]> git.proxmox.com Git - rustc.git/blame - src/llvm/tools/clang/lib/CodeGen/CodeGenModule.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / tools / clang / lib / CodeGen / CodeGenModule.cpp
CommitLineData
223e47cc
LB
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCUDARuntime.h"
20#include "CGCXXABI.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/DeclTemplate.h"
30#include "clang/AST/Mangle.h"
31#include "clang/AST/RecordLayout.h"
32#include "clang/AST/RecursiveASTVisitor.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include "llvm/CallingConv.h"
39#include "llvm/Module.h"
40#include "llvm/Intrinsics.h"
41#include "llvm/LLVMContext.h"
42#include "llvm/ADT/APSInt.h"
43#include "llvm/ADT/Triple.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ErrorHandling.h"
48using namespace clang;
49using namespace CodeGen;
50
51static const char AnnotationSection[] = "llvm.metadata";
52
53static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54 switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55 case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58 }
59
60 llvm_unreachable("invalid C++ ABI kind");
61}
62
63
64CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65 llvm::Module &M, const llvm::TargetData &TD,
66 DiagnosticsEngine &diags)
67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69 ABI(createCXXABI(*this)),
70 Types(*this),
71 TBAA(0),
72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74 RRData(0), CFConstantStringClassRef(0),
75 ConstantStringClassRef(0), NSConstantStringType(0),
76 VMContext(M.getContext()),
77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78 BlockObjectAssign(0), BlockObjectDispose(0),
79 BlockDescriptorType(0), GenericBlockLiteralType(0) {
80
81 // Initialize the type cache.
82 llvm::LLVMContext &LLVMContext = M.getContext();
83 VoidTy = llvm::Type::getVoidTy(LLVMContext);
84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88 FloatTy = llvm::Type::getFloatTy(LLVMContext);
89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91 PointerAlignInBytes =
92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95 Int8PtrTy = Int8Ty->getPointerTo(0);
96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97
98 if (LangOpts.ObjC1)
99 createObjCRuntime();
100 if (LangOpts.OpenCL)
101 createOpenCLRuntime();
102 if (LangOpts.CUDA)
103 createCUDARuntime();
104
105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106 if (LangOpts.ThreadSanitizer ||
107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109 ABI.getMangleContext());
110
111 // If debug info or coverage generation is enabled, create the CGDebugInfo
112 // object.
113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114 CodeGenOpts.EmitGcovArcs ||
115 CodeGenOpts.EmitGcovNotes)
116 DebugInfo = new CGDebugInfo(*this);
117
118 Block.GlobalUniqueCount = 0;
119
120 if (C.getLangOpts().ObjCAutoRefCount)
121 ARCData = new ARCEntrypoints();
122 RRData = new RREntrypoints();
123}
124
125CodeGenModule::~CodeGenModule() {
126 delete ObjCRuntime;
127 delete OpenCLRuntime;
128 delete CUDARuntime;
129 delete TheTargetCodeGenInfo;
130 delete &ABI;
131 delete TBAA;
132 delete DebugInfo;
133 delete ARCData;
134 delete RRData;
135}
136
137void CodeGenModule::createObjCRuntime() {
138 // This is just isGNUFamily(), but we want to force implementors of
139 // new ABIs to decide how best to do this.
140 switch (LangOpts.ObjCRuntime.getKind()) {
141 case ObjCRuntime::GNUstep:
142 case ObjCRuntime::GCC:
143 case ObjCRuntime::ObjFW:
144 ObjCRuntime = CreateGNUObjCRuntime(*this);
145 return;
146
147 case ObjCRuntime::FragileMacOSX:
148 case ObjCRuntime::MacOSX:
149 case ObjCRuntime::iOS:
150 ObjCRuntime = CreateMacObjCRuntime(*this);
151 return;
152 }
153 llvm_unreachable("bad runtime kind");
154}
155
156void CodeGenModule::createOpenCLRuntime() {
157 OpenCLRuntime = new CGOpenCLRuntime(*this);
158}
159
160void CodeGenModule::createCUDARuntime() {
161 CUDARuntime = CreateNVCUDARuntime(*this);
162}
163
164void CodeGenModule::Release() {
165 EmitDeferred();
166 EmitCXXGlobalInitFunc();
167 EmitCXXGlobalDtorFunc();
168 if (ObjCRuntime)
169 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170 AddGlobalCtor(ObjCInitFunction);
171 EmitCtorList(GlobalCtors, "llvm.global_ctors");
172 EmitCtorList(GlobalDtors, "llvm.global_dtors");
173 EmitGlobalAnnotations();
174 EmitLLVMUsed();
175
176 SimplifyPersonality();
177
178 if (getCodeGenOpts().EmitDeclMetadata)
179 EmitDeclMetadata();
180
181 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182 EmitCoverageFile();
183
184 if (DebugInfo)
185 DebugInfo->finalize();
186}
187
188void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189 // Make sure that this type is translated.
190 Types.UpdateCompletedType(TD);
191}
192
193llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194 if (!TBAA)
195 return 0;
196 return TBAA->getTBAAInfo(QTy);
197}
198
199llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200 if (!TBAA)
201 return 0;
202 return TBAA->getTBAAInfoForVTablePtr();
203}
204
205llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206 if (!TBAA)
207 return 0;
208 return TBAA->getTBAAStructInfo(QTy);
209}
210
211void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212 llvm::MDNode *TBAAInfo) {
213 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214}
215
216bool CodeGenModule::isTargetDarwin() const {
217 return getContext().getTargetInfo().getTriple().isOSDarwin();
218}
219
220void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222 getDiags().Report(Context.getFullLoc(loc), diagID);
223}
224
225/// ErrorUnsupported - Print out an error that codegen doesn't support the
226/// specified stmt yet.
227void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228 bool OmitOnError) {
229 if (OmitOnError && getDiags().hasErrorOccurred())
230 return;
231 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232 "cannot compile this %0 yet");
233 std::string Msg = Type;
234 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235 << Msg << S->getSourceRange();
236}
237
238/// ErrorUnsupported - Print out an error that codegen doesn't support the
239/// specified decl yet.
240void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241 bool OmitOnError) {
242 if (OmitOnError && getDiags().hasErrorOccurred())
243 return;
244 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245 "cannot compile this %0 yet");
246 std::string Msg = Type;
247 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248}
249
250llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252}
253
254void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255 const NamedDecl *D) const {
256 // Internal definitions always have default visibility.
257 if (GV->hasLocalLinkage()) {
258 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259 return;
260 }
261
262 // Set visibility for definitions.
263 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265 GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266}
267
268static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274}
275
276static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277 CodeGenOptions::TLSModel M) {
278 switch (M) {
279 case CodeGenOptions::GeneralDynamicTLSModel:
280 return llvm::GlobalVariable::GeneralDynamicTLSModel;
281 case CodeGenOptions::LocalDynamicTLSModel:
282 return llvm::GlobalVariable::LocalDynamicTLSModel;
283 case CodeGenOptions::InitialExecTLSModel:
284 return llvm::GlobalVariable::InitialExecTLSModel;
285 case CodeGenOptions::LocalExecTLSModel:
286 return llvm::GlobalVariable::LocalExecTLSModel;
287 }
288 llvm_unreachable("Invalid TLS model!");
289}
290
291void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292 const VarDecl &D) const {
293 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294
295 llvm::GlobalVariable::ThreadLocalMode TLM;
296 TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
297
298 // Override the TLS model if it is explicitly specified.
299 if (D.hasAttr<TLSModelAttr>()) {
300 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301 TLM = GetLLVMTLSModel(Attr->getModel());
302 }
303
304 GV->setThreadLocalMode(TLM);
305}
306
307/// Set the symbol visibility of type information (vtable and RTTI)
308/// associated with the given type.
309void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310 const CXXRecordDecl *RD,
311 TypeVisibilityKind TVK) const {
312 setGlobalVisibility(GV, RD);
313
314 if (!CodeGenOpts.HiddenWeakVTables)
315 return;
316
317 // We never want to drop the visibility for RTTI names.
318 if (TVK == TVK_ForRTTIName)
319 return;
320
321 // We want to drop the visibility to hidden for weak type symbols.
322 // This isn't possible if there might be unresolved references
323 // elsewhere that rely on this symbol being visible.
324
325 // This should be kept roughly in sync with setThunkVisibility
326 // in CGVTables.cpp.
327
328 // Preconditions.
329 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331 return;
332
333 // Don't override an explicit visibility attribute.
334 if (RD->getExplicitVisibility())
335 return;
336
337 switch (RD->getTemplateSpecializationKind()) {
338 // We have to disable the optimization if this is an EI definition
339 // because there might be EI declarations in other shared objects.
340 case TSK_ExplicitInstantiationDefinition:
341 case TSK_ExplicitInstantiationDeclaration:
342 return;
343
344 // Every use of a non-template class's type information has to emit it.
345 case TSK_Undeclared:
346 break;
347
348 // In theory, implicit instantiations can ignore the possibility of
349 // an explicit instantiation declaration because there necessarily
350 // must be an EI definition somewhere with default visibility. In
351 // practice, it's possible to have an explicit instantiation for
352 // an arbitrary template class, and linkers aren't necessarily able
353 // to deal with mixed-visibility symbols.
354 case TSK_ExplicitSpecialization:
355 case TSK_ImplicitInstantiation:
356 if (!CodeGenOpts.HiddenWeakTemplateVTables)
357 return;
358 break;
359 }
360
361 // If there's a key function, there may be translation units
362 // that don't have the key function's definition. But ignore
363 // this if we're emitting RTTI under -fno-rtti.
364 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
365 if (Context.getKeyFunction(RD))
366 return;
367 }
368
369 // Otherwise, drop the visibility to hidden.
370 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
371 GV->setUnnamedAddr(true);
372}
373
374StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
375 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
376
377 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
378 if (!Str.empty())
379 return Str;
380
381 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
382 IdentifierInfo *II = ND->getIdentifier();
383 assert(II && "Attempt to mangle unnamed decl.");
384
385 Str = II->getName();
386 return Str;
387 }
388
389 SmallString<256> Buffer;
390 llvm::raw_svector_ostream Out(Buffer);
391 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
392 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
393 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
394 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
395 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
396 getCXXABI().getMangleContext().mangleBlock(BD, Out,
397 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
398 else
399 getCXXABI().getMangleContext().mangleName(ND, Out);
400
401 // Allocate space for the mangled name.
402 Out.flush();
403 size_t Length = Buffer.size();
404 char *Name = MangledNamesAllocator.Allocate<char>(Length);
405 std::copy(Buffer.begin(), Buffer.end(), Name);
406
407 Str = StringRef(Name, Length);
408
409 return Str;
410}
411
412void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
413 const BlockDecl *BD) {
414 MangleContext &MangleCtx = getCXXABI().getMangleContext();
415 const Decl *D = GD.getDecl();
416 llvm::raw_svector_ostream Out(Buffer.getBuffer());
417 if (D == 0)
418 MangleCtx.mangleGlobalBlock(BD,
419 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
420 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
421 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
422 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
423 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
424 else
425 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
426}
427
428llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
429 return getModule().getNamedValue(Name);
430}
431
432/// AddGlobalCtor - Add a function to the list that will be called before
433/// main() runs.
434void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
435 // FIXME: Type coercion of void()* types.
436 GlobalCtors.push_back(std::make_pair(Ctor, Priority));
437}
438
439/// AddGlobalDtor - Add a function to the list that will be called
440/// when the module is unloaded.
441void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
442 // FIXME: Type coercion of void()* types.
443 GlobalDtors.push_back(std::make_pair(Dtor, Priority));
444}
445
446void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
447 // Ctor function type is void()*.
448 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
449 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
450
451 // Get the type of a ctor entry, { i32, void ()* }.
452 llvm::StructType *CtorStructTy =
453 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
454
455 // Construct the constructor and destructor arrays.
456 SmallVector<llvm::Constant*, 8> Ctors;
457 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
458 llvm::Constant *S[] = {
459 llvm::ConstantInt::get(Int32Ty, I->second, false),
460 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
461 };
462 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
463 }
464
465 if (!Ctors.empty()) {
466 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
467 new llvm::GlobalVariable(TheModule, AT, false,
468 llvm::GlobalValue::AppendingLinkage,
469 llvm::ConstantArray::get(AT, Ctors),
470 GlobalName);
471 }
472}
473
474llvm::GlobalValue::LinkageTypes
475CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
476 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
477
478 if (Linkage == GVA_Internal)
479 return llvm::Function::InternalLinkage;
480
481 if (D->hasAttr<DLLExportAttr>())
482 return llvm::Function::DLLExportLinkage;
483
484 if (D->hasAttr<WeakAttr>())
485 return llvm::Function::WeakAnyLinkage;
486
487 // In C99 mode, 'inline' functions are guaranteed to have a strong
488 // definition somewhere else, so we can use available_externally linkage.
489 if (Linkage == GVA_C99Inline)
490 return llvm::Function::AvailableExternallyLinkage;
491
492 // Note that Apple's kernel linker doesn't support symbol
493 // coalescing, so we need to avoid linkonce and weak linkages there.
494 // Normally, this means we just map to internal, but for explicit
495 // instantiations we'll map to external.
496
497 // In C++, the compiler has to emit a definition in every translation unit
498 // that references the function. We should use linkonce_odr because
499 // a) if all references in this translation unit are optimized away, we
500 // don't need to codegen it. b) if the function persists, it needs to be
501 // merged with other definitions. c) C++ has the ODR, so we know the
502 // definition is dependable.
503 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
504 return !Context.getLangOpts().AppleKext
505 ? llvm::Function::LinkOnceODRLinkage
506 : llvm::Function::InternalLinkage;
507
508 // An explicit instantiation of a template has weak linkage, since
509 // explicit instantiations can occur in multiple translation units
510 // and must all be equivalent. However, we are not allowed to
511 // throw away these explicit instantiations.
512 if (Linkage == GVA_ExplicitTemplateInstantiation)
513 return !Context.getLangOpts().AppleKext
514 ? llvm::Function::WeakODRLinkage
515 : llvm::Function::ExternalLinkage;
516
517 // Otherwise, we have strong external linkage.
518 assert(Linkage == GVA_StrongExternal);
519 return llvm::Function::ExternalLinkage;
520}
521
522
523/// SetFunctionDefinitionAttributes - Set attributes for a global.
524///
525/// FIXME: This is currently only done for aliases and functions, but not for
526/// variables (these details are set in EmitGlobalVarDefinition for variables).
527void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
528 llvm::GlobalValue *GV) {
529 SetCommonAttributes(D, GV);
530}
531
532void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
533 const CGFunctionInfo &Info,
534 llvm::Function *F) {
535 unsigned CallingConv;
536 AttributeListType AttributeList;
537 ConstructAttributeList(Info, D, AttributeList, CallingConv);
538 F->setAttributes(llvm::AttrListPtr::get(AttributeList));
539 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
540}
541
542/// Determines whether the language options require us to model
543/// unwind exceptions. We treat -fexceptions as mandating this
544/// except under the fragile ObjC ABI with only ObjC exceptions
545/// enabled. This means, for example, that C with -fexceptions
546/// enables this.
547static bool hasUnwindExceptions(const LangOptions &LangOpts) {
548 // If exceptions are completely disabled, obviously this is false.
549 if (!LangOpts.Exceptions) return false;
550
551 // If C++ exceptions are enabled, this is true.
552 if (LangOpts.CXXExceptions) return true;
553
554 // If ObjC exceptions are enabled, this depends on the ABI.
555 if (LangOpts.ObjCExceptions) {
556 return LangOpts.ObjCRuntime.hasUnwindExceptions();
557 }
558
559 return true;
560}
561
562void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
563 llvm::Function *F) {
564 if (CodeGenOpts.UnwindTables)
565 F->setHasUWTable();
566
567 if (!hasUnwindExceptions(LangOpts))
568 F->addFnAttr(llvm::Attribute::NoUnwind);
569
570 if (D->hasAttr<NakedAttr>()) {
571 // Naked implies noinline: we should not be inlining such functions.
572 F->addFnAttr(llvm::Attribute::Naked);
573 F->addFnAttr(llvm::Attribute::NoInline);
574 }
575
576 if (D->hasAttr<NoInlineAttr>())
577 F->addFnAttr(llvm::Attribute::NoInline);
578
579 // (noinline wins over always_inline, and we can't specify both in IR)
580 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
581 !F->getFnAttributes().hasNoInlineAttr())
582 F->addFnAttr(llvm::Attribute::AlwaysInline);
583
584 // FIXME: Communicate hot and cold attributes to LLVM more directly.
585 if (D->hasAttr<ColdAttr>())
586 F->addFnAttr(llvm::Attribute::OptimizeForSize);
587
588 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
589 F->setUnnamedAddr(true);
590
591 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
592 if (MD->isVirtual())
593 F->setUnnamedAddr(true);
594
595 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
596 F->addFnAttr(llvm::Attribute::StackProtect);
597 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
598 F->addFnAttr(llvm::Attribute::StackProtectReq);
599
600 if (LangOpts.AddressSanitizer) {
601 // When AddressSanitizer is enabled, set AddressSafety attribute
602 // unless __attribute__((no_address_safety_analysis)) is used.
603 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
604 F->addFnAttr(llvm::Attribute::AddressSafety);
605 }
606
607 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
608 if (alignment)
609 F->setAlignment(alignment);
610
611 // C++ ABI requires 2-byte alignment for member functions.
612 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
613 F->setAlignment(2);
614}
615
616void CodeGenModule::SetCommonAttributes(const Decl *D,
617 llvm::GlobalValue *GV) {
618 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
619 setGlobalVisibility(GV, ND);
620 else
621 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
622
623 if (D->hasAttr<UsedAttr>())
624 AddUsedGlobal(GV);
625
626 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
627 GV->setSection(SA->getName());
628
629 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
630}
631
632void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
633 llvm::Function *F,
634 const CGFunctionInfo &FI) {
635 SetLLVMFunctionAttributes(D, FI, F);
636 SetLLVMFunctionAttributesForDefinition(D, F);
637
638 F->setLinkage(llvm::Function::InternalLinkage);
639
640 SetCommonAttributes(D, F);
641}
642
643void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
644 llvm::Function *F,
645 bool IsIncompleteFunction) {
646 if (unsigned IID = F->getIntrinsicID()) {
647 // If this is an intrinsic function, set the function's attributes
648 // to the intrinsic's attributes.
649 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
650 return;
651 }
652
653 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
654
655 if (!IsIncompleteFunction)
656 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
657
658 // Only a few attributes are set on declarations; these may later be
659 // overridden by a definition.
660
661 if (FD->hasAttr<DLLImportAttr>()) {
662 F->setLinkage(llvm::Function::DLLImportLinkage);
663 } else if (FD->hasAttr<WeakAttr>() ||
664 FD->isWeakImported()) {
665 // "extern_weak" is overloaded in LLVM; we probably should have
666 // separate linkage types for this.
667 F->setLinkage(llvm::Function::ExternalWeakLinkage);
668 } else {
669 F->setLinkage(llvm::Function::ExternalLinkage);
670
671 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
672 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
673 F->setVisibility(GetLLVMVisibility(LV.visibility()));
674 }
675 }
676
677 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
678 F->setSection(SA->getName());
679}
680
681void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
682 assert(!GV->isDeclaration() &&
683 "Only globals with definition can force usage.");
684 LLVMUsed.push_back(GV);
685}
686
687void CodeGenModule::EmitLLVMUsed() {
688 // Don't create llvm.used if there is no need.
689 if (LLVMUsed.empty())
690 return;
691
692 // Convert LLVMUsed to what ConstantArray needs.
693 SmallVector<llvm::Constant*, 8> UsedArray;
694 UsedArray.resize(LLVMUsed.size());
695 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
696 UsedArray[i] =
697 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
698 Int8PtrTy);
699 }
700
701 if (UsedArray.empty())
702 return;
703 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
704
705 llvm::GlobalVariable *GV =
706 new llvm::GlobalVariable(getModule(), ATy, false,
707 llvm::GlobalValue::AppendingLinkage,
708 llvm::ConstantArray::get(ATy, UsedArray),
709 "llvm.used");
710
711 GV->setSection("llvm.metadata");
712}
713
714void CodeGenModule::EmitDeferred() {
715 // Emit code for any potentially referenced deferred decls. Since a
716 // previously unused static decl may become used during the generation of code
717 // for a static function, iterate until no changes are made.
718
719 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
720 if (!DeferredVTables.empty()) {
721 const CXXRecordDecl *RD = DeferredVTables.back();
722 DeferredVTables.pop_back();
723 getCXXABI().EmitVTables(RD);
724 continue;
725 }
726
727 GlobalDecl D = DeferredDeclsToEmit.back();
728 DeferredDeclsToEmit.pop_back();
729
730 // Check to see if we've already emitted this. This is necessary
731 // for a couple of reasons: first, decls can end up in the
732 // deferred-decls queue multiple times, and second, decls can end
733 // up with definitions in unusual ways (e.g. by an extern inline
734 // function acquiring a strong function redefinition). Just
735 // ignore these cases.
736 //
737 // TODO: That said, looking this up multiple times is very wasteful.
738 StringRef Name = getMangledName(D);
739 llvm::GlobalValue *CGRef = GetGlobalValue(Name);
740 assert(CGRef && "Deferred decl wasn't referenced?");
741
742 if (!CGRef->isDeclaration())
743 continue;
744
745 // GlobalAlias::isDeclaration() defers to the aliasee, but for our
746 // purposes an alias counts as a definition.
747 if (isa<llvm::GlobalAlias>(CGRef))
748 continue;
749
750 // Otherwise, emit the definition and move on to the next one.
751 EmitGlobalDefinition(D);
752 }
753}
754
755void CodeGenModule::EmitGlobalAnnotations() {
756 if (Annotations.empty())
757 return;
758
759 // Create a new global variable for the ConstantStruct in the Module.
760 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
761 Annotations[0]->getType(), Annotations.size()), Annotations);
762 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
763 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
764 "llvm.global.annotations");
765 gv->setSection(AnnotationSection);
766}
767
768llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
769 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
770 if (i != AnnotationStrings.end())
771 return i->second;
772
773 // Not found yet, create a new global.
774 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
775 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
776 true, llvm::GlobalValue::PrivateLinkage, s, ".str");
777 gv->setSection(AnnotationSection);
778 gv->setUnnamedAddr(true);
779 AnnotationStrings[Str] = gv;
780 return gv;
781}
782
783llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
784 SourceManager &SM = getContext().getSourceManager();
785 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
786 if (PLoc.isValid())
787 return EmitAnnotationString(PLoc.getFilename());
788 return EmitAnnotationString(SM.getBufferName(Loc));
789}
790
791llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
792 SourceManager &SM = getContext().getSourceManager();
793 PresumedLoc PLoc = SM.getPresumedLoc(L);
794 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
795 SM.getExpansionLineNumber(L);
796 return llvm::ConstantInt::get(Int32Ty, LineNo);
797}
798
799llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
800 const AnnotateAttr *AA,
801 SourceLocation L) {
802 // Get the globals for file name, annotation, and the line number.
803 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
804 *UnitGV = EmitAnnotationUnit(L),
805 *LineNoCst = EmitAnnotationLineNo(L);
806
807 // Create the ConstantStruct for the global annotation.
808 llvm::Constant *Fields[4] = {
809 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
810 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
811 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
812 LineNoCst
813 };
814 return llvm::ConstantStruct::getAnon(Fields);
815}
816
817void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
818 llvm::GlobalValue *GV) {
819 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
820 // Get the struct elements for these annotations.
821 for (specific_attr_iterator<AnnotateAttr>
822 ai = D->specific_attr_begin<AnnotateAttr>(),
823 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
824 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
825}
826
827bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
828 // Never defer when EmitAllDecls is specified.
829 if (LangOpts.EmitAllDecls)
830 return false;
831
832 return !getContext().DeclMustBeEmitted(Global);
833}
834
835llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
836 const AliasAttr *AA = VD->getAttr<AliasAttr>();
837 assert(AA && "No alias?");
838
839 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
840
841 // See if there is already something with the target's name in the module.
842 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
843
844 llvm::Constant *Aliasee;
845 if (isa<llvm::FunctionType>(DeclTy))
846 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
847 /*ForVTable=*/false);
848 else
849 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
850 llvm::PointerType::getUnqual(DeclTy), 0);
851 if (!Entry) {
852 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
853 F->setLinkage(llvm::Function::ExternalWeakLinkage);
854 WeakRefReferences.insert(F);
855 }
856
857 return Aliasee;
858}
859
860void CodeGenModule::EmitGlobal(GlobalDecl GD) {
861 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
862
863 // Weak references don't produce any output by themselves.
864 if (Global->hasAttr<WeakRefAttr>())
865 return;
866
867 // If this is an alias definition (which otherwise looks like a declaration)
868 // emit it now.
869 if (Global->hasAttr<AliasAttr>())
870 return EmitAliasDefinition(GD);
871
872 // If this is CUDA, be selective about which declarations we emit.
873 if (LangOpts.CUDA) {
874 if (CodeGenOpts.CUDAIsDevice) {
875 if (!Global->hasAttr<CUDADeviceAttr>() &&
876 !Global->hasAttr<CUDAGlobalAttr>() &&
877 !Global->hasAttr<CUDAConstantAttr>() &&
878 !Global->hasAttr<CUDASharedAttr>())
879 return;
880 } else {
881 if (!Global->hasAttr<CUDAHostAttr>() && (
882 Global->hasAttr<CUDADeviceAttr>() ||
883 Global->hasAttr<CUDAConstantAttr>() ||
884 Global->hasAttr<CUDASharedAttr>()))
885 return;
886 }
887 }
888
889 // Ignore declarations, they will be emitted on their first use.
890 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
891 // Forward declarations are emitted lazily on first use.
892 if (!FD->doesThisDeclarationHaveABody()) {
893 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
894 return;
895
896 const FunctionDecl *InlineDefinition = 0;
897 FD->getBody(InlineDefinition);
898
899 StringRef MangledName = getMangledName(GD);
900 DeferredDecls.erase(MangledName);
901 EmitGlobalDefinition(InlineDefinition);
902 return;
903 }
904 } else {
905 const VarDecl *VD = cast<VarDecl>(Global);
906 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
907
908 if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
909 return;
910 }
911
912 // Defer code generation when possible if this is a static definition, inline
913 // function etc. These we only want to emit if they are used.
914 if (!MayDeferGeneration(Global)) {
915 // Emit the definition if it can't be deferred.
916 EmitGlobalDefinition(GD);
917 return;
918 }
919
920 // If we're deferring emission of a C++ variable with an
921 // initializer, remember the order in which it appeared in the file.
922 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
923 cast<VarDecl>(Global)->hasInit()) {
924 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
925 CXXGlobalInits.push_back(0);
926 }
927
928 // If the value has already been used, add it directly to the
929 // DeferredDeclsToEmit list.
930 StringRef MangledName = getMangledName(GD);
931 if (GetGlobalValue(MangledName))
932 DeferredDeclsToEmit.push_back(GD);
933 else {
934 // Otherwise, remember that we saw a deferred decl with this name. The
935 // first use of the mangled name will cause it to move into
936 // DeferredDeclsToEmit.
937 DeferredDecls[MangledName] = GD;
938 }
939}
940
941namespace {
942 struct FunctionIsDirectlyRecursive :
943 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
944 const StringRef Name;
945 const Builtin::Context &BI;
946 bool Result;
947 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
948 Name(N), BI(C), Result(false) {
949 }
950 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
951
952 bool TraverseCallExpr(CallExpr *E) {
953 const FunctionDecl *FD = E->getDirectCallee();
954 if (!FD)
955 return true;
956 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
957 if (Attr && Name == Attr->getLabel()) {
958 Result = true;
959 return false;
960 }
961 unsigned BuiltinID = FD->getBuiltinID();
962 if (!BuiltinID)
963 return true;
964 StringRef BuiltinName = BI.GetName(BuiltinID);
965 if (BuiltinName.startswith("__builtin_") &&
966 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
967 Result = true;
968 return false;
969 }
970 return true;
971 }
972 };
973}
974
975// isTriviallyRecursive - Check if this function calls another
976// decl that, because of the asm attribute or the other decl being a builtin,
977// ends up pointing to itself.
978bool
979CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
980 StringRef Name;
981 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
982 // asm labels are a special kind of mangling we have to support.
983 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
984 if (!Attr)
985 return false;
986 Name = Attr->getLabel();
987 } else {
988 Name = FD->getName();
989 }
990
991 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
992 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
993 return Walker.Result;
994}
995
996bool
997CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
998 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
999 return true;
1000 if (CodeGenOpts.OptimizationLevel == 0 &&
1001 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1002 return false;
1003 // PR9614. Avoid cases where the source code is lying to us. An available
1004 // externally function should have an equivalent function somewhere else,
1005 // but a function that calls itself is clearly not equivalent to the real
1006 // implementation.
1007 // This happens in glibc's btowc and in some configure checks.
1008 return !isTriviallyRecursive(F);
1009}
1010
1011void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1012 const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1013
1014 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1015 Context.getSourceManager(),
1016 "Generating code for declaration");
1017
1018 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1019 // At -O0, don't generate IR for functions with available_externally
1020 // linkage.
1021 if (!shouldEmitFunction(Function))
1022 return;
1023
1024 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1025 // Make sure to emit the definition(s) before we emit the thunks.
1026 // This is necessary for the generation of certain thunks.
1027 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1028 EmitCXXConstructor(CD, GD.getCtorType());
1029 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1030 EmitCXXDestructor(DD, GD.getDtorType());
1031 else
1032 EmitGlobalFunctionDefinition(GD);
1033
1034 if (Method->isVirtual())
1035 getVTables().EmitThunks(GD);
1036
1037 return;
1038 }
1039
1040 return EmitGlobalFunctionDefinition(GD);
1041 }
1042
1043 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1044 return EmitGlobalVarDefinition(VD);
1045
1046 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1047}
1048
1049/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1050/// module, create and return an llvm Function with the specified type. If there
1051/// is something in the module with the specified name, return it potentially
1052/// bitcasted to the right type.
1053///
1054/// If D is non-null, it specifies a decl that correspond to this. This is used
1055/// to set the attributes on the function when it is first created.
1056llvm::Constant *
1057CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1058 llvm::Type *Ty,
1059 GlobalDecl D, bool ForVTable,
1060 llvm::Attributes ExtraAttrs) {
1061 // Lookup the entry, lazily creating it if necessary.
1062 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1063 if (Entry) {
1064 if (WeakRefReferences.erase(Entry)) {
1065 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1066 if (FD && !FD->hasAttr<WeakAttr>())
1067 Entry->setLinkage(llvm::Function::ExternalLinkage);
1068 }
1069
1070 if (Entry->getType()->getElementType() == Ty)
1071 return Entry;
1072
1073 // Make sure the result is of the correct type.
1074 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1075 }
1076
1077 // This function doesn't have a complete type (for example, the return
1078 // type is an incomplete struct). Use a fake type instead, and make
1079 // sure not to try to set attributes.
1080 bool IsIncompleteFunction = false;
1081
1082 llvm::FunctionType *FTy;
1083 if (isa<llvm::FunctionType>(Ty)) {
1084 FTy = cast<llvm::FunctionType>(Ty);
1085 } else {
1086 FTy = llvm::FunctionType::get(VoidTy, false);
1087 IsIncompleteFunction = true;
1088 }
1089
1090 llvm::Function *F = llvm::Function::Create(FTy,
1091 llvm::Function::ExternalLinkage,
1092 MangledName, &getModule());
1093 assert(F->getName() == MangledName && "name was uniqued!");
1094 if (D.getDecl())
1095 SetFunctionAttributes(D, F, IsIncompleteFunction);
1096 if (ExtraAttrs != llvm::Attribute::None)
1097 F->addFnAttr(ExtraAttrs);
1098
1099 // This is the first use or definition of a mangled name. If there is a
1100 // deferred decl with this name, remember that we need to emit it at the end
1101 // of the file.
1102 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1103 if (DDI != DeferredDecls.end()) {
1104 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1105 // list, and remove it from DeferredDecls (since we don't need it anymore).
1106 DeferredDeclsToEmit.push_back(DDI->second);
1107 DeferredDecls.erase(DDI);
1108
1109 // Otherwise, there are cases we have to worry about where we're
1110 // using a declaration for which we must emit a definition but where
1111 // we might not find a top-level definition:
1112 // - member functions defined inline in their classes
1113 // - friend functions defined inline in some class
1114 // - special member functions with implicit definitions
1115 // If we ever change our AST traversal to walk into class methods,
1116 // this will be unnecessary.
1117 //
1118 // We also don't emit a definition for a function if it's going to be an entry
1119 // in a vtable, unless it's already marked as used.
1120 } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1121 // Look for a declaration that's lexically in a record.
1122 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1123 FD = FD->getMostRecentDecl();
1124 do {
1125 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1126 if (FD->isImplicit() && !ForVTable) {
1127 assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1128 DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1129 break;
1130 } else if (FD->doesThisDeclarationHaveABody()) {
1131 DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1132 break;
1133 }
1134 }
1135 FD = FD->getPreviousDecl();
1136 } while (FD);
1137 }
1138
1139 // Make sure the result is of the requested type.
1140 if (!IsIncompleteFunction) {
1141 assert(F->getType()->getElementType() == Ty);
1142 return F;
1143 }
1144
1145 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1146 return llvm::ConstantExpr::getBitCast(F, PTy);
1147}
1148
1149/// GetAddrOfFunction - Return the address of the given function. If Ty is
1150/// non-null, then this function will use the specified type if it has to
1151/// create it (this occurs when we see a definition of the function).
1152llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1153 llvm::Type *Ty,
1154 bool ForVTable) {
1155 // If there was no specific requested type, just convert it now.
1156 if (!Ty)
1157 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1158
1159 StringRef MangledName = getMangledName(GD);
1160 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1161}
1162
1163/// CreateRuntimeFunction - Create a new runtime function with the specified
1164/// type and name.
1165llvm::Constant *
1166CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1167 StringRef Name,
1168 llvm::Attributes ExtraAttrs) {
1169 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1170 ExtraAttrs);
1171}
1172
1173/// isTypeConstant - Determine whether an object of this type can be emitted
1174/// as a constant.
1175///
1176/// If ExcludeCtor is true, the duration when the object's constructor runs
1177/// will not be considered. The caller will need to verify that the object is
1178/// not written to during its construction.
1179bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1180 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1181 return false;
1182
1183 if (Context.getLangOpts().CPlusPlus) {
1184 if (const CXXRecordDecl *Record
1185 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1186 return ExcludeCtor && !Record->hasMutableFields() &&
1187 Record->hasTrivialDestructor();
1188 }
1189
1190 return true;
1191}
1192
1193/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1194/// create and return an llvm GlobalVariable with the specified type. If there
1195/// is something in the module with the specified name, return it potentially
1196/// bitcasted to the right type.
1197///
1198/// If D is non-null, it specifies a decl that correspond to this. This is used
1199/// to set the attributes on the global when it is first created.
1200llvm::Constant *
1201CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1202 llvm::PointerType *Ty,
1203 const VarDecl *D,
1204 bool UnnamedAddr) {
1205 // Lookup the entry, lazily creating it if necessary.
1206 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1207 if (Entry) {
1208 if (WeakRefReferences.erase(Entry)) {
1209 if (D && !D->hasAttr<WeakAttr>())
1210 Entry->setLinkage(llvm::Function::ExternalLinkage);
1211 }
1212
1213 if (UnnamedAddr)
1214 Entry->setUnnamedAddr(true);
1215
1216 if (Entry->getType() == Ty)
1217 return Entry;
1218
1219 // Make sure the result is of the correct type.
1220 return llvm::ConstantExpr::getBitCast(Entry, Ty);
1221 }
1222
1223 // This is the first use or definition of a mangled name. If there is a
1224 // deferred decl with this name, remember that we need to emit it at the end
1225 // of the file.
1226 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1227 if (DDI != DeferredDecls.end()) {
1228 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1229 // list, and remove it from DeferredDecls (since we don't need it anymore).
1230 DeferredDeclsToEmit.push_back(DDI->second);
1231 DeferredDecls.erase(DDI);
1232 }
1233
1234 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1235 llvm::GlobalVariable *GV =
1236 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1237 llvm::GlobalValue::ExternalLinkage,
1238 0, MangledName, 0,
1239 llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1240
1241 // Handle things which are present even on external declarations.
1242 if (D) {
1243 // FIXME: This code is overly simple and should be merged with other global
1244 // handling.
1245 GV->setConstant(isTypeConstant(D->getType(), false));
1246
1247 // Set linkage and visibility in case we never see a definition.
1248 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1249 if (LV.linkage() != ExternalLinkage) {
1250 // Don't set internal linkage on declarations.
1251 } else {
1252 if (D->hasAttr<DLLImportAttr>())
1253 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1254 else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1255 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1256
1257 // Set visibility on a declaration only if it's explicit.
1258 if (LV.visibilityExplicit())
1259 GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1260 }
1261
1262 if (D->isThreadSpecified())
1263 setTLSMode(GV, *D);
1264 }
1265
1266 if (AddrSpace != Ty->getAddressSpace())
1267 return llvm::ConstantExpr::getBitCast(GV, Ty);
1268 else
1269 return GV;
1270}
1271
1272
1273llvm::GlobalVariable *
1274CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1275 llvm::Type *Ty,
1276 llvm::GlobalValue::LinkageTypes Linkage) {
1277 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1278 llvm::GlobalVariable *OldGV = 0;
1279
1280
1281 if (GV) {
1282 // Check if the variable has the right type.
1283 if (GV->getType()->getElementType() == Ty)
1284 return GV;
1285
1286 // Because C++ name mangling, the only way we can end up with an already
1287 // existing global with the same name is if it has been declared extern "C".
1288 assert(GV->isDeclaration() && "Declaration has wrong type!");
1289 OldGV = GV;
1290 }
1291
1292 // Create a new variable.
1293 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1294 Linkage, 0, Name);
1295
1296 if (OldGV) {
1297 // Replace occurrences of the old variable if needed.
1298 GV->takeName(OldGV);
1299
1300 if (!OldGV->use_empty()) {
1301 llvm::Constant *NewPtrForOldDecl =
1302 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1303 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1304 }
1305
1306 OldGV->eraseFromParent();
1307 }
1308
1309 return GV;
1310}
1311
1312/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1313/// given global variable. If Ty is non-null and if the global doesn't exist,
1314/// then it will be created with the specified type instead of whatever the
1315/// normal requested type would be.
1316llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1317 llvm::Type *Ty) {
1318 assert(D->hasGlobalStorage() && "Not a global variable");
1319 QualType ASTTy = D->getType();
1320 if (Ty == 0)
1321 Ty = getTypes().ConvertTypeForMem(ASTTy);
1322
1323 llvm::PointerType *PTy =
1324 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1325
1326 StringRef MangledName = getMangledName(D);
1327 return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1328}
1329
1330/// CreateRuntimeVariable - Create a new runtime global variable with the
1331/// specified type and name.
1332llvm::Constant *
1333CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1334 StringRef Name) {
1335 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1336 true);
1337}
1338
1339void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1340 assert(!D->getInit() && "Cannot emit definite definitions here!");
1341
1342 if (MayDeferGeneration(D)) {
1343 // If we have not seen a reference to this variable yet, place it
1344 // into the deferred declarations table to be emitted if needed
1345 // later.
1346 StringRef MangledName = getMangledName(D);
1347 if (!GetGlobalValue(MangledName)) {
1348 DeferredDecls[MangledName] = D;
1349 return;
1350 }
1351 }
1352
1353 // The tentative definition is the only definition.
1354 EmitGlobalVarDefinition(D);
1355}
1356
1357void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1358 if (DefinitionRequired)
1359 getCXXABI().EmitVTables(Class);
1360}
1361
1362llvm::GlobalVariable::LinkageTypes
1363CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1364 if (RD->getLinkage() != ExternalLinkage)
1365 return llvm::GlobalVariable::InternalLinkage;
1366
1367 if (const CXXMethodDecl *KeyFunction
1368 = RD->getASTContext().getKeyFunction(RD)) {
1369 // If this class has a key function, use that to determine the linkage of
1370 // the vtable.
1371 const FunctionDecl *Def = 0;
1372 if (KeyFunction->hasBody(Def))
1373 KeyFunction = cast<CXXMethodDecl>(Def);
1374
1375 switch (KeyFunction->getTemplateSpecializationKind()) {
1376 case TSK_Undeclared:
1377 case TSK_ExplicitSpecialization:
1378 // When compiling with optimizations turned on, we emit all vtables,
1379 // even if the key function is not defined in the current translation
1380 // unit. If this is the case, use available_externally linkage.
1381 if (!Def && CodeGenOpts.OptimizationLevel)
1382 return llvm::GlobalVariable::AvailableExternallyLinkage;
1383
1384 if (KeyFunction->isInlined())
1385 return !Context.getLangOpts().AppleKext ?
1386 llvm::GlobalVariable::LinkOnceODRLinkage :
1387 llvm::Function::InternalLinkage;
1388
1389 return llvm::GlobalVariable::ExternalLinkage;
1390
1391 case TSK_ImplicitInstantiation:
1392 return !Context.getLangOpts().AppleKext ?
1393 llvm::GlobalVariable::LinkOnceODRLinkage :
1394 llvm::Function::InternalLinkage;
1395
1396 case TSK_ExplicitInstantiationDefinition:
1397 return !Context.getLangOpts().AppleKext ?
1398 llvm::GlobalVariable::WeakODRLinkage :
1399 llvm::Function::InternalLinkage;
1400
1401 case TSK_ExplicitInstantiationDeclaration:
1402 // FIXME: Use available_externally linkage. However, this currently
1403 // breaks LLVM's build due to undefined symbols.
1404 // return llvm::GlobalVariable::AvailableExternallyLinkage;
1405 return !Context.getLangOpts().AppleKext ?
1406 llvm::GlobalVariable::LinkOnceODRLinkage :
1407 llvm::Function::InternalLinkage;
1408 }
1409 }
1410
1411 if (Context.getLangOpts().AppleKext)
1412 return llvm::Function::InternalLinkage;
1413
1414 switch (RD->getTemplateSpecializationKind()) {
1415 case TSK_Undeclared:
1416 case TSK_ExplicitSpecialization:
1417 case TSK_ImplicitInstantiation:
1418 // FIXME: Use available_externally linkage. However, this currently
1419 // breaks LLVM's build due to undefined symbols.
1420 // return llvm::GlobalVariable::AvailableExternallyLinkage;
1421 case TSK_ExplicitInstantiationDeclaration:
1422 return llvm::GlobalVariable::LinkOnceODRLinkage;
1423
1424 case TSK_ExplicitInstantiationDefinition:
1425 return llvm::GlobalVariable::WeakODRLinkage;
1426 }
1427
1428 llvm_unreachable("Invalid TemplateSpecializationKind!");
1429}
1430
1431CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1432 return Context.toCharUnitsFromBits(
1433 TheTargetData.getTypeStoreSizeInBits(Ty));
1434}
1435
1436llvm::Constant *
1437CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1438 const Expr *rawInit) {
1439 ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1440 if (const ExprWithCleanups *withCleanups =
1441 dyn_cast<ExprWithCleanups>(rawInit)) {
1442 cleanups = withCleanups->getObjects();
1443 rawInit = withCleanups->getSubExpr();
1444 }
1445
1446 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1447 if (!init || !init->initializesStdInitializerList() ||
1448 init->getNumInits() == 0)
1449 return 0;
1450
1451 ASTContext &ctx = getContext();
1452 unsigned numInits = init->getNumInits();
1453 // FIXME: This check is here because we would otherwise silently miscompile
1454 // nested global std::initializer_lists. Better would be to have a real
1455 // implementation.
1456 for (unsigned i = 0; i < numInits; ++i) {
1457 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1458 if (inner && inner->initializesStdInitializerList()) {
1459 ErrorUnsupported(inner, "nested global std::initializer_list");
1460 return 0;
1461 }
1462 }
1463
1464 // Synthesize a fake VarDecl for the array and initialize that.
1465 QualType elementType = init->getInit(0)->getType();
1466 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1467 QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1468 ArrayType::Normal, 0);
1469
1470 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1471 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1472 arrayType, D->getLocation());
1473 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1474 D->getDeclContext()),
1475 D->getLocStart(), D->getLocation(),
1476 name, arrayType, sourceInfo,
1477 SC_Static, SC_Static);
1478
1479 // Now clone the InitListExpr to initialize the array instead.
1480 // Incredible hack: we want to use the existing InitListExpr here, so we need
1481 // to tell it that it no longer initializes a std::initializer_list.
1482 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1483 init->getNumInits());
1484 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1485 init->getRBraceLoc());
1486 arrayInit->setType(arrayType);
1487
1488 if (!cleanups.empty())
1489 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1490
1491 backingArray->setInit(arrayInit);
1492
1493 // Emit the definition of the array.
1494 EmitGlobalVarDefinition(backingArray);
1495
1496 // Inspect the initializer list to validate it and determine its type.
1497 // FIXME: doing this every time is probably inefficient; caching would be nice
1498 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1499 RecordDecl::field_iterator field = record->field_begin();
1500 if (field == record->field_end()) {
1501 ErrorUnsupported(D, "weird std::initializer_list");
1502 return 0;
1503 }
1504 QualType elementPtr = ctx.getPointerType(elementType.withConst());
1505 // Start pointer.
1506 if (!ctx.hasSameType(field->getType(), elementPtr)) {
1507 ErrorUnsupported(D, "weird std::initializer_list");
1508 return 0;
1509 }
1510 ++field;
1511 if (field == record->field_end()) {
1512 ErrorUnsupported(D, "weird std::initializer_list");
1513 return 0;
1514 }
1515 bool isStartEnd = false;
1516 if (ctx.hasSameType(field->getType(), elementPtr)) {
1517 // End pointer.
1518 isStartEnd = true;
1519 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1520 ErrorUnsupported(D, "weird std::initializer_list");
1521 return 0;
1522 }
1523
1524 // Now build an APValue representing the std::initializer_list.
1525 APValue initListValue(APValue::UninitStruct(), 0, 2);
1526 APValue &startField = initListValue.getStructField(0);
1527 APValue::LValuePathEntry startOffsetPathEntry;
1528 startOffsetPathEntry.ArrayIndex = 0;
1529 startField = APValue(APValue::LValueBase(backingArray),
1530 CharUnits::fromQuantity(0),
1531 llvm::makeArrayRef(startOffsetPathEntry),
1532 /*IsOnePastTheEnd=*/false, 0);
1533
1534 if (isStartEnd) {
1535 APValue &endField = initListValue.getStructField(1);
1536 APValue::LValuePathEntry endOffsetPathEntry;
1537 endOffsetPathEntry.ArrayIndex = numInits;
1538 endField = APValue(APValue::LValueBase(backingArray),
1539 ctx.getTypeSizeInChars(elementType) * numInits,
1540 llvm::makeArrayRef(endOffsetPathEntry),
1541 /*IsOnePastTheEnd=*/true, 0);
1542 } else {
1543 APValue &sizeField = initListValue.getStructField(1);
1544 sizeField = APValue(llvm::APSInt(numElements));
1545 }
1546
1547 // Emit the constant for the initializer_list.
1548 llvm::Constant *llvmInit =
1549 EmitConstantValueForMemory(initListValue, D->getType());
1550 assert(llvmInit && "failed to initialize as constant");
1551 return llvmInit;
1552}
1553
1554unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1555 unsigned AddrSpace) {
1556 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1557 if (D->hasAttr<CUDAConstantAttr>())
1558 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1559 else if (D->hasAttr<CUDASharedAttr>())
1560 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1561 else
1562 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1563 }
1564
1565 return AddrSpace;
1566}
1567
1568void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1569 llvm::Constant *Init = 0;
1570 QualType ASTTy = D->getType();
1571 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1572 bool NeedsGlobalCtor = false;
1573 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1574
1575 const VarDecl *InitDecl;
1576 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1577
1578 if (!InitExpr) {
1579 // This is a tentative definition; tentative definitions are
1580 // implicitly initialized with { 0 }.
1581 //
1582 // Note that tentative definitions are only emitted at the end of
1583 // a translation unit, so they should never have incomplete
1584 // type. In addition, EmitTentativeDefinition makes sure that we
1585 // never attempt to emit a tentative definition if a real one
1586 // exists. A use may still exists, however, so we still may need
1587 // to do a RAUW.
1588 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1589 Init = EmitNullConstant(D->getType());
1590 } else {
1591 // If this is a std::initializer_list, emit the special initializer.
1592 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1593 // An empty init list will perform zero-initialization, which happens
1594 // to be exactly what we want.
1595 // FIXME: It does so in a global constructor, which is *not* what we
1596 // want.
1597
1598 if (!Init) {
1599 initializedGlobalDecl = GlobalDecl(D);
1600 Init = EmitConstantInit(*InitDecl);
1601 }
1602 if (!Init) {
1603 QualType T = InitExpr->getType();
1604 if (D->getType()->isReferenceType())
1605 T = D->getType();
1606
1607 if (getLangOpts().CPlusPlus) {
1608 Init = EmitNullConstant(T);
1609 NeedsGlobalCtor = true;
1610 } else {
1611 ErrorUnsupported(D, "static initializer");
1612 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1613 }
1614 } else {
1615 // We don't need an initializer, so remove the entry for the delayed
1616 // initializer position (just in case this entry was delayed) if we
1617 // also don't need to register a destructor.
1618 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1619 DelayedCXXInitPosition.erase(D);
1620 }
1621 }
1622
1623 llvm::Type* InitType = Init->getType();
1624 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1625
1626 // Strip off a bitcast if we got one back.
1627 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1628 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1629 // all zero index gep.
1630 CE->getOpcode() == llvm::Instruction::GetElementPtr);
1631 Entry = CE->getOperand(0);
1632 }
1633
1634 // Entry is now either a Function or GlobalVariable.
1635 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1636
1637 // We have a definition after a declaration with the wrong type.
1638 // We must make a new GlobalVariable* and update everything that used OldGV
1639 // (a declaration or tentative definition) with the new GlobalVariable*
1640 // (which will be a definition).
1641 //
1642 // This happens if there is a prototype for a global (e.g.
1643 // "extern int x[];") and then a definition of a different type (e.g.
1644 // "int x[10];"). This also happens when an initializer has a different type
1645 // from the type of the global (this happens with unions).
1646 if (GV == 0 ||
1647 GV->getType()->getElementType() != InitType ||
1648 GV->getType()->getAddressSpace() !=
1649 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1650
1651 // Move the old entry aside so that we'll create a new one.
1652 Entry->setName(StringRef());
1653
1654 // Make a new global with the correct type, this is now guaranteed to work.
1655 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1656
1657 // Replace all uses of the old global with the new global
1658 llvm::Constant *NewPtrForOldDecl =
1659 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1660 Entry->replaceAllUsesWith(NewPtrForOldDecl);
1661
1662 // Erase the old global, since it is no longer used.
1663 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1664 }
1665
1666 if (D->hasAttr<AnnotateAttr>())
1667 AddGlobalAnnotations(D, GV);
1668
1669 GV->setInitializer(Init);
1670
1671 // If it is safe to mark the global 'constant', do so now.
1672 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1673 isTypeConstant(D->getType(), true));
1674
1675 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1676
1677 // Set the llvm linkage type as appropriate.
1678 llvm::GlobalValue::LinkageTypes Linkage =
1679 GetLLVMLinkageVarDefinition(D, GV);
1680 GV->setLinkage(Linkage);
1681 if (Linkage == llvm::GlobalVariable::CommonLinkage)
1682 // common vars aren't constant even if declared const.
1683 GV->setConstant(false);
1684
1685 SetCommonAttributes(D, GV);
1686
1687 // Emit the initializer function if necessary.
1688 if (NeedsGlobalCtor || NeedsGlobalDtor)
1689 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1690
1691 // If we are compiling with ASan, add metadata indicating dynamically
1692 // initialized globals.
1693 if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1694 llvm::Module &M = getModule();
1695
1696 llvm::NamedMDNode *DynamicInitializers =
1697 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1698 llvm::Value *GlobalToAdd[] = { GV };
1699 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1700 DynamicInitializers->addOperand(ThisGlobal);
1701 }
1702
1703 // Emit global variable debug information.
1704 if (CGDebugInfo *DI = getModuleDebugInfo())
1705 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1706 DI->EmitGlobalVariable(GV, D);
1707}
1708
1709llvm::GlobalValue::LinkageTypes
1710CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1711 llvm::GlobalVariable *GV) {
1712 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1713 if (Linkage == GVA_Internal)
1714 return llvm::Function::InternalLinkage;
1715 else if (D->hasAttr<DLLImportAttr>())
1716 return llvm::Function::DLLImportLinkage;
1717 else if (D->hasAttr<DLLExportAttr>())
1718 return llvm::Function::DLLExportLinkage;
1719 else if (D->hasAttr<WeakAttr>()) {
1720 if (GV->isConstant())
1721 return llvm::GlobalVariable::WeakODRLinkage;
1722 else
1723 return llvm::GlobalVariable::WeakAnyLinkage;
1724 } else if (Linkage == GVA_TemplateInstantiation ||
1725 Linkage == GVA_ExplicitTemplateInstantiation)
1726 return llvm::GlobalVariable::WeakODRLinkage;
1727 else if (!getLangOpts().CPlusPlus &&
1728 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1729 D->getAttr<CommonAttr>()) &&
1730 !D->hasExternalStorage() && !D->getInit() &&
1731 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1732 !D->getAttr<WeakImportAttr>()) {
1733 // Thread local vars aren't considered common linkage.
1734 return llvm::GlobalVariable::CommonLinkage;
1735 }
1736 return llvm::GlobalVariable::ExternalLinkage;
1737}
1738
1739/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1740/// implement a function with no prototype, e.g. "int foo() {}". If there are
1741/// existing call uses of the old function in the module, this adjusts them to
1742/// call the new function directly.
1743///
1744/// This is not just a cleanup: the always_inline pass requires direct calls to
1745/// functions to be able to inline them. If there is a bitcast in the way, it
1746/// won't inline them. Instcombine normally deletes these calls, but it isn't
1747/// run at -O0.
1748static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1749 llvm::Function *NewFn) {
1750 // If we're redefining a global as a function, don't transform it.
1751 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1752 if (OldFn == 0) return;
1753
1754 llvm::Type *NewRetTy = NewFn->getReturnType();
1755 SmallVector<llvm::Value*, 4> ArgList;
1756
1757 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1758 UI != E; ) {
1759 // TODO: Do invokes ever occur in C code? If so, we should handle them too.
1760 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1761 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1762 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1763 llvm::CallSite CS(CI);
1764 if (!CI || !CS.isCallee(I)) continue;
1765
1766 // If the return types don't match exactly, and if the call isn't dead, then
1767 // we can't transform this call.
1768 if (CI->getType() != NewRetTy && !CI->use_empty())
1769 continue;
1770
1771 // Get the attribute list.
1772 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1773 llvm::AttrListPtr AttrList = CI->getAttributes();
1774
1775 // Get any return attributes.
1776 llvm::Attributes RAttrs = AttrList.getRetAttributes();
1777
1778 // Add the return attributes.
1779 if (RAttrs)
1780 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1781
1782 // If the function was passed too few arguments, don't transform. If extra
1783 // arguments were passed, we silently drop them. If any of the types
1784 // mismatch, we don't transform.
1785 unsigned ArgNo = 0;
1786 bool DontTransform = false;
1787 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1788 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1789 if (CS.arg_size() == ArgNo ||
1790 CS.getArgument(ArgNo)->getType() != AI->getType()) {
1791 DontTransform = true;
1792 break;
1793 }
1794
1795 // Add any parameter attributes.
1796 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1797 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1798 }
1799 if (DontTransform)
1800 continue;
1801
1802 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes())
1803 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1804
1805 // Okay, we can transform this. Create the new call instruction and copy
1806 // over the required information.
1807 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1808 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1809 ArgList.clear();
1810 if (!NewCall->getType()->isVoidTy())
1811 NewCall->takeName(CI);
1812 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1813 NewCall->setCallingConv(CI->getCallingConv());
1814
1815 // Finally, remove the old call, replacing any uses with the new one.
1816 if (!CI->use_empty())
1817 CI->replaceAllUsesWith(NewCall);
1818
1819 // Copy debug location attached to CI.
1820 if (!CI->getDebugLoc().isUnknown())
1821 NewCall->setDebugLoc(CI->getDebugLoc());
1822 CI->eraseFromParent();
1823 }
1824}
1825
1826void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1827 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1828 // If we have a definition, this might be a deferred decl. If the
1829 // instantiation is explicit, make sure we emit it at the end.
1830 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1831 GetAddrOfGlobalVar(VD);
1832}
1833
1834void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1835 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1836
1837 // Compute the function info and LLVM type.
1838 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1839 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1840
1841 // Get or create the prototype for the function.
1842 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1843
1844 // Strip off a bitcast if we got one back.
1845 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1846 assert(CE->getOpcode() == llvm::Instruction::BitCast);
1847 Entry = CE->getOperand(0);
1848 }
1849
1850
1851 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1852 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1853
1854 // If the types mismatch then we have to rewrite the definition.
1855 assert(OldFn->isDeclaration() &&
1856 "Shouldn't replace non-declaration");
1857
1858 // F is the Function* for the one with the wrong type, we must make a new
1859 // Function* and update everything that used F (a declaration) with the new
1860 // Function* (which will be a definition).
1861 //
1862 // This happens if there is a prototype for a function
1863 // (e.g. "int f()") and then a definition of a different type
1864 // (e.g. "int f(int x)"). Move the old function aside so that it
1865 // doesn't interfere with GetAddrOfFunction.
1866 OldFn->setName(StringRef());
1867 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1868
1869 // If this is an implementation of a function without a prototype, try to
1870 // replace any existing uses of the function (which may be calls) with uses
1871 // of the new function
1872 if (D->getType()->isFunctionNoProtoType()) {
1873 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1874 OldFn->removeDeadConstantUsers();
1875 }
1876
1877 // Replace uses of F with the Function we will endow with a body.
1878 if (!Entry->use_empty()) {
1879 llvm::Constant *NewPtrForOldDecl =
1880 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1881 Entry->replaceAllUsesWith(NewPtrForOldDecl);
1882 }
1883
1884 // Ok, delete the old function now, which is dead.
1885 OldFn->eraseFromParent();
1886
1887 Entry = NewFn;
1888 }
1889
1890 // We need to set linkage and visibility on the function before
1891 // generating code for it because various parts of IR generation
1892 // want to propagate this information down (e.g. to local static
1893 // declarations).
1894 llvm::Function *Fn = cast<llvm::Function>(Entry);
1895 setFunctionLinkage(D, Fn);
1896
1897 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1898 setGlobalVisibility(Fn, D);
1899
1900 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1901
1902 SetFunctionDefinitionAttributes(D, Fn);
1903 SetLLVMFunctionAttributesForDefinition(D, Fn);
1904
1905 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1906 AddGlobalCtor(Fn, CA->getPriority());
1907 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1908 AddGlobalDtor(Fn, DA->getPriority());
1909 if (D->hasAttr<AnnotateAttr>())
1910 AddGlobalAnnotations(D, Fn);
1911}
1912
1913void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1914 const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1915 const AliasAttr *AA = D->getAttr<AliasAttr>();
1916 assert(AA && "Not an alias?");
1917
1918 StringRef MangledName = getMangledName(GD);
1919
1920 // If there is a definition in the module, then it wins over the alias.
1921 // This is dubious, but allow it to be safe. Just ignore the alias.
1922 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1923 if (Entry && !Entry->isDeclaration())
1924 return;
1925
1926 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1927
1928 // Create a reference to the named value. This ensures that it is emitted
1929 // if a deferred decl.
1930 llvm::Constant *Aliasee;
1931 if (isa<llvm::FunctionType>(DeclTy))
1932 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1933 /*ForVTable=*/false);
1934 else
1935 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1936 llvm::PointerType::getUnqual(DeclTy), 0);
1937
1938 // Create the new alias itself, but don't set a name yet.
1939 llvm::GlobalValue *GA =
1940 new llvm::GlobalAlias(Aliasee->getType(),
1941 llvm::Function::ExternalLinkage,
1942 "", Aliasee, &getModule());
1943
1944 if (Entry) {
1945 assert(Entry->isDeclaration());
1946
1947 // If there is a declaration in the module, then we had an extern followed
1948 // by the alias, as in:
1949 // extern int test6();
1950 // ...
1951 // int test6() __attribute__((alias("test7")));
1952 //
1953 // Remove it and replace uses of it with the alias.
1954 GA->takeName(Entry);
1955
1956 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1957 Entry->getType()));
1958 Entry->eraseFromParent();
1959 } else {
1960 GA->setName(MangledName);
1961 }
1962
1963 // Set attributes which are particular to an alias; this is a
1964 // specialization of the attributes which may be set on a global
1965 // variable/function.
1966 if (D->hasAttr<DLLExportAttr>()) {
1967 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1968 // The dllexport attribute is ignored for undefined symbols.
1969 if (FD->hasBody())
1970 GA->setLinkage(llvm::Function::DLLExportLinkage);
1971 } else {
1972 GA->setLinkage(llvm::Function::DLLExportLinkage);
1973 }
1974 } else if (D->hasAttr<WeakAttr>() ||
1975 D->hasAttr<WeakRefAttr>() ||
1976 D->isWeakImported()) {
1977 GA->setLinkage(llvm::Function::WeakAnyLinkage);
1978 }
1979
1980 SetCommonAttributes(D, GA);
1981}
1982
1983llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1984 ArrayRef<llvm::Type*> Tys) {
1985 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1986 Tys);
1987}
1988
1989static llvm::StringMapEntry<llvm::Constant*> &
1990GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1991 const StringLiteral *Literal,
1992 bool TargetIsLSB,
1993 bool &IsUTF16,
1994 unsigned &StringLength) {
1995 StringRef String = Literal->getString();
1996 unsigned NumBytes = String.size();
1997
1998 // Check for simple case.
1999 if (!Literal->containsNonAsciiOrNull()) {
2000 StringLength = NumBytes;
2001 return Map.GetOrCreateValue(String);
2002 }
2003
2004 // Otherwise, convert the UTF8 literals into a string of shorts.
2005 IsUTF16 = true;
2006
2007 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2008 const UTF8 *FromPtr = (const UTF8 *)String.data();
2009 UTF16 *ToPtr = &ToBuf[0];
2010
2011 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2012 &ToPtr, ToPtr + NumBytes,
2013 strictConversion);
2014
2015 // ConvertUTF8toUTF16 returns the length in ToPtr.
2016 StringLength = ToPtr - &ToBuf[0];
2017
2018 // Add an explicit null.
2019 *ToPtr = 0;
2020 return Map.
2021 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2022 (StringLength + 1) * 2));
2023}
2024
2025static llvm::StringMapEntry<llvm::Constant*> &
2026GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2027 const StringLiteral *Literal,
2028 unsigned &StringLength) {
2029 StringRef String = Literal->getString();
2030 StringLength = String.size();
2031 return Map.GetOrCreateValue(String);
2032}
2033
2034llvm::Constant *
2035CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2036 unsigned StringLength = 0;
2037 bool isUTF16 = false;
2038 llvm::StringMapEntry<llvm::Constant*> &Entry =
2039 GetConstantCFStringEntry(CFConstantStringMap, Literal,
2040 getTargetData().isLittleEndian(),
2041 isUTF16, StringLength);
2042
2043 if (llvm::Constant *C = Entry.getValue())
2044 return C;
2045
2046 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2047 llvm::Constant *Zeros[] = { Zero, Zero };
2048
2049 // If we don't already have it, get __CFConstantStringClassReference.
2050 if (!CFConstantStringClassRef) {
2051 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2052 Ty = llvm::ArrayType::get(Ty, 0);
2053 llvm::Constant *GV = CreateRuntimeVariable(Ty,
2054 "__CFConstantStringClassReference");
2055 // Decay array -> ptr
2056 CFConstantStringClassRef =
2057 llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2058 }
2059
2060 QualType CFTy = getContext().getCFConstantStringType();
2061
2062 llvm::StructType *STy =
2063 cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2064
2065 llvm::Constant *Fields[4];
2066
2067 // Class pointer.
2068 Fields[0] = CFConstantStringClassRef;
2069
2070 // Flags.
2071 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2072 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2073 llvm::ConstantInt::get(Ty, 0x07C8);
2074
2075 // String pointer.
2076 llvm::Constant *C = 0;
2077 if (isUTF16) {
2078 ArrayRef<uint16_t> Arr =
2079 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2080 Entry.getKey().size() / 2);
2081 C = llvm::ConstantDataArray::get(VMContext, Arr);
2082 } else {
2083 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2084 }
2085
2086 llvm::GlobalValue::LinkageTypes Linkage;
2087 if (isUTF16)
2088 // FIXME: why do utf strings get "_" labels instead of "L" labels?
2089 Linkage = llvm::GlobalValue::InternalLinkage;
2090 else
2091 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2092 // when using private linkage. It is not clear if this is a bug in ld
2093 // or a reasonable new restriction.
2094 Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2095
2096 // Note: -fwritable-strings doesn't make the backing store strings of
2097 // CFStrings writable. (See <rdar://problem/10657500>)
2098 llvm::GlobalVariable *GV =
2099 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2100 Linkage, C, ".str");
2101 GV->setUnnamedAddr(true);
2102 if (isUTF16) {
2103 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2104 GV->setAlignment(Align.getQuantity());
2105 } else {
2106 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2107 GV->setAlignment(Align.getQuantity());
2108 }
2109
2110 // String.
2111 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2112
2113 if (isUTF16)
2114 // Cast the UTF16 string to the correct type.
2115 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2116
2117 // String length.
2118 Ty = getTypes().ConvertType(getContext().LongTy);
2119 Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2120
2121 // The struct.
2122 C = llvm::ConstantStruct::get(STy, Fields);
2123 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2124 llvm::GlobalVariable::PrivateLinkage, C,
2125 "_unnamed_cfstring_");
2126 if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2127 GV->setSection(Sect);
2128 Entry.setValue(GV);
2129
2130 return GV;
2131}
2132
2133static RecordDecl *
2134CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2135 DeclContext *DC, IdentifierInfo *Id) {
2136 SourceLocation Loc;
2137 if (Ctx.getLangOpts().CPlusPlus)
2138 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2139 else
2140 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2141}
2142
2143llvm::Constant *
2144CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2145 unsigned StringLength = 0;
2146 llvm::StringMapEntry<llvm::Constant*> &Entry =
2147 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2148
2149 if (llvm::Constant *C = Entry.getValue())
2150 return C;
2151
2152 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2153 llvm::Constant *Zeros[] = { Zero, Zero };
2154
2155 // If we don't already have it, get _NSConstantStringClassReference.
2156 if (!ConstantStringClassRef) {
2157 std::string StringClass(getLangOpts().ObjCConstantStringClass);
2158 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2159 llvm::Constant *GV;
2160 if (LangOpts.ObjCRuntime.isNonFragile()) {
2161 std::string str =
2162 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2163 : "OBJC_CLASS_$_" + StringClass;
2164 GV = getObjCRuntime().GetClassGlobal(str);
2165 // Make sure the result is of the correct type.
2166 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2167 ConstantStringClassRef =
2168 llvm::ConstantExpr::getBitCast(GV, PTy);
2169 } else {
2170 std::string str =
2171 StringClass.empty() ? "_NSConstantStringClassReference"
2172 : "_" + StringClass + "ClassReference";
2173 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2174 GV = CreateRuntimeVariable(PTy, str);
2175 // Decay array -> ptr
2176 ConstantStringClassRef =
2177 llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2178 }
2179 }
2180
2181 if (!NSConstantStringType) {
2182 // Construct the type for a constant NSString.
2183 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2184 Context.getTranslationUnitDecl(),
2185 &Context.Idents.get("__builtin_NSString"));
2186 D->startDefinition();
2187
2188 QualType FieldTypes[3];
2189
2190 // const int *isa;
2191 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2192 // const char *str;
2193 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2194 // unsigned int length;
2195 FieldTypes[2] = Context.UnsignedIntTy;
2196
2197 // Create fields
2198 for (unsigned i = 0; i < 3; ++i) {
2199 FieldDecl *Field = FieldDecl::Create(Context, D,
2200 SourceLocation(),
2201 SourceLocation(), 0,
2202 FieldTypes[i], /*TInfo=*/0,
2203 /*BitWidth=*/0,
2204 /*Mutable=*/false,
2205 ICIS_NoInit);
2206 Field->setAccess(AS_public);
2207 D->addDecl(Field);
2208 }
2209
2210 D->completeDefinition();
2211 QualType NSTy = Context.getTagDeclType(D);
2212 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2213 }
2214
2215 llvm::Constant *Fields[3];
2216
2217 // Class pointer.
2218 Fields[0] = ConstantStringClassRef;
2219
2220 // String pointer.
2221 llvm::Constant *C =
2222 llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2223
2224 llvm::GlobalValue::LinkageTypes Linkage;
2225 bool isConstant;
2226 Linkage = llvm::GlobalValue::PrivateLinkage;
2227 isConstant = !LangOpts.WritableStrings;
2228
2229 llvm::GlobalVariable *GV =
2230 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2231 ".str");
2232 GV->setUnnamedAddr(true);
2233 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2234 GV->setAlignment(Align.getQuantity());
2235 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2236
2237 // String length.
2238 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2239 Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2240
2241 // The struct.
2242 C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2243 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2244 llvm::GlobalVariable::PrivateLinkage, C,
2245 "_unnamed_nsstring_");
2246 // FIXME. Fix section.
2247 if (const char *Sect =
2248 LangOpts.ObjCRuntime.isNonFragile()
2249 ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2250 : getContext().getTargetInfo().getNSStringSection())
2251 GV->setSection(Sect);
2252 Entry.setValue(GV);
2253
2254 return GV;
2255}
2256
2257QualType CodeGenModule::getObjCFastEnumerationStateType() {
2258 if (ObjCFastEnumerationStateType.isNull()) {
2259 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2260 Context.getTranslationUnitDecl(),
2261 &Context.Idents.get("__objcFastEnumerationState"));
2262 D->startDefinition();
2263
2264 QualType FieldTypes[] = {
2265 Context.UnsignedLongTy,
2266 Context.getPointerType(Context.getObjCIdType()),
2267 Context.getPointerType(Context.UnsignedLongTy),
2268 Context.getConstantArrayType(Context.UnsignedLongTy,
2269 llvm::APInt(32, 5), ArrayType::Normal, 0)
2270 };
2271
2272 for (size_t i = 0; i < 4; ++i) {
2273 FieldDecl *Field = FieldDecl::Create(Context,
2274 D,
2275 SourceLocation(),
2276 SourceLocation(), 0,
2277 FieldTypes[i], /*TInfo=*/0,
2278 /*BitWidth=*/0,
2279 /*Mutable=*/false,
2280 ICIS_NoInit);
2281 Field->setAccess(AS_public);
2282 D->addDecl(Field);
2283 }
2284
2285 D->completeDefinition();
2286 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2287 }
2288
2289 return ObjCFastEnumerationStateType;
2290}
2291
2292llvm::Constant *
2293CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2294 assert(!E->getType()->isPointerType() && "Strings are always arrays");
2295
2296 // Don't emit it as the address of the string, emit the string data itself
2297 // as an inline array.
2298 if (E->getCharByteWidth() == 1) {
2299 SmallString<64> Str(E->getString());
2300
2301 // Resize the string to the right size, which is indicated by its type.
2302 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2303 Str.resize(CAT->getSize().getZExtValue());
2304 return llvm::ConstantDataArray::getString(VMContext, Str, false);
2305 }
2306
2307 llvm::ArrayType *AType =
2308 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2309 llvm::Type *ElemTy = AType->getElementType();
2310 unsigned NumElements = AType->getNumElements();
2311
2312 // Wide strings have either 2-byte or 4-byte elements.
2313 if (ElemTy->getPrimitiveSizeInBits() == 16) {
2314 SmallVector<uint16_t, 32> Elements;
2315 Elements.reserve(NumElements);
2316
2317 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2318 Elements.push_back(E->getCodeUnit(i));
2319 Elements.resize(NumElements);
2320 return llvm::ConstantDataArray::get(VMContext, Elements);
2321 }
2322
2323 assert(ElemTy->getPrimitiveSizeInBits() == 32);
2324 SmallVector<uint32_t, 32> Elements;
2325 Elements.reserve(NumElements);
2326
2327 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2328 Elements.push_back(E->getCodeUnit(i));
2329 Elements.resize(NumElements);
2330 return llvm::ConstantDataArray::get(VMContext, Elements);
2331}
2332
2333/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2334/// constant array for the given string literal.
2335llvm::Constant *
2336CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2337 CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2338 if (S->isAscii() || S->isUTF8()) {
2339 SmallString<64> Str(S->getString());
2340
2341 // Resize the string to the right size, which is indicated by its type.
2342 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2343 Str.resize(CAT->getSize().getZExtValue());
2344 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2345 }
2346
2347 // FIXME: the following does not memoize wide strings.
2348 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2349 llvm::GlobalVariable *GV =
2350 new llvm::GlobalVariable(getModule(),C->getType(),
2351 !LangOpts.WritableStrings,
2352 llvm::GlobalValue::PrivateLinkage,
2353 C,".str");
2354
2355 GV->setAlignment(Align.getQuantity());
2356 GV->setUnnamedAddr(true);
2357 return GV;
2358}
2359
2360/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2361/// array for the given ObjCEncodeExpr node.
2362llvm::Constant *
2363CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2364 std::string Str;
2365 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2366
2367 return GetAddrOfConstantCString(Str);
2368}
2369
2370
2371/// GenerateWritableString -- Creates storage for a string literal.
2372static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2373 bool constant,
2374 CodeGenModule &CGM,
2375 const char *GlobalName,
2376 unsigned Alignment) {
2377 // Create Constant for this string literal. Don't add a '\0'.
2378 llvm::Constant *C =
2379 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2380
2381 // Create a global variable for this string
2382 llvm::GlobalVariable *GV =
2383 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2384 llvm::GlobalValue::PrivateLinkage,
2385 C, GlobalName);
2386 GV->setAlignment(Alignment);
2387 GV->setUnnamedAddr(true);
2388 return GV;
2389}
2390
2391/// GetAddrOfConstantString - Returns a pointer to a character array
2392/// containing the literal. This contents are exactly that of the
2393/// given string, i.e. it will not be null terminated automatically;
2394/// see GetAddrOfConstantCString. Note that whether the result is
2395/// actually a pointer to an LLVM constant depends on
2396/// Feature.WriteableStrings.
2397///
2398/// The result has pointer to array type.
2399llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2400 const char *GlobalName,
2401 unsigned Alignment) {
2402 // Get the default prefix if a name wasn't specified.
2403 if (!GlobalName)
2404 GlobalName = ".str";
2405
2406 // Don't share any string literals if strings aren't constant.
2407 if (LangOpts.WritableStrings)
2408 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2409
2410 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2411 ConstantStringMap.GetOrCreateValue(Str);
2412
2413 if (llvm::GlobalVariable *GV = Entry.getValue()) {
2414 if (Alignment > GV->getAlignment()) {
2415 GV->setAlignment(Alignment);
2416 }
2417 return GV;
2418 }
2419
2420 // Create a global variable for this.
2421 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2422 Alignment);
2423 Entry.setValue(GV);
2424 return GV;
2425}
2426
2427/// GetAddrOfConstantCString - Returns a pointer to a character
2428/// array containing the literal and a terminating '\0'
2429/// character. The result has pointer to array type.
2430llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2431 const char *GlobalName,
2432 unsigned Alignment) {
2433 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2434 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2435}
2436
2437/// EmitObjCPropertyImplementations - Emit information for synthesized
2438/// properties for an implementation.
2439void CodeGenModule::EmitObjCPropertyImplementations(const
2440 ObjCImplementationDecl *D) {
2441 for (ObjCImplementationDecl::propimpl_iterator
2442 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2443 ObjCPropertyImplDecl *PID = *i;
2444
2445 // Dynamic is just for type-checking.
2446 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2447 ObjCPropertyDecl *PD = PID->getPropertyDecl();
2448
2449 // Determine which methods need to be implemented, some may have
2450 // been overridden. Note that ::isSynthesized is not the method
2451 // we want, that just indicates if the decl came from a
2452 // property. What we want to know is if the method is defined in
2453 // this implementation.
2454 if (!D->getInstanceMethod(PD->getGetterName()))
2455 CodeGenFunction(*this).GenerateObjCGetter(
2456 const_cast<ObjCImplementationDecl *>(D), PID);
2457 if (!PD->isReadOnly() &&
2458 !D->getInstanceMethod(PD->getSetterName()))
2459 CodeGenFunction(*this).GenerateObjCSetter(
2460 const_cast<ObjCImplementationDecl *>(D), PID);
2461 }
2462 }
2463}
2464
2465static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2466 const ObjCInterfaceDecl *iface = impl->getClassInterface();
2467 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2468 ivar; ivar = ivar->getNextIvar())
2469 if (ivar->getType().isDestructedType())
2470 return true;
2471
2472 return false;
2473}
2474
2475/// EmitObjCIvarInitializations - Emit information for ivar initialization
2476/// for an implementation.
2477void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2478 // We might need a .cxx_destruct even if we don't have any ivar initializers.
2479 if (needsDestructMethod(D)) {
2480 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2481 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2482 ObjCMethodDecl *DTORMethod =
2483 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2484 cxxSelector, getContext().VoidTy, 0, D,
2485 /*isInstance=*/true, /*isVariadic=*/false,
2486 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2487 /*isDefined=*/false, ObjCMethodDecl::Required);
2488 D->addInstanceMethod(DTORMethod);
2489 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2490 D->setHasCXXStructors(true);
2491 }
2492
2493 // If the implementation doesn't have any ivar initializers, we don't need
2494 // a .cxx_construct.
2495 if (D->getNumIvarInitializers() == 0)
2496 return;
2497
2498 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2499 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2500 // The constructor returns 'self'.
2501 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2502 D->getLocation(),
2503 D->getLocation(),
2504 cxxSelector,
2505 getContext().getObjCIdType(), 0,
2506 D, /*isInstance=*/true,
2507 /*isVariadic=*/false,
2508 /*isSynthesized=*/true,
2509 /*isImplicitlyDeclared=*/true,
2510 /*isDefined=*/false,
2511 ObjCMethodDecl::Required);
2512 D->addInstanceMethod(CTORMethod);
2513 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2514 D->setHasCXXStructors(true);
2515}
2516
2517/// EmitNamespace - Emit all declarations in a namespace.
2518void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2519 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2520 I != E; ++I)
2521 EmitTopLevelDecl(*I);
2522}
2523
2524// EmitLinkageSpec - Emit all declarations in a linkage spec.
2525void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2526 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2527 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2528 ErrorUnsupported(LSD, "linkage spec");
2529 return;
2530 }
2531
2532 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2533 I != E; ++I)
2534 EmitTopLevelDecl(*I);
2535}
2536
2537/// EmitTopLevelDecl - Emit code for a single top level declaration.
2538void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2539 // If an error has occurred, stop code generation, but continue
2540 // parsing and semantic analysis (to ensure all warnings and errors
2541 // are emitted).
2542 if (Diags.hasErrorOccurred())
2543 return;
2544
2545 // Ignore dependent declarations.
2546 if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2547 return;
2548
2549 switch (D->getKind()) {
2550 case Decl::CXXConversion:
2551 case Decl::CXXMethod:
2552 case Decl::Function:
2553 // Skip function templates
2554 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2555 cast<FunctionDecl>(D)->isLateTemplateParsed())
2556 return;
2557
2558 EmitGlobal(cast<FunctionDecl>(D));
2559 break;
2560
2561 case Decl::Var:
2562 EmitGlobal(cast<VarDecl>(D));
2563 break;
2564
2565 // Indirect fields from global anonymous structs and unions can be
2566 // ignored; only the actual variable requires IR gen support.
2567 case Decl::IndirectField:
2568 break;
2569
2570 // C++ Decls
2571 case Decl::Namespace:
2572 EmitNamespace(cast<NamespaceDecl>(D));
2573 break;
2574 // No code generation needed.
2575 case Decl::UsingShadow:
2576 case Decl::Using:
2577 case Decl::UsingDirective:
2578 case Decl::ClassTemplate:
2579 case Decl::FunctionTemplate:
2580 case Decl::TypeAliasTemplate:
2581 case Decl::NamespaceAlias:
2582 case Decl::Block:
2583 case Decl::Import:
2584 break;
2585 case Decl::CXXConstructor:
2586 // Skip function templates
2587 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2588 cast<FunctionDecl>(D)->isLateTemplateParsed())
2589 return;
2590
2591 EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2592 break;
2593 case Decl::CXXDestructor:
2594 if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2595 return;
2596 EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2597 break;
2598
2599 case Decl::StaticAssert:
2600 // Nothing to do.
2601 break;
2602
2603 // Objective-C Decls
2604
2605 // Forward declarations, no (immediate) code generation.
2606 case Decl::ObjCInterface:
2607 case Decl::ObjCCategory:
2608 break;
2609
2610 case Decl::ObjCProtocol: {
2611 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2612 if (Proto->isThisDeclarationADefinition())
2613 ObjCRuntime->GenerateProtocol(Proto);
2614 break;
2615 }
2616
2617 case Decl::ObjCCategoryImpl:
2618 // Categories have properties but don't support synthesize so we
2619 // can ignore them here.
2620 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2621 break;
2622
2623 case Decl::ObjCImplementation: {
2624 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2625 EmitObjCPropertyImplementations(OMD);
2626 EmitObjCIvarInitializations(OMD);
2627 ObjCRuntime->GenerateClass(OMD);
2628 // Emit global variable debug information.
2629 if (CGDebugInfo *DI = getModuleDebugInfo())
2630 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2631 OMD->getLocation());
2632
2633 break;
2634 }
2635 case Decl::ObjCMethod: {
2636 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2637 // If this is not a prototype, emit the body.
2638 if (OMD->getBody())
2639 CodeGenFunction(*this).GenerateObjCMethod(OMD);
2640 break;
2641 }
2642 case Decl::ObjCCompatibleAlias:
2643 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2644 break;
2645
2646 case Decl::LinkageSpec:
2647 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2648 break;
2649
2650 case Decl::FileScopeAsm: {
2651 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2652 StringRef AsmString = AD->getAsmString()->getString();
2653
2654 const std::string &S = getModule().getModuleInlineAsm();
2655 if (S.empty())
2656 getModule().setModuleInlineAsm(AsmString);
2657 else if (S.end()[-1] == '\n')
2658 getModule().setModuleInlineAsm(S + AsmString.str());
2659 else
2660 getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2661 break;
2662 }
2663
2664 default:
2665 // Make sure we handled everything we should, every other kind is a
2666 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
2667 // function. Need to recode Decl::Kind to do that easily.
2668 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2669 }
2670}
2671
2672/// Turns the given pointer into a constant.
2673static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2674 const void *Ptr) {
2675 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2676 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2677 return llvm::ConstantInt::get(i64, PtrInt);
2678}
2679
2680static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2681 llvm::NamedMDNode *&GlobalMetadata,
2682 GlobalDecl D,
2683 llvm::GlobalValue *Addr) {
2684 if (!GlobalMetadata)
2685 GlobalMetadata =
2686 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2687
2688 // TODO: should we report variant information for ctors/dtors?
2689 llvm::Value *Ops[] = {
2690 Addr,
2691 GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2692 };
2693 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2694}
2695
2696/// Emits metadata nodes associating all the global values in the
2697/// current module with the Decls they came from. This is useful for
2698/// projects using IR gen as a subroutine.
2699///
2700/// Since there's currently no way to associate an MDNode directly
2701/// with an llvm::GlobalValue, we create a global named metadata
2702/// with the name 'clang.global.decl.ptrs'.
2703void CodeGenModule::EmitDeclMetadata() {
2704 llvm::NamedMDNode *GlobalMetadata = 0;
2705
2706 // StaticLocalDeclMap
2707 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2708 I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2709 I != E; ++I) {
2710 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2711 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2712 }
2713}
2714
2715/// Emits metadata nodes for all the local variables in the current
2716/// function.
2717void CodeGenFunction::EmitDeclMetadata() {
2718 if (LocalDeclMap.empty()) return;
2719
2720 llvm::LLVMContext &Context = getLLVMContext();
2721
2722 // Find the unique metadata ID for this name.
2723 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2724
2725 llvm::NamedMDNode *GlobalMetadata = 0;
2726
2727 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2728 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2729 const Decl *D = I->first;
2730 llvm::Value *Addr = I->second;
2731
2732 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2733 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2734 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2735 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2736 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2737 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2738 }
2739 }
2740}
2741
2742void CodeGenModule::EmitCoverageFile() {
2743 if (!getCodeGenOpts().CoverageFile.empty()) {
2744 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2745 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2746 llvm::LLVMContext &Ctx = TheModule.getContext();
2747 llvm::MDString *CoverageFile =
2748 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2749 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2750 llvm::MDNode *CU = CUNode->getOperand(i);
2751 llvm::Value *node[] = { CoverageFile, CU };
2752 llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2753 GCov->addOperand(N);
2754 }
2755 }
2756 }
2757}