]> git.proxmox.com Git - rustc.git/blame - src/llvm/projects/compiler-rt/lib/comparedf2.c
Imported Upstream version 0.6
[rustc.git] / src / llvm / projects / compiler-rt / lib / comparedf2.c
CommitLineData
223e47cc
LB
1//===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// // This file implements the following soft-float comparison routines:
11//
12// __eqdf2 __gedf2 __unorddf2
13// __ledf2 __gtdf2
14// __ltdf2
15// __nedf2
16//
17// The semantics of the routines grouped in each column are identical, so there
18// is a single implementation for each, and wrappers to provide the other names.
19//
20// The main routines behave as follows:
21//
22// __ledf2(a,b) returns -1 if a < b
23// 0 if a == b
24// 1 if a > b
25// 1 if either a or b is NaN
26//
27// __gedf2(a,b) returns -1 if a < b
28// 0 if a == b
29// 1 if a > b
30// -1 if either a or b is NaN
31//
32// __unorddf2(a,b) returns 0 if both a and b are numbers
33// 1 if either a or b is NaN
34//
35// Note that __ledf2( ) and __gedf2( ) are identical except in their handling of
36// NaN values.
37//
38//===----------------------------------------------------------------------===//
39
40#define DOUBLE_PRECISION
41#include "fp_lib.h"
42
43enum LE_RESULT {
44 LE_LESS = -1,
45 LE_EQUAL = 0,
46 LE_GREATER = 1,
47 LE_UNORDERED = 1
48};
49
50enum LE_RESULT __ledf2(fp_t a, fp_t b) {
51
52 const srep_t aInt = toRep(a);
53 const srep_t bInt = toRep(b);
54 const rep_t aAbs = aInt & absMask;
55 const rep_t bAbs = bInt & absMask;
56
57 // If either a or b is NaN, they are unordered.
58 if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
59
60 // If a and b are both zeros, they are equal.
61 if ((aAbs | bAbs) == 0) return LE_EQUAL;
62
63 // If at least one of a and b is positive, we get the same result comparing
64 // a and b as signed integers as we would with a floating-point compare.
65 if ((aInt & bInt) >= 0) {
66 if (aInt < bInt) return LE_LESS;
67 else if (aInt == bInt) return LE_EQUAL;
68 else return LE_GREATER;
69 }
70
71 // Otherwise, both are negative, so we need to flip the sense of the
72 // comparison to get the correct result. (This assumes a twos- or ones-
73 // complement integer representation; if integers are represented in a
74 // sign-magnitude representation, then this flip is incorrect).
75 else {
76 if (aInt > bInt) return LE_LESS;
77 else if (aInt == bInt) return LE_EQUAL;
78 else return LE_GREATER;
79 }
80}
81
82enum GE_RESULT {
83 GE_LESS = -1,
84 GE_EQUAL = 0,
85 GE_GREATER = 1,
86 GE_UNORDERED = -1 // Note: different from LE_UNORDERED
87};
88
89enum GE_RESULT __gedf2(fp_t a, fp_t b) {
90
91 const srep_t aInt = toRep(a);
92 const srep_t bInt = toRep(b);
93 const rep_t aAbs = aInt & absMask;
94 const rep_t bAbs = bInt & absMask;
95
96 if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
97 if ((aAbs | bAbs) == 0) return GE_EQUAL;
98 if ((aInt & bInt) >= 0) {
99 if (aInt < bInt) return GE_LESS;
100 else if (aInt == bInt) return GE_EQUAL;
101 else return GE_GREATER;
102 } else {
103 if (aInt > bInt) return GE_LESS;
104 else if (aInt == bInt) return GE_EQUAL;
105 else return GE_GREATER;
106 }
107}
108
109int __unorddf2(fp_t a, fp_t b) {
110 const rep_t aAbs = toRep(a) & absMask;
111 const rep_t bAbs = toRep(b) & absMask;
112 return aAbs > infRep || bAbs > infRep;
113}
114
115// The following are alternative names for the preceeding routines.
116
117enum LE_RESULT __eqdf2(fp_t a, fp_t b) {
118 return __ledf2(a, b);
119}
120
121enum LE_RESULT __ltdf2(fp_t a, fp_t b) {
122 return __ledf2(a, b);
123}
124
125enum LE_RESULT __nedf2(fp_t a, fp_t b) {
126 return __ledf2(a, b);
127}
128
129enum GE_RESULT __gtdf2(fp_t a, fp_t b) {
130 return __gedf2(a, b);
131}
132