1653 // change the copy from copying the original value to just copying the
1654 // bool.
1655 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1656
1657 // If we've already replaced the input, StoredVal will be a cast or
1658 // select instruction. If not, it will be a load of the original
1659 // global.
1660 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1661 assert(LI->getOperand(0) == GV && "Not a copy!");
1662 // Insert a new load, to preserve the saved value.
1663 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1664 LI->getOrdering(), LI->getSynchScope(), LI);
1665 } else {
1666 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1667 "This is not a form that we understand!");
1668 StoreVal = StoredVal->getOperand(0);
1669 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1670 }
1671 }
1672 new StoreInst(StoreVal, NewGV, false, 0,
1673 SI->getOrdering(), SI->getSynchScope(), SI);
1674 } else {
1675 // Change the load into a load of bool then a select.
1676 LoadInst *LI = cast<LoadInst>(UI);
1677 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1678 LI->getOrdering(), LI->getSynchScope(), LI);
1679 Value *NSI;
1680 if (IsOneZero)
1681 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1682 else
1683 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1684 NSI->takeName(LI);
1685 LI->replaceAllUsesWith(NSI);
1686 }
1687 UI->eraseFromParent();
1688 }
1689
970d7e83
LB
1690 // Retain the name of the old global variable. People who are debugging their
1691 // programs may expect these variables to be named the same.
1692 NewGV->takeName(GV);
223e47cc
LB
1693 GV->eraseFromParent();
1694 return true;
1695}
1696
1697
1698/// ProcessGlobal - Analyze the specified global variable and optimize it if
1699/// possible. If we make a change, return true.
1700bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1701 Module::global_iterator &GVI) {
223e47cc
LB
1702 // Do more involved optimizations if the global is internal.
1703 GV->removeDeadConstantUsers();
1704
1705 if (GV->use_empty()) {
1706 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1707 GV->eraseFromParent();
1708 ++NumDeleted;
1709 return true;
1710 }
1711
1712 if (!GV->hasLocalLinkage())
1713 return false;
1714
223e47cc
LB
1715 GlobalStatus GS;
1716
1a4d82fc 1717 if (GlobalStatus::analyzeGlobal(GV, GS))
223e47cc
LB
1718 return false;
1719
1a4d82fc 1720 if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
223e47cc
LB
1721 GV->setUnnamedAddr(true);
1722 NumUnnamed++;
1723 }
1724
1725 if (GV->isConstant() || !GV->hasInitializer())
1726 return false;
1727
1a4d82fc 1728 return ProcessInternalGlobal(GV, GVI, GS);
223e47cc
LB
1729}
1730
1731/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1732/// it if possible. If we make a change, return true.
1733bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1734 Module::global_iterator &GVI,
223e47cc
LB
1735 const GlobalStatus &GS) {
1736 // If this is a first class global and has only one accessing function
1a4d82fc
JJ
1737 // and this function is main (which we know is not recursive), we replace
1738 // the global with a local alloca in this function.
223e47cc 1739 //
1a4d82fc 1740 // NOTE: It doesn't make sense to promote non-single-value types since we
223e47cc
LB
1741 // are just replacing static memory to stack memory.
1742 //
1743 // If the global is in different address space, don't bring it to stack.
1744 if (!GS.HasMultipleAccessingFunctions &&
1745 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1746 GV->getType()->getElementType()->isSingleValueType() &&
1747 GS.AccessingFunction->getName() == "main" &&
1748 GS.AccessingFunction->hasExternalLinkage() &&
1749 GV->getType()->getAddressSpace() == 0) {
1750 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1751 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1752 ->getEntryBlock().begin());
1753 Type *ElemTy = GV->getType()->getElementType();
1754 // FIXME: Pass Global's alignment when globals have alignment
1a4d82fc
JJ
1755 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
1756 GV->getName(), &FirstI);
223e47cc
LB
1757 if (!isa<UndefValue>(GV->getInitializer()))
1758 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1759
1760 GV->replaceAllUsesWith(Alloca);
1761 GV->eraseFromParent();
1762 ++NumLocalized;
1763 return true;
1764 }
1765
1766 // If the global is never loaded (but may be stored to), it is dead.
1767 // Delete it now.
1a4d82fc 1768 if (!GS.IsLoaded) {
223e47cc
LB
1769 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1770
1771 bool Changed;
1772 if (isLeakCheckerRoot(GV)) {
1773 // Delete any constant stores to the global.
1774 Changed = CleanupPointerRootUsers(GV, TLI);
1775 } else {
1776 // Delete any stores we can find to the global. We may not be able to
1777 // make it completely dead though.
1a4d82fc 1778 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
223e47cc
LB
1779 }
1780
1781 // If the global is dead now, delete it.
1782 if (GV->use_empty()) {
1783 GV->eraseFromParent();
1784 ++NumDeleted;
1785 Changed = true;
1786 }
1787 return Changed;
1788
1a4d82fc 1789 } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
970d7e83 1790 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
223e47cc
LB
1791 GV->setConstant(true);
1792
1793 // Clean up any obviously simplifiable users now.
1a4d82fc 1794 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
223e47cc
LB
1795
1796 // If the global is dead now, just nuke it.
1797 if (GV->use_empty()) {
1798 DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1799 << "all users and delete global!\n");
1800 GV->eraseFromParent();
1801 ++NumDeleted;
1802 }
1803
1804 ++NumMarked;
1805 return true;
1806 } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1a4d82fc
JJ
1807 if (DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>()) {
1808 const DataLayout &DL = DLP->getDataLayout();
1809 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
223e47cc
LB
1810 GVI = FirstNewGV; // Don't skip the newly produced globals!
1811 return true;
1812 }
1a4d82fc
JJ
1813 }
1814 } else if (GS.StoredType == GlobalStatus::StoredOnce) {
223e47cc
LB
1815 // If the initial value for the global was an undef value, and if only
1816 // one other value was stored into it, we can just change the
1817 // initializer to be the stored value, then delete all stores to the
1818 // global. This allows us to mark it constant.
1819 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1820 if (isa<UndefValue>(GV->getInitializer())) {
1821 // Change the initial value here.
1822 GV->setInitializer(SOVConstant);
1823
1824 // Clean up any obviously simplifiable users now.
1a4d82fc 1825 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
223e47cc
LB
1826
1827 if (GV->use_empty()) {
1828 DEBUG(dbgs() << " *** Substituting initializer allowed us to "
1829 << "simplify all users and delete global!\n");
1830 GV->eraseFromParent();
1831 ++NumDeleted;
1832 } else {
1833 GVI = GV;
1834 }
1835 ++NumSubstitute;
1836 return true;
1837 }
1838
1839 // Try to optimize globals based on the knowledge that only one value
1840 // (besides its initializer) is ever stored to the global.
1841 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
1a4d82fc 1842 DL, TLI))
223e47cc
LB
1843 return true;
1844
1845 // Otherwise, if the global was not a boolean, we can shrink it to be a
1846 // boolean.
1a4d82fc
JJ
1847 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1848 if (GS.Ordering == NotAtomic) {
1849 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1850 ++NumShrunkToBool;
1851 return true;
1852 }
223e47cc 1853 }
1a4d82fc 1854 }
223e47cc
LB
1855 }
1856
1857 return false;
1858}
1859
1860/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1861/// function, changing them to FastCC.
1862static void ChangeCalleesToFastCall(Function *F) {
1a4d82fc
JJ
1863 for (User *U : F->users()) {
1864 if (isa<BlockAddress>(U))
223e47cc 1865 continue;
1a4d82fc
JJ
1866 CallSite CS(cast<Instruction>(U));
1867 CS.setCallingConv(CallingConv::Fast);
223e47cc
LB
1868 }
1869}
1870
970d7e83 1871static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
223e47cc 1872 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
970d7e83
LB
1873 unsigned Index = Attrs.getSlotIndex(i);
1874 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
223e47cc
LB
1875 continue;
1876
1877 // There can be only one.
970d7e83 1878 return Attrs.removeAttribute(C, Index, Attribute::Nest);
223e47cc
LB
1879 }
1880
1881 return Attrs;
1882}
1883
1884static void RemoveNestAttribute(Function *F) {
970d7e83 1885 F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
1a4d82fc
JJ
1886 for (User *U : F->users()) {
1887 if (isa<BlockAddress>(U))
223e47cc 1888 continue;
1a4d82fc
JJ
1889 CallSite CS(cast<Instruction>(U));
1890 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
223e47cc
LB
1891 }
1892}
1893
1a4d82fc
JJ
1894/// Return true if this is a calling convention that we'd like to change. The
1895/// idea here is that we don't want to mess with the convention if the user
1896/// explicitly requested something with performance implications like coldcc,
1897/// GHC, or anyregcc.
1898static bool isProfitableToMakeFastCC(Function *F) {
1899 CallingConv::ID CC = F->getCallingConv();
1900 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1901 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
1902}
1903
223e47cc
LB
1904bool GlobalOpt::OptimizeFunctions(Module &M) {
1905 bool Changed = false;
1906 // Optimize functions.
1907 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1908 Function *F = FI++;
1909 // Functions without names cannot be referenced outside this module.
1a4d82fc 1910 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
223e47cc 1911 F->setLinkage(GlobalValue::InternalLinkage);
85aaf69f
SL
1912
1913 const Comdat *C = F->getComdat();
1914 bool inComdat = C && NotDiscardableComdats.count(C);
223e47cc 1915 F->removeDeadConstantUsers();
85aaf69f 1916 if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) {
223e47cc
LB
1917 F->eraseFromParent();
1918 Changed = true;
1919 ++NumFnDeleted;
1920 } else if (F->hasLocalLinkage()) {
1a4d82fc 1921 if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
223e47cc 1922 !F->hasAddressTaken()) {
1a4d82fc
JJ
1923 // If this function has a calling convention worth changing, is not a
1924 // varargs function, and is only called directly, promote it to use the
1925 // Fast calling convention.
223e47cc
LB
1926 F->setCallingConv(CallingConv::Fast);
1927 ChangeCalleesToFastCall(F);
1928 ++NumFastCallFns;
1929 Changed = true;
1930 }
1931
1932 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1933 !F->hasAddressTaken()) {
1934 // The function is not used by a trampoline intrinsic, so it is safe
1935 // to remove the 'nest' attribute.
1936 RemoveNestAttribute(F);
1937 ++NumNestRemoved;
1938 Changed = true;
1939 }
1940 }
1941 }
1942 return Changed;
1943}
1944
1945bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1946 bool Changed = false;
1a4d82fc 1947
223e47cc
LB
1948 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1949 GVI != E; ) {
1950 GlobalVariable *GV = GVI++;
1951 // Global variables without names cannot be referenced outside this module.
1a4d82fc 1952 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
223e47cc
LB
1953 GV->setLinkage(GlobalValue::InternalLinkage);
1954 // Simplify the initializer.
1955 if (GV->hasInitializer())
1956 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1a4d82fc 1957 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
223e47cc
LB
1958 if (New && New != CE)
1959 GV->setInitializer(New);
1960 }
1961
1a4d82fc
JJ
1962 if (GV->isDiscardableIfUnused()) {
1963 if (const Comdat *C = GV->getComdat())
85aaf69f 1964 if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage())
1a4d82fc
JJ
1965 continue;
1966 Changed |= ProcessGlobal(GV, GVI);
223e47cc 1967 }
223e47cc 1968 }
1a4d82fc 1969 return Changed;
223e47cc
LB
1970}
1971
970d7e83 1972static inline bool
223e47cc 1973isSimpleEnoughValueToCommit(Constant *C,
1a4d82fc
JJ
1974 SmallPtrSetImpl<Constant*> &SimpleConstants,
1975 const DataLayout *DL);
223e47cc
LB
1976
1977
1978/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
1979/// handled by the code generator. We don't want to generate something like:
1980/// void *X = &X/42;
1981/// because the code generator doesn't have a relocation that can handle that.
1982///
1983/// This function should be called if C was not found (but just got inserted)
1984/// in SimpleConstants to avoid having to rescan the same constants all the
1985/// time.
1986static bool isSimpleEnoughValueToCommitHelper(Constant *C,
1a4d82fc
JJ
1987 SmallPtrSetImpl<Constant*> &SimpleConstants,
1988 const DataLayout *DL) {
1989 // Simple global addresses are supported, do not allow dllimport or
1990 // thread-local globals.
1991 if (auto *GV = dyn_cast<GlobalValue>(C))
1992 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
1993
1994 // Simple integer, undef, constant aggregate zero, etc are all supported.
1995 if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
223e47cc 1996 return true;
970d7e83 1997
223e47cc
LB
1998 // Aggregate values are safe if all their elements are.
1999 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2000 isa<ConstantVector>(C)) {
2001 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2002 Constant *Op = cast<Constant>(C->getOperand(i));
1a4d82fc 2003 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, DL))
223e47cc
LB
2004 return false;
2005 }
2006 return true;
2007 }
970d7e83 2008
223e47cc
LB
2009 // We don't know exactly what relocations are allowed in constant expressions,
2010 // so we allow &global+constantoffset, which is safe and uniformly supported
2011 // across targets.
2012 ConstantExpr *CE = cast<ConstantExpr>(C);
2013 switch (CE->getOpcode()) {
2014 case Instruction::BitCast:
2015 // Bitcast is fine if the casted value is fine.
1a4d82fc 2016 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
223e47cc
LB
2017
2018 case Instruction::IntToPtr:
2019 case Instruction::PtrToInt:
2020 // int <=> ptr is fine if the int type is the same size as the
2021 // pointer type.
1a4d82fc
JJ
2022 if (!DL || DL->getTypeSizeInBits(CE->getType()) !=
2023 DL->getTypeSizeInBits(CE->getOperand(0)->getType()))
223e47cc 2024 return false;
1a4d82fc 2025 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
970d7e83 2026
223e47cc
LB
2027 // GEP is fine if it is simple + constant offset.
2028 case Instruction::GetElementPtr:
2029 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2030 if (!isa<ConstantInt>(CE->getOperand(i)))
2031 return false;
1a4d82fc 2032 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
970d7e83 2033
223e47cc
LB
2034 case Instruction::Add:
2035 // We allow simple+cst.
2036 if (!isa<ConstantInt>(CE->getOperand(1)))
2037 return false;
1a4d82fc 2038 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
223e47cc
LB
2039 }
2040 return false;
2041}
2042
970d7e83 2043static inline bool
223e47cc 2044isSimpleEnoughValueToCommit(Constant *C,
1a4d82fc
JJ
2045 SmallPtrSetImpl<Constant*> &SimpleConstants,
2046 const DataLayout *DL) {
223e47cc 2047 // If we already checked this constant, we win.
85aaf69f
SL
2048 if (!SimpleConstants.insert(C).second)
2049 return true;
223e47cc 2050 // Check the constant.
1a4d82fc 2051 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
223e47cc
LB
2052}
2053
2054
2055/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2056/// enough for us to understand. In particular, if it is a cast to anything
2057/// other than from one pointer type to another pointer type, we punt.
2058/// We basically just support direct accesses to globals and GEP's of
2059/// globals. This should be kept up to date with CommitValueTo.
2060static bool isSimpleEnoughPointerToCommit(Constant *C) {
2061 // Conservatively, avoid aggregate types. This is because we don't
2062 // want to worry about them partially overlapping other stores.
2063 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2064 return false;
2065
2066 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
1a4d82fc 2067 // Do not allow weak/*_odr/linkonce linkage or external globals.
223e47cc
LB
2068 return GV->hasUniqueInitializer();
2069
2070 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2071 // Handle a constantexpr gep.
2072 if (CE->getOpcode() == Instruction::GetElementPtr &&
2073 isa<GlobalVariable>(CE->getOperand(0)) &&
2074 cast<GEPOperator>(CE)->isInBounds()) {
2075 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2076 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2077 // external globals.
2078 if (!GV->hasUniqueInitializer())
2079 return false;
2080
2081 // The first index must be zero.
1a4d82fc 2082 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
223e47cc
LB
2083 if (!CI || !CI->isZero()) return false;
2084
2085 // The remaining indices must be compile-time known integers within the
2086 // notional bounds of the corresponding static array types.
2087 if (!CE->isGEPWithNoNotionalOverIndexing())
2088 return false;
2089
2090 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
970d7e83 2091
223e47cc
LB
2092 // A constantexpr bitcast from a pointer to another pointer is a no-op,
2093 // and we know how to evaluate it by moving the bitcast from the pointer
2094 // operand to the value operand.
2095 } else if (CE->getOpcode() == Instruction::BitCast &&
2096 isa<GlobalVariable>(CE->getOperand(0))) {
2097 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2098 // external globals.
2099 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2100 }
2101 }
970d7e83 2102
223e47cc
LB
2103 return false;
2104}
2105
2106/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2107/// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2108/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2109static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2110 ConstantExpr *Addr, unsigned OpNo) {
2111 // Base case of the recursion.
2112 if (OpNo == Addr->getNumOperands()) {
2113 assert(Val->getType() == Init->getType() && "Type mismatch!");
2114 return Val;
2115 }
2116
2117 SmallVector<Constant*, 32> Elts;
2118 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2119 // Break up the constant into its elements.
2120 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2121 Elts.push_back(Init->getAggregateElement(i));
2122
2123 // Replace the element that we are supposed to.
2124 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2125 unsigned Idx = CU->getZExtValue();
2126 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2127 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2128
2129 // Return the modified struct.
2130 return ConstantStruct::get(STy, Elts);
2131 }
970d7e83 2132
223e47cc
LB
2133 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2134 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2135
2136 uint64_t NumElts;
2137 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2138 NumElts = ATy->getNumElements();
2139 else
2140 NumElts = InitTy->getVectorNumElements();
2141
2142 // Break up the array into elements.
2143 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2144 Elts.push_back(Init->getAggregateElement(i));
2145
2146 assert(CI->getZExtValue() < NumElts);
2147 Elts[CI->getZExtValue()] =
2148 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2149
2150 if (Init->getType()->isArrayTy())
2151 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2152 return ConstantVector::get(Elts);
2153}
2154
2155/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2156/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2157static void CommitValueTo(Constant *Val, Constant *Addr) {
2158 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2159 assert(GV->hasInitializer());
2160 GV->setInitializer(Val);
2161 return;
2162 }
2163
2164 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2165 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2166 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2167}
2168
2169namespace {
2170
2171/// Evaluator - This class evaluates LLVM IR, producing the Constant
2172/// representing each SSA instruction. Changes to global variables are stored
2173/// in a mapping that can be iterated over after the evaluation is complete.
2174/// Once an evaluation call fails, the evaluation object should not be reused.
2175class Evaluator {
2176public:
1a4d82fc
JJ
2177 Evaluator(const DataLayout *DL, const TargetLibraryInfo *TLI)
2178 : DL(DL), TLI(TLI) {
2179 ValueStack.emplace_back();
223e47cc
LB
2180 }
2181
2182 ~Evaluator() {
1a4d82fc 2183 for (auto &Tmp : AllocaTmps)
223e47cc
LB
2184 // If there are still users of the alloca, the program is doing something
2185 // silly, e.g. storing the address of the alloca somewhere and using it
2186 // later. Since this is undefined, we'll just make it be null.
2187 if (!Tmp->use_empty())
2188 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
223e47cc
LB
2189 }
2190
2191 /// EvaluateFunction - Evaluate a call to function F, returning true if
2192 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2193 /// arguments for the function.
2194 bool EvaluateFunction(Function *F, Constant *&RetVal,
2195 const SmallVectorImpl<Constant*> &ActualArgs);
2196
2197 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2198 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2199 /// control flows into, or null upon return.
2200 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2201
2202 Constant *getVal(Value *V) {
2203 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1a4d82fc 2204 Constant *R = ValueStack.back().lookup(V);
223e47cc
LB
2205 assert(R && "Reference to an uncomputed value!");
2206 return R;
2207 }
2208
2209 void setVal(Value *V, Constant *C) {
1a4d82fc 2210 ValueStack.back()[V] = C;
223e47cc
LB
2211 }
2212
2213 const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2214 return MutatedMemory;
2215 }
2216
1a4d82fc 2217 const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
223e47cc
LB
2218 return Invariants;
2219 }
2220
2221private:
2222 Constant *ComputeLoadResult(Constant *P);
2223
2224 /// ValueStack - As we compute SSA register values, we store their contents
1a4d82fc 2225 /// here. The back of the deque contains the current function and the stack
223e47cc 2226 /// contains the values in the calling frames.
1a4d82fc 2227 std::deque<DenseMap<Value*, Constant*>> ValueStack;
223e47cc
LB
2228
2229 /// CallStack - This is used to detect recursion. In pathological situations
2230 /// we could hit exponential behavior, but at least there is nothing
2231 /// unbounded.
2232 SmallVector<Function*, 4> CallStack;
2233
2234 /// MutatedMemory - For each store we execute, we update this map. Loads
2235 /// check this to get the most up-to-date value. If evaluation is successful,
2236 /// this state is committed to the process.
2237 DenseMap<Constant*, Constant*> MutatedMemory;
2238
2239 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2240 /// to represent its body. This vector is needed so we can delete the
2241 /// temporary globals when we are done.
1a4d82fc 2242 SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
223e47cc
LB
2243
2244 /// Invariants - These global variables have been marked invariant by the
2245 /// static constructor.
2246 SmallPtrSet<GlobalVariable*, 8> Invariants;
2247
2248 /// SimpleConstants - These are constants we have checked and know to be
2249 /// simple enough to live in a static initializer of a global.
2250 SmallPtrSet<Constant*, 8> SimpleConstants;
2251
1a4d82fc 2252 const DataLayout *DL;
223e47cc
LB
2253 const TargetLibraryInfo *TLI;
2254};
2255
2256} // anonymous namespace
2257
2258/// ComputeLoadResult - Return the value that would be computed by a load from
2259/// P after the stores reflected by 'memory' have been performed. If we can't
2260/// decide, return null.
2261Constant *Evaluator::ComputeLoadResult(Constant *P) {
2262 // If this memory location has been recently stored, use the stored value: it
2263 // is the most up-to-date.
2264 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2265 if (I != MutatedMemory.end()) return I->second;
2266
2267 // Access it.
2268 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2269 if (GV->hasDefinitiveInitializer())
2270 return GV->getInitializer();
1a4d82fc 2271 return nullptr;
223e47cc
LB
2272 }
2273
2274 // Handle a constantexpr getelementptr.
2275 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2276 if (CE->getOpcode() == Instruction::GetElementPtr &&
2277 isa<GlobalVariable>(CE->getOperand(0))) {
2278 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2279 if (GV->hasDefinitiveInitializer())
2280 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2281 }
2282
1a4d82fc 2283 return nullptr; // don't know how to evaluate.
223e47cc
LB
2284}
2285
2286/// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2287/// successful, false if we can't evaluate it. NewBB returns the next BB that
2288/// control flows into, or null upon return.
2289bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2290 BasicBlock *&NextBB) {
2291 // This is the main evaluation loop.
2292 while (1) {
1a4d82fc 2293 Constant *InstResult = nullptr;
223e47cc 2294
970d7e83
LB
2295 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2296
223e47cc 2297 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
970d7e83
LB
2298 if (!SI->isSimple()) {
2299 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2300 return false; // no volatile/atomic accesses.
2301 }
223e47cc 2302 Constant *Ptr = getVal(SI->getOperand(1));
970d7e83
LB
2303 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2304 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
1a4d82fc 2305 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
970d7e83
LB
2306 DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2307 }
2308 if (!isSimpleEnoughPointerToCommit(Ptr)) {
223e47cc 2309 // If this is too complex for us to commit, reject it.
970d7e83 2310 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
223e47cc 2311 return false;
970d7e83
LB
2312 }
2313
223e47cc
LB
2314 Constant *Val = getVal(SI->getOperand(0));
2315
2316 // If this might be too difficult for the backend to handle (e.g. the addr
2317 // of one global variable divided by another) then we can't commit it.
1a4d82fc 2318 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
970d7e83
LB
2319 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2320 << "\n");
223e47cc 2321 return false;
970d7e83
LB
2322 }
2323
2324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
223e47cc 2325 if (CE->getOpcode() == Instruction::BitCast) {
970d7e83 2326 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
223e47cc
LB
2327 // If we're evaluating a store through a bitcast, then we need
2328 // to pull the bitcast off the pointer type and push it onto the
2329 // stored value.
2330 Ptr = CE->getOperand(0);
970d7e83 2331
223e47cc 2332 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
970d7e83 2333
223e47cc
LB
2334 // In order to push the bitcast onto the stored value, a bitcast
2335 // from NewTy to Val's type must be legal. If it's not, we can try
2336 // introspecting NewTy to find a legal conversion.
2337 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2338 // If NewTy is a struct, we can convert the pointer to the struct
2339 // into a pointer to its first member.
2340 // FIXME: This could be extended to support arrays as well.
2341 if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2342 NewTy = STy->getTypeAtIndex(0U);
2343
2344 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2345 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2346 Constant * const IdxList[] = {IdxZero, IdxZero};
2347
2348 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2349 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1a4d82fc 2350 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
223e47cc
LB
2351
2352 // If we can't improve the situation by introspecting NewTy,
2353 // we have to give up.
2354 } else {
970d7e83
LB
2355 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2356 "evaluate.\n");
223e47cc
LB
2357 return false;
2358 }
2359 }
970d7e83 2360
223e47cc
LB
2361 // If we found compatible types, go ahead and push the bitcast
2362 // onto the stored value.
2363 Val = ConstantExpr::getBitCast(Val, NewTy);
970d7e83
LB
2364
2365 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
223e47cc 2366 }
970d7e83
LB
2367 }
2368
223e47cc
LB
2369 MutatedMemory[Ptr] = Val;
2370 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2371 InstResult = ConstantExpr::get(BO->getOpcode(),
2372 getVal(BO->getOperand(0)),
2373 getVal(BO->getOperand(1)));
970d7e83
LB
2374 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2375 << "\n");
223e47cc
LB
2376 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2377 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2378 getVal(CI->getOperand(0)),
2379 getVal(CI->getOperand(1)));
970d7e83
LB
2380 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2381 << "\n");
223e47cc
LB
2382 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2383 InstResult = ConstantExpr::getCast(CI->getOpcode(),
2384 getVal(CI->getOperand(0)),
2385 CI->getType());
970d7e83
LB
2386 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2387 << "\n");
223e47cc
LB
2388 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2389 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2390 getVal(SI->getOperand(1)),
2391 getVal(SI->getOperand(2)));
970d7e83
LB
2392 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2393 << "\n");
1a4d82fc
JJ
2394 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
2395 InstResult = ConstantExpr::getExtractValue(
2396 getVal(EVI->getAggregateOperand()), EVI->getIndices());
2397 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
2398 << "\n");
2399 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
2400 InstResult = ConstantExpr::getInsertValue(
2401 getVal(IVI->getAggregateOperand()),
2402 getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
2403 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
2404 << "\n");
223e47cc
LB
2405 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2406 Constant *P = getVal(GEP->getOperand(0));
2407 SmallVector<Constant*, 8> GEPOps;
2408 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2409 i != e; ++i)
2410 GEPOps.push_back(getVal(*i));
2411 InstResult =
2412 ConstantExpr::getGetElementPtr(P, GEPOps,
2413 cast<GEPOperator>(GEP)->isInBounds());
970d7e83
LB
2414 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2415 << "\n");
223e47cc 2416 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
970d7e83
LB
2417
2418 if (!LI->isSimple()) {
2419 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2420 return false; // no volatile/atomic accesses.
2421 }
2422
223e47cc 2423 Constant *Ptr = getVal(LI->getOperand(0));
970d7e83 2424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
1a4d82fc 2425 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
970d7e83
LB
2426 DEBUG(dbgs() << "Found a constant pointer expression, constant "
2427 "folding: " << *Ptr << "\n");
2428 }
223e47cc 2429 InstResult = ComputeLoadResult(Ptr);
1a4d82fc 2430 if (!InstResult) {
970d7e83
LB
2431 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2432 "\n");
2433 return false; // Could not evaluate load.
2434 }
2435
2436 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
223e47cc 2437 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
970d7e83
LB
2438 if (AI->isArrayAllocation()) {
2439 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2440 return false; // Cannot handle array allocs.
2441 }
223e47cc 2442 Type *Ty = AI->getType()->getElementType();
1a4d82fc
JJ
2443 AllocaTmps.push_back(
2444 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
2445 UndefValue::get(Ty), AI->getName()));
2446 InstResult = AllocaTmps.back().get();
970d7e83 2447 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
223e47cc
LB
2448 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2449 CallSite CS(CurInst);
2450
2451 // Debug info can safely be ignored here.
2452 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
970d7e83 2453 DEBUG(dbgs() << "Ignoring debug info.\n");
223e47cc
LB
2454 ++CurInst;
2455 continue;
2456 }
2457
2458 // Cannot handle inline asm.
970d7e83
LB
2459 if (isa<InlineAsm>(CS.getCalledValue())) {
2460 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2461 return false;
2462 }
223e47cc
LB
2463
2464 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2465 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
970d7e83
LB
2466 if (MSI->isVolatile()) {
2467 DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2468 "intrinsic.\n");
2469 return false;
2470 }
223e47cc
LB
2471 Constant *Ptr = getVal(MSI->getDest());
2472 Constant *Val = getVal(MSI->getValue());
2473 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2474 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2475 // This memset is a no-op.
970d7e83 2476 DEBUG(dbgs() << "Ignoring no-op memset.\n");
223e47cc
LB
2477 ++CurInst;
2478 continue;
2479 }
2480 }
2481
2482 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2483 II->getIntrinsicID() == Intrinsic::lifetime_end) {
970d7e83 2484 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
223e47cc
LB
2485 ++CurInst;
2486 continue;
2487 }
2488
2489 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2490 // We don't insert an entry into Values, as it doesn't have a
2491 // meaningful return value.
970d7e83 2492 if (!II->use_empty()) {
1a4d82fc 2493 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
223e47cc 2494 return false;
970d7e83 2495 }
223e47cc
LB
2496 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2497 Value *PtrArg = getVal(II->getArgOperand(1));
2498 Value *Ptr = PtrArg->stripPointerCasts();
2499 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2500 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
1a4d82fc 2501 if (DL && !Size->isAllOnesValue() &&
223e47cc 2502 Size->getValue().getLimitedValue() >=
1a4d82fc 2503 DL->getTypeStoreSize(ElemTy)) {
223e47cc 2504 Invariants.insert(GV);
970d7e83
LB
2505 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2506 << "\n");
2507 } else {
2508 DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2509 "invariant.\n");
2510 }
223e47cc
LB
2511 }
2512 // Continue even if we do nothing.
2513 ++CurInst;
2514 continue;
2515 }
970d7e83
LB
2516
2517 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
223e47cc
LB
2518 return false;
2519 }
2520
2521 // Resolve function pointers.
2522 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
970d7e83
LB
2523 if (!Callee || Callee->mayBeOverridden()) {
2524 DEBUG(dbgs() << "Can not resolve function pointer.\n");
223e47cc 2525 return false; // Cannot resolve.
970d7e83 2526 }
223e47cc
LB
2527
2528 SmallVector<Constant*, 8> Formals;
2529 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2530 Formals.push_back(getVal(*i));
2531
2532 if (Callee->isDeclaration()) {
2533 // If this is a function we can constant fold, do it.
2534 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2535 InstResult = C;
970d7e83
LB
2536 DEBUG(dbgs() << "Constant folded function call. Result: " <<
2537 *InstResult << "\n");
223e47cc 2538 } else {
970d7e83 2539 DEBUG(dbgs() << "Can not constant fold function call.\n");
223e47cc
LB
2540 return false;
2541 }
2542 } else {
970d7e83
LB
2543 if (Callee->getFunctionType()->isVarArg()) {
2544 DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
223e47cc 2545 return false;
970d7e83 2546 }
223e47cc 2547
1a4d82fc 2548 Constant *RetVal = nullptr;
223e47cc 2549 // Execute the call, if successful, use the return value.
1a4d82fc 2550 ValueStack.emplace_back();
970d7e83
LB
2551 if (!EvaluateFunction(Callee, RetVal, Formals)) {
2552 DEBUG(dbgs() << "Failed to evaluate function.\n");
223e47cc 2553 return false;
970d7e83 2554 }
1a4d82fc 2555 ValueStack.pop_back();
223e47cc 2556 InstResult = RetVal;
970d7e83 2557
1a4d82fc 2558 if (InstResult) {
970d7e83
LB
2559 DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2560 InstResult << "\n\n");
2561 } else {
2562 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2563 }
223e47cc
LB
2564 }
2565 } else if (isa<TerminatorInst>(CurInst)) {
970d7e83
LB
2566 DEBUG(dbgs() << "Found a terminator instruction.\n");
2567
223e47cc
LB
2568 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2569 if (BI->isUnconditional()) {
2570 NextBB = BI->getSuccessor(0);
2571 } else {
2572 ConstantInt *Cond =
2573 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2574 if (!Cond) return false; // Cannot determine.
2575
2576 NextBB = BI->getSuccessor(!Cond->getZExtValue());
2577 }
2578 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2579 ConstantInt *Val =
2580 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2581 if (!Val) return false; // Cannot determine.
2582 NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2583 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2584 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2585 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2586 NextBB = BA->getBasicBlock();
2587 else
2588 return false; // Cannot determine.
2589 } else if (isa<ReturnInst>(CurInst)) {
1a4d82fc 2590 NextBB = nullptr;
223e47cc
LB
2591 } else {
2592 // invoke, unwind, resume, unreachable.
970d7e83 2593 DEBUG(dbgs() << "Can not handle terminator.");
223e47cc
LB
2594 return false; // Cannot handle this terminator.
2595 }
2596
2597 // We succeeded at evaluating this block!
970d7e83 2598 DEBUG(dbgs() << "Successfully evaluated block.\n");
223e47cc
LB
2599 return true;
2600 } else {
2601 // Did not know how to evaluate this!
970d7e83
LB
2602 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2603 "\n");
223e47cc
LB
2604 return false;
2605 }
2606
2607 if (!CurInst->use_empty()) {
2608 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
1a4d82fc 2609 InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
970d7e83 2610
223e47cc
LB
2611 setVal(CurInst, InstResult);
2612 }
2613
2614 // If we just processed an invoke, we finished evaluating the block.
2615 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2616 NextBB = II->getNormalDest();
970d7e83 2617 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
223e47cc
LB
2618 return true;
2619 }
2620
2621 // Advance program counter.
2622 ++CurInst;
2623 }
2624}
2625
2626/// EvaluateFunction - Evaluate a call to function F, returning true if
2627/// successful, false if we can't evaluate it. ActualArgs contains the formal
2628/// arguments for the function.
2629bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2630 const SmallVectorImpl<Constant*> &ActualArgs) {
2631 // Check to see if this function is already executing (recursion). If so,
2632 // bail out. TODO: we might want to accept limited recursion.
2633 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2634 return false;
2635
2636 CallStack.push_back(F);
2637
2638 // Initialize arguments to the incoming values specified.
2639 unsigned ArgNo = 0;
2640 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2641 ++AI, ++ArgNo)
2642 setVal(AI, ActualArgs[ArgNo]);
2643
2644 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2645 // we can only evaluate any one basic block at most once. This set keeps
2646 // track of what we have executed so we can detect recursive cases etc.
2647 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2648
2649 // CurBB - The current basic block we're evaluating.
2650 BasicBlock *CurBB = F->begin();
2651
2652 BasicBlock::iterator CurInst = CurBB->begin();
2653
2654 while (1) {
1a4d82fc 2655 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
970d7e83
LB
2656 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2657
223e47cc
LB
2658 if (!EvaluateBlock(CurInst, NextBB))
2659 return false;
2660
1a4d82fc 2661 if (!NextBB) {
223e47cc
LB
2662 // Successfully running until there's no next block means that we found
2663 // the return. Fill it the return value and pop the call stack.
2664 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2665 if (RI->getNumOperands())
2666 RetVal = getVal(RI->getOperand(0));
2667 CallStack.pop_back();
2668 return true;
2669 }
2670
2671 // Okay, we succeeded in evaluating this control flow. See if we have
2672 // executed the new block before. If so, we have a looping function,
2673 // which we cannot evaluate in reasonable time.
85aaf69f 2674 if (!ExecutedBlocks.insert(NextBB).second)
223e47cc
LB
2675 return false; // looped!
2676
2677 // Okay, we have never been in this block before. Check to see if there
2678 // are any PHI nodes. If so, evaluate them with information about where
2679 // we came from.
1a4d82fc 2680 PHINode *PN = nullptr;
223e47cc
LB
2681 for (CurInst = NextBB->begin();
2682 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2683 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2684
2685 // Advance to the next block.
2686 CurBB = NextBB;
2687 }
2688}
2689
2690/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2691/// we can. Return true if we can, false otherwise.
1a4d82fc 2692static bool EvaluateStaticConstructor(Function *F, const DataLayout *DL,
223e47cc
LB
2693 const TargetLibraryInfo *TLI) {
2694 // Call the function.
1a4d82fc 2695 Evaluator Eval(DL, TLI);
223e47cc
LB
2696 Constant *RetValDummy;
2697 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2698 SmallVector<Constant*, 0>());
970d7e83 2699
223e47cc 2700 if (EvalSuccess) {
1a4d82fc
JJ
2701 ++NumCtorsEvaluated;
2702
223e47cc
LB
2703 // We succeeded at evaluation: commit the result.
2704 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2705 << F->getName() << "' to " << Eval.getMutatedMemory().size()
2706 << " stores.\n");
2707 for (DenseMap<Constant*, Constant*>::const_iterator I =
2708 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2709 I != E; ++I)
2710 CommitValueTo(I->second, I->first);
1a4d82fc
JJ
2711 for (GlobalVariable *GV : Eval.getInvariants())
2712 GV->setConstant(true);
223e47cc
LB
2713 }
2714
2715 return EvalSuccess;
2716}
2717
1a4d82fc
JJ
2718static int compareNames(Constant *const *A, Constant *const *B) {
2719 return (*A)->getName().compare((*B)->getName());
2720}
223e47cc 2721
1a4d82fc
JJ
2722static void setUsedInitializer(GlobalVariable &V,
2723 const SmallPtrSet<GlobalValue *, 8> &Init) {
2724 if (Init.empty()) {
2725 V.eraseFromParent();
2726 return;
2727 }
223e47cc 2728
1a4d82fc
JJ
2729 // Type of pointer to the array of pointers.
2730 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2731
2732 SmallVector<llvm::Constant *, 8> UsedArray;
2733 for (GlobalValue *GV : Init) {
2734 Constant *Cast
2735 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2736 UsedArray.push_back(Cast);
2737 }
2738 // Sort to get deterministic order.
2739 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2740 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2741
2742 Module *M = V.getParent();
2743 V.removeFromParent();
2744 GlobalVariable *NV =
2745 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2746 llvm::ConstantArray::get(ATy, UsedArray), "");
2747 NV->takeName(&V);
2748 NV->setSection("llvm.metadata");
2749 delete &V;
2750}
2751
2752namespace {
2753/// \brief An easy to access representation of llvm.used and llvm.compiler.used.
2754class LLVMUsed {
2755 SmallPtrSet<GlobalValue *, 8> Used;
2756 SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2757 GlobalVariable *UsedV;
2758 GlobalVariable *CompilerUsedV;
2759
2760public:
2761 LLVMUsed(Module &M) {
2762 UsedV = collectUsedGlobalVariables(M, Used, false);
2763 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2764 }
2765 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2766 typedef iterator_range<iterator> used_iterator_range;
2767 iterator usedBegin() { return Used.begin(); }
2768 iterator usedEnd() { return Used.end(); }
2769 used_iterator_range used() {
2770 return used_iterator_range(usedBegin(), usedEnd());
2771 }
2772 iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2773 iterator compilerUsedEnd() { return CompilerUsed.end(); }
2774 used_iterator_range compilerUsed() {
2775 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2776 }
2777 bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2778 bool compilerUsedCount(GlobalValue *GV) const {
2779 return CompilerUsed.count(GV);
2780 }
2781 bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2782 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
85aaf69f
SL
2783 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2784 bool compilerUsedInsert(GlobalValue *GV) {
2785 return CompilerUsed.insert(GV).second;
2786 }
1a4d82fc
JJ
2787
2788 void syncVariablesAndSets() {
2789 if (UsedV)
2790 setUsedInitializer(*UsedV, Used);
2791 if (CompilerUsedV)
2792 setUsedInitializer(*CompilerUsedV, CompilerUsed);
223e47cc 2793 }
1a4d82fc
JJ
2794};
2795}
2796
2797static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2798 if (GA.use_empty()) // No use at all.
2799 return false;
2800
2801 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2802 "We should have removed the duplicated "
2803 "element from llvm.compiler.used");
2804 if (!GA.hasOneUse())
2805 // Strictly more than one use. So at least one is not in llvm.used and
2806 // llvm.compiler.used.
2807 return true;
2808
2809 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2810 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2811}
2812
2813static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2814 const LLVMUsed &U) {
2815 unsigned N = 2;
2816 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2817 "We should have removed the duplicated "
2818 "element from llvm.compiler.used");
2819 if (U.usedCount(&V) || U.compilerUsedCount(&V))
2820 ++N;
2821 return V.hasNUsesOrMore(N);
2822}
2823
2824static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2825 if (!GA.hasLocalLinkage())
2826 return true;
223e47cc 2827
1a4d82fc
JJ
2828 return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2829}
223e47cc 2830
1a4d82fc
JJ
2831static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2832 bool &RenameTarget) {
2833 RenameTarget = false;
2834 bool Ret = false;
2835 if (hasUseOtherThanLLVMUsed(GA, U))
2836 Ret = true;
2837
2838 // If the alias is externally visible, we may still be able to simplify it.
2839 if (!mayHaveOtherReferences(GA, U))
2840 return Ret;
2841
2842 // If the aliasee has internal linkage, give it the name and linkage
2843 // of the alias, and delete the alias. This turns:
2844 // define internal ... @f(...)
2845 // @a = alias ... @f
2846 // into:
2847 // define ... @a(...)
2848 Constant *Aliasee = GA.getAliasee();
2849 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2850 if (!Target->hasLocalLinkage())
2851 return Ret;
2852
2853 // Do not perform the transform if multiple aliases potentially target the
2854 // aliasee. This check also ensures that it is safe to replace the section
2855 // and other attributes of the aliasee with those of the alias.
2856 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2857 return Ret;
2858
2859 RenameTarget = true;
223e47cc
LB
2860 return true;
2861}
2862
2863bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2864 bool Changed = false;
1a4d82fc
JJ
2865 LLVMUsed Used(M);
2866
2867 for (GlobalValue *GV : Used.used())
2868 Used.compilerUsedErase(GV);
223e47cc
LB
2869
2870 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2871 I != E;) {
2872 Module::alias_iterator J = I++;
2873 // Aliases without names cannot be referenced outside this module.
1a4d82fc 2874 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
223e47cc
LB
2875 J->setLinkage(GlobalValue::InternalLinkage);
2876 // If the aliasee may change at link time, nothing can be done - bail out.
2877 if (J->mayBeOverridden())
2878 continue;
2879
2880 Constant *Aliasee = J->getAliasee();
1a4d82fc
JJ
2881 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2882 // We can't trivially replace the alias with the aliasee if the aliasee is
2883 // non-trivial in some way.
2884 // TODO: Try to handle non-zero GEPs of local aliasees.
2885 if (!Target)
2886 continue;
223e47cc 2887 Target->removeDeadConstantUsers();
223e47cc
LB
2888
2889 // Make all users of the alias use the aliasee instead.
1a4d82fc
JJ
2890 bool RenameTarget;
2891 if (!hasUsesToReplace(*J, Used, RenameTarget))
2892 continue;
223e47cc 2893
1a4d82fc
JJ
2894 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2895 ++NumAliasesResolved;
2896 Changed = true;
223e47cc 2897
1a4d82fc 2898 if (RenameTarget) {
223e47cc
LB
2899 // Give the aliasee the name, linkage and other attributes of the alias.
2900 Target->takeName(J);
2901 Target->setLinkage(J->getLinkage());
1a4d82fc
JJ
2902 Target->setVisibility(J->getVisibility());
2903 Target->setDLLStorageClass(J->getDLLStorageClass());
2904
2905 if (Used.usedErase(J))
2906 Used.usedInsert(Target);
2907
2908 if (Used.compilerUsedErase(J))
2909 Used.compilerUsedInsert(Target);
2910 } else if (mayHaveOtherReferences(*J, Used))
2911 continue;
223e47cc
LB
2912
2913 // Delete the alias.
2914 M.getAliasList().erase(J);
2915 ++NumAliasesRemoved;
2916 Changed = true;
2917 }
2918
1a4d82fc
JJ
2919 Used.syncVariablesAndSets();
2920
223e47cc
LB
2921 return Changed;
2922}
2923
2924static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2925 if (!TLI->has(LibFunc::cxa_atexit))
1a4d82fc 2926 return nullptr;
223e47cc
LB
2927
2928 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
970d7e83 2929
223e47cc 2930 if (!Fn)
1a4d82fc 2931 return nullptr;
223e47cc
LB
2932
2933 FunctionType *FTy = Fn->getFunctionType();
970d7e83
LB
2934
2935 // Checking that the function has the right return type, the right number of
223e47cc
LB
2936 // parameters and that they all have pointer types should be enough.
2937 if (!FTy->getReturnType()->isIntegerTy() ||
2938 FTy->getNumParams() != 3 ||
2939 !FTy->getParamType(0)->isPointerTy() ||
2940 !FTy->getParamType(1)->isPointerTy() ||
2941 !FTy->getParamType(2)->isPointerTy())
1a4d82fc 2942 return nullptr;
223e47cc
LB
2943
2944 return Fn;
2945}
2946
2947/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2948/// destructor and can therefore be eliminated.
2949/// Note that we assume that other optimization passes have already simplified
2950/// the code so we only look for a function with a single basic block, where
2951/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2952/// other side-effect free instructions.
2953static bool cxxDtorIsEmpty(const Function &Fn,
2954 SmallPtrSet<const Function *, 8> &CalledFunctions) {
2955 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2956 // nounwind, but that doesn't seem worth doing.
2957 if (Fn.isDeclaration())
2958 return false;
2959
2960 if (++Fn.begin() != Fn.end())
2961 return false;
2962
2963 const BasicBlock &EntryBlock = Fn.getEntryBlock();
2964 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2965 I != E; ++I) {
2966 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2967 // Ignore debug intrinsics.
2968 if (isa<DbgInfoIntrinsic>(CI))
2969 continue;
2970
2971 const Function *CalledFn = CI->getCalledFunction();
2972
2973 if (!CalledFn)
2974 return false;
2975
2976 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2977
2978 // Don't treat recursive functions as empty.
85aaf69f 2979 if (!NewCalledFunctions.insert(CalledFn).second)
223e47cc
LB
2980 return false;
2981
2982 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2983 return false;
2984 } else if (isa<ReturnInst>(*I))
2985 return true; // We're done.
2986 else if (I->mayHaveSideEffects())
2987 return false; // Destructor with side effects, bail.
2988 }
2989
2990 return false;
2991}
2992
2993bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2994 /// Itanium C++ ABI p3.3.5:
2995 ///
2996 /// After constructing a global (or local static) object, that will require
2997 /// destruction on exit, a termination function is registered as follows:
2998 ///
2999 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3000 ///
3001 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3002 /// call f(p) when DSO d is unloaded, before all such termination calls
3003 /// registered before this one. It returns zero if registration is
3004 /// successful, nonzero on failure.
3005
3006 // This pass will look for calls to __cxa_atexit where the function is trivial
3007 // and remove them.
3008 bool Changed = false;
3009
1a4d82fc
JJ
3010 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
3011 I != E;) {
223e47cc
LB
3012 // We're only interested in calls. Theoretically, we could handle invoke
3013 // instructions as well, but neither llvm-gcc nor clang generate invokes
3014 // to __cxa_atexit.
3015 CallInst *CI = dyn_cast<CallInst>(*I++);
3016 if (!CI)
3017 continue;
3018
970d7e83 3019 Function *DtorFn =
223e47cc
LB
3020 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3021 if (!DtorFn)
3022 continue;
3023
3024 SmallPtrSet<const Function *, 8> CalledFunctions;
3025 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3026 continue;
3027
3028 // Just remove the call.
3029 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3030 CI->eraseFromParent();
3031
3032 ++NumCXXDtorsRemoved;
3033
3034 Changed |= true;
3035 }
3036
3037 return Changed;
3038}
3039
3040bool GlobalOpt::runOnModule(Module &M) {
3041 bool Changed = false;
3042
1a4d82fc
JJ
3043 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
3044 DL = DLP ? &DLP->getDataLayout() : nullptr;
223e47cc
LB
3045 TLI = &getAnalysis<TargetLibraryInfo>();
3046
223e47cc
LB
3047 bool LocalChange = true;
3048 while (LocalChange) {
3049 LocalChange = false;
3050
85aaf69f
SL
3051 NotDiscardableComdats.clear();
3052 for (const GlobalVariable &GV : M.globals())
3053 if (const Comdat *C = GV.getComdat())
3054 if (!GV.isDiscardableIfUnused() || !GV.use_empty())
3055 NotDiscardableComdats.insert(C);
3056 for (Function &F : M)
3057 if (const Comdat *C = F.getComdat())
3058 if (!F.isDefTriviallyDead())
3059 NotDiscardableComdats.insert(C);
3060 for (GlobalAlias &GA : M.aliases())
3061 if (const Comdat *C = GA.getComdat())
3062 if (!GA.isDiscardableIfUnused() || !GA.use_empty())
3063 NotDiscardableComdats.insert(C);
3064
223e47cc
LB
3065 // Delete functions that are trivially dead, ccc -> fastcc
3066 LocalChange |= OptimizeFunctions(M);
3067
3068 // Optimize global_ctors list.
1a4d82fc
JJ
3069 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
3070 return EvaluateStaticConstructor(F, DL, TLI);
3071 });
223e47cc
LB
3072
3073 // Optimize non-address-taken globals.
3074 LocalChange |= OptimizeGlobalVars(M);
3075
3076 // Resolve aliases, when possible.
3077 LocalChange |= OptimizeGlobalAliases(M);
3078
1a4d82fc
JJ
3079 // Try to remove trivial global destructors if they are not removed
3080 // already.
3081 Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
223e47cc
LB
3082 if (CXAAtExitFn)
3083 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3084
3085 Changed |= LocalChange;
3086 }
3087
3088 // TODO: Move all global ctors functions to the end of the module for code
3089 // layout.
3090
3091 return Changed;
3092}