]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Transforms/Utils/SSAUpdater.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Transforms / Utils / SSAUpdater.cpp
CommitLineData
223e47cc
LB
1//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdater class.
11//
12//===----------------------------------------------------------------------===//
13
970d7e83 14#include "llvm/Transforms/Utils/SSAUpdater.h"
223e47cc
LB
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/TinyPtrVector.h"
17#include "llvm/Analysis/InstructionSimplify.h"
1a4d82fc 18#include "llvm/IR/CFG.h"
970d7e83
LB
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/IR/IntrinsicInst.h"
223e47cc
LB
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/Transforms/Utils/BasicBlockUtils.h"
25#include "llvm/Transforms/Utils/Local.h"
223e47cc
LB
26#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
27
28using namespace llvm;
29
1a4d82fc
JJ
30#define DEBUG_TYPE "ssaupdater"
31
223e47cc
LB
32typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
33static AvailableValsTy &getAvailableVals(void *AV) {
34 return *static_cast<AvailableValsTy*>(AV);
35}
36
37SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
1a4d82fc 38 : AV(nullptr), ProtoType(nullptr), ProtoName(), InsertedPHIs(NewPHI) {}
223e47cc
LB
39
40SSAUpdater::~SSAUpdater() {
41 delete static_cast<AvailableValsTy*>(AV);
42}
43
223e47cc 44void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
1a4d82fc 45 if (!AV)
223e47cc
LB
46 AV = new AvailableValsTy();
47 else
48 getAvailableVals(AV).clear();
49 ProtoType = Ty;
50 ProtoName = Name;
51}
52
223e47cc
LB
53bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
54 return getAvailableVals(AV).count(BB);
55}
56
223e47cc 57void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
1a4d82fc 58 assert(ProtoType && "Need to initialize SSAUpdater");
223e47cc
LB
59 assert(ProtoType == V->getType() &&
60 "All rewritten values must have the same type");
61 getAvailableVals(AV)[BB] = V;
62}
63
223e47cc 64static bool IsEquivalentPHI(PHINode *PHI,
1a4d82fc 65 SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) {
223e47cc
LB
66 unsigned PHINumValues = PHI->getNumIncomingValues();
67 if (PHINumValues != ValueMapping.size())
68 return false;
69
70 // Scan the phi to see if it matches.
71 for (unsigned i = 0, e = PHINumValues; i != e; ++i)
72 if (ValueMapping[PHI->getIncomingBlock(i)] !=
73 PHI->getIncomingValue(i)) {
74 return false;
75 }
76
77 return true;
78}
79
223e47cc
LB
80Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
81 Value *Res = GetValueAtEndOfBlockInternal(BB);
82 return Res;
83}
84
223e47cc
LB
85Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
86 // If there is no definition of the renamed variable in this block, just use
87 // GetValueAtEndOfBlock to do our work.
88 if (!HasValueForBlock(BB))
89 return GetValueAtEndOfBlock(BB);
90
91 // Otherwise, we have the hard case. Get the live-in values for each
92 // predecessor.
93 SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
1a4d82fc 94 Value *SingularValue = nullptr;
223e47cc
LB
95
96 // We can get our predecessor info by walking the pred_iterator list, but it
97 // is relatively slow. If we already have PHI nodes in this block, walk one
98 // of them to get the predecessor list instead.
99 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
100 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
101 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
102 Value *PredVal = GetValueAtEndOfBlock(PredBB);
103 PredValues.push_back(std::make_pair(PredBB, PredVal));
104
105 // Compute SingularValue.
106 if (i == 0)
107 SingularValue = PredVal;
108 else if (PredVal != SingularValue)
1a4d82fc 109 SingularValue = nullptr;
223e47cc
LB
110 }
111 } else {
112 bool isFirstPred = true;
113 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
114 BasicBlock *PredBB = *PI;
115 Value *PredVal = GetValueAtEndOfBlock(PredBB);
116 PredValues.push_back(std::make_pair(PredBB, PredVal));
117
118 // Compute SingularValue.
119 if (isFirstPred) {
120 SingularValue = PredVal;
121 isFirstPred = false;
122 } else if (PredVal != SingularValue)
1a4d82fc 123 SingularValue = nullptr;
223e47cc
LB
124 }
125 }
126
127 // If there are no predecessors, just return undef.
128 if (PredValues.empty())
129 return UndefValue::get(ProtoType);
130
131 // Otherwise, if all the merged values are the same, just use it.
1a4d82fc 132 if (SingularValue)
223e47cc
LB
133 return SingularValue;
134
135 // Otherwise, we do need a PHI: check to see if we already have one available
136 // in this block that produces the right value.
137 if (isa<PHINode>(BB->begin())) {
1a4d82fc
JJ
138 SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
139 PredValues.end());
223e47cc
LB
140 PHINode *SomePHI;
141 for (BasicBlock::iterator It = BB->begin();
142 (SomePHI = dyn_cast<PHINode>(It)); ++It) {
143 if (IsEquivalentPHI(SomePHI, ValueMapping))
144 return SomePHI;
145 }
146 }
147
148 // Ok, we have no way out, insert a new one now.
149 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
150 ProtoName, &BB->front());
151
152 // Fill in all the predecessors of the PHI.
153 for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
154 InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
155
156 // See if the PHI node can be merged to a single value. This can happen in
157 // loop cases when we get a PHI of itself and one other value.
158 if (Value *V = SimplifyInstruction(InsertedPHI)) {
159 InsertedPHI->eraseFromParent();
160 return V;
161 }
162
163 // Set the DebugLoc of the inserted PHI, if available.
164 DebugLoc DL;
165 if (const Instruction *I = BB->getFirstNonPHI())
166 DL = I->getDebugLoc();
167 InsertedPHI->setDebugLoc(DL);
168
169 // If the client wants to know about all new instructions, tell it.
170 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
171
172 DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
173 return InsertedPHI;
174}
175
223e47cc
LB
176void SSAUpdater::RewriteUse(Use &U) {
177 Instruction *User = cast<Instruction>(U.getUser());
178
179 Value *V;
180 if (PHINode *UserPN = dyn_cast<PHINode>(User))
181 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
182 else
183 V = GetValueInMiddleOfBlock(User->getParent());
184
185 // Notify that users of the existing value that it is being replaced.
186 Value *OldVal = U.get();
187 if (OldVal != V && OldVal->hasValueHandle())
188 ValueHandleBase::ValueIsRAUWd(OldVal, V);
189
190 U.set(V);
191}
192
223e47cc
LB
193void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
194 Instruction *User = cast<Instruction>(U.getUser());
195
196 Value *V;
197 if (PHINode *UserPN = dyn_cast<PHINode>(User))
198 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
199 else
200 V = GetValueAtEndOfBlock(User->getParent());
201
202 U.set(V);
203}
204
223e47cc
LB
205namespace llvm {
206template<>
207class SSAUpdaterTraits<SSAUpdater> {
208public:
209 typedef BasicBlock BlkT;
210 typedef Value *ValT;
211 typedef PHINode PhiT;
212
213 typedef succ_iterator BlkSucc_iterator;
214 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
215 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
216
217 class PHI_iterator {
218 private:
219 PHINode *PHI;
220 unsigned idx;
221
222 public:
223 explicit PHI_iterator(PHINode *P) // begin iterator
224 : PHI(P), idx(0) {}
225 PHI_iterator(PHINode *P, bool) // end iterator
226 : PHI(P), idx(PHI->getNumIncomingValues()) {}
227
228 PHI_iterator &operator++() { ++idx; return *this; }
229 bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
230 bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
231 Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
232 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
233 };
234
235 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
236 static PHI_iterator PHI_end(PhiT *PHI) {
237 return PHI_iterator(PHI, true);
238 }
239
240 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
241 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
242 static void FindPredecessorBlocks(BasicBlock *BB,
243 SmallVectorImpl<BasicBlock*> *Preds) {
244 // We can get our predecessor info by walking the pred_iterator list,
245 // but it is relatively slow. If we already have PHI nodes in this
246 // block, walk one of them to get the predecessor list instead.
247 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
248 for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
249 Preds->push_back(SomePhi->getIncomingBlock(PI));
250 } else {
251 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
252 Preds->push_back(*PI);
253 }
254 }
255
256 /// GetUndefVal - Get an undefined value of the same type as the value
257 /// being handled.
258 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
259 return UndefValue::get(Updater->ProtoType);
260 }
261
262 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
263 /// Reserve space for the operands but do not fill them in yet.
264 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
265 SSAUpdater *Updater) {
266 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
267 Updater->ProtoName, &BB->front());
268 return PHI;
269 }
270
271 /// AddPHIOperand - Add the specified value as an operand of the PHI for
272 /// the specified predecessor block.
273 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
274 PHI->addIncoming(Val, Pred);
275 }
276
277 /// InstrIsPHI - Check if an instruction is a PHI.
278 ///
279 static PHINode *InstrIsPHI(Instruction *I) {
280 return dyn_cast<PHINode>(I);
281 }
282
283 /// ValueIsPHI - Check if a value is a PHI.
284 ///
285 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
286 return dyn_cast<PHINode>(Val);
287 }
288
289 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
290 /// operands, i.e., it was just added.
291 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
292 PHINode *PHI = ValueIsPHI(Val, Updater);
293 if (PHI && PHI->getNumIncomingValues() == 0)
294 return PHI;
1a4d82fc 295 return nullptr;
223e47cc
LB
296 }
297
298 /// GetPHIValue - For the specified PHI instruction, return the value
299 /// that it defines.
300 static Value *GetPHIValue(PHINode *PHI) {
301 return PHI;
302 }
303};
304
305} // End llvm namespace
306
1a4d82fc
JJ
307/// Check to see if AvailableVals has an entry for the specified BB and if so,
308/// return it. If not, construct SSA form by first calculating the required
309/// placement of PHIs and then inserting new PHIs where needed.
223e47cc
LB
310Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
311 AvailableValsTy &AvailableVals = getAvailableVals(AV);
312 if (Value *V = AvailableVals[BB])
313 return V;
314
315 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
316 return Impl.GetValue(BB);
317}
318
319//===----------------------------------------------------------------------===//
320// LoadAndStorePromoter Implementation
321//===----------------------------------------------------------------------===//
322
323LoadAndStorePromoter::
324LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
325 SSAUpdater &S, StringRef BaseName) : SSA(S) {
326 if (Insts.empty()) return;
327
328 Value *SomeVal;
329 if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
330 SomeVal = LI;
331 else
332 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
333
334 if (BaseName.empty())
335 BaseName = SomeVal->getName();
336 SSA.Initialize(SomeVal->getType(), BaseName);
337}
338
339
340void LoadAndStorePromoter::
341run(const SmallVectorImpl<Instruction*> &Insts) const {
342
343 // First step: bucket up uses of the alloca by the block they occur in.
344 // This is important because we have to handle multiple defs/uses in a block
345 // ourselves: SSAUpdater is purely for cross-block references.
346 DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
347
348 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
349 Instruction *User = Insts[i];
350 UsesByBlock[User->getParent()].push_back(User);
351 }
352
353 // Okay, now we can iterate over all the blocks in the function with uses,
354 // processing them. Keep track of which loads are loading a live-in value.
355 // Walk the uses in the use-list order to be determinstic.
356 SmallVector<LoadInst*, 32> LiveInLoads;
357 DenseMap<Value*, Value*> ReplacedLoads;
358
359 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
360 Instruction *User = Insts[i];
361 BasicBlock *BB = User->getParent();
362 TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
363
364 // If this block has already been processed, ignore this repeat use.
365 if (BlockUses.empty()) continue;
366
367 // Okay, this is the first use in the block. If this block just has a
368 // single user in it, we can rewrite it trivially.
369 if (BlockUses.size() == 1) {
370 // If it is a store, it is a trivial def of the value in the block.
371 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
372 updateDebugInfo(SI);
373 SSA.AddAvailableValue(BB, SI->getOperand(0));
374 } else
375 // Otherwise it is a load, queue it to rewrite as a live-in load.
376 LiveInLoads.push_back(cast<LoadInst>(User));
377 BlockUses.clear();
378 continue;
379 }
380
381 // Otherwise, check to see if this block is all loads.
382 bool HasStore = false;
383 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
384 if (isa<StoreInst>(BlockUses[i])) {
385 HasStore = true;
386 break;
387 }
388 }
389
390 // If so, we can queue them all as live in loads. We don't have an
391 // efficient way to tell which on is first in the block and don't want to
392 // scan large blocks, so just add all loads as live ins.
393 if (!HasStore) {
394 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
395 LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
396 BlockUses.clear();
397 continue;
398 }
399
400 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
401 // Since SSAUpdater is purely for cross-block values, we need to determine
402 // the order of these instructions in the block. If the first use in the
403 // block is a load, then it uses the live in value. The last store defines
404 // the live out value. We handle this by doing a linear scan of the block.
1a4d82fc 405 Value *StoredValue = nullptr;
223e47cc
LB
406 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
407 if (LoadInst *L = dyn_cast<LoadInst>(II)) {
408 // If this is a load from an unrelated pointer, ignore it.
409 if (!isInstInList(L, Insts)) continue;
410
411 // If we haven't seen a store yet, this is a live in use, otherwise
412 // use the stored value.
413 if (StoredValue) {
414 replaceLoadWithValue(L, StoredValue);
415 L->replaceAllUsesWith(StoredValue);
416 ReplacedLoads[L] = StoredValue;
417 } else {
418 LiveInLoads.push_back(L);
419 }
420 continue;
421 }
422
423 if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
424 // If this is a store to an unrelated pointer, ignore it.
425 if (!isInstInList(SI, Insts)) continue;
426 updateDebugInfo(SI);
427
428 // Remember that this is the active value in the block.
429 StoredValue = SI->getOperand(0);
430 }
431 }
432
433 // The last stored value that happened is the live-out for the block.
434 assert(StoredValue && "Already checked that there is a store in block");
435 SSA.AddAvailableValue(BB, StoredValue);
436 BlockUses.clear();
437 }
438
439 // Okay, now we rewrite all loads that use live-in values in the loop,
440 // inserting PHI nodes as necessary.
441 for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
442 LoadInst *ALoad = LiveInLoads[i];
443 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
444 replaceLoadWithValue(ALoad, NewVal);
445
446 // Avoid assertions in unreachable code.
447 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
448 ALoad->replaceAllUsesWith(NewVal);
449 ReplacedLoads[ALoad] = NewVal;
450 }
451
452 // Allow the client to do stuff before we start nuking things.
453 doExtraRewritesBeforeFinalDeletion();
454
455 // Now that everything is rewritten, delete the old instructions from the
456 // function. They should all be dead now.
457 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
458 Instruction *User = Insts[i];
459
460 // If this is a load that still has uses, then the load must have been added
461 // as a live value in the SSAUpdate data structure for a block (e.g. because
462 // the loaded value was stored later). In this case, we need to recursively
463 // propagate the updates until we get to the real value.
464 if (!User->use_empty()) {
465 Value *NewVal = ReplacedLoads[User];
466 assert(NewVal && "not a replaced load?");
467
468 // Propagate down to the ultimate replacee. The intermediately loads
469 // could theoretically already have been deleted, so we don't want to
470 // dereference the Value*'s.
471 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
472 while (RLI != ReplacedLoads.end()) {
473 NewVal = RLI->second;
474 RLI = ReplacedLoads.find(NewVal);
475 }
476
477 replaceLoadWithValue(cast<LoadInst>(User), NewVal);
478 User->replaceAllUsesWith(NewVal);
479 }
480
481 instructionDeleted(User);
482 User->eraseFromParent();
483 }
484}
485
486bool
487LoadAndStorePromoter::isInstInList(Instruction *I,
488 const SmallVectorImpl<Instruction*> &Insts)
489 const {
490 return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
491}