]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Instrumentation / MemorySanitizer.cpp
CommitLineData
970d7e83
LB
1//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
970d7e83
LB
13/// The algorithm of the tool is similar to Memcheck
14/// (http://goo.gl/QKbem). We associate a few shadow bits with every
15/// byte of the application memory, poison the shadow of the malloc-ed
16/// or alloca-ed memory, load the shadow bits on every memory read,
17/// propagate the shadow bits through some of the arithmetic
18/// instruction (including MOV), store the shadow bits on every memory
19/// write, report a bug on some other instructions (e.g. JMP) if the
20/// associated shadow is poisoned.
21///
22/// But there are differences too. The first and the major one:
23/// compiler instrumentation instead of binary instrumentation. This
24/// gives us much better register allocation, possible compiler
25/// optimizations and a fast start-up. But this brings the major issue
26/// as well: msan needs to see all program events, including system
27/// calls and reads/writes in system libraries, so we either need to
28/// compile *everything* with msan or use a binary translation
29/// component (e.g. DynamoRIO) to instrument pre-built libraries.
30/// Another difference from Memcheck is that we use 8 shadow bits per
31/// byte of application memory and use a direct shadow mapping. This
32/// greatly simplifies the instrumentation code and avoids races on
33/// shadow updates (Memcheck is single-threaded so races are not a
34/// concern there. Memcheck uses 2 shadow bits per byte with a slow
35/// path storage that uses 8 bits per byte).
36///
37/// The default value of shadow is 0, which means "clean" (not poisoned).
38///
39/// Every module initializer should call __msan_init to ensure that the
40/// shadow memory is ready. On error, __msan_warning is called. Since
41/// parameters and return values may be passed via registers, we have a
42/// specialized thread-local shadow for return values
43/// (__msan_retval_tls) and parameters (__msan_param_tls).
44///
45/// Origin tracking.
46///
47/// MemorySanitizer can track origins (allocation points) of all uninitialized
48/// values. This behavior is controlled with a flag (msan-track-origins) and is
49/// disabled by default.
50///
51/// Origins are 4-byte values created and interpreted by the runtime library.
52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53/// of application memory. Propagation of origins is basically a bunch of
54/// "select" instructions that pick the origin of a dirty argument, if an
55/// instruction has one.
56///
57/// Every 4 aligned, consecutive bytes of application memory have one origin
58/// value associated with them. If these bytes contain uninitialized data
59/// coming from 2 different allocations, the last store wins. Because of this,
60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61/// practice.
62///
63/// Origins are meaningless for fully initialized values, so MemorySanitizer
64/// avoids storing origin to memory when a fully initialized value is stored.
65/// This way it avoids needless overwritting origin of the 4-byte region on
66/// a short (i.e. 1 byte) clean store, and it is also good for performance.
1a4d82fc
JJ
67///
68/// Atomic handling.
69///
70/// Ideally, every atomic store of application value should update the
71/// corresponding shadow location in an atomic way. Unfortunately, atomic store
72/// of two disjoint locations can not be done without severe slowdown.
73///
74/// Therefore, we implement an approximation that may err on the safe side.
75/// In this implementation, every atomically accessed location in the program
76/// may only change from (partially) uninitialized to fully initialized, but
77/// not the other way around. We load the shadow _after_ the application load,
78/// and we store the shadow _before_ the app store. Also, we always store clean
79/// shadow (if the application store is atomic). This way, if the store-load
80/// pair constitutes a happens-before arc, shadow store and load are correctly
81/// ordered such that the load will get either the value that was stored, or
82/// some later value (which is always clean).
83///
84/// This does not work very well with Compare-And-Swap (CAS) and
85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86/// must store the new shadow before the app operation, and load the shadow
87/// after the app operation. Computers don't work this way. Current
88/// implementation ignores the load aspect of CAS/RMW, always returning a clean
89/// value. It implements the store part as a simple atomic store by storing a
90/// clean shadow.
970d7e83 91
1a4d82fc 92//===----------------------------------------------------------------------===//
970d7e83
LB
93
94#include "llvm/Transforms/Instrumentation.h"
95#include "llvm/ADT/DepthFirstIterator.h"
96#include "llvm/ADT/SmallString.h"
97#include "llvm/ADT/SmallVector.h"
1a4d82fc
JJ
98#include "llvm/ADT/StringExtras.h"
99#include "llvm/ADT/Triple.h"
970d7e83
LB
100#include "llvm/IR/DataLayout.h"
101#include "llvm/IR/Function.h"
102#include "llvm/IR/IRBuilder.h"
103#include "llvm/IR/InlineAsm.h"
1a4d82fc 104#include "llvm/IR/InstVisitor.h"
970d7e83
LB
105#include "llvm/IR/IntrinsicInst.h"
106#include "llvm/IR/LLVMContext.h"
107#include "llvm/IR/MDBuilder.h"
108#include "llvm/IR/Module.h"
109#include "llvm/IR/Type.h"
1a4d82fc 110#include "llvm/IR/ValueMap.h"
970d7e83
LB
111#include "llvm/Support/CommandLine.h"
112#include "llvm/Support/Compiler.h"
113#include "llvm/Support/Debug.h"
114#include "llvm/Support/raw_ostream.h"
115#include "llvm/Transforms/Utils/BasicBlockUtils.h"
970d7e83
LB
116#include "llvm/Transforms/Utils/Local.h"
117#include "llvm/Transforms/Utils/ModuleUtils.h"
118
119using namespace llvm;
120
1a4d82fc
JJ
121#define DEBUG_TYPE "msan"
122
970d7e83
LB
123static const unsigned kMinOriginAlignment = 4;
124static const unsigned kShadowTLSAlignment = 8;
125
85aaf69f
SL
126// These constants must be kept in sync with the ones in msan.h.
127static const unsigned kParamTLSSize = 800;
128static const unsigned kRetvalTLSSize = 800;
129
1a4d82fc
JJ
130// Accesses sizes are powers of two: 1, 2, 4, 8.
131static const size_t kNumberOfAccessSizes = 4;
132
970d7e83
LB
133/// \brief Track origins of uninitialized values.
134///
135/// Adds a section to MemorySanitizer report that points to the allocation
136/// (stack or heap) the uninitialized bits came from originally.
1a4d82fc 137static cl::opt<int> ClTrackOrigins("msan-track-origins",
970d7e83 138 cl::desc("Track origins (allocation sites) of poisoned memory"),
1a4d82fc 139 cl::Hidden, cl::init(0));
970d7e83
LB
140static cl::opt<bool> ClKeepGoing("msan-keep-going",
141 cl::desc("keep going after reporting a UMR"),
142 cl::Hidden, cl::init(false));
143static cl::opt<bool> ClPoisonStack("msan-poison-stack",
144 cl::desc("poison uninitialized stack variables"),
145 cl::Hidden, cl::init(true));
146static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
147 cl::desc("poison uninitialized stack variables with a call"),
148 cl::Hidden, cl::init(false));
149static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
150 cl::desc("poison uninitialized stack variables with the given patter"),
151 cl::Hidden, cl::init(0xff));
1a4d82fc
JJ
152static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
153 cl::desc("poison undef temps"),
154 cl::Hidden, cl::init(true));
970d7e83
LB
155
156static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
157 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
158 cl::Hidden, cl::init(true));
159
160static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
161 cl::desc("exact handling of relational integer ICmp"),
162 cl::Hidden, cl::init(false));
163
970d7e83
LB
164// This flag controls whether we check the shadow of the address
165// operand of load or store. Such bugs are very rare, since load from
166// a garbage address typically results in SEGV, but still happen
167// (e.g. only lower bits of address are garbage, or the access happens
168// early at program startup where malloc-ed memory is more likely to
169// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
170static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
171 cl::desc("report accesses through a pointer which has poisoned shadow"),
172 cl::Hidden, cl::init(true));
173
174static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
175 cl::desc("print out instructions with default strict semantics"),
176 cl::Hidden, cl::init(false));
177
1a4d82fc
JJ
178static cl::opt<int> ClInstrumentationWithCallThreshold(
179 "msan-instrumentation-with-call-threshold",
180 cl::desc(
181 "If the function being instrumented requires more than "
182 "this number of checks and origin stores, use callbacks instead of "
183 "inline checks (-1 means never use callbacks)."),
184 cl::Hidden, cl::init(3500));
185
85aaf69f
SL
186// This is an experiment to enable handling of cases where shadow is a non-zero
187// compile-time constant. For some unexplainable reason they were silently
188// ignored in the instrumentation.
189static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
190 cl::desc("Insert checks for constant shadow values"),
191 cl::Hidden, cl::init(false));
970d7e83
LB
192
193namespace {
194
85aaf69f
SL
195// Memory map parameters used in application-to-shadow address calculation.
196// Offset = (Addr & ~AndMask) ^ XorMask
197// Shadow = ShadowBase + Offset
198// Origin = OriginBase + Offset
199struct MemoryMapParams {
200 uint64_t AndMask;
201 uint64_t XorMask;
202 uint64_t ShadowBase;
203 uint64_t OriginBase;
204};
205
206struct PlatformMemoryMapParams {
207 const MemoryMapParams *bits32;
208 const MemoryMapParams *bits64;
209};
210
211// i386 Linux
212static const MemoryMapParams LinuxMemoryMapParams32 = {
213 0x000080000000, // AndMask
214 0, // XorMask (not used)
215 0, // ShadowBase (not used)
216 0x000040000000, // OriginBase
217};
218
219// x86_64 Linux
220static const MemoryMapParams LinuxMemoryMapParams64 = {
221 0x400000000000, // AndMask
222 0, // XorMask (not used)
223 0, // ShadowBase (not used)
224 0x200000000000, // OriginBase
225};
226
227// i386 FreeBSD
228static const MemoryMapParams FreeBSDMemoryMapParams32 = {
229 0x000180000000, // AndMask
230 0x000040000000, // XorMask
231 0x000020000000, // ShadowBase
232 0x000700000000, // OriginBase
233};
234
235// x86_64 FreeBSD
236static const MemoryMapParams FreeBSDMemoryMapParams64 = {
237 0xc00000000000, // AndMask
238 0x200000000000, // XorMask
239 0x100000000000, // ShadowBase
240 0x380000000000, // OriginBase
241};
242
243static const PlatformMemoryMapParams LinuxMemoryMapParams = {
244 &LinuxMemoryMapParams32,
245 &LinuxMemoryMapParams64,
246};
247
248static const PlatformMemoryMapParams FreeBSDMemoryMapParams = {
249 &FreeBSDMemoryMapParams32,
250 &FreeBSDMemoryMapParams64,
251};
252
970d7e83
LB
253/// \brief An instrumentation pass implementing detection of uninitialized
254/// reads.
255///
256/// MemorySanitizer: instrument the code in module to find
257/// uninitialized reads.
258class MemorySanitizer : public FunctionPass {
259 public:
1a4d82fc
JJ
260 MemorySanitizer(int TrackOrigins = 0)
261 : FunctionPass(ID),
262 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
263 DL(nullptr),
85aaf69f 264 WarningFn(nullptr) {}
1a4d82fc
JJ
265 const char *getPassName() const override { return "MemorySanitizer"; }
266 bool runOnFunction(Function &F) override;
267 bool doInitialization(Module &M) override;
970d7e83
LB
268 static char ID; // Pass identification, replacement for typeid.
269
270 private:
271 void initializeCallbacks(Module &M);
272
273 /// \brief Track origins (allocation points) of uninitialized values.
1a4d82fc 274 int TrackOrigins;
970d7e83 275
1a4d82fc 276 const DataLayout *DL;
970d7e83
LB
277 LLVMContext *C;
278 Type *IntptrTy;
279 Type *OriginTy;
280 /// \brief Thread-local shadow storage for function parameters.
281 GlobalVariable *ParamTLS;
282 /// \brief Thread-local origin storage for function parameters.
283 GlobalVariable *ParamOriginTLS;
284 /// \brief Thread-local shadow storage for function return value.
285 GlobalVariable *RetvalTLS;
286 /// \brief Thread-local origin storage for function return value.
287 GlobalVariable *RetvalOriginTLS;
288 /// \brief Thread-local shadow storage for in-register va_arg function
289 /// parameters (x86_64-specific).
290 GlobalVariable *VAArgTLS;
291 /// \brief Thread-local shadow storage for va_arg overflow area
292 /// (x86_64-specific).
293 GlobalVariable *VAArgOverflowSizeTLS;
294 /// \brief Thread-local space used to pass origin value to the UMR reporting
295 /// function.
296 GlobalVariable *OriginTLS;
297
298 /// \brief The run-time callback to print a warning.
299 Value *WarningFn;
1a4d82fc
JJ
300 // These arrays are indexed by log2(AccessSize).
301 Value *MaybeWarningFn[kNumberOfAccessSizes];
302 Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
303
970d7e83
LB
304 /// \brief Run-time helper that generates a new origin value for a stack
305 /// allocation.
1a4d82fc 306 Value *MsanSetAllocaOrigin4Fn;
970d7e83
LB
307 /// \brief Run-time helper that poisons stack on function entry.
308 Value *MsanPoisonStackFn;
1a4d82fc
JJ
309 /// \brief Run-time helper that records a store (or any event) of an
310 /// uninitialized value and returns an updated origin id encoding this info.
311 Value *MsanChainOriginFn;
970d7e83
LB
312 /// \brief MSan runtime replacements for memmove, memcpy and memset.
313 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
314
85aaf69f
SL
315 /// \brief Memory map parameters used in application-to-shadow calculation.
316 const MemoryMapParams *MapParams;
317
970d7e83
LB
318 MDNode *ColdCallWeights;
319 /// \brief Branch weights for origin store.
320 MDNode *OriginStoreWeights;
970d7e83
LB
321 /// \brief An empty volatile inline asm that prevents callback merge.
322 InlineAsm *EmptyAsm;
323
324 friend struct MemorySanitizerVisitor;
325 friend struct VarArgAMD64Helper;
326};
327} // namespace
328
329char MemorySanitizer::ID = 0;
330INITIALIZE_PASS(MemorySanitizer, "msan",
331 "MemorySanitizer: detects uninitialized reads.",
332 false, false)
333
1a4d82fc
JJ
334FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
335 return new MemorySanitizer(TrackOrigins);
970d7e83
LB
336}
337
338/// \brief Create a non-const global initialized with the given string.
339///
340/// Creates a writable global for Str so that we can pass it to the
341/// run-time lib. Runtime uses first 4 bytes of the string to store the
342/// frame ID, so the string needs to be mutable.
343static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
344 StringRef Str) {
345 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
346 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
347 GlobalValue::PrivateLinkage, StrConst, "");
348}
349
350
351/// \brief Insert extern declaration of runtime-provided functions and globals.
352void MemorySanitizer::initializeCallbacks(Module &M) {
353 // Only do this once.
354 if (WarningFn)
355 return;
356
357 IRBuilder<> IRB(*C);
358 // Create the callback.
359 // FIXME: this function should have "Cold" calling conv,
360 // which is not yet implemented.
361 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
362 : "__msan_warning_noreturn";
85aaf69f 363 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
970d7e83 364
1a4d82fc
JJ
365 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
366 AccessSizeIndex++) {
367 unsigned AccessSize = 1 << AccessSizeIndex;
368 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
369 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
370 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
85aaf69f 371 IRB.getInt32Ty(), nullptr);
1a4d82fc
JJ
372
373 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
374 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
375 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
85aaf69f 376 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
1a4d82fc
JJ
377 }
378
379 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
380 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
85aaf69f
SL
381 IRB.getInt8PtrTy(), IntptrTy, nullptr);
382 MsanPoisonStackFn =
383 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
384 IRB.getInt8PtrTy(), IntptrTy, nullptr);
1a4d82fc 385 MsanChainOriginFn = M.getOrInsertFunction(
85aaf69f 386 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
970d7e83
LB
387 MemmoveFn = M.getOrInsertFunction(
388 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
85aaf69f 389 IRB.getInt8PtrTy(), IntptrTy, nullptr);
970d7e83
LB
390 MemcpyFn = M.getOrInsertFunction(
391 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
85aaf69f 392 IntptrTy, nullptr);
970d7e83
LB
393 MemsetFn = M.getOrInsertFunction(
394 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
85aaf69f 395 IntptrTy, nullptr);
970d7e83
LB
396
397 // Create globals.
398 RetvalTLS = new GlobalVariable(
85aaf69f 399 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
1a4d82fc
JJ
400 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
401 GlobalVariable::InitialExecTLSModel);
970d7e83 402 RetvalOriginTLS = new GlobalVariable(
1a4d82fc
JJ
403 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
404 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
970d7e83
LB
405
406 ParamTLS = new GlobalVariable(
85aaf69f 407 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
1a4d82fc
JJ
408 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
409 GlobalVariable::InitialExecTLSModel);
970d7e83 410 ParamOriginTLS = new GlobalVariable(
85aaf69f
SL
411 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
412 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
413 nullptr, GlobalVariable::InitialExecTLSModel);
970d7e83
LB
414
415 VAArgTLS = new GlobalVariable(
85aaf69f 416 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
1a4d82fc
JJ
417 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
418 GlobalVariable::InitialExecTLSModel);
970d7e83 419 VAArgOverflowSizeTLS = new GlobalVariable(
1a4d82fc
JJ
420 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
421 "__msan_va_arg_overflow_size_tls", nullptr,
422 GlobalVariable::InitialExecTLSModel);
970d7e83 423 OriginTLS = new GlobalVariable(
1a4d82fc
JJ
424 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
425 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
970d7e83
LB
426
427 // We insert an empty inline asm after __msan_report* to avoid callback merge.
428 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
429 StringRef(""), StringRef(""),
430 /*hasSideEffects=*/true);
431}
432
433/// \brief Module-level initialization.
434///
435/// inserts a call to __msan_init to the module's constructor list.
436bool MemorySanitizer::doInitialization(Module &M) {
1a4d82fc
JJ
437 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
438 if (!DLP)
439 report_fatal_error("data layout missing");
440 DL = &DLP->getDataLayout();
441
85aaf69f
SL
442 Triple TargetTriple(M.getTargetTriple());
443 const PlatformMemoryMapParams *PlatformMapParams;
444 if (TargetTriple.getOS() == Triple::FreeBSD)
445 PlatformMapParams = &FreeBSDMemoryMapParams;
446 else
447 PlatformMapParams = &LinuxMemoryMapParams;
448
970d7e83 449 C = &(M.getContext());
1a4d82fc 450 unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
970d7e83
LB
451 switch (PtrSize) {
452 case 64:
85aaf69f 453 MapParams = PlatformMapParams->bits64;
970d7e83
LB
454 break;
455 case 32:
85aaf69f 456 MapParams = PlatformMapParams->bits32;
970d7e83
LB
457 break;
458 default:
459 report_fatal_error("unsupported pointer size");
460 break;
461 }
462
463 IRBuilder<> IRB(*C);
1a4d82fc 464 IntptrTy = IRB.getIntPtrTy(DL);
970d7e83
LB
465 OriginTy = IRB.getInt32Ty();
466
467 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
468 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
469
470 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
471 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
85aaf69f 472 "__msan_init", IRB.getVoidTy(), nullptr)), 0);
970d7e83 473
1a4d82fc
JJ
474 if (TrackOrigins)
475 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
476 IRB.getInt32(TrackOrigins), "__msan_track_origins");
970d7e83 477
1a4d82fc
JJ
478 if (ClKeepGoing)
479 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
480 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
970d7e83
LB
481
482 return true;
483}
484
485namespace {
486
487/// \brief A helper class that handles instrumentation of VarArg
488/// functions on a particular platform.
489///
490/// Implementations are expected to insert the instrumentation
491/// necessary to propagate argument shadow through VarArg function
492/// calls. Visit* methods are called during an InstVisitor pass over
493/// the function, and should avoid creating new basic blocks. A new
494/// instance of this class is created for each instrumented function.
495struct VarArgHelper {
496 /// \brief Visit a CallSite.
497 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
498
499 /// \brief Visit a va_start call.
500 virtual void visitVAStartInst(VAStartInst &I) = 0;
501
502 /// \brief Visit a va_copy call.
503 virtual void visitVACopyInst(VACopyInst &I) = 0;
504
505 /// \brief Finalize function instrumentation.
506 ///
507 /// This method is called after visiting all interesting (see above)
508 /// instructions in a function.
509 virtual void finalizeInstrumentation() = 0;
510
511 virtual ~VarArgHelper() {}
512};
513
514struct MemorySanitizerVisitor;
515
516VarArgHelper*
517CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
518 MemorySanitizerVisitor &Visitor);
519
1a4d82fc
JJ
520unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
521 if (TypeSize <= 8) return 0;
522 return Log2_32_Ceil(TypeSize / 8);
523}
524
970d7e83
LB
525/// This class does all the work for a given function. Store and Load
526/// instructions store and load corresponding shadow and origin
527/// values. Most instructions propagate shadow from arguments to their
528/// return values. Certain instructions (most importantly, BranchInst)
529/// test their argument shadow and print reports (with a runtime call) if it's
530/// non-zero.
531struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
532 Function &F;
533 MemorySanitizer &MS;
534 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
535 ValueMap<Value*, Value*> ShadowMap, OriginMap;
1a4d82fc
JJ
536 std::unique_ptr<VarArgHelper> VAHelper;
537
538 // The following flags disable parts of MSan instrumentation based on
539 // blacklist contents and command-line options.
970d7e83 540 bool InsertChecks;
1a4d82fc
JJ
541 bool PropagateShadow;
542 bool PoisonStack;
543 bool PoisonUndef;
544 bool CheckReturnValue;
970d7e83
LB
545
546 struct ShadowOriginAndInsertPoint {
1a4d82fc
JJ
547 Value *Shadow;
548 Value *Origin;
970d7e83 549 Instruction *OrigIns;
1a4d82fc 550 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
970d7e83 551 : Shadow(S), Origin(O), OrigIns(I) { }
970d7e83
LB
552 };
553 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
554 SmallVector<Instruction*, 16> StoreList;
555
556 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
557 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
1a4d82fc
JJ
558 bool SanitizeFunction = F.getAttributes().hasAttribute(
559 AttributeSet::FunctionIndex, Attribute::SanitizeMemory);
560 InsertChecks = SanitizeFunction;
561 PropagateShadow = SanitizeFunction;
562 PoisonStack = SanitizeFunction && ClPoisonStack;
563 PoisonUndef = SanitizeFunction && ClPoisonUndef;
564 // FIXME: Consider using SpecialCaseList to specify a list of functions that
565 // must always return fully initialized values. For now, we hardcode "main".
566 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
970d7e83
LB
567
568 DEBUG(if (!InsertChecks)
569 dbgs() << "MemorySanitizer is not inserting checks into '"
570 << F.getName() << "'\n");
571 }
572
1a4d82fc
JJ
573 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
574 if (MS.TrackOrigins <= 1) return V;
575 return IRB.CreateCall(MS.MsanChainOriginFn, V);
576 }
970d7e83 577
1a4d82fc
JJ
578 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
579 unsigned Alignment, bool AsCall) {
85aaf69f 580 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1a4d82fc 581 if (isa<StructType>(Shadow->getType())) {
85aaf69f
SL
582 IRB.CreateAlignedStore(updateOrigin(Origin, IRB),
583 getOriginPtr(Addr, IRB, Alignment),
584 OriginAlignment);
1a4d82fc
JJ
585 } else {
586 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
587 // TODO(eugenis): handle non-zero constant shadow by inserting an
588 // unconditional check (can not simply fail compilation as this could
589 // be in the dead code).
85aaf69f
SL
590 if (!ClCheckConstantShadow)
591 if (isa<Constant>(ConvertedShadow)) return;
1a4d82fc
JJ
592 unsigned TypeSizeInBits =
593 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
594 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
595 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
596 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
597 Value *ConvertedShadow2 = IRB.CreateZExt(
598 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
599 IRB.CreateCall3(Fn, ConvertedShadow2,
600 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
601 Origin);
602 } else {
603 Value *Cmp = IRB.CreateICmpNE(
604 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
605 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
606 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
607 IRBuilder<> IRBNew(CheckTerm);
608 IRBNew.CreateAlignedStore(updateOrigin(Origin, IRBNew),
85aaf69f
SL
609 getOriginPtr(Addr, IRBNew, Alignment),
610 OriginAlignment);
1a4d82fc
JJ
611 }
612 }
613 }
614
615 void materializeStores(bool InstrumentWithCalls) {
616 for (auto Inst : StoreList) {
617 StoreInst &SI = *dyn_cast<StoreInst>(Inst);
618
619 IRBuilder<> IRB(&SI);
620 Value *Val = SI.getValueOperand();
621 Value *Addr = SI.getPointerOperand();
622 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
970d7e83
LB
623 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
624
625 StoreInst *NewSI =
1a4d82fc 626 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
970d7e83
LB
627 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
628 (void)NewSI;
629
1a4d82fc
JJ
630 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
631
632 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
970d7e83 633
85aaf69f
SL
634 if (MS.TrackOrigins && !SI.isAtomic())
635 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
1a4d82fc 636 InstrumentWithCalls);
970d7e83
LB
637 }
638 }
639
1a4d82fc
JJ
640 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
641 bool AsCall) {
642 IRBuilder<> IRB(OrigIns);
643 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
644 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
645 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
85aaf69f
SL
646 // See the comment in storeOrigin().
647 if (!ClCheckConstantShadow)
648 if (isa<Constant>(ConvertedShadow)) return;
1a4d82fc
JJ
649 unsigned TypeSizeInBits =
650 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
651 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
652 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
653 Value *Fn = MS.MaybeWarningFn[SizeIndex];
654 Value *ConvertedShadow2 =
655 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
656 IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
657 ? Origin
658 : (Value *)IRB.getInt32(0));
659 } else {
970d7e83
LB
660 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
661 getCleanShadow(ConvertedShadow), "_mscmp");
1a4d82fc
JJ
662 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
663 Cmp, OrigIns,
664 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
970d7e83
LB
665
666 IRB.SetInsertPoint(CheckTerm);
667 if (MS.TrackOrigins) {
1a4d82fc 668 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
970d7e83
LB
669 MS.OriginTLS);
670 }
1a4d82fc 671 IRB.CreateCall(MS.WarningFn);
970d7e83
LB
672 IRB.CreateCall(MS.EmptyAsm);
673 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
674 }
1a4d82fc
JJ
675 }
676
677 void materializeChecks(bool InstrumentWithCalls) {
678 for (const auto &ShadowData : InstrumentationList) {
679 Instruction *OrigIns = ShadowData.OrigIns;
680 Value *Shadow = ShadowData.Shadow;
681 Value *Origin = ShadowData.Origin;
682 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
683 }
970d7e83
LB
684 DEBUG(dbgs() << "DONE:\n" << F);
685 }
686
687 /// \brief Add MemorySanitizer instrumentation to a function.
688 bool runOnFunction() {
689 MS.initializeCallbacks(*F.getParent());
1a4d82fc 690 if (!MS.DL) return false;
970d7e83
LB
691
692 // In the presence of unreachable blocks, we may see Phi nodes with
693 // incoming nodes from such blocks. Since InstVisitor skips unreachable
694 // blocks, such nodes will not have any shadow value associated with them.
695 // It's easier to remove unreachable blocks than deal with missing shadow.
696 removeUnreachableBlocks(F);
697
698 // Iterate all BBs in depth-first order and create shadow instructions
699 // for all instructions (where applicable).
700 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1a4d82fc 701 for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
970d7e83 702 visit(*BB);
1a4d82fc 703
970d7e83
LB
704
705 // Finalize PHI nodes.
1a4d82fc 706 for (PHINode *PN : ShadowPHINodes) {
970d7e83 707 PHINode *PNS = cast<PHINode>(getShadow(PN));
1a4d82fc 708 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
970d7e83
LB
709 size_t NumValues = PN->getNumIncomingValues();
710 for (size_t v = 0; v < NumValues; v++) {
711 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1a4d82fc 712 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
970d7e83
LB
713 }
714 }
715
716 VAHelper->finalizeInstrumentation();
717
1a4d82fc
JJ
718 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
719 InstrumentationList.size() + StoreList.size() >
720 (unsigned)ClInstrumentationWithCallThreshold;
721
970d7e83
LB
722 // Delayed instrumentation of StoreInst.
723 // This may add new checks to be inserted later.
1a4d82fc 724 materializeStores(InstrumentWithCalls);
970d7e83
LB
725
726 // Insert shadow value checks.
1a4d82fc
JJ
727 materializeChecks(InstrumentWithCalls);
728
970d7e83
LB
729 return true;
730 }
731
732 /// \brief Compute the shadow type that corresponds to a given Value.
733 Type *getShadowTy(Value *V) {
734 return getShadowTy(V->getType());
735 }
736
737 /// \brief Compute the shadow type that corresponds to a given Type.
738 Type *getShadowTy(Type *OrigTy) {
739 if (!OrigTy->isSized()) {
1a4d82fc 740 return nullptr;
970d7e83
LB
741 }
742 // For integer type, shadow is the same as the original type.
743 // This may return weird-sized types like i1.
744 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
745 return IT;
746 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1a4d82fc 747 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
970d7e83
LB
748 return VectorType::get(IntegerType::get(*MS.C, EltSize),
749 VT->getNumElements());
750 }
1a4d82fc
JJ
751 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
752 return ArrayType::get(getShadowTy(AT->getElementType()),
753 AT->getNumElements());
754 }
970d7e83
LB
755 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
756 SmallVector<Type*, 4> Elements;
757 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
758 Elements.push_back(getShadowTy(ST->getElementType(i)));
759 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
760 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
761 return Res;
762 }
1a4d82fc 763 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
970d7e83
LB
764 return IntegerType::get(*MS.C, TypeSize);
765 }
766
767 /// \brief Flatten a vector type.
768 Type *getShadowTyNoVec(Type *ty) {
769 if (VectorType *vt = dyn_cast<VectorType>(ty))
770 return IntegerType::get(*MS.C, vt->getBitWidth());
771 return ty;
772 }
773
774 /// \brief Convert a shadow value to it's flattened variant.
775 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
776 Type *Ty = V->getType();
777 Type *NoVecTy = getShadowTyNoVec(Ty);
778 if (Ty == NoVecTy) return V;
779 return IRB.CreateBitCast(V, NoVecTy);
780 }
781
85aaf69f
SL
782 /// \brief Compute the integer shadow offset that corresponds to a given
783 /// application address.
784 ///
785 /// Offset = (Addr & ~AndMask) ^ XorMask
786 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
787 uint64_t AndMask = MS.MapParams->AndMask;
788 assert(AndMask != 0 && "AndMask shall be specified");
789 Value *OffsetLong =
790 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
791 ConstantInt::get(MS.IntptrTy, ~AndMask));
792
793 uint64_t XorMask = MS.MapParams->XorMask;
794 if (XorMask != 0)
795 OffsetLong = IRB.CreateXor(OffsetLong,
796 ConstantInt::get(MS.IntptrTy, XorMask));
797 return OffsetLong;
798 }
799
970d7e83
LB
800 /// \brief Compute the shadow address that corresponds to a given application
801 /// address.
802 ///
85aaf69f 803 /// Shadow = ShadowBase + Offset
970d7e83
LB
804 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
805 IRBuilder<> &IRB) {
85aaf69f
SL
806 Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
807 uint64_t ShadowBase = MS.MapParams->ShadowBase;
808 if (ShadowBase != 0)
809 ShadowLong =
810 IRB.CreateAdd(ShadowLong,
811 ConstantInt::get(MS.IntptrTy, ShadowBase));
970d7e83
LB
812 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
813 }
814
815 /// \brief Compute the origin address that corresponds to a given application
816 /// address.
817 ///
85aaf69f
SL
818 /// OriginAddr = (OriginBase + Offset) & ~3ULL
819 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
820 Value *OriginLong = getShadowPtrOffset(Addr, IRB);
821 uint64_t OriginBase = MS.MapParams->OriginBase;
822 if (OriginBase != 0)
823 OriginLong =
824 IRB.CreateAdd(OriginLong,
825 ConstantInt::get(MS.IntptrTy, OriginBase));
826 if (Alignment < kMinOriginAlignment) {
827 uint64_t Mask = kMinOriginAlignment - 1;
828 OriginLong = IRB.CreateAnd(OriginLong,
829 ConstantInt::get(MS.IntptrTy, ~Mask));
830 }
831 return IRB.CreateIntToPtr(OriginLong,
832 PointerType::get(IRB.getInt32Ty(), 0));
970d7e83
LB
833 }
834
835 /// \brief Compute the shadow address for a given function argument.
836 ///
837 /// Shadow = ParamTLS+ArgOffset.
838 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
839 int ArgOffset) {
840 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
841 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
842 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
843 "_msarg");
844 }
845
846 /// \brief Compute the origin address for a given function argument.
847 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
848 int ArgOffset) {
1a4d82fc 849 if (!MS.TrackOrigins) return nullptr;
970d7e83
LB
850 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
851 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
852 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
853 "_msarg_o");
854 }
855
856 /// \brief Compute the shadow address for a retval.
857 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
858 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
859 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
860 "_msret");
861 }
862
863 /// \brief Compute the origin address for a retval.
864 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
865 // We keep a single origin for the entire retval. Might be too optimistic.
866 return MS.RetvalOriginTLS;
867 }
868
869 /// \brief Set SV to be the shadow value for V.
870 void setShadow(Value *V, Value *SV) {
871 assert(!ShadowMap.count(V) && "Values may only have one shadow");
1a4d82fc 872 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
970d7e83
LB
873 }
874
875 /// \brief Set Origin to be the origin value for V.
876 void setOrigin(Value *V, Value *Origin) {
877 if (!MS.TrackOrigins) return;
878 assert(!OriginMap.count(V) && "Values may only have one origin");
879 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
880 OriginMap[V] = Origin;
881 }
882
883 /// \brief Create a clean shadow value for a given value.
884 ///
885 /// Clean shadow (all zeroes) means all bits of the value are defined
886 /// (initialized).
1a4d82fc 887 Constant *getCleanShadow(Value *V) {
970d7e83
LB
888 Type *ShadowTy = getShadowTy(V);
889 if (!ShadowTy)
1a4d82fc 890 return nullptr;
970d7e83
LB
891 return Constant::getNullValue(ShadowTy);
892 }
893
894 /// \brief Create a dirty shadow of a given shadow type.
895 Constant *getPoisonedShadow(Type *ShadowTy) {
896 assert(ShadowTy);
897 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
898 return Constant::getAllOnesValue(ShadowTy);
1a4d82fc
JJ
899 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
900 SmallVector<Constant *, 4> Vals(AT->getNumElements(),
901 getPoisonedShadow(AT->getElementType()));
902 return ConstantArray::get(AT, Vals);
903 }
904 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
905 SmallVector<Constant *, 4> Vals;
906 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
907 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
908 return ConstantStruct::get(ST, Vals);
909 }
910 llvm_unreachable("Unexpected shadow type");
911 }
912
913 /// \brief Create a dirty shadow for a given value.
914 Constant *getPoisonedShadow(Value *V) {
915 Type *ShadowTy = getShadowTy(V);
916 if (!ShadowTy)
917 return nullptr;
918 return getPoisonedShadow(ShadowTy);
970d7e83
LB
919 }
920
921 /// \brief Create a clean (zero) origin.
922 Value *getCleanOrigin() {
923 return Constant::getNullValue(MS.OriginTy);
924 }
925
926 /// \brief Get the shadow value for a given Value.
927 ///
928 /// This function either returns the value set earlier with setShadow,
929 /// or extracts if from ParamTLS (for function arguments).
930 Value *getShadow(Value *V) {
1a4d82fc 931 if (!PropagateShadow) return getCleanShadow(V);
970d7e83
LB
932 if (Instruction *I = dyn_cast<Instruction>(V)) {
933 // For instructions the shadow is already stored in the map.
934 Value *Shadow = ShadowMap[V];
935 if (!Shadow) {
936 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
937 (void)I;
938 assert(Shadow && "No shadow for a value");
939 }
940 return Shadow;
941 }
942 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1a4d82fc 943 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
970d7e83
LB
944 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
945 (void)U;
946 return AllOnes;
947 }
948 if (Argument *A = dyn_cast<Argument>(V)) {
949 // For arguments we compute the shadow on demand and store it in the map.
950 Value **ShadowPtr = &ShadowMap[V];
951 if (*ShadowPtr)
952 return *ShadowPtr;
953 Function *F = A->getParent();
954 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
955 unsigned ArgOffset = 0;
1a4d82fc
JJ
956 for (auto &FArg : F->args()) {
957 if (!FArg.getType()->isSized()) {
970d7e83
LB
958 DEBUG(dbgs() << "Arg is not sized\n");
959 continue;
960 }
1a4d82fc
JJ
961 unsigned Size = FArg.hasByValAttr()
962 ? MS.DL->getTypeAllocSize(FArg.getType()->getPointerElementType())
963 : MS.DL->getTypeAllocSize(FArg.getType());
964 if (A == &FArg) {
85aaf69f 965 bool Overflow = ArgOffset + Size > kParamTLSSize;
1a4d82fc
JJ
966 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
967 if (FArg.hasByValAttr()) {
970d7e83
LB
968 // ByVal pointer itself has clean shadow. We copy the actual
969 // argument shadow to the underlying memory.
1a4d82fc
JJ
970 // Figure out maximal valid memcpy alignment.
971 unsigned ArgAlign = FArg.getParamAlignment();
972 if (ArgAlign == 0) {
973 Type *EltType = A->getType()->getPointerElementType();
974 ArgAlign = MS.DL->getABITypeAlignment(EltType);
975 }
85aaf69f
SL
976 if (Overflow) {
977 // ParamTLS overflow.
978 EntryIRB.CreateMemSet(
979 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
980 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
981 } else {
982 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
983 Value *Cpy = EntryIRB.CreateMemCpy(
984 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
985 CopyAlign);
986 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
987 (void)Cpy;
988 }
970d7e83
LB
989 *ShadowPtr = getCleanShadow(V);
990 } else {
85aaf69f
SL
991 if (Overflow) {
992 // ParamTLS overflow.
993 *ShadowPtr = getCleanShadow(V);
994 } else {
995 *ShadowPtr =
996 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
997 }
970d7e83 998 }
1a4d82fc 999 DEBUG(dbgs() << " ARG: " << FArg << " ==> " <<
970d7e83 1000 **ShadowPtr << "\n");
85aaf69f 1001 if (MS.TrackOrigins && !Overflow) {
1a4d82fc
JJ
1002 Value *OriginPtr =
1003 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
970d7e83 1004 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
85aaf69f
SL
1005 } else {
1006 setOrigin(A, getCleanOrigin());
970d7e83
LB
1007 }
1008 }
85aaf69f 1009 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
970d7e83
LB
1010 }
1011 assert(*ShadowPtr && "Could not find shadow for an argument");
1012 return *ShadowPtr;
1013 }
1014 // For everything else the shadow is zero.
1015 return getCleanShadow(V);
1016 }
1017
1018 /// \brief Get the shadow for i-th argument of the instruction I.
1019 Value *getShadow(Instruction *I, int i) {
1020 return getShadow(I->getOperand(i));
1021 }
1022
1023 /// \brief Get the origin for a value.
1024 Value *getOrigin(Value *V) {
1a4d82fc 1025 if (!MS.TrackOrigins) return nullptr;
85aaf69f
SL
1026 if (!PropagateShadow) return getCleanOrigin();
1027 if (isa<Constant>(V)) return getCleanOrigin();
1028 assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1029 "Unexpected value type in getOrigin()");
1030 Value *Origin = OriginMap[V];
1031 assert(Origin && "Missing origin");
1032 return Origin;
970d7e83
LB
1033 }
1034
1035 /// \brief Get the origin for i-th argument of the instruction I.
1036 Value *getOrigin(Instruction *I, int i) {
1037 return getOrigin(I->getOperand(i));
1038 }
1039
1040 /// \brief Remember the place where a shadow check should be inserted.
1041 ///
1042 /// This location will be later instrumented with a check that will print a
1a4d82fc
JJ
1043 /// UMR warning in runtime if the shadow value is not 0.
1044 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1045 assert(Shadow);
970d7e83 1046 if (!InsertChecks) return;
970d7e83
LB
1047#ifndef NDEBUG
1048 Type *ShadowTy = Shadow->getType();
1049 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1050 "Can only insert checks for integer and vector shadow types");
1051#endif
970d7e83 1052 InstrumentationList.push_back(
1a4d82fc
JJ
1053 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1054 }
1055
1056 /// \brief Remember the place where a shadow check should be inserted.
1057 ///
1058 /// This location will be later instrumented with a check that will print a
1059 /// UMR warning in runtime if the value is not fully defined.
1060 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1061 assert(Val);
85aaf69f
SL
1062 Value *Shadow, *Origin;
1063 if (ClCheckConstantShadow) {
1064 Shadow = getShadow(Val);
1065 if (!Shadow) return;
1066 Origin = getOrigin(Val);
1067 } else {
1068 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1069 if (!Shadow) return;
1070 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1071 }
1a4d82fc
JJ
1072 insertShadowCheck(Shadow, Origin, OrigIns);
1073 }
1074
1075 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1076 switch (a) {
1077 case NotAtomic:
1078 return NotAtomic;
1079 case Unordered:
1080 case Monotonic:
1081 case Release:
1082 return Release;
1083 case Acquire:
1084 case AcquireRelease:
1085 return AcquireRelease;
1086 case SequentiallyConsistent:
1087 return SequentiallyConsistent;
1088 }
1089 llvm_unreachable("Unknown ordering");
1090 }
1091
1092 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1093 switch (a) {
1094 case NotAtomic:
1095 return NotAtomic;
1096 case Unordered:
1097 case Monotonic:
1098 case Acquire:
1099 return Acquire;
1100 case Release:
1101 case AcquireRelease:
1102 return AcquireRelease;
1103 case SequentiallyConsistent:
1104 return SequentiallyConsistent;
1105 }
1106 llvm_unreachable("Unknown ordering");
970d7e83
LB
1107 }
1108
1109 // ------------------- Visitors.
1110
1111 /// \brief Instrument LoadInst
1112 ///
1113 /// Loads the corresponding shadow and (optionally) origin.
1114 /// Optionally, checks that the load address is fully defined.
1115 void visitLoadInst(LoadInst &I) {
1116 assert(I.getType()->isSized() && "Load type must have size");
1a4d82fc 1117 IRBuilder<> IRB(I.getNextNode());
970d7e83
LB
1118 Type *ShadowTy = getShadowTy(&I);
1119 Value *Addr = I.getPointerOperand();
85aaf69f 1120 if (PropagateShadow && !I.getMetadata("nosanitize")) {
970d7e83
LB
1121 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1122 setShadow(&I,
1123 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1124 } else {
1125 setShadow(&I, getCleanShadow(&I));
1126 }
1127
1128 if (ClCheckAccessAddress)
1a4d82fc
JJ
1129 insertShadowCheck(I.getPointerOperand(), &I);
1130
1131 if (I.isAtomic())
1132 I.setOrdering(addAcquireOrdering(I.getOrdering()));
970d7e83
LB
1133
1134 if (MS.TrackOrigins) {
1a4d82fc 1135 if (PropagateShadow) {
85aaf69f
SL
1136 unsigned Alignment = I.getAlignment();
1137 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1138 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
1139 OriginAlignment));
970d7e83
LB
1140 } else {
1141 setOrigin(&I, getCleanOrigin());
1142 }
1143 }
1144 }
1145
1146 /// \brief Instrument StoreInst
1147 ///
1148 /// Stores the corresponding shadow and (optionally) origin.
1149 /// Optionally, checks that the store address is fully defined.
1150 void visitStoreInst(StoreInst &I) {
1151 StoreList.push_back(&I);
1152 }
1153
1a4d82fc
JJ
1154 void handleCASOrRMW(Instruction &I) {
1155 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1156
1157 IRBuilder<> IRB(&I);
1158 Value *Addr = I.getOperand(0);
1159 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1160
1161 if (ClCheckAccessAddress)
1162 insertShadowCheck(Addr, &I);
1163
1164 // Only test the conditional argument of cmpxchg instruction.
1165 // The other argument can potentially be uninitialized, but we can not
1166 // detect this situation reliably without possible false positives.
1167 if (isa<AtomicCmpXchgInst>(I))
1168 insertShadowCheck(I.getOperand(1), &I);
1169
1170 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1171
1172 setShadow(&I, getCleanShadow(&I));
85aaf69f 1173 setOrigin(&I, getCleanOrigin());
1a4d82fc
JJ
1174 }
1175
1176 void visitAtomicRMWInst(AtomicRMWInst &I) {
1177 handleCASOrRMW(I);
1178 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1179 }
1180
1181 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1182 handleCASOrRMW(I);
1183 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1184 }
1185
970d7e83
LB
1186 // Vector manipulation.
1187 void visitExtractElementInst(ExtractElementInst &I) {
1a4d82fc 1188 insertShadowCheck(I.getOperand(1), &I);
970d7e83
LB
1189 IRBuilder<> IRB(&I);
1190 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1191 "_msprop"));
1192 setOrigin(&I, getOrigin(&I, 0));
1193 }
1194
1195 void visitInsertElementInst(InsertElementInst &I) {
1a4d82fc 1196 insertShadowCheck(I.getOperand(2), &I);
970d7e83
LB
1197 IRBuilder<> IRB(&I);
1198 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1199 I.getOperand(2), "_msprop"));
1200 setOriginForNaryOp(I);
1201 }
1202
1203 void visitShuffleVectorInst(ShuffleVectorInst &I) {
1a4d82fc 1204 insertShadowCheck(I.getOperand(2), &I);
970d7e83
LB
1205 IRBuilder<> IRB(&I);
1206 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1207 I.getOperand(2), "_msprop"));
1208 setOriginForNaryOp(I);
1209 }
1210
1211 // Casts.
1212 void visitSExtInst(SExtInst &I) {
1213 IRBuilder<> IRB(&I);
1214 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1215 setOrigin(&I, getOrigin(&I, 0));
1216 }
1217
1218 void visitZExtInst(ZExtInst &I) {
1219 IRBuilder<> IRB(&I);
1220 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1221 setOrigin(&I, getOrigin(&I, 0));
1222 }
1223
1224 void visitTruncInst(TruncInst &I) {
1225 IRBuilder<> IRB(&I);
1226 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1227 setOrigin(&I, getOrigin(&I, 0));
1228 }
1229
1230 void visitBitCastInst(BitCastInst &I) {
1231 IRBuilder<> IRB(&I);
1232 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1233 setOrigin(&I, getOrigin(&I, 0));
1234 }
1235
1236 void visitPtrToIntInst(PtrToIntInst &I) {
1237 IRBuilder<> IRB(&I);
1238 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1239 "_msprop_ptrtoint"));
1240 setOrigin(&I, getOrigin(&I, 0));
1241 }
1242
1243 void visitIntToPtrInst(IntToPtrInst &I) {
1244 IRBuilder<> IRB(&I);
1245 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1246 "_msprop_inttoptr"));
1247 setOrigin(&I, getOrigin(&I, 0));
1248 }
1249
1250 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1251 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1252 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1253 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1254 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1255 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1256
1257 /// \brief Propagate shadow for bitwise AND.
1258 ///
1259 /// This code is exact, i.e. if, for example, a bit in the left argument
1260 /// is defined and 0, then neither the value not definedness of the
1261 /// corresponding bit in B don't affect the resulting shadow.
1262 void visitAnd(BinaryOperator &I) {
1263 IRBuilder<> IRB(&I);
1264 // "And" of 0 and a poisoned value results in unpoisoned value.
1265 // 1&1 => 1; 0&1 => 0; p&1 => p;
1266 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1267 // 1&p => p; 0&p => 0; p&p => p;
1268 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1269 Value *S1 = getShadow(&I, 0);
1270 Value *S2 = getShadow(&I, 1);
1271 Value *V1 = I.getOperand(0);
1272 Value *V2 = I.getOperand(1);
1273 if (V1->getType() != S1->getType()) {
1274 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1275 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1276 }
1277 Value *S1S2 = IRB.CreateAnd(S1, S2);
1278 Value *V1S2 = IRB.CreateAnd(V1, S2);
1279 Value *S1V2 = IRB.CreateAnd(S1, V2);
1280 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1281 setOriginForNaryOp(I);
1282 }
1283
1284 void visitOr(BinaryOperator &I) {
1285 IRBuilder<> IRB(&I);
1286 // "Or" of 1 and a poisoned value results in unpoisoned value.
1287 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1288 // 1|0 => 1; 0|0 => 0; p|0 => p;
1289 // 1|p => 1; 0|p => p; p|p => p;
1290 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1291 Value *S1 = getShadow(&I, 0);
1292 Value *S2 = getShadow(&I, 1);
1293 Value *V1 = IRB.CreateNot(I.getOperand(0));
1294 Value *V2 = IRB.CreateNot(I.getOperand(1));
1295 if (V1->getType() != S1->getType()) {
1296 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1297 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1298 }
1299 Value *S1S2 = IRB.CreateAnd(S1, S2);
1300 Value *V1S2 = IRB.CreateAnd(V1, S2);
1301 Value *S1V2 = IRB.CreateAnd(S1, V2);
1302 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1303 setOriginForNaryOp(I);
1304 }
1305
1306 /// \brief Default propagation of shadow and/or origin.
1307 ///
1308 /// This class implements the general case of shadow propagation, used in all
1309 /// cases where we don't know and/or don't care about what the operation
1310 /// actually does. It converts all input shadow values to a common type
1311 /// (extending or truncating as necessary), and bitwise OR's them.
1312 ///
1313 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1314 /// fully initialized), and less prone to false positives.
1315 ///
1316 /// This class also implements the general case of origin propagation. For a
1317 /// Nary operation, result origin is set to the origin of an argument that is
1318 /// not entirely initialized. If there is more than one such arguments, the
1319 /// rightmost of them is picked. It does not matter which one is picked if all
1320 /// arguments are initialized.
1321 template <bool CombineShadow>
1322 class Combiner {
1323 Value *Shadow;
1324 Value *Origin;
1325 IRBuilder<> &IRB;
1326 MemorySanitizerVisitor *MSV;
1327
1328 public:
1329 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1a4d82fc 1330 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
970d7e83
LB
1331
1332 /// \brief Add a pair of shadow and origin values to the mix.
1333 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1334 if (CombineShadow) {
1335 assert(OpShadow);
1336 if (!Shadow)
1337 Shadow = OpShadow;
1338 else {
1339 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1340 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1341 }
1342 }
1343
1344 if (MSV->MS.TrackOrigins) {
1345 assert(OpOrigin);
1346 if (!Origin) {
1347 Origin = OpOrigin;
1348 } else {
1a4d82fc
JJ
1349 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1350 // No point in adding something that might result in 0 origin value.
1351 if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1352 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1353 Value *Cond =
1354 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1355 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1356 }
970d7e83
LB
1357 }
1358 }
1359 return *this;
1360 }
1361
1362 /// \brief Add an application value to the mix.
1363 Combiner &Add(Value *V) {
1364 Value *OpShadow = MSV->getShadow(V);
1a4d82fc 1365 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
970d7e83
LB
1366 return Add(OpShadow, OpOrigin);
1367 }
1368
1369 /// \brief Set the current combined values as the given instruction's shadow
1370 /// and origin.
1371 void Done(Instruction *I) {
1372 if (CombineShadow) {
1373 assert(Shadow);
1374 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1375 MSV->setShadow(I, Shadow);
1376 }
1377 if (MSV->MS.TrackOrigins) {
1378 assert(Origin);
1379 MSV->setOrigin(I, Origin);
1380 }
1381 }
1382 };
1383
1384 typedef Combiner<true> ShadowAndOriginCombiner;
1385 typedef Combiner<false> OriginCombiner;
1386
1387 /// \brief Propagate origin for arbitrary operation.
1388 void setOriginForNaryOp(Instruction &I) {
1389 if (!MS.TrackOrigins) return;
1390 IRBuilder<> IRB(&I);
1391 OriginCombiner OC(this, IRB);
1392 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1393 OC.Add(OI->get());
1394 OC.Done(&I);
1395 }
1396
1397 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1398 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1399 "Vector of pointers is not a valid shadow type");
1400 return Ty->isVectorTy() ?
1401 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1402 Ty->getPrimitiveSizeInBits();
1403 }
1404
1405 /// \brief Cast between two shadow types, extending or truncating as
1406 /// necessary.
1a4d82fc
JJ
1407 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1408 bool Signed = false) {
970d7e83
LB
1409 Type *srcTy = V->getType();
1410 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1a4d82fc 1411 return IRB.CreateIntCast(V, dstTy, Signed);
970d7e83
LB
1412 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1413 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1a4d82fc 1414 return IRB.CreateIntCast(V, dstTy, Signed);
970d7e83
LB
1415 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1416 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1417 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1418 Value *V2 =
1a4d82fc 1419 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
970d7e83
LB
1420 return IRB.CreateBitCast(V2, dstTy);
1421 // TODO: handle struct types.
1422 }
1423
1a4d82fc
JJ
1424 /// \brief Cast an application value to the type of its own shadow.
1425 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1426 Type *ShadowTy = getShadowTy(V);
1427 if (V->getType() == ShadowTy)
1428 return V;
1429 if (V->getType()->isPtrOrPtrVectorTy())
1430 return IRB.CreatePtrToInt(V, ShadowTy);
1431 else
1432 return IRB.CreateBitCast(V, ShadowTy);
1433 }
1434
970d7e83
LB
1435 /// \brief Propagate shadow for arbitrary operation.
1436 void handleShadowOr(Instruction &I) {
1437 IRBuilder<> IRB(&I);
1438 ShadowAndOriginCombiner SC(this, IRB);
1439 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1440 SC.Add(OI->get());
1441 SC.Done(&I);
1442 }
1443
1a4d82fc
JJ
1444 // \brief Handle multiplication by constant.
1445 //
1446 // Handle a special case of multiplication by constant that may have one or
1447 // more zeros in the lower bits. This makes corresponding number of lower bits
1448 // of the result zero as well. We model it by shifting the other operand
1449 // shadow left by the required number of bits. Effectively, we transform
1450 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1451 // We use multiplication by 2**N instead of shift to cover the case of
1452 // multiplication by 0, which may occur in some elements of a vector operand.
1453 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1454 Value *OtherArg) {
1455 Constant *ShadowMul;
1456 Type *Ty = ConstArg->getType();
1457 if (Ty->isVectorTy()) {
1458 unsigned NumElements = Ty->getVectorNumElements();
1459 Type *EltTy = Ty->getSequentialElementType();
1460 SmallVector<Constant *, 16> Elements;
1461 for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1462 ConstantInt *Elt =
1463 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
1464 APInt V = Elt->getValue();
1465 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1466 Elements.push_back(ConstantInt::get(EltTy, V2));
1467 }
1468 ShadowMul = ConstantVector::get(Elements);
1469 } else {
1470 ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
1471 APInt V = Elt->getValue();
1472 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1473 ShadowMul = ConstantInt::get(Elt->getType(), V2);
1474 }
1475
1476 IRBuilder<> IRB(&I);
1477 setShadow(&I,
1478 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1479 setOrigin(&I, getOrigin(OtherArg));
1480 }
1481
1482 void visitMul(BinaryOperator &I) {
1483 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1484 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1485 if (constOp0 && !constOp1)
1486 handleMulByConstant(I, constOp0, I.getOperand(1));
1487 else if (constOp1 && !constOp0)
1488 handleMulByConstant(I, constOp1, I.getOperand(0));
1489 else
1490 handleShadowOr(I);
1491 }
1492
970d7e83
LB
1493 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1494 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1495 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1496 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1497 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1498 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
970d7e83
LB
1499
1500 void handleDiv(Instruction &I) {
1501 IRBuilder<> IRB(&I);
1502 // Strict on the second argument.
1a4d82fc 1503 insertShadowCheck(I.getOperand(1), &I);
970d7e83
LB
1504 setShadow(&I, getShadow(&I, 0));
1505 setOrigin(&I, getOrigin(&I, 0));
1506 }
1507
1508 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1509 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1510 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1511 void visitURem(BinaryOperator &I) { handleDiv(I); }
1512 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1513 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1514
1515 /// \brief Instrument == and != comparisons.
1516 ///
1517 /// Sometimes the comparison result is known even if some of the bits of the
1518 /// arguments are not.
1519 void handleEqualityComparison(ICmpInst &I) {
1520 IRBuilder<> IRB(&I);
1521 Value *A = I.getOperand(0);
1522 Value *B = I.getOperand(1);
1523 Value *Sa = getShadow(A);
1524 Value *Sb = getShadow(B);
1525
1526 // Get rid of pointers and vectors of pointers.
1527 // For ints (and vectors of ints), types of A and Sa match,
1528 // and this is a no-op.
1529 A = IRB.CreatePointerCast(A, Sa->getType());
1530 B = IRB.CreatePointerCast(B, Sb->getType());
1531
1532 // A == B <==> (C = A^B) == 0
1533 // A != B <==> (C = A^B) != 0
1534 // Sc = Sa | Sb
1535 Value *C = IRB.CreateXor(A, B);
1536 Value *Sc = IRB.CreateOr(Sa, Sb);
1537 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1538 // Result is defined if one of the following is true
1539 // * there is a defined 1 bit in C
1540 // * C is fully defined
1541 // Si = !(C & ~Sc) && Sc
1542 Value *Zero = Constant::getNullValue(Sc->getType());
1543 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1544 Value *Si =
1545 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1546 IRB.CreateICmpEQ(
1547 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1548 Si->setName("_msprop_icmp");
1549 setShadow(&I, Si);
1550 setOriginForNaryOp(I);
1551 }
1552
1553 /// \brief Build the lowest possible value of V, taking into account V's
1554 /// uninitialized bits.
1555 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1556 bool isSigned) {
1557 if (isSigned) {
1558 // Split shadow into sign bit and other bits.
1559 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1560 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1561 // Maximise the undefined shadow bit, minimize other undefined bits.
1562 return
1563 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1564 } else {
1565 // Minimize undefined bits.
1566 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1567 }
1568 }
1569
1570 /// \brief Build the highest possible value of V, taking into account V's
1571 /// uninitialized bits.
1572 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1573 bool isSigned) {
1574 if (isSigned) {
1575 // Split shadow into sign bit and other bits.
1576 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1577 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1578 // Minimise the undefined shadow bit, maximise other undefined bits.
1579 return
1580 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1581 } else {
1582 // Maximize undefined bits.
1583 return IRB.CreateOr(A, Sa);
1584 }
1585 }
1586
1587 /// \brief Instrument relational comparisons.
1588 ///
1589 /// This function does exact shadow propagation for all relational
1590 /// comparisons of integers, pointers and vectors of those.
1591 /// FIXME: output seems suboptimal when one of the operands is a constant
1592 void handleRelationalComparisonExact(ICmpInst &I) {
1593 IRBuilder<> IRB(&I);
1594 Value *A = I.getOperand(0);
1595 Value *B = I.getOperand(1);
1596 Value *Sa = getShadow(A);
1597 Value *Sb = getShadow(B);
1598
1599 // Get rid of pointers and vectors of pointers.
1600 // For ints (and vectors of ints), types of A and Sa match,
1601 // and this is a no-op.
1602 A = IRB.CreatePointerCast(A, Sa->getType());
1603 B = IRB.CreatePointerCast(B, Sb->getType());
1604
1605 // Let [a0, a1] be the interval of possible values of A, taking into account
1606 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1607 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1608 bool IsSigned = I.isSigned();
1609 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1610 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1611 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1612 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1613 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1614 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1615 Value *Si = IRB.CreateXor(S1, S2);
1616 setShadow(&I, Si);
1617 setOriginForNaryOp(I);
1618 }
1619
1620 /// \brief Instrument signed relational comparisons.
1621 ///
1622 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1623 /// propagating the highest bit of the shadow. Everything else is delegated
1624 /// to handleShadowOr().
1625 void handleSignedRelationalComparison(ICmpInst &I) {
1626 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1627 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1a4d82fc 1628 Value* op = nullptr;
970d7e83
LB
1629 CmpInst::Predicate pre = I.getPredicate();
1630 if (constOp0 && constOp0->isNullValue() &&
1631 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1632 op = I.getOperand(1);
1633 } else if (constOp1 && constOp1->isNullValue() &&
1634 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1635 op = I.getOperand(0);
1636 }
1637 if (op) {
1638 IRBuilder<> IRB(&I);
1639 Value* Shadow =
1640 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1641 setShadow(&I, Shadow);
1642 setOrigin(&I, getOrigin(op));
1643 } else {
1644 handleShadowOr(I);
1645 }
1646 }
1647
1648 void visitICmpInst(ICmpInst &I) {
1649 if (!ClHandleICmp) {
1650 handleShadowOr(I);
1651 return;
1652 }
1653 if (I.isEquality()) {
1654 handleEqualityComparison(I);
1655 return;
1656 }
1657
1658 assert(I.isRelational());
1659 if (ClHandleICmpExact) {
1660 handleRelationalComparisonExact(I);
1661 return;
1662 }
1663 if (I.isSigned()) {
1664 handleSignedRelationalComparison(I);
1665 return;
1666 }
1667
1668 assert(I.isUnsigned());
1669 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1670 handleRelationalComparisonExact(I);
1671 return;
1672 }
1673
1674 handleShadowOr(I);
1675 }
1676
1677 void visitFCmpInst(FCmpInst &I) {
1678 handleShadowOr(I);
1679 }
1680
1681 void handleShift(BinaryOperator &I) {
1682 IRBuilder<> IRB(&I);
1683 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1684 // Otherwise perform the same shift on S1.
1685 Value *S1 = getShadow(&I, 0);
1686 Value *S2 = getShadow(&I, 1);
1687 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1688 S2->getType());
1689 Value *V2 = I.getOperand(1);
1690 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1691 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1692 setOriginForNaryOp(I);
1693 }
1694
1695 void visitShl(BinaryOperator &I) { handleShift(I); }
1696 void visitAShr(BinaryOperator &I) { handleShift(I); }
1697 void visitLShr(BinaryOperator &I) { handleShift(I); }
1698
1699 /// \brief Instrument llvm.memmove
1700 ///
1701 /// At this point we don't know if llvm.memmove will be inlined or not.
1702 /// If we don't instrument it and it gets inlined,
1703 /// our interceptor will not kick in and we will lose the memmove.
1704 /// If we instrument the call here, but it does not get inlined,
1705 /// we will memove the shadow twice: which is bad in case
1706 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1707 ///
1708 /// Similar situation exists for memcpy and memset.
1709 void visitMemMoveInst(MemMoveInst &I) {
1710 IRBuilder<> IRB(&I);
1711 IRB.CreateCall3(
1712 MS.MemmoveFn,
1713 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1714 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1715 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1716 I.eraseFromParent();
1717 }
1718
1719 // Similar to memmove: avoid copying shadow twice.
1720 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1721 // FIXME: consider doing manual inline for small constant sizes and proper
1722 // alignment.
1723 void visitMemCpyInst(MemCpyInst &I) {
1724 IRBuilder<> IRB(&I);
1725 IRB.CreateCall3(
1726 MS.MemcpyFn,
1727 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1728 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1729 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1730 I.eraseFromParent();
1731 }
1732
1733 // Same as memcpy.
1734 void visitMemSetInst(MemSetInst &I) {
1735 IRBuilder<> IRB(&I);
1736 IRB.CreateCall3(
1737 MS.MemsetFn,
1738 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1739 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1740 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1741 I.eraseFromParent();
1742 }
1743
1744 void visitVAStartInst(VAStartInst &I) {
1745 VAHelper->visitVAStartInst(I);
1746 }
1747
1748 void visitVACopyInst(VACopyInst &I) {
1749 VAHelper->visitVACopyInst(I);
1750 }
1751
1752 enum IntrinsicKind {
1753 IK_DoesNotAccessMemory,
1754 IK_OnlyReadsMemory,
1755 IK_WritesMemory
1756 };
1757
1758 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1759 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1760 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1761 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1762 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1763 const int UnknownModRefBehavior = IK_WritesMemory;
1764#define GET_INTRINSIC_MODREF_BEHAVIOR
1765#define ModRefBehavior IntrinsicKind
1766#include "llvm/IR/Intrinsics.gen"
1767#undef ModRefBehavior
1768#undef GET_INTRINSIC_MODREF_BEHAVIOR
1769 }
1770
1771 /// \brief Handle vector store-like intrinsics.
1772 ///
1773 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1774 /// has 1 pointer argument and 1 vector argument, returns void.
1775 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1776 IRBuilder<> IRB(&I);
1777 Value* Addr = I.getArgOperand(0);
1778 Value *Shadow = getShadow(&I, 1);
1779 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1780
1781 // We don't know the pointer alignment (could be unaligned SSE store!).
1782 // Have to assume to worst case.
1783 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1784
1785 if (ClCheckAccessAddress)
1a4d82fc 1786 insertShadowCheck(Addr, &I);
970d7e83
LB
1787
1788 // FIXME: use ClStoreCleanOrigin
1789 // FIXME: factor out common code from materializeStores
1790 if (MS.TrackOrigins)
85aaf69f 1791 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
970d7e83
LB
1792 return true;
1793 }
1794
1795 /// \brief Handle vector load-like intrinsics.
1796 ///
1797 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1798 /// has 1 pointer argument, returns a vector.
1799 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1800 IRBuilder<> IRB(&I);
1801 Value *Addr = I.getArgOperand(0);
1802
1803 Type *ShadowTy = getShadowTy(&I);
1a4d82fc 1804 if (PropagateShadow) {
970d7e83
LB
1805 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1806 // We don't know the pointer alignment (could be unaligned SSE load!).
1807 // Have to assume to worst case.
1808 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1809 } else {
1810 setShadow(&I, getCleanShadow(&I));
1811 }
1812
970d7e83 1813 if (ClCheckAccessAddress)
1a4d82fc 1814 insertShadowCheck(Addr, &I);
970d7e83
LB
1815
1816 if (MS.TrackOrigins) {
1a4d82fc 1817 if (PropagateShadow)
85aaf69f 1818 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
970d7e83
LB
1819 else
1820 setOrigin(&I, getCleanOrigin());
1821 }
1822 return true;
1823 }
1824
1825 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1826 ///
1827 /// Instrument intrinsics with any number of arguments of the same type,
1828 /// equal to the return type. The type should be simple (no aggregates or
1829 /// pointers; vectors are fine).
1830 /// Caller guarantees that this intrinsic does not access memory.
1831 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1832 Type *RetTy = I.getType();
1833 if (!(RetTy->isIntOrIntVectorTy() ||
1834 RetTy->isFPOrFPVectorTy() ||
1835 RetTy->isX86_MMXTy()))
1836 return false;
1837
1838 unsigned NumArgOperands = I.getNumArgOperands();
1839
1840 for (unsigned i = 0; i < NumArgOperands; ++i) {
1841 Type *Ty = I.getArgOperand(i)->getType();
1842 if (Ty != RetTy)
1843 return false;
1844 }
1845
1846 IRBuilder<> IRB(&I);
1847 ShadowAndOriginCombiner SC(this, IRB);
1848 for (unsigned i = 0; i < NumArgOperands; ++i)
1849 SC.Add(I.getArgOperand(i));
1850 SC.Done(&I);
1851
1852 return true;
1853 }
1854
1855 /// \brief Heuristically instrument unknown intrinsics.
1856 ///
1857 /// The main purpose of this code is to do something reasonable with all
1858 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1859 /// We recognize several classes of intrinsics by their argument types and
1860 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1861 /// sure that we know what the intrinsic does.
1862 ///
1863 /// We special-case intrinsics where this approach fails. See llvm.bswap
1864 /// handling as an example of that.
1865 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1866 unsigned NumArgOperands = I.getNumArgOperands();
1867 if (NumArgOperands == 0)
1868 return false;
1869
1870 Intrinsic::ID iid = I.getIntrinsicID();
1871 IntrinsicKind IK = getIntrinsicKind(iid);
1872 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1873 bool WritesMemory = IK == IK_WritesMemory;
1874 assert(!(OnlyReadsMemory && WritesMemory));
1875
1876 if (NumArgOperands == 2 &&
1877 I.getArgOperand(0)->getType()->isPointerTy() &&
1878 I.getArgOperand(1)->getType()->isVectorTy() &&
1879 I.getType()->isVoidTy() &&
1880 WritesMemory) {
1881 // This looks like a vector store.
1882 return handleVectorStoreIntrinsic(I);
1883 }
1884
1885 if (NumArgOperands == 1 &&
1886 I.getArgOperand(0)->getType()->isPointerTy() &&
1887 I.getType()->isVectorTy() &&
1888 OnlyReadsMemory) {
1889 // This looks like a vector load.
1890 return handleVectorLoadIntrinsic(I);
1891 }
1892
1893 if (!OnlyReadsMemory && !WritesMemory)
1894 if (maybeHandleSimpleNomemIntrinsic(I))
1895 return true;
1896
1897 // FIXME: detect and handle SSE maskstore/maskload
1898 return false;
1899 }
1900
1901 void handleBswap(IntrinsicInst &I) {
1902 IRBuilder<> IRB(&I);
1903 Value *Op = I.getArgOperand(0);
1904 Type *OpType = Op->getType();
1905 Function *BswapFunc = Intrinsic::getDeclaration(
1a4d82fc 1906 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
970d7e83
LB
1907 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1908 setOrigin(&I, getOrigin(Op));
1909 }
1910
1a4d82fc
JJ
1911 // \brief Instrument vector convert instrinsic.
1912 //
1913 // This function instruments intrinsics like cvtsi2ss:
1914 // %Out = int_xxx_cvtyyy(%ConvertOp)
1915 // or
1916 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1917 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1918 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1919 // elements from \p CopyOp.
1920 // In most cases conversion involves floating-point value which may trigger a
1921 // hardware exception when not fully initialized. For this reason we require
1922 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1923 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1924 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1925 // return a fully initialized value.
1926 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1927 IRBuilder<> IRB(&I);
1928 Value *CopyOp, *ConvertOp;
1929
1930 switch (I.getNumArgOperands()) {
1931 case 2:
1932 CopyOp = I.getArgOperand(0);
1933 ConvertOp = I.getArgOperand(1);
1934 break;
1935 case 1:
1936 ConvertOp = I.getArgOperand(0);
1937 CopyOp = nullptr;
1938 break;
1939 default:
1940 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1941 }
1942
1943 // The first *NumUsedElements* elements of ConvertOp are converted to the
1944 // same number of output elements. The rest of the output is copied from
1945 // CopyOp, or (if not available) filled with zeroes.
1946 // Combine shadow for elements of ConvertOp that are used in this operation,
1947 // and insert a check.
1948 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1949 // int->any conversion.
1950 Value *ConvertShadow = getShadow(ConvertOp);
1951 Value *AggShadow = nullptr;
1952 if (ConvertOp->getType()->isVectorTy()) {
1953 AggShadow = IRB.CreateExtractElement(
1954 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1955 for (int i = 1; i < NumUsedElements; ++i) {
1956 Value *MoreShadow = IRB.CreateExtractElement(
1957 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1958 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1959 }
1960 } else {
1961 AggShadow = ConvertShadow;
1962 }
1963 assert(AggShadow->getType()->isIntegerTy());
1964 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1965
1966 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1967 // ConvertOp.
1968 if (CopyOp) {
1969 assert(CopyOp->getType() == I.getType());
1970 assert(CopyOp->getType()->isVectorTy());
1971 Value *ResultShadow = getShadow(CopyOp);
1972 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1973 for (int i = 0; i < NumUsedElements; ++i) {
1974 ResultShadow = IRB.CreateInsertElement(
1975 ResultShadow, ConstantInt::getNullValue(EltTy),
1976 ConstantInt::get(IRB.getInt32Ty(), i));
1977 }
1978 setShadow(&I, ResultShadow);
1979 setOrigin(&I, getOrigin(CopyOp));
1980 } else {
1981 setShadow(&I, getCleanShadow(&I));
85aaf69f 1982 setOrigin(&I, getCleanOrigin());
1a4d82fc
JJ
1983 }
1984 }
1985
1986 // Given a scalar or vector, extract lower 64 bits (or less), and return all
1987 // zeroes if it is zero, and all ones otherwise.
1988 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1989 if (S->getType()->isVectorTy())
1990 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1991 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1992 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1993 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1994 }
1995
1996 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1997 Type *T = S->getType();
1998 assert(T->isVectorTy());
1999 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2000 return IRB.CreateSExt(S2, T);
2001 }
2002
2003 // \brief Instrument vector shift instrinsic.
2004 //
2005 // This function instruments intrinsics like int_x86_avx2_psll_w.
2006 // Intrinsic shifts %In by %ShiftSize bits.
2007 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2008 // size, and the rest is ignored. Behavior is defined even if shift size is
2009 // greater than register (or field) width.
2010 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2011 assert(I.getNumArgOperands() == 2);
2012 IRBuilder<> IRB(&I);
2013 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2014 // Otherwise perform the same shift on S1.
2015 Value *S1 = getShadow(&I, 0);
2016 Value *S2 = getShadow(&I, 1);
2017 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2018 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2019 Value *V1 = I.getOperand(0);
2020 Value *V2 = I.getOperand(1);
2021 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
2022 IRB.CreateBitCast(S1, V1->getType()), V2);
2023 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2024 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2025 setOriginForNaryOp(I);
2026 }
2027
2028 // \brief Get an X86_MMX-sized vector type.
2029 Type *getMMXVectorTy(unsigned EltSizeInBits) {
2030 const unsigned X86_MMXSizeInBits = 64;
2031 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2032 X86_MMXSizeInBits / EltSizeInBits);
2033 }
2034
2035 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
2036 // intrinsic.
2037 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2038 switch (id) {
2039 case llvm::Intrinsic::x86_sse2_packsswb_128:
2040 case llvm::Intrinsic::x86_sse2_packuswb_128:
2041 return llvm::Intrinsic::x86_sse2_packsswb_128;
2042
2043 case llvm::Intrinsic::x86_sse2_packssdw_128:
2044 case llvm::Intrinsic::x86_sse41_packusdw:
2045 return llvm::Intrinsic::x86_sse2_packssdw_128;
2046
2047 case llvm::Intrinsic::x86_avx2_packsswb:
2048 case llvm::Intrinsic::x86_avx2_packuswb:
2049 return llvm::Intrinsic::x86_avx2_packsswb;
2050
2051 case llvm::Intrinsic::x86_avx2_packssdw:
2052 case llvm::Intrinsic::x86_avx2_packusdw:
2053 return llvm::Intrinsic::x86_avx2_packssdw;
2054
2055 case llvm::Intrinsic::x86_mmx_packsswb:
2056 case llvm::Intrinsic::x86_mmx_packuswb:
2057 return llvm::Intrinsic::x86_mmx_packsswb;
2058
2059 case llvm::Intrinsic::x86_mmx_packssdw:
2060 return llvm::Intrinsic::x86_mmx_packssdw;
2061 default:
2062 llvm_unreachable("unexpected intrinsic id");
2063 }
2064 }
2065
2066 // \brief Instrument vector pack instrinsic.
2067 //
2068 // This function instruments intrinsics like x86_mmx_packsswb, that
2069 // packs elements of 2 input vectors into half as many bits with saturation.
2070 // Shadow is propagated with the signed variant of the same intrinsic applied
2071 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2072 // EltSizeInBits is used only for x86mmx arguments.
2073 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2074 assert(I.getNumArgOperands() == 2);
2075 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2076 IRBuilder<> IRB(&I);
2077 Value *S1 = getShadow(&I, 0);
2078 Value *S2 = getShadow(&I, 1);
2079 assert(isX86_MMX || S1->getType()->isVectorTy());
2080
2081 // SExt and ICmpNE below must apply to individual elements of input vectors.
2082 // In case of x86mmx arguments, cast them to appropriate vector types and
2083 // back.
2084 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2085 if (isX86_MMX) {
2086 S1 = IRB.CreateBitCast(S1, T);
2087 S2 = IRB.CreateBitCast(S2, T);
2088 }
2089 Value *S1_ext = IRB.CreateSExt(
2090 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2091 Value *S2_ext = IRB.CreateSExt(
2092 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
2093 if (isX86_MMX) {
2094 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2095 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2096 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2097 }
2098
2099 Function *ShadowFn = Intrinsic::getDeclaration(
2100 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2101
2102 Value *S = IRB.CreateCall2(ShadowFn, S1_ext, S2_ext, "_msprop_vector_pack");
2103 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2104 setShadow(&I, S);
2105 setOriginForNaryOp(I);
2106 }
2107
2108 // \brief Instrument sum-of-absolute-differencies intrinsic.
2109 void handleVectorSadIntrinsic(IntrinsicInst &I) {
2110 const unsigned SignificantBitsPerResultElement = 16;
2111 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2112 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2113 unsigned ZeroBitsPerResultElement =
2114 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2115
2116 IRBuilder<> IRB(&I);
2117 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2118 S = IRB.CreateBitCast(S, ResTy);
2119 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2120 ResTy);
2121 S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2122 S = IRB.CreateBitCast(S, getShadowTy(&I));
2123 setShadow(&I, S);
2124 setOriginForNaryOp(I);
2125 }
2126
2127 // \brief Instrument multiply-add intrinsic.
2128 void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2129 unsigned EltSizeInBits = 0) {
2130 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2131 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2132 IRBuilder<> IRB(&I);
2133 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2134 S = IRB.CreateBitCast(S, ResTy);
2135 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2136 ResTy);
2137 S = IRB.CreateBitCast(S, getShadowTy(&I));
2138 setShadow(&I, S);
2139 setOriginForNaryOp(I);
2140 }
2141
970d7e83
LB
2142 void visitIntrinsicInst(IntrinsicInst &I) {
2143 switch (I.getIntrinsicID()) {
2144 case llvm::Intrinsic::bswap:
2145 handleBswap(I);
2146 break;
1a4d82fc
JJ
2147 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
2148 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
2149 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
2150 case llvm::Intrinsic::x86_avx512_cvtss2usi:
2151 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2152 case llvm::Intrinsic::x86_avx512_cvttss2usi:
2153 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2154 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2155 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2156 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2157 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2158 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2159 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2160 case llvm::Intrinsic::x86_sse2_cvtsd2si:
2161 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2162 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2163 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2164 case llvm::Intrinsic::x86_sse2_cvtss2sd:
2165 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2166 case llvm::Intrinsic::x86_sse2_cvttsd2si:
2167 case llvm::Intrinsic::x86_sse_cvtsi2ss:
2168 case llvm::Intrinsic::x86_sse_cvtsi642ss:
2169 case llvm::Intrinsic::x86_sse_cvtss2si64:
2170 case llvm::Intrinsic::x86_sse_cvtss2si:
2171 case llvm::Intrinsic::x86_sse_cvttss2si64:
2172 case llvm::Intrinsic::x86_sse_cvttss2si:
2173 handleVectorConvertIntrinsic(I, 1);
2174 break;
2175 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
2176 case llvm::Intrinsic::x86_sse2_cvtps2pd:
2177 case llvm::Intrinsic::x86_sse_cvtps2pi:
2178 case llvm::Intrinsic::x86_sse_cvttps2pi:
2179 handleVectorConvertIntrinsic(I, 2);
2180 break;
2181 case llvm::Intrinsic::x86_avx512_psll_dq:
2182 case llvm::Intrinsic::x86_avx512_psrl_dq:
2183 case llvm::Intrinsic::x86_avx2_psll_w:
2184 case llvm::Intrinsic::x86_avx2_psll_d:
2185 case llvm::Intrinsic::x86_avx2_psll_q:
2186 case llvm::Intrinsic::x86_avx2_pslli_w:
2187 case llvm::Intrinsic::x86_avx2_pslli_d:
2188 case llvm::Intrinsic::x86_avx2_pslli_q:
2189 case llvm::Intrinsic::x86_avx2_psll_dq:
2190 case llvm::Intrinsic::x86_avx2_psrl_w:
2191 case llvm::Intrinsic::x86_avx2_psrl_d:
2192 case llvm::Intrinsic::x86_avx2_psrl_q:
2193 case llvm::Intrinsic::x86_avx2_psra_w:
2194 case llvm::Intrinsic::x86_avx2_psra_d:
2195 case llvm::Intrinsic::x86_avx2_psrli_w:
2196 case llvm::Intrinsic::x86_avx2_psrli_d:
2197 case llvm::Intrinsic::x86_avx2_psrli_q:
2198 case llvm::Intrinsic::x86_avx2_psrai_w:
2199 case llvm::Intrinsic::x86_avx2_psrai_d:
2200 case llvm::Intrinsic::x86_avx2_psrl_dq:
2201 case llvm::Intrinsic::x86_sse2_psll_w:
2202 case llvm::Intrinsic::x86_sse2_psll_d:
2203 case llvm::Intrinsic::x86_sse2_psll_q:
2204 case llvm::Intrinsic::x86_sse2_pslli_w:
2205 case llvm::Intrinsic::x86_sse2_pslli_d:
2206 case llvm::Intrinsic::x86_sse2_pslli_q:
2207 case llvm::Intrinsic::x86_sse2_psll_dq:
2208 case llvm::Intrinsic::x86_sse2_psrl_w:
2209 case llvm::Intrinsic::x86_sse2_psrl_d:
2210 case llvm::Intrinsic::x86_sse2_psrl_q:
2211 case llvm::Intrinsic::x86_sse2_psra_w:
2212 case llvm::Intrinsic::x86_sse2_psra_d:
2213 case llvm::Intrinsic::x86_sse2_psrli_w:
2214 case llvm::Intrinsic::x86_sse2_psrli_d:
2215 case llvm::Intrinsic::x86_sse2_psrli_q:
2216 case llvm::Intrinsic::x86_sse2_psrai_w:
2217 case llvm::Intrinsic::x86_sse2_psrai_d:
2218 case llvm::Intrinsic::x86_sse2_psrl_dq:
2219 case llvm::Intrinsic::x86_mmx_psll_w:
2220 case llvm::Intrinsic::x86_mmx_psll_d:
2221 case llvm::Intrinsic::x86_mmx_psll_q:
2222 case llvm::Intrinsic::x86_mmx_pslli_w:
2223 case llvm::Intrinsic::x86_mmx_pslli_d:
2224 case llvm::Intrinsic::x86_mmx_pslli_q:
2225 case llvm::Intrinsic::x86_mmx_psrl_w:
2226 case llvm::Intrinsic::x86_mmx_psrl_d:
2227 case llvm::Intrinsic::x86_mmx_psrl_q:
2228 case llvm::Intrinsic::x86_mmx_psra_w:
2229 case llvm::Intrinsic::x86_mmx_psra_d:
2230 case llvm::Intrinsic::x86_mmx_psrli_w:
2231 case llvm::Intrinsic::x86_mmx_psrli_d:
2232 case llvm::Intrinsic::x86_mmx_psrli_q:
2233 case llvm::Intrinsic::x86_mmx_psrai_w:
2234 case llvm::Intrinsic::x86_mmx_psrai_d:
2235 handleVectorShiftIntrinsic(I, /* Variable */ false);
2236 break;
2237 case llvm::Intrinsic::x86_avx2_psllv_d:
2238 case llvm::Intrinsic::x86_avx2_psllv_d_256:
2239 case llvm::Intrinsic::x86_avx2_psllv_q:
2240 case llvm::Intrinsic::x86_avx2_psllv_q_256:
2241 case llvm::Intrinsic::x86_avx2_psrlv_d:
2242 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2243 case llvm::Intrinsic::x86_avx2_psrlv_q:
2244 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2245 case llvm::Intrinsic::x86_avx2_psrav_d:
2246 case llvm::Intrinsic::x86_avx2_psrav_d_256:
2247 handleVectorShiftIntrinsic(I, /* Variable */ true);
2248 break;
2249
2250 // Byte shifts are not implemented.
2251 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
2252 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
2253 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
2254 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
2255 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
2256 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
2257
2258 case llvm::Intrinsic::x86_sse2_packsswb_128:
2259 case llvm::Intrinsic::x86_sse2_packssdw_128:
2260 case llvm::Intrinsic::x86_sse2_packuswb_128:
2261 case llvm::Intrinsic::x86_sse41_packusdw:
2262 case llvm::Intrinsic::x86_avx2_packsswb:
2263 case llvm::Intrinsic::x86_avx2_packssdw:
2264 case llvm::Intrinsic::x86_avx2_packuswb:
2265 case llvm::Intrinsic::x86_avx2_packusdw:
2266 handleVectorPackIntrinsic(I);
2267 break;
2268
2269 case llvm::Intrinsic::x86_mmx_packsswb:
2270 case llvm::Intrinsic::x86_mmx_packuswb:
2271 handleVectorPackIntrinsic(I, 16);
2272 break;
2273
2274 case llvm::Intrinsic::x86_mmx_packssdw:
2275 handleVectorPackIntrinsic(I, 32);
2276 break;
2277
2278 case llvm::Intrinsic::x86_mmx_psad_bw:
2279 case llvm::Intrinsic::x86_sse2_psad_bw:
2280 case llvm::Intrinsic::x86_avx2_psad_bw:
2281 handleVectorSadIntrinsic(I);
2282 break;
2283
2284 case llvm::Intrinsic::x86_sse2_pmadd_wd:
2285 case llvm::Intrinsic::x86_avx2_pmadd_wd:
2286 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2287 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2288 handleVectorPmaddIntrinsic(I);
2289 break;
2290
2291 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2292 handleVectorPmaddIntrinsic(I, 8);
2293 break;
2294
2295 case llvm::Intrinsic::x86_mmx_pmadd_wd:
2296 handleVectorPmaddIntrinsic(I, 16);
2297 break;
2298
970d7e83
LB
2299 default:
2300 if (!handleUnknownIntrinsic(I))
2301 visitInstruction(I);
2302 break;
2303 }
2304 }
2305
2306 void visitCallSite(CallSite CS) {
2307 Instruction &I = *CS.getInstruction();
2308 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2309 if (CS.isCall()) {
2310 CallInst *Call = cast<CallInst>(&I);
2311
2312 // For inline asm, do the usual thing: check argument shadow and mark all
2313 // outputs as clean. Note that any side effects of the inline asm that are
2314 // not immediately visible in its constraints are not handled.
2315 if (Call->isInlineAsm()) {
2316 visitInstruction(I);
2317 return;
2318 }
2319
970d7e83
LB
2320 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
2321
2322 // We are going to insert code that relies on the fact that the callee
2323 // will become a non-readonly function after it is instrumented by us. To
2324 // prevent this code from being optimized out, mark that function
2325 // non-readonly in advance.
2326 if (Function *Func = Call->getCalledFunction()) {
2327 // Clear out readonly/readnone attributes.
2328 AttrBuilder B;
2329 B.addAttribute(Attribute::ReadOnly)
2330 .addAttribute(Attribute::ReadNone);
2331 Func->removeAttributes(AttributeSet::FunctionIndex,
2332 AttributeSet::get(Func->getContext(),
2333 AttributeSet::FunctionIndex,
2334 B));
2335 }
2336 }
2337 IRBuilder<> IRB(&I);
1a4d82fc 2338
970d7e83
LB
2339 unsigned ArgOffset = 0;
2340 DEBUG(dbgs() << " CallSite: " << I << "\n");
2341 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2342 ArgIt != End; ++ArgIt) {
2343 Value *A = *ArgIt;
2344 unsigned i = ArgIt - CS.arg_begin();
2345 if (!A->getType()->isSized()) {
2346 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2347 continue;
2348 }
2349 unsigned Size = 0;
1a4d82fc 2350 Value *Store = nullptr;
970d7e83
LB
2351 // Compute the Shadow for arg even if it is ByVal, because
2352 // in that case getShadow() will copy the actual arg shadow to
2353 // __msan_param_tls.
2354 Value *ArgShadow = getShadow(A);
2355 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2356 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2357 " Shadow: " << *ArgShadow << "\n");
1a4d82fc 2358 bool ArgIsInitialized = false;
970d7e83
LB
2359 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
2360 assert(A->getType()->isPointerTy() &&
2361 "ByVal argument is not a pointer!");
1a4d82fc 2362 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
85aaf69f
SL
2363 if (ArgOffset + Size > kParamTLSSize) break;
2364 unsigned ParamAlignment = CS.getParamAlignment(i + 1);
2365 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
970d7e83
LB
2366 Store = IRB.CreateMemCpy(ArgShadowBase,
2367 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2368 Size, Alignment);
2369 } else {
1a4d82fc 2370 Size = MS.DL->getTypeAllocSize(A->getType());
85aaf69f 2371 if (ArgOffset + Size > kParamTLSSize) break;
970d7e83
LB
2372 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2373 kShadowTLSAlignment);
1a4d82fc
JJ
2374 Constant *Cst = dyn_cast<Constant>(ArgShadow);
2375 if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
970d7e83 2376 }
1a4d82fc 2377 if (MS.TrackOrigins && !ArgIsInitialized)
970d7e83
LB
2378 IRB.CreateStore(getOrigin(A),
2379 getOriginPtrForArgument(A, IRB, ArgOffset));
2380 (void)Store;
1a4d82fc 2381 assert(Size != 0 && Store != nullptr);
970d7e83 2382 DEBUG(dbgs() << " Param:" << *Store << "\n");
85aaf69f 2383 ArgOffset += RoundUpToAlignment(Size, 8);
970d7e83
LB
2384 }
2385 DEBUG(dbgs() << " done with call args\n");
2386
2387 FunctionType *FT =
1a4d82fc 2388 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
970d7e83
LB
2389 if (FT->isVarArg()) {
2390 VAHelper->visitCallSite(CS, IRB);
2391 }
2392
2393 // Now, get the shadow for the RetVal.
2394 if (!I.getType()->isSized()) return;
2395 IRBuilder<> IRBBefore(&I);
1a4d82fc 2396 // Until we have full dynamic coverage, make sure the retval shadow is 0.
970d7e83
LB
2397 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
2398 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
1a4d82fc 2399 Instruction *NextInsn = nullptr;
970d7e83
LB
2400 if (CS.isCall()) {
2401 NextInsn = I.getNextNode();
2402 } else {
2403 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2404 if (!NormalDest->getSinglePredecessor()) {
2405 // FIXME: this case is tricky, so we are just conservative here.
2406 // Perhaps we need to split the edge between this BB and NormalDest,
2407 // but a naive attempt to use SplitEdge leads to a crash.
2408 setShadow(&I, getCleanShadow(&I));
2409 setOrigin(&I, getCleanOrigin());
2410 return;
2411 }
2412 NextInsn = NormalDest->getFirstInsertionPt();
2413 assert(NextInsn &&
2414 "Could not find insertion point for retval shadow load");
2415 }
2416 IRBuilder<> IRBAfter(NextInsn);
2417 Value *RetvalShadow =
2418 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2419 kShadowTLSAlignment, "_msret");
2420 setShadow(&I, RetvalShadow);
2421 if (MS.TrackOrigins)
2422 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2423 }
2424
2425 void visitReturnInst(ReturnInst &I) {
2426 IRBuilder<> IRB(&I);
1a4d82fc
JJ
2427 Value *RetVal = I.getReturnValue();
2428 if (!RetVal) return;
2429 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2430 if (CheckReturnValue) {
2431 insertShadowCheck(RetVal, &I);
2432 Value *Shadow = getCleanShadow(RetVal);
2433 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2434 } else {
970d7e83 2435 Value *Shadow = getShadow(RetVal);
970d7e83 2436 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
1a4d82fc 2437 // FIXME: make it conditional if ClStoreCleanOrigin==0
970d7e83
LB
2438 if (MS.TrackOrigins)
2439 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2440 }
2441 }
2442
2443 void visitPHINode(PHINode &I) {
2444 IRBuilder<> IRB(&I);
1a4d82fc
JJ
2445 if (!PropagateShadow) {
2446 setShadow(&I, getCleanShadow(&I));
85aaf69f 2447 setOrigin(&I, getCleanOrigin());
1a4d82fc
JJ
2448 return;
2449 }
2450
970d7e83
LB
2451 ShadowPHINodes.push_back(&I);
2452 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2453 "_msphi_s"));
2454 if (MS.TrackOrigins)
2455 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2456 "_msphi_o"));
2457 }
2458
2459 void visitAllocaInst(AllocaInst &I) {
2460 setShadow(&I, getCleanShadow(&I));
85aaf69f 2461 setOrigin(&I, getCleanOrigin());
970d7e83 2462 IRBuilder<> IRB(I.getNextNode());
1a4d82fc
JJ
2463 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
2464 if (PoisonStack && ClPoisonStackWithCall) {
970d7e83
LB
2465 IRB.CreateCall2(MS.MsanPoisonStackFn,
2466 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2467 ConstantInt::get(MS.IntptrTy, Size));
2468 } else {
2469 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
1a4d82fc
JJ
2470 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2471 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
970d7e83
LB
2472 }
2473
1a4d82fc 2474 if (PoisonStack && MS.TrackOrigins) {
970d7e83
LB
2475 SmallString<2048> StackDescriptionStorage;
2476 raw_svector_ostream StackDescription(StackDescriptionStorage);
2477 // We create a string with a description of the stack allocation and
2478 // pass it into __msan_set_alloca_origin.
2479 // It will be printed by the run-time if stack-originated UMR is found.
2480 // The first 4 bytes of the string are set to '----' and will be replaced
2481 // by __msan_va_arg_overflow_size_tls at the first call.
2482 StackDescription << "----" << I.getName() << "@" << F.getName();
2483 Value *Descr =
2484 createPrivateNonConstGlobalForString(*F.getParent(),
2485 StackDescription.str());
1a4d82fc
JJ
2486
2487 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
970d7e83
LB
2488 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2489 ConstantInt::get(MS.IntptrTy, Size),
1a4d82fc
JJ
2490 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2491 IRB.CreatePointerCast(&F, MS.IntptrTy));
970d7e83
LB
2492 }
2493 }
2494
2495 void visitSelectInst(SelectInst& I) {
2496 IRBuilder<> IRB(&I);
1a4d82fc
JJ
2497 // a = select b, c, d
2498 Value *B = I.getCondition();
2499 Value *C = I.getTrueValue();
2500 Value *D = I.getFalseValue();
2501 Value *Sb = getShadow(B);
2502 Value *Sc = getShadow(C);
2503 Value *Sd = getShadow(D);
2504
2505 // Result shadow if condition shadow is 0.
2506 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2507 Value *Sa1;
2508 if (I.getType()->isAggregateType()) {
2509 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2510 // an extra "select". This results in much more compact IR.
2511 // Sa = select Sb, poisoned, (select b, Sc, Sd)
2512 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
2513 } else {
2514 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2515 // If Sb (condition is poisoned), look for bits in c and d that are equal
2516 // and both unpoisoned.
2517 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2518
2519 // Cast arguments to shadow-compatible type.
2520 C = CreateAppToShadowCast(IRB, C);
2521 D = CreateAppToShadowCast(IRB, D);
2522
2523 // Result shadow if condition shadow is 1.
2524 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
2525 }
2526 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2527 setShadow(&I, Sa);
970d7e83
LB
2528 if (MS.TrackOrigins) {
2529 // Origins are always i32, so any vector conditions must be flattened.
2530 // FIXME: consider tracking vector origins for app vectors?
1a4d82fc
JJ
2531 if (B->getType()->isVectorTy()) {
2532 Type *FlatTy = getShadowTyNoVec(B->getType());
2533 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
2534 ConstantInt::getNullValue(FlatTy));
2535 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
2536 ConstantInt::getNullValue(FlatTy));
970d7e83 2537 }
1a4d82fc
JJ
2538 // a = select b, c, d
2539 // Oa = Sb ? Ob : (b ? Oc : Od)
85aaf69f
SL
2540 setOrigin(
2541 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
2542 IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
2543 getOrigin(I.getFalseValue()))));
970d7e83
LB
2544 }
2545 }
2546
2547 void visitLandingPadInst(LandingPadInst &I) {
2548 // Do nothing.
2549 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2550 setShadow(&I, getCleanShadow(&I));
2551 setOrigin(&I, getCleanOrigin());
2552 }
2553
2554 void visitGetElementPtrInst(GetElementPtrInst &I) {
2555 handleShadowOr(I);
2556 }
2557
2558 void visitExtractValueInst(ExtractValueInst &I) {
2559 IRBuilder<> IRB(&I);
2560 Value *Agg = I.getAggregateOperand();
2561 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2562 Value *AggShadow = getShadow(Agg);
2563 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2564 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2565 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2566 setShadow(&I, ResShadow);
1a4d82fc 2567 setOriginForNaryOp(I);
970d7e83
LB
2568 }
2569
2570 void visitInsertValueInst(InsertValueInst &I) {
2571 IRBuilder<> IRB(&I);
2572 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2573 Value *AggShadow = getShadow(I.getAggregateOperand());
2574 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2575 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2576 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2577 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2578 DEBUG(dbgs() << " Res: " << *Res << "\n");
2579 setShadow(&I, Res);
1a4d82fc 2580 setOriginForNaryOp(I);
970d7e83
LB
2581 }
2582
2583 void dumpInst(Instruction &I) {
2584 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2585 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2586 } else {
2587 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2588 }
2589 errs() << "QQQ " << I << "\n";
2590 }
2591
2592 void visitResumeInst(ResumeInst &I) {
2593 DEBUG(dbgs() << "Resume: " << I << "\n");
2594 // Nothing to do here.
2595 }
2596
2597 void visitInstruction(Instruction &I) {
2598 // Everything else: stop propagating and check for poisoned shadow.
2599 if (ClDumpStrictInstructions)
2600 dumpInst(I);
2601 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2602 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
1a4d82fc 2603 insertShadowCheck(I.getOperand(i), &I);
970d7e83
LB
2604 setShadow(&I, getCleanShadow(&I));
2605 setOrigin(&I, getCleanOrigin());
2606 }
2607};
2608
2609/// \brief AMD64-specific implementation of VarArgHelper.
2610struct VarArgAMD64Helper : public VarArgHelper {
2611 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2612 // See a comment in visitCallSite for more details.
2613 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
2614 static const unsigned AMD64FpEndOffset = 176;
2615
2616 Function &F;
2617 MemorySanitizer &MS;
2618 MemorySanitizerVisitor &MSV;
2619 Value *VAArgTLSCopy;
2620 Value *VAArgOverflowSize;
2621
2622 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2623
2624 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2625 MemorySanitizerVisitor &MSV)
1a4d82fc
JJ
2626 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2627 VAArgOverflowSize(nullptr) {}
970d7e83
LB
2628
2629 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2630
2631 ArgKind classifyArgument(Value* arg) {
2632 // A very rough approximation of X86_64 argument classification rules.
2633 Type *T = arg->getType();
2634 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2635 return AK_FloatingPoint;
2636 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2637 return AK_GeneralPurpose;
2638 if (T->isPointerTy())
2639 return AK_GeneralPurpose;
2640 return AK_Memory;
2641 }
2642
2643 // For VarArg functions, store the argument shadow in an ABI-specific format
2644 // that corresponds to va_list layout.
2645 // We do this because Clang lowers va_arg in the frontend, and this pass
2646 // only sees the low level code that deals with va_list internals.
2647 // A much easier alternative (provided that Clang emits va_arg instructions)
2648 // would have been to associate each live instance of va_list with a copy of
2649 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2650 // order.
1a4d82fc 2651 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
970d7e83
LB
2652 unsigned GpOffset = 0;
2653 unsigned FpOffset = AMD64GpEndOffset;
2654 unsigned OverflowOffset = AMD64FpEndOffset;
2655 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2656 ArgIt != End; ++ArgIt) {
2657 Value *A = *ArgIt;
1a4d82fc
JJ
2658 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2659 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2660 if (IsByVal) {
2661 // ByVal arguments always go to the overflow area.
2662 assert(A->getType()->isPointerTy());
2663 Type *RealTy = A->getType()->getPointerElementType();
2664 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2665 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
85aaf69f 2666 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
1a4d82fc
JJ
2667 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2668 ArgSize, kShadowTLSAlignment);
2669 } else {
2670 ArgKind AK = classifyArgument(A);
2671 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2672 AK = AK_Memory;
2673 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2674 AK = AK_Memory;
2675 Value *Base;
2676 switch (AK) {
2677 case AK_GeneralPurpose:
2678 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2679 GpOffset += 8;
2680 break;
2681 case AK_FloatingPoint:
2682 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2683 FpOffset += 16;
2684 break;
2685 case AK_Memory:
2686 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2687 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
85aaf69f 2688 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
1a4d82fc
JJ
2689 }
2690 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
970d7e83 2691 }
970d7e83
LB
2692 }
2693 Constant *OverflowSize =
2694 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2695 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2696 }
2697
2698 /// \brief Compute the shadow address for a given va_arg.
1a4d82fc 2699 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
970d7e83
LB
2700 int ArgOffset) {
2701 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2702 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1a4d82fc 2703 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
970d7e83
LB
2704 "_msarg");
2705 }
2706
1a4d82fc 2707 void visitVAStartInst(VAStartInst &I) override {
970d7e83
LB
2708 IRBuilder<> IRB(&I);
2709 VAStartInstrumentationList.push_back(&I);
2710 Value *VAListTag = I.getArgOperand(0);
2711 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2712
2713 // Unpoison the whole __va_list_tag.
2714 // FIXME: magic ABI constants.
2715 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2716 /* size */24, /* alignment */8, false);
2717 }
2718
1a4d82fc 2719 void visitVACopyInst(VACopyInst &I) override {
970d7e83
LB
2720 IRBuilder<> IRB(&I);
2721 Value *VAListTag = I.getArgOperand(0);
2722 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2723
2724 // Unpoison the whole __va_list_tag.
2725 // FIXME: magic ABI constants.
2726 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2727 /* size */24, /* alignment */8, false);
2728 }
2729
1a4d82fc 2730 void finalizeInstrumentation() override {
970d7e83
LB
2731 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2732 "finalizeInstrumentation called twice");
2733 if (!VAStartInstrumentationList.empty()) {
2734 // If there is a va_start in this function, make a backup copy of
2735 // va_arg_tls somewhere in the function entry block.
2736 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2737 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2738 Value *CopySize =
2739 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2740 VAArgOverflowSize);
2741 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2742 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2743 }
2744
2745 // Instrument va_start.
2746 // Copy va_list shadow from the backup copy of the TLS contents.
2747 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2748 CallInst *OrigInst = VAStartInstrumentationList[i];
2749 IRBuilder<> IRB(OrigInst->getNextNode());
2750 Value *VAListTag = OrigInst->getArgOperand(0);
2751
2752 Value *RegSaveAreaPtrPtr =
2753 IRB.CreateIntToPtr(
2754 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2755 ConstantInt::get(MS.IntptrTy, 16)),
2756 Type::getInt64PtrTy(*MS.C));
2757 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2758 Value *RegSaveAreaShadowPtr =
2759 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2760 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2761 AMD64FpEndOffset, 16);
2762
2763 Value *OverflowArgAreaPtrPtr =
2764 IRB.CreateIntToPtr(
2765 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2766 ConstantInt::get(MS.IntptrTy, 8)),
2767 Type::getInt64PtrTy(*MS.C));
2768 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2769 Value *OverflowArgAreaShadowPtr =
2770 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
1a4d82fc 2771 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
970d7e83
LB
2772 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2773 }
2774 }
2775};
2776
1a4d82fc
JJ
2777/// \brief A no-op implementation of VarArgHelper.
2778struct VarArgNoOpHelper : public VarArgHelper {
2779 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2780 MemorySanitizerVisitor &MSV) {}
2781
2782 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
2783
2784 void visitVAStartInst(VAStartInst &I) override {}
2785
2786 void visitVACopyInst(VACopyInst &I) override {}
2787
2788 void finalizeInstrumentation() override {}
2789};
2790
2791VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
970d7e83 2792 MemorySanitizerVisitor &Visitor) {
1a4d82fc
JJ
2793 // VarArg handling is only implemented on AMD64. False positives are possible
2794 // on other platforms.
2795 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2796 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2797 return new VarArgAMD64Helper(Func, Msan, Visitor);
2798 else
2799 return new VarArgNoOpHelper(Func, Msan, Visitor);
970d7e83
LB
2800}
2801
2802} // namespace
2803
2804bool MemorySanitizer::runOnFunction(Function &F) {
2805 MemorySanitizerVisitor Visitor(F, *this);
2806
2807 // Clear out readonly/readnone attributes.
2808 AttrBuilder B;
2809 B.addAttribute(Attribute::ReadOnly)
2810 .addAttribute(Attribute::ReadNone);
2811 F.removeAttributes(AttributeSet::FunctionIndex,
2812 AttributeSet::get(F.getContext(),
2813 AttributeSet::FunctionIndex, B));
2814
2815 return Visitor.runOnFunction();
2816}