]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Transforms/Scalar/GVN.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Scalar / GVN.cpp
CommitLineData
223e47cc
LB
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions. It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
223e47cc 18#include "llvm/Transforms/Scalar.h"
223e47cc
LB
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DepthFirstIterator.h"
21#include "llvm/ADT/Hashing.h"
1a4d82fc 22#include "llvm/ADT/MapVector.h"
85aaf69f 23#include "llvm/ADT/PostOrderIterator.h"
1a4d82fc 24#include "llvm/ADT/SetVector.h"
223e47cc
LB
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
85aaf69f 28#include "llvm/Analysis/AssumptionCache.h"
1a4d82fc 29#include "llvm/Analysis/CFG.h"
223e47cc 30#include "llvm/Analysis/ConstantFolding.h"
223e47cc
LB
31#include "llvm/Analysis/InstructionSimplify.h"
32#include "llvm/Analysis/Loads.h"
33#include "llvm/Analysis/MemoryBuiltins.h"
34#include "llvm/Analysis/MemoryDependenceAnalysis.h"
35#include "llvm/Analysis/PHITransAddr.h"
36#include "llvm/Analysis/ValueTracking.h"
970d7e83 37#include "llvm/IR/DataLayout.h"
1a4d82fc 38#include "llvm/IR/Dominators.h"
970d7e83
LB
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/IRBuilder.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Metadata.h"
1a4d82fc 44#include "llvm/IR/PatternMatch.h"
223e47cc
LB
45#include "llvm/Support/Allocator.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
223e47cc
LB
48#include "llvm/Target/TargetLibraryInfo.h"
49#include "llvm/Transforms/Utils/BasicBlockUtils.h"
1a4d82fc 50#include "llvm/Transforms/Utils/Local.h"
223e47cc 51#include "llvm/Transforms/Utils/SSAUpdater.h"
1a4d82fc 52#include <vector>
223e47cc
LB
53using namespace llvm;
54using namespace PatternMatch;
55
1a4d82fc
JJ
56#define DEBUG_TYPE "gvn"
57
223e47cc
LB
58STATISTIC(NumGVNInstr, "Number of instructions deleted");
59STATISTIC(NumGVNLoad, "Number of loads deleted");
60STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
61STATISTIC(NumGVNBlocks, "Number of blocks merged");
62STATISTIC(NumGVNSimpl, "Number of instructions simplified");
63STATISTIC(NumGVNEqProp, "Number of equalities propagated");
64STATISTIC(NumPRELoad, "Number of loads PRE'd");
65
66static cl::opt<bool> EnablePRE("enable-pre",
67 cl::init(true), cl::Hidden);
68static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
69
70// Maximum allowed recursion depth.
71static cl::opt<uint32_t>
72MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
73 cl::desc("Max recurse depth (default = 1000)"));
74
75//===----------------------------------------------------------------------===//
76// ValueTable Class
77//===----------------------------------------------------------------------===//
78
79/// This class holds the mapping between values and value numbers. It is used
80/// as an efficient mechanism to determine the expression-wise equivalence of
81/// two values.
82namespace {
83 struct Expression {
84 uint32_t opcode;
85 Type *type;
86 SmallVector<uint32_t, 4> varargs;
87
88 Expression(uint32_t o = ~2U) : opcode(o) { }
89
90 bool operator==(const Expression &other) const {
91 if (opcode != other.opcode)
92 return false;
93 if (opcode == ~0U || opcode == ~1U)
94 return true;
95 if (type != other.type)
96 return false;
97 if (varargs != other.varargs)
98 return false;
99 return true;
100 }
101
102 friend hash_code hash_value(const Expression &Value) {
103 return hash_combine(Value.opcode, Value.type,
104 hash_combine_range(Value.varargs.begin(),
105 Value.varargs.end()));
106 }
107 };
108
109 class ValueTable {
110 DenseMap<Value*, uint32_t> valueNumbering;
111 DenseMap<Expression, uint32_t> expressionNumbering;
112 AliasAnalysis *AA;
113 MemoryDependenceAnalysis *MD;
114 DominatorTree *DT;
115
116 uint32_t nextValueNumber;
117
118 Expression create_expression(Instruction* I);
119 Expression create_cmp_expression(unsigned Opcode,
120 CmpInst::Predicate Predicate,
121 Value *LHS, Value *RHS);
122 Expression create_extractvalue_expression(ExtractValueInst* EI);
123 uint32_t lookup_or_add_call(CallInst* C);
124 public:
125 ValueTable() : nextValueNumber(1) { }
126 uint32_t lookup_or_add(Value *V);
127 uint32_t lookup(Value *V) const;
128 uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
129 Value *LHS, Value *RHS);
130 void add(Value *V, uint32_t num);
131 void clear();
132 void erase(Value *v);
133 void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
134 AliasAnalysis *getAliasAnalysis() const { return AA; }
135 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
136 void setDomTree(DominatorTree* D) { DT = D; }
137 uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
138 void verifyRemoved(const Value *) const;
139 };
140}
141
142namespace llvm {
143template <> struct DenseMapInfo<Expression> {
144 static inline Expression getEmptyKey() {
145 return ~0U;
146 }
147
148 static inline Expression getTombstoneKey() {
149 return ~1U;
150 }
151
152 static unsigned getHashValue(const Expression e) {
153 using llvm::hash_value;
154 return static_cast<unsigned>(hash_value(e));
155 }
156 static bool isEqual(const Expression &LHS, const Expression &RHS) {
157 return LHS == RHS;
158 }
159};
160
161}
162
163//===----------------------------------------------------------------------===//
164// ValueTable Internal Functions
165//===----------------------------------------------------------------------===//
166
167Expression ValueTable::create_expression(Instruction *I) {
168 Expression e;
169 e.type = I->getType();
170 e.opcode = I->getOpcode();
171 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
172 OI != OE; ++OI)
173 e.varargs.push_back(lookup_or_add(*OI));
174 if (I->isCommutative()) {
175 // Ensure that commutative instructions that only differ by a permutation
176 // of their operands get the same value number by sorting the operand value
177 // numbers. Since all commutative instructions have two operands it is more
178 // efficient to sort by hand rather than using, say, std::sort.
179 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
180 if (e.varargs[0] > e.varargs[1])
181 std::swap(e.varargs[0], e.varargs[1]);
182 }
183
184 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
185 // Sort the operand value numbers so x<y and y>x get the same value number.
186 CmpInst::Predicate Predicate = C->getPredicate();
187 if (e.varargs[0] > e.varargs[1]) {
188 std::swap(e.varargs[0], e.varargs[1]);
189 Predicate = CmpInst::getSwappedPredicate(Predicate);
190 }
191 e.opcode = (C->getOpcode() << 8) | Predicate;
192 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
193 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
194 II != IE; ++II)
195 e.varargs.push_back(*II);
196 }
197
198 return e;
199}
200
201Expression ValueTable::create_cmp_expression(unsigned Opcode,
202 CmpInst::Predicate Predicate,
203 Value *LHS, Value *RHS) {
204 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
205 "Not a comparison!");
206 Expression e;
207 e.type = CmpInst::makeCmpResultType(LHS->getType());
208 e.varargs.push_back(lookup_or_add(LHS));
209 e.varargs.push_back(lookup_or_add(RHS));
210
211 // Sort the operand value numbers so x<y and y>x get the same value number.
212 if (e.varargs[0] > e.varargs[1]) {
213 std::swap(e.varargs[0], e.varargs[1]);
214 Predicate = CmpInst::getSwappedPredicate(Predicate);
215 }
216 e.opcode = (Opcode << 8) | Predicate;
217 return e;
218}
219
220Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
1a4d82fc 221 assert(EI && "Not an ExtractValueInst?");
223e47cc
LB
222 Expression e;
223 e.type = EI->getType();
224 e.opcode = 0;
225
226 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1a4d82fc 227 if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
223e47cc
LB
228 // EI might be an extract from one of our recognised intrinsics. If it
229 // is we'll synthesize a semantically equivalent expression instead on
230 // an extract value expression.
231 switch (I->getIntrinsicID()) {
232 case Intrinsic::sadd_with_overflow:
233 case Intrinsic::uadd_with_overflow:
234 e.opcode = Instruction::Add;
235 break;
236 case Intrinsic::ssub_with_overflow:
237 case Intrinsic::usub_with_overflow:
238 e.opcode = Instruction::Sub;
239 break;
240 case Intrinsic::smul_with_overflow:
241 case Intrinsic::umul_with_overflow:
242 e.opcode = Instruction::Mul;
243 break;
244 default:
245 break;
246 }
247
248 if (e.opcode != 0) {
249 // Intrinsic recognized. Grab its args to finish building the expression.
250 assert(I->getNumArgOperands() == 2 &&
251 "Expect two args for recognised intrinsics.");
252 e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
253 e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
254 return e;
255 }
256 }
257
258 // Not a recognised intrinsic. Fall back to producing an extract value
259 // expression.
260 e.opcode = EI->getOpcode();
261 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
262 OI != OE; ++OI)
263 e.varargs.push_back(lookup_or_add(*OI));
264
265 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
266 II != IE; ++II)
267 e.varargs.push_back(*II);
268
269 return e;
270}
271
272//===----------------------------------------------------------------------===//
273// ValueTable External Functions
274//===----------------------------------------------------------------------===//
275
276/// add - Insert a value into the table with a specified value number.
277void ValueTable::add(Value *V, uint32_t num) {
278 valueNumbering.insert(std::make_pair(V, num));
279}
280
281uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
282 if (AA->doesNotAccessMemory(C)) {
283 Expression exp = create_expression(C);
284 uint32_t &e = expressionNumbering[exp];
285 if (!e) e = nextValueNumber++;
286 valueNumbering[C] = e;
287 return e;
288 } else if (AA->onlyReadsMemory(C)) {
289 Expression exp = create_expression(C);
290 uint32_t &e = expressionNumbering[exp];
291 if (!e) {
292 e = nextValueNumber++;
293 valueNumbering[C] = e;
294 return e;
295 }
296 if (!MD) {
297 e = nextValueNumber++;
298 valueNumbering[C] = e;
299 return e;
300 }
301
302 MemDepResult local_dep = MD->getDependency(C);
303
304 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
305 valueNumbering[C] = nextValueNumber;
306 return nextValueNumber++;
307 }
308
309 if (local_dep.isDef()) {
310 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
311
312 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
313 valueNumbering[C] = nextValueNumber;
314 return nextValueNumber++;
315 }
316
317 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
318 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
319 uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
320 if (c_vn != cd_vn) {
321 valueNumbering[C] = nextValueNumber;
322 return nextValueNumber++;
323 }
324 }
325
326 uint32_t v = lookup_or_add(local_cdep);
327 valueNumbering[C] = v;
328 return v;
329 }
330
331 // Non-local case.
332 const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
333 MD->getNonLocalCallDependency(CallSite(C));
334 // FIXME: Move the checking logic to MemDep!
1a4d82fc 335 CallInst* cdep = nullptr;
223e47cc
LB
336
337 // Check to see if we have a single dominating call instruction that is
338 // identical to C.
339 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
340 const NonLocalDepEntry *I = &deps[i];
341 if (I->getResult().isNonLocal())
342 continue;
343
344 // We don't handle non-definitions. If we already have a call, reject
345 // instruction dependencies.
1a4d82fc
JJ
346 if (!I->getResult().isDef() || cdep != nullptr) {
347 cdep = nullptr;
223e47cc
LB
348 break;
349 }
350
351 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
352 // FIXME: All duplicated with non-local case.
353 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
354 cdep = NonLocalDepCall;
355 continue;
356 }
357
1a4d82fc 358 cdep = nullptr;
223e47cc
LB
359 break;
360 }
361
362 if (!cdep) {
363 valueNumbering[C] = nextValueNumber;
364 return nextValueNumber++;
365 }
366
367 if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
368 valueNumbering[C] = nextValueNumber;
369 return nextValueNumber++;
370 }
371 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
372 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
373 uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
374 if (c_vn != cd_vn) {
375 valueNumbering[C] = nextValueNumber;
376 return nextValueNumber++;
377 }
378 }
379
380 uint32_t v = lookup_or_add(cdep);
381 valueNumbering[C] = v;
382 return v;
383
384 } else {
385 valueNumbering[C] = nextValueNumber;
386 return nextValueNumber++;
387 }
388}
389
390/// lookup_or_add - Returns the value number for the specified value, assigning
391/// it a new number if it did not have one before.
392uint32_t ValueTable::lookup_or_add(Value *V) {
393 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
394 if (VI != valueNumbering.end())
395 return VI->second;
396
397 if (!isa<Instruction>(V)) {
398 valueNumbering[V] = nextValueNumber;
399 return nextValueNumber++;
400 }
401
402 Instruction* I = cast<Instruction>(V);
403 Expression exp;
404 switch (I->getOpcode()) {
405 case Instruction::Call:
406 return lookup_or_add_call(cast<CallInst>(I));
407 case Instruction::Add:
408 case Instruction::FAdd:
409 case Instruction::Sub:
410 case Instruction::FSub:
411 case Instruction::Mul:
412 case Instruction::FMul:
413 case Instruction::UDiv:
414 case Instruction::SDiv:
415 case Instruction::FDiv:
416 case Instruction::URem:
417 case Instruction::SRem:
418 case Instruction::FRem:
419 case Instruction::Shl:
420 case Instruction::LShr:
421 case Instruction::AShr:
422 case Instruction::And:
423 case Instruction::Or:
424 case Instruction::Xor:
425 case Instruction::ICmp:
426 case Instruction::FCmp:
427 case Instruction::Trunc:
428 case Instruction::ZExt:
429 case Instruction::SExt:
430 case Instruction::FPToUI:
431 case Instruction::FPToSI:
432 case Instruction::UIToFP:
433 case Instruction::SIToFP:
434 case Instruction::FPTrunc:
435 case Instruction::FPExt:
436 case Instruction::PtrToInt:
437 case Instruction::IntToPtr:
438 case Instruction::BitCast:
439 case Instruction::Select:
440 case Instruction::ExtractElement:
441 case Instruction::InsertElement:
442 case Instruction::ShuffleVector:
443 case Instruction::InsertValue:
444 case Instruction::GetElementPtr:
445 exp = create_expression(I);
446 break;
447 case Instruction::ExtractValue:
448 exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
449 break;
450 default:
451 valueNumbering[V] = nextValueNumber;
452 return nextValueNumber++;
453 }
454
455 uint32_t& e = expressionNumbering[exp];
456 if (!e) e = nextValueNumber++;
457 valueNumbering[V] = e;
458 return e;
459}
460
461/// lookup - Returns the value number of the specified value. Fails if
462/// the value has not yet been numbered.
463uint32_t ValueTable::lookup(Value *V) const {
464 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
465 assert(VI != valueNumbering.end() && "Value not numbered?");
466 return VI->second;
467}
468
469/// lookup_or_add_cmp - Returns the value number of the given comparison,
470/// assigning it a new number if it did not have one before. Useful when
471/// we deduced the result of a comparison, but don't immediately have an
472/// instruction realizing that comparison to hand.
473uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
474 CmpInst::Predicate Predicate,
475 Value *LHS, Value *RHS) {
476 Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
477 uint32_t& e = expressionNumbering[exp];
478 if (!e) e = nextValueNumber++;
479 return e;
480}
481
482/// clear - Remove all entries from the ValueTable.
483void ValueTable::clear() {
484 valueNumbering.clear();
485 expressionNumbering.clear();
486 nextValueNumber = 1;
487}
488
489/// erase - Remove a value from the value numbering.
490void ValueTable::erase(Value *V) {
491 valueNumbering.erase(V);
492}
493
494/// verifyRemoved - Verify that the value is removed from all internal data
495/// structures.
496void ValueTable::verifyRemoved(const Value *V) const {
497 for (DenseMap<Value*, uint32_t>::const_iterator
498 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
499 assert(I->first != V && "Inst still occurs in value numbering map!");
500 }
501}
502
503//===----------------------------------------------------------------------===//
504// GVN Pass
505//===----------------------------------------------------------------------===//
506
507namespace {
1a4d82fc
JJ
508 class GVN;
509 struct AvailableValueInBlock {
510 /// BB - The basic block in question.
511 BasicBlock *BB;
512 enum ValType {
513 SimpleVal, // A simple offsetted value that is accessed.
514 LoadVal, // A value produced by a load.
515 MemIntrin, // A memory intrinsic which is loaded from.
516 UndefVal // A UndefValue representing a value from dead block (which
517 // is not yet physically removed from the CFG).
518 };
519
520 /// V - The value that is live out of the block.
521 PointerIntPair<Value *, 2, ValType> Val;
522
523 /// Offset - The byte offset in Val that is interesting for the load query.
524 unsigned Offset;
525
526 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
527 unsigned Offset = 0) {
528 AvailableValueInBlock Res;
529 Res.BB = BB;
530 Res.Val.setPointer(V);
531 Res.Val.setInt(SimpleVal);
532 Res.Offset = Offset;
533 return Res;
534 }
535
536 static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
537 unsigned Offset = 0) {
538 AvailableValueInBlock Res;
539 Res.BB = BB;
540 Res.Val.setPointer(MI);
541 Res.Val.setInt(MemIntrin);
542 Res.Offset = Offset;
543 return Res;
544 }
545
546 static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
547 unsigned Offset = 0) {
548 AvailableValueInBlock Res;
549 Res.BB = BB;
550 Res.Val.setPointer(LI);
551 Res.Val.setInt(LoadVal);
552 Res.Offset = Offset;
553 return Res;
554 }
555
556 static AvailableValueInBlock getUndef(BasicBlock *BB) {
557 AvailableValueInBlock Res;
558 Res.BB = BB;
559 Res.Val.setPointer(nullptr);
560 Res.Val.setInt(UndefVal);
561 Res.Offset = 0;
562 return Res;
563 }
564
565 bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
566 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
567 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
568 bool isUndefValue() const { return Val.getInt() == UndefVal; }
569
570 Value *getSimpleValue() const {
571 assert(isSimpleValue() && "Wrong accessor");
572 return Val.getPointer();
573 }
574
575 LoadInst *getCoercedLoadValue() const {
576 assert(isCoercedLoadValue() && "Wrong accessor");
577 return cast<LoadInst>(Val.getPointer());
578 }
579
580 MemIntrinsic *getMemIntrinValue() const {
581 assert(isMemIntrinValue() && "Wrong accessor");
582 return cast<MemIntrinsic>(Val.getPointer());
583 }
584
585 /// MaterializeAdjustedValue - Emit code into this block to adjust the value
586 /// defined here to the specified type. This handles various coercion cases.
587 Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
588 };
223e47cc
LB
589
590 class GVN : public FunctionPass {
591 bool NoLoads;
592 MemoryDependenceAnalysis *MD;
593 DominatorTree *DT;
1a4d82fc 594 const DataLayout *DL;
223e47cc 595 const TargetLibraryInfo *TLI;
85aaf69f 596 AssumptionCache *AC;
1a4d82fc 597 SetVector<BasicBlock *> DeadBlocks;
223e47cc
LB
598
599 ValueTable VN;
600
601 /// LeaderTable - A mapping from value numbers to lists of Value*'s that
602 /// have that value number. Use findLeader to query it.
603 struct LeaderTableEntry {
604 Value *Val;
605 const BasicBlock *BB;
606 LeaderTableEntry *Next;
607 };
608 DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
609 BumpPtrAllocator TableAllocator;
610
611 SmallVector<Instruction*, 8> InstrsToErase;
1a4d82fc
JJ
612
613 typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
614 typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
615 typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
616
223e47cc
LB
617 public:
618 static char ID; // Pass identification, replacement for typeid
619 explicit GVN(bool noloads = false)
1a4d82fc 620 : FunctionPass(ID), NoLoads(noloads), MD(nullptr) {
223e47cc
LB
621 initializeGVNPass(*PassRegistry::getPassRegistry());
622 }
623
1a4d82fc 624 bool runOnFunction(Function &F) override;
223e47cc
LB
625
626 /// markInstructionForDeletion - This removes the specified instruction from
627 /// our various maps and marks it for deletion.
628 void markInstructionForDeletion(Instruction *I) {
629 VN.erase(I);
630 InstrsToErase.push_back(I);
631 }
632
1a4d82fc 633 const DataLayout *getDataLayout() const { return DL; }
223e47cc
LB
634 DominatorTree &getDominatorTree() const { return *DT; }
635 AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
636 MemoryDependenceAnalysis &getMemDep() const { return *MD; }
637 private:
638 /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
639 /// its value number.
640 void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
641 LeaderTableEntry &Curr = LeaderTable[N];
642 if (!Curr.Val) {
643 Curr.Val = V;
644 Curr.BB = BB;
645 return;
646 }
647
648 LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
649 Node->Val = V;
650 Node->BB = BB;
651 Node->Next = Curr.Next;
652 Curr.Next = Node;
653 }
654
655 /// removeFromLeaderTable - Scan the list of values corresponding to a given
656 /// value number, and remove the given instruction if encountered.
657 void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
1a4d82fc 658 LeaderTableEntry* Prev = nullptr;
223e47cc
LB
659 LeaderTableEntry* Curr = &LeaderTable[N];
660
661 while (Curr->Val != I || Curr->BB != BB) {
662 Prev = Curr;
663 Curr = Curr->Next;
664 }
665
666 if (Prev) {
667 Prev->Next = Curr->Next;
668 } else {
669 if (!Curr->Next) {
1a4d82fc
JJ
670 Curr->Val = nullptr;
671 Curr->BB = nullptr;
223e47cc
LB
672 } else {
673 LeaderTableEntry* Next = Curr->Next;
674 Curr->Val = Next->Val;
675 Curr->BB = Next->BB;
676 Curr->Next = Next->Next;
677 }
678 }
679 }
680
681 // List of critical edges to be split between iterations.
682 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
683
684 // This transformation requires dominator postdominator info
1a4d82fc 685 void getAnalysisUsage(AnalysisUsage &AU) const override {
85aaf69f 686 AU.addRequired<AssumptionCacheTracker>();
1a4d82fc 687 AU.addRequired<DominatorTreeWrapperPass>();
223e47cc
LB
688 AU.addRequired<TargetLibraryInfo>();
689 if (!NoLoads)
690 AU.addRequired<MemoryDependenceAnalysis>();
691 AU.addRequired<AliasAnalysis>();
692
1a4d82fc 693 AU.addPreserved<DominatorTreeWrapperPass>();
223e47cc
LB
694 AU.addPreserved<AliasAnalysis>();
695 }
696
697
1a4d82fc 698 // Helper fuctions of redundant load elimination
223e47cc 699 bool processLoad(LoadInst *L);
223e47cc 700 bool processNonLocalLoad(LoadInst *L);
1a4d82fc
JJ
701 void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
702 AvailValInBlkVect &ValuesPerBlock,
703 UnavailBlkVect &UnavailableBlocks);
704 bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
705 UnavailBlkVect &UnavailableBlocks);
706
707 // Other helper routines
708 bool processInstruction(Instruction *I);
223e47cc
LB
709 bool processBlock(BasicBlock *BB);
710 void dump(DenseMap<uint32_t, Value*> &d);
711 bool iterateOnFunction(Function &F);
712 bool performPRE(Function &F);
85aaf69f 713 bool performScalarPRE(Instruction *I);
223e47cc
LB
714 Value *findLeader(const BasicBlock *BB, uint32_t num);
715 void cleanupGlobalSets();
716 void verifyRemoved(const Instruction *I) const;
717 bool splitCriticalEdges();
1a4d82fc 718 BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
223e47cc
LB
719 unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
720 const BasicBlockEdge &Root);
721 bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
1a4d82fc
JJ
722 bool processFoldableCondBr(BranchInst *BI);
723 void addDeadBlock(BasicBlock *BB);
724 void assignValNumForDeadCode();
223e47cc
LB
725 };
726
727 char GVN::ID = 0;
728}
729
730// createGVNPass - The public interface to this file...
731FunctionPass *llvm::createGVNPass(bool NoLoads) {
732 return new GVN(NoLoads);
733}
734
735INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
85aaf69f 736INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
223e47cc 737INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
1a4d82fc 738INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
223e47cc
LB
739INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
740INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
741INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
742
743#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
744void GVN::dump(DenseMap<uint32_t, Value*>& d) {
745 errs() << "{\n";
746 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
747 E = d.end(); I != E; ++I) {
748 errs() << I->first << "\n";
749 I->second->dump();
750 }
751 errs() << "}\n";
752}
753#endif
754
755/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
756/// we're analyzing is fully available in the specified block. As we go, keep
757/// track of which blocks we know are fully alive in FullyAvailableBlocks. This
758/// map is actually a tri-state map with the following values:
759/// 0) we know the block *is not* fully available.
760/// 1) we know the block *is* fully available.
761/// 2) we do not know whether the block is fully available or not, but we are
762/// currently speculating that it will be.
763/// 3) we are speculating for this block and have used that to speculate for
764/// other blocks.
765static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
766 DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
767 uint32_t RecurseDepth) {
768 if (RecurseDepth > MaxRecurseDepth)
769 return false;
770
771 // Optimistically assume that the block is fully available and check to see
772 // if we already know about this block in one lookup.
773 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
774 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
775
776 // If the entry already existed for this block, return the precomputed value.
777 if (!IV.second) {
778 // If this is a speculative "available" value, mark it as being used for
779 // speculation of other blocks.
780 if (IV.first->second == 2)
781 IV.first->second = 3;
782 return IV.first->second != 0;
783 }
784
785 // Otherwise, see if it is fully available in all predecessors.
786 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
787
788 // If this block has no predecessors, it isn't live-in here.
789 if (PI == PE)
790 goto SpeculationFailure;
791
792 for (; PI != PE; ++PI)
793 // If the value isn't fully available in one of our predecessors, then it
794 // isn't fully available in this block either. Undo our previous
795 // optimistic assumption and bail out.
796 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
797 goto SpeculationFailure;
798
799 return true;
800
801// SpeculationFailure - If we get here, we found out that this is not, after
802// all, a fully-available block. We have a problem if we speculated on this and
803// used the speculation to mark other blocks as available.
804SpeculationFailure:
805 char &BBVal = FullyAvailableBlocks[BB];
806
807 // If we didn't speculate on this, just return with it set to false.
808 if (BBVal == 2) {
809 BBVal = 0;
810 return false;
811 }
812
813 // If we did speculate on this value, we could have blocks set to 1 that are
814 // incorrect. Walk the (transitive) successors of this block and mark them as
815 // 0 if set to one.
816 SmallVector<BasicBlock*, 32> BBWorklist;
817 BBWorklist.push_back(BB);
818
819 do {
820 BasicBlock *Entry = BBWorklist.pop_back_val();
821 // Note that this sets blocks to 0 (unavailable) if they happen to not
822 // already be in FullyAvailableBlocks. This is safe.
823 char &EntryVal = FullyAvailableBlocks[Entry];
824 if (EntryVal == 0) continue; // Already unavailable.
825
826 // Mark as unavailable.
827 EntryVal = 0;
828
1a4d82fc 829 BBWorklist.append(succ_begin(Entry), succ_end(Entry));
223e47cc
LB
830 } while (!BBWorklist.empty());
831
832 return false;
833}
834
835
836/// CanCoerceMustAliasedValueToLoad - Return true if
837/// CoerceAvailableValueToLoadType will succeed.
838static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
839 Type *LoadTy,
1a4d82fc 840 const DataLayout &DL) {
223e47cc
LB
841 // If the loaded or stored value is an first class array or struct, don't try
842 // to transform them. We need to be able to bitcast to integer.
843 if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
844 StoredVal->getType()->isStructTy() ||
845 StoredVal->getType()->isArrayTy())
846 return false;
847
848 // The store has to be at least as big as the load.
1a4d82fc
JJ
849 if (DL.getTypeSizeInBits(StoredVal->getType()) <
850 DL.getTypeSizeInBits(LoadTy))
223e47cc
LB
851 return false;
852
853 return true;
854}
855
223e47cc
LB
856/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
857/// then a load from a must-aliased pointer of a different type, try to coerce
858/// the stored value. LoadedTy is the type of the load we want to replace and
859/// InsertPt is the place to insert new instructions.
860///
861/// If we can't do it, return null.
862static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
863 Type *LoadedTy,
864 Instruction *InsertPt,
1a4d82fc
JJ
865 const DataLayout &DL) {
866 if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
867 return nullptr;
223e47cc
LB
868
869 // If this is already the right type, just return it.
870 Type *StoredValTy = StoredVal->getType();
871
1a4d82fc
JJ
872 uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
873 uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
223e47cc
LB
874
875 // If the store and reload are the same size, we can always reuse it.
876 if (StoreSize == LoadSize) {
877 // Pointer to Pointer -> use bitcast.
970d7e83
LB
878 if (StoredValTy->getScalarType()->isPointerTy() &&
879 LoadedTy->getScalarType()->isPointerTy())
223e47cc
LB
880 return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
881
882 // Convert source pointers to integers, which can be bitcast.
970d7e83 883 if (StoredValTy->getScalarType()->isPointerTy()) {
1a4d82fc 884 StoredValTy = DL.getIntPtrType(StoredValTy);
223e47cc
LB
885 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
886 }
887
888 Type *TypeToCastTo = LoadedTy;
970d7e83 889 if (TypeToCastTo->getScalarType()->isPointerTy())
1a4d82fc 890 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
223e47cc
LB
891
892 if (StoredValTy != TypeToCastTo)
893 StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
894
895 // Cast to pointer if the load needs a pointer type.
970d7e83 896 if (LoadedTy->getScalarType()->isPointerTy())
223e47cc
LB
897 StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
898
899 return StoredVal;
900 }
901
902 // If the loaded value is smaller than the available value, then we can
903 // extract out a piece from it. If the available value is too small, then we
904 // can't do anything.
905 assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
906
907 // Convert source pointers to integers, which can be manipulated.
970d7e83 908 if (StoredValTy->getScalarType()->isPointerTy()) {
1a4d82fc 909 StoredValTy = DL.getIntPtrType(StoredValTy);
223e47cc
LB
910 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
911 }
912
913 // Convert vectors and fp to integer, which can be manipulated.
914 if (!StoredValTy->isIntegerTy()) {
915 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
916 StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
917 }
918
919 // If this is a big-endian system, we need to shift the value down to the low
920 // bits so that a truncate will work.
1a4d82fc 921 if (DL.isBigEndian()) {
223e47cc
LB
922 Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
923 StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
924 }
925
926 // Truncate the integer to the right size now.
927 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
928 StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
929
930 if (LoadedTy == NewIntTy)
931 return StoredVal;
932
933 // If the result is a pointer, inttoptr.
970d7e83 934 if (LoadedTy->getScalarType()->isPointerTy())
223e47cc
LB
935 return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
936
937 // Otherwise, bitcast.
938 return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
939}
940
941/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
942/// memdep query of a load that ends up being a clobbering memory write (store,
943/// memset, memcpy, memmove). This means that the write *may* provide bits used
944/// by the load but we can't be sure because the pointers don't mustalias.
945///
946/// Check this case to see if there is anything more we can do before we give
947/// up. This returns -1 if we have to give up, or a byte number in the stored
948/// value of the piece that feeds the load.
949static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
950 Value *WritePtr,
951 uint64_t WriteSizeInBits,
1a4d82fc 952 const DataLayout &DL) {
223e47cc
LB
953 // If the loaded or stored value is a first class array or struct, don't try
954 // to transform them. We need to be able to bitcast to integer.
955 if (LoadTy->isStructTy() || LoadTy->isArrayTy())
956 return -1;
957
958 int64_t StoreOffset = 0, LoadOffset = 0;
1a4d82fc
JJ
959 Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&DL);
960 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &DL);
223e47cc
LB
961 if (StoreBase != LoadBase)
962 return -1;
963
964 // If the load and store are to the exact same address, they should have been
965 // a must alias. AA must have gotten confused.
966 // FIXME: Study to see if/when this happens. One case is forwarding a memset
967 // to a load from the base of the memset.
968#if 0
969 if (LoadOffset == StoreOffset) {
970 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
971 << "Base = " << *StoreBase << "\n"
972 << "Store Ptr = " << *WritePtr << "\n"
973 << "Store Offs = " << StoreOffset << "\n"
974 << "Load Ptr = " << *LoadPtr << "\n";
975 abort();
976 }
977#endif
978
979 // If the load and store don't overlap at all, the store doesn't provide
980 // anything to the load. In this case, they really don't alias at all, AA
981 // must have gotten confused.
1a4d82fc 982 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
223e47cc
LB
983
984 if ((WriteSizeInBits & 7) | (LoadSize & 7))
985 return -1;
986 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
987 LoadSize >>= 3;
988
989
990 bool isAAFailure = false;
991 if (StoreOffset < LoadOffset)
992 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
993 else
994 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
995
996 if (isAAFailure) {
997#if 0
998 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
999 << "Base = " << *StoreBase << "\n"
1000 << "Store Ptr = " << *WritePtr << "\n"
1001 << "Store Offs = " << StoreOffset << "\n"
1002 << "Load Ptr = " << *LoadPtr << "\n";
1003 abort();
1004#endif
1005 return -1;
1006 }
1007
1008 // If the Load isn't completely contained within the stored bits, we don't
1009 // have all the bits to feed it. We could do something crazy in the future
1010 // (issue a smaller load then merge the bits in) but this seems unlikely to be
1011 // valuable.
1012 if (StoreOffset > LoadOffset ||
1013 StoreOffset+StoreSize < LoadOffset+LoadSize)
1014 return -1;
1015
1016 // Okay, we can do this transformation. Return the number of bytes into the
1017 // store that the load is.
1018 return LoadOffset-StoreOffset;
1019}
1020
1021/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1022/// memdep query of a load that ends up being a clobbering store.
1023static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
1024 StoreInst *DepSI,
1a4d82fc 1025 const DataLayout &DL) {
223e47cc
LB
1026 // Cannot handle reading from store of first-class aggregate yet.
1027 if (DepSI->getValueOperand()->getType()->isStructTy() ||
1028 DepSI->getValueOperand()->getType()->isArrayTy())
1029 return -1;
1030
1031 Value *StorePtr = DepSI->getPointerOperand();
1a4d82fc 1032 uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
223e47cc 1033 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1a4d82fc 1034 StorePtr, StoreSize, DL);
223e47cc
LB
1035}
1036
1037/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
1038/// memdep query of a load that ends up being clobbered by another load. See if
1039/// the other load can feed into the second load.
1040static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
1a4d82fc 1041 LoadInst *DepLI, const DataLayout &DL){
223e47cc
LB
1042 // Cannot handle reading from store of first-class aggregate yet.
1043 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
1044 return -1;
1045
1046 Value *DepPtr = DepLI->getPointerOperand();
1a4d82fc
JJ
1047 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
1048 int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
223e47cc
LB
1049 if (R != -1) return R;
1050
1051 // If we have a load/load clobber an DepLI can be widened to cover this load,
1052 // then we should widen it!
1053 int64_t LoadOffs = 0;
1054 const Value *LoadBase =
1a4d82fc
JJ
1055 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &DL);
1056 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
223e47cc
LB
1057
1058 unsigned Size = MemoryDependenceAnalysis::
1a4d82fc 1059 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, DL);
223e47cc
LB
1060 if (Size == 0) return -1;
1061
1a4d82fc 1062 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
223e47cc
LB
1063}
1064
1065
1066
1067static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
1068 MemIntrinsic *MI,
1a4d82fc 1069 const DataLayout &DL) {
223e47cc
LB
1070 // If the mem operation is a non-constant size, we can't handle it.
1071 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1a4d82fc 1072 if (!SizeCst) return -1;
223e47cc
LB
1073 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1074
1075 // If this is memset, we just need to see if the offset is valid in the size
1076 // of the memset..
1077 if (MI->getIntrinsicID() == Intrinsic::memset)
1078 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1a4d82fc 1079 MemSizeInBits, DL);
223e47cc
LB
1080
1081 // If we have a memcpy/memmove, the only case we can handle is if this is a
1082 // copy from constant memory. In that case, we can read directly from the
1083 // constant memory.
1084 MemTransferInst *MTI = cast<MemTransferInst>(MI);
1085
1086 Constant *Src = dyn_cast<Constant>(MTI->getSource());
1a4d82fc 1087 if (!Src) return -1;
223e47cc 1088
1a4d82fc
JJ
1089 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &DL));
1090 if (!GV || !GV->isConstant()) return -1;
223e47cc
LB
1091
1092 // See if the access is within the bounds of the transfer.
1093 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1a4d82fc 1094 MI->getDest(), MemSizeInBits, DL);
223e47cc
LB
1095 if (Offset == -1)
1096 return Offset;
1097
1a4d82fc 1098 unsigned AS = Src->getType()->getPointerAddressSpace();
223e47cc
LB
1099 // Otherwise, see if we can constant fold a load from the constant with the
1100 // offset applied as appropriate.
1101 Src = ConstantExpr::getBitCast(Src,
1a4d82fc 1102 Type::getInt8PtrTy(Src->getContext(), AS));
223e47cc
LB
1103 Constant *OffsetCst =
1104 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1105 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1a4d82fc
JJ
1106 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1107 if (ConstantFoldLoadFromConstPtr(Src, &DL))
223e47cc
LB
1108 return Offset;
1109 return -1;
1110}
1111
1112
1113/// GetStoreValueForLoad - This function is called when we have a
1114/// memdep query of a load that ends up being a clobbering store. This means
1115/// that the store provides bits used by the load but we the pointers don't
1116/// mustalias. Check this case to see if there is anything more we can do
1117/// before we give up.
1118static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1119 Type *LoadTy,
1a4d82fc 1120 Instruction *InsertPt, const DataLayout &DL){
223e47cc
LB
1121 LLVMContext &Ctx = SrcVal->getType()->getContext();
1122
1a4d82fc
JJ
1123 uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1124 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
223e47cc
LB
1125
1126 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1127
1128 // Compute which bits of the stored value are being used by the load. Convert
1129 // to an integer type to start with.
970d7e83
LB
1130 if (SrcVal->getType()->getScalarType()->isPointerTy())
1131 SrcVal = Builder.CreatePtrToInt(SrcVal,
1a4d82fc 1132 DL.getIntPtrType(SrcVal->getType()));
223e47cc
LB
1133 if (!SrcVal->getType()->isIntegerTy())
1134 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1135
1136 // Shift the bits to the least significant depending on endianness.
1137 unsigned ShiftAmt;
1a4d82fc 1138 if (DL.isLittleEndian())
223e47cc
LB
1139 ShiftAmt = Offset*8;
1140 else
1141 ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1142
1143 if (ShiftAmt)
1144 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1145
1146 if (LoadSize != StoreSize)
1147 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1148
1a4d82fc 1149 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, DL);
223e47cc
LB
1150}
1151
1152/// GetLoadValueForLoad - This function is called when we have a
1153/// memdep query of a load that ends up being a clobbering load. This means
1154/// that the load *may* provide bits used by the load but we can't be sure
1155/// because the pointers don't mustalias. Check this case to see if there is
1156/// anything more we can do before we give up.
1157static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1158 Type *LoadTy, Instruction *InsertPt,
1159 GVN &gvn) {
1a4d82fc 1160 const DataLayout &DL = *gvn.getDataLayout();
223e47cc
LB
1161 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1162 // widen SrcVal out to a larger load.
1a4d82fc
JJ
1163 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
1164 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
223e47cc
LB
1165 if (Offset+LoadSize > SrcValSize) {
1166 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1167 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1168 // If we have a load/load clobber an DepLI can be widened to cover this
1169 // load, then we should widen it to the next power of 2 size big enough!
1170 unsigned NewLoadSize = Offset+LoadSize;
1171 if (!isPowerOf2_32(NewLoadSize))
1172 NewLoadSize = NextPowerOf2(NewLoadSize);
1173
1174 Value *PtrVal = SrcVal->getPointerOperand();
1175
1176 // Insert the new load after the old load. This ensures that subsequent
1177 // memdep queries will find the new load. We can't easily remove the old
1178 // load completely because it is already in the value numbering table.
1179 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1180 Type *DestPTy =
1181 IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1182 DestPTy = PointerType::get(DestPTy,
1a4d82fc 1183 PtrVal->getType()->getPointerAddressSpace());
223e47cc
LB
1184 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1185 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1186 LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1187 NewLoad->takeName(SrcVal);
1188 NewLoad->setAlignment(SrcVal->getAlignment());
1189
1190 DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1191 DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1192
1193 // Replace uses of the original load with the wider load. On a big endian
1194 // system, we need to shift down to get the relevant bits.
1195 Value *RV = NewLoad;
1a4d82fc 1196 if (DL.isBigEndian())
223e47cc
LB
1197 RV = Builder.CreateLShr(RV,
1198 NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1199 RV = Builder.CreateTrunc(RV, SrcVal->getType());
1200 SrcVal->replaceAllUsesWith(RV);
1201
1202 // We would like to use gvn.markInstructionForDeletion here, but we can't
1203 // because the load is already memoized into the leader map table that GVN
1204 // tracks. It is potentially possible to remove the load from the table,
1205 // but then there all of the operations based on it would need to be
1206 // rehashed. Just leave the dead load around.
1207 gvn.getMemDep().removeInstruction(SrcVal);
1208 SrcVal = NewLoad;
1209 }
1210
1a4d82fc 1211 return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
223e47cc
LB
1212}
1213
1214
1215/// GetMemInstValueForLoad - This function is called when we have a
1216/// memdep query of a load that ends up being a clobbering mem intrinsic.
1217static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1218 Type *LoadTy, Instruction *InsertPt,
1a4d82fc 1219 const DataLayout &DL){
223e47cc 1220 LLVMContext &Ctx = LoadTy->getContext();
1a4d82fc 1221 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
223e47cc
LB
1222
1223 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1224
1225 // We know that this method is only called when the mem transfer fully
1226 // provides the bits for the load.
1227 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1228 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1229 // independently of what the offset is.
1230 Value *Val = MSI->getValue();
1231 if (LoadSize != 1)
1232 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1233
1234 Value *OneElt = Val;
1235
1236 // Splat the value out to the right number of bits.
1237 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1238 // If we can double the number of bytes set, do it.
1239 if (NumBytesSet*2 <= LoadSize) {
1240 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1241 Val = Builder.CreateOr(Val, ShVal);
1242 NumBytesSet <<= 1;
1243 continue;
1244 }
1245
1246 // Otherwise insert one byte at a time.
1247 Value *ShVal = Builder.CreateShl(Val, 1*8);
1248 Val = Builder.CreateOr(OneElt, ShVal);
1249 ++NumBytesSet;
1250 }
1251
1a4d82fc 1252 return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, DL);
223e47cc
LB
1253 }
1254
1255 // Otherwise, this is a memcpy/memmove from a constant global.
1256 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1257 Constant *Src = cast<Constant>(MTI->getSource());
1a4d82fc 1258 unsigned AS = Src->getType()->getPointerAddressSpace();
223e47cc
LB
1259
1260 // Otherwise, see if we can constant fold a load from the constant with the
1261 // offset applied as appropriate.
1262 Src = ConstantExpr::getBitCast(Src,
1a4d82fc 1263 Type::getInt8PtrTy(Src->getContext(), AS));
223e47cc 1264 Constant *OffsetCst =
1a4d82fc 1265 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
223e47cc 1266 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1a4d82fc
JJ
1267 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1268 return ConstantFoldLoadFromConstPtr(Src, &DL);
223e47cc
LB
1269}
1270
223e47cc
LB
1271
1272/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1273/// construct SSA form, allowing us to eliminate LI. This returns the value
1274/// that should be used at LI's definition site.
1275static Value *ConstructSSAForLoadSet(LoadInst *LI,
1276 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1277 GVN &gvn) {
1278 // Check for the fully redundant, dominating load case. In this case, we can
1279 // just use the dominating value directly.
1280 if (ValuesPerBlock.size() == 1 &&
1281 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1a4d82fc
JJ
1282 LI->getParent())) {
1283 assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
223e47cc 1284 return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1a4d82fc 1285 }
223e47cc
LB
1286
1287 // Otherwise, we have to construct SSA form.
1288 SmallVector<PHINode*, 8> NewPHIs;
1289 SSAUpdater SSAUpdate(&NewPHIs);
1290 SSAUpdate.Initialize(LI->getType(), LI->getName());
1291
1292 Type *LoadTy = LI->getType();
1293
1294 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1295 const AvailableValueInBlock &AV = ValuesPerBlock[i];
1296 BasicBlock *BB = AV.BB;
1297
1298 if (SSAUpdate.HasValueForBlock(BB))
1299 continue;
1300
1301 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1302 }
1303
1304 // Perform PHI construction.
1305 Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1306
1307 // If new PHI nodes were created, notify alias analysis.
970d7e83 1308 if (V->getType()->getScalarType()->isPointerTy()) {
223e47cc
LB
1309 AliasAnalysis *AA = gvn.getAliasAnalysis();
1310
1311 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1312 AA->copyValue(LI, NewPHIs[i]);
1313
1314 // Now that we've copied information to the new PHIs, scan through
1315 // them again and inform alias analysis that we've added potentially
1316 // escaping uses to any values that are operands to these PHIs.
1317 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1318 PHINode *P = NewPHIs[i];
1319 for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1320 unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1321 AA->addEscapingUse(P->getOperandUse(jj));
1322 }
1323 }
1324 }
1325
1326 return V;
1327}
1328
1a4d82fc
JJ
1329Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1330 Value *Res;
1331 if (isSimpleValue()) {
1332 Res = getSimpleValue();
1333 if (Res->getType() != LoadTy) {
1334 const DataLayout *DL = gvn.getDataLayout();
1335 assert(DL && "Need target data to handle type mismatch case");
1336 Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1337 *DL);
1338
1339 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
1340 << *getSimpleValue() << '\n'
1341 << *Res << '\n' << "\n\n\n");
1342 }
1343 } else if (isCoercedLoadValue()) {
1344 LoadInst *Load = getCoercedLoadValue();
1345 if (Load->getType() == LoadTy && Offset == 0) {
1346 Res = Load;
1347 } else {
1348 Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1349 gvn);
1350
1351 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
1352 << *getCoercedLoadValue() << '\n'
1353 << *Res << '\n' << "\n\n\n");
1354 }
1355 } else if (isMemIntrinValue()) {
1356 const DataLayout *DL = gvn.getDataLayout();
1357 assert(DL && "Need target data to handle type mismatch case");
1358 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1359 LoadTy, BB->getTerminator(), *DL);
1360 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1361 << " " << *getMemIntrinValue() << '\n'
1362 << *Res << '\n' << "\n\n\n");
1363 } else {
1364 assert(isUndefValue() && "Should be UndefVal");
1365 DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
1366 return UndefValue::get(LoadTy);
1367 }
1368 return Res;
1369}
1370
223e47cc
LB
1371static bool isLifetimeStart(const Instruction *Inst) {
1372 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1373 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1374 return false;
1375}
1376
1a4d82fc
JJ
1377void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
1378 AvailValInBlkVect &ValuesPerBlock,
1379 UnavailBlkVect &UnavailableBlocks) {
223e47cc
LB
1380
1381 // Filter out useless results (non-locals, etc). Keep track of the blocks
1382 // where we have a value available in repl, also keep track of whether we see
1383 // dependencies that produce an unknown value for the load (such as a call
1384 // that could potentially clobber the load).
1a4d82fc 1385 unsigned NumDeps = Deps.size();
223e47cc
LB
1386 for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1387 BasicBlock *DepBB = Deps[i].getBB();
1388 MemDepResult DepInfo = Deps[i].getResult();
1389
1a4d82fc
JJ
1390 if (DeadBlocks.count(DepBB)) {
1391 // Dead dependent mem-op disguise as a load evaluating the same value
1392 // as the load in question.
1393 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1394 continue;
1395 }
1396
223e47cc
LB
1397 if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1398 UnavailableBlocks.push_back(DepBB);
1399 continue;
1400 }
1401
1402 if (DepInfo.isClobber()) {
1403 // The address being loaded in this non-local block may not be the same as
1404 // the pointer operand of the load if PHI translation occurs. Make sure
1405 // to consider the right address.
1406 Value *Address = Deps[i].getAddress();
1407
1408 // If the dependence is to a store that writes to a superset of the bits
1409 // read by the load, we can extract the bits we need for the load from the
1410 // stored value.
1411 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1a4d82fc 1412 if (DL && Address) {
223e47cc 1413 int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1a4d82fc 1414 DepSI, *DL);
223e47cc
LB
1415 if (Offset != -1) {
1416 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1417 DepSI->getValueOperand(),
1418 Offset));
1419 continue;
1420 }
1421 }
1422 }
1423
1424 // Check to see if we have something like this:
1425 // load i32* P
1426 // load i8* (P+1)
1427 // if we have this, replace the later with an extraction from the former.
1428 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1429 // If this is a clobber and L is the first instruction in its block, then
1430 // we have the first instruction in the entry block.
1a4d82fc
JJ
1431 if (DepLI != LI && Address && DL) {
1432 int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), Address,
1433 DepLI, *DL);
223e47cc
LB
1434
1435 if (Offset != -1) {
1436 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1437 Offset));
1438 continue;
1439 }
1440 }
1441 }
1442
1443 // If the clobbering value is a memset/memcpy/memmove, see if we can
1444 // forward a value on from it.
1445 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1a4d82fc 1446 if (DL && Address) {
223e47cc 1447 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1a4d82fc 1448 DepMI, *DL);
223e47cc
LB
1449 if (Offset != -1) {
1450 ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1451 Offset));
1452 continue;
1453 }
1454 }
1455 }
1456
1457 UnavailableBlocks.push_back(DepBB);
1458 continue;
1459 }
1460
1461 // DepInfo.isDef() here
1462
1463 Instruction *DepInst = DepInfo.getInst();
1464
1465 // Loading the allocation -> undef.
1466 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1467 // Loading immediately after lifetime begin -> undef.
1468 isLifetimeStart(DepInst)) {
1469 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1470 UndefValue::get(LI->getType())));
1471 continue;
1472 }
1473
1a4d82fc
JJ
1474 // Loading from calloc (which zero initializes memory) -> zero
1475 if (isCallocLikeFn(DepInst, TLI)) {
1476 ValuesPerBlock.push_back(AvailableValueInBlock::get(
1477 DepBB, Constant::getNullValue(LI->getType())));
1478 continue;
1479 }
1480
223e47cc
LB
1481 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1482 // Reject loads and stores that are to the same address but are of
1483 // different types if we have to.
1484 if (S->getValueOperand()->getType() != LI->getType()) {
1485 // If the stored value is larger or equal to the loaded value, we can
1486 // reuse it.
1a4d82fc
JJ
1487 if (!DL || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1488 LI->getType(), *DL)) {
223e47cc
LB
1489 UnavailableBlocks.push_back(DepBB);
1490 continue;
1491 }
1492 }
1493
1494 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1495 S->getValueOperand()));
1496 continue;
1497 }
1498
1499 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1500 // If the types mismatch and we can't handle it, reject reuse of the load.
1501 if (LD->getType() != LI->getType()) {
1502 // If the stored value is larger or equal to the loaded value, we can
1503 // reuse it.
1a4d82fc 1504 if (!DL || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*DL)) {
223e47cc
LB
1505 UnavailableBlocks.push_back(DepBB);
1506 continue;
1507 }
1508 }
1509 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1510 continue;
1511 }
1512
1513 UnavailableBlocks.push_back(DepBB);
223e47cc 1514 }
1a4d82fc 1515}
223e47cc 1516
1a4d82fc
JJ
1517bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1518 UnavailBlkVect &UnavailableBlocks) {
223e47cc
LB
1519 // Okay, we have *some* definitions of the value. This means that the value
1520 // is available in some of our (transitive) predecessors. Lets think about
1521 // doing PRE of this load. This will involve inserting a new load into the
1522 // predecessor when it's not available. We could do this in general, but
1523 // prefer to not increase code size. As such, we only do this when we know
1524 // that we only have to insert *one* load (which means we're basically moving
1525 // the load, not inserting a new one).
1526
1527 SmallPtrSet<BasicBlock *, 4> Blockers;
1528 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1529 Blockers.insert(UnavailableBlocks[i]);
1530
1531 // Let's find the first basic block with more than one predecessor. Walk
1532 // backwards through predecessors if needed.
1533 BasicBlock *LoadBB = LI->getParent();
1534 BasicBlock *TmpBB = LoadBB;
1535
223e47cc 1536 while (TmpBB->getSinglePredecessor()) {
223e47cc
LB
1537 TmpBB = TmpBB->getSinglePredecessor();
1538 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1539 return false;
1540 if (Blockers.count(TmpBB))
1541 return false;
1542
1543 // If any of these blocks has more than one successor (i.e. if the edge we
1544 // just traversed was critical), then there are other paths through this
1545 // block along which the load may not be anticipated. Hoisting the load
1546 // above this block would be adding the load to execution paths along
1547 // which it was not previously executed.
1548 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1549 return false;
1550 }
1551
1552 assert(TmpBB);
1553 LoadBB = TmpBB;
1554
223e47cc
LB
1555 // Check to see how many predecessors have the loaded value fully
1556 // available.
1a4d82fc 1557 MapVector<BasicBlock *, Value *> PredLoads;
223e47cc
LB
1558 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1559 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1560 FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1561 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1562 FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1563
1a4d82fc 1564 SmallVector<BasicBlock *, 4> CriticalEdgePred;
223e47cc
LB
1565 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1566 PI != E; ++PI) {
1567 BasicBlock *Pred = *PI;
1568 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1569 continue;
1570 }
223e47cc
LB
1571
1572 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1573 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1574 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1575 << Pred->getName() << "': " << *LI << '\n');
1576 return false;
1577 }
1578
1579 if (LoadBB->isLandingPad()) {
1580 DEBUG(dbgs()
1581 << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1582 << Pred->getName() << "': " << *LI << '\n');
1583 return false;
1584 }
1585
1a4d82fc
JJ
1586 CriticalEdgePred.push_back(Pred);
1587 } else {
1588 // Only add the predecessors that will not be split for now.
1589 PredLoads[Pred] = nullptr;
223e47cc
LB
1590 }
1591 }
1592
223e47cc 1593 // Decide whether PRE is profitable for this load.
1a4d82fc 1594 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
223e47cc 1595 assert(NumUnavailablePreds != 0 &&
1a4d82fc 1596 "Fully available value should already be eliminated!");
223e47cc
LB
1597
1598 // If this load is unavailable in multiple predecessors, reject it.
1599 // FIXME: If we could restructure the CFG, we could make a common pred with
1600 // all the preds that don't have an available LI and insert a new load into
1601 // that one block.
1602 if (NumUnavailablePreds != 1)
1603 return false;
1604
1a4d82fc
JJ
1605 // Split critical edges, and update the unavailable predecessors accordingly.
1606 for (BasicBlock *OrigPred : CriticalEdgePred) {
1607 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1608 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1609 PredLoads[NewPred] = nullptr;
1610 DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1611 << LoadBB->getName() << '\n');
1612 }
1613
223e47cc
LB
1614 // Check if the load can safely be moved to all the unavailable predecessors.
1615 bool CanDoPRE = true;
1616 SmallVector<Instruction*, 8> NewInsts;
1a4d82fc
JJ
1617 for (auto &PredLoad : PredLoads) {
1618 BasicBlock *UnavailablePred = PredLoad.first;
223e47cc
LB
1619
1620 // Do PHI translation to get its value in the predecessor if necessary. The
1621 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1622
1623 // If all preds have a single successor, then we know it is safe to insert
1624 // the load on the pred (?!?), so we can insert code to materialize the
1625 // pointer if it is not available.
85aaf69f 1626 PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1a4d82fc
JJ
1627 Value *LoadPtr = nullptr;
1628 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1629 *DT, NewInsts);
223e47cc
LB
1630
1631 // If we couldn't find or insert a computation of this phi translated value,
1632 // we fail PRE.
1a4d82fc 1633 if (!LoadPtr) {
223e47cc
LB
1634 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1635 << *LI->getPointerOperand() << "\n");
1636 CanDoPRE = false;
1637 break;
1638 }
1639
1a4d82fc 1640 PredLoad.second = LoadPtr;
223e47cc
LB
1641 }
1642
1643 if (!CanDoPRE) {
1644 while (!NewInsts.empty()) {
1645 Instruction *I = NewInsts.pop_back_val();
1646 if (MD) MD->removeInstruction(I);
1647 I->eraseFromParent();
1648 }
1a4d82fc
JJ
1649 // HINT: Don't revert the edge-splitting as following transformation may
1650 // also need to split these critical edges.
1651 return !CriticalEdgePred.empty();
223e47cc
LB
1652 }
1653
1654 // Okay, we can eliminate this load by inserting a reload in the predecessor
1655 // and using PHI construction to get the value in the other predecessors, do
1656 // it.
1657 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1658 DEBUG(if (!NewInsts.empty())
1659 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1660 << *NewInsts.back() << '\n');
1661
1662 // Assign value numbers to the new instructions.
1663 for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1664 // FIXME: We really _ought_ to insert these value numbers into their
1665 // parent's availability map. However, in doing so, we risk getting into
1666 // ordering issues. If a block hasn't been processed yet, we would be
1667 // marking a value as AVAIL-IN, which isn't what we intend.
1668 VN.lookup_or_add(NewInsts[i]);
1669 }
1670
1a4d82fc
JJ
1671 for (const auto &PredLoad : PredLoads) {
1672 BasicBlock *UnavailablePred = PredLoad.first;
1673 Value *LoadPtr = PredLoad.second;
223e47cc
LB
1674
1675 Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1676 LI->getAlignment(),
1677 UnavailablePred->getTerminator());
1678
1a4d82fc
JJ
1679 // Transfer the old load's AA tags to the new load.
1680 AAMDNodes Tags;
1681 LI->getAAMetadata(Tags);
1682 if (Tags)
1683 NewLoad->setAAMetadata(Tags);
223e47cc
LB
1684
1685 // Transfer DebugLoc.
1686 NewLoad->setDebugLoc(LI->getDebugLoc());
1687
1688 // Add the newly created load.
1689 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1690 NewLoad));
1691 MD->invalidateCachedPointerInfo(LoadPtr);
1692 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1693 }
1694
1695 // Perform PHI construction.
1696 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1697 LI->replaceAllUsesWith(V);
1698 if (isa<PHINode>(V))
1699 V->takeName(LI);
970d7e83 1700 if (V->getType()->getScalarType()->isPointerTy())
223e47cc
LB
1701 MD->invalidateCachedPointerInfo(V);
1702 markInstructionForDeletion(LI);
1703 ++NumPRELoad;
1704 return true;
1705}
1706
1a4d82fc
JJ
1707/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1708/// non-local by performing PHI construction.
1709bool GVN::processNonLocalLoad(LoadInst *LI) {
1710 // Step 1: Find the non-local dependencies of the load.
1711 LoadDepVect Deps;
85aaf69f 1712 MD->getNonLocalPointerDependency(LI, Deps);
1a4d82fc
JJ
1713
1714 // If we had to process more than one hundred blocks to find the
1715 // dependencies, this load isn't worth worrying about. Optimizing
1716 // it will be too expensive.
1717 unsigned NumDeps = Deps.size();
1718 if (NumDeps > 100)
1719 return false;
1720
1721 // If we had a phi translation failure, we'll have a single entry which is a
1722 // clobber in the current block. Reject this early.
1723 if (NumDeps == 1 &&
1724 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1725 DEBUG(
1726 dbgs() << "GVN: non-local load ";
1727 LI->printAsOperand(dbgs());
1728 dbgs() << " has unknown dependencies\n";
1729 );
1730 return false;
1731 }
1732
85aaf69f
SL
1733 // If this load follows a GEP, see if we can PRE the indices before analyzing.
1734 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1735 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1736 OE = GEP->idx_end();
1737 OI != OE; ++OI)
1738 if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1739 performScalarPRE(I);
1740 }
1741
1a4d82fc
JJ
1742 // Step 2: Analyze the availability of the load
1743 AvailValInBlkVect ValuesPerBlock;
1744 UnavailBlkVect UnavailableBlocks;
1745 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1746
1747 // If we have no predecessors that produce a known value for this load, exit
1748 // early.
1749 if (ValuesPerBlock.empty())
1750 return false;
1751
1752 // Step 3: Eliminate fully redundancy.
1753 //
1754 // If all of the instructions we depend on produce a known value for this
1755 // load, then it is fully redundant and we can use PHI insertion to compute
1756 // its value. Insert PHIs and remove the fully redundant value now.
1757 if (UnavailableBlocks.empty()) {
1758 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1759
1760 // Perform PHI construction.
1761 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1762 LI->replaceAllUsesWith(V);
1763
1764 if (isa<PHINode>(V))
1765 V->takeName(LI);
1766 if (V->getType()->getScalarType()->isPointerTy())
1767 MD->invalidateCachedPointerInfo(V);
1768 markInstructionForDeletion(LI);
1769 ++NumGVNLoad;
1770 return true;
1771 }
1772
1773 // Step 4: Eliminate partial redundancy.
1774 if (!EnablePRE || !EnableLoadPRE)
1775 return false;
1776
1777 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1778}
1779
1780
970d7e83 1781static void patchReplacementInstruction(Instruction *I, Value *Repl) {
223e47cc
LB
1782 // Patch the replacement so that it is not more restrictive than the value
1783 // being replaced.
1784 BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1785 BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1786 if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1787 isa<OverflowingBinaryOperator>(ReplOp)) {
1788 if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1789 ReplOp->setHasNoSignedWrap(false);
1790 if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1791 ReplOp->setHasNoUnsignedWrap(false);
1792 }
1793 if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1a4d82fc
JJ
1794 // FIXME: If both the original and replacement value are part of the
1795 // same control-flow region (meaning that the execution of one
1796 // guarentees the executation of the other), then we can combine the
1797 // noalias scopes here and do better than the general conservative
1798 // answer used in combineMetadata().
1799
1800 // In general, GVN unifies expressions over different control-flow
1801 // regions, and so we need a conservative combination of the noalias
1802 // scopes.
1803 unsigned KnownIDs[] = {
1804 LLVMContext::MD_tbaa,
1805 LLVMContext::MD_alias_scope,
1806 LLVMContext::MD_noalias,
1807 LLVMContext::MD_range,
1808 LLVMContext::MD_fpmath,
1809 LLVMContext::MD_invariant_load,
1810 };
1811 combineMetadata(ReplInst, I, KnownIDs);
223e47cc
LB
1812 }
1813}
1814
970d7e83
LB
1815static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1816 patchReplacementInstruction(I, Repl);
223e47cc
LB
1817 I->replaceAllUsesWith(Repl);
1818}
1819
1820/// processLoad - Attempt to eliminate a load, first by eliminating it
1821/// locally, and then attempting non-local elimination if that fails.
1822bool GVN::processLoad(LoadInst *L) {
1823 if (!MD)
1824 return false;
1825
1826 if (!L->isSimple())
1827 return false;
1828
1829 if (L->use_empty()) {
1830 markInstructionForDeletion(L);
1831 return true;
1832 }
1833
1834 // ... to a pointer that has been loaded from before...
1835 MemDepResult Dep = MD->getDependency(L);
1836
1837 // If we have a clobber and target data is around, see if this is a clobber
1838 // that we can fix up through code synthesis.
1a4d82fc 1839 if (Dep.isClobber() && DL) {
223e47cc
LB
1840 // Check to see if we have something like this:
1841 // store i32 123, i32* %P
1842 // %A = bitcast i32* %P to i8*
1843 // %B = gep i8* %A, i32 1
1844 // %C = load i8* %B
1845 //
1846 // We could do that by recognizing if the clobber instructions are obviously
1847 // a common base + constant offset, and if the previous store (or memset)
1848 // completely covers this load. This sort of thing can happen in bitfield
1849 // access code.
1a4d82fc 1850 Value *AvailVal = nullptr;
223e47cc
LB
1851 if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1852 int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1853 L->getPointerOperand(),
1a4d82fc 1854 DepSI, *DL);
223e47cc
LB
1855 if (Offset != -1)
1856 AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1a4d82fc 1857 L->getType(), L, *DL);
223e47cc
LB
1858 }
1859
1860 // Check to see if we have something like this:
1861 // load i32* P
1862 // load i8* (P+1)
1863 // if we have this, replace the later with an extraction from the former.
1864 if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1865 // If this is a clobber and L is the first instruction in its block, then
1866 // we have the first instruction in the entry block.
1867 if (DepLI == L)
1868 return false;
1869
1870 int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1871 L->getPointerOperand(),
1a4d82fc 1872 DepLI, *DL);
223e47cc
LB
1873 if (Offset != -1)
1874 AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1875 }
1876
1877 // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1878 // a value on from it.
1879 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1880 int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1881 L->getPointerOperand(),
1a4d82fc 1882 DepMI, *DL);
223e47cc 1883 if (Offset != -1)
1a4d82fc 1884 AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *DL);
223e47cc
LB
1885 }
1886
1887 if (AvailVal) {
1888 DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1889 << *AvailVal << '\n' << *L << "\n\n\n");
1890
1891 // Replace the load!
1892 L->replaceAllUsesWith(AvailVal);
970d7e83 1893 if (AvailVal->getType()->getScalarType()->isPointerTy())
223e47cc
LB
1894 MD->invalidateCachedPointerInfo(AvailVal);
1895 markInstructionForDeletion(L);
1896 ++NumGVNLoad;
1897 return true;
1898 }
1899 }
1900
1901 // If the value isn't available, don't do anything!
1902 if (Dep.isClobber()) {
1903 DEBUG(
1904 // fast print dep, using operator<< on instruction is too slow.
1905 dbgs() << "GVN: load ";
1a4d82fc 1906 L->printAsOperand(dbgs());
223e47cc
LB
1907 Instruction *I = Dep.getInst();
1908 dbgs() << " is clobbered by " << *I << '\n';
1909 );
1910 return false;
1911 }
1912
1913 // If it is defined in another block, try harder.
1914 if (Dep.isNonLocal())
1915 return processNonLocalLoad(L);
1916
1917 if (!Dep.isDef()) {
1918 DEBUG(
1919 // fast print dep, using operator<< on instruction is too slow.
1920 dbgs() << "GVN: load ";
1a4d82fc 1921 L->printAsOperand(dbgs());
223e47cc
LB
1922 dbgs() << " has unknown dependence\n";
1923 );
1924 return false;
1925 }
1926
1927 Instruction *DepInst = Dep.getInst();
1928 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1929 Value *StoredVal = DepSI->getValueOperand();
1930
1931 // The store and load are to a must-aliased pointer, but they may not
1932 // actually have the same type. See if we know how to reuse the stored
1933 // value (depending on its type).
1934 if (StoredVal->getType() != L->getType()) {
1a4d82fc 1935 if (DL) {
223e47cc 1936 StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1a4d82fc
JJ
1937 L, *DL);
1938 if (!StoredVal)
223e47cc
LB
1939 return false;
1940
1941 DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1942 << '\n' << *L << "\n\n\n");
1943 }
1944 else
1945 return false;
1946 }
1947
1948 // Remove it!
1949 L->replaceAllUsesWith(StoredVal);
970d7e83 1950 if (StoredVal->getType()->getScalarType()->isPointerTy())
223e47cc
LB
1951 MD->invalidateCachedPointerInfo(StoredVal);
1952 markInstructionForDeletion(L);
1953 ++NumGVNLoad;
1954 return true;
1955 }
1956
1957 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1958 Value *AvailableVal = DepLI;
1959
1960 // The loads are of a must-aliased pointer, but they may not actually have
1961 // the same type. See if we know how to reuse the previously loaded value
1962 // (depending on its type).
1963 if (DepLI->getType() != L->getType()) {
1a4d82fc 1964 if (DL) {
223e47cc 1965 AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1a4d82fc
JJ
1966 L, *DL);
1967 if (!AvailableVal)
223e47cc
LB
1968 return false;
1969
1970 DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1971 << "\n" << *L << "\n\n\n");
1972 }
1973 else
1974 return false;
1975 }
1976
1977 // Remove it!
970d7e83
LB
1978 patchAndReplaceAllUsesWith(L, AvailableVal);
1979 if (DepLI->getType()->getScalarType()->isPointerTy())
223e47cc
LB
1980 MD->invalidateCachedPointerInfo(DepLI);
1981 markInstructionForDeletion(L);
1982 ++NumGVNLoad;
1983 return true;
1984 }
1985
1986 // If this load really doesn't depend on anything, then we must be loading an
1987 // undef value. This can happen when loading for a fresh allocation with no
1988 // intervening stores, for example.
1989 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1990 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1991 markInstructionForDeletion(L);
1992 ++NumGVNLoad;
1993 return true;
1994 }
1995
1996 // If this load occurs either right after a lifetime begin,
1997 // then the loaded value is undefined.
1998 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1999 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
2000 L->replaceAllUsesWith(UndefValue::get(L->getType()));
2001 markInstructionForDeletion(L);
2002 ++NumGVNLoad;
2003 return true;
2004 }
2005 }
2006
1a4d82fc
JJ
2007 // If this load follows a calloc (which zero initializes memory),
2008 // then the loaded value is zero
2009 if (isCallocLikeFn(DepInst, TLI)) {
2010 L->replaceAllUsesWith(Constant::getNullValue(L->getType()));
2011 markInstructionForDeletion(L);
2012 ++NumGVNLoad;
2013 return true;
2014 }
2015
223e47cc
LB
2016 return false;
2017}
2018
2019// findLeader - In order to find a leader for a given value number at a
2020// specific basic block, we first obtain the list of all Values for that number,
2021// and then scan the list to find one whose block dominates the block in
2022// question. This is fast because dominator tree queries consist of only
2023// a few comparisons of DFS numbers.
2024Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2025 LeaderTableEntry Vals = LeaderTable[num];
1a4d82fc 2026 if (!Vals.Val) return nullptr;
223e47cc 2027
1a4d82fc 2028 Value *Val = nullptr;
223e47cc
LB
2029 if (DT->dominates(Vals.BB, BB)) {
2030 Val = Vals.Val;
2031 if (isa<Constant>(Val)) return Val;
2032 }
2033
2034 LeaderTableEntry* Next = Vals.Next;
2035 while (Next) {
2036 if (DT->dominates(Next->BB, BB)) {
2037 if (isa<Constant>(Next->Val)) return Next->Val;
2038 if (!Val) Val = Next->Val;
2039 }
2040
2041 Next = Next->Next;
2042 }
2043
2044 return Val;
2045}
2046
2047/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
2048/// use is dominated by the given basic block. Returns the number of uses that
2049/// were replaced.
2050unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
2051 const BasicBlockEdge &Root) {
2052 unsigned Count = 0;
2053 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2054 UI != UE; ) {
1a4d82fc 2055 Use &U = *UI++;
223e47cc
LB
2056
2057 if (DT->dominates(Root, U)) {
2058 U.set(To);
2059 ++Count;
2060 }
2061 }
2062 return Count;
2063}
2064
2065/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'. Return
2066/// true if every path from the entry block to 'Dst' passes via this edge. In
2067/// particular 'Dst' must not be reachable via another edge from 'Src'.
2068static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2069 DominatorTree *DT) {
2070 // While in theory it is interesting to consider the case in which Dst has
2071 // more than one predecessor, because Dst might be part of a loop which is
2072 // only reachable from Src, in practice it is pointless since at the time
2073 // GVN runs all such loops have preheaders, which means that Dst will have
2074 // been changed to have only one predecessor, namely Src.
2075 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2076 const BasicBlock *Src = E.getStart();
2077 assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2078 (void)Src;
1a4d82fc 2079 return Pred != nullptr;
223e47cc
LB
2080}
2081
2082/// propagateEquality - The given values are known to be equal in every block
2083/// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
2084/// 'RHS' everywhere in the scope. Returns whether a change was made.
2085bool GVN::propagateEquality(Value *LHS, Value *RHS,
2086 const BasicBlockEdge &Root) {
2087 SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2088 Worklist.push_back(std::make_pair(LHS, RHS));
2089 bool Changed = false;
2090 // For speed, compute a conservative fast approximation to
2091 // DT->dominates(Root, Root.getEnd());
2092 bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2093
2094 while (!Worklist.empty()) {
2095 std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2096 LHS = Item.first; RHS = Item.second;
2097
2098 if (LHS == RHS) continue;
2099 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2100
2101 // Don't try to propagate equalities between constants.
2102 if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2103
2104 // Prefer a constant on the right-hand side, or an Argument if no constants.
2105 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2106 std::swap(LHS, RHS);
2107 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2108
85aaf69f
SL
2109 // If there is no obvious reason to prefer the left-hand side over the
2110 // right-hand side, ensure the longest lived term is on the right-hand side,
2111 // so the shortest lived term will be replaced by the longest lived.
2112 // This tends to expose more simplifications.
223e47cc
LB
2113 uint32_t LVN = VN.lookup_or_add(LHS);
2114 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2115 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
85aaf69f
SL
2116 // Move the 'oldest' value to the right-hand side, using the value number
2117 // as a proxy for age.
223e47cc
LB
2118 uint32_t RVN = VN.lookup_or_add(RHS);
2119 if (LVN < RVN) {
2120 std::swap(LHS, RHS);
2121 LVN = RVN;
2122 }
2123 }
2124
2125 // If value numbering later sees that an instruction in the scope is equal
2126 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
2127 // the invariant that instructions only occur in the leader table for their
2128 // own value number (this is used by removeFromLeaderTable), do not do this
2129 // if RHS is an instruction (if an instruction in the scope is morphed into
2130 // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2131 // using the leader table is about compiling faster, not optimizing better).
2132 // The leader table only tracks basic blocks, not edges. Only add to if we
2133 // have the simple case where the edge dominates the end.
2134 if (RootDominatesEnd && !isa<Instruction>(RHS))
2135 addToLeaderTable(LVN, RHS, Root.getEnd());
2136
2137 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
2138 // LHS always has at least one use that is not dominated by Root, this will
2139 // never do anything if LHS has only one use.
2140 if (!LHS->hasOneUse()) {
2141 unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2142 Changed |= NumReplacements > 0;
2143 NumGVNEqProp += NumReplacements;
2144 }
2145
85aaf69f
SL
2146 // Now try to deduce additional equalities from this one. For example, if
2147 // the known equality was "(A != B)" == "false" then it follows that A and B
2148 // are equal in the scope. Only boolean equalities with an explicit true or
2149 // false RHS are currently supported.
223e47cc
LB
2150 if (!RHS->getType()->isIntegerTy(1))
2151 // Not a boolean equality - bail out.
2152 continue;
2153 ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2154 if (!CI)
2155 // RHS neither 'true' nor 'false' - bail out.
2156 continue;
2157 // Whether RHS equals 'true'. Otherwise it equals 'false'.
2158 bool isKnownTrue = CI->isAllOnesValue();
2159 bool isKnownFalse = !isKnownTrue;
2160
2161 // If "A && B" is known true then both A and B are known true. If "A || B"
2162 // is known false then both A and B are known false.
2163 Value *A, *B;
2164 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2165 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2166 Worklist.push_back(std::make_pair(A, RHS));
2167 Worklist.push_back(std::make_pair(B, RHS));
2168 continue;
2169 }
2170
2171 // If we are propagating an equality like "(A == B)" == "true" then also
2172 // propagate the equality A == B. When propagating a comparison such as
2173 // "(A >= B)" == "true", replace all instances of "A < B" with "false".
85aaf69f 2174 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
223e47cc
LB
2175 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2176
2177 // If "A == B" is known true, or "A != B" is known false, then replace
2178 // A with B everywhere in the scope.
2179 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2180 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2181 Worklist.push_back(std::make_pair(Op0, Op1));
2182
85aaf69f
SL
2183 // Handle the floating point versions of equality comparisons too.
2184 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
2185 (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
2186 // Floating point -0.0 and 0.0 compare equal, so we can't
2187 // propagate a constant based on that comparison.
2188 // FIXME: We should do this optimization if 'no signed zeros' is
2189 // applicable via an instruction-level fast-math-flag or some other
2190 // indicator that relaxed FP semantics are being used.
2191 if (!isa<ConstantFP>(Op1) || !cast<ConstantFP>(Op1)->isZero())
2192 Worklist.push_back(std::make_pair(Op0, Op1));
2193 }
2194
223e47cc
LB
2195 // If "A >= B" is known true, replace "A < B" with false everywhere.
2196 CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2197 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
85aaf69f
SL
2198 // Since we don't have the instruction "A < B" immediately to hand, work
2199 // out the value number that it would have and use that to find an
2200 // appropriate instruction (if any).
223e47cc
LB
2201 uint32_t NextNum = VN.getNextUnusedValueNumber();
2202 uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2203 // If the number we were assigned was brand new then there is no point in
2204 // looking for an instruction realizing it: there cannot be one!
2205 if (Num < NextNum) {
2206 Value *NotCmp = findLeader(Root.getEnd(), Num);
2207 if (NotCmp && isa<Instruction>(NotCmp)) {
2208 unsigned NumReplacements =
2209 replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2210 Changed |= NumReplacements > 0;
2211 NumGVNEqProp += NumReplacements;
2212 }
2213 }
2214 // Ensure that any instruction in scope that gets the "A < B" value number
2215 // is replaced with false.
2216 // The leader table only tracks basic blocks, not edges. Only add to if we
2217 // have the simple case where the edge dominates the end.
2218 if (RootDominatesEnd)
2219 addToLeaderTable(Num, NotVal, Root.getEnd());
2220
2221 continue;
2222 }
2223 }
2224
2225 return Changed;
2226}
2227
2228/// processInstruction - When calculating availability, handle an instruction
2229/// by inserting it into the appropriate sets
2230bool GVN::processInstruction(Instruction *I) {
2231 // Ignore dbg info intrinsics.
2232 if (isa<DbgInfoIntrinsic>(I))
2233 return false;
2234
2235 // If the instruction can be easily simplified then do so now in preference
2236 // to value numbering it. Value numbering often exposes redundancies, for
2237 // example if it determines that %y is equal to %x then the instruction
2238 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
85aaf69f 2239 if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
223e47cc 2240 I->replaceAllUsesWith(V);
970d7e83 2241 if (MD && V->getType()->getScalarType()->isPointerTy())
223e47cc
LB
2242 MD->invalidateCachedPointerInfo(V);
2243 markInstructionForDeletion(I);
2244 ++NumGVNSimpl;
2245 return true;
2246 }
2247
2248 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2249 if (processLoad(LI))
2250 return true;
2251
2252 unsigned Num = VN.lookup_or_add(LI);
2253 addToLeaderTable(Num, LI, LI->getParent());
2254 return false;
2255 }
2256
2257 // For conditional branches, we can perform simple conditional propagation on
2258 // the condition value itself.
2259 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1a4d82fc 2260 if (!BI->isConditional())
223e47cc
LB
2261 return false;
2262
1a4d82fc
JJ
2263 if (isa<Constant>(BI->getCondition()))
2264 return processFoldableCondBr(BI);
223e47cc 2265
1a4d82fc 2266 Value *BranchCond = BI->getCondition();
223e47cc
LB
2267 BasicBlock *TrueSucc = BI->getSuccessor(0);
2268 BasicBlock *FalseSucc = BI->getSuccessor(1);
2269 // Avoid multiple edges early.
2270 if (TrueSucc == FalseSucc)
2271 return false;
2272
2273 BasicBlock *Parent = BI->getParent();
2274 bool Changed = false;
2275
2276 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2277 BasicBlockEdge TrueE(Parent, TrueSucc);
2278 Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2279
2280 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2281 BasicBlockEdge FalseE(Parent, FalseSucc);
2282 Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2283
2284 return Changed;
2285 }
2286
2287 // For switches, propagate the case values into the case destinations.
2288 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2289 Value *SwitchCond = SI->getCondition();
2290 BasicBlock *Parent = SI->getParent();
2291 bool Changed = false;
2292
2293 // Remember how many outgoing edges there are to every successor.
2294 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2295 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2296 ++SwitchEdges[SI->getSuccessor(i)];
2297
2298 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2299 i != e; ++i) {
2300 BasicBlock *Dst = i.getCaseSuccessor();
2301 // If there is only a single edge, propagate the case value into it.
2302 if (SwitchEdges.lookup(Dst) == 1) {
2303 BasicBlockEdge E(Parent, Dst);
2304 Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2305 }
2306 }
2307 return Changed;
2308 }
2309
2310 // Instructions with void type don't return a value, so there's
2311 // no point in trying to find redundancies in them.
2312 if (I->getType()->isVoidTy()) return false;
2313
2314 uint32_t NextNum = VN.getNextUnusedValueNumber();
2315 unsigned Num = VN.lookup_or_add(I);
2316
2317 // Allocations are always uniquely numbered, so we can save time and memory
2318 // by fast failing them.
2319 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2320 addToLeaderTable(Num, I, I->getParent());
2321 return false;
2322 }
2323
2324 // If the number we were assigned was a brand new VN, then we don't
2325 // need to do a lookup to see if the number already exists
2326 // somewhere in the domtree: it can't!
2327 if (Num >= NextNum) {
2328 addToLeaderTable(Num, I, I->getParent());
2329 return false;
2330 }
2331
2332 // Perform fast-path value-number based elimination of values inherited from
2333 // dominators.
2334 Value *repl = findLeader(I->getParent(), Num);
1a4d82fc 2335 if (!repl) {
223e47cc
LB
2336 // Failure, just remember this instance for future use.
2337 addToLeaderTable(Num, I, I->getParent());
2338 return false;
2339 }
2340
2341 // Remove it!
970d7e83
LB
2342 patchAndReplaceAllUsesWith(I, repl);
2343 if (MD && repl->getType()->getScalarType()->isPointerTy())
223e47cc
LB
2344 MD->invalidateCachedPointerInfo(repl);
2345 markInstructionForDeletion(I);
2346 return true;
2347}
2348
2349/// runOnFunction - This is the main transformation entry point for a function.
2350bool GVN::runOnFunction(Function& F) {
1a4d82fc
JJ
2351 if (skipOptnoneFunction(F))
2352 return false;
2353
223e47cc
LB
2354 if (!NoLoads)
2355 MD = &getAnalysis<MemoryDependenceAnalysis>();
1a4d82fc
JJ
2356 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2357 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2358 DL = DLP ? &DLP->getDataLayout() : nullptr;
85aaf69f 2359 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
223e47cc
LB
2360 TLI = &getAnalysis<TargetLibraryInfo>();
2361 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2362 VN.setMemDep(MD);
2363 VN.setDomTree(DT);
2364
2365 bool Changed = false;
2366 bool ShouldContinue = true;
2367
2368 // Merge unconditional branches, allowing PRE to catch more
2369 // optimization opportunities.
2370 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2371 BasicBlock *BB = FI++;
2372
2373 bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2374 if (removedBlock) ++NumGVNBlocks;
2375
2376 Changed |= removedBlock;
2377 }
2378
2379 unsigned Iteration = 0;
2380 while (ShouldContinue) {
2381 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2382 ShouldContinue = iterateOnFunction(F);
223e47cc
LB
2383 Changed |= ShouldContinue;
2384 ++Iteration;
2385 }
2386
2387 if (EnablePRE) {
1a4d82fc
JJ
2388 // Fabricate val-num for dead-code in order to suppress assertion in
2389 // performPRE().
2390 assignValNumForDeadCode();
223e47cc
LB
2391 bool PREChanged = true;
2392 while (PREChanged) {
2393 PREChanged = performPRE(F);
2394 Changed |= PREChanged;
2395 }
2396 }
1a4d82fc 2397
223e47cc
LB
2398 // FIXME: Should perform GVN again after PRE does something. PRE can move
2399 // computations into blocks where they become fully redundant. Note that
2400 // we can't do this until PRE's critical edge splitting updates memdep.
2401 // Actually, when this happens, we should just fully integrate PRE into GVN.
2402
2403 cleanupGlobalSets();
1a4d82fc
JJ
2404 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2405 // iteration.
2406 DeadBlocks.clear();
223e47cc
LB
2407
2408 return Changed;
2409}
2410
2411
2412bool GVN::processBlock(BasicBlock *BB) {
2413 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2414 // (and incrementing BI before processing an instruction).
2415 assert(InstrsToErase.empty() &&
2416 "We expect InstrsToErase to be empty across iterations");
1a4d82fc
JJ
2417 if (DeadBlocks.count(BB))
2418 return false;
2419
223e47cc
LB
2420 bool ChangedFunction = false;
2421
2422 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2423 BI != BE;) {
2424 ChangedFunction |= processInstruction(BI);
2425 if (InstrsToErase.empty()) {
2426 ++BI;
2427 continue;
2428 }
2429
2430 // If we need some instructions deleted, do it now.
2431 NumGVNInstr += InstrsToErase.size();
2432
2433 // Avoid iterator invalidation.
2434 bool AtStart = BI == BB->begin();
2435 if (!AtStart)
2436 --BI;
2437
1a4d82fc 2438 for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
223e47cc
LB
2439 E = InstrsToErase.end(); I != E; ++I) {
2440 DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2441 if (MD) MD->removeInstruction(*I);
223e47cc 2442 DEBUG(verifyRemoved(*I));
970d7e83 2443 (*I)->eraseFromParent();
223e47cc
LB
2444 }
2445 InstrsToErase.clear();
2446
2447 if (AtStart)
2448 BI = BB->begin();
2449 else
2450 ++BI;
2451 }
2452
2453 return ChangedFunction;
2454}
2455
85aaf69f 2456bool GVN::performScalarPRE(Instruction *CurInst) {
970d7e83 2457 SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
223e47cc 2458
85aaf69f
SL
2459 if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
2460 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2461 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2462 isa<DbgInfoIntrinsic>(CurInst))
2463 return false;
223e47cc 2464
85aaf69f
SL
2465 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2466 // sinking the compare again, and it would force the code generator to
2467 // move the i1 from processor flags or predicate registers into a general
2468 // purpose register.
2469 if (isa<CmpInst>(CurInst))
2470 return false;
223e47cc 2471
85aaf69f
SL
2472 // We don't currently value number ANY inline asm calls.
2473 if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2474 if (CallI->isInlineAsm())
2475 return false;
223e47cc 2476
85aaf69f
SL
2477 uint32_t ValNo = VN.lookup(CurInst);
2478
2479 // Look for the predecessors for PRE opportunities. We're
2480 // only trying to solve the basic diamond case, where
2481 // a value is computed in the successor and one predecessor,
2482 // but not the other. We also explicitly disallow cases
2483 // where the successor is its own predecessor, because they're
2484 // more complicated to get right.
2485 unsigned NumWith = 0;
2486 unsigned NumWithout = 0;
2487 BasicBlock *PREPred = nullptr;
2488 BasicBlock *CurrentBlock = CurInst->getParent();
2489 predMap.clear();
2490
2491 for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2492 PI != PE; ++PI) {
2493 BasicBlock *P = *PI;
2494 // We're not interested in PRE where the block is its
2495 // own predecessor, or in blocks with predecessors
2496 // that are not reachable.
2497 if (P == CurrentBlock) {
2498 NumWithout = 2;
2499 break;
2500 } else if (!DT->isReachableFromEntry(P)) {
2501 NumWithout = 2;
2502 break;
2503 }
223e47cc 2504
85aaf69f
SL
2505 Value *predV = findLeader(P, ValNo);
2506 if (!predV) {
2507 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2508 PREPred = P;
2509 ++NumWithout;
2510 } else if (predV == CurInst) {
2511 /* CurInst dominates this predecessor. */
2512 NumWithout = 2;
2513 break;
2514 } else {
2515 predMap.push_back(std::make_pair(predV, P));
2516 ++NumWith;
2517 }
2518 }
223e47cc 2519
85aaf69f
SL
2520 // Don't do PRE when it might increase code size, i.e. when
2521 // we would need to insert instructions in more than one pred.
2522 if (NumWithout != 1 || NumWith == 0)
2523 return false;
223e47cc 2524
85aaf69f
SL
2525 // Don't do PRE across indirect branch.
2526 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2527 return false;
223e47cc 2528
85aaf69f
SL
2529 // We can't do PRE safely on a critical edge, so instead we schedule
2530 // the edge to be split and perform the PRE the next time we iterate
2531 // on the function.
2532 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2533 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2534 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2535 return false;
2536 }
223e47cc 2537
85aaf69f
SL
2538 // Instantiate the expression in the predecessor that lacked it.
2539 // Because we are going top-down through the block, all value numbers
2540 // will be available in the predecessor by the time we need them. Any
2541 // that weren't originally present will have been instantiated earlier
2542 // in this loop.
2543 Instruction *PREInstr = CurInst->clone();
2544 bool success = true;
2545 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2546 Value *Op = PREInstr->getOperand(i);
2547 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2548 continue;
223e47cc 2549
85aaf69f
SL
2550 if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2551 PREInstr->setOperand(i, V);
2552 } else {
2553 success = false;
2554 break;
2555 }
2556 }
223e47cc 2557
85aaf69f
SL
2558 // Fail out if we encounter an operand that is not available in
2559 // the PRE predecessor. This is typically because of loads which
2560 // are not value numbered precisely.
2561 if (!success) {
2562 DEBUG(verifyRemoved(PREInstr));
2563 delete PREInstr;
2564 return false;
2565 }
223e47cc 2566
85aaf69f
SL
2567 PREInstr->insertBefore(PREPred->getTerminator());
2568 PREInstr->setName(CurInst->getName() + ".pre");
2569 PREInstr->setDebugLoc(CurInst->getDebugLoc());
2570 VN.add(PREInstr, ValNo);
2571 ++NumGVNPRE;
223e47cc 2572
85aaf69f
SL
2573 // Update the availability map to include the new instruction.
2574 addToLeaderTable(ValNo, PREInstr, PREPred);
223e47cc 2575
85aaf69f
SL
2576 // Create a PHI to make the value available in this block.
2577 PHINode *Phi =
2578 PHINode::Create(CurInst->getType(), predMap.size(),
2579 CurInst->getName() + ".pre-phi", CurrentBlock->begin());
2580 for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2581 if (Value *V = predMap[i].first)
2582 Phi->addIncoming(V, predMap[i].second);
2583 else
2584 Phi->addIncoming(PREInstr, PREPred);
2585 }
2586
2587 VN.add(Phi, ValNo);
2588 addToLeaderTable(ValNo, Phi, CurrentBlock);
2589 Phi->setDebugLoc(CurInst->getDebugLoc());
2590 CurInst->replaceAllUsesWith(Phi);
2591 if (Phi->getType()->getScalarType()->isPointerTy()) {
2592 // Because we have added a PHI-use of the pointer value, it has now
2593 // "escaped" from alias analysis' perspective. We need to inform
2594 // AA of this.
2595 for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; ++ii) {
2596 unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2597 VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2598 }
223e47cc 2599
85aaf69f
SL
2600 if (MD)
2601 MD->invalidateCachedPointerInfo(Phi);
2602 }
2603 VN.erase(CurInst);
2604 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
223e47cc 2605
85aaf69f
SL
2606 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2607 if (MD)
2608 MD->removeInstruction(CurInst);
2609 DEBUG(verifyRemoved(CurInst));
2610 CurInst->eraseFromParent();
2611 return true;
2612}
2613
2614/// performPRE - Perform a purely local form of PRE that looks for diamond
2615/// control flow patterns and attempts to perform simple PRE at the join point.
2616bool GVN::performPRE(Function &F) {
2617 bool Changed = false;
2618 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2619 // Nothing to PRE in the entry block.
2620 if (CurrentBlock == &F.getEntryBlock())
2621 continue;
2622
2623 // Don't perform PRE on a landing pad.
2624 if (CurrentBlock->isLandingPad())
2625 continue;
2626
2627 for (BasicBlock::iterator BI = CurrentBlock->begin(),
2628 BE = CurrentBlock->end();
2629 BI != BE;) {
2630 Instruction *CurInst = BI++;
2631 Changed = performScalarPRE(CurInst);
223e47cc
LB
2632 }
2633 }
2634
2635 if (splitCriticalEdges())
2636 Changed = true;
2637
2638 return Changed;
2639}
2640
1a4d82fc
JJ
2641/// Split the critical edge connecting the given two blocks, and return
2642/// the block inserted to the critical edge.
2643BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2644 BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this);
2645 if (MD)
2646 MD->invalidateCachedPredecessors();
2647 return BB;
2648}
2649
223e47cc
LB
2650/// splitCriticalEdges - Split critical edges found during the previous
2651/// iteration that may enable further optimization.
2652bool GVN::splitCriticalEdges() {
2653 if (toSplit.empty())
2654 return false;
2655 do {
2656 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2657 SplitCriticalEdge(Edge.first, Edge.second, this);
2658 } while (!toSplit.empty());
2659 if (MD) MD->invalidateCachedPredecessors();
2660 return true;
2661}
2662
2663/// iterateOnFunction - Executes one iteration of GVN
2664bool GVN::iterateOnFunction(Function &F) {
2665 cleanupGlobalSets();
2666
2667 // Top-down walk of the dominator tree
2668 bool Changed = false;
1a4d82fc
JJ
2669 // Save the blocks this function have before transformation begins. GVN may
2670 // split critical edge, and hence may invalidate the RPO/DT iterator.
2671 //
2672 std::vector<BasicBlock *> BBVect;
2673 BBVect.reserve(256);
85aaf69f
SL
2674 // Needed for value numbering with phi construction to work.
2675 ReversePostOrderTraversal<Function *> RPOT(&F);
2676 for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
2677 RE = RPOT.end();
2678 RI != RE; ++RI)
2679 BBVect.push_back(*RI);
1a4d82fc
JJ
2680
2681 for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
2682 I != E; I++)
2683 Changed |= processBlock(*I);
223e47cc
LB
2684
2685 return Changed;
2686}
2687
2688void GVN::cleanupGlobalSets() {
2689 VN.clear();
2690 LeaderTable.clear();
2691 TableAllocator.Reset();
2692}
2693
2694/// verifyRemoved - Verify that the specified instruction does not occur in our
2695/// internal data structures.
2696void GVN::verifyRemoved(const Instruction *Inst) const {
2697 VN.verifyRemoved(Inst);
2698
2699 // Walk through the value number scope to make sure the instruction isn't
2700 // ferreted away in it.
2701 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2702 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2703 const LeaderTableEntry *Node = &I->second;
2704 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2705
2706 while (Node->Next) {
2707 Node = Node->Next;
2708 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2709 }
2710 }
2711}
1a4d82fc
JJ
2712
2713// BB is declared dead, which implied other blocks become dead as well. This
2714// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2715// live successors, update their phi nodes by replacing the operands
2716// corresponding to dead blocks with UndefVal.
2717//
2718void GVN::addDeadBlock(BasicBlock *BB) {
2719 SmallVector<BasicBlock *, 4> NewDead;
2720 SmallSetVector<BasicBlock *, 4> DF;
2721
2722 NewDead.push_back(BB);
2723 while (!NewDead.empty()) {
2724 BasicBlock *D = NewDead.pop_back_val();
2725 if (DeadBlocks.count(D))
2726 continue;
2727
2728 // All blocks dominated by D are dead.
2729 SmallVector<BasicBlock *, 8> Dom;
2730 DT->getDescendants(D, Dom);
2731 DeadBlocks.insert(Dom.begin(), Dom.end());
2732
2733 // Figure out the dominance-frontier(D).
2734 for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
2735 E = Dom.end(); I != E; I++) {
2736 BasicBlock *B = *I;
2737 for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
2738 BasicBlock *S = *SI;
2739 if (DeadBlocks.count(S))
2740 continue;
2741
2742 bool AllPredDead = true;
2743 for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
2744 if (!DeadBlocks.count(*PI)) {
2745 AllPredDead = false;
2746 break;
2747 }
2748
2749 if (!AllPredDead) {
2750 // S could be proved dead later on. That is why we don't update phi
2751 // operands at this moment.
2752 DF.insert(S);
2753 } else {
2754 // While S is not dominated by D, it is dead by now. This could take
2755 // place if S already have a dead predecessor before D is declared
2756 // dead.
2757 NewDead.push_back(S);
2758 }
2759 }
2760 }
2761 }
2762
2763 // For the dead blocks' live successors, update their phi nodes by replacing
2764 // the operands corresponding to dead blocks with UndefVal.
2765 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2766 I != E; I++) {
2767 BasicBlock *B = *I;
2768 if (DeadBlocks.count(B))
2769 continue;
2770
2771 SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2772 for (SmallVectorImpl<BasicBlock *>::iterator PI = Preds.begin(),
2773 PE = Preds.end(); PI != PE; PI++) {
2774 BasicBlock *P = *PI;
2775
2776 if (!DeadBlocks.count(P))
2777 continue;
2778
2779 if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2780 if (BasicBlock *S = splitCriticalEdges(P, B))
2781 DeadBlocks.insert(P = S);
2782 }
2783
2784 for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2785 PHINode &Phi = cast<PHINode>(*II);
2786 Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2787 UndefValue::get(Phi.getType()));
2788 }
2789 }
2790 }
2791}
2792
2793// If the given branch is recognized as a foldable branch (i.e. conditional
2794// branch with constant condition), it will perform following analyses and
2795// transformation.
2796// 1) If the dead out-coming edge is a critical-edge, split it. Let
2797// R be the target of the dead out-coming edge.
2798// 1) Identify the set of dead blocks implied by the branch's dead outcoming
2799// edge. The result of this step will be {X| X is dominated by R}
2800// 2) Identify those blocks which haves at least one dead prodecessor. The
2801// result of this step will be dominance-frontier(R).
2802// 3) Update the PHIs in DF(R) by replacing the operands corresponding to
2803// dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2804//
2805// Return true iff *NEW* dead code are found.
2806bool GVN::processFoldableCondBr(BranchInst *BI) {
2807 if (!BI || BI->isUnconditional())
2808 return false;
2809
2810 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2811 if (!Cond)
2812 return false;
2813
2814 BasicBlock *DeadRoot = Cond->getZExtValue() ?
2815 BI->getSuccessor(1) : BI->getSuccessor(0);
2816 if (DeadBlocks.count(DeadRoot))
2817 return false;
2818
2819 if (!DeadRoot->getSinglePredecessor())
2820 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2821
2822 addDeadBlock(DeadRoot);
2823 return true;
2824}
2825
2826// performPRE() will trigger assert if it comes across an instruction without
2827// associated val-num. As it normally has far more live instructions than dead
2828// instructions, it makes more sense just to "fabricate" a val-number for the
2829// dead code than checking if instruction involved is dead or not.
2830void GVN::assignValNumForDeadCode() {
2831 for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
2832 E = DeadBlocks.end(); I != E; I++) {
2833 BasicBlock *BB = *I;
2834 for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
2835 II != EE; II++) {
2836 Instruction *Inst = &*II;
2837 unsigned ValNum = VN.lookup_or_add(Inst);
2838 addToLeaderTable(ValNum, Inst, BB);
2839 }
2840 }
2841}