]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Transforms/Utils/InlineFunction.cpp
Imported Upstream version 0.7
[rustc.git] / src / llvm / lib / Transforms / Utils / InlineFunction.cpp
CommitLineData
223e47cc
LB
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
223e47cc
LB
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Analysis/CallGraph.h"
19#include "llvm/Analysis/InstructionSimplify.h"
970d7e83
LB
20#include "llvm/DebugInfo.h"
21#include "llvm/IR/Attributes.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Module.h"
223e47cc 30#include "llvm/Support/CallSite.h"
223e47cc
LB
31#include "llvm/Transforms/Utils/Local.h"
32using namespace llvm;
33
34bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
35 bool InsertLifetime) {
36 return InlineFunction(CallSite(CI), IFI, InsertLifetime);
37}
38bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
39 bool InsertLifetime) {
40 return InlineFunction(CallSite(II), IFI, InsertLifetime);
41}
42
43namespace {
44 /// A class for recording information about inlining through an invoke.
45 class InvokeInliningInfo {
46 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
47 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
48 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
49 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts.
50 SmallVector<Value*, 8> UnwindDestPHIValues;
51
52 public:
53 InvokeInliningInfo(InvokeInst *II)
54 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
55 CallerLPad(0), InnerEHValuesPHI(0) {
56 // If there are PHI nodes in the unwind destination block, we need to keep
57 // track of which values came into them from the invoke before removing
58 // the edge from this block.
59 llvm::BasicBlock *InvokeBB = II->getParent();
60 BasicBlock::iterator I = OuterResumeDest->begin();
61 for (; isa<PHINode>(I); ++I) {
62 // Save the value to use for this edge.
63 PHINode *PHI = cast<PHINode>(I);
64 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
65 }
66
67 CallerLPad = cast<LandingPadInst>(I);
68 }
69
70 /// getOuterResumeDest - The outer unwind destination is the target of
71 /// unwind edges introduced for calls within the inlined function.
72 BasicBlock *getOuterResumeDest() const {
73 return OuterResumeDest;
74 }
75
76 BasicBlock *getInnerResumeDest();
77
78 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
79
80 /// forwardResume - Forward the 'resume' instruction to the caller's landing
81 /// pad block. When the landing pad block has only one predecessor, this is
82 /// a simple branch. When there is more than one predecessor, we need to
83 /// split the landing pad block after the landingpad instruction and jump
84 /// to there.
85 void forwardResume(ResumeInst *RI);
86
87 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
88 /// destination block for the given basic block, using the values for the
89 /// original invoke's source block.
90 void addIncomingPHIValuesFor(BasicBlock *BB) const {
91 addIncomingPHIValuesForInto(BB, OuterResumeDest);
92 }
93
94 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
95 BasicBlock::iterator I = dest->begin();
96 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
97 PHINode *phi = cast<PHINode>(I);
98 phi->addIncoming(UnwindDestPHIValues[i], src);
99 }
100 }
101 };
102}
103
104/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
105BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
106 if (InnerResumeDest) return InnerResumeDest;
107
108 // Split the landing pad.
109 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
110 InnerResumeDest =
111 OuterResumeDest->splitBasicBlock(SplitPoint,
112 OuterResumeDest->getName() + ".body");
113
114 // The number of incoming edges we expect to the inner landing pad.
115 const unsigned PHICapacity = 2;
116
117 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
118 BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
119 BasicBlock::iterator I = OuterResumeDest->begin();
120 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121 PHINode *OuterPHI = cast<PHINode>(I);
122 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
123 OuterPHI->getName() + ".lpad-body",
124 InsertPoint);
125 OuterPHI->replaceAllUsesWith(InnerPHI);
126 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
127 }
128
129 // Create a PHI for the exception values.
130 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
131 "eh.lpad-body", InsertPoint);
132 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
133 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
134
135 // All done.
136 return InnerResumeDest;
137}
138
139/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
140/// block. When the landing pad block has only one predecessor, this is a simple
141/// branch. When there is more than one predecessor, we need to split the
142/// landing pad block after the landingpad instruction and jump to there.
143void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
144 BasicBlock *Dest = getInnerResumeDest();
145 BasicBlock *Src = RI->getParent();
146
147 BranchInst::Create(Dest, Src);
148
149 // Update the PHIs in the destination. They were inserted in an order which
150 // makes this work.
151 addIncomingPHIValuesForInto(Src, Dest);
152
153 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
154 RI->eraseFromParent();
155}
156
157/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
158/// an invoke, we have to turn all of the calls that can throw into
159/// invokes. This function analyze BB to see if there are any calls, and if so,
160/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
161/// nodes in that block with the values specified in InvokeDestPHIValues.
162///
163/// Returns true to indicate that the next block should be skipped.
164static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
165 InvokeInliningInfo &Invoke) {
166 LandingPadInst *LPI = Invoke.getLandingPadInst();
167
168 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
169 Instruction *I = BBI++;
170
171 if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
172 unsigned NumClauses = LPI->getNumClauses();
173 L->reserveClauses(NumClauses);
174 for (unsigned i = 0; i != NumClauses; ++i)
175 L->addClause(LPI->getClause(i));
176 }
177
178 // We only need to check for function calls: inlined invoke
179 // instructions require no special handling.
180 CallInst *CI = dyn_cast<CallInst>(I);
181
182 // If this call cannot unwind, don't convert it to an invoke.
183 if (!CI || CI->doesNotThrow())
184 continue;
185
186 // Convert this function call into an invoke instruction. First, split the
187 // basic block.
188 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
189
190 // Delete the unconditional branch inserted by splitBasicBlock
191 BB->getInstList().pop_back();
192
193 // Create the new invoke instruction.
194 ImmutableCallSite CS(CI);
195 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
196 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
197 Invoke.getOuterResumeDest(),
198 InvokeArgs, CI->getName(), BB);
199 II->setCallingConv(CI->getCallingConv());
200 II->setAttributes(CI->getAttributes());
201
202 // Make sure that anything using the call now uses the invoke! This also
203 // updates the CallGraph if present, because it uses a WeakVH.
204 CI->replaceAllUsesWith(II);
205
206 // Delete the original call
207 Split->getInstList().pop_front();
208
209 // Update any PHI nodes in the exceptional block to indicate that there is
210 // now a new entry in them.
211 Invoke.addIncomingPHIValuesFor(BB);
212 return false;
213 }
214
215 return false;
216}
217
218/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
219/// in the body of the inlined function into invokes.
220///
221/// II is the invoke instruction being inlined. FirstNewBlock is the first
222/// block of the inlined code (the last block is the end of the function),
223/// and InlineCodeInfo is information about the code that got inlined.
224static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
225 ClonedCodeInfo &InlinedCodeInfo) {
226 BasicBlock *InvokeDest = II->getUnwindDest();
227
228 Function *Caller = FirstNewBlock->getParent();
229
230 // The inlined code is currently at the end of the function, scan from the
231 // start of the inlined code to its end, checking for stuff we need to
232 // rewrite. If the code doesn't have calls or unwinds, we know there is
233 // nothing to rewrite.
234 if (!InlinedCodeInfo.ContainsCalls) {
235 // Now that everything is happy, we have one final detail. The PHI nodes in
236 // the exception destination block still have entries due to the original
237 // invoke instruction. Eliminate these entries (which might even delete the
238 // PHI node) now.
239 InvokeDest->removePredecessor(II->getParent());
240 return;
241 }
242
243 InvokeInliningInfo Invoke(II);
244
245 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
246 if (InlinedCodeInfo.ContainsCalls)
247 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
248 // Honor a request to skip the next block.
249 ++BB;
250 continue;
251 }
252
253 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
254 Invoke.forwardResume(RI);
255 }
256
257 // Now that everything is happy, we have one final detail. The PHI nodes in
258 // the exception destination block still have entries due to the original
259 // invoke instruction. Eliminate these entries (which might even delete the
260 // PHI node) now.
261 InvokeDest->removePredecessor(II->getParent());
262}
263
264/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
265/// into the caller, update the specified callgraph to reflect the changes we
266/// made. Note that it's possible that not all code was copied over, so only
267/// some edges of the callgraph may remain.
268static void UpdateCallGraphAfterInlining(CallSite CS,
269 Function::iterator FirstNewBlock,
270 ValueToValueMapTy &VMap,
271 InlineFunctionInfo &IFI) {
272 CallGraph &CG = *IFI.CG;
273 const Function *Caller = CS.getInstruction()->getParent()->getParent();
274 const Function *Callee = CS.getCalledFunction();
275 CallGraphNode *CalleeNode = CG[Callee];
276 CallGraphNode *CallerNode = CG[Caller];
277
278 // Since we inlined some uninlined call sites in the callee into the caller,
279 // add edges from the caller to all of the callees of the callee.
280 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
281
282 // Consider the case where CalleeNode == CallerNode.
283 CallGraphNode::CalledFunctionsVector CallCache;
284 if (CalleeNode == CallerNode) {
285 CallCache.assign(I, E);
286 I = CallCache.begin();
287 E = CallCache.end();
288 }
289
290 for (; I != E; ++I) {
291 const Value *OrigCall = I->first;
292
293 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
294 // Only copy the edge if the call was inlined!
295 if (VMI == VMap.end() || VMI->second == 0)
296 continue;
297
298 // If the call was inlined, but then constant folded, there is no edge to
299 // add. Check for this case.
300 Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
301 if (NewCall == 0) continue;
302
303 // Remember that this call site got inlined for the client of
304 // InlineFunction.
305 IFI.InlinedCalls.push_back(NewCall);
306
307 // It's possible that inlining the callsite will cause it to go from an
308 // indirect to a direct call by resolving a function pointer. If this
309 // happens, set the callee of the new call site to a more precise
310 // destination. This can also happen if the call graph node of the caller
311 // was just unnecessarily imprecise.
312 if (I->second->getFunction() == 0)
313 if (Function *F = CallSite(NewCall).getCalledFunction()) {
314 // Indirect call site resolved to direct call.
315 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
316
317 continue;
318 }
319
320 CallerNode->addCalledFunction(CallSite(NewCall), I->second);
321 }
322
323 // Update the call graph by deleting the edge from Callee to Caller. We must
324 // do this after the loop above in case Caller and Callee are the same.
325 CallerNode->removeCallEdgeFor(CS);
326}
327
328/// HandleByValArgument - When inlining a call site that has a byval argument,
329/// we have to make the implicit memcpy explicit by adding it.
330static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
331 const Function *CalledFunc,
332 InlineFunctionInfo &IFI,
333 unsigned ByValAlignment) {
334 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
335
336 // If the called function is readonly, then it could not mutate the caller's
337 // copy of the byval'd memory. In this case, it is safe to elide the copy and
338 // temporary.
339 if (CalledFunc->onlyReadsMemory()) {
340 // If the byval argument has a specified alignment that is greater than the
341 // passed in pointer, then we either have to round up the input pointer or
342 // give up on this transformation.
343 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
344 return Arg;
345
346 // If the pointer is already known to be sufficiently aligned, or if we can
347 // round it up to a larger alignment, then we don't need a temporary.
348 if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
349 IFI.TD) >= ByValAlignment)
350 return Arg;
351
352 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
353 // for code quality, but rarely happens and is required for correctness.
354 }
355
356 LLVMContext &Context = Arg->getContext();
357
358 Type *VoidPtrTy = Type::getInt8PtrTy(Context);
359
970d7e83 360 // Create the alloca. If we have DataLayout, use nice alignment.
223e47cc
LB
361 unsigned Align = 1;
362 if (IFI.TD)
363 Align = IFI.TD->getPrefTypeAlignment(AggTy);
364
365 // If the byval had an alignment specified, we *must* use at least that
366 // alignment, as it is required by the byval argument (and uses of the
367 // pointer inside the callee).
368 Align = std::max(Align, ByValAlignment);
369
370 Function *Caller = TheCall->getParent()->getParent();
371
372 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
373 &*Caller->begin()->begin());
374 // Emit a memcpy.
375 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
376 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
377 Intrinsic::memcpy,
378 Tys);
379 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
380 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
381
382 Value *Size;
383 if (IFI.TD == 0)
384 Size = ConstantExpr::getSizeOf(AggTy);
385 else
386 Size = ConstantInt::get(Type::getInt64Ty(Context),
387 IFI.TD->getTypeStoreSize(AggTy));
388
389 // Always generate a memcpy of alignment 1 here because we don't know
390 // the alignment of the src pointer. Other optimizations can infer
391 // better alignment.
392 Value *CallArgs[] = {
393 DestCast, SrcCast, Size,
394 ConstantInt::get(Type::getInt32Ty(Context), 1),
395 ConstantInt::getFalse(Context) // isVolatile
396 };
397 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
398
399 // Uses of the argument in the function should use our new alloca
400 // instead.
401 return NewAlloca;
402}
403
404// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
405// intrinsic.
406static bool isUsedByLifetimeMarker(Value *V) {
407 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
408 ++UI) {
409 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
410 switch (II->getIntrinsicID()) {
411 default: break;
412 case Intrinsic::lifetime_start:
413 case Intrinsic::lifetime_end:
414 return true;
415 }
416 }
417 }
418 return false;
419}
420
421// hasLifetimeMarkers - Check whether the given alloca already has
422// lifetime.start or lifetime.end intrinsics.
423static bool hasLifetimeMarkers(AllocaInst *AI) {
424 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
425 if (AI->getType() == Int8PtrTy)
426 return isUsedByLifetimeMarker(AI);
427
428 // Do a scan to find all the casts to i8*.
429 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
430 ++I) {
431 if (I->getType() != Int8PtrTy) continue;
432 if (I->stripPointerCasts() != AI) continue;
433 if (isUsedByLifetimeMarker(*I))
434 return true;
435 }
436 return false;
437}
438
439/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
440/// recursively update InlinedAtEntry of a DebugLoc.
441static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
442 const DebugLoc &InlinedAtDL,
443 LLVMContext &Ctx) {
444 if (MDNode *IA = DL.getInlinedAt(Ctx)) {
445 DebugLoc NewInlinedAtDL
446 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
447 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
448 NewInlinedAtDL.getAsMDNode(Ctx));
449 }
450
451 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
452 InlinedAtDL.getAsMDNode(Ctx));
453}
454
455/// fixupLineNumbers - Update inlined instructions' line numbers to
456/// to encode location where these instructions are inlined.
457static void fixupLineNumbers(Function *Fn, Function::iterator FI,
458 Instruction *TheCall) {
459 DebugLoc TheCallDL = TheCall->getDebugLoc();
460 if (TheCallDL.isUnknown())
461 return;
462
463 for (; FI != Fn->end(); ++FI) {
464 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
465 BI != BE; ++BI) {
466 DebugLoc DL = BI->getDebugLoc();
467 if (!DL.isUnknown()) {
468 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
469 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
470 LLVMContext &Ctx = BI->getContext();
471 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
472 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
473 InlinedAt, Ctx));
474 }
475 }
476 }
477 }
478}
479
480/// InlineFunction - This function inlines the called function into the basic
481/// block of the caller. This returns false if it is not possible to inline
482/// this call. The program is still in a well defined state if this occurs
483/// though.
484///
485/// Note that this only does one level of inlining. For example, if the
486/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
487/// exists in the instruction stream. Similarly this will inline a recursive
488/// function by one level.
489bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
490 bool InsertLifetime) {
491 Instruction *TheCall = CS.getInstruction();
492 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
493 "Instruction not in function!");
494
495 // If IFI has any state in it, zap it before we fill it in.
496 IFI.reset();
497
498 const Function *CalledFunc = CS.getCalledFunction();
499 if (CalledFunc == 0 || // Can't inline external function or indirect
500 CalledFunc->isDeclaration() || // call, or call to a vararg function!
501 CalledFunc->getFunctionType()->isVarArg()) return false;
502
503 // If the call to the callee is not a tail call, we must clear the 'tail'
504 // flags on any calls that we inline.
505 bool MustClearTailCallFlags =
506 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
507
508 // If the call to the callee cannot throw, set the 'nounwind' flag on any
509 // calls that we inline.
510 bool MarkNoUnwind = CS.doesNotThrow();
511
512 BasicBlock *OrigBB = TheCall->getParent();
513 Function *Caller = OrigBB->getParent();
514
515 // GC poses two hazards to inlining, which only occur when the callee has GC:
516 // 1. If the caller has no GC, then the callee's GC must be propagated to the
517 // caller.
518 // 2. If the caller has a differing GC, it is invalid to inline.
519 if (CalledFunc->hasGC()) {
520 if (!Caller->hasGC())
521 Caller->setGC(CalledFunc->getGC());
522 else if (CalledFunc->getGC() != Caller->getGC())
523 return false;
524 }
525
526 // Get the personality function from the callee if it contains a landing pad.
527 Value *CalleePersonality = 0;
528 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
529 I != E; ++I)
530 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
531 const BasicBlock *BB = II->getUnwindDest();
532 const LandingPadInst *LP = BB->getLandingPadInst();
533 CalleePersonality = LP->getPersonalityFn();
534 break;
535 }
536
537 // Find the personality function used by the landing pads of the caller. If it
538 // exists, then check to see that it matches the personality function used in
539 // the callee.
540 if (CalleePersonality) {
541 for (Function::const_iterator I = Caller->begin(), E = Caller->end();
542 I != E; ++I)
543 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
544 const BasicBlock *BB = II->getUnwindDest();
545 const LandingPadInst *LP = BB->getLandingPadInst();
546
547 // If the personality functions match, then we can perform the
548 // inlining. Otherwise, we can't inline.
549 // TODO: This isn't 100% true. Some personality functions are proper
550 // supersets of others and can be used in place of the other.
551 if (LP->getPersonalityFn() != CalleePersonality)
552 return false;
553
554 break;
555 }
556 }
557
558 // Get an iterator to the last basic block in the function, which will have
559 // the new function inlined after it.
560 Function::iterator LastBlock = &Caller->back();
561
562 // Make sure to capture all of the return instructions from the cloned
563 // function.
564 SmallVector<ReturnInst*, 8> Returns;
565 ClonedCodeInfo InlinedFunctionInfo;
566 Function::iterator FirstNewBlock;
567
568 { // Scope to destroy VMap after cloning.
569 ValueToValueMapTy VMap;
570
571 assert(CalledFunc->arg_size() == CS.arg_size() &&
572 "No varargs calls can be inlined!");
573
574 // Calculate the vector of arguments to pass into the function cloner, which
575 // matches up the formal to the actual argument values.
576 CallSite::arg_iterator AI = CS.arg_begin();
577 unsigned ArgNo = 0;
578 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
579 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
580 Value *ActualArg = *AI;
581
582 // When byval arguments actually inlined, we need to make the copy implied
583 // by them explicit. However, we don't do this if the callee is readonly
584 // or readnone, because the copy would be unneeded: the callee doesn't
585 // modify the struct.
586 if (CS.isByValArgument(ArgNo)) {
587 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
588 CalledFunc->getParamAlignment(ArgNo+1));
589
590 // Calls that we inline may use the new alloca, so we need to clear
591 // their 'tail' flags if HandleByValArgument introduced a new alloca and
592 // the callee has calls.
593 MustClearTailCallFlags |= ActualArg != *AI;
594 }
595
596 VMap[I] = ActualArg;
597 }
598
599 // We want the inliner to prune the code as it copies. We would LOVE to
600 // have no dead or constant instructions leftover after inlining occurs
601 // (which can happen, e.g., because an argument was constant), but we'll be
602 // happy with whatever the cloner can do.
603 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
604 /*ModuleLevelChanges=*/false, Returns, ".i",
605 &InlinedFunctionInfo, IFI.TD, TheCall);
606
607 // Remember the first block that is newly cloned over.
608 FirstNewBlock = LastBlock; ++FirstNewBlock;
609
610 // Update the callgraph if requested.
611 if (IFI.CG)
612 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
613
614 // Update inlined instructions' line number information.
615 fixupLineNumbers(Caller, FirstNewBlock, TheCall);
616 }
617
618 // If there are any alloca instructions in the block that used to be the entry
619 // block for the callee, move them to the entry block of the caller. First
620 // calculate which instruction they should be inserted before. We insert the
621 // instructions at the end of the current alloca list.
622 {
623 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
624 for (BasicBlock::iterator I = FirstNewBlock->begin(),
625 E = FirstNewBlock->end(); I != E; ) {
626 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
627 if (AI == 0) continue;
628
629 // If the alloca is now dead, remove it. This often occurs due to code
630 // specialization.
631 if (AI->use_empty()) {
632 AI->eraseFromParent();
633 continue;
634 }
635
636 if (!isa<Constant>(AI->getArraySize()))
637 continue;
638
639 // Keep track of the static allocas that we inline into the caller.
640 IFI.StaticAllocas.push_back(AI);
641
642 // Scan for the block of allocas that we can move over, and move them
643 // all at once.
644 while (isa<AllocaInst>(I) &&
645 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
646 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
647 ++I;
648 }
649
650 // Transfer all of the allocas over in a block. Using splice means
651 // that the instructions aren't removed from the symbol table, then
652 // reinserted.
653 Caller->getEntryBlock().getInstList().splice(InsertPoint,
654 FirstNewBlock->getInstList(),
655 AI, I);
656 }
657 }
658
659 // Leave lifetime markers for the static alloca's, scoping them to the
660 // function we just inlined.
661 if (InsertLifetime && !IFI.StaticAllocas.empty()) {
662 IRBuilder<> builder(FirstNewBlock->begin());
663 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
664 AllocaInst *AI = IFI.StaticAllocas[ai];
665
666 // If the alloca is already scoped to something smaller than the whole
667 // function then there's no need to add redundant, less accurate markers.
668 if (hasLifetimeMarkers(AI))
669 continue;
670
970d7e83
LB
671 // Try to determine the size of the allocation.
672 ConstantInt *AllocaSize = 0;
673 if (ConstantInt *AIArraySize =
674 dyn_cast<ConstantInt>(AI->getArraySize())) {
675 if (IFI.TD) {
676 Type *AllocaType = AI->getAllocatedType();
677 uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
678 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
679 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
680 // Check that array size doesn't saturate uint64_t and doesn't
681 // overflow when it's multiplied by type size.
682 if (AllocaArraySize != ~0ULL &&
683 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
684 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
685 AllocaArraySize * AllocaTypeSize);
686 }
687 }
688 }
689
690 builder.CreateLifetimeStart(AI, AllocaSize);
223e47cc
LB
691 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
692 IRBuilder<> builder(Returns[ri]);
970d7e83 693 builder.CreateLifetimeEnd(AI, AllocaSize);
223e47cc
LB
694 }
695 }
696 }
697
698 // If the inlined code contained dynamic alloca instructions, wrap the inlined
699 // code with llvm.stacksave/llvm.stackrestore intrinsics.
700 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
701 Module *M = Caller->getParent();
702 // Get the two intrinsics we care about.
703 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
704 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
705
706 // Insert the llvm.stacksave.
707 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
708 .CreateCall(StackSave, "savedstack");
709
710 // Insert a call to llvm.stackrestore before any return instructions in the
711 // inlined function.
712 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
713 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
714 }
715 }
716
717 // If we are inlining tail call instruction through a call site that isn't
718 // marked 'tail', we must remove the tail marker for any calls in the inlined
719 // code. Also, calls inlined through a 'nounwind' call site should be marked
720 // 'nounwind'.
721 if (InlinedFunctionInfo.ContainsCalls &&
722 (MustClearTailCallFlags || MarkNoUnwind)) {
723 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
724 BB != E; ++BB)
725 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
726 if (CallInst *CI = dyn_cast<CallInst>(I)) {
727 if (MustClearTailCallFlags)
728 CI->setTailCall(false);
729 if (MarkNoUnwind)
730 CI->setDoesNotThrow();
731 }
732 }
733
734 // If we are inlining for an invoke instruction, we must make sure to rewrite
735 // any call instructions into invoke instructions.
736 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
737 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
738
739 // If we cloned in _exactly one_ basic block, and if that block ends in a
740 // return instruction, we splice the body of the inlined callee directly into
741 // the calling basic block.
742 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
743 // Move all of the instructions right before the call.
744 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
745 FirstNewBlock->begin(), FirstNewBlock->end());
746 // Remove the cloned basic block.
747 Caller->getBasicBlockList().pop_back();
748
749 // If the call site was an invoke instruction, add a branch to the normal
750 // destination.
751 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
752 BranchInst::Create(II->getNormalDest(), TheCall);
753
754 // If the return instruction returned a value, replace uses of the call with
755 // uses of the returned value.
756 if (!TheCall->use_empty()) {
757 ReturnInst *R = Returns[0];
758 if (TheCall == R->getReturnValue())
759 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
760 else
761 TheCall->replaceAllUsesWith(R->getReturnValue());
762 }
763 // Since we are now done with the Call/Invoke, we can delete it.
764 TheCall->eraseFromParent();
765
766 // Since we are now done with the return instruction, delete it also.
767 Returns[0]->eraseFromParent();
768
769 // We are now done with the inlining.
770 return true;
771 }
772
773 // Otherwise, we have the normal case, of more than one block to inline or
774 // multiple return sites.
775
776 // We want to clone the entire callee function into the hole between the
777 // "starter" and "ender" blocks. How we accomplish this depends on whether
778 // this is an invoke instruction or a call instruction.
779 BasicBlock *AfterCallBB;
780 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
781
782 // Add an unconditional branch to make this look like the CallInst case...
783 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
784
785 // Split the basic block. This guarantees that no PHI nodes will have to be
786 // updated due to new incoming edges, and make the invoke case more
787 // symmetric to the call case.
788 AfterCallBB = OrigBB->splitBasicBlock(NewBr,
789 CalledFunc->getName()+".exit");
790
791 } else { // It's a call
792 // If this is a call instruction, we need to split the basic block that
793 // the call lives in.
794 //
795 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
796 CalledFunc->getName()+".exit");
797 }
798
799 // Change the branch that used to go to AfterCallBB to branch to the first
800 // basic block of the inlined function.
801 //
802 TerminatorInst *Br = OrigBB->getTerminator();
803 assert(Br && Br->getOpcode() == Instruction::Br &&
804 "splitBasicBlock broken!");
805 Br->setOperand(0, FirstNewBlock);
806
807
808 // Now that the function is correct, make it a little bit nicer. In
809 // particular, move the basic blocks inserted from the end of the function
810 // into the space made by splitting the source basic block.
811 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
812 FirstNewBlock, Caller->end());
813
814 // Handle all of the return instructions that we just cloned in, and eliminate
815 // any users of the original call/invoke instruction.
816 Type *RTy = CalledFunc->getReturnType();
817
818 PHINode *PHI = 0;
819 if (Returns.size() > 1) {
820 // The PHI node should go at the front of the new basic block to merge all
821 // possible incoming values.
822 if (!TheCall->use_empty()) {
823 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
824 AfterCallBB->begin());
825 // Anything that used the result of the function call should now use the
826 // PHI node as their operand.
827 TheCall->replaceAllUsesWith(PHI);
828 }
829
830 // Loop over all of the return instructions adding entries to the PHI node
831 // as appropriate.
832 if (PHI) {
833 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
834 ReturnInst *RI = Returns[i];
835 assert(RI->getReturnValue()->getType() == PHI->getType() &&
836 "Ret value not consistent in function!");
837 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
838 }
839 }
840
841
842 // Add a branch to the merge points and remove return instructions.
843 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
844 ReturnInst *RI = Returns[i];
845 BranchInst::Create(AfterCallBB, RI);
846 RI->eraseFromParent();
847 }
848 } else if (!Returns.empty()) {
849 // Otherwise, if there is exactly one return value, just replace anything
850 // using the return value of the call with the computed value.
851 if (!TheCall->use_empty()) {
852 if (TheCall == Returns[0]->getReturnValue())
853 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
854 else
855 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
856 }
857
858 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
859 BasicBlock *ReturnBB = Returns[0]->getParent();
860 ReturnBB->replaceAllUsesWith(AfterCallBB);
861
862 // Splice the code from the return block into the block that it will return
863 // to, which contains the code that was after the call.
864 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
865 ReturnBB->getInstList());
866
867 // Delete the return instruction now and empty ReturnBB now.
868 Returns[0]->eraseFromParent();
869 ReturnBB->eraseFromParent();
870 } else if (!TheCall->use_empty()) {
871 // No returns, but something is using the return value of the call. Just
872 // nuke the result.
873 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
874 }
875
876 // Since we are now done with the Call/Invoke, we can delete it.
877 TheCall->eraseFromParent();
878
879 // We should always be able to fold the entry block of the function into the
880 // single predecessor of the block...
881 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
882 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
883
884 // Splice the code entry block into calling block, right before the
885 // unconditional branch.
886 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
887 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
888
889 // Remove the unconditional branch.
890 OrigBB->getInstList().erase(Br);
891
892 // Now we can remove the CalleeEntry block, which is now empty.
893 Caller->getBasicBlockList().erase(CalleeEntry);
894
895 // If we inserted a phi node, check to see if it has a single value (e.g. all
896 // the entries are the same or undef). If so, remove the PHI so it doesn't
897 // block other optimizations.
898 if (PHI) {
899 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
900 PHI->replaceAllUsesWith(V);
901 PHI->eraseFromParent();
902 }
903 }
904
905 return true;
906}