]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/VMCore/Instructions.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / lib / VMCore / Instructions.cpp
CommitLineData
223e47cc
LB
1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "LLVMContextImpl.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/CallSite.h"
24#include "llvm/Support/ConstantRange.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29// CallSite Class
30//===----------------------------------------------------------------------===//
31
32User::op_iterator CallSite::getCallee() const {
33 Instruction *II(getInstruction());
34 return isCall()
35 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
36 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
37}
38
39//===----------------------------------------------------------------------===//
40// TerminatorInst Class
41//===----------------------------------------------------------------------===//
42
43// Out of line virtual method, so the vtable, etc has a home.
44TerminatorInst::~TerminatorInst() {
45}
46
47//===----------------------------------------------------------------------===//
48// UnaryInstruction Class
49//===----------------------------------------------------------------------===//
50
51// Out of line virtual method, so the vtable, etc has a home.
52UnaryInstruction::~UnaryInstruction() {
53}
54
55//===----------------------------------------------------------------------===//
56// SelectInst Class
57//===----------------------------------------------------------------------===//
58
59/// areInvalidOperands - Return a string if the specified operands are invalid
60/// for a select operation, otherwise return null.
61const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
62 if (Op1->getType() != Op2->getType())
63 return "both values to select must have same type";
64
65 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
66 // Vector select.
67 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
68 return "vector select condition element type must be i1";
69 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
70 if (ET == 0)
71 return "selected values for vector select must be vectors";
72 if (ET->getNumElements() != VT->getNumElements())
73 return "vector select requires selected vectors to have "
74 "the same vector length as select condition";
75 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
76 return "select condition must be i1 or <n x i1>";
77 }
78 return 0;
79}
80
81
82//===----------------------------------------------------------------------===//
83// PHINode Class
84//===----------------------------------------------------------------------===//
85
86PHINode::PHINode(const PHINode &PN)
87 : Instruction(PN.getType(), Instruction::PHI,
88 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
89 ReservedSpace(PN.getNumOperands()) {
90 std::copy(PN.op_begin(), PN.op_end(), op_begin());
91 std::copy(PN.block_begin(), PN.block_end(), block_begin());
92 SubclassOptionalData = PN.SubclassOptionalData;
93}
94
95PHINode::~PHINode() {
96 dropHungoffUses();
97}
98
99Use *PHINode::allocHungoffUses(unsigned N) const {
100 // Allocate the array of Uses of the incoming values, followed by a pointer
101 // (with bottom bit set) to the User, followed by the array of pointers to
102 // the incoming basic blocks.
103 size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
104 + N * sizeof(BasicBlock*);
105 Use *Begin = static_cast<Use*>(::operator new(size));
106 Use *End = Begin + N;
107 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
108 return Use::initTags(Begin, End);
109}
110
111// removeIncomingValue - Remove an incoming value. This is useful if a
112// predecessor basic block is deleted.
113Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114 Value *Removed = getIncomingValue(Idx);
115
116 // Move everything after this operand down.
117 //
118 // FIXME: we could just swap with the end of the list, then erase. However,
119 // clients might not expect this to happen. The code as it is thrashes the
120 // use/def lists, which is kinda lame.
121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123
124 // Nuke the last value.
125 Op<-1>().set(0);
126 --NumOperands;
127
128 // If the PHI node is dead, because it has zero entries, nuke it now.
129 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130 // If anyone is using this PHI, make them use a dummy value instead...
131 replaceAllUsesWith(UndefValue::get(getType()));
132 eraseFromParent();
133 }
134 return Removed;
135}
136
137/// growOperands - grow operands - This grows the operand list in response
138/// to a push_back style of operation. This grows the number of ops by 1.5
139/// times.
140///
141void PHINode::growOperands() {
142 unsigned e = getNumOperands();
143 unsigned NumOps = e + e / 2;
144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
145
146 Use *OldOps = op_begin();
147 BasicBlock **OldBlocks = block_begin();
148
149 ReservedSpace = NumOps;
150 OperandList = allocHungoffUses(ReservedSpace);
151
152 std::copy(OldOps, OldOps + e, op_begin());
153 std::copy(OldBlocks, OldBlocks + e, block_begin());
154
155 Use::zap(OldOps, OldOps + e, true);
156}
157
158/// hasConstantValue - If the specified PHI node always merges together the same
159/// value, return the value, otherwise return null.
160Value *PHINode::hasConstantValue() const {
161 // Exploit the fact that phi nodes always have at least one entry.
162 Value *ConstantValue = getIncomingValue(0);
163 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
164 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
165 if (ConstantValue != this)
166 return 0; // Incoming values not all the same.
167 // The case where the first value is this PHI.
168 ConstantValue = getIncomingValue(i);
169 }
170 if (ConstantValue == this)
171 return UndefValue::get(getType());
172 return ConstantValue;
173}
174
175//===----------------------------------------------------------------------===//
176// LandingPadInst Implementation
177//===----------------------------------------------------------------------===//
178
179LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
180 unsigned NumReservedValues, const Twine &NameStr,
181 Instruction *InsertBefore)
182 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
183 init(PersonalityFn, 1 + NumReservedValues, NameStr);
184}
185
186LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
187 unsigned NumReservedValues, const Twine &NameStr,
188 BasicBlock *InsertAtEnd)
189 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
190 init(PersonalityFn, 1 + NumReservedValues, NameStr);
191}
192
193LandingPadInst::LandingPadInst(const LandingPadInst &LP)
194 : Instruction(LP.getType(), Instruction::LandingPad,
195 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
196 ReservedSpace(LP.getNumOperands()) {
197 Use *OL = OperandList, *InOL = LP.OperandList;
198 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
199 OL[I] = InOL[I];
200
201 setCleanup(LP.isCleanup());
202}
203
204LandingPadInst::~LandingPadInst() {
205 dropHungoffUses();
206}
207
208LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
209 unsigned NumReservedClauses,
210 const Twine &NameStr,
211 Instruction *InsertBefore) {
212 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
213 InsertBefore);
214}
215
216LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
217 unsigned NumReservedClauses,
218 const Twine &NameStr,
219 BasicBlock *InsertAtEnd) {
220 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
221 InsertAtEnd);
222}
223
224void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
225 const Twine &NameStr) {
226 ReservedSpace = NumReservedValues;
227 NumOperands = 1;
228 OperandList = allocHungoffUses(ReservedSpace);
229 OperandList[0] = PersFn;
230 setName(NameStr);
231 setCleanup(false);
232}
233
234/// growOperands - grow operands - This grows the operand list in response to a
235/// push_back style of operation. This grows the number of ops by 2 times.
236void LandingPadInst::growOperands(unsigned Size) {
237 unsigned e = getNumOperands();
238 if (ReservedSpace >= e + Size) return;
239 ReservedSpace = (e + Size / 2) * 2;
240
241 Use *NewOps = allocHungoffUses(ReservedSpace);
242 Use *OldOps = OperandList;
243 for (unsigned i = 0; i != e; ++i)
244 NewOps[i] = OldOps[i];
245
246 OperandList = NewOps;
247 Use::zap(OldOps, OldOps + e, true);
248}
249
250void LandingPadInst::addClause(Value *Val) {
251 unsigned OpNo = getNumOperands();
252 growOperands(1);
253 assert(OpNo < ReservedSpace && "Growing didn't work!");
254 ++NumOperands;
255 OperandList[OpNo] = Val;
256}
257
258//===----------------------------------------------------------------------===//
259// CallInst Implementation
260//===----------------------------------------------------------------------===//
261
262CallInst::~CallInst() {
263}
264
265void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
266 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
267 Op<-1>() = Func;
268
269#ifndef NDEBUG
270 FunctionType *FTy =
271 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
272
273 assert((Args.size() == FTy->getNumParams() ||
274 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
275 "Calling a function with bad signature!");
276
277 for (unsigned i = 0; i != Args.size(); ++i)
278 assert((i >= FTy->getNumParams() ||
279 FTy->getParamType(i) == Args[i]->getType()) &&
280 "Calling a function with a bad signature!");
281#endif
282
283 std::copy(Args.begin(), Args.end(), op_begin());
284 setName(NameStr);
285}
286
287void CallInst::init(Value *Func, const Twine &NameStr) {
288 assert(NumOperands == 1 && "NumOperands not set up?");
289 Op<-1>() = Func;
290
291#ifndef NDEBUG
292 FunctionType *FTy =
293 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
294
295 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
296#endif
297
298 setName(NameStr);
299}
300
301CallInst::CallInst(Value *Func, const Twine &Name,
302 Instruction *InsertBefore)
303 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
304 ->getElementType())->getReturnType(),
305 Instruction::Call,
306 OperandTraits<CallInst>::op_end(this) - 1,
307 1, InsertBefore) {
308 init(Func, Name);
309}
310
311CallInst::CallInst(Value *Func, const Twine &Name,
312 BasicBlock *InsertAtEnd)
313 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
314 ->getElementType())->getReturnType(),
315 Instruction::Call,
316 OperandTraits<CallInst>::op_end(this) - 1,
317 1, InsertAtEnd) {
318 init(Func, Name);
319}
320
321CallInst::CallInst(const CallInst &CI)
322 : Instruction(CI.getType(), Instruction::Call,
323 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
324 CI.getNumOperands()) {
325 setAttributes(CI.getAttributes());
326 setTailCall(CI.isTailCall());
327 setCallingConv(CI.getCallingConv());
328
329 std::copy(CI.op_begin(), CI.op_end(), op_begin());
330 SubclassOptionalData = CI.SubclassOptionalData;
331}
332
333void CallInst::addAttribute(unsigned i, Attributes attr) {
334 AttrListPtr PAL = getAttributes();
335 PAL = PAL.addAttr(i, attr);
336 setAttributes(PAL);
337}
338
339void CallInst::removeAttribute(unsigned i, Attributes attr) {
340 AttrListPtr PAL = getAttributes();
341 PAL = PAL.removeAttr(i, attr);
342 setAttributes(PAL);
343}
344
345bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
346 if (AttributeList.paramHasAttr(i, attr))
347 return true;
348 if (const Function *F = getCalledFunction())
349 return F->paramHasAttr(i, attr);
350 return false;
351}
352
353/// IsConstantOne - Return true only if val is constant int 1
354static bool IsConstantOne(Value *val) {
355 assert(val && "IsConstantOne does not work with NULL val");
356 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
357}
358
359static Instruction *createMalloc(Instruction *InsertBefore,
360 BasicBlock *InsertAtEnd, Type *IntPtrTy,
361 Type *AllocTy, Value *AllocSize,
362 Value *ArraySize, Function *MallocF,
363 const Twine &Name) {
364 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
365 "createMalloc needs either InsertBefore or InsertAtEnd");
366
367 // malloc(type) becomes:
368 // bitcast (i8* malloc(typeSize)) to type*
369 // malloc(type, arraySize) becomes:
370 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
371 if (!ArraySize)
372 ArraySize = ConstantInt::get(IntPtrTy, 1);
373 else if (ArraySize->getType() != IntPtrTy) {
374 if (InsertBefore)
375 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
376 "", InsertBefore);
377 else
378 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
379 "", InsertAtEnd);
380 }
381
382 if (!IsConstantOne(ArraySize)) {
383 if (IsConstantOne(AllocSize)) {
384 AllocSize = ArraySize; // Operand * 1 = Operand
385 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
386 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
387 false /*ZExt*/);
388 // Malloc arg is constant product of type size and array size
389 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
390 } else {
391 // Multiply type size by the array size...
392 if (InsertBefore)
393 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
394 "mallocsize", InsertBefore);
395 else
396 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
397 "mallocsize", InsertAtEnd);
398 }
399 }
400
401 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
402 // Create the call to Malloc.
403 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
404 Module* M = BB->getParent()->getParent();
405 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
406 Value *MallocFunc = MallocF;
407 if (!MallocFunc)
408 // prototype malloc as "void *malloc(size_t)"
409 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
410 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
411 CallInst *MCall = NULL;
412 Instruction *Result = NULL;
413 if (InsertBefore) {
414 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
415 Result = MCall;
416 if (Result->getType() != AllocPtrType)
417 // Create a cast instruction to convert to the right type...
418 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
419 } else {
420 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
421 Result = MCall;
422 if (Result->getType() != AllocPtrType) {
423 InsertAtEnd->getInstList().push_back(MCall);
424 // Create a cast instruction to convert to the right type...
425 Result = new BitCastInst(MCall, AllocPtrType, Name);
426 }
427 }
428 MCall->setTailCall();
429 if (Function *F = dyn_cast<Function>(MallocFunc)) {
430 MCall->setCallingConv(F->getCallingConv());
431 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
432 }
433 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
434
435 return Result;
436}
437
438/// CreateMalloc - Generate the IR for a call to malloc:
439/// 1. Compute the malloc call's argument as the specified type's size,
440/// possibly multiplied by the array size if the array size is not
441/// constant 1.
442/// 2. Call malloc with that argument.
443/// 3. Bitcast the result of the malloc call to the specified type.
444Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
445 Type *IntPtrTy, Type *AllocTy,
446 Value *AllocSize, Value *ArraySize,
447 Function * MallocF,
448 const Twine &Name) {
449 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
450 ArraySize, MallocF, Name);
451}
452
453/// CreateMalloc - Generate the IR for a call to malloc:
454/// 1. Compute the malloc call's argument as the specified type's size,
455/// possibly multiplied by the array size if the array size is not
456/// constant 1.
457/// 2. Call malloc with that argument.
458/// 3. Bitcast the result of the malloc call to the specified type.
459/// Note: This function does not add the bitcast to the basic block, that is the
460/// responsibility of the caller.
461Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
462 Type *IntPtrTy, Type *AllocTy,
463 Value *AllocSize, Value *ArraySize,
464 Function *MallocF, const Twine &Name) {
465 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
466 ArraySize, MallocF, Name);
467}
468
469static Instruction* createFree(Value* Source, Instruction *InsertBefore,
470 BasicBlock *InsertAtEnd) {
471 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
472 "createFree needs either InsertBefore or InsertAtEnd");
473 assert(Source->getType()->isPointerTy() &&
474 "Can not free something of nonpointer type!");
475
476 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
477 Module* M = BB->getParent()->getParent();
478
479 Type *VoidTy = Type::getVoidTy(M->getContext());
480 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
481 // prototype free as "void free(void*)"
482 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
483 CallInst* Result = NULL;
484 Value *PtrCast = Source;
485 if (InsertBefore) {
486 if (Source->getType() != IntPtrTy)
487 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
488 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
489 } else {
490 if (Source->getType() != IntPtrTy)
491 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
492 Result = CallInst::Create(FreeFunc, PtrCast, "");
493 }
494 Result->setTailCall();
495 if (Function *F = dyn_cast<Function>(FreeFunc))
496 Result->setCallingConv(F->getCallingConv());
497
498 return Result;
499}
500
501/// CreateFree - Generate the IR for a call to the builtin free function.
502Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
503 return createFree(Source, InsertBefore, NULL);
504}
505
506/// CreateFree - Generate the IR for a call to the builtin free function.
507/// Note: This function does not add the call to the basic block, that is the
508/// responsibility of the caller.
509Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
510 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
511 assert(FreeCall && "CreateFree did not create a CallInst");
512 return FreeCall;
513}
514
515//===----------------------------------------------------------------------===//
516// InvokeInst Implementation
517//===----------------------------------------------------------------------===//
518
519void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
520 ArrayRef<Value *> Args, const Twine &NameStr) {
521 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
522 Op<-3>() = Fn;
523 Op<-2>() = IfNormal;
524 Op<-1>() = IfException;
525
526#ifndef NDEBUG
527 FunctionType *FTy =
528 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
529
530 assert(((Args.size() == FTy->getNumParams()) ||
531 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
532 "Invoking a function with bad signature");
533
534 for (unsigned i = 0, e = Args.size(); i != e; i++)
535 assert((i >= FTy->getNumParams() ||
536 FTy->getParamType(i) == Args[i]->getType()) &&
537 "Invoking a function with a bad signature!");
538#endif
539
540 std::copy(Args.begin(), Args.end(), op_begin());
541 setName(NameStr);
542}
543
544InvokeInst::InvokeInst(const InvokeInst &II)
545 : TerminatorInst(II.getType(), Instruction::Invoke,
546 OperandTraits<InvokeInst>::op_end(this)
547 - II.getNumOperands(),
548 II.getNumOperands()) {
549 setAttributes(II.getAttributes());
550 setCallingConv(II.getCallingConv());
551 std::copy(II.op_begin(), II.op_end(), op_begin());
552 SubclassOptionalData = II.SubclassOptionalData;
553}
554
555BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
556 return getSuccessor(idx);
557}
558unsigned InvokeInst::getNumSuccessorsV() const {
559 return getNumSuccessors();
560}
561void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
562 return setSuccessor(idx, B);
563}
564
565bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
566 if (AttributeList.paramHasAttr(i, attr))
567 return true;
568 if (const Function *F = getCalledFunction())
569 return F->paramHasAttr(i, attr);
570 return false;
571}
572
573void InvokeInst::addAttribute(unsigned i, Attributes attr) {
574 AttrListPtr PAL = getAttributes();
575 PAL = PAL.addAttr(i, attr);
576 setAttributes(PAL);
577}
578
579void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
580 AttrListPtr PAL = getAttributes();
581 PAL = PAL.removeAttr(i, attr);
582 setAttributes(PAL);
583}
584
585LandingPadInst *InvokeInst::getLandingPadInst() const {
586 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
587}
588
589//===----------------------------------------------------------------------===//
590// ReturnInst Implementation
591//===----------------------------------------------------------------------===//
592
593ReturnInst::ReturnInst(const ReturnInst &RI)
594 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
595 OperandTraits<ReturnInst>::op_end(this) -
596 RI.getNumOperands(),
597 RI.getNumOperands()) {
598 if (RI.getNumOperands())
599 Op<0>() = RI.Op<0>();
600 SubclassOptionalData = RI.SubclassOptionalData;
601}
602
603ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
604 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
605 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
606 InsertBefore) {
607 if (retVal)
608 Op<0>() = retVal;
609}
610ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
611 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
612 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
613 InsertAtEnd) {
614 if (retVal)
615 Op<0>() = retVal;
616}
617ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
618 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
619 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
620}
621
622unsigned ReturnInst::getNumSuccessorsV() const {
623 return getNumSuccessors();
624}
625
626/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
627/// emit the vtable for the class in this translation unit.
628void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
629 llvm_unreachable("ReturnInst has no successors!");
630}
631
632BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
633 llvm_unreachable("ReturnInst has no successors!");
634}
635
636ReturnInst::~ReturnInst() {
637}
638
639//===----------------------------------------------------------------------===//
640// ResumeInst Implementation
641//===----------------------------------------------------------------------===//
642
643ResumeInst::ResumeInst(const ResumeInst &RI)
644 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
645 OperandTraits<ResumeInst>::op_begin(this), 1) {
646 Op<0>() = RI.Op<0>();
647}
648
649ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
650 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
651 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
652 Op<0>() = Exn;
653}
654
655ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
656 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
657 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
658 Op<0>() = Exn;
659}
660
661unsigned ResumeInst::getNumSuccessorsV() const {
662 return getNumSuccessors();
663}
664
665void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
666 llvm_unreachable("ResumeInst has no successors!");
667}
668
669BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
670 llvm_unreachable("ResumeInst has no successors!");
671}
672
673//===----------------------------------------------------------------------===//
674// UnreachableInst Implementation
675//===----------------------------------------------------------------------===//
676
677UnreachableInst::UnreachableInst(LLVMContext &Context,
678 Instruction *InsertBefore)
679 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
680 0, 0, InsertBefore) {
681}
682UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
683 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
684 0, 0, InsertAtEnd) {
685}
686
687unsigned UnreachableInst::getNumSuccessorsV() const {
688 return getNumSuccessors();
689}
690
691void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
692 llvm_unreachable("UnreachableInst has no successors!");
693}
694
695BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
696 llvm_unreachable("UnreachableInst has no successors!");
697}
698
699//===----------------------------------------------------------------------===//
700// BranchInst Implementation
701//===----------------------------------------------------------------------===//
702
703void BranchInst::AssertOK() {
704 if (isConditional())
705 assert(getCondition()->getType()->isIntegerTy(1) &&
706 "May only branch on boolean predicates!");
707}
708
709BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
710 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
711 OperandTraits<BranchInst>::op_end(this) - 1,
712 1, InsertBefore) {
713 assert(IfTrue != 0 && "Branch destination may not be null!");
714 Op<-1>() = IfTrue;
715}
716BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
717 Instruction *InsertBefore)
718 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
719 OperandTraits<BranchInst>::op_end(this) - 3,
720 3, InsertBefore) {
721 Op<-1>() = IfTrue;
722 Op<-2>() = IfFalse;
723 Op<-3>() = Cond;
724#ifndef NDEBUG
725 AssertOK();
726#endif
727}
728
729BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
730 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
731 OperandTraits<BranchInst>::op_end(this) - 1,
732 1, InsertAtEnd) {
733 assert(IfTrue != 0 && "Branch destination may not be null!");
734 Op<-1>() = IfTrue;
735}
736
737BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
738 BasicBlock *InsertAtEnd)
739 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
740 OperandTraits<BranchInst>::op_end(this) - 3,
741 3, InsertAtEnd) {
742 Op<-1>() = IfTrue;
743 Op<-2>() = IfFalse;
744 Op<-3>() = Cond;
745#ifndef NDEBUG
746 AssertOK();
747#endif
748}
749
750
751BranchInst::BranchInst(const BranchInst &BI) :
752 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
753 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
754 BI.getNumOperands()) {
755 Op<-1>() = BI.Op<-1>();
756 if (BI.getNumOperands() != 1) {
757 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
758 Op<-3>() = BI.Op<-3>();
759 Op<-2>() = BI.Op<-2>();
760 }
761 SubclassOptionalData = BI.SubclassOptionalData;
762}
763
764void BranchInst::swapSuccessors() {
765 assert(isConditional() &&
766 "Cannot swap successors of an unconditional branch");
767 Op<-1>().swap(Op<-2>());
768
769 // Update profile metadata if present and it matches our structural
770 // expectations.
771 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
772 if (!ProfileData || ProfileData->getNumOperands() != 3)
773 return;
774
775 // The first operand is the name. Fetch them backwards and build a new one.
776 Value *Ops[] = {
777 ProfileData->getOperand(0),
778 ProfileData->getOperand(2),
779 ProfileData->getOperand(1)
780 };
781 setMetadata(LLVMContext::MD_prof,
782 MDNode::get(ProfileData->getContext(), Ops));
783}
784
785BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
786 return getSuccessor(idx);
787}
788unsigned BranchInst::getNumSuccessorsV() const {
789 return getNumSuccessors();
790}
791void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
792 setSuccessor(idx, B);
793}
794
795
796//===----------------------------------------------------------------------===//
797// AllocaInst Implementation
798//===----------------------------------------------------------------------===//
799
800static Value *getAISize(LLVMContext &Context, Value *Amt) {
801 if (!Amt)
802 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
803 else {
804 assert(!isa<BasicBlock>(Amt) &&
805 "Passed basic block into allocation size parameter! Use other ctor");
806 assert(Amt->getType()->isIntegerTy() &&
807 "Allocation array size is not an integer!");
808 }
809 return Amt;
810}
811
812AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
813 const Twine &Name, Instruction *InsertBefore)
814 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
815 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
816 setAlignment(0);
817 assert(!Ty->isVoidTy() && "Cannot allocate void!");
818 setName(Name);
819}
820
821AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
822 const Twine &Name, BasicBlock *InsertAtEnd)
823 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
824 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
825 setAlignment(0);
826 assert(!Ty->isVoidTy() && "Cannot allocate void!");
827 setName(Name);
828}
829
830AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
831 Instruction *InsertBefore)
832 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
833 getAISize(Ty->getContext(), 0), InsertBefore) {
834 setAlignment(0);
835 assert(!Ty->isVoidTy() && "Cannot allocate void!");
836 setName(Name);
837}
838
839AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
840 BasicBlock *InsertAtEnd)
841 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
842 getAISize(Ty->getContext(), 0), InsertAtEnd) {
843 setAlignment(0);
844 assert(!Ty->isVoidTy() && "Cannot allocate void!");
845 setName(Name);
846}
847
848AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
849 const Twine &Name, Instruction *InsertBefore)
850 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
851 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
852 setAlignment(Align);
853 assert(!Ty->isVoidTy() && "Cannot allocate void!");
854 setName(Name);
855}
856
857AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
858 const Twine &Name, BasicBlock *InsertAtEnd)
859 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
860 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
861 setAlignment(Align);
862 assert(!Ty->isVoidTy() && "Cannot allocate void!");
863 setName(Name);
864}
865
866// Out of line virtual method, so the vtable, etc has a home.
867AllocaInst::~AllocaInst() {
868}
869
870void AllocaInst::setAlignment(unsigned Align) {
871 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
872 assert(Align <= MaximumAlignment &&
873 "Alignment is greater than MaximumAlignment!");
874 setInstructionSubclassData(Log2_32(Align) + 1);
875 assert(getAlignment() == Align && "Alignment representation error!");
876}
877
878bool AllocaInst::isArrayAllocation() const {
879 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
880 return !CI->isOne();
881 return true;
882}
883
884Type *AllocaInst::getAllocatedType() const {
885 return getType()->getElementType();
886}
887
888/// isStaticAlloca - Return true if this alloca is in the entry block of the
889/// function and is a constant size. If so, the code generator will fold it
890/// into the prolog/epilog code, so it is basically free.
891bool AllocaInst::isStaticAlloca() const {
892 // Must be constant size.
893 if (!isa<ConstantInt>(getArraySize())) return false;
894
895 // Must be in the entry block.
896 const BasicBlock *Parent = getParent();
897 return Parent == &Parent->getParent()->front();
898}
899
900//===----------------------------------------------------------------------===//
901// LoadInst Implementation
902//===----------------------------------------------------------------------===//
903
904void LoadInst::AssertOK() {
905 assert(getOperand(0)->getType()->isPointerTy() &&
906 "Ptr must have pointer type.");
907 assert(!(isAtomic() && getAlignment() == 0) &&
908 "Alignment required for atomic load");
909}
910
911LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
912 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
913 Load, Ptr, InsertBef) {
914 setVolatile(false);
915 setAlignment(0);
916 setAtomic(NotAtomic);
917 AssertOK();
918 setName(Name);
919}
920
921LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
922 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
923 Load, Ptr, InsertAE) {
924 setVolatile(false);
925 setAlignment(0);
926 setAtomic(NotAtomic);
927 AssertOK();
928 setName(Name);
929}
930
931LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
932 Instruction *InsertBef)
933 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
934 Load, Ptr, InsertBef) {
935 setVolatile(isVolatile);
936 setAlignment(0);
937 setAtomic(NotAtomic);
938 AssertOK();
939 setName(Name);
940}
941
942LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
943 BasicBlock *InsertAE)
944 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
945 Load, Ptr, InsertAE) {
946 setVolatile(isVolatile);
947 setAlignment(0);
948 setAtomic(NotAtomic);
949 AssertOK();
950 setName(Name);
951}
952
953LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
954 unsigned Align, Instruction *InsertBef)
955 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
956 Load, Ptr, InsertBef) {
957 setVolatile(isVolatile);
958 setAlignment(Align);
959 setAtomic(NotAtomic);
960 AssertOK();
961 setName(Name);
962}
963
964LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
965 unsigned Align, BasicBlock *InsertAE)
966 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
967 Load, Ptr, InsertAE) {
968 setVolatile(isVolatile);
969 setAlignment(Align);
970 setAtomic(NotAtomic);
971 AssertOK();
972 setName(Name);
973}
974
975LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
976 unsigned Align, AtomicOrdering Order,
977 SynchronizationScope SynchScope,
978 Instruction *InsertBef)
979 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
980 Load, Ptr, InsertBef) {
981 setVolatile(isVolatile);
982 setAlignment(Align);
983 setAtomic(Order, SynchScope);
984 AssertOK();
985 setName(Name);
986}
987
988LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
989 unsigned Align, AtomicOrdering Order,
990 SynchronizationScope SynchScope,
991 BasicBlock *InsertAE)
992 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
993 Load, Ptr, InsertAE) {
994 setVolatile(isVolatile);
995 setAlignment(Align);
996 setAtomic(Order, SynchScope);
997 AssertOK();
998 setName(Name);
999}
1000
1001LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1002 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1003 Load, Ptr, InsertBef) {
1004 setVolatile(false);
1005 setAlignment(0);
1006 setAtomic(NotAtomic);
1007 AssertOK();
1008 if (Name && Name[0]) setName(Name);
1009}
1010
1011LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1012 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1013 Load, Ptr, InsertAE) {
1014 setVolatile(false);
1015 setAlignment(0);
1016 setAtomic(NotAtomic);
1017 AssertOK();
1018 if (Name && Name[0]) setName(Name);
1019}
1020
1021LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1022 Instruction *InsertBef)
1023: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1024 Load, Ptr, InsertBef) {
1025 setVolatile(isVolatile);
1026 setAlignment(0);
1027 setAtomic(NotAtomic);
1028 AssertOK();
1029 if (Name && Name[0]) setName(Name);
1030}
1031
1032LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1033 BasicBlock *InsertAE)
1034 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1035 Load, Ptr, InsertAE) {
1036 setVolatile(isVolatile);
1037 setAlignment(0);
1038 setAtomic(NotAtomic);
1039 AssertOK();
1040 if (Name && Name[0]) setName(Name);
1041}
1042
1043void LoadInst::setAlignment(unsigned Align) {
1044 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1045 assert(Align <= MaximumAlignment &&
1046 "Alignment is greater than MaximumAlignment!");
1047 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1048 ((Log2_32(Align)+1)<<1));
1049 assert(getAlignment() == Align && "Alignment representation error!");
1050}
1051
1052//===----------------------------------------------------------------------===//
1053// StoreInst Implementation
1054//===----------------------------------------------------------------------===//
1055
1056void StoreInst::AssertOK() {
1057 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1058 assert(getOperand(1)->getType()->isPointerTy() &&
1059 "Ptr must have pointer type!");
1060 assert(getOperand(0)->getType() ==
1061 cast<PointerType>(getOperand(1)->getType())->getElementType()
1062 && "Ptr must be a pointer to Val type!");
1063 assert(!(isAtomic() && getAlignment() == 0) &&
1064 "Alignment required for atomic load");
1065}
1066
1067
1068StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1069 : Instruction(Type::getVoidTy(val->getContext()), Store,
1070 OperandTraits<StoreInst>::op_begin(this),
1071 OperandTraits<StoreInst>::operands(this),
1072 InsertBefore) {
1073 Op<0>() = val;
1074 Op<1>() = addr;
1075 setVolatile(false);
1076 setAlignment(0);
1077 setAtomic(NotAtomic);
1078 AssertOK();
1079}
1080
1081StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1082 : Instruction(Type::getVoidTy(val->getContext()), Store,
1083 OperandTraits<StoreInst>::op_begin(this),
1084 OperandTraits<StoreInst>::operands(this),
1085 InsertAtEnd) {
1086 Op<0>() = val;
1087 Op<1>() = addr;
1088 setVolatile(false);
1089 setAlignment(0);
1090 setAtomic(NotAtomic);
1091 AssertOK();
1092}
1093
1094StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1095 Instruction *InsertBefore)
1096 : Instruction(Type::getVoidTy(val->getContext()), Store,
1097 OperandTraits<StoreInst>::op_begin(this),
1098 OperandTraits<StoreInst>::operands(this),
1099 InsertBefore) {
1100 Op<0>() = val;
1101 Op<1>() = addr;
1102 setVolatile(isVolatile);
1103 setAlignment(0);
1104 setAtomic(NotAtomic);
1105 AssertOK();
1106}
1107
1108StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1109 unsigned Align, Instruction *InsertBefore)
1110 : Instruction(Type::getVoidTy(val->getContext()), Store,
1111 OperandTraits<StoreInst>::op_begin(this),
1112 OperandTraits<StoreInst>::operands(this),
1113 InsertBefore) {
1114 Op<0>() = val;
1115 Op<1>() = addr;
1116 setVolatile(isVolatile);
1117 setAlignment(Align);
1118 setAtomic(NotAtomic);
1119 AssertOK();
1120}
1121
1122StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1123 unsigned Align, AtomicOrdering Order,
1124 SynchronizationScope SynchScope,
1125 Instruction *InsertBefore)
1126 : Instruction(Type::getVoidTy(val->getContext()), Store,
1127 OperandTraits<StoreInst>::op_begin(this),
1128 OperandTraits<StoreInst>::operands(this),
1129 InsertBefore) {
1130 Op<0>() = val;
1131 Op<1>() = addr;
1132 setVolatile(isVolatile);
1133 setAlignment(Align);
1134 setAtomic(Order, SynchScope);
1135 AssertOK();
1136}
1137
1138StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1139 BasicBlock *InsertAtEnd)
1140 : Instruction(Type::getVoidTy(val->getContext()), Store,
1141 OperandTraits<StoreInst>::op_begin(this),
1142 OperandTraits<StoreInst>::operands(this),
1143 InsertAtEnd) {
1144 Op<0>() = val;
1145 Op<1>() = addr;
1146 setVolatile(isVolatile);
1147 setAlignment(0);
1148 setAtomic(NotAtomic);
1149 AssertOK();
1150}
1151
1152StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1153 unsigned Align, BasicBlock *InsertAtEnd)
1154 : Instruction(Type::getVoidTy(val->getContext()), Store,
1155 OperandTraits<StoreInst>::op_begin(this),
1156 OperandTraits<StoreInst>::operands(this),
1157 InsertAtEnd) {
1158 Op<0>() = val;
1159 Op<1>() = addr;
1160 setVolatile(isVolatile);
1161 setAlignment(Align);
1162 setAtomic(NotAtomic);
1163 AssertOK();
1164}
1165
1166StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1167 unsigned Align, AtomicOrdering Order,
1168 SynchronizationScope SynchScope,
1169 BasicBlock *InsertAtEnd)
1170 : Instruction(Type::getVoidTy(val->getContext()), Store,
1171 OperandTraits<StoreInst>::op_begin(this),
1172 OperandTraits<StoreInst>::operands(this),
1173 InsertAtEnd) {
1174 Op<0>() = val;
1175 Op<1>() = addr;
1176 setVolatile(isVolatile);
1177 setAlignment(Align);
1178 setAtomic(Order, SynchScope);
1179 AssertOK();
1180}
1181
1182void StoreInst::setAlignment(unsigned Align) {
1183 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1184 assert(Align <= MaximumAlignment &&
1185 "Alignment is greater than MaximumAlignment!");
1186 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1187 ((Log2_32(Align)+1) << 1));
1188 assert(getAlignment() == Align && "Alignment representation error!");
1189}
1190
1191//===----------------------------------------------------------------------===//
1192// AtomicCmpXchgInst Implementation
1193//===----------------------------------------------------------------------===//
1194
1195void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1196 AtomicOrdering Ordering,
1197 SynchronizationScope SynchScope) {
1198 Op<0>() = Ptr;
1199 Op<1>() = Cmp;
1200 Op<2>() = NewVal;
1201 setOrdering(Ordering);
1202 setSynchScope(SynchScope);
1203
1204 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1205 "All operands must be non-null!");
1206 assert(getOperand(0)->getType()->isPointerTy() &&
1207 "Ptr must have pointer type!");
1208 assert(getOperand(1)->getType() ==
1209 cast<PointerType>(getOperand(0)->getType())->getElementType()
1210 && "Ptr must be a pointer to Cmp type!");
1211 assert(getOperand(2)->getType() ==
1212 cast<PointerType>(getOperand(0)->getType())->getElementType()
1213 && "Ptr must be a pointer to NewVal type!");
1214 assert(Ordering != NotAtomic &&
1215 "AtomicCmpXchg instructions must be atomic!");
1216}
1217
1218AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1219 AtomicOrdering Ordering,
1220 SynchronizationScope SynchScope,
1221 Instruction *InsertBefore)
1222 : Instruction(Cmp->getType(), AtomicCmpXchg,
1223 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1224 OperandTraits<AtomicCmpXchgInst>::operands(this),
1225 InsertBefore) {
1226 Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1227}
1228
1229AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1230 AtomicOrdering Ordering,
1231 SynchronizationScope SynchScope,
1232 BasicBlock *InsertAtEnd)
1233 : Instruction(Cmp->getType(), AtomicCmpXchg,
1234 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1235 OperandTraits<AtomicCmpXchgInst>::operands(this),
1236 InsertAtEnd) {
1237 Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1238}
1239
1240//===----------------------------------------------------------------------===//
1241// AtomicRMWInst Implementation
1242//===----------------------------------------------------------------------===//
1243
1244void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1245 AtomicOrdering Ordering,
1246 SynchronizationScope SynchScope) {
1247 Op<0>() = Ptr;
1248 Op<1>() = Val;
1249 setOperation(Operation);
1250 setOrdering(Ordering);
1251 setSynchScope(SynchScope);
1252
1253 assert(getOperand(0) && getOperand(1) &&
1254 "All operands must be non-null!");
1255 assert(getOperand(0)->getType()->isPointerTy() &&
1256 "Ptr must have pointer type!");
1257 assert(getOperand(1)->getType() ==
1258 cast<PointerType>(getOperand(0)->getType())->getElementType()
1259 && "Ptr must be a pointer to Val type!");
1260 assert(Ordering != NotAtomic &&
1261 "AtomicRMW instructions must be atomic!");
1262}
1263
1264AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1265 AtomicOrdering Ordering,
1266 SynchronizationScope SynchScope,
1267 Instruction *InsertBefore)
1268 : Instruction(Val->getType(), AtomicRMW,
1269 OperandTraits<AtomicRMWInst>::op_begin(this),
1270 OperandTraits<AtomicRMWInst>::operands(this),
1271 InsertBefore) {
1272 Init(Operation, Ptr, Val, Ordering, SynchScope);
1273}
1274
1275AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1276 AtomicOrdering Ordering,
1277 SynchronizationScope SynchScope,
1278 BasicBlock *InsertAtEnd)
1279 : Instruction(Val->getType(), AtomicRMW,
1280 OperandTraits<AtomicRMWInst>::op_begin(this),
1281 OperandTraits<AtomicRMWInst>::operands(this),
1282 InsertAtEnd) {
1283 Init(Operation, Ptr, Val, Ordering, SynchScope);
1284}
1285
1286//===----------------------------------------------------------------------===//
1287// FenceInst Implementation
1288//===----------------------------------------------------------------------===//
1289
1290FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1291 SynchronizationScope SynchScope,
1292 Instruction *InsertBefore)
1293 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
1294 setOrdering(Ordering);
1295 setSynchScope(SynchScope);
1296}
1297
1298FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1299 SynchronizationScope SynchScope,
1300 BasicBlock *InsertAtEnd)
1301 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
1302 setOrdering(Ordering);
1303 setSynchScope(SynchScope);
1304}
1305
1306//===----------------------------------------------------------------------===//
1307// GetElementPtrInst Implementation
1308//===----------------------------------------------------------------------===//
1309
1310void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1311 const Twine &Name) {
1312 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1313 OperandList[0] = Ptr;
1314 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1315 setName(Name);
1316}
1317
1318GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1319 : Instruction(GEPI.getType(), GetElementPtr,
1320 OperandTraits<GetElementPtrInst>::op_end(this)
1321 - GEPI.getNumOperands(),
1322 GEPI.getNumOperands()) {
1323 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1324 SubclassOptionalData = GEPI.SubclassOptionalData;
1325}
1326
1327/// getIndexedType - Returns the type of the element that would be accessed with
1328/// a gep instruction with the specified parameters.
1329///
1330/// The Idxs pointer should point to a continuous piece of memory containing the
1331/// indices, either as Value* or uint64_t.
1332///
1333/// A null type is returned if the indices are invalid for the specified
1334/// pointer type.
1335///
1336template <typename IndexTy>
1337static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1338 if (Ptr->isVectorTy()) {
1339 assert(IdxList.size() == 1 &&
1340 "GEP with vector pointers must have a single index");
1341 PointerType *PTy = dyn_cast<PointerType>(
1342 cast<VectorType>(Ptr)->getElementType());
1343 assert(PTy && "Gep with invalid vector pointer found");
1344 return PTy->getElementType();
1345 }
1346
1347 PointerType *PTy = dyn_cast<PointerType>(Ptr);
1348 if (!PTy) return 0; // Type isn't a pointer type!
1349 Type *Agg = PTy->getElementType();
1350
1351 // Handle the special case of the empty set index set, which is always valid.
1352 if (IdxList.empty())
1353 return Agg;
1354
1355 // If there is at least one index, the top level type must be sized, otherwise
1356 // it cannot be 'stepped over'.
1357 if (!Agg->isSized())
1358 return 0;
1359
1360 unsigned CurIdx = 1;
1361 for (; CurIdx != IdxList.size(); ++CurIdx) {
1362 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1363 if (!CT || CT->isPointerTy()) return 0;
1364 IndexTy Index = IdxList[CurIdx];
1365 if (!CT->indexValid(Index)) return 0;
1366 Agg = CT->getTypeAtIndex(Index);
1367 }
1368 return CurIdx == IdxList.size() ? Agg : 0;
1369}
1370
1371Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1372 return getIndexedTypeInternal(Ptr, IdxList);
1373}
1374
1375Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1376 ArrayRef<Constant *> IdxList) {
1377 return getIndexedTypeInternal(Ptr, IdxList);
1378}
1379
1380Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1381 return getIndexedTypeInternal(Ptr, IdxList);
1382}
1383
1384unsigned GetElementPtrInst::getAddressSpace(Value *Ptr) {
1385 Type *Ty = Ptr->getType();
1386
1387 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1388 Ty = VTy->getElementType();
1389
1390 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1391 return PTy->getAddressSpace();
1392
1393 llvm_unreachable("Invalid GEP pointer type");
1394}
1395
1396/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1397/// zeros. If so, the result pointer and the first operand have the same
1398/// value, just potentially different types.
1399bool GetElementPtrInst::hasAllZeroIndices() const {
1400 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1401 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1402 if (!CI->isZero()) return false;
1403 } else {
1404 return false;
1405 }
1406 }
1407 return true;
1408}
1409
1410/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1411/// constant integers. If so, the result pointer and the first operand have
1412/// a constant offset between them.
1413bool GetElementPtrInst::hasAllConstantIndices() const {
1414 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1415 if (!isa<ConstantInt>(getOperand(i)))
1416 return false;
1417 }
1418 return true;
1419}
1420
1421void GetElementPtrInst::setIsInBounds(bool B) {
1422 cast<GEPOperator>(this)->setIsInBounds(B);
1423}
1424
1425bool GetElementPtrInst::isInBounds() const {
1426 return cast<GEPOperator>(this)->isInBounds();
1427}
1428
1429//===----------------------------------------------------------------------===//
1430// ExtractElementInst Implementation
1431//===----------------------------------------------------------------------===//
1432
1433ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1434 const Twine &Name,
1435 Instruction *InsertBef)
1436 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1437 ExtractElement,
1438 OperandTraits<ExtractElementInst>::op_begin(this),
1439 2, InsertBef) {
1440 assert(isValidOperands(Val, Index) &&
1441 "Invalid extractelement instruction operands!");
1442 Op<0>() = Val;
1443 Op<1>() = Index;
1444 setName(Name);
1445}
1446
1447ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1448 const Twine &Name,
1449 BasicBlock *InsertAE)
1450 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1451 ExtractElement,
1452 OperandTraits<ExtractElementInst>::op_begin(this),
1453 2, InsertAE) {
1454 assert(isValidOperands(Val, Index) &&
1455 "Invalid extractelement instruction operands!");
1456
1457 Op<0>() = Val;
1458 Op<1>() = Index;
1459 setName(Name);
1460}
1461
1462
1463bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1464 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1465 return false;
1466 return true;
1467}
1468
1469
1470//===----------------------------------------------------------------------===//
1471// InsertElementInst Implementation
1472//===----------------------------------------------------------------------===//
1473
1474InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1475 const Twine &Name,
1476 Instruction *InsertBef)
1477 : Instruction(Vec->getType(), InsertElement,
1478 OperandTraits<InsertElementInst>::op_begin(this),
1479 3, InsertBef) {
1480 assert(isValidOperands(Vec, Elt, Index) &&
1481 "Invalid insertelement instruction operands!");
1482 Op<0>() = Vec;
1483 Op<1>() = Elt;
1484 Op<2>() = Index;
1485 setName(Name);
1486}
1487
1488InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1489 const Twine &Name,
1490 BasicBlock *InsertAE)
1491 : Instruction(Vec->getType(), InsertElement,
1492 OperandTraits<InsertElementInst>::op_begin(this),
1493 3, InsertAE) {
1494 assert(isValidOperands(Vec, Elt, Index) &&
1495 "Invalid insertelement instruction operands!");
1496
1497 Op<0>() = Vec;
1498 Op<1>() = Elt;
1499 Op<2>() = Index;
1500 setName(Name);
1501}
1502
1503bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1504 const Value *Index) {
1505 if (!Vec->getType()->isVectorTy())
1506 return false; // First operand of insertelement must be vector type.
1507
1508 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1509 return false;// Second operand of insertelement must be vector element type.
1510
1511 if (!Index->getType()->isIntegerTy(32))
1512 return false; // Third operand of insertelement must be i32.
1513 return true;
1514}
1515
1516
1517//===----------------------------------------------------------------------===//
1518// ShuffleVectorInst Implementation
1519//===----------------------------------------------------------------------===//
1520
1521ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1522 const Twine &Name,
1523 Instruction *InsertBefore)
1524: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1525 cast<VectorType>(Mask->getType())->getNumElements()),
1526 ShuffleVector,
1527 OperandTraits<ShuffleVectorInst>::op_begin(this),
1528 OperandTraits<ShuffleVectorInst>::operands(this),
1529 InsertBefore) {
1530 assert(isValidOperands(V1, V2, Mask) &&
1531 "Invalid shuffle vector instruction operands!");
1532 Op<0>() = V1;
1533 Op<1>() = V2;
1534 Op<2>() = Mask;
1535 setName(Name);
1536}
1537
1538ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1539 const Twine &Name,
1540 BasicBlock *InsertAtEnd)
1541: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1542 cast<VectorType>(Mask->getType())->getNumElements()),
1543 ShuffleVector,
1544 OperandTraits<ShuffleVectorInst>::op_begin(this),
1545 OperandTraits<ShuffleVectorInst>::operands(this),
1546 InsertAtEnd) {
1547 assert(isValidOperands(V1, V2, Mask) &&
1548 "Invalid shuffle vector instruction operands!");
1549
1550 Op<0>() = V1;
1551 Op<1>() = V2;
1552 Op<2>() = Mask;
1553 setName(Name);
1554}
1555
1556bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1557 const Value *Mask) {
1558 // V1 and V2 must be vectors of the same type.
1559 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1560 return false;
1561
1562 // Mask must be vector of i32.
1563 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1564 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1565 return false;
1566
1567 // Check to see if Mask is valid.
1568 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1569 return true;
1570
1571 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1572 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1573 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1574 if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1575 if (CI->uge(V1Size*2))
1576 return false;
1577 } else if (!isa<UndefValue>(MV->getOperand(i))) {
1578 return false;
1579 }
1580 }
1581 return true;
1582 }
1583
1584 if (const ConstantDataSequential *CDS =
1585 dyn_cast<ConstantDataSequential>(Mask)) {
1586 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1587 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1588 if (CDS->getElementAsInteger(i) >= V1Size*2)
1589 return false;
1590 return true;
1591 }
1592
1593 // The bitcode reader can create a place holder for a forward reference
1594 // used as the shuffle mask. When this occurs, the shuffle mask will
1595 // fall into this case and fail. To avoid this error, do this bit of
1596 // ugliness to allow such a mask pass.
1597 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1598 if (CE->getOpcode() == Instruction::UserOp1)
1599 return true;
1600
1601 return false;
1602}
1603
1604/// getMaskValue - Return the index from the shuffle mask for the specified
1605/// output result. This is either -1 if the element is undef or a number less
1606/// than 2*numelements.
1607int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1608 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1609 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1610 return CDS->getElementAsInteger(i);
1611 Constant *C = Mask->getAggregateElement(i);
1612 if (isa<UndefValue>(C))
1613 return -1;
1614 return cast<ConstantInt>(C)->getZExtValue();
1615}
1616
1617/// getShuffleMask - Return the full mask for this instruction, where each
1618/// element is the element number and undef's are returned as -1.
1619void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1620 SmallVectorImpl<int> &Result) {
1621 unsigned NumElts = Mask->getType()->getVectorNumElements();
1622
1623 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1624 for (unsigned i = 0; i != NumElts; ++i)
1625 Result.push_back(CDS->getElementAsInteger(i));
1626 return;
1627 }
1628 for (unsigned i = 0; i != NumElts; ++i) {
1629 Constant *C = Mask->getAggregateElement(i);
1630 Result.push_back(isa<UndefValue>(C) ? -1 :
1631 cast<ConstantInt>(C)->getZExtValue());
1632 }
1633}
1634
1635
1636//===----------------------------------------------------------------------===//
1637// InsertValueInst Class
1638//===----------------------------------------------------------------------===//
1639
1640void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1641 const Twine &Name) {
1642 assert(NumOperands == 2 && "NumOperands not initialized?");
1643
1644 // There's no fundamental reason why we require at least one index
1645 // (other than weirdness with &*IdxBegin being invalid; see
1646 // getelementptr's init routine for example). But there's no
1647 // present need to support it.
1648 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1649
1650 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1651 Val->getType() && "Inserted value must match indexed type!");
1652 Op<0>() = Agg;
1653 Op<1>() = Val;
1654
1655 Indices.append(Idxs.begin(), Idxs.end());
1656 setName(Name);
1657}
1658
1659InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1660 : Instruction(IVI.getType(), InsertValue,
1661 OperandTraits<InsertValueInst>::op_begin(this), 2),
1662 Indices(IVI.Indices) {
1663 Op<0>() = IVI.getOperand(0);
1664 Op<1>() = IVI.getOperand(1);
1665 SubclassOptionalData = IVI.SubclassOptionalData;
1666}
1667
1668//===----------------------------------------------------------------------===//
1669// ExtractValueInst Class
1670//===----------------------------------------------------------------------===//
1671
1672void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1673 assert(NumOperands == 1 && "NumOperands not initialized?");
1674
1675 // There's no fundamental reason why we require at least one index.
1676 // But there's no present need to support it.
1677 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1678
1679 Indices.append(Idxs.begin(), Idxs.end());
1680 setName(Name);
1681}
1682
1683ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1684 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1685 Indices(EVI.Indices) {
1686 SubclassOptionalData = EVI.SubclassOptionalData;
1687}
1688
1689// getIndexedType - Returns the type of the element that would be extracted
1690// with an extractvalue instruction with the specified parameters.
1691//
1692// A null type is returned if the indices are invalid for the specified
1693// pointer type.
1694//
1695Type *ExtractValueInst::getIndexedType(Type *Agg,
1696 ArrayRef<unsigned> Idxs) {
1697 for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1698 unsigned Index = Idxs[CurIdx];
1699 // We can't use CompositeType::indexValid(Index) here.
1700 // indexValid() always returns true for arrays because getelementptr allows
1701 // out-of-bounds indices. Since we don't allow those for extractvalue and
1702 // insertvalue we need to check array indexing manually.
1703 // Since the only other types we can index into are struct types it's just
1704 // as easy to check those manually as well.
1705 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1706 if (Index >= AT->getNumElements())
1707 return 0;
1708 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1709 if (Index >= ST->getNumElements())
1710 return 0;
1711 } else {
1712 // Not a valid type to index into.
1713 return 0;
1714 }
1715
1716 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1717 }
1718 return const_cast<Type*>(Agg);
1719}
1720
1721//===----------------------------------------------------------------------===//
1722// BinaryOperator Class
1723//===----------------------------------------------------------------------===//
1724
1725BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1726 Type *Ty, const Twine &Name,
1727 Instruction *InsertBefore)
1728 : Instruction(Ty, iType,
1729 OperandTraits<BinaryOperator>::op_begin(this),
1730 OperandTraits<BinaryOperator>::operands(this),
1731 InsertBefore) {
1732 Op<0>() = S1;
1733 Op<1>() = S2;
1734 init(iType);
1735 setName(Name);
1736}
1737
1738BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1739 Type *Ty, const Twine &Name,
1740 BasicBlock *InsertAtEnd)
1741 : Instruction(Ty, iType,
1742 OperandTraits<BinaryOperator>::op_begin(this),
1743 OperandTraits<BinaryOperator>::operands(this),
1744 InsertAtEnd) {
1745 Op<0>() = S1;
1746 Op<1>() = S2;
1747 init(iType);
1748 setName(Name);
1749}
1750
1751
1752void BinaryOperator::init(BinaryOps iType) {
1753 Value *LHS = getOperand(0), *RHS = getOperand(1);
1754 (void)LHS; (void)RHS; // Silence warnings.
1755 assert(LHS->getType() == RHS->getType() &&
1756 "Binary operator operand types must match!");
1757#ifndef NDEBUG
1758 switch (iType) {
1759 case Add: case Sub:
1760 case Mul:
1761 assert(getType() == LHS->getType() &&
1762 "Arithmetic operation should return same type as operands!");
1763 assert(getType()->isIntOrIntVectorTy() &&
1764 "Tried to create an integer operation on a non-integer type!");
1765 break;
1766 case FAdd: case FSub:
1767 case FMul:
1768 assert(getType() == LHS->getType() &&
1769 "Arithmetic operation should return same type as operands!");
1770 assert(getType()->isFPOrFPVectorTy() &&
1771 "Tried to create a floating-point operation on a "
1772 "non-floating-point type!");
1773 break;
1774 case UDiv:
1775 case SDiv:
1776 assert(getType() == LHS->getType() &&
1777 "Arithmetic operation should return same type as operands!");
1778 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1779 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1780 "Incorrect operand type (not integer) for S/UDIV");
1781 break;
1782 case FDiv:
1783 assert(getType() == LHS->getType() &&
1784 "Arithmetic operation should return same type as operands!");
1785 assert(getType()->isFPOrFPVectorTy() &&
1786 "Incorrect operand type (not floating point) for FDIV");
1787 break;
1788 case URem:
1789 case SRem:
1790 assert(getType() == LHS->getType() &&
1791 "Arithmetic operation should return same type as operands!");
1792 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1793 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1794 "Incorrect operand type (not integer) for S/UREM");
1795 break;
1796 case FRem:
1797 assert(getType() == LHS->getType() &&
1798 "Arithmetic operation should return same type as operands!");
1799 assert(getType()->isFPOrFPVectorTy() &&
1800 "Incorrect operand type (not floating point) for FREM");
1801 break;
1802 case Shl:
1803 case LShr:
1804 case AShr:
1805 assert(getType() == LHS->getType() &&
1806 "Shift operation should return same type as operands!");
1807 assert((getType()->isIntegerTy() ||
1808 (getType()->isVectorTy() &&
1809 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1810 "Tried to create a shift operation on a non-integral type!");
1811 break;
1812 case And: case Or:
1813 case Xor:
1814 assert(getType() == LHS->getType() &&
1815 "Logical operation should return same type as operands!");
1816 assert((getType()->isIntegerTy() ||
1817 (getType()->isVectorTy() &&
1818 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1819 "Tried to create a logical operation on a non-integral type!");
1820 break;
1821 default:
1822 break;
1823 }
1824#endif
1825}
1826
1827BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1828 const Twine &Name,
1829 Instruction *InsertBefore) {
1830 assert(S1->getType() == S2->getType() &&
1831 "Cannot create binary operator with two operands of differing type!");
1832 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1833}
1834
1835BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1836 const Twine &Name,
1837 BasicBlock *InsertAtEnd) {
1838 BinaryOperator *Res = Create(Op, S1, S2, Name);
1839 InsertAtEnd->getInstList().push_back(Res);
1840 return Res;
1841}
1842
1843BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1844 Instruction *InsertBefore) {
1845 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1846 return new BinaryOperator(Instruction::Sub,
1847 zero, Op,
1848 Op->getType(), Name, InsertBefore);
1849}
1850
1851BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1852 BasicBlock *InsertAtEnd) {
1853 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1854 return new BinaryOperator(Instruction::Sub,
1855 zero, Op,
1856 Op->getType(), Name, InsertAtEnd);
1857}
1858
1859BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1860 Instruction *InsertBefore) {
1861 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1862 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1863}
1864
1865BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1866 BasicBlock *InsertAtEnd) {
1867 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1868 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1869}
1870
1871BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1872 Instruction *InsertBefore) {
1873 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1874 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1875}
1876
1877BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1878 BasicBlock *InsertAtEnd) {
1879 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1880 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1881}
1882
1883BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1884 Instruction *InsertBefore) {
1885 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1886 return new BinaryOperator(Instruction::FSub, zero, Op,
1887 Op->getType(), Name, InsertBefore);
1888}
1889
1890BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1891 BasicBlock *InsertAtEnd) {
1892 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1893 return new BinaryOperator(Instruction::FSub, zero, Op,
1894 Op->getType(), Name, InsertAtEnd);
1895}
1896
1897BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1898 Instruction *InsertBefore) {
1899 Constant *C = Constant::getAllOnesValue(Op->getType());
1900 return new BinaryOperator(Instruction::Xor, Op, C,
1901 Op->getType(), Name, InsertBefore);
1902}
1903
1904BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1905 BasicBlock *InsertAtEnd) {
1906 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1907 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1908 Op->getType(), Name, InsertAtEnd);
1909}
1910
1911
1912// isConstantAllOnes - Helper function for several functions below
1913static inline bool isConstantAllOnes(const Value *V) {
1914 if (const Constant *C = dyn_cast<Constant>(V))
1915 return C->isAllOnesValue();
1916 return false;
1917}
1918
1919bool BinaryOperator::isNeg(const Value *V) {
1920 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1921 if (Bop->getOpcode() == Instruction::Sub)
1922 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1923 return C->isNegativeZeroValue();
1924 return false;
1925}
1926
1927bool BinaryOperator::isFNeg(const Value *V) {
1928 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1929 if (Bop->getOpcode() == Instruction::FSub)
1930 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1931 return C->isNegativeZeroValue();
1932 return false;
1933}
1934
1935bool BinaryOperator::isNot(const Value *V) {
1936 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1937 return (Bop->getOpcode() == Instruction::Xor &&
1938 (isConstantAllOnes(Bop->getOperand(1)) ||
1939 isConstantAllOnes(Bop->getOperand(0))));
1940 return false;
1941}
1942
1943Value *BinaryOperator::getNegArgument(Value *BinOp) {
1944 return cast<BinaryOperator>(BinOp)->getOperand(1);
1945}
1946
1947const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1948 return getNegArgument(const_cast<Value*>(BinOp));
1949}
1950
1951Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1952 return cast<BinaryOperator>(BinOp)->getOperand(1);
1953}
1954
1955const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1956 return getFNegArgument(const_cast<Value*>(BinOp));
1957}
1958
1959Value *BinaryOperator::getNotArgument(Value *BinOp) {
1960 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1961 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1962 Value *Op0 = BO->getOperand(0);
1963 Value *Op1 = BO->getOperand(1);
1964 if (isConstantAllOnes(Op0)) return Op1;
1965
1966 assert(isConstantAllOnes(Op1));
1967 return Op0;
1968}
1969
1970const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1971 return getNotArgument(const_cast<Value*>(BinOp));
1972}
1973
1974
1975// swapOperands - Exchange the two operands to this instruction. This
1976// instruction is safe to use on any binary instruction and does not
1977// modify the semantics of the instruction. If the instruction is
1978// order dependent (SetLT f.e.) the opcode is changed.
1979//
1980bool BinaryOperator::swapOperands() {
1981 if (!isCommutative())
1982 return true; // Can't commute operands
1983 Op<0>().swap(Op<1>());
1984 return false;
1985}
1986
1987void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1988 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1989}
1990
1991void BinaryOperator::setHasNoSignedWrap(bool b) {
1992 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1993}
1994
1995void BinaryOperator::setIsExact(bool b) {
1996 cast<PossiblyExactOperator>(this)->setIsExact(b);
1997}
1998
1999bool BinaryOperator::hasNoUnsignedWrap() const {
2000 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2001}
2002
2003bool BinaryOperator::hasNoSignedWrap() const {
2004 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2005}
2006
2007bool BinaryOperator::isExact() const {
2008 return cast<PossiblyExactOperator>(this)->isExact();
2009}
2010
2011//===----------------------------------------------------------------------===//
2012// FPMathOperator Class
2013//===----------------------------------------------------------------------===//
2014
2015/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2016/// An accuracy of 0.0 means that the operation should be performed with the
2017/// default precision.
2018float FPMathOperator::getFPAccuracy() const {
2019 const MDNode *MD =
2020 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2021 if (!MD)
2022 return 0.0;
2023 ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2024 return Accuracy->getValueAPF().convertToFloat();
2025}
2026
2027
2028//===----------------------------------------------------------------------===//
2029// CastInst Class
2030//===----------------------------------------------------------------------===//
2031
2032void CastInst::anchor() {}
2033
2034// Just determine if this cast only deals with integral->integral conversion.
2035bool CastInst::isIntegerCast() const {
2036 switch (getOpcode()) {
2037 default: return false;
2038 case Instruction::ZExt:
2039 case Instruction::SExt:
2040 case Instruction::Trunc:
2041 return true;
2042 case Instruction::BitCast:
2043 return getOperand(0)->getType()->isIntegerTy() &&
2044 getType()->isIntegerTy();
2045 }
2046}
2047
2048bool CastInst::isLosslessCast() const {
2049 // Only BitCast can be lossless, exit fast if we're not BitCast
2050 if (getOpcode() != Instruction::BitCast)
2051 return false;
2052
2053 // Identity cast is always lossless
2054 Type* SrcTy = getOperand(0)->getType();
2055 Type* DstTy = getType();
2056 if (SrcTy == DstTy)
2057 return true;
2058
2059 // Pointer to pointer is always lossless.
2060 if (SrcTy->isPointerTy())
2061 return DstTy->isPointerTy();
2062 return false; // Other types have no identity values
2063}
2064
2065/// This function determines if the CastInst does not require any bits to be
2066/// changed in order to effect the cast. Essentially, it identifies cases where
2067/// no code gen is necessary for the cast, hence the name no-op cast. For
2068/// example, the following are all no-op casts:
2069/// # bitcast i32* %x to i8*
2070/// # bitcast <2 x i32> %x to <4 x i16>
2071/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2072/// @brief Determine if the described cast is a no-op.
2073bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2074 Type *SrcTy,
2075 Type *DestTy,
2076 Type *IntPtrTy) {
2077 switch (Opcode) {
2078 default: llvm_unreachable("Invalid CastOp");
2079 case Instruction::Trunc:
2080 case Instruction::ZExt:
2081 case Instruction::SExt:
2082 case Instruction::FPTrunc:
2083 case Instruction::FPExt:
2084 case Instruction::UIToFP:
2085 case Instruction::SIToFP:
2086 case Instruction::FPToUI:
2087 case Instruction::FPToSI:
2088 return false; // These always modify bits
2089 case Instruction::BitCast:
2090 return true; // BitCast never modifies bits.
2091 case Instruction::PtrToInt:
2092 return IntPtrTy->getScalarSizeInBits() ==
2093 DestTy->getScalarSizeInBits();
2094 case Instruction::IntToPtr:
2095 return IntPtrTy->getScalarSizeInBits() ==
2096 SrcTy->getScalarSizeInBits();
2097 }
2098}
2099
2100/// @brief Determine if a cast is a no-op.
2101bool CastInst::isNoopCast(Type *IntPtrTy) const {
2102 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2103}
2104
2105/// This function determines if a pair of casts can be eliminated and what
2106/// opcode should be used in the elimination. This assumes that there are two
2107/// instructions like this:
2108/// * %F = firstOpcode SrcTy %x to MidTy
2109/// * %S = secondOpcode MidTy %F to DstTy
2110/// The function returns a resultOpcode so these two casts can be replaced with:
2111/// * %Replacement = resultOpcode %SrcTy %x to DstTy
2112/// If no such cast is permited, the function returns 0.
2113unsigned CastInst::isEliminableCastPair(
2114 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2115 Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) {
2116 // Define the 144 possibilities for these two cast instructions. The values
2117 // in this matrix determine what to do in a given situation and select the
2118 // case in the switch below. The rows correspond to firstOp, the columns
2119 // correspond to secondOp. In looking at the table below, keep in mind
2120 // the following cast properties:
2121 //
2122 // Size Compare Source Destination
2123 // Operator Src ? Size Type Sign Type Sign
2124 // -------- ------------ ------------------- ---------------------
2125 // TRUNC > Integer Any Integral Any
2126 // ZEXT < Integral Unsigned Integer Any
2127 // SEXT < Integral Signed Integer Any
2128 // FPTOUI n/a FloatPt n/a Integral Unsigned
2129 // FPTOSI n/a FloatPt n/a Integral Signed
2130 // UITOFP n/a Integral Unsigned FloatPt n/a
2131 // SITOFP n/a Integral Signed FloatPt n/a
2132 // FPTRUNC > FloatPt n/a FloatPt n/a
2133 // FPEXT < FloatPt n/a FloatPt n/a
2134 // PTRTOINT n/a Pointer n/a Integral Unsigned
2135 // INTTOPTR n/a Integral Unsigned Pointer n/a
2136 // BITCAST = FirstClass n/a FirstClass n/a
2137 //
2138 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2139 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2140 // into "fptoui double to i64", but this loses information about the range
2141 // of the produced value (we no longer know the top-part is all zeros).
2142 // Further this conversion is often much more expensive for typical hardware,
2143 // and causes issues when building libgcc. We disallow fptosi+sext for the
2144 // same reason.
2145 const unsigned numCastOps =
2146 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2147 static const uint8_t CastResults[numCastOps][numCastOps] = {
2148 // T F F U S F F P I B -+
2149 // R Z S P P I I T P 2 N T |
2150 // U E E 2 2 2 2 R E I T C +- secondOp
2151 // N X X U S F F N X N 2 V |
2152 // C T T I I P P C T T P T -+
2153 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
2154 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
2155 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
2156 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
2157 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
2158 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
2159 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
2160 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
2161 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
2162 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
2163 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
2164 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
2165 };
2166
2167 // If either of the casts are a bitcast from scalar to vector, disallow the
2168 // merging. However, bitcast of A->B->A are allowed.
2169 bool isFirstBitcast = (firstOp == Instruction::BitCast);
2170 bool isSecondBitcast = (secondOp == Instruction::BitCast);
2171 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2172
2173 // Check if any of the bitcasts convert scalars<->vectors.
2174 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2175 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2176 // Unless we are bitcasing to the original type, disallow optimizations.
2177 if (!chainedBitcast) return 0;
2178
2179 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2180 [secondOp-Instruction::CastOpsBegin];
2181 switch (ElimCase) {
2182 case 0:
2183 // categorically disallowed
2184 return 0;
2185 case 1:
2186 // allowed, use first cast's opcode
2187 return firstOp;
2188 case 2:
2189 // allowed, use second cast's opcode
2190 return secondOp;
2191 case 3:
2192 // no-op cast in second op implies firstOp as long as the DestTy
2193 // is integer and we are not converting between a vector and a
2194 // non vector type.
2195 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2196 return firstOp;
2197 return 0;
2198 case 4:
2199 // no-op cast in second op implies firstOp as long as the DestTy
2200 // is floating point.
2201 if (DstTy->isFloatingPointTy())
2202 return firstOp;
2203 return 0;
2204 case 5:
2205 // no-op cast in first op implies secondOp as long as the SrcTy
2206 // is an integer.
2207 if (SrcTy->isIntegerTy())
2208 return secondOp;
2209 return 0;
2210 case 6:
2211 // no-op cast in first op implies secondOp as long as the SrcTy
2212 // is a floating point.
2213 if (SrcTy->isFloatingPointTy())
2214 return secondOp;
2215 return 0;
2216 case 7: {
2217 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2218 if (!IntPtrTy)
2219 return 0;
2220 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2221 unsigned MidSize = MidTy->getScalarSizeInBits();
2222 if (MidSize >= PtrSize)
2223 return Instruction::BitCast;
2224 return 0;
2225 }
2226 case 8: {
2227 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2228 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2229 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2230 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2231 unsigned DstSize = DstTy->getScalarSizeInBits();
2232 if (SrcSize == DstSize)
2233 return Instruction::BitCast;
2234 else if (SrcSize < DstSize)
2235 return firstOp;
2236 return secondOp;
2237 }
2238 case 9: // zext, sext -> zext, because sext can't sign extend after zext
2239 return Instruction::ZExt;
2240 case 10:
2241 // fpext followed by ftrunc is allowed if the bit size returned to is
2242 // the same as the original, in which case its just a bitcast
2243 if (SrcTy == DstTy)
2244 return Instruction::BitCast;
2245 return 0; // If the types are not the same we can't eliminate it.
2246 case 11:
2247 // bitcast followed by ptrtoint is allowed as long as the bitcast
2248 // is a pointer to pointer cast.
2249 if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2250 return secondOp;
2251 return 0;
2252 case 12:
2253 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
2254 if (MidTy->isPointerTy() && DstTy->isPointerTy())
2255 return firstOp;
2256 return 0;
2257 case 13: {
2258 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2259 if (!IntPtrTy)
2260 return 0;
2261 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2262 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2263 unsigned DstSize = DstTy->getScalarSizeInBits();
2264 if (SrcSize <= PtrSize && SrcSize == DstSize)
2265 return Instruction::BitCast;
2266 return 0;
2267 }
2268 case 99:
2269 // cast combination can't happen (error in input). This is for all cases
2270 // where the MidTy is not the same for the two cast instructions.
2271 llvm_unreachable("Invalid Cast Combination");
2272 default:
2273 llvm_unreachable("Error in CastResults table!!!");
2274 }
2275}
2276
2277CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2278 const Twine &Name, Instruction *InsertBefore) {
2279 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2280 // Construct and return the appropriate CastInst subclass
2281 switch (op) {
2282 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2283 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2284 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2285 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2286 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2287 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2288 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2289 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2290 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2291 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2292 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2293 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2294 default: llvm_unreachable("Invalid opcode provided");
2295 }
2296}
2297
2298CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2299 const Twine &Name, BasicBlock *InsertAtEnd) {
2300 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2301 // Construct and return the appropriate CastInst subclass
2302 switch (op) {
2303 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2304 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2305 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2306 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2307 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2308 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2309 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2310 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2311 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2312 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2313 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2314 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2315 default: llvm_unreachable("Invalid opcode provided");
2316 }
2317}
2318
2319CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2320 const Twine &Name,
2321 Instruction *InsertBefore) {
2322 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2323 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2324 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2325}
2326
2327CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2328 const Twine &Name,
2329 BasicBlock *InsertAtEnd) {
2330 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2331 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2332 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2333}
2334
2335CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2336 const Twine &Name,
2337 Instruction *InsertBefore) {
2338 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2339 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2340 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2341}
2342
2343CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2344 const Twine &Name,
2345 BasicBlock *InsertAtEnd) {
2346 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2347 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2348 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2349}
2350
2351CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2352 const Twine &Name,
2353 Instruction *InsertBefore) {
2354 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2355 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2356 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2357}
2358
2359CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2360 const Twine &Name,
2361 BasicBlock *InsertAtEnd) {
2362 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2363 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2364 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2365}
2366
2367CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2368 const Twine &Name,
2369 BasicBlock *InsertAtEnd) {
2370 assert(S->getType()->isPointerTy() && "Invalid cast");
2371 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2372 "Invalid cast");
2373
2374 if (Ty->isIntegerTy())
2375 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2376 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2377}
2378
2379/// @brief Create a BitCast or a PtrToInt cast instruction
2380CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2381 const Twine &Name,
2382 Instruction *InsertBefore) {
2383 assert(S->getType()->isPointerTy() && "Invalid cast");
2384 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2385 "Invalid cast");
2386
2387 if (Ty->isIntegerTy())
2388 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2389 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2390}
2391
2392CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2393 bool isSigned, const Twine &Name,
2394 Instruction *InsertBefore) {
2395 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2396 "Invalid integer cast");
2397 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2398 unsigned DstBits = Ty->getScalarSizeInBits();
2399 Instruction::CastOps opcode =
2400 (SrcBits == DstBits ? Instruction::BitCast :
2401 (SrcBits > DstBits ? Instruction::Trunc :
2402 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2403 return Create(opcode, C, Ty, Name, InsertBefore);
2404}
2405
2406CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2407 bool isSigned, const Twine &Name,
2408 BasicBlock *InsertAtEnd) {
2409 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2410 "Invalid cast");
2411 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2412 unsigned DstBits = Ty->getScalarSizeInBits();
2413 Instruction::CastOps opcode =
2414 (SrcBits == DstBits ? Instruction::BitCast :
2415 (SrcBits > DstBits ? Instruction::Trunc :
2416 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2417 return Create(opcode, C, Ty, Name, InsertAtEnd);
2418}
2419
2420CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2421 const Twine &Name,
2422 Instruction *InsertBefore) {
2423 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2424 "Invalid cast");
2425 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2426 unsigned DstBits = Ty->getScalarSizeInBits();
2427 Instruction::CastOps opcode =
2428 (SrcBits == DstBits ? Instruction::BitCast :
2429 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2430 return Create(opcode, C, Ty, Name, InsertBefore);
2431}
2432
2433CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2434 const Twine &Name,
2435 BasicBlock *InsertAtEnd) {
2436 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2437 "Invalid cast");
2438 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2439 unsigned DstBits = Ty->getScalarSizeInBits();
2440 Instruction::CastOps opcode =
2441 (SrcBits == DstBits ? Instruction::BitCast :
2442 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2443 return Create(opcode, C, Ty, Name, InsertAtEnd);
2444}
2445
2446// Check whether it is valid to call getCastOpcode for these types.
2447// This routine must be kept in sync with getCastOpcode.
2448bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2449 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2450 return false;
2451
2452 if (SrcTy == DestTy)
2453 return true;
2454
2455 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2456 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2457 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2458 // An element by element cast. Valid if casting the elements is valid.
2459 SrcTy = SrcVecTy->getElementType();
2460 DestTy = DestVecTy->getElementType();
2461 }
2462
2463 // Get the bit sizes, we'll need these
2464 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2465 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2466
2467 // Run through the possibilities ...
2468 if (DestTy->isIntegerTy()) { // Casting to integral
2469 if (SrcTy->isIntegerTy()) { // Casting from integral
2470 return true;
2471 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2472 return true;
2473 } else if (SrcTy->isVectorTy()) { // Casting from vector
2474 return DestBits == SrcBits;
2475 } else { // Casting from something else
2476 return SrcTy->isPointerTy();
2477 }
2478 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2479 if (SrcTy->isIntegerTy()) { // Casting from integral
2480 return true;
2481 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2482 return true;
2483 } else if (SrcTy->isVectorTy()) { // Casting from vector
2484 return DestBits == SrcBits;
2485 } else { // Casting from something else
2486 return false;
2487 }
2488 } else if (DestTy->isVectorTy()) { // Casting to vector
2489 return DestBits == SrcBits;
2490 } else if (DestTy->isPointerTy()) { // Casting to pointer
2491 if (SrcTy->isPointerTy()) { // Casting from pointer
2492 return true;
2493 } else if (SrcTy->isIntegerTy()) { // Casting from integral
2494 return true;
2495 } else { // Casting from something else
2496 return false;
2497 }
2498 } else if (DestTy->isX86_MMXTy()) {
2499 if (SrcTy->isVectorTy()) {
2500 return DestBits == SrcBits; // 64-bit vector to MMX
2501 } else {
2502 return false;
2503 }
2504 } else { // Casting to something else
2505 return false;
2506 }
2507}
2508
2509// Provide a way to get a "cast" where the cast opcode is inferred from the
2510// types and size of the operand. This, basically, is a parallel of the
2511// logic in the castIsValid function below. This axiom should hold:
2512// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2513// should not assert in castIsValid. In other words, this produces a "correct"
2514// casting opcode for the arguments passed to it.
2515// This routine must be kept in sync with isCastable.
2516Instruction::CastOps
2517CastInst::getCastOpcode(
2518 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2519 Type *SrcTy = Src->getType();
2520
2521 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2522 "Only first class types are castable!");
2523
2524 if (SrcTy == DestTy)
2525 return BitCast;
2526
2527 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2528 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2529 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2530 // An element by element cast. Find the appropriate opcode based on the
2531 // element types.
2532 SrcTy = SrcVecTy->getElementType();
2533 DestTy = DestVecTy->getElementType();
2534 }
2535
2536 // Get the bit sizes, we'll need these
2537 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2538 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2539
2540 // Run through the possibilities ...
2541 if (DestTy->isIntegerTy()) { // Casting to integral
2542 if (SrcTy->isIntegerTy()) { // Casting from integral
2543 if (DestBits < SrcBits)
2544 return Trunc; // int -> smaller int
2545 else if (DestBits > SrcBits) { // its an extension
2546 if (SrcIsSigned)
2547 return SExt; // signed -> SEXT
2548 else
2549 return ZExt; // unsigned -> ZEXT
2550 } else {
2551 return BitCast; // Same size, No-op cast
2552 }
2553 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2554 if (DestIsSigned)
2555 return FPToSI; // FP -> sint
2556 else
2557 return FPToUI; // FP -> uint
2558 } else if (SrcTy->isVectorTy()) {
2559 assert(DestBits == SrcBits &&
2560 "Casting vector to integer of different width");
2561 return BitCast; // Same size, no-op cast
2562 } else {
2563 assert(SrcTy->isPointerTy() &&
2564 "Casting from a value that is not first-class type");
2565 return PtrToInt; // ptr -> int
2566 }
2567 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2568 if (SrcTy->isIntegerTy()) { // Casting from integral
2569 if (SrcIsSigned)
2570 return SIToFP; // sint -> FP
2571 else
2572 return UIToFP; // uint -> FP
2573 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2574 if (DestBits < SrcBits) {
2575 return FPTrunc; // FP -> smaller FP
2576 } else if (DestBits > SrcBits) {
2577 return FPExt; // FP -> larger FP
2578 } else {
2579 return BitCast; // same size, no-op cast
2580 }
2581 } else if (SrcTy->isVectorTy()) {
2582 assert(DestBits == SrcBits &&
2583 "Casting vector to floating point of different width");
2584 return BitCast; // same size, no-op cast
2585 }
2586 llvm_unreachable("Casting pointer or non-first class to float");
2587 } else if (DestTy->isVectorTy()) {
2588 assert(DestBits == SrcBits &&
2589 "Illegal cast to vector (wrong type or size)");
2590 return BitCast;
2591 } else if (DestTy->isPointerTy()) {
2592 if (SrcTy->isPointerTy()) {
2593 return BitCast; // ptr -> ptr
2594 } else if (SrcTy->isIntegerTy()) {
2595 return IntToPtr; // int -> ptr
2596 }
2597 llvm_unreachable("Casting pointer to other than pointer or int");
2598 } else if (DestTy->isX86_MMXTy()) {
2599 if (SrcTy->isVectorTy()) {
2600 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2601 return BitCast; // 64-bit vector to MMX
2602 }
2603 llvm_unreachable("Illegal cast to X86_MMX");
2604 }
2605 llvm_unreachable("Casting to type that is not first-class");
2606}
2607
2608//===----------------------------------------------------------------------===//
2609// CastInst SubClass Constructors
2610//===----------------------------------------------------------------------===//
2611
2612/// Check that the construction parameters for a CastInst are correct. This
2613/// could be broken out into the separate constructors but it is useful to have
2614/// it in one place and to eliminate the redundant code for getting the sizes
2615/// of the types involved.
2616bool
2617CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2618
2619 // Check for type sanity on the arguments
2620 Type *SrcTy = S->getType();
2621 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2622 SrcTy->isAggregateType() || DstTy->isAggregateType())
2623 return false;
2624
2625 // Get the size of the types in bits, we'll need this later
2626 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2627 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2628
2629 // If these are vector types, get the lengths of the vectors (using zero for
2630 // scalar types means that checking that vector lengths match also checks that
2631 // scalars are not being converted to vectors or vectors to scalars).
2632 unsigned SrcLength = SrcTy->isVectorTy() ?
2633 cast<VectorType>(SrcTy)->getNumElements() : 0;
2634 unsigned DstLength = DstTy->isVectorTy() ?
2635 cast<VectorType>(DstTy)->getNumElements() : 0;
2636
2637 // Switch on the opcode provided
2638 switch (op) {
2639 default: return false; // This is an input error
2640 case Instruction::Trunc:
2641 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2642 SrcLength == DstLength && SrcBitSize > DstBitSize;
2643 case Instruction::ZExt:
2644 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2645 SrcLength == DstLength && SrcBitSize < DstBitSize;
2646 case Instruction::SExt:
2647 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2648 SrcLength == DstLength && SrcBitSize < DstBitSize;
2649 case Instruction::FPTrunc:
2650 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2651 SrcLength == DstLength && SrcBitSize > DstBitSize;
2652 case Instruction::FPExt:
2653 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2654 SrcLength == DstLength && SrcBitSize < DstBitSize;
2655 case Instruction::UIToFP:
2656 case Instruction::SIToFP:
2657 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2658 SrcLength == DstLength;
2659 case Instruction::FPToUI:
2660 case Instruction::FPToSI:
2661 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2662 SrcLength == DstLength;
2663 case Instruction::PtrToInt:
2664 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2665 return false;
2666 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2667 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2668 return false;
2669 return SrcTy->getScalarType()->isPointerTy() &&
2670 DstTy->getScalarType()->isIntegerTy();
2671 case Instruction::IntToPtr:
2672 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2673 return false;
2674 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2675 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2676 return false;
2677 return SrcTy->getScalarType()->isIntegerTy() &&
2678 DstTy->getScalarType()->isPointerTy();
2679 case Instruction::BitCast:
2680 // BitCast implies a no-op cast of type only. No bits change.
2681 // However, you can't cast pointers to anything but pointers.
2682 if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2683 return false;
2684
2685 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2686 // these cases, the cast is okay if the source and destination bit widths
2687 // are identical.
2688 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2689 }
2690}
2691
2692TruncInst::TruncInst(
2693 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2694) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2695 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2696}
2697
2698TruncInst::TruncInst(
2699 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2700) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2701 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2702}
2703
2704ZExtInst::ZExtInst(
2705 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2706) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2707 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2708}
2709
2710ZExtInst::ZExtInst(
2711 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2712) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2713 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2714}
2715SExtInst::SExtInst(
2716 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2717) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2718 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2719}
2720
2721SExtInst::SExtInst(
2722 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2723) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2724 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2725}
2726
2727FPTruncInst::FPTruncInst(
2728 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2729) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2730 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2731}
2732
2733FPTruncInst::FPTruncInst(
2734 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2735) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2736 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2737}
2738
2739FPExtInst::FPExtInst(
2740 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2741) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2742 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2743}
2744
2745FPExtInst::FPExtInst(
2746 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2747) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2748 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2749}
2750
2751UIToFPInst::UIToFPInst(
2752 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2753) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2754 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2755}
2756
2757UIToFPInst::UIToFPInst(
2758 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2759) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2760 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2761}
2762
2763SIToFPInst::SIToFPInst(
2764 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2765) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2766 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2767}
2768
2769SIToFPInst::SIToFPInst(
2770 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2771) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2772 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2773}
2774
2775FPToUIInst::FPToUIInst(
2776 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2777) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2778 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2779}
2780
2781FPToUIInst::FPToUIInst(
2782 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2783) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2784 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2785}
2786
2787FPToSIInst::FPToSIInst(
2788 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2789) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2790 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2791}
2792
2793FPToSIInst::FPToSIInst(
2794 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2795) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2796 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2797}
2798
2799PtrToIntInst::PtrToIntInst(
2800 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2801) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2802 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2803}
2804
2805PtrToIntInst::PtrToIntInst(
2806 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2807) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2808 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2809}
2810
2811IntToPtrInst::IntToPtrInst(
2812 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2813) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2814 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2815}
2816
2817IntToPtrInst::IntToPtrInst(
2818 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2819) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2820 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2821}
2822
2823BitCastInst::BitCastInst(
2824 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2825) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2826 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2827}
2828
2829BitCastInst::BitCastInst(
2830 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2831) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2832 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2833}
2834
2835//===----------------------------------------------------------------------===//
2836// CmpInst Classes
2837//===----------------------------------------------------------------------===//
2838
2839void CmpInst::anchor() {}
2840
2841CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2842 Value *LHS, Value *RHS, const Twine &Name,
2843 Instruction *InsertBefore)
2844 : Instruction(ty, op,
2845 OperandTraits<CmpInst>::op_begin(this),
2846 OperandTraits<CmpInst>::operands(this),
2847 InsertBefore) {
2848 Op<0>() = LHS;
2849 Op<1>() = RHS;
2850 setPredicate((Predicate)predicate);
2851 setName(Name);
2852}
2853
2854CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2855 Value *LHS, Value *RHS, const Twine &Name,
2856 BasicBlock *InsertAtEnd)
2857 : Instruction(ty, op,
2858 OperandTraits<CmpInst>::op_begin(this),
2859 OperandTraits<CmpInst>::operands(this),
2860 InsertAtEnd) {
2861 Op<0>() = LHS;
2862 Op<1>() = RHS;
2863 setPredicate((Predicate)predicate);
2864 setName(Name);
2865}
2866
2867CmpInst *
2868CmpInst::Create(OtherOps Op, unsigned short predicate,
2869 Value *S1, Value *S2,
2870 const Twine &Name, Instruction *InsertBefore) {
2871 if (Op == Instruction::ICmp) {
2872 if (InsertBefore)
2873 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2874 S1, S2, Name);
2875 else
2876 return new ICmpInst(CmpInst::Predicate(predicate),
2877 S1, S2, Name);
2878 }
2879
2880 if (InsertBefore)
2881 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2882 S1, S2, Name);
2883 else
2884 return new FCmpInst(CmpInst::Predicate(predicate),
2885 S1, S2, Name);
2886}
2887
2888CmpInst *
2889CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2890 const Twine &Name, BasicBlock *InsertAtEnd) {
2891 if (Op == Instruction::ICmp) {
2892 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2893 S1, S2, Name);
2894 }
2895 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2896 S1, S2, Name);
2897}
2898
2899void CmpInst::swapOperands() {
2900 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2901 IC->swapOperands();
2902 else
2903 cast<FCmpInst>(this)->swapOperands();
2904}
2905
2906bool CmpInst::isCommutative() const {
2907 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2908 return IC->isCommutative();
2909 return cast<FCmpInst>(this)->isCommutative();
2910}
2911
2912bool CmpInst::isEquality() const {
2913 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2914 return IC->isEquality();
2915 return cast<FCmpInst>(this)->isEquality();
2916}
2917
2918
2919CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2920 switch (pred) {
2921 default: llvm_unreachable("Unknown cmp predicate!");
2922 case ICMP_EQ: return ICMP_NE;
2923 case ICMP_NE: return ICMP_EQ;
2924 case ICMP_UGT: return ICMP_ULE;
2925 case ICMP_ULT: return ICMP_UGE;
2926 case ICMP_UGE: return ICMP_ULT;
2927 case ICMP_ULE: return ICMP_UGT;
2928 case ICMP_SGT: return ICMP_SLE;
2929 case ICMP_SLT: return ICMP_SGE;
2930 case ICMP_SGE: return ICMP_SLT;
2931 case ICMP_SLE: return ICMP_SGT;
2932
2933 case FCMP_OEQ: return FCMP_UNE;
2934 case FCMP_ONE: return FCMP_UEQ;
2935 case FCMP_OGT: return FCMP_ULE;
2936 case FCMP_OLT: return FCMP_UGE;
2937 case FCMP_OGE: return FCMP_ULT;
2938 case FCMP_OLE: return FCMP_UGT;
2939 case FCMP_UEQ: return FCMP_ONE;
2940 case FCMP_UNE: return FCMP_OEQ;
2941 case FCMP_UGT: return FCMP_OLE;
2942 case FCMP_ULT: return FCMP_OGE;
2943 case FCMP_UGE: return FCMP_OLT;
2944 case FCMP_ULE: return FCMP_OGT;
2945 case FCMP_ORD: return FCMP_UNO;
2946 case FCMP_UNO: return FCMP_ORD;
2947 case FCMP_TRUE: return FCMP_FALSE;
2948 case FCMP_FALSE: return FCMP_TRUE;
2949 }
2950}
2951
2952ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2953 switch (pred) {
2954 default: llvm_unreachable("Unknown icmp predicate!");
2955 case ICMP_EQ: case ICMP_NE:
2956 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2957 return pred;
2958 case ICMP_UGT: return ICMP_SGT;
2959 case ICMP_ULT: return ICMP_SLT;
2960 case ICMP_UGE: return ICMP_SGE;
2961 case ICMP_ULE: return ICMP_SLE;
2962 }
2963}
2964
2965ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2966 switch (pred) {
2967 default: llvm_unreachable("Unknown icmp predicate!");
2968 case ICMP_EQ: case ICMP_NE:
2969 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2970 return pred;
2971 case ICMP_SGT: return ICMP_UGT;
2972 case ICMP_SLT: return ICMP_ULT;
2973 case ICMP_SGE: return ICMP_UGE;
2974 case ICMP_SLE: return ICMP_ULE;
2975 }
2976}
2977
2978/// Initialize a set of values that all satisfy the condition with C.
2979///
2980ConstantRange
2981ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2982 APInt Lower(C);
2983 APInt Upper(C);
2984 uint32_t BitWidth = C.getBitWidth();
2985 switch (pred) {
2986 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2987 case ICmpInst::ICMP_EQ: Upper++; break;
2988 case ICmpInst::ICMP_NE: Lower++; break;
2989 case ICmpInst::ICMP_ULT:
2990 Lower = APInt::getMinValue(BitWidth);
2991 // Check for an empty-set condition.
2992 if (Lower == Upper)
2993 return ConstantRange(BitWidth, /*isFullSet=*/false);
2994 break;
2995 case ICmpInst::ICMP_SLT:
2996 Lower = APInt::getSignedMinValue(BitWidth);
2997 // Check for an empty-set condition.
2998 if (Lower == Upper)
2999 return ConstantRange(BitWidth, /*isFullSet=*/false);
3000 break;
3001 case ICmpInst::ICMP_UGT:
3002 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3003 // Check for an empty-set condition.
3004 if (Lower == Upper)
3005 return ConstantRange(BitWidth, /*isFullSet=*/false);
3006 break;
3007 case ICmpInst::ICMP_SGT:
3008 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3009 // Check for an empty-set condition.
3010 if (Lower == Upper)
3011 return ConstantRange(BitWidth, /*isFullSet=*/false);
3012 break;
3013 case ICmpInst::ICMP_ULE:
3014 Lower = APInt::getMinValue(BitWidth); Upper++;
3015 // Check for a full-set condition.
3016 if (Lower == Upper)
3017 return ConstantRange(BitWidth, /*isFullSet=*/true);
3018 break;
3019 case ICmpInst::ICMP_SLE:
3020 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
3021 // Check for a full-set condition.
3022 if (Lower == Upper)
3023 return ConstantRange(BitWidth, /*isFullSet=*/true);
3024 break;
3025 case ICmpInst::ICMP_UGE:
3026 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3027 // Check for a full-set condition.
3028 if (Lower == Upper)
3029 return ConstantRange(BitWidth, /*isFullSet=*/true);
3030 break;
3031 case ICmpInst::ICMP_SGE:
3032 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3033 // Check for a full-set condition.
3034 if (Lower == Upper)
3035 return ConstantRange(BitWidth, /*isFullSet=*/true);
3036 break;
3037 }
3038 return ConstantRange(Lower, Upper);
3039}
3040
3041CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3042 switch (pred) {
3043 default: llvm_unreachable("Unknown cmp predicate!");
3044 case ICMP_EQ: case ICMP_NE:
3045 return pred;
3046 case ICMP_SGT: return ICMP_SLT;
3047 case ICMP_SLT: return ICMP_SGT;
3048 case ICMP_SGE: return ICMP_SLE;
3049 case ICMP_SLE: return ICMP_SGE;
3050 case ICMP_UGT: return ICMP_ULT;
3051 case ICMP_ULT: return ICMP_UGT;
3052 case ICMP_UGE: return ICMP_ULE;
3053 case ICMP_ULE: return ICMP_UGE;
3054
3055 case FCMP_FALSE: case FCMP_TRUE:
3056 case FCMP_OEQ: case FCMP_ONE:
3057 case FCMP_UEQ: case FCMP_UNE:
3058 case FCMP_ORD: case FCMP_UNO:
3059 return pred;
3060 case FCMP_OGT: return FCMP_OLT;
3061 case FCMP_OLT: return FCMP_OGT;
3062 case FCMP_OGE: return FCMP_OLE;
3063 case FCMP_OLE: return FCMP_OGE;
3064 case FCMP_UGT: return FCMP_ULT;
3065 case FCMP_ULT: return FCMP_UGT;
3066 case FCMP_UGE: return FCMP_ULE;
3067 case FCMP_ULE: return FCMP_UGE;
3068 }
3069}
3070
3071bool CmpInst::isUnsigned(unsigned short predicate) {
3072 switch (predicate) {
3073 default: return false;
3074 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3075 case ICmpInst::ICMP_UGE: return true;
3076 }
3077}
3078
3079bool CmpInst::isSigned(unsigned short predicate) {
3080 switch (predicate) {
3081 default: return false;
3082 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3083 case ICmpInst::ICMP_SGE: return true;
3084 }
3085}
3086
3087bool CmpInst::isOrdered(unsigned short predicate) {
3088 switch (predicate) {
3089 default: return false;
3090 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3091 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3092 case FCmpInst::FCMP_ORD: return true;
3093 }
3094}
3095
3096bool CmpInst::isUnordered(unsigned short predicate) {
3097 switch (predicate) {
3098 default: return false;
3099 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3100 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3101 case FCmpInst::FCMP_UNO: return true;
3102 }
3103}
3104
3105bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3106 switch(predicate) {
3107 default: return false;
3108 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3109 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3110 }
3111}
3112
3113bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3114 switch(predicate) {
3115 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3116 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3117 default: return false;
3118 }
3119}
3120
3121
3122//===----------------------------------------------------------------------===//
3123// SwitchInst Implementation
3124//===----------------------------------------------------------------------===//
3125
3126void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3127 assert(Value && Default && NumReserved);
3128 ReservedSpace = NumReserved;
3129 NumOperands = 2;
3130 OperandList = allocHungoffUses(ReservedSpace);
3131
3132 OperandList[0] = Value;
3133 OperandList[1] = Default;
3134}
3135
3136/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3137/// switch on and a default destination. The number of additional cases can
3138/// be specified here to make memory allocation more efficient. This
3139/// constructor can also autoinsert before another instruction.
3140SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3141 Instruction *InsertBefore)
3142 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3143 0, 0, InsertBefore) {
3144 init(Value, Default, 2+NumCases*2);
3145}
3146
3147/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3148/// switch on and a default destination. The number of additional cases can
3149/// be specified here to make memory allocation more efficient. This
3150/// constructor also autoinserts at the end of the specified BasicBlock.
3151SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3152 BasicBlock *InsertAtEnd)
3153 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3154 0, 0, InsertAtEnd) {
3155 init(Value, Default, 2+NumCases*2);
3156}
3157
3158SwitchInst::SwitchInst(const SwitchInst &SI)
3159 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
3160 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3161 NumOperands = SI.getNumOperands();
3162 Use *OL = OperandList, *InOL = SI.OperandList;
3163 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3164 OL[i] = InOL[i];
3165 OL[i+1] = InOL[i+1];
3166 }
3167 TheSubsets = SI.TheSubsets;
3168 SubclassOptionalData = SI.SubclassOptionalData;
3169}
3170
3171SwitchInst::~SwitchInst() {
3172 dropHungoffUses();
3173}
3174
3175
3176/// addCase - Add an entry to the switch instruction...
3177///
3178void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3179 IntegersSubsetToBB Mapping;
3180
3181 // FIXME: Currently we work with ConstantInt based cases.
3182 // So inititalize IntItem container directly from ConstantInt.
3183 Mapping.add(IntItem::fromConstantInt(OnVal));
3184 IntegersSubset CaseRanges = Mapping.getCase();
3185 addCase(CaseRanges, Dest);
3186}
3187
3188void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) {
3189 unsigned NewCaseIdx = getNumCases();
3190 unsigned OpNo = NumOperands;
3191 if (OpNo+2 > ReservedSpace)
3192 growOperands(); // Get more space!
3193 // Initialize some new operands.
3194 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3195 NumOperands = OpNo+2;
3196
3197 SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal);
3198
3199 CaseIt Case(this, NewCaseIdx, TheSubsetsIt);
3200 Case.updateCaseValueOperand(OnVal);
3201 Case.setSuccessor(Dest);
3202}
3203
3204/// removeCase - This method removes the specified case and its successor
3205/// from the switch instruction.
3206void SwitchInst::removeCase(CaseIt& i) {
3207 unsigned idx = i.getCaseIndex();
3208
3209 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3210
3211 unsigned NumOps = getNumOperands();
3212 Use *OL = OperandList;
3213
3214 // Overwrite this case with the end of the list.
3215 if (2 + (idx + 1) * 2 != NumOps) {
3216 OL[2 + idx * 2] = OL[NumOps - 2];
3217 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3218 }
3219
3220 // Nuke the last value.
3221 OL[NumOps-2].set(0);
3222 OL[NumOps-2+1].set(0);
3223
3224 // Do the same with TheCases collection:
3225 if (i.SubsetIt != --TheSubsets.end()) {
3226 *i.SubsetIt = TheSubsets.back();
3227 TheSubsets.pop_back();
3228 } else {
3229 TheSubsets.pop_back();
3230 i.SubsetIt = TheSubsets.end();
3231 }
3232
3233 NumOperands = NumOps-2;
3234}
3235
3236/// growOperands - grow operands - This grows the operand list in response
3237/// to a push_back style of operation. This grows the number of ops by 3 times.
3238///
3239void SwitchInst::growOperands() {
3240 unsigned e = getNumOperands();
3241 unsigned NumOps = e*3;
3242
3243 ReservedSpace = NumOps;
3244 Use *NewOps = allocHungoffUses(NumOps);
3245 Use *OldOps = OperandList;
3246 for (unsigned i = 0; i != e; ++i) {
3247 NewOps[i] = OldOps[i];
3248 }
3249 OperandList = NewOps;
3250 Use::zap(OldOps, OldOps + e, true);
3251}
3252
3253
3254BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3255 return getSuccessor(idx);
3256}
3257unsigned SwitchInst::getNumSuccessorsV() const {
3258 return getNumSuccessors();
3259}
3260void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3261 setSuccessor(idx, B);
3262}
3263
3264//===----------------------------------------------------------------------===//
3265// IndirectBrInst Implementation
3266//===----------------------------------------------------------------------===//
3267
3268void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3269 assert(Address && Address->getType()->isPointerTy() &&
3270 "Address of indirectbr must be a pointer");
3271 ReservedSpace = 1+NumDests;
3272 NumOperands = 1;
3273 OperandList = allocHungoffUses(ReservedSpace);
3274
3275 OperandList[0] = Address;
3276}
3277
3278
3279/// growOperands - grow operands - This grows the operand list in response
3280/// to a push_back style of operation. This grows the number of ops by 2 times.
3281///
3282void IndirectBrInst::growOperands() {
3283 unsigned e = getNumOperands();
3284 unsigned NumOps = e*2;
3285
3286 ReservedSpace = NumOps;
3287 Use *NewOps = allocHungoffUses(NumOps);
3288 Use *OldOps = OperandList;
3289 for (unsigned i = 0; i != e; ++i)
3290 NewOps[i] = OldOps[i];
3291 OperandList = NewOps;
3292 Use::zap(OldOps, OldOps + e, true);
3293}
3294
3295IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3296 Instruction *InsertBefore)
3297: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3298 0, 0, InsertBefore) {
3299 init(Address, NumCases);
3300}
3301
3302IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3303 BasicBlock *InsertAtEnd)
3304: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3305 0, 0, InsertAtEnd) {
3306 init(Address, NumCases);
3307}
3308
3309IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3310 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3311 allocHungoffUses(IBI.getNumOperands()),
3312 IBI.getNumOperands()) {
3313 Use *OL = OperandList, *InOL = IBI.OperandList;
3314 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3315 OL[i] = InOL[i];
3316 SubclassOptionalData = IBI.SubclassOptionalData;
3317}
3318
3319IndirectBrInst::~IndirectBrInst() {
3320 dropHungoffUses();
3321}
3322
3323/// addDestination - Add a destination.
3324///
3325void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3326 unsigned OpNo = NumOperands;
3327 if (OpNo+1 > ReservedSpace)
3328 growOperands(); // Get more space!
3329 // Initialize some new operands.
3330 assert(OpNo < ReservedSpace && "Growing didn't work!");
3331 NumOperands = OpNo+1;
3332 OperandList[OpNo] = DestBB;
3333}
3334
3335/// removeDestination - This method removes the specified successor from the
3336/// indirectbr instruction.
3337void IndirectBrInst::removeDestination(unsigned idx) {
3338 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3339
3340 unsigned NumOps = getNumOperands();
3341 Use *OL = OperandList;
3342
3343 // Replace this value with the last one.
3344 OL[idx+1] = OL[NumOps-1];
3345
3346 // Nuke the last value.
3347 OL[NumOps-1].set(0);
3348 NumOperands = NumOps-1;
3349}
3350
3351BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3352 return getSuccessor(idx);
3353}
3354unsigned IndirectBrInst::getNumSuccessorsV() const {
3355 return getNumSuccessors();
3356}
3357void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3358 setSuccessor(idx, B);
3359}
3360
3361//===----------------------------------------------------------------------===//
3362// clone_impl() implementations
3363//===----------------------------------------------------------------------===//
3364
3365// Define these methods here so vtables don't get emitted into every translation
3366// unit that uses these classes.
3367
3368GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3369 return new (getNumOperands()) GetElementPtrInst(*this);
3370}
3371
3372BinaryOperator *BinaryOperator::clone_impl() const {
3373 return Create(getOpcode(), Op<0>(), Op<1>());
3374}
3375
3376FCmpInst* FCmpInst::clone_impl() const {
3377 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3378}
3379
3380ICmpInst* ICmpInst::clone_impl() const {
3381 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3382}
3383
3384ExtractValueInst *ExtractValueInst::clone_impl() const {
3385 return new ExtractValueInst(*this);
3386}
3387
3388InsertValueInst *InsertValueInst::clone_impl() const {
3389 return new InsertValueInst(*this);
3390}
3391
3392AllocaInst *AllocaInst::clone_impl() const {
3393 return new AllocaInst(getAllocatedType(),
3394 (Value*)getOperand(0),
3395 getAlignment());
3396}
3397
3398LoadInst *LoadInst::clone_impl() const {
3399 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3400 getAlignment(), getOrdering(), getSynchScope());
3401}
3402
3403StoreInst *StoreInst::clone_impl() const {
3404 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3405 getAlignment(), getOrdering(), getSynchScope());
3406
3407}
3408
3409AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3410 AtomicCmpXchgInst *Result =
3411 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3412 getOrdering(), getSynchScope());
3413 Result->setVolatile(isVolatile());
3414 return Result;
3415}
3416
3417AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3418 AtomicRMWInst *Result =
3419 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3420 getOrdering(), getSynchScope());
3421 Result->setVolatile(isVolatile());
3422 return Result;
3423}
3424
3425FenceInst *FenceInst::clone_impl() const {
3426 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3427}
3428
3429TruncInst *TruncInst::clone_impl() const {
3430 return new TruncInst(getOperand(0), getType());
3431}
3432
3433ZExtInst *ZExtInst::clone_impl() const {
3434 return new ZExtInst(getOperand(0), getType());
3435}
3436
3437SExtInst *SExtInst::clone_impl() const {
3438 return new SExtInst(getOperand(0), getType());
3439}
3440
3441FPTruncInst *FPTruncInst::clone_impl() const {
3442 return new FPTruncInst(getOperand(0), getType());
3443}
3444
3445FPExtInst *FPExtInst::clone_impl() const {
3446 return new FPExtInst(getOperand(0), getType());
3447}
3448
3449UIToFPInst *UIToFPInst::clone_impl() const {
3450 return new UIToFPInst(getOperand(0), getType());
3451}
3452
3453SIToFPInst *SIToFPInst::clone_impl() const {
3454 return new SIToFPInst(getOperand(0), getType());
3455}
3456
3457FPToUIInst *FPToUIInst::clone_impl() const {
3458 return new FPToUIInst(getOperand(0), getType());
3459}
3460
3461FPToSIInst *FPToSIInst::clone_impl() const {
3462 return new FPToSIInst(getOperand(0), getType());
3463}
3464
3465PtrToIntInst *PtrToIntInst::clone_impl() const {
3466 return new PtrToIntInst(getOperand(0), getType());
3467}
3468
3469IntToPtrInst *IntToPtrInst::clone_impl() const {
3470 return new IntToPtrInst(getOperand(0), getType());
3471}
3472
3473BitCastInst *BitCastInst::clone_impl() const {
3474 return new BitCastInst(getOperand(0), getType());
3475}
3476
3477CallInst *CallInst::clone_impl() const {
3478 return new(getNumOperands()) CallInst(*this);
3479}
3480
3481SelectInst *SelectInst::clone_impl() const {
3482 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3483}
3484
3485VAArgInst *VAArgInst::clone_impl() const {
3486 return new VAArgInst(getOperand(0), getType());
3487}
3488
3489ExtractElementInst *ExtractElementInst::clone_impl() const {
3490 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3491}
3492
3493InsertElementInst *InsertElementInst::clone_impl() const {
3494 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3495}
3496
3497ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3498 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3499}
3500
3501PHINode *PHINode::clone_impl() const {
3502 return new PHINode(*this);
3503}
3504
3505LandingPadInst *LandingPadInst::clone_impl() const {
3506 return new LandingPadInst(*this);
3507}
3508
3509ReturnInst *ReturnInst::clone_impl() const {
3510 return new(getNumOperands()) ReturnInst(*this);
3511}
3512
3513BranchInst *BranchInst::clone_impl() const {
3514 return new(getNumOperands()) BranchInst(*this);
3515}
3516
3517SwitchInst *SwitchInst::clone_impl() const {
3518 return new SwitchInst(*this);
3519}
3520
3521IndirectBrInst *IndirectBrInst::clone_impl() const {
3522 return new IndirectBrInst(*this);
3523}
3524
3525
3526InvokeInst *InvokeInst::clone_impl() const {
3527 return new(getNumOperands()) InvokeInst(*this);
3528}
3529
3530ResumeInst *ResumeInst::clone_impl() const {
3531 return new(1) ResumeInst(*this);
3532}
3533
3534UnreachableInst *UnreachableInst::clone_impl() const {
3535 LLVMContext &Context = getContext();
3536 return new UnreachableInst(Context);
3537}