]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/VMCore/Constants.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / lib / VMCore / Constants.cpp
CommitLineData
223e47cc
LB
1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "LLVMContextImpl.h"
16#include "ConstantFold.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalValue.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/ADT/FoldingSet.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ManagedStatic.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40// Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
49
50 // Otherwise, just use +0.0.
51 return isNullValue();
52}
53
54bool Constant::isNullValue() const {
55 // 0 is null.
56 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
57 return CI->isZero();
58
59 // +0.0 is null.
60 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
61 return CFP->isZero() && !CFP->isNegative();
62
63 // constant zero is zero for aggregates and cpnull is null for pointers.
64 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
65}
66
67bool Constant::isAllOnesValue() const {
68 // Check for -1 integers
69 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
70 return CI->isMinusOne();
71
72 // Check for FP which are bitcasted from -1 integers
73 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
74 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
75
76 // Check for constant vectors which are splats of -1 values.
77 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
78 if (Constant *Splat = CV->getSplatValue())
79 return Splat->isAllOnesValue();
80
81 // Check for constant vectors which are splats of -1 values.
82 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
83 if (Constant *Splat = CV->getSplatValue())
84 return Splat->isAllOnesValue();
85
86 return false;
87}
88
89// Constructor to create a '0' constant of arbitrary type...
90Constant *Constant::getNullValue(Type *Ty) {
91 switch (Ty->getTypeID()) {
92 case Type::IntegerTyID:
93 return ConstantInt::get(Ty, 0);
94 case Type::HalfTyID:
95 return ConstantFP::get(Ty->getContext(),
96 APFloat::getZero(APFloat::IEEEhalf));
97 case Type::FloatTyID:
98 return ConstantFP::get(Ty->getContext(),
99 APFloat::getZero(APFloat::IEEEsingle));
100 case Type::DoubleTyID:
101 return ConstantFP::get(Ty->getContext(),
102 APFloat::getZero(APFloat::IEEEdouble));
103 case Type::X86_FP80TyID:
104 return ConstantFP::get(Ty->getContext(),
105 APFloat::getZero(APFloat::x87DoubleExtended));
106 case Type::FP128TyID:
107 return ConstantFP::get(Ty->getContext(),
108 APFloat::getZero(APFloat::IEEEquad));
109 case Type::PPC_FP128TyID:
110 return ConstantFP::get(Ty->getContext(),
111 APFloat(APInt::getNullValue(128)));
112 case Type::PointerTyID:
113 return ConstantPointerNull::get(cast<PointerType>(Ty));
114 case Type::StructTyID:
115 case Type::ArrayTyID:
116 case Type::VectorTyID:
117 return ConstantAggregateZero::get(Ty);
118 default:
119 // Function, Label, or Opaque type?
120 llvm_unreachable("Cannot create a null constant of that type!");
121 }
122}
123
124Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
125 Type *ScalarTy = Ty->getScalarType();
126
127 // Create the base integer constant.
128 Constant *C = ConstantInt::get(Ty->getContext(), V);
129
130 // Convert an integer to a pointer, if necessary.
131 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
132 C = ConstantExpr::getIntToPtr(C, PTy);
133
134 // Broadcast a scalar to a vector, if necessary.
135 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
136 C = ConstantVector::getSplat(VTy->getNumElements(), C);
137
138 return C;
139}
140
141Constant *Constant::getAllOnesValue(Type *Ty) {
142 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
143 return ConstantInt::get(Ty->getContext(),
144 APInt::getAllOnesValue(ITy->getBitWidth()));
145
146 if (Ty->isFloatingPointTy()) {
147 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
148 !Ty->isPPC_FP128Ty());
149 return ConstantFP::get(Ty->getContext(), FL);
150 }
151
152 VectorType *VTy = cast<VectorType>(Ty);
153 return ConstantVector::getSplat(VTy->getNumElements(),
154 getAllOnesValue(VTy->getElementType()));
155}
156
157/// getAggregateElement - For aggregates (struct/array/vector) return the
158/// constant that corresponds to the specified element if possible, or null if
159/// not. This can return null if the element index is a ConstantExpr, or if
160/// 'this' is a constant expr.
161Constant *Constant::getAggregateElement(unsigned Elt) const {
162 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
163 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
164
165 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
166 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
167
168 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
169 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
170
171 if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
172 return CAZ->getElementValue(Elt);
173
174 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
175 return UV->getElementValue(Elt);
176
177 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
178 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
179 return 0;
180}
181
182Constant *Constant::getAggregateElement(Constant *Elt) const {
183 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
184 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
185 return getAggregateElement(CI->getZExtValue());
186 return 0;
187}
188
189
190void Constant::destroyConstantImpl() {
191 // When a Constant is destroyed, there may be lingering
192 // references to the constant by other constants in the constant pool. These
193 // constants are implicitly dependent on the module that is being deleted,
194 // but they don't know that. Because we only find out when the CPV is
195 // deleted, we must now notify all of our users (that should only be
196 // Constants) that they are, in fact, invalid now and should be deleted.
197 //
198 while (!use_empty()) {
199 Value *V = use_back();
200#ifndef NDEBUG // Only in -g mode...
201 if (!isa<Constant>(V)) {
202 dbgs() << "While deleting: " << *this
203 << "\n\nUse still stuck around after Def is destroyed: "
204 << *V << "\n\n";
205 }
206#endif
207 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
208 cast<Constant>(V)->destroyConstant();
209
210 // The constant should remove itself from our use list...
211 assert((use_empty() || use_back() != V) && "Constant not removed!");
212 }
213
214 // Value has no outstanding references it is safe to delete it now...
215 delete this;
216}
217
218/// canTrap - Return true if evaluation of this constant could trap. This is
219/// true for things like constant expressions that could divide by zero.
220bool Constant::canTrap() const {
221 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
222 // The only thing that could possibly trap are constant exprs.
223 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
224 if (!CE) return false;
225
226 // ConstantExpr traps if any operands can trap.
227 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
228 if (CE->getOperand(i)->canTrap())
229 return true;
230
231 // Otherwise, only specific operations can trap.
232 switch (CE->getOpcode()) {
233 default:
234 return false;
235 case Instruction::UDiv:
236 case Instruction::SDiv:
237 case Instruction::FDiv:
238 case Instruction::URem:
239 case Instruction::SRem:
240 case Instruction::FRem:
241 // Div and rem can trap if the RHS is not known to be non-zero.
242 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
243 return true;
244 return false;
245 }
246}
247
248/// isConstantUsed - Return true if the constant has users other than constant
249/// exprs and other dangling things.
250bool Constant::isConstantUsed() const {
251 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
252 const Constant *UC = dyn_cast<Constant>(*UI);
253 if (UC == 0 || isa<GlobalValue>(UC))
254 return true;
255
256 if (UC->isConstantUsed())
257 return true;
258 }
259 return false;
260}
261
262
263
264/// getRelocationInfo - This method classifies the entry according to
265/// whether or not it may generate a relocation entry. This must be
266/// conservative, so if it might codegen to a relocatable entry, it should say
267/// so. The return values are:
268///
269/// NoRelocation: This constant pool entry is guaranteed to never have a
270/// relocation applied to it (because it holds a simple constant like
271/// '4').
272/// LocalRelocation: This entry has relocations, but the entries are
273/// guaranteed to be resolvable by the static linker, so the dynamic
274/// linker will never see them.
275/// GlobalRelocations: This entry may have arbitrary relocations.
276///
277/// FIXME: This really should not be in VMCore.
278Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
279 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
280 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
281 return LocalRelocation; // Local to this file/library.
282 return GlobalRelocations; // Global reference.
283 }
284
285 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
286 return BA->getFunction()->getRelocationInfo();
287
288 // While raw uses of blockaddress need to be relocated, differences between
289 // two of them don't when they are for labels in the same function. This is a
290 // common idiom when creating a table for the indirect goto extension, so we
291 // handle it efficiently here.
292 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
293 if (CE->getOpcode() == Instruction::Sub) {
294 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
295 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
296 if (LHS && RHS &&
297 LHS->getOpcode() == Instruction::PtrToInt &&
298 RHS->getOpcode() == Instruction::PtrToInt &&
299 isa<BlockAddress>(LHS->getOperand(0)) &&
300 isa<BlockAddress>(RHS->getOperand(0)) &&
301 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
302 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
303 return NoRelocation;
304 }
305
306 PossibleRelocationsTy Result = NoRelocation;
307 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
308 Result = std::max(Result,
309 cast<Constant>(getOperand(i))->getRelocationInfo());
310
311 return Result;
312}
313
314/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
315/// it. This involves recursively eliminating any dead users of the
316/// constantexpr.
317static bool removeDeadUsersOfConstant(const Constant *C) {
318 if (isa<GlobalValue>(C)) return false; // Cannot remove this
319
320 while (!C->use_empty()) {
321 const Constant *User = dyn_cast<Constant>(C->use_back());
322 if (!User) return false; // Non-constant usage;
323 if (!removeDeadUsersOfConstant(User))
324 return false; // Constant wasn't dead
325 }
326
327 const_cast<Constant*>(C)->destroyConstant();
328 return true;
329}
330
331
332/// removeDeadConstantUsers - If there are any dead constant users dangling
333/// off of this constant, remove them. This method is useful for clients
334/// that want to check to see if a global is unused, but don't want to deal
335/// with potentially dead constants hanging off of the globals.
336void Constant::removeDeadConstantUsers() const {
337 Value::const_use_iterator I = use_begin(), E = use_end();
338 Value::const_use_iterator LastNonDeadUser = E;
339 while (I != E) {
340 const Constant *User = dyn_cast<Constant>(*I);
341 if (User == 0) {
342 LastNonDeadUser = I;
343 ++I;
344 continue;
345 }
346
347 if (!removeDeadUsersOfConstant(User)) {
348 // If the constant wasn't dead, remember that this was the last live use
349 // and move on to the next constant.
350 LastNonDeadUser = I;
351 ++I;
352 continue;
353 }
354
355 // If the constant was dead, then the iterator is invalidated.
356 if (LastNonDeadUser == E) {
357 I = use_begin();
358 if (I == E) break;
359 } else {
360 I = LastNonDeadUser;
361 ++I;
362 }
363 }
364}
365
366
367
368//===----------------------------------------------------------------------===//
369// ConstantInt
370//===----------------------------------------------------------------------===//
371
372void ConstantInt::anchor() { }
373
374ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
375 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
376 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
377}
378
379ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
380 LLVMContextImpl *pImpl = Context.pImpl;
381 if (!pImpl->TheTrueVal)
382 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
383 return pImpl->TheTrueVal;
384}
385
386ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
387 LLVMContextImpl *pImpl = Context.pImpl;
388 if (!pImpl->TheFalseVal)
389 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
390 return pImpl->TheFalseVal;
391}
392
393Constant *ConstantInt::getTrue(Type *Ty) {
394 VectorType *VTy = dyn_cast<VectorType>(Ty);
395 if (!VTy) {
396 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
397 return ConstantInt::getTrue(Ty->getContext());
398 }
399 assert(VTy->getElementType()->isIntegerTy(1) &&
400 "True must be vector of i1 or i1.");
401 return ConstantVector::getSplat(VTy->getNumElements(),
402 ConstantInt::getTrue(Ty->getContext()));
403}
404
405Constant *ConstantInt::getFalse(Type *Ty) {
406 VectorType *VTy = dyn_cast<VectorType>(Ty);
407 if (!VTy) {
408 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
409 return ConstantInt::getFalse(Ty->getContext());
410 }
411 assert(VTy->getElementType()->isIntegerTy(1) &&
412 "False must be vector of i1 or i1.");
413 return ConstantVector::getSplat(VTy->getNumElements(),
414 ConstantInt::getFalse(Ty->getContext()));
415}
416
417
418// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
419// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
420// operator== and operator!= to ensure that the DenseMap doesn't attempt to
421// compare APInt's of different widths, which would violate an APInt class
422// invariant which generates an assertion.
423ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
424 // Get the corresponding integer type for the bit width of the value.
425 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
426 // get an existing value or the insertion position
427 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
428 ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
429 if (!Slot) Slot = new ConstantInt(ITy, V);
430 return Slot;
431}
432
433Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
434 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
435
436 // For vectors, broadcast the value.
437 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
438 return ConstantVector::getSplat(VTy->getNumElements(), C);
439
440 return C;
441}
442
443ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
444 bool isSigned) {
445 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
446}
447
448ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
449 return get(Ty, V, true);
450}
451
452Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
453 return get(Ty, V, true);
454}
455
456Constant *ConstantInt::get(Type *Ty, const APInt& V) {
457 ConstantInt *C = get(Ty->getContext(), V);
458 assert(C->getType() == Ty->getScalarType() &&
459 "ConstantInt type doesn't match the type implied by its value!");
460
461 // For vectors, broadcast the value.
462 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
463 return ConstantVector::getSplat(VTy->getNumElements(), C);
464
465 return C;
466}
467
468ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
469 uint8_t radix) {
470 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
471}
472
473//===----------------------------------------------------------------------===//
474// ConstantFP
475//===----------------------------------------------------------------------===//
476
477static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
478 if (Ty->isHalfTy())
479 return &APFloat::IEEEhalf;
480 if (Ty->isFloatTy())
481 return &APFloat::IEEEsingle;
482 if (Ty->isDoubleTy())
483 return &APFloat::IEEEdouble;
484 if (Ty->isX86_FP80Ty())
485 return &APFloat::x87DoubleExtended;
486 else if (Ty->isFP128Ty())
487 return &APFloat::IEEEquad;
488
489 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
490 return &APFloat::PPCDoubleDouble;
491}
492
493void ConstantFP::anchor() { }
494
495/// get() - This returns a constant fp for the specified value in the
496/// specified type. This should only be used for simple constant values like
497/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
498Constant *ConstantFP::get(Type *Ty, double V) {
499 LLVMContext &Context = Ty->getContext();
500
501 APFloat FV(V);
502 bool ignored;
503 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
504 APFloat::rmNearestTiesToEven, &ignored);
505 Constant *C = get(Context, FV);
506
507 // For vectors, broadcast the value.
508 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
509 return ConstantVector::getSplat(VTy->getNumElements(), C);
510
511 return C;
512}
513
514
515Constant *ConstantFP::get(Type *Ty, StringRef Str) {
516 LLVMContext &Context = Ty->getContext();
517
518 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
519 Constant *C = get(Context, FV);
520
521 // For vectors, broadcast the value.
522 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
523 return ConstantVector::getSplat(VTy->getNumElements(), C);
524
525 return C;
526}
527
528
529ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
530 LLVMContext &Context = Ty->getContext();
531 APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
532 apf.changeSign();
533 return get(Context, apf);
534}
535
536
537Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
538 Type *ScalarTy = Ty->getScalarType();
539 if (ScalarTy->isFloatingPointTy()) {
540 Constant *C = getNegativeZero(ScalarTy);
541 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
542 return ConstantVector::getSplat(VTy->getNumElements(), C);
543 return C;
544 }
545
546 return Constant::getNullValue(Ty);
547}
548
549
550// ConstantFP accessors.
551ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
552 DenseMapAPFloatKeyInfo::KeyTy Key(V);
553
554 LLVMContextImpl* pImpl = Context.pImpl;
555
556 ConstantFP *&Slot = pImpl->FPConstants[Key];
557
558 if (!Slot) {
559 Type *Ty;
560 if (&V.getSemantics() == &APFloat::IEEEhalf)
561 Ty = Type::getHalfTy(Context);
562 else if (&V.getSemantics() == &APFloat::IEEEsingle)
563 Ty = Type::getFloatTy(Context);
564 else if (&V.getSemantics() == &APFloat::IEEEdouble)
565 Ty = Type::getDoubleTy(Context);
566 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
567 Ty = Type::getX86_FP80Ty(Context);
568 else if (&V.getSemantics() == &APFloat::IEEEquad)
569 Ty = Type::getFP128Ty(Context);
570 else {
571 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
572 "Unknown FP format");
573 Ty = Type::getPPC_FP128Ty(Context);
574 }
575 Slot = new ConstantFP(Ty, V);
576 }
577
578 return Slot;
579}
580
581ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
582 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
583 return ConstantFP::get(Ty->getContext(),
584 APFloat::getInf(Semantics, Negative));
585}
586
587ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
588 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
589 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
590 "FP type Mismatch");
591}
592
593bool ConstantFP::isExactlyValue(const APFloat &V) const {
594 return Val.bitwiseIsEqual(V);
595}
596
597//===----------------------------------------------------------------------===//
598// ConstantAggregateZero Implementation
599//===----------------------------------------------------------------------===//
600
601/// getSequentialElement - If this CAZ has array or vector type, return a zero
602/// with the right element type.
603Constant *ConstantAggregateZero::getSequentialElement() const {
604 return Constant::getNullValue(getType()->getSequentialElementType());
605}
606
607/// getStructElement - If this CAZ has struct type, return a zero with the
608/// right element type for the specified element.
609Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
610 return Constant::getNullValue(getType()->getStructElementType(Elt));
611}
612
613/// getElementValue - Return a zero of the right value for the specified GEP
614/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
615Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
616 if (isa<SequentialType>(getType()))
617 return getSequentialElement();
618 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
619}
620
621/// getElementValue - Return a zero of the right value for the specified GEP
622/// index.
623Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
624 if (isa<SequentialType>(getType()))
625 return getSequentialElement();
626 return getStructElement(Idx);
627}
628
629
630//===----------------------------------------------------------------------===//
631// UndefValue Implementation
632//===----------------------------------------------------------------------===//
633
634/// getSequentialElement - If this undef has array or vector type, return an
635/// undef with the right element type.
636UndefValue *UndefValue::getSequentialElement() const {
637 return UndefValue::get(getType()->getSequentialElementType());
638}
639
640/// getStructElement - If this undef has struct type, return a zero with the
641/// right element type for the specified element.
642UndefValue *UndefValue::getStructElement(unsigned Elt) const {
643 return UndefValue::get(getType()->getStructElementType(Elt));
644}
645
646/// getElementValue - Return an undef of the right value for the specified GEP
647/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
648UndefValue *UndefValue::getElementValue(Constant *C) const {
649 if (isa<SequentialType>(getType()))
650 return getSequentialElement();
651 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
652}
653
654/// getElementValue - Return an undef of the right value for the specified GEP
655/// index.
656UndefValue *UndefValue::getElementValue(unsigned Idx) const {
657 if (isa<SequentialType>(getType()))
658 return getSequentialElement();
659 return getStructElement(Idx);
660}
661
662
663
664//===----------------------------------------------------------------------===//
665// ConstantXXX Classes
666//===----------------------------------------------------------------------===//
667
668template <typename ItTy, typename EltTy>
669static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
670 for (; Start != End; ++Start)
671 if (*Start != Elt)
672 return false;
673 return true;
674}
675
676ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
677 : Constant(T, ConstantArrayVal,
678 OperandTraits<ConstantArray>::op_end(this) - V.size(),
679 V.size()) {
680 assert(V.size() == T->getNumElements() &&
681 "Invalid initializer vector for constant array");
682 for (unsigned i = 0, e = V.size(); i != e; ++i)
683 assert(V[i]->getType() == T->getElementType() &&
684 "Initializer for array element doesn't match array element type!");
685 std::copy(V.begin(), V.end(), op_begin());
686}
687
688Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
689 // Empty arrays are canonicalized to ConstantAggregateZero.
690 if (V.empty())
691 return ConstantAggregateZero::get(Ty);
692
693 for (unsigned i = 0, e = V.size(); i != e; ++i) {
694 assert(V[i]->getType() == Ty->getElementType() &&
695 "Wrong type in array element initializer");
696 }
697 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
698
699 // If this is an all-zero array, return a ConstantAggregateZero object. If
700 // all undef, return an UndefValue, if "all simple", then return a
701 // ConstantDataArray.
702 Constant *C = V[0];
703 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
704 return UndefValue::get(Ty);
705
706 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
707 return ConstantAggregateZero::get(Ty);
708
709 // Check to see if all of the elements are ConstantFP or ConstantInt and if
710 // the element type is compatible with ConstantDataVector. If so, use it.
711 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
712 // We speculatively build the elements here even if it turns out that there
713 // is a constantexpr or something else weird in the array, since it is so
714 // uncommon for that to happen.
715 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
716 if (CI->getType()->isIntegerTy(8)) {
717 SmallVector<uint8_t, 16> Elts;
718 for (unsigned i = 0, e = V.size(); i != e; ++i)
719 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
720 Elts.push_back(CI->getZExtValue());
721 else
722 break;
723 if (Elts.size() == V.size())
724 return ConstantDataArray::get(C->getContext(), Elts);
725 } else if (CI->getType()->isIntegerTy(16)) {
726 SmallVector<uint16_t, 16> Elts;
727 for (unsigned i = 0, e = V.size(); i != e; ++i)
728 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
729 Elts.push_back(CI->getZExtValue());
730 else
731 break;
732 if (Elts.size() == V.size())
733 return ConstantDataArray::get(C->getContext(), Elts);
734 } else if (CI->getType()->isIntegerTy(32)) {
735 SmallVector<uint32_t, 16> Elts;
736 for (unsigned i = 0, e = V.size(); i != e; ++i)
737 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
738 Elts.push_back(CI->getZExtValue());
739 else
740 break;
741 if (Elts.size() == V.size())
742 return ConstantDataArray::get(C->getContext(), Elts);
743 } else if (CI->getType()->isIntegerTy(64)) {
744 SmallVector<uint64_t, 16> Elts;
745 for (unsigned i = 0, e = V.size(); i != e; ++i)
746 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
747 Elts.push_back(CI->getZExtValue());
748 else
749 break;
750 if (Elts.size() == V.size())
751 return ConstantDataArray::get(C->getContext(), Elts);
752 }
753 }
754
755 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
756 if (CFP->getType()->isFloatTy()) {
757 SmallVector<float, 16> Elts;
758 for (unsigned i = 0, e = V.size(); i != e; ++i)
759 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
760 Elts.push_back(CFP->getValueAPF().convertToFloat());
761 else
762 break;
763 if (Elts.size() == V.size())
764 return ConstantDataArray::get(C->getContext(), Elts);
765 } else if (CFP->getType()->isDoubleTy()) {
766 SmallVector<double, 16> Elts;
767 for (unsigned i = 0, e = V.size(); i != e; ++i)
768 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
769 Elts.push_back(CFP->getValueAPF().convertToDouble());
770 else
771 break;
772 if (Elts.size() == V.size())
773 return ConstantDataArray::get(C->getContext(), Elts);
774 }
775 }
776 }
777
778 // Otherwise, we really do want to create a ConstantArray.
779 return pImpl->ArrayConstants.getOrCreate(Ty, V);
780}
781
782/// getTypeForElements - Return an anonymous struct type to use for a constant
783/// with the specified set of elements. The list must not be empty.
784StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
785 ArrayRef<Constant*> V,
786 bool Packed) {
787 unsigned VecSize = V.size();
788 SmallVector<Type*, 16> EltTypes(VecSize);
789 for (unsigned i = 0; i != VecSize; ++i)
790 EltTypes[i] = V[i]->getType();
791
792 return StructType::get(Context, EltTypes, Packed);
793}
794
795
796StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
797 bool Packed) {
798 assert(!V.empty() &&
799 "ConstantStruct::getTypeForElements cannot be called on empty list");
800 return getTypeForElements(V[0]->getContext(), V, Packed);
801}
802
803
804ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
805 : Constant(T, ConstantStructVal,
806 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
807 V.size()) {
808 assert(V.size() == T->getNumElements() &&
809 "Invalid initializer vector for constant structure");
810 for (unsigned i = 0, e = V.size(); i != e; ++i)
811 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
812 "Initializer for struct element doesn't match struct element type!");
813 std::copy(V.begin(), V.end(), op_begin());
814}
815
816// ConstantStruct accessors.
817Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
818 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
819 "Incorrect # elements specified to ConstantStruct::get");
820
821 // Create a ConstantAggregateZero value if all elements are zeros.
822 bool isZero = true;
823 bool isUndef = false;
824
825 if (!V.empty()) {
826 isUndef = isa<UndefValue>(V[0]);
827 isZero = V[0]->isNullValue();
828 if (isUndef || isZero) {
829 for (unsigned i = 0, e = V.size(); i != e; ++i) {
830 if (!V[i]->isNullValue())
831 isZero = false;
832 if (!isa<UndefValue>(V[i]))
833 isUndef = false;
834 }
835 }
836 }
837 if (isZero)
838 return ConstantAggregateZero::get(ST);
839 if (isUndef)
840 return UndefValue::get(ST);
841
842 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
843}
844
845Constant *ConstantStruct::get(StructType *T, ...) {
846 va_list ap;
847 SmallVector<Constant*, 8> Values;
848 va_start(ap, T);
849 while (Constant *Val = va_arg(ap, llvm::Constant*))
850 Values.push_back(Val);
851 va_end(ap);
852 return get(T, Values);
853}
854
855ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
856 : Constant(T, ConstantVectorVal,
857 OperandTraits<ConstantVector>::op_end(this) - V.size(),
858 V.size()) {
859 for (size_t i = 0, e = V.size(); i != e; i++)
860 assert(V[i]->getType() == T->getElementType() &&
861 "Initializer for vector element doesn't match vector element type!");
862 std::copy(V.begin(), V.end(), op_begin());
863}
864
865// ConstantVector accessors.
866Constant *ConstantVector::get(ArrayRef<Constant*> V) {
867 assert(!V.empty() && "Vectors can't be empty");
868 VectorType *T = VectorType::get(V.front()->getType(), V.size());
869 LLVMContextImpl *pImpl = T->getContext().pImpl;
870
871 // If this is an all-undef or all-zero vector, return a
872 // ConstantAggregateZero or UndefValue.
873 Constant *C = V[0];
874 bool isZero = C->isNullValue();
875 bool isUndef = isa<UndefValue>(C);
876
877 if (isZero || isUndef) {
878 for (unsigned i = 1, e = V.size(); i != e; ++i)
879 if (V[i] != C) {
880 isZero = isUndef = false;
881 break;
882 }
883 }
884
885 if (isZero)
886 return ConstantAggregateZero::get(T);
887 if (isUndef)
888 return UndefValue::get(T);
889
890 // Check to see if all of the elements are ConstantFP or ConstantInt and if
891 // the element type is compatible with ConstantDataVector. If so, use it.
892 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
893 // We speculatively build the elements here even if it turns out that there
894 // is a constantexpr or something else weird in the array, since it is so
895 // uncommon for that to happen.
896 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
897 if (CI->getType()->isIntegerTy(8)) {
898 SmallVector<uint8_t, 16> Elts;
899 for (unsigned i = 0, e = V.size(); i != e; ++i)
900 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
901 Elts.push_back(CI->getZExtValue());
902 else
903 break;
904 if (Elts.size() == V.size())
905 return ConstantDataVector::get(C->getContext(), Elts);
906 } else if (CI->getType()->isIntegerTy(16)) {
907 SmallVector<uint16_t, 16> Elts;
908 for (unsigned i = 0, e = V.size(); i != e; ++i)
909 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
910 Elts.push_back(CI->getZExtValue());
911 else
912 break;
913 if (Elts.size() == V.size())
914 return ConstantDataVector::get(C->getContext(), Elts);
915 } else if (CI->getType()->isIntegerTy(32)) {
916 SmallVector<uint32_t, 16> Elts;
917 for (unsigned i = 0, e = V.size(); i != e; ++i)
918 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
919 Elts.push_back(CI->getZExtValue());
920 else
921 break;
922 if (Elts.size() == V.size())
923 return ConstantDataVector::get(C->getContext(), Elts);
924 } else if (CI->getType()->isIntegerTy(64)) {
925 SmallVector<uint64_t, 16> Elts;
926 for (unsigned i = 0, e = V.size(); i != e; ++i)
927 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
928 Elts.push_back(CI->getZExtValue());
929 else
930 break;
931 if (Elts.size() == V.size())
932 return ConstantDataVector::get(C->getContext(), Elts);
933 }
934 }
935
936 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
937 if (CFP->getType()->isFloatTy()) {
938 SmallVector<float, 16> Elts;
939 for (unsigned i = 0, e = V.size(); i != e; ++i)
940 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
941 Elts.push_back(CFP->getValueAPF().convertToFloat());
942 else
943 break;
944 if (Elts.size() == V.size())
945 return ConstantDataVector::get(C->getContext(), Elts);
946 } else if (CFP->getType()->isDoubleTy()) {
947 SmallVector<double, 16> Elts;
948 for (unsigned i = 0, e = V.size(); i != e; ++i)
949 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
950 Elts.push_back(CFP->getValueAPF().convertToDouble());
951 else
952 break;
953 if (Elts.size() == V.size())
954 return ConstantDataVector::get(C->getContext(), Elts);
955 }
956 }
957 }
958
959 // Otherwise, the element type isn't compatible with ConstantDataVector, or
960 // the operand list constants a ConstantExpr or something else strange.
961 return pImpl->VectorConstants.getOrCreate(T, V);
962}
963
964Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
965 // If this splat is compatible with ConstantDataVector, use it instead of
966 // ConstantVector.
967 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
968 ConstantDataSequential::isElementTypeCompatible(V->getType()))
969 return ConstantDataVector::getSplat(NumElts, V);
970
971 SmallVector<Constant*, 32> Elts(NumElts, V);
972 return get(Elts);
973}
974
975
976// Utility function for determining if a ConstantExpr is a CastOp or not. This
977// can't be inline because we don't want to #include Instruction.h into
978// Constant.h
979bool ConstantExpr::isCast() const {
980 return Instruction::isCast(getOpcode());
981}
982
983bool ConstantExpr::isCompare() const {
984 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
985}
986
987bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
988 if (getOpcode() != Instruction::GetElementPtr) return false;
989
990 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
991 User::const_op_iterator OI = llvm::next(this->op_begin());
992
993 // Skip the first index, as it has no static limit.
994 ++GEPI;
995 ++OI;
996
997 // The remaining indices must be compile-time known integers within the
998 // bounds of the corresponding notional static array types.
999 for (; GEPI != E; ++GEPI, ++OI) {
1000 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1001 if (!CI) return false;
1002 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1003 if (CI->getValue().getActiveBits() > 64 ||
1004 CI->getZExtValue() >= ATy->getNumElements())
1005 return false;
1006 }
1007
1008 // All the indices checked out.
1009 return true;
1010}
1011
1012bool ConstantExpr::hasIndices() const {
1013 return getOpcode() == Instruction::ExtractValue ||
1014 getOpcode() == Instruction::InsertValue;
1015}
1016
1017ArrayRef<unsigned> ConstantExpr::getIndices() const {
1018 if (const ExtractValueConstantExpr *EVCE =
1019 dyn_cast<ExtractValueConstantExpr>(this))
1020 return EVCE->Indices;
1021
1022 return cast<InsertValueConstantExpr>(this)->Indices;
1023}
1024
1025unsigned ConstantExpr::getPredicate() const {
1026 assert(isCompare());
1027 return ((const CompareConstantExpr*)this)->predicate;
1028}
1029
1030/// getWithOperandReplaced - Return a constant expression identical to this
1031/// one, but with the specified operand set to the specified value.
1032Constant *
1033ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1034 assert(Op->getType() == getOperand(OpNo)->getType() &&
1035 "Replacing operand with value of different type!");
1036 if (getOperand(OpNo) == Op)
1037 return const_cast<ConstantExpr*>(this);
1038
1039 SmallVector<Constant*, 8> NewOps;
1040 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1041 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1042
1043 return getWithOperands(NewOps);
1044}
1045
1046/// getWithOperands - This returns the current constant expression with the
1047/// operands replaced with the specified values. The specified array must
1048/// have the same number of operands as our current one.
1049Constant *ConstantExpr::
1050getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1051 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1052 bool AnyChange = Ty != getType();
1053 for (unsigned i = 0; i != Ops.size(); ++i)
1054 AnyChange |= Ops[i] != getOperand(i);
1055
1056 if (!AnyChange) // No operands changed, return self.
1057 return const_cast<ConstantExpr*>(this);
1058
1059 switch (getOpcode()) {
1060 case Instruction::Trunc:
1061 case Instruction::ZExt:
1062 case Instruction::SExt:
1063 case Instruction::FPTrunc:
1064 case Instruction::FPExt:
1065 case Instruction::UIToFP:
1066 case Instruction::SIToFP:
1067 case Instruction::FPToUI:
1068 case Instruction::FPToSI:
1069 case Instruction::PtrToInt:
1070 case Instruction::IntToPtr:
1071 case Instruction::BitCast:
1072 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1073 case Instruction::Select:
1074 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1075 case Instruction::InsertElement:
1076 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1077 case Instruction::ExtractElement:
1078 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1079 case Instruction::InsertValue:
1080 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1081 case Instruction::ExtractValue:
1082 return ConstantExpr::getExtractValue(Ops[0], getIndices());
1083 case Instruction::ShuffleVector:
1084 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1085 case Instruction::GetElementPtr:
1086 return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1087 cast<GEPOperator>(this)->isInBounds());
1088 case Instruction::ICmp:
1089 case Instruction::FCmp:
1090 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1091 default:
1092 assert(getNumOperands() == 2 && "Must be binary operator?");
1093 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1094 }
1095}
1096
1097
1098//===----------------------------------------------------------------------===//
1099// isValueValidForType implementations
1100
1101bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1102 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1103 if (Ty->isIntegerTy(1))
1104 return Val == 0 || Val == 1;
1105 if (NumBits >= 64)
1106 return true; // always true, has to fit in largest type
1107 uint64_t Max = (1ll << NumBits) - 1;
1108 return Val <= Max;
1109}
1110
1111bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1112 unsigned NumBits = Ty->getIntegerBitWidth();
1113 if (Ty->isIntegerTy(1))
1114 return Val == 0 || Val == 1 || Val == -1;
1115 if (NumBits >= 64)
1116 return true; // always true, has to fit in largest type
1117 int64_t Min = -(1ll << (NumBits-1));
1118 int64_t Max = (1ll << (NumBits-1)) - 1;
1119 return (Val >= Min && Val <= Max);
1120}
1121
1122bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1123 // convert modifies in place, so make a copy.
1124 APFloat Val2 = APFloat(Val);
1125 bool losesInfo;
1126 switch (Ty->getTypeID()) {
1127 default:
1128 return false; // These can't be represented as floating point!
1129
1130 // FIXME rounding mode needs to be more flexible
1131 case Type::HalfTyID: {
1132 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1133 return true;
1134 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1135 return !losesInfo;
1136 }
1137 case Type::FloatTyID: {
1138 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1139 return true;
1140 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1141 return !losesInfo;
1142 }
1143 case Type::DoubleTyID: {
1144 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1145 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1146 &Val2.getSemantics() == &APFloat::IEEEdouble)
1147 return true;
1148 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1149 return !losesInfo;
1150 }
1151 case Type::X86_FP80TyID:
1152 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1153 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1154 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1155 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1156 case Type::FP128TyID:
1157 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1158 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1159 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1160 &Val2.getSemantics() == &APFloat::IEEEquad;
1161 case Type::PPC_FP128TyID:
1162 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1163 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1164 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1165 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1166 }
1167}
1168
1169
1170//===----------------------------------------------------------------------===//
1171// Factory Function Implementation
1172
1173ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1174 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1175 "Cannot create an aggregate zero of non-aggregate type!");
1176
1177 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1178 if (Entry == 0)
1179 Entry = new ConstantAggregateZero(Ty);
1180
1181 return Entry;
1182}
1183
1184/// destroyConstant - Remove the constant from the constant table.
1185///
1186void ConstantAggregateZero::destroyConstant() {
1187 getContext().pImpl->CAZConstants.erase(getType());
1188 destroyConstantImpl();
1189}
1190
1191/// destroyConstant - Remove the constant from the constant table...
1192///
1193void ConstantArray::destroyConstant() {
1194 getType()->getContext().pImpl->ArrayConstants.remove(this);
1195 destroyConstantImpl();
1196}
1197
1198
1199//---- ConstantStruct::get() implementation...
1200//
1201
1202// destroyConstant - Remove the constant from the constant table...
1203//
1204void ConstantStruct::destroyConstant() {
1205 getType()->getContext().pImpl->StructConstants.remove(this);
1206 destroyConstantImpl();
1207}
1208
1209// destroyConstant - Remove the constant from the constant table...
1210//
1211void ConstantVector::destroyConstant() {
1212 getType()->getContext().pImpl->VectorConstants.remove(this);
1213 destroyConstantImpl();
1214}
1215
1216/// getSplatValue - If this is a splat constant, where all of the
1217/// elements have the same value, return that value. Otherwise return null.
1218Constant *ConstantVector::getSplatValue() const {
1219 // Check out first element.
1220 Constant *Elt = getOperand(0);
1221 // Then make sure all remaining elements point to the same value.
1222 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1223 if (getOperand(I) != Elt)
1224 return 0;
1225 return Elt;
1226}
1227
1228//---- ConstantPointerNull::get() implementation.
1229//
1230
1231ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1232 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1233 if (Entry == 0)
1234 Entry = new ConstantPointerNull(Ty);
1235
1236 return Entry;
1237}
1238
1239// destroyConstant - Remove the constant from the constant table...
1240//
1241void ConstantPointerNull::destroyConstant() {
1242 getContext().pImpl->CPNConstants.erase(getType());
1243 // Free the constant and any dangling references to it.
1244 destroyConstantImpl();
1245}
1246
1247
1248//---- UndefValue::get() implementation.
1249//
1250
1251UndefValue *UndefValue::get(Type *Ty) {
1252 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1253 if (Entry == 0)
1254 Entry = new UndefValue(Ty);
1255
1256 return Entry;
1257}
1258
1259// destroyConstant - Remove the constant from the constant table.
1260//
1261void UndefValue::destroyConstant() {
1262 // Free the constant and any dangling references to it.
1263 getContext().pImpl->UVConstants.erase(getType());
1264 destroyConstantImpl();
1265}
1266
1267//---- BlockAddress::get() implementation.
1268//
1269
1270BlockAddress *BlockAddress::get(BasicBlock *BB) {
1271 assert(BB->getParent() != 0 && "Block must have a parent");
1272 return get(BB->getParent(), BB);
1273}
1274
1275BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1276 BlockAddress *&BA =
1277 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1278 if (BA == 0)
1279 BA = new BlockAddress(F, BB);
1280
1281 assert(BA->getFunction() == F && "Basic block moved between functions");
1282 return BA;
1283}
1284
1285BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1286: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1287 &Op<0>(), 2) {
1288 setOperand(0, F);
1289 setOperand(1, BB);
1290 BB->AdjustBlockAddressRefCount(1);
1291}
1292
1293
1294// destroyConstant - Remove the constant from the constant table.
1295//
1296void BlockAddress::destroyConstant() {
1297 getFunction()->getType()->getContext().pImpl
1298 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1299 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1300 destroyConstantImpl();
1301}
1302
1303void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1304 // This could be replacing either the Basic Block or the Function. In either
1305 // case, we have to remove the map entry.
1306 Function *NewF = getFunction();
1307 BasicBlock *NewBB = getBasicBlock();
1308
1309 if (U == &Op<0>())
1310 NewF = cast<Function>(To);
1311 else
1312 NewBB = cast<BasicBlock>(To);
1313
1314 // See if the 'new' entry already exists, if not, just update this in place
1315 // and return early.
1316 BlockAddress *&NewBA =
1317 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1318 if (NewBA == 0) {
1319 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1320
1321 // Remove the old entry, this can't cause the map to rehash (just a
1322 // tombstone will get added).
1323 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1324 getBasicBlock()));
1325 NewBA = this;
1326 setOperand(0, NewF);
1327 setOperand(1, NewBB);
1328 getBasicBlock()->AdjustBlockAddressRefCount(1);
1329 return;
1330 }
1331
1332 // Otherwise, I do need to replace this with an existing value.
1333 assert(NewBA != this && "I didn't contain From!");
1334
1335 // Everyone using this now uses the replacement.
1336 replaceAllUsesWith(NewBA);
1337
1338 destroyConstant();
1339}
1340
1341//---- ConstantExpr::get() implementations.
1342//
1343
1344/// This is a utility function to handle folding of casts and lookup of the
1345/// cast in the ExprConstants map. It is used by the various get* methods below.
1346static inline Constant *getFoldedCast(
1347 Instruction::CastOps opc, Constant *C, Type *Ty) {
1348 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1349 // Fold a few common cases
1350 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1351 return FC;
1352
1353 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1354
1355 // Look up the constant in the table first to ensure uniqueness
1356 std::vector<Constant*> argVec(1, C);
1357 ExprMapKeyType Key(opc, argVec);
1358
1359 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1360}
1361
1362Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1363 Instruction::CastOps opc = Instruction::CastOps(oc);
1364 assert(Instruction::isCast(opc) && "opcode out of range");
1365 assert(C && Ty && "Null arguments to getCast");
1366 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1367
1368 switch (opc) {
1369 default:
1370 llvm_unreachable("Invalid cast opcode");
1371 case Instruction::Trunc: return getTrunc(C, Ty);
1372 case Instruction::ZExt: return getZExt(C, Ty);
1373 case Instruction::SExt: return getSExt(C, Ty);
1374 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1375 case Instruction::FPExt: return getFPExtend(C, Ty);
1376 case Instruction::UIToFP: return getUIToFP(C, Ty);
1377 case Instruction::SIToFP: return getSIToFP(C, Ty);
1378 case Instruction::FPToUI: return getFPToUI(C, Ty);
1379 case Instruction::FPToSI: return getFPToSI(C, Ty);
1380 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1381 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1382 case Instruction::BitCast: return getBitCast(C, Ty);
1383 }
1384}
1385
1386Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1387 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1388 return getBitCast(C, Ty);
1389 return getZExt(C, Ty);
1390}
1391
1392Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1393 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1394 return getBitCast(C, Ty);
1395 return getSExt(C, Ty);
1396}
1397
1398Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1399 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1400 return getBitCast(C, Ty);
1401 return getTrunc(C, Ty);
1402}
1403
1404Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1405 assert(S->getType()->isPointerTy() && "Invalid cast");
1406 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
1407
1408 if (Ty->isIntegerTy())
1409 return getPtrToInt(S, Ty);
1410 return getBitCast(S, Ty);
1411}
1412
1413Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1414 bool isSigned) {
1415 assert(C->getType()->isIntOrIntVectorTy() &&
1416 Ty->isIntOrIntVectorTy() && "Invalid cast");
1417 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1418 unsigned DstBits = Ty->getScalarSizeInBits();
1419 Instruction::CastOps opcode =
1420 (SrcBits == DstBits ? Instruction::BitCast :
1421 (SrcBits > DstBits ? Instruction::Trunc :
1422 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1423 return getCast(opcode, C, Ty);
1424}
1425
1426Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1427 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1428 "Invalid cast");
1429 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1430 unsigned DstBits = Ty->getScalarSizeInBits();
1431 if (SrcBits == DstBits)
1432 return C; // Avoid a useless cast
1433 Instruction::CastOps opcode =
1434 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1435 return getCast(opcode, C, Ty);
1436}
1437
1438Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1439#ifndef NDEBUG
1440 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1441 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1442#endif
1443 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1444 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1445 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1446 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1447 "SrcTy must be larger than DestTy for Trunc!");
1448
1449 return getFoldedCast(Instruction::Trunc, C, Ty);
1450}
1451
1452Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1453#ifndef NDEBUG
1454 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1455 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1456#endif
1457 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1458 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1459 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1460 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1461 "SrcTy must be smaller than DestTy for SExt!");
1462
1463 return getFoldedCast(Instruction::SExt, C, Ty);
1464}
1465
1466Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1467#ifndef NDEBUG
1468 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1469 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1470#endif
1471 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1472 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1473 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1474 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1475 "SrcTy must be smaller than DestTy for ZExt!");
1476
1477 return getFoldedCast(Instruction::ZExt, C, Ty);
1478}
1479
1480Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1481#ifndef NDEBUG
1482 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1483 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1484#endif
1485 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1486 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1487 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1488 "This is an illegal floating point truncation!");
1489 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1490}
1491
1492Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1493#ifndef NDEBUG
1494 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1495 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1496#endif
1497 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1498 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1499 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1500 "This is an illegal floating point extension!");
1501 return getFoldedCast(Instruction::FPExt, C, Ty);
1502}
1503
1504Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1505#ifndef NDEBUG
1506 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1507 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1508#endif
1509 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1510 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1511 "This is an illegal uint to floating point cast!");
1512 return getFoldedCast(Instruction::UIToFP, C, Ty);
1513}
1514
1515Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1516#ifndef NDEBUG
1517 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1518 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1519#endif
1520 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1521 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1522 "This is an illegal sint to floating point cast!");
1523 return getFoldedCast(Instruction::SIToFP, C, Ty);
1524}
1525
1526Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1527#ifndef NDEBUG
1528 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1529 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1530#endif
1531 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1532 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1533 "This is an illegal floating point to uint cast!");
1534 return getFoldedCast(Instruction::FPToUI, C, Ty);
1535}
1536
1537Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1538#ifndef NDEBUG
1539 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1540 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1541#endif
1542 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1543 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1544 "This is an illegal floating point to sint cast!");
1545 return getFoldedCast(Instruction::FPToSI, C, Ty);
1546}
1547
1548Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1549 assert(C->getType()->getScalarType()->isPointerTy() &&
1550 "PtrToInt source must be pointer or pointer vector");
1551 assert(DstTy->getScalarType()->isIntegerTy() &&
1552 "PtrToInt destination must be integer or integer vector");
1553 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1554 if (isa<VectorType>(C->getType()))
1555 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1556 "Invalid cast between a different number of vector elements");
1557 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1558}
1559
1560Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1561 assert(C->getType()->getScalarType()->isIntegerTy() &&
1562 "IntToPtr source must be integer or integer vector");
1563 assert(DstTy->getScalarType()->isPointerTy() &&
1564 "IntToPtr destination must be a pointer or pointer vector");
1565 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1566 if (isa<VectorType>(C->getType()))
1567 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1568 "Invalid cast between a different number of vector elements");
1569 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1570}
1571
1572Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1573 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1574 "Invalid constantexpr bitcast!");
1575
1576 // It is common to ask for a bitcast of a value to its own type, handle this
1577 // speedily.
1578 if (C->getType() == DstTy) return C;
1579
1580 return getFoldedCast(Instruction::BitCast, C, DstTy);
1581}
1582
1583Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1584 unsigned Flags) {
1585 // Check the operands for consistency first.
1586 assert(Opcode >= Instruction::BinaryOpsBegin &&
1587 Opcode < Instruction::BinaryOpsEnd &&
1588 "Invalid opcode in binary constant expression");
1589 assert(C1->getType() == C2->getType() &&
1590 "Operand types in binary constant expression should match");
1591
1592#ifndef NDEBUG
1593 switch (Opcode) {
1594 case Instruction::Add:
1595 case Instruction::Sub:
1596 case Instruction::Mul:
1597 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1598 assert(C1->getType()->isIntOrIntVectorTy() &&
1599 "Tried to create an integer operation on a non-integer type!");
1600 break;
1601 case Instruction::FAdd:
1602 case Instruction::FSub:
1603 case Instruction::FMul:
1604 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1605 assert(C1->getType()->isFPOrFPVectorTy() &&
1606 "Tried to create a floating-point operation on a "
1607 "non-floating-point type!");
1608 break;
1609 case Instruction::UDiv:
1610 case Instruction::SDiv:
1611 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1612 assert(C1->getType()->isIntOrIntVectorTy() &&
1613 "Tried to create an arithmetic operation on a non-arithmetic type!");
1614 break;
1615 case Instruction::FDiv:
1616 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1617 assert(C1->getType()->isFPOrFPVectorTy() &&
1618 "Tried to create an arithmetic operation on a non-arithmetic type!");
1619 break;
1620 case Instruction::URem:
1621 case Instruction::SRem:
1622 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1623 assert(C1->getType()->isIntOrIntVectorTy() &&
1624 "Tried to create an arithmetic operation on a non-arithmetic type!");
1625 break;
1626 case Instruction::FRem:
1627 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1628 assert(C1->getType()->isFPOrFPVectorTy() &&
1629 "Tried to create an arithmetic operation on a non-arithmetic type!");
1630 break;
1631 case Instruction::And:
1632 case Instruction::Or:
1633 case Instruction::Xor:
1634 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1635 assert(C1->getType()->isIntOrIntVectorTy() &&
1636 "Tried to create a logical operation on a non-integral type!");
1637 break;
1638 case Instruction::Shl:
1639 case Instruction::LShr:
1640 case Instruction::AShr:
1641 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1642 assert(C1->getType()->isIntOrIntVectorTy() &&
1643 "Tried to create a shift operation on a non-integer type!");
1644 break;
1645 default:
1646 break;
1647 }
1648#endif
1649
1650 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1651 return FC; // Fold a few common cases.
1652
1653 std::vector<Constant*> argVec(1, C1);
1654 argVec.push_back(C2);
1655 ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1656
1657 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1658 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1659}
1660
1661Constant *ConstantExpr::getSizeOf(Type* Ty) {
1662 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1663 // Note that a non-inbounds gep is used, as null isn't within any object.
1664 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1665 Constant *GEP = getGetElementPtr(
1666 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1667 return getPtrToInt(GEP,
1668 Type::getInt64Ty(Ty->getContext()));
1669}
1670
1671Constant *ConstantExpr::getAlignOf(Type* Ty) {
1672 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1673 // Note that a non-inbounds gep is used, as null isn't within any object.
1674 Type *AligningTy =
1675 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1676 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1677 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1678 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1679 Constant *Indices[2] = { Zero, One };
1680 Constant *GEP = getGetElementPtr(NullPtr, Indices);
1681 return getPtrToInt(GEP,
1682 Type::getInt64Ty(Ty->getContext()));
1683}
1684
1685Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1686 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1687 FieldNo));
1688}
1689
1690Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1691 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1692 // Note that a non-inbounds gep is used, as null isn't within any object.
1693 Constant *GEPIdx[] = {
1694 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1695 FieldNo
1696 };
1697 Constant *GEP = getGetElementPtr(
1698 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1699 return getPtrToInt(GEP,
1700 Type::getInt64Ty(Ty->getContext()));
1701}
1702
1703Constant *ConstantExpr::getCompare(unsigned short Predicate,
1704 Constant *C1, Constant *C2) {
1705 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1706
1707 switch (Predicate) {
1708 default: llvm_unreachable("Invalid CmpInst predicate");
1709 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1710 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1711 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1712 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1713 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1714 case CmpInst::FCMP_TRUE:
1715 return getFCmp(Predicate, C1, C2);
1716
1717 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1718 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1719 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1720 case CmpInst::ICMP_SLE:
1721 return getICmp(Predicate, C1, C2);
1722 }
1723}
1724
1725Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1726 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1727
1728 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1729 return SC; // Fold common cases
1730
1731 std::vector<Constant*> argVec(3, C);
1732 argVec[1] = V1;
1733 argVec[2] = V2;
1734 ExprMapKeyType Key(Instruction::Select, argVec);
1735
1736 LLVMContextImpl *pImpl = C->getContext().pImpl;
1737 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1738}
1739
1740Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1741 bool InBounds) {
1742 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1743 return FC; // Fold a few common cases.
1744
1745 // Get the result type of the getelementptr!
1746 Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1747 assert(Ty && "GEP indices invalid!");
1748 unsigned AS = C->getType()->getPointerAddressSpace();
1749 Type *ReqTy = Ty->getPointerTo(AS);
1750
1751 assert(C->getType()->isPointerTy() &&
1752 "Non-pointer type for constant GetElementPtr expression");
1753 // Look up the constant in the table first to ensure uniqueness
1754 std::vector<Constant*> ArgVec;
1755 ArgVec.reserve(1 + Idxs.size());
1756 ArgVec.push_back(C);
1757 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1758 ArgVec.push_back(cast<Constant>(Idxs[i]));
1759 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1760 InBounds ? GEPOperator::IsInBounds : 0);
1761
1762 LLVMContextImpl *pImpl = C->getContext().pImpl;
1763 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1764}
1765
1766Constant *
1767ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1768 assert(LHS->getType() == RHS->getType());
1769 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1770 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1771
1772 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1773 return FC; // Fold a few common cases...
1774
1775 // Look up the constant in the table first to ensure uniqueness
1776 std::vector<Constant*> ArgVec;
1777 ArgVec.push_back(LHS);
1778 ArgVec.push_back(RHS);
1779 // Get the key type with both the opcode and predicate
1780 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1781
1782 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1783 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1784 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1785
1786 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1787 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1788}
1789
1790Constant *
1791ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1792 assert(LHS->getType() == RHS->getType());
1793 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1794
1795 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1796 return FC; // Fold a few common cases...
1797
1798 // Look up the constant in the table first to ensure uniqueness
1799 std::vector<Constant*> ArgVec;
1800 ArgVec.push_back(LHS);
1801 ArgVec.push_back(RHS);
1802 // Get the key type with both the opcode and predicate
1803 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1804
1805 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1806 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1807 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1808
1809 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1810 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1811}
1812
1813Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1814 assert(Val->getType()->isVectorTy() &&
1815 "Tried to create extractelement operation on non-vector type!");
1816 assert(Idx->getType()->isIntegerTy(32) &&
1817 "Extractelement index must be i32 type!");
1818
1819 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1820 return FC; // Fold a few common cases.
1821
1822 // Look up the constant in the table first to ensure uniqueness
1823 std::vector<Constant*> ArgVec(1, Val);
1824 ArgVec.push_back(Idx);
1825 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1826
1827 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1828 Type *ReqTy = Val->getType()->getVectorElementType();
1829 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1830}
1831
1832Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1833 Constant *Idx) {
1834 assert(Val->getType()->isVectorTy() &&
1835 "Tried to create insertelement operation on non-vector type!");
1836 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1837 "Insertelement types must match!");
1838 assert(Idx->getType()->isIntegerTy(32) &&
1839 "Insertelement index must be i32 type!");
1840
1841 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1842 return FC; // Fold a few common cases.
1843 // Look up the constant in the table first to ensure uniqueness
1844 std::vector<Constant*> ArgVec(1, Val);
1845 ArgVec.push_back(Elt);
1846 ArgVec.push_back(Idx);
1847 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1848
1849 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1850 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1851}
1852
1853Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1854 Constant *Mask) {
1855 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1856 "Invalid shuffle vector constant expr operands!");
1857
1858 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1859 return FC; // Fold a few common cases.
1860
1861 unsigned NElts = Mask->getType()->getVectorNumElements();
1862 Type *EltTy = V1->getType()->getVectorElementType();
1863 Type *ShufTy = VectorType::get(EltTy, NElts);
1864
1865 // Look up the constant in the table first to ensure uniqueness
1866 std::vector<Constant*> ArgVec(1, V1);
1867 ArgVec.push_back(V2);
1868 ArgVec.push_back(Mask);
1869 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1870
1871 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1872 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1873}
1874
1875Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1876 ArrayRef<unsigned> Idxs) {
1877 assert(ExtractValueInst::getIndexedType(Agg->getType(),
1878 Idxs) == Val->getType() &&
1879 "insertvalue indices invalid!");
1880 assert(Agg->getType()->isFirstClassType() &&
1881 "Non-first-class type for constant insertvalue expression");
1882 Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1883 assert(FC && "insertvalue constant expr couldn't be folded!");
1884 return FC;
1885}
1886
1887Constant *ConstantExpr::getExtractValue(Constant *Agg,
1888 ArrayRef<unsigned> Idxs) {
1889 assert(Agg->getType()->isFirstClassType() &&
1890 "Tried to create extractelement operation on non-first-class type!");
1891
1892 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1893 (void)ReqTy;
1894 assert(ReqTy && "extractvalue indices invalid!");
1895
1896 assert(Agg->getType()->isFirstClassType() &&
1897 "Non-first-class type for constant extractvalue expression");
1898 Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1899 assert(FC && "ExtractValue constant expr couldn't be folded!");
1900 return FC;
1901}
1902
1903Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1904 assert(C->getType()->isIntOrIntVectorTy() &&
1905 "Cannot NEG a nonintegral value!");
1906 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1907 C, HasNUW, HasNSW);
1908}
1909
1910Constant *ConstantExpr::getFNeg(Constant *C) {
1911 assert(C->getType()->isFPOrFPVectorTy() &&
1912 "Cannot FNEG a non-floating-point value!");
1913 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1914}
1915
1916Constant *ConstantExpr::getNot(Constant *C) {
1917 assert(C->getType()->isIntOrIntVectorTy() &&
1918 "Cannot NOT a nonintegral value!");
1919 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1920}
1921
1922Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1923 bool HasNUW, bool HasNSW) {
1924 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1925 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1926 return get(Instruction::Add, C1, C2, Flags);
1927}
1928
1929Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
1930 return get(Instruction::FAdd, C1, C2);
1931}
1932
1933Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
1934 bool HasNUW, bool HasNSW) {
1935 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1936 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1937 return get(Instruction::Sub, C1, C2, Flags);
1938}
1939
1940Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
1941 return get(Instruction::FSub, C1, C2);
1942}
1943
1944Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
1945 bool HasNUW, bool HasNSW) {
1946 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1947 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1948 return get(Instruction::Mul, C1, C2, Flags);
1949}
1950
1951Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
1952 return get(Instruction::FMul, C1, C2);
1953}
1954
1955Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
1956 return get(Instruction::UDiv, C1, C2,
1957 isExact ? PossiblyExactOperator::IsExact : 0);
1958}
1959
1960Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
1961 return get(Instruction::SDiv, C1, C2,
1962 isExact ? PossiblyExactOperator::IsExact : 0);
1963}
1964
1965Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
1966 return get(Instruction::FDiv, C1, C2);
1967}
1968
1969Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
1970 return get(Instruction::URem, C1, C2);
1971}
1972
1973Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
1974 return get(Instruction::SRem, C1, C2);
1975}
1976
1977Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
1978 return get(Instruction::FRem, C1, C2);
1979}
1980
1981Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
1982 return get(Instruction::And, C1, C2);
1983}
1984
1985Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
1986 return get(Instruction::Or, C1, C2);
1987}
1988
1989Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
1990 return get(Instruction::Xor, C1, C2);
1991}
1992
1993Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
1994 bool HasNUW, bool HasNSW) {
1995 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1996 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1997 return get(Instruction::Shl, C1, C2, Flags);
1998}
1999
2000Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2001 return get(Instruction::LShr, C1, C2,
2002 isExact ? PossiblyExactOperator::IsExact : 0);
2003}
2004
2005Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2006 return get(Instruction::AShr, C1, C2,
2007 isExact ? PossiblyExactOperator::IsExact : 0);
2008}
2009
2010/// getBinOpIdentity - Return the identity for the given binary operation,
2011/// i.e. a constant C such that X op C = X and C op X = X for every X. It
2012/// returns null if the operator doesn't have an identity.
2013Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2014 switch (Opcode) {
2015 default:
2016 // Doesn't have an identity.
2017 return 0;
2018
2019 case Instruction::Add:
2020 case Instruction::Or:
2021 case Instruction::Xor:
2022 return Constant::getNullValue(Ty);
2023
2024 case Instruction::Mul:
2025 return ConstantInt::get(Ty, 1);
2026
2027 case Instruction::And:
2028 return Constant::getAllOnesValue(Ty);
2029 }
2030}
2031
2032/// getBinOpAbsorber - Return the absorbing element for the given binary
2033/// operation, i.e. a constant C such that X op C = C and C op X = C for
2034/// every X. For example, this returns zero for integer multiplication.
2035/// It returns null if the operator doesn't have an absorbing element.
2036Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2037 switch (Opcode) {
2038 default:
2039 // Doesn't have an absorber.
2040 return 0;
2041
2042 case Instruction::Or:
2043 return Constant::getAllOnesValue(Ty);
2044
2045 case Instruction::And:
2046 case Instruction::Mul:
2047 return Constant::getNullValue(Ty);
2048 }
2049}
2050
2051// destroyConstant - Remove the constant from the constant table...
2052//
2053void ConstantExpr::destroyConstant() {
2054 getType()->getContext().pImpl->ExprConstants.remove(this);
2055 destroyConstantImpl();
2056}
2057
2058const char *ConstantExpr::getOpcodeName() const {
2059 return Instruction::getOpcodeName(getOpcode());
2060}
2061
2062
2063
2064GetElementPtrConstantExpr::
2065GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2066 Type *DestTy)
2067 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2068 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2069 - (IdxList.size()+1), IdxList.size()+1) {
2070 OperandList[0] = C;
2071 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2072 OperandList[i+1] = IdxList[i];
2073}
2074
2075//===----------------------------------------------------------------------===//
2076// ConstantData* implementations
2077
2078void ConstantDataArray::anchor() {}
2079void ConstantDataVector::anchor() {}
2080
2081/// getElementType - Return the element type of the array/vector.
2082Type *ConstantDataSequential::getElementType() const {
2083 return getType()->getElementType();
2084}
2085
2086StringRef ConstantDataSequential::getRawDataValues() const {
2087 return StringRef(DataElements, getNumElements()*getElementByteSize());
2088}
2089
2090/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2091/// formed with a vector or array of the specified element type.
2092/// ConstantDataArray only works with normal float and int types that are
2093/// stored densely in memory, not with things like i42 or x86_f80.
2094bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2095 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2096 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2097 switch (IT->getBitWidth()) {
2098 case 8:
2099 case 16:
2100 case 32:
2101 case 64:
2102 return true;
2103 default: break;
2104 }
2105 }
2106 return false;
2107}
2108
2109/// getNumElements - Return the number of elements in the array or vector.
2110unsigned ConstantDataSequential::getNumElements() const {
2111 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2112 return AT->getNumElements();
2113 return getType()->getVectorNumElements();
2114}
2115
2116
2117/// getElementByteSize - Return the size in bytes of the elements in the data.
2118uint64_t ConstantDataSequential::getElementByteSize() const {
2119 return getElementType()->getPrimitiveSizeInBits()/8;
2120}
2121
2122/// getElementPointer - Return the start of the specified element.
2123const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2124 assert(Elt < getNumElements() && "Invalid Elt");
2125 return DataElements+Elt*getElementByteSize();
2126}
2127
2128
2129/// isAllZeros - return true if the array is empty or all zeros.
2130static bool isAllZeros(StringRef Arr) {
2131 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2132 if (*I != 0)
2133 return false;
2134 return true;
2135}
2136
2137/// getImpl - This is the underlying implementation of all of the
2138/// ConstantDataSequential::get methods. They all thunk down to here, providing
2139/// the correct element type. We take the bytes in as a StringRef because
2140/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2141Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2142 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2143 // If the elements are all zero or there are no elements, return a CAZ, which
2144 // is more dense and canonical.
2145 if (isAllZeros(Elements))
2146 return ConstantAggregateZero::get(Ty);
2147
2148 // Do a lookup to see if we have already formed one of these.
2149 StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2150 Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2151
2152 // The bucket can point to a linked list of different CDS's that have the same
2153 // body but different types. For example, 0,0,0,1 could be a 4 element array
2154 // of i8, or a 1-element array of i32. They'll both end up in the same
2155 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2156 ConstantDataSequential **Entry = &Slot.getValue();
2157 for (ConstantDataSequential *Node = *Entry; Node != 0;
2158 Entry = &Node->Next, Node = *Entry)
2159 if (Node->getType() == Ty)
2160 return Node;
2161
2162 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2163 // and return it.
2164 if (isa<ArrayType>(Ty))
2165 return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2166
2167 assert(isa<VectorType>(Ty));
2168 return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2169}
2170
2171void ConstantDataSequential::destroyConstant() {
2172 // Remove the constant from the StringMap.
2173 StringMap<ConstantDataSequential*> &CDSConstants =
2174 getType()->getContext().pImpl->CDSConstants;
2175
2176 StringMap<ConstantDataSequential*>::iterator Slot =
2177 CDSConstants.find(getRawDataValues());
2178
2179 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2180
2181 ConstantDataSequential **Entry = &Slot->getValue();
2182
2183 // Remove the entry from the hash table.
2184 if ((*Entry)->Next == 0) {
2185 // If there is only one value in the bucket (common case) it must be this
2186 // entry, and removing the entry should remove the bucket completely.
2187 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2188 getContext().pImpl->CDSConstants.erase(Slot);
2189 } else {
2190 // Otherwise, there are multiple entries linked off the bucket, unlink the
2191 // node we care about but keep the bucket around.
2192 for (ConstantDataSequential *Node = *Entry; ;
2193 Entry = &Node->Next, Node = *Entry) {
2194 assert(Node && "Didn't find entry in its uniquing hash table!");
2195 // If we found our entry, unlink it from the list and we're done.
2196 if (Node == this) {
2197 *Entry = Node->Next;
2198 break;
2199 }
2200 }
2201 }
2202
2203 // If we were part of a list, make sure that we don't delete the list that is
2204 // still owned by the uniquing map.
2205 Next = 0;
2206
2207 // Finally, actually delete it.
2208 destroyConstantImpl();
2209}
2210
2211/// get() constructors - Return a constant with array type with an element
2212/// count and element type matching the ArrayRef passed in. Note that this
2213/// can return a ConstantAggregateZero object.
2214Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2215 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2216 const char *Data = reinterpret_cast<const char *>(Elts.data());
2217 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2218}
2219Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2220 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2221 const char *Data = reinterpret_cast<const char *>(Elts.data());
2222 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2223}
2224Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2225 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2226 const char *Data = reinterpret_cast<const char *>(Elts.data());
2227 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2228}
2229Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2230 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2231 const char *Data = reinterpret_cast<const char *>(Elts.data());
2232 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2233}
2234Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2235 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2236 const char *Data = reinterpret_cast<const char *>(Elts.data());
2237 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2238}
2239Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2240 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2241 const char *Data = reinterpret_cast<const char *>(Elts.data());
2242 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2243}
2244
2245/// getString - This method constructs a CDS and initializes it with a text
2246/// string. The default behavior (AddNull==true) causes a null terminator to
2247/// be placed at the end of the array (increasing the length of the string by
2248/// one more than the StringRef would normally indicate. Pass AddNull=false
2249/// to disable this behavior.
2250Constant *ConstantDataArray::getString(LLVMContext &Context,
2251 StringRef Str, bool AddNull) {
2252 if (!AddNull) {
2253 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2254 return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2255 Str.size()));
2256 }
2257
2258 SmallVector<uint8_t, 64> ElementVals;
2259 ElementVals.append(Str.begin(), Str.end());
2260 ElementVals.push_back(0);
2261 return get(Context, ElementVals);
2262}
2263
2264/// get() constructors - Return a constant with vector type with an element
2265/// count and element type matching the ArrayRef passed in. Note that this
2266/// can return a ConstantAggregateZero object.
2267Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2268 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2269 const char *Data = reinterpret_cast<const char *>(Elts.data());
2270 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2271}
2272Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2273 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2274 const char *Data = reinterpret_cast<const char *>(Elts.data());
2275 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2276}
2277Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2278 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2279 const char *Data = reinterpret_cast<const char *>(Elts.data());
2280 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2281}
2282Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2283 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2284 const char *Data = reinterpret_cast<const char *>(Elts.data());
2285 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2286}
2287Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2288 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2289 const char *Data = reinterpret_cast<const char *>(Elts.data());
2290 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2291}
2292Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2293 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2294 const char *Data = reinterpret_cast<const char *>(Elts.data());
2295 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2296}
2297
2298Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2299 assert(isElementTypeCompatible(V->getType()) &&
2300 "Element type not compatible with ConstantData");
2301 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2302 if (CI->getType()->isIntegerTy(8)) {
2303 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2304 return get(V->getContext(), Elts);
2305 }
2306 if (CI->getType()->isIntegerTy(16)) {
2307 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2308 return get(V->getContext(), Elts);
2309 }
2310 if (CI->getType()->isIntegerTy(32)) {
2311 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2312 return get(V->getContext(), Elts);
2313 }
2314 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2315 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2316 return get(V->getContext(), Elts);
2317 }
2318
2319 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2320 if (CFP->getType()->isFloatTy()) {
2321 SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2322 return get(V->getContext(), Elts);
2323 }
2324 if (CFP->getType()->isDoubleTy()) {
2325 SmallVector<double, 16> Elts(NumElts,
2326 CFP->getValueAPF().convertToDouble());
2327 return get(V->getContext(), Elts);
2328 }
2329 }
2330 return ConstantVector::getSplat(NumElts, V);
2331}
2332
2333
2334/// getElementAsInteger - If this is a sequential container of integers (of
2335/// any size), return the specified element in the low bits of a uint64_t.
2336uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2337 assert(isa<IntegerType>(getElementType()) &&
2338 "Accessor can only be used when element is an integer");
2339 const char *EltPtr = getElementPointer(Elt);
2340
2341 // The data is stored in host byte order, make sure to cast back to the right
2342 // type to load with the right endianness.
2343 switch (getElementType()->getIntegerBitWidth()) {
2344 default: llvm_unreachable("Invalid bitwidth for CDS");
2345 case 8:
2346 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2347 case 16:
2348 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2349 case 32:
2350 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2351 case 64:
2352 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2353 }
2354}
2355
2356/// getElementAsAPFloat - If this is a sequential container of floating point
2357/// type, return the specified element as an APFloat.
2358APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2359 const char *EltPtr = getElementPointer(Elt);
2360
2361 switch (getElementType()->getTypeID()) {
2362 default:
2363 llvm_unreachable("Accessor can only be used when element is float/double!");
2364 case Type::FloatTyID: {
2365 const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2366 return APFloat(*const_cast<float *>(FloatPrt));
2367 }
2368 case Type::DoubleTyID: {
2369 const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2370 return APFloat(*const_cast<double *>(DoublePtr));
2371 }
2372 }
2373}
2374
2375/// getElementAsFloat - If this is an sequential container of floats, return
2376/// the specified element as a float.
2377float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2378 assert(getElementType()->isFloatTy() &&
2379 "Accessor can only be used when element is a 'float'");
2380 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2381 return *const_cast<float *>(EltPtr);
2382}
2383
2384/// getElementAsDouble - If this is an sequential container of doubles, return
2385/// the specified element as a float.
2386double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2387 assert(getElementType()->isDoubleTy() &&
2388 "Accessor can only be used when element is a 'float'");
2389 const double *EltPtr =
2390 reinterpret_cast<const double *>(getElementPointer(Elt));
2391 return *const_cast<double *>(EltPtr);
2392}
2393
2394/// getElementAsConstant - Return a Constant for a specified index's element.
2395/// Note that this has to compute a new constant to return, so it isn't as
2396/// efficient as getElementAsInteger/Float/Double.
2397Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2398 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2399 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2400
2401 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2402}
2403
2404/// isString - This method returns true if this is an array of i8.
2405bool ConstantDataSequential::isString() const {
2406 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2407}
2408
2409/// isCString - This method returns true if the array "isString", ends with a
2410/// nul byte, and does not contains any other nul bytes.
2411bool ConstantDataSequential::isCString() const {
2412 if (!isString())
2413 return false;
2414
2415 StringRef Str = getAsString();
2416
2417 // The last value must be nul.
2418 if (Str.back() != 0) return false;
2419
2420 // Other elements must be non-nul.
2421 return Str.drop_back().find(0) == StringRef::npos;
2422}
2423
2424/// getSplatValue - If this is a splat constant, meaning that all of the
2425/// elements have the same value, return that value. Otherwise return NULL.
2426Constant *ConstantDataVector::getSplatValue() const {
2427 const char *Base = getRawDataValues().data();
2428
2429 // Compare elements 1+ to the 0'th element.
2430 unsigned EltSize = getElementByteSize();
2431 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2432 if (memcmp(Base, Base+i*EltSize, EltSize))
2433 return 0;
2434
2435 // If they're all the same, return the 0th one as a representative.
2436 return getElementAsConstant(0);
2437}
2438
2439//===----------------------------------------------------------------------===//
2440// replaceUsesOfWithOnConstant implementations
2441
2442/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2443/// 'From' to be uses of 'To'. This must update the uniquing data structures
2444/// etc.
2445///
2446/// Note that we intentionally replace all uses of From with To here. Consider
2447/// a large array that uses 'From' 1000 times. By handling this case all here,
2448/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2449/// single invocation handles all 1000 uses. Handling them one at a time would
2450/// work, but would be really slow because it would have to unique each updated
2451/// array instance.
2452///
2453void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2454 Use *U) {
2455 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2456 Constant *ToC = cast<Constant>(To);
2457
2458 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2459
2460 SmallVector<Constant*, 8> Values;
2461 LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2462 Lookup.first = cast<ArrayType>(getType());
2463 Values.reserve(getNumOperands()); // Build replacement array.
2464
2465 // Fill values with the modified operands of the constant array. Also,
2466 // compute whether this turns into an all-zeros array.
2467 unsigned NumUpdated = 0;
2468
2469 // Keep track of whether all the values in the array are "ToC".
2470 bool AllSame = true;
2471 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2472 Constant *Val = cast<Constant>(O->get());
2473 if (Val == From) {
2474 Val = ToC;
2475 ++NumUpdated;
2476 }
2477 Values.push_back(Val);
2478 AllSame &= Val == ToC;
2479 }
2480
2481 Constant *Replacement = 0;
2482 if (AllSame && ToC->isNullValue()) {
2483 Replacement = ConstantAggregateZero::get(getType());
2484 } else if (AllSame && isa<UndefValue>(ToC)) {
2485 Replacement = UndefValue::get(getType());
2486 } else {
2487 // Check to see if we have this array type already.
2488 Lookup.second = makeArrayRef(Values);
2489 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2490 pImpl->ArrayConstants.find(Lookup);
2491
2492 if (I != pImpl->ArrayConstants.map_end()) {
2493 Replacement = I->first;
2494 } else {
2495 // Okay, the new shape doesn't exist in the system yet. Instead of
2496 // creating a new constant array, inserting it, replaceallusesof'ing the
2497 // old with the new, then deleting the old... just update the current one
2498 // in place!
2499 pImpl->ArrayConstants.remove(this);
2500
2501 // Update to the new value. Optimize for the case when we have a single
2502 // operand that we're changing, but handle bulk updates efficiently.
2503 if (NumUpdated == 1) {
2504 unsigned OperandToUpdate = U - OperandList;
2505 assert(getOperand(OperandToUpdate) == From &&
2506 "ReplaceAllUsesWith broken!");
2507 setOperand(OperandToUpdate, ToC);
2508 } else {
2509 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2510 if (getOperand(i) == From)
2511 setOperand(i, ToC);
2512 }
2513 pImpl->ArrayConstants.insert(this);
2514 return;
2515 }
2516 }
2517
2518 // Otherwise, I do need to replace this with an existing value.
2519 assert(Replacement != this && "I didn't contain From!");
2520
2521 // Everyone using this now uses the replacement.
2522 replaceAllUsesWith(Replacement);
2523
2524 // Delete the old constant!
2525 destroyConstant();
2526}
2527
2528void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2529 Use *U) {
2530 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2531 Constant *ToC = cast<Constant>(To);
2532
2533 unsigned OperandToUpdate = U-OperandList;
2534 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2535
2536 SmallVector<Constant*, 8> Values;
2537 LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2538 Lookup.first = cast<StructType>(getType());
2539 Values.reserve(getNumOperands()); // Build replacement struct.
2540
2541 // Fill values with the modified operands of the constant struct. Also,
2542 // compute whether this turns into an all-zeros struct.
2543 bool isAllZeros = false;
2544 bool isAllUndef = false;
2545 if (ToC->isNullValue()) {
2546 isAllZeros = true;
2547 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2548 Constant *Val = cast<Constant>(O->get());
2549 Values.push_back(Val);
2550 if (isAllZeros) isAllZeros = Val->isNullValue();
2551 }
2552 } else if (isa<UndefValue>(ToC)) {
2553 isAllUndef = true;
2554 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2555 Constant *Val = cast<Constant>(O->get());
2556 Values.push_back(Val);
2557 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2558 }
2559 } else {
2560 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2561 Values.push_back(cast<Constant>(O->get()));
2562 }
2563 Values[OperandToUpdate] = ToC;
2564
2565 LLVMContextImpl *pImpl = getContext().pImpl;
2566
2567 Constant *Replacement = 0;
2568 if (isAllZeros) {
2569 Replacement = ConstantAggregateZero::get(getType());
2570 } else if (isAllUndef) {
2571 Replacement = UndefValue::get(getType());
2572 } else {
2573 // Check to see if we have this struct type already.
2574 Lookup.second = makeArrayRef(Values);
2575 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2576 pImpl->StructConstants.find(Lookup);
2577
2578 if (I != pImpl->StructConstants.map_end()) {
2579 Replacement = I->first;
2580 } else {
2581 // Okay, the new shape doesn't exist in the system yet. Instead of
2582 // creating a new constant struct, inserting it, replaceallusesof'ing the
2583 // old with the new, then deleting the old... just update the current one
2584 // in place!
2585 pImpl->StructConstants.remove(this);
2586
2587 // Update to the new value.
2588 setOperand(OperandToUpdate, ToC);
2589 pImpl->StructConstants.insert(this);
2590 return;
2591 }
2592 }
2593
2594 assert(Replacement != this && "I didn't contain From!");
2595
2596 // Everyone using this now uses the replacement.
2597 replaceAllUsesWith(Replacement);
2598
2599 // Delete the old constant!
2600 destroyConstant();
2601}
2602
2603void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2604 Use *U) {
2605 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2606
2607 SmallVector<Constant*, 8> Values;
2608 Values.reserve(getNumOperands()); // Build replacement array...
2609 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2610 Constant *Val = getOperand(i);
2611 if (Val == From) Val = cast<Constant>(To);
2612 Values.push_back(Val);
2613 }
2614
2615 Constant *Replacement = get(Values);
2616 assert(Replacement != this && "I didn't contain From!");
2617
2618 // Everyone using this now uses the replacement.
2619 replaceAllUsesWith(Replacement);
2620
2621 // Delete the old constant!
2622 destroyConstant();
2623}
2624
2625void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2626 Use *U) {
2627 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2628 Constant *To = cast<Constant>(ToV);
2629
2630 SmallVector<Constant*, 8> NewOps;
2631 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2632 Constant *Op = getOperand(i);
2633 NewOps.push_back(Op == From ? To : Op);
2634 }
2635
2636 Constant *Replacement = getWithOperands(NewOps);
2637 assert(Replacement != this && "I didn't contain From!");
2638
2639 // Everyone using this now uses the replacement.
2640 replaceAllUsesWith(Replacement);
2641
2642 // Delete the old constant!
2643 destroyConstant();
2644}