]> git.proxmox.com Git - rustc.git/blame - src/llvm/utils/TableGen/AsmMatcherEmitter.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / utils / TableGen / AsmMatcherEmitter.cpp
CommitLineData
223e47cc
LB
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25// 'addl' (immediate ...) (register ...)
26// 'add' (immediate ...) (memory ...)
27// 'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33// - It may be ambiguous; many architectures can legally encode particular
34// variants of an instruction in different ways (for example, using a smaller
35// encoding for small immediates). Such ambiguities should never be
36// arbitrarily resolved by the assembler, the assembler is always responsible
37// for choosing the "best" available instruction.
38//
39// - It may depend on the subtarget or the assembler context. Instructions
40// which are invalid for the current mode, but otherwise unambiguous (e.g.,
41// an SSE instruction in a file being assembled for i486) should be accepted
42// and rejected by the assembler front end. However, if the proper encoding
43// for an instruction is dependent on the assembler context then the matcher
44// is responsible for selecting the correct machine instruction for the
45// current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54// 1. Classification: Each operand is mapped to the unique set which (a)
55// contains it, and (b) is the largest such subset for which a single
56// instruction could match all members.
57//
58// For register classes, we can generate these subgroups automatically. For
59// arbitrary operands, we expect the user to define the classes and their
60// relations to one another (for example, 8-bit signed immediates as a
61// subset of 32-bit immediates).
62//
63// By partitioning the operands in this way, we guarantee that for any
64// tuple of classes, any single instruction must match either all or none
65// of the sets of operands which could classify to that tuple.
66//
67// In addition, the subset relation amongst classes induces a partial order
68// on such tuples, which we use to resolve ambiguities.
69//
70// 2. The input can now be treated as a tuple of classes (static tokens are
71// simple singleton sets). Each such tuple should generally map to a single
72// instruction (we currently ignore cases where this isn't true, whee!!!),
73// which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78// Some targets need a custom way to parse operands, some specific instructions
79// can contain arguments that can represent processor flags and other kinds of
80// identifiers that need to be mapped to specific values in the final encoded
81// instructions. The target specific custom operand parsing works in the
82// following way:
83//
84// 1. A operand match table is built, each entry contains a mnemonic, an
85// operand class, a mask for all operand positions for that same
86// class/mnemonic and target features to be checked while trying to match.
87//
88// 2. The operand matcher will try every possible entry with the same
89// mnemonic and will check if the target feature for this mnemonic also
90// matches. After that, if the operand to be matched has its index
91// present in the mask, a successful match occurs. Otherwise, fallback
92// to the regular operand parsing.
93//
94// 3. For a match success, each operand class that has a 'ParserMethod'
95// becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "CodeGenTarget.h"
223e47cc 100#include "llvm/ADT/PointerUnion.h"
970d7e83 101#include "llvm/ADT/STLExtras.h"
223e47cc
LB
102#include "llvm/ADT/SmallPtrSet.h"
103#include "llvm/ADT/SmallVector.h"
223e47cc
LB
104#include "llvm/ADT/StringExtras.h"
105#include "llvm/Support/CommandLine.h"
106#include "llvm/Support/Debug.h"
107#include "llvm/Support/ErrorHandling.h"
108#include "llvm/TableGen/Error.h"
109#include "llvm/TableGen/Record.h"
110#include "llvm/TableGen/StringMatcher.h"
1a4d82fc 111#include "llvm/TableGen/StringToOffsetTable.h"
223e47cc
LB
112#include "llvm/TableGen/TableGenBackend.h"
113#include <cassert>
1a4d82fc 114#include <cctype>
223e47cc
LB
115#include <map>
116#include <set>
1a4d82fc 117#include <sstream>
85aaf69f 118#include <forward_list>
223e47cc
LB
119using namespace llvm;
120
1a4d82fc
JJ
121#define DEBUG_TYPE "asm-matcher-emitter"
122
223e47cc
LB
123static cl::opt<std::string>
124MatchPrefix("match-prefix", cl::init(""),
125 cl::desc("Only match instructions with the given prefix"));
126
127namespace {
128class AsmMatcherInfo;
129struct SubtargetFeatureInfo;
130
1a4d82fc
JJ
131// Register sets are used as keys in some second-order sets TableGen creates
132// when generating its data structures. This means that the order of two
133// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
134// can even affect compiler output (at least seen in diagnostics produced when
135// all matches fail). So we use a type that sorts them consistently.
136typedef std::set<Record*, LessRecordByID> RegisterSet;
137
223e47cc
LB
138class AsmMatcherEmitter {
139 RecordKeeper &Records;
140public:
141 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
142
143 void run(raw_ostream &o);
144};
145
146/// ClassInfo - Helper class for storing the information about a particular
147/// class of operands which can be matched.
148struct ClassInfo {
149 enum ClassInfoKind {
150 /// Invalid kind, for use as a sentinel value.
151 Invalid = 0,
152
153 /// The class for a particular token.
154 Token,
155
156 /// The (first) register class, subsequent register classes are
157 /// RegisterClass0+1, and so on.
158 RegisterClass0,
159
160 /// The (first) user defined class, subsequent user defined classes are
161 /// UserClass0+1, and so on.
162 UserClass0 = 1<<16
163 };
164
165 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
166 /// N) for the Nth user defined class.
167 unsigned Kind;
168
169 /// SuperClasses - The super classes of this class. Note that for simplicities
170 /// sake user operands only record their immediate super class, while register
171 /// operands include all superclasses.
172 std::vector<ClassInfo*> SuperClasses;
173
174 /// Name - The full class name, suitable for use in an enum.
175 std::string Name;
176
177 /// ClassName - The unadorned generic name for this class (e.g., Token).
178 std::string ClassName;
179
180 /// ValueName - The name of the value this class represents; for a token this
181 /// is the literal token string, for an operand it is the TableGen class (or
182 /// empty if this is a derived class).
183 std::string ValueName;
184
185 /// PredicateMethod - The name of the operand method to test whether the
186 /// operand matches this class; this is not valid for Token or register kinds.
187 std::string PredicateMethod;
188
189 /// RenderMethod - The name of the operand method to add this operand to an
190 /// MCInst; this is not valid for Token or register kinds.
191 std::string RenderMethod;
192
193 /// ParserMethod - The name of the operand method to do a target specific
194 /// parsing on the operand.
195 std::string ParserMethod;
196
1a4d82fc
JJ
197 /// For register classes: the records for all the registers in this class.
198 RegisterSet Registers;
223e47cc 199
1a4d82fc 200 /// For custom match classes: the diagnostic kind for when the predicate fails.
223e47cc
LB
201 std::string DiagnosticType;
202public:
203 /// isRegisterClass() - Check if this is a register class.
204 bool isRegisterClass() const {
205 return Kind >= RegisterClass0 && Kind < UserClass0;
206 }
207
208 /// isUserClass() - Check if this is a user defined class.
209 bool isUserClass() const {
210 return Kind >= UserClass0;
211 }
212
213 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
214 /// are related if they are in the same class hierarchy.
215 bool isRelatedTo(const ClassInfo &RHS) const {
216 // Tokens are only related to tokens.
217 if (Kind == Token || RHS.Kind == Token)
218 return Kind == Token && RHS.Kind == Token;
219
220 // Registers classes are only related to registers classes, and only if
221 // their intersection is non-empty.
222 if (isRegisterClass() || RHS.isRegisterClass()) {
223 if (!isRegisterClass() || !RHS.isRegisterClass())
224 return false;
225
1a4d82fc
JJ
226 RegisterSet Tmp;
227 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
223e47cc
LB
228 std::set_intersection(Registers.begin(), Registers.end(),
229 RHS.Registers.begin(), RHS.Registers.end(),
1a4d82fc 230 II, LessRecordByID());
223e47cc
LB
231
232 return !Tmp.empty();
233 }
234
235 // Otherwise we have two users operands; they are related if they are in the
236 // same class hierarchy.
237 //
238 // FIXME: This is an oversimplification, they should only be related if they
239 // intersect, however we don't have that information.
240 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
241 const ClassInfo *Root = this;
242 while (!Root->SuperClasses.empty())
243 Root = Root->SuperClasses.front();
244
245 const ClassInfo *RHSRoot = &RHS;
246 while (!RHSRoot->SuperClasses.empty())
247 RHSRoot = RHSRoot->SuperClasses.front();
248
249 return Root == RHSRoot;
250 }
251
252 /// isSubsetOf - Test whether this class is a subset of \p RHS.
253 bool isSubsetOf(const ClassInfo &RHS) const {
254 // This is a subset of RHS if it is the same class...
255 if (this == &RHS)
256 return true;
257
258 // ... or if any of its super classes are a subset of RHS.
85aaf69f
SL
259 for (const ClassInfo *CI : SuperClasses)
260 if (CI->isSubsetOf(RHS))
223e47cc
LB
261 return true;
262
263 return false;
264 }
265
266 /// operator< - Compare two classes.
267 bool operator<(const ClassInfo &RHS) const {
268 if (this == &RHS)
269 return false;
270
271 // Unrelated classes can be ordered by kind.
272 if (!isRelatedTo(RHS))
273 return Kind < RHS.Kind;
274
275 switch (Kind) {
276 case Invalid:
277 llvm_unreachable("Invalid kind!");
278
279 default:
280 // This class precedes the RHS if it is a proper subset of the RHS.
281 if (isSubsetOf(RHS))
282 return true;
283 if (RHS.isSubsetOf(*this))
284 return false;
285
286 // Otherwise, order by name to ensure we have a total ordering.
287 return ValueName < RHS.ValueName;
288 }
289 }
290};
291
223e47cc
LB
292/// MatchableInfo - Helper class for storing the necessary information for an
293/// instruction or alias which is capable of being matched.
294struct MatchableInfo {
295 struct AsmOperand {
296 /// Token - This is the token that the operand came from.
297 StringRef Token;
298
299 /// The unique class instance this operand should match.
300 ClassInfo *Class;
301
302 /// The operand name this is, if anything.
303 StringRef SrcOpName;
304
305 /// The suboperand index within SrcOpName, or -1 for the entire operand.
306 int SubOpIdx;
307
308 /// Register record if this token is singleton register.
309 Record *SingletonReg;
310
1a4d82fc
JJ
311 explicit AsmOperand(StringRef T) : Token(T), Class(nullptr), SubOpIdx(-1),
312 SingletonReg(nullptr) {}
223e47cc
LB
313 };
314
315 /// ResOperand - This represents a single operand in the result instruction
316 /// generated by the match. In cases (like addressing modes) where a single
317 /// assembler operand expands to multiple MCOperands, this represents the
318 /// single assembler operand, not the MCOperand.
319 struct ResOperand {
320 enum {
321 /// RenderAsmOperand - This represents an operand result that is
322 /// generated by calling the render method on the assembly operand. The
323 /// corresponding AsmOperand is specified by AsmOperandNum.
324 RenderAsmOperand,
325
326 /// TiedOperand - This represents a result operand that is a duplicate of
327 /// a previous result operand.
328 TiedOperand,
329
330 /// ImmOperand - This represents an immediate value that is dumped into
331 /// the operand.
332 ImmOperand,
333
334 /// RegOperand - This represents a fixed register that is dumped in.
335 RegOperand
336 } Kind;
337
338 union {
339 /// This is the operand # in the AsmOperands list that this should be
340 /// copied from.
341 unsigned AsmOperandNum;
342
343 /// TiedOperandNum - This is the (earlier) result operand that should be
344 /// copied from.
345 unsigned TiedOperandNum;
346
347 /// ImmVal - This is the immediate value added to the instruction.
348 int64_t ImmVal;
349
350 /// Register - This is the register record.
351 Record *Register;
352 };
353
354 /// MINumOperands - The number of MCInst operands populated by this
355 /// operand.
356 unsigned MINumOperands;
357
358 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
359 ResOperand X;
360 X.Kind = RenderAsmOperand;
361 X.AsmOperandNum = AsmOpNum;
362 X.MINumOperands = NumOperands;
363 return X;
364 }
365
366 static ResOperand getTiedOp(unsigned TiedOperandNum) {
367 ResOperand X;
368 X.Kind = TiedOperand;
369 X.TiedOperandNum = TiedOperandNum;
370 X.MINumOperands = 1;
371 return X;
372 }
373
374 static ResOperand getImmOp(int64_t Val) {
375 ResOperand X;
376 X.Kind = ImmOperand;
377 X.ImmVal = Val;
378 X.MINumOperands = 1;
379 return X;
380 }
381
382 static ResOperand getRegOp(Record *Reg) {
383 ResOperand X;
384 X.Kind = RegOperand;
385 X.Register = Reg;
386 X.MINumOperands = 1;
387 return X;
388 }
389 };
390
391 /// AsmVariantID - Target's assembly syntax variant no.
392 int AsmVariantID;
393
85aaf69f
SL
394 /// AsmString - The assembly string for this instruction (with variants
395 /// removed), e.g. "movsx $src, $dst".
396 std::string AsmString;
397
223e47cc
LB
398 /// TheDef - This is the definition of the instruction or InstAlias that this
399 /// matchable came from.
400 Record *const TheDef;
401
402 /// DefRec - This is the definition that it came from.
403 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
404
405 const CodeGenInstruction *getResultInst() const {
406 if (DefRec.is<const CodeGenInstruction*>())
407 return DefRec.get<const CodeGenInstruction*>();
408 return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
409 }
410
411 /// ResOperands - This is the operand list that should be built for the result
412 /// MCInst.
413 SmallVector<ResOperand, 8> ResOperands;
414
223e47cc
LB
415 /// Mnemonic - This is the first token of the matched instruction, its
416 /// mnemonic.
417 StringRef Mnemonic;
418
419 /// AsmOperands - The textual operands that this instruction matches,
420 /// annotated with a class and where in the OperandList they were defined.
421 /// This directly corresponds to the tokenized AsmString after the mnemonic is
422 /// removed.
423 SmallVector<AsmOperand, 8> AsmOperands;
424
425 /// Predicates - The required subtarget features to match this instruction.
85aaf69f 426 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
223e47cc
LB
427
428 /// ConversionFnKind - The enum value which is passed to the generated
429 /// convertToMCInst to convert parsed operands into an MCInst for this
430 /// function.
431 std::string ConversionFnKind;
432
1a4d82fc
JJ
433 /// If this instruction is deprecated in some form.
434 bool HasDeprecation;
435
223e47cc 436 MatchableInfo(const CodeGenInstruction &CGI)
85aaf69f 437 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI) {
223e47cc
LB
438 }
439
85aaf69f
SL
440 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
441 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), DefRec(Alias.release()) {
442 }
443
444 ~MatchableInfo() {
445 delete DefRec.dyn_cast<const CodeGenInstAlias*>();
223e47cc
LB
446 }
447
448 // Two-operand aliases clone from the main matchable, but mark the second
449 // operand as a tied operand of the first for purposes of the assembler.
450 void formTwoOperandAlias(StringRef Constraint);
451
452 void initialize(const AsmMatcherInfo &Info,
1a4d82fc 453 SmallPtrSetImpl<Record*> &SingletonRegisters,
223e47cc
LB
454 int AsmVariantNo, std::string &RegisterPrefix);
455
456 /// validate - Return true if this matchable is a valid thing to match against
457 /// and perform a bunch of validity checking.
458 bool validate(StringRef CommentDelimiter, bool Hack) const;
459
460 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
461 /// if present, from specified token.
462 void
463 extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
464 std::string &RegisterPrefix);
465
466 /// findAsmOperand - Find the AsmOperand with the specified name and
467 /// suboperand index.
468 int findAsmOperand(StringRef N, int SubOpIdx) const {
469 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
470 if (N == AsmOperands[i].SrcOpName &&
471 SubOpIdx == AsmOperands[i].SubOpIdx)
472 return i;
473 return -1;
474 }
475
476 /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
477 /// This does not check the suboperand index.
478 int findAsmOperandNamed(StringRef N) const {
479 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
480 if (N == AsmOperands[i].SrcOpName)
481 return i;
482 return -1;
483 }
484
485 void buildInstructionResultOperands();
486 void buildAliasResultOperands();
487
488 /// operator< - Compare two matchables.
489 bool operator<(const MatchableInfo &RHS) const {
490 // The primary comparator is the instruction mnemonic.
491 if (Mnemonic != RHS.Mnemonic)
492 return Mnemonic < RHS.Mnemonic;
493
494 if (AsmOperands.size() != RHS.AsmOperands.size())
495 return AsmOperands.size() < RHS.AsmOperands.size();
496
497 // Compare lexicographically by operand. The matcher validates that other
498 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
499 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
500 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
501 return true;
502 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
503 return false;
504 }
505
506 // Give matches that require more features higher precedence. This is useful
507 // because we cannot define AssemblerPredicates with the negation of
508 // processor features. For example, ARM v6 "nop" may be either a HINT or
509 // MOV. With v6, we want to match HINT. The assembler has no way to
510 // predicate MOV under "NoV6", but HINT will always match first because it
511 // requires V6 while MOV does not.
512 if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
513 return RequiredFeatures.size() > RHS.RequiredFeatures.size();
514
515 return false;
516 }
517
518 /// couldMatchAmbiguouslyWith - Check whether this matchable could
519 /// ambiguously match the same set of operands as \p RHS (without being a
520 /// strictly superior match).
85aaf69f 521 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
223e47cc
LB
522 // The primary comparator is the instruction mnemonic.
523 if (Mnemonic != RHS.Mnemonic)
524 return false;
525
526 // The number of operands is unambiguous.
527 if (AsmOperands.size() != RHS.AsmOperands.size())
528 return false;
529
530 // Otherwise, make sure the ordering of the two instructions is unambiguous
531 // by checking that either (a) a token or operand kind discriminates them,
532 // or (b) the ordering among equivalent kinds is consistent.
533
534 // Tokens and operand kinds are unambiguous (assuming a correct target
535 // specific parser).
536 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
537 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
538 AsmOperands[i].Class->Kind == ClassInfo::Token)
539 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
540 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
541 return false;
542
543 // Otherwise, this operand could commute if all operands are equivalent, or
544 // there is a pair of operands that compare less than and a pair that
545 // compare greater than.
546 bool HasLT = false, HasGT = false;
547 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
548 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
549 HasLT = true;
550 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
551 HasGT = true;
552 }
553
554 return !(HasLT ^ HasGT);
555 }
556
85aaf69f 557 void dump() const;
223e47cc
LB
558
559private:
560 void tokenizeAsmString(const AsmMatcherInfo &Info);
561};
562
563/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
564/// feature which participates in instruction matching.
565struct SubtargetFeatureInfo {
566 /// \brief The predicate record for this feature.
567 Record *TheDef;
568
569 /// \brief An unique index assigned to represent this feature.
1a4d82fc 570 uint64_t Index;
223e47cc 571
1a4d82fc 572 SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
223e47cc
LB
573
574 /// \brief The name of the enumerated constant identifying this feature.
575 std::string getEnumName() const {
576 return "Feature_" + TheDef->getName();
577 }
1a4d82fc 578
85aaf69f 579 void dump() const {
1a4d82fc
JJ
580 errs() << getEnumName() << " " << Index << "\n";
581 TheDef->dump();
582 }
223e47cc
LB
583};
584
585struct OperandMatchEntry {
586 unsigned OperandMask;
85aaf69f 587 const MatchableInfo* MI;
223e47cc
LB
588 ClassInfo *CI;
589
85aaf69f 590 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
223e47cc
LB
591 unsigned opMask) {
592 OperandMatchEntry X;
593 X.OperandMask = opMask;
594 X.CI = ci;
595 X.MI = mi;
596 return X;
597 }
598};
599
600
601class AsmMatcherInfo {
602public:
603 /// Tracked Records
604 RecordKeeper &Records;
605
606 /// The tablegen AsmParser record.
607 Record *AsmParser;
608
609 /// Target - The target information.
610 CodeGenTarget &Target;
611
612 /// The classes which are needed for matching.
85aaf69f 613 std::forward_list<ClassInfo> Classes;
223e47cc
LB
614
615 /// The information on the matchables to match.
85aaf69f 616 std::vector<std::unique_ptr<MatchableInfo>> Matchables;
223e47cc
LB
617
618 /// Info for custom matching operands by user defined methods.
619 std::vector<OperandMatchEntry> OperandMatchInfo;
620
621 /// Map of Register records to their class information.
622 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
623 RegisterClassesTy RegisterClasses;
624
625 /// Map of Predicate records to their subtarget information.
85aaf69f 626 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
223e47cc
LB
627
628 /// Map of AsmOperandClass records to their class information.
629 std::map<Record*, ClassInfo*> AsmOperandClasses;
630
631private:
632 /// Map of token to class information which has already been constructed.
633 std::map<std::string, ClassInfo*> TokenClasses;
634
635 /// Map of RegisterClass records to their class information.
636 std::map<Record*, ClassInfo*> RegisterClassClasses;
637
638private:
639 /// getTokenClass - Lookup or create the class for the given token.
640 ClassInfo *getTokenClass(StringRef Token);
641
642 /// getOperandClass - Lookup or create the class for the given operand.
643 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
644 int SubOpIdx);
645 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
646
647 /// buildRegisterClasses - Build the ClassInfo* instances for register
648 /// classes.
1a4d82fc 649 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
223e47cc
LB
650
651 /// buildOperandClasses - Build the ClassInfo* instances for user defined
652 /// operand classes.
653 void buildOperandClasses();
654
655 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
656 unsigned AsmOpIdx);
657 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
658 MatchableInfo::AsmOperand &Op);
659
660public:
661 AsmMatcherInfo(Record *AsmParser,
662 CodeGenTarget &Target,
663 RecordKeeper &Records);
664
665 /// buildInfo - Construct the various tables used during matching.
666 void buildInfo();
667
668 /// buildOperandMatchInfo - Build the necessary information to handle user
669 /// defined operand parsing methods.
670 void buildOperandMatchInfo();
671
672 /// getSubtargetFeature - Lookup or create the subtarget feature info for the
673 /// given operand.
85aaf69f 674 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
223e47cc 675 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
85aaf69f
SL
676 const auto &I = SubtargetFeatures.find(Def);
677 return I == SubtargetFeatures.end() ? nullptr : &I->second;
223e47cc
LB
678 }
679
680 RecordKeeper &getRecords() const {
681 return Records;
682 }
683};
684
685} // End anonymous namespace
686
85aaf69f 687void MatchableInfo::dump() const {
223e47cc
LB
688 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
689
690 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
85aaf69f 691 const AsmOperand &Op = AsmOperands[i];
223e47cc
LB
692 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
693 errs() << '\"' << Op.Token << "\"\n";
694 }
695}
696
697static std::pair<StringRef, StringRef>
698parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
699 // Split via the '='.
700 std::pair<StringRef, StringRef> Ops = S.split('=');
701 if (Ops.second == "")
970d7e83 702 PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
223e47cc
LB
703 // Trim whitespace and the leading '$' on the operand names.
704 size_t start = Ops.first.find_first_of('$');
705 if (start == std::string::npos)
970d7e83 706 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
223e47cc
LB
707 Ops.first = Ops.first.slice(start + 1, std::string::npos);
708 size_t end = Ops.first.find_last_of(" \t");
709 Ops.first = Ops.first.slice(0, end);
710 // Now the second operand.
711 start = Ops.second.find_first_of('$');
712 if (start == std::string::npos)
970d7e83 713 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
223e47cc
LB
714 Ops.second = Ops.second.slice(start + 1, std::string::npos);
715 end = Ops.second.find_last_of(" \t");
716 Ops.first = Ops.first.slice(0, end);
717 return Ops;
718}
719
720void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
721 // Figure out which operands are aliased and mark them as tied.
722 std::pair<StringRef, StringRef> Ops =
723 parseTwoOperandConstraint(Constraint, TheDef->getLoc());
724
725 // Find the AsmOperands that refer to the operands we're aliasing.
726 int SrcAsmOperand = findAsmOperandNamed(Ops.first);
727 int DstAsmOperand = findAsmOperandNamed(Ops.second);
728 if (SrcAsmOperand == -1)
970d7e83 729 PrintFatalError(TheDef->getLoc(),
1a4d82fc
JJ
730 "unknown source two-operand alias operand '" + Ops.first +
731 "'.");
223e47cc 732 if (DstAsmOperand == -1)
970d7e83 733 PrintFatalError(TheDef->getLoc(),
1a4d82fc
JJ
734 "unknown destination two-operand alias operand '" +
735 Ops.second + "'.");
223e47cc
LB
736
737 // Find the ResOperand that refers to the operand we're aliasing away
738 // and update it to refer to the combined operand instead.
739 for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
740 ResOperand &Op = ResOperands[i];
741 if (Op.Kind == ResOperand::RenderAsmOperand &&
742 Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
743 Op.AsmOperandNum = DstAsmOperand;
744 break;
745 }
746 }
747 // Remove the AsmOperand for the alias operand.
748 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
749 // Adjust the ResOperand references to any AsmOperands that followed
750 // the one we just deleted.
751 for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
752 ResOperand &Op = ResOperands[i];
753 switch(Op.Kind) {
754 default:
755 // Nothing to do for operands that don't reference AsmOperands.
756 break;
757 case ResOperand::RenderAsmOperand:
758 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
759 --Op.AsmOperandNum;
760 break;
761 case ResOperand::TiedOperand:
762 if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
763 --Op.TiedOperandNum;
764 break;
765 }
766 }
767}
768
769void MatchableInfo::initialize(const AsmMatcherInfo &Info,
1a4d82fc 770 SmallPtrSetImpl<Record*> &SingletonRegisters,
223e47cc
LB
771 int AsmVariantNo, std::string &RegisterPrefix) {
772 AsmVariantID = AsmVariantNo;
773 AsmString =
774 CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
775
776 tokenizeAsmString(Info);
777
778 // Compute the require features.
779 std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
780 for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
85aaf69f
SL
781 if (const SubtargetFeatureInfo *Feature =
782 Info.getSubtargetFeature(Predicates[i]))
223e47cc
LB
783 RequiredFeatures.push_back(Feature);
784
785 // Collect singleton registers, if used.
786 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
787 extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
788 if (Record *Reg = AsmOperands[i].SingletonReg)
789 SingletonRegisters.insert(Reg);
790 }
1a4d82fc
JJ
791
792 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
793 if (!DepMask)
794 DepMask = TheDef->getValue("ComplexDeprecationPredicate");
795
796 HasDeprecation =
797 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
223e47cc
LB
798}
799
800/// tokenizeAsmString - Tokenize a simplified assembly string.
801void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
802 StringRef String = AsmString;
803 unsigned Prev = 0;
804 bool InTok = true;
805 for (unsigned i = 0, e = String.size(); i != e; ++i) {
806 switch (String[i]) {
807 case '[':
808 case ']':
809 case '*':
810 case '!':
811 case ' ':
812 case '\t':
813 case ',':
814 if (InTok) {
815 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
816 InTok = false;
817 }
818 if (!isspace(String[i]) && String[i] != ',')
819 AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
820 Prev = i + 1;
821 break;
822
823 case '\\':
824 if (InTok) {
825 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
826 InTok = false;
827 }
828 ++i;
829 assert(i != String.size() && "Invalid quoted character");
830 AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
831 Prev = i + 1;
832 break;
833
834 case '$': {
835 if (InTok) {
836 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
837 InTok = false;
838 }
839
840 // If this isn't "${", treat like a normal token.
841 if (i + 1 == String.size() || String[i + 1] != '{') {
842 Prev = i;
843 break;
844 }
845
846 StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
847 assert(End != String.end() && "Missing brace in operand reference!");
848 size_t EndPos = End - String.begin();
849 AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
850 Prev = EndPos + 1;
851 i = EndPos;
852 break;
853 }
854
855 case '.':
1a4d82fc
JJ
856 if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
857 if (InTok)
858 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
859 Prev = i;
860 }
223e47cc
LB
861 InTok = true;
862 break;
863
864 default:
865 InTok = true;
866 }
867 }
868 if (InTok && Prev != String.size())
869 AsmOperands.push_back(AsmOperand(String.substr(Prev)));
870
871 // The first token of the instruction is the mnemonic, which must be a
872 // simple string, not a $foo variable or a singleton register.
873 if (AsmOperands.empty())
970d7e83 874 PrintFatalError(TheDef->getLoc(),
223e47cc
LB
875 "Instruction '" + TheDef->getName() + "' has no tokens");
876 Mnemonic = AsmOperands[0].Token;
877 if (Mnemonic.empty())
970d7e83 878 PrintFatalError(TheDef->getLoc(),
223e47cc
LB
879 "Missing instruction mnemonic");
880 // FIXME : Check and raise an error if it is a register.
881 if (Mnemonic[0] == '$')
970d7e83 882 PrintFatalError(TheDef->getLoc(),
1a4d82fc 883 "Invalid instruction mnemonic '" + Mnemonic + "'!");
223e47cc
LB
884
885 // Remove the first operand, it is tracked in the mnemonic field.
886 AsmOperands.erase(AsmOperands.begin());
887}
888
889bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
890 // Reject matchables with no .s string.
891 if (AsmString.empty())
970d7e83 892 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
223e47cc
LB
893
894 // Reject any matchables with a newline in them, they should be marked
895 // isCodeGenOnly if they are pseudo instructions.
896 if (AsmString.find('\n') != std::string::npos)
970d7e83 897 PrintFatalError(TheDef->getLoc(),
223e47cc
LB
898 "multiline instruction is not valid for the asmparser, "
899 "mark it isCodeGenOnly");
900
901 // Remove comments from the asm string. We know that the asmstring only
902 // has one line.
903 if (!CommentDelimiter.empty() &&
904 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
970d7e83 905 PrintFatalError(TheDef->getLoc(),
223e47cc
LB
906 "asmstring for instruction has comment character in it, "
907 "mark it isCodeGenOnly");
908
909 // Reject matchables with operand modifiers, these aren't something we can
910 // handle, the target should be refactored to use operands instead of
911 // modifiers.
912 //
913 // Also, check for instructions which reference the operand multiple times;
914 // this implies a constraint we would not honor.
915 std::set<std::string> OperandNames;
916 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
917 StringRef Tok = AsmOperands[i].Token;
918 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
970d7e83 919 PrintFatalError(TheDef->getLoc(),
1a4d82fc
JJ
920 "matchable with operand modifier '" + Tok +
921 "' not supported by asm matcher. Mark isCodeGenOnly!");
223e47cc
LB
922
923 // Verify that any operand is only mentioned once.
924 // We reject aliases and ignore instructions for now.
925 if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
926 if (!Hack)
970d7e83 927 PrintFatalError(TheDef->getLoc(),
1a4d82fc
JJ
928 "ERROR: matchable with tied operand '" + Tok +
929 "' can never be matched!");
223e47cc
LB
930 // FIXME: Should reject these. The ARM backend hits this with $lane in a
931 // bunch of instructions. It is unclear what the right answer is.
932 DEBUG({
933 errs() << "warning: '" << TheDef->getName() << "': "
934 << "ignoring instruction with tied operand '"
1a4d82fc 935 << Tok << "'\n";
223e47cc
LB
936 });
937 return false;
938 }
939 }
940
941 return true;
942}
943
944/// extractSingletonRegisterForAsmOperand - Extract singleton register,
945/// if present, from specified token.
946void MatchableInfo::
947extractSingletonRegisterForAsmOperand(unsigned OperandNo,
948 const AsmMatcherInfo &Info,
949 std::string &RegisterPrefix) {
950 StringRef Tok = AsmOperands[OperandNo].Token;
951 if (RegisterPrefix.empty()) {
952 std::string LoweredTok = Tok.lower();
953 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
954 AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
955 return;
956 }
957
958 if (!Tok.startswith(RegisterPrefix))
959 return;
960
961 StringRef RegName = Tok.substr(RegisterPrefix.size());
962 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
963 AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
964
965 // If there is no register prefix (i.e. "%" in "%eax"), then this may
966 // be some random non-register token, just ignore it.
967 return;
968}
969
970static std::string getEnumNameForToken(StringRef Str) {
971 std::string Res;
972
973 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
974 switch (*it) {
975 case '*': Res += "_STAR_"; break;
976 case '%': Res += "_PCT_"; break;
977 case ':': Res += "_COLON_"; break;
978 case '!': Res += "_EXCLAIM_"; break;
979 case '.': Res += "_DOT_"; break;
970d7e83
LB
980 case '<': Res += "_LT_"; break;
981 case '>': Res += "_GT_"; break;
223e47cc 982 default:
970d7e83
LB
983 if ((*it >= 'A' && *it <= 'Z') ||
984 (*it >= 'a' && *it <= 'z') ||
985 (*it >= '0' && *it <= '9'))
223e47cc
LB
986 Res += *it;
987 else
988 Res += "_" + utostr((unsigned) *it) + "_";
989 }
990 }
991
992 return Res;
993}
994
995ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
996 ClassInfo *&Entry = TokenClasses[Token];
997
998 if (!Entry) {
85aaf69f
SL
999 Classes.emplace_front();
1000 Entry = &Classes.front();
223e47cc
LB
1001 Entry->Kind = ClassInfo::Token;
1002 Entry->ClassName = "Token";
1003 Entry->Name = "MCK_" + getEnumNameForToken(Token);
1004 Entry->ValueName = Token;
1005 Entry->PredicateMethod = "<invalid>";
1006 Entry->RenderMethod = "<invalid>";
1007 Entry->ParserMethod = "";
1008 Entry->DiagnosticType = "";
223e47cc
LB
1009 }
1010
1011 return Entry;
1012}
1013
1014ClassInfo *
1015AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1016 int SubOpIdx) {
1017 Record *Rec = OI.Rec;
1018 if (SubOpIdx != -1)
970d7e83 1019 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
223e47cc
LB
1020 return getOperandClass(Rec, SubOpIdx);
1021}
1022
1023ClassInfo *
1024AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1025 if (Rec->isSubClassOf("RegisterOperand")) {
1026 // RegisterOperand may have an associated ParserMatchClass. If it does,
1027 // use it, else just fall back to the underlying register class.
1028 const RecordVal *R = Rec->getValue("ParserMatchClass");
1a4d82fc 1029 if (!R || !R->getValue())
970d7e83
LB
1030 PrintFatalError("Record `" + Rec->getName() +
1031 "' does not have a ParserMatchClass!\n");
223e47cc 1032
970d7e83 1033 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
223e47cc
LB
1034 Record *MatchClass = DI->getDef();
1035 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1036 return CI;
1037 }
1038
1039 // No custom match class. Just use the register class.
1040 Record *ClassRec = Rec->getValueAsDef("RegClass");
1041 if (!ClassRec)
970d7e83 1042 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
223e47cc
LB
1043 "' has no associated register class!\n");
1044 if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1045 return CI;
970d7e83 1046 PrintFatalError(Rec->getLoc(), "register class has no class info!");
223e47cc
LB
1047 }
1048
1049
1050 if (Rec->isSubClassOf("RegisterClass")) {
1051 if (ClassInfo *CI = RegisterClassClasses[Rec])
1052 return CI;
970d7e83 1053 PrintFatalError(Rec->getLoc(), "register class has no class info!");
223e47cc
LB
1054 }
1055
1056 if (!Rec->isSubClassOf("Operand"))
970d7e83 1057 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
223e47cc
LB
1058 "' does not derive from class Operand!\n");
1059 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1060 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1061 return CI;
1062
970d7e83 1063 PrintFatalError(Rec->getLoc(), "operand has no match class!");
223e47cc
LB
1064}
1065
1a4d82fc
JJ
1066struct LessRegisterSet {
1067 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1068 // std::set<T> defines its own compariso "operator<", but it
1069 // performs a lexicographical comparison by T's innate comparison
1070 // for some reason. We don't want non-deterministic pointer
1071 // comparisons so use this instead.
1072 return std::lexicographical_compare(LHS.begin(), LHS.end(),
1073 RHS.begin(), RHS.end(),
1074 LessRecordByID());
1075 }
1076};
1077
223e47cc 1078void AsmMatcherInfo::
1a4d82fc 1079buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
85aaf69f
SL
1080 const auto &Registers = Target.getRegBank().getRegisters();
1081 auto &RegClassList = Target.getRegBank().getRegClasses();
223e47cc 1082
1a4d82fc
JJ
1083 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1084
223e47cc 1085 // The register sets used for matching.
1a4d82fc 1086 RegisterSetSet RegisterSets;
223e47cc
LB
1087
1088 // Gather the defined sets.
85aaf69f
SL
1089 for (const CodeGenRegisterClass &RC : RegClassList)
1090 RegisterSets.insert(
1091 RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
223e47cc
LB
1092
1093 // Add any required singleton sets.
85aaf69f 1094 for (Record *Rec : SingletonRegisters) {
1a4d82fc 1095 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
223e47cc
LB
1096 }
1097
1098 // Introduce derived sets where necessary (when a register does not determine
1099 // a unique register set class), and build the mapping of registers to the set
1100 // they should classify to.
1a4d82fc 1101 std::map<Record*, RegisterSet> RegisterMap;
85aaf69f 1102 for (const CodeGenRegister &CGR : Registers) {
223e47cc 1103 // Compute the intersection of all sets containing this register.
1a4d82fc 1104 RegisterSet ContainingSet;
223e47cc 1105
85aaf69f
SL
1106 for (const RegisterSet &RS : RegisterSets) {
1107 if (!RS.count(CGR.TheDef))
223e47cc
LB
1108 continue;
1109
1110 if (ContainingSet.empty()) {
85aaf69f 1111 ContainingSet = RS;
223e47cc
LB
1112 continue;
1113 }
1114
1a4d82fc 1115 RegisterSet Tmp;
223e47cc 1116 std::swap(Tmp, ContainingSet);
1a4d82fc
JJ
1117 std::insert_iterator<RegisterSet> II(ContainingSet,
1118 ContainingSet.begin());
85aaf69f 1119 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1a4d82fc 1120 LessRecordByID());
223e47cc
LB
1121 }
1122
1123 if (!ContainingSet.empty()) {
1124 RegisterSets.insert(ContainingSet);
1125 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1126 }
1127 }
1128
1129 // Construct the register classes.
1a4d82fc 1130 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
223e47cc 1131 unsigned Index = 0;
85aaf69f
SL
1132 for (const RegisterSet &RS : RegisterSets) {
1133 Classes.emplace_front();
1134 ClassInfo *CI = &Classes.front();
223e47cc
LB
1135 CI->Kind = ClassInfo::RegisterClass0 + Index;
1136 CI->ClassName = "Reg" + utostr(Index);
1137 CI->Name = "MCK_Reg" + utostr(Index);
1138 CI->ValueName = "";
1139 CI->PredicateMethod = ""; // unused
1140 CI->RenderMethod = "addRegOperands";
85aaf69f 1141 CI->Registers = RS;
223e47cc
LB
1142 // FIXME: diagnostic type.
1143 CI->DiagnosticType = "";
85aaf69f
SL
1144 RegisterSetClasses.insert(std::make_pair(RS, CI));
1145 ++Index;
223e47cc
LB
1146 }
1147
1148 // Find the superclasses; we could compute only the subgroup lattice edges,
1149 // but there isn't really a point.
85aaf69f
SL
1150 for (const RegisterSet &RS : RegisterSets) {
1151 ClassInfo *CI = RegisterSetClasses[RS];
1152 for (const RegisterSet &RS2 : RegisterSets)
1153 if (RS != RS2 &&
1154 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1a4d82fc 1155 LessRecordByID()))
85aaf69f 1156 CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
223e47cc
LB
1157 }
1158
1159 // Name the register classes which correspond to a user defined RegisterClass.
85aaf69f 1160 for (const CodeGenRegisterClass &RC : RegClassList) {
223e47cc
LB
1161 // Def will be NULL for non-user defined register classes.
1162 Record *Def = RC.getDef();
1163 if (!Def)
1164 continue;
1a4d82fc
JJ
1165 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1166 RC.getOrder().end())];
223e47cc
LB
1167 if (CI->ValueName.empty()) {
1168 CI->ClassName = RC.getName();
1169 CI->Name = "MCK_" + RC.getName();
1170 CI->ValueName = RC.getName();
1171 } else
1172 CI->ValueName = CI->ValueName + "," + RC.getName();
1173
1174 RegisterClassClasses.insert(std::make_pair(Def, CI));
1175 }
1176
1177 // Populate the map for individual registers.
1a4d82fc 1178 for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
223e47cc
LB
1179 ie = RegisterMap.end(); it != ie; ++it)
1180 RegisterClasses[it->first] = RegisterSetClasses[it->second];
1181
1182 // Name the register classes which correspond to singleton registers.
85aaf69f 1183 for (Record *Rec : SingletonRegisters) {
223e47cc
LB
1184 ClassInfo *CI = RegisterClasses[Rec];
1185 assert(CI && "Missing singleton register class info!");
1186
1187 if (CI->ValueName.empty()) {
1188 CI->ClassName = Rec->getName();
1189 CI->Name = "MCK_" + Rec->getName();
1190 CI->ValueName = Rec->getName();
1191 } else
1192 CI->ValueName = CI->ValueName + "," + Rec->getName();
1193 }
1194}
1195
1196void AsmMatcherInfo::buildOperandClasses() {
1197 std::vector<Record*> AsmOperands =
1198 Records.getAllDerivedDefinitions("AsmOperandClass");
1199
1200 // Pre-populate AsmOperandClasses map.
85aaf69f
SL
1201 for (Record *Rec : AsmOperands) {
1202 Classes.emplace_front();
1203 AsmOperandClasses[Rec] = &Classes.front();
1204 }
223e47cc
LB
1205
1206 unsigned Index = 0;
85aaf69f
SL
1207 for (Record *Rec : AsmOperands) {
1208 ClassInfo *CI = AsmOperandClasses[Rec];
223e47cc
LB
1209 CI->Kind = ClassInfo::UserClass0 + Index;
1210
85aaf69f 1211 ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
223e47cc 1212 for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
970d7e83 1213 DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
223e47cc 1214 if (!DI) {
85aaf69f 1215 PrintError(Rec->getLoc(), "Invalid super class reference!");
223e47cc
LB
1216 continue;
1217 }
1218
1219 ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1220 if (!SC)
85aaf69f 1221 PrintError(Rec->getLoc(), "Invalid super class reference!");
223e47cc
LB
1222 else
1223 CI->SuperClasses.push_back(SC);
1224 }
85aaf69f 1225 CI->ClassName = Rec->getValueAsString("Name");
223e47cc 1226 CI->Name = "MCK_" + CI->ClassName;
85aaf69f 1227 CI->ValueName = Rec->getName();
223e47cc
LB
1228
1229 // Get or construct the predicate method name.
85aaf69f 1230 Init *PMName = Rec->getValueInit("PredicateMethod");
970d7e83 1231 if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
223e47cc
LB
1232 CI->PredicateMethod = SI->getValue();
1233 } else {
970d7e83 1234 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
223e47cc
LB
1235 CI->PredicateMethod = "is" + CI->ClassName;
1236 }
1237
1238 // Get or construct the render method name.
85aaf69f 1239 Init *RMName = Rec->getValueInit("RenderMethod");
970d7e83 1240 if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
223e47cc
LB
1241 CI->RenderMethod = SI->getValue();
1242 } else {
970d7e83 1243 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
223e47cc
LB
1244 CI->RenderMethod = "add" + CI->ClassName + "Operands";
1245 }
1246
1247 // Get the parse method name or leave it as empty.
85aaf69f 1248 Init *PRMName = Rec->getValueInit("ParserMethod");
970d7e83 1249 if (StringInit *SI = dyn_cast<StringInit>(PRMName))
223e47cc
LB
1250 CI->ParserMethod = SI->getValue();
1251
1252 // Get the diagnostic type or leave it as empty.
1253 // Get the parse method name or leave it as empty.
85aaf69f 1254 Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
970d7e83 1255 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
223e47cc
LB
1256 CI->DiagnosticType = SI->getValue();
1257
85aaf69f 1258 ++Index;
223e47cc
LB
1259 }
1260}
1261
1262AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1263 CodeGenTarget &target,
1264 RecordKeeper &records)
1265 : Records(records), AsmParser(asmParser), Target(target) {
1266}
1267
1268/// buildOperandMatchInfo - Build the necessary information to handle user
1269/// defined operand parsing methods.
1270void AsmMatcherInfo::buildOperandMatchInfo() {
1271
1272 /// Map containing a mask with all operands indices that can be found for
1273 /// that class inside a instruction.
1a4d82fc 1274 typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
223e47cc
LB
1275 OpClassMaskTy OpClassMask;
1276
85aaf69f 1277 for (const auto &MI : Matchables) {
223e47cc
LB
1278 OpClassMask.clear();
1279
1280 // Keep track of all operands of this instructions which belong to the
1281 // same class.
85aaf69f
SL
1282 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1283 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
223e47cc
LB
1284 if (Op.Class->ParserMethod.empty())
1285 continue;
1286 unsigned &OperandMask = OpClassMask[Op.Class];
1287 OperandMask |= (1 << i);
1288 }
1289
1290 // Generate operand match info for each mnemonic/operand class pair.
85aaf69f
SL
1291 for (const auto &OCM : OpClassMask) {
1292 unsigned OpMask = OCM.second;
1293 ClassInfo *CI = OCM.first;
1294 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1295 OpMask));
223e47cc
LB
1296 }
1297 }
1298}
1299
1300void AsmMatcherInfo::buildInfo() {
1301 // Build information about all of the AssemblerPredicates.
1302 std::vector<Record*> AllPredicates =
1303 Records.getAllDerivedDefinitions("Predicate");
1304 for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1305 Record *Pred = AllPredicates[i];
1306 // Ignore predicates that are not intended for the assembler.
1307 if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1308 continue;
1309
1310 if (Pred->getName().empty())
970d7e83 1311 PrintFatalError(Pred->getLoc(), "Predicate has no name!");
223e47cc 1312
85aaf69f
SL
1313 SubtargetFeatures.insert(std::make_pair(
1314 Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
1315 DEBUG(SubtargetFeatures.find(Pred)->second.dump());
1316 assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
223e47cc
LB
1317 }
1318
1319 // Parse the instructions; we need to do this first so that we can gather the
1320 // singleton register classes.
1321 SmallPtrSet<Record*, 16> SingletonRegisters;
1322 unsigned VariantCount = Target.getAsmParserVariantCount();
1323 for (unsigned VC = 0; VC != VariantCount; ++VC) {
1324 Record *AsmVariant = Target.getAsmParserVariant(VC);
1325 std::string CommentDelimiter =
1326 AsmVariant->getValueAsString("CommentDelimiter");
1327 std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1328 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1329
85aaf69f 1330 for (const CodeGenInstruction *CGI : Target.instructions()) {
223e47cc
LB
1331
1332 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1333 // filter the set of instructions we consider.
85aaf69f 1334 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
223e47cc
LB
1335 continue;
1336
1337 // Ignore "codegen only" instructions.
85aaf69f 1338 if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
223e47cc
LB
1339 continue;
1340
85aaf69f 1341 std::unique_ptr<MatchableInfo> II(new MatchableInfo(*CGI));
223e47cc
LB
1342
1343 II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1344
1345 // Ignore instructions which shouldn't be matched and diagnose invalid
1346 // instruction definitions with an error.
1347 if (!II->validate(CommentDelimiter, true))
1348 continue;
1349
85aaf69f 1350 Matchables.push_back(std::move(II));
223e47cc
LB
1351 }
1352
1353 // Parse all of the InstAlias definitions and stick them in the list of
1354 // matchables.
1355 std::vector<Record*> AllInstAliases =
1356 Records.getAllDerivedDefinitions("InstAlias");
1357 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
85aaf69f
SL
1358 auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1359 AsmVariantNo, Target);
223e47cc
LB
1360
1361 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1362 // filter the set of instruction aliases we consider, based on the target
1363 // instruction.
1364 if (!StringRef(Alias->ResultInst->TheDef->getName())
1365 .startswith( MatchPrefix))
1366 continue;
1367
85aaf69f 1368 std::unique_ptr<MatchableInfo> II(new MatchableInfo(std::move(Alias)));
223e47cc
LB
1369
1370 II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1371
1372 // Validate the alias definitions.
1373 II->validate(CommentDelimiter, false);
1374
85aaf69f 1375 Matchables.push_back(std::move(II));
223e47cc
LB
1376 }
1377 }
1378
1379 // Build info for the register classes.
1380 buildRegisterClasses(SingletonRegisters);
1381
1382 // Build info for the user defined assembly operand classes.
1383 buildOperandClasses();
1384
1385 // Build the information about matchables, now that we have fully formed
1386 // classes.
85aaf69f
SL
1387 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1388 for (auto &II : Matchables) {
223e47cc
LB
1389 // Parse the tokens after the mnemonic.
1390 // Note: buildInstructionOperandReference may insert new AsmOperands, so
1391 // don't precompute the loop bound.
1392 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1393 MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1394 StringRef Token = Op.Token;
1395
1396 // Check for singleton registers.
1397 if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1398 Op.Class = RegisterClasses[RegRecord];
1399 assert(Op.Class && Op.Class->Registers.size() == 1 &&
1400 "Unexpected class for singleton register");
1401 continue;
1402 }
1403
1404 // Check for simple tokens.
1405 if (Token[0] != '$') {
1406 Op.Class = getTokenClass(Token);
1407 continue;
1408 }
1409
1410 if (Token.size() > 1 && isdigit(Token[1])) {
1411 Op.Class = getTokenClass(Token);
1412 continue;
1413 }
1414
1415 // Otherwise this is an operand reference.
1416 StringRef OperandName;
1417 if (Token[1] == '{')
1418 OperandName = Token.substr(2, Token.size() - 3);
1419 else
1420 OperandName = Token.substr(1);
1421
1422 if (II->DefRec.is<const CodeGenInstruction*>())
85aaf69f 1423 buildInstructionOperandReference(II.get(), OperandName, i);
223e47cc 1424 else
85aaf69f 1425 buildAliasOperandReference(II.get(), OperandName, Op);
223e47cc
LB
1426 }
1427
1428 if (II->DefRec.is<const CodeGenInstruction*>()) {
1429 II->buildInstructionResultOperands();
1430 // If the instruction has a two-operand alias, build up the
1431 // matchable here. We'll add them in bulk at the end to avoid
1432 // confusing this loop.
1433 std::string Constraint =
1434 II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1435 if (Constraint != "") {
1436 // Start by making a copy of the original matchable.
1a4d82fc 1437 std::unique_ptr<MatchableInfo> AliasII(new MatchableInfo(*II));
223e47cc
LB
1438
1439 // Adjust it to be a two-operand alias.
1440 AliasII->formTwoOperandAlias(Constraint);
1441
1442 // Add the alias to the matchables list.
85aaf69f 1443 NewMatchables.push_back(std::move(AliasII));
223e47cc
LB
1444 }
1445 } else
1446 II->buildAliasResultOperands();
1447 }
1448 if (!NewMatchables.empty())
85aaf69f
SL
1449 std::move(NewMatchables.begin(), NewMatchables.end(),
1450 std::back_inserter(Matchables));
223e47cc
LB
1451
1452 // Process token alias definitions and set up the associated superclass
1453 // information.
1454 std::vector<Record*> AllTokenAliases =
1455 Records.getAllDerivedDefinitions("TokenAlias");
1456 for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1457 Record *Rec = AllTokenAliases[i];
1458 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1459 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1460 if (FromClass == ToClass)
970d7e83 1461 PrintFatalError(Rec->getLoc(),
223e47cc
LB
1462 "error: Destination value identical to source value.");
1463 FromClass->SuperClasses.push_back(ToClass);
1464 }
1465
1466 // Reorder classes so that classes precede super classes.
85aaf69f 1467 Classes.sort();
223e47cc
LB
1468}
1469
1470/// buildInstructionOperandReference - The specified operand is a reference to a
1471/// named operand such as $src. Resolve the Class and OperandInfo pointers.
1472void AsmMatcherInfo::
1473buildInstructionOperandReference(MatchableInfo *II,
1474 StringRef OperandName,
1475 unsigned AsmOpIdx) {
1476 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1477 const CGIOperandList &Operands = CGI.Operands;
1478 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1479
1480 // Map this token to an operand.
1481 unsigned Idx;
1482 if (!Operands.hasOperandNamed(OperandName, Idx))
1a4d82fc
JJ
1483 PrintFatalError(II->TheDef->getLoc(),
1484 "error: unable to find operand: '" + OperandName + "'");
223e47cc
LB
1485
1486 // If the instruction operand has multiple suboperands, but the parser
1487 // match class for the asm operand is still the default "ImmAsmOperand",
1488 // then handle each suboperand separately.
1489 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1490 Record *Rec = Operands[Idx].Rec;
1491 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1492 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1493 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1494 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1495 StringRef Token = Op->Token; // save this in case Op gets moved
1496 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1497 MatchableInfo::AsmOperand NewAsmOp(Token);
1498 NewAsmOp.SubOpIdx = SI;
1499 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1500 }
1501 // Replace Op with first suboperand.
1502 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1503 Op->SubOpIdx = 0;
1504 }
1505 }
1506
1507 // Set up the operand class.
1508 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1509
1510 // If the named operand is tied, canonicalize it to the untied operand.
1511 // For example, something like:
1512 // (outs GPR:$dst), (ins GPR:$src)
1513 // with an asmstring of
1514 // "inc $src"
1515 // we want to canonicalize to:
1516 // "inc $dst"
1517 // so that we know how to provide the $dst operand when filling in the result.
1a4d82fc
JJ
1518 int OITied = -1;
1519 if (Operands[Idx].MINumOperands == 1)
1520 OITied = Operands[Idx].getTiedRegister();
223e47cc
LB
1521 if (OITied != -1) {
1522 // The tied operand index is an MIOperand index, find the operand that
1523 // contains it.
1524 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1525 OperandName = Operands[Idx.first].Name;
1526 Op->SubOpIdx = Idx.second;
1527 }
1528
1529 Op->SrcOpName = OperandName;
1530}
1531
1532/// buildAliasOperandReference - When parsing an operand reference out of the
1533/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1534/// operand reference is by looking it up in the result pattern definition.
1535void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1536 StringRef OperandName,
1537 MatchableInfo::AsmOperand &Op) {
1538 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1539
1540 // Set up the operand class.
1541 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1542 if (CGA.ResultOperands[i].isRecord() &&
1543 CGA.ResultOperands[i].getName() == OperandName) {
1544 // It's safe to go with the first one we find, because CodeGenInstAlias
1545 // validates that all operands with the same name have the same record.
1546 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1547 // Use the match class from the Alias definition, not the
1548 // destination instruction, as we may have an immediate that's
1549 // being munged by the match class.
1550 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1551 Op.SubOpIdx);
1552 Op.SrcOpName = OperandName;
1553 return;
1554 }
1555
1a4d82fc
JJ
1556 PrintFatalError(II->TheDef->getLoc(),
1557 "error: unable to find operand: '" + OperandName + "'");
223e47cc
LB
1558}
1559
1560void MatchableInfo::buildInstructionResultOperands() {
1561 const CodeGenInstruction *ResultInst = getResultInst();
1562
1563 // Loop over all operands of the result instruction, determining how to
1564 // populate them.
1565 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1566 const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1567
1568 // If this is a tied operand, just copy from the previously handled operand.
1a4d82fc
JJ
1569 int TiedOp = -1;
1570 if (OpInfo.MINumOperands == 1)
1571 TiedOp = OpInfo.getTiedRegister();
223e47cc
LB
1572 if (TiedOp != -1) {
1573 ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1574 continue;
1575 }
1576
1577 // Find out what operand from the asmparser this MCInst operand comes from.
1578 int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1a4d82fc
JJ
1579 if (OpInfo.Name.empty() || SrcOperand == -1) {
1580 // This may happen for operands that are tied to a suboperand of a
1581 // complex operand. Simply use a dummy value here; nobody should
1582 // use this operand slot.
1583 // FIXME: The long term goal is for the MCOperand list to not contain
1584 // tied operands at all.
1585 ResOperands.push_back(ResOperand::getImmOp(0));
1586 continue;
1587 }
223e47cc
LB
1588
1589 // Check if the one AsmOperand populates the entire operand.
1590 unsigned NumOperands = OpInfo.MINumOperands;
1591 if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1592 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1593 continue;
1594 }
1595
1596 // Add a separate ResOperand for each suboperand.
1597 for (unsigned AI = 0; AI < NumOperands; ++AI) {
1598 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1599 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1600 "unexpected AsmOperands for suboperands");
1601 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1602 }
1603 }
1604}
1605
1606void MatchableInfo::buildAliasResultOperands() {
1607 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1608 const CodeGenInstruction *ResultInst = getResultInst();
1609
1610 // Loop over all operands of the result instruction, determining how to
1611 // populate them.
1612 unsigned AliasOpNo = 0;
1613 unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1614 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1615 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1616
1617 // If this is a tied operand, just copy from the previously handled operand.
1a4d82fc
JJ
1618 int TiedOp = -1;
1619 if (OpInfo->MINumOperands == 1)
1620 TiedOp = OpInfo->getTiedRegister();
223e47cc
LB
1621 if (TiedOp != -1) {
1622 ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1623 continue;
1624 }
1625
1626 // Handle all the suboperands for this operand.
1627 const std::string &OpName = OpInfo->Name;
1628 for ( ; AliasOpNo < LastOpNo &&
1629 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1630 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1631
1632 // Find out what operand from the asmparser that this MCInst operand
1633 // comes from.
1634 switch (CGA.ResultOperands[AliasOpNo].Kind) {
1635 case CodeGenInstAlias::ResultOperand::K_Record: {
1636 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1637 int SrcOperand = findAsmOperand(Name, SubIdx);
1638 if (SrcOperand == -1)
970d7e83 1639 PrintFatalError(TheDef->getLoc(), "Instruction '" +
223e47cc
LB
1640 TheDef->getName() + "' has operand '" + OpName +
1641 "' that doesn't appear in asm string!");
1642 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1643 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1644 NumOperands));
1645 break;
1646 }
1647 case CodeGenInstAlias::ResultOperand::K_Imm: {
1648 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1649 ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1650 break;
1651 }
1652 case CodeGenInstAlias::ResultOperand::K_Reg: {
1653 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1654 ResOperands.push_back(ResOperand::getRegOp(Reg));
1655 break;
1656 }
1657 }
1658 }
1659 }
1660}
1661
1662static unsigned getConverterOperandID(const std::string &Name,
1663 SetVector<std::string> &Table,
1664 bool &IsNew) {
1665 IsNew = Table.insert(Name);
1666
1667 unsigned ID = IsNew ? Table.size() - 1 :
1668 std::find(Table.begin(), Table.end(), Name) - Table.begin();
1669
1670 assert(ID < Table.size());
1671
1672 return ID;
1673}
1674
1675
970d7e83 1676static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
85aaf69f 1677 std::vector<std::unique_ptr<MatchableInfo>> &Infos,
970d7e83 1678 raw_ostream &OS) {
223e47cc
LB
1679 SetVector<std::string> OperandConversionKinds;
1680 SetVector<std::string> InstructionConversionKinds;
1681 std::vector<std::vector<uint8_t> > ConversionTable;
1682 size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1683
1684 // TargetOperandClass - This is the target's operand class, like X86Operand.
1685 std::string TargetOperandClass = Target.getName() + "Operand";
1686
1687 // Write the convert function to a separate stream, so we can drop it after
1688 // the enum. We'll build up the conversion handlers for the individual
1689 // operand types opportunistically as we encounter them.
1690 std::string ConvertFnBody;
1691 raw_string_ostream CvtOS(ConvertFnBody);
1692 // Start the unified conversion function.
1693 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1694 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1695 << "unsigned Opcode,\n"
1a4d82fc
JJ
1696 << " const OperandVector"
1697 << " &Operands) {\n"
223e47cc
LB
1698 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1699 << " const uint8_t *Converter = ConversionTable[Kind];\n"
1700 << " Inst.setOpcode(Opcode);\n"
1701 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1702 << " switch (*p) {\n"
1703 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
1704 << " case CVT_Reg:\n"
1705 << " static_cast<" << TargetOperandClass
1a4d82fc 1706 << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n"
223e47cc
LB
1707 << " break;\n"
1708 << " case CVT_Tied:\n"
1709 << " Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1710 << " break;\n";
1711
1712 std::string OperandFnBody;
1713 raw_string_ostream OpOS(OperandFnBody);
1714 // Start the operand number lookup function.
970d7e83
LB
1715 OpOS << "void " << Target.getName() << ClassName << "::\n"
1716 << "convertToMapAndConstraints(unsigned Kind,\n";
1717 OpOS.indent(27);
1a4d82fc 1718 OpOS << "const OperandVector &Operands) {\n"
223e47cc 1719 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
970d7e83 1720 << " unsigned NumMCOperands = 0;\n"
223e47cc
LB
1721 << " const uint8_t *Converter = ConversionTable[Kind];\n"
1722 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"
223e47cc
LB
1723 << " switch (*p) {\n"
1724 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
1725 << " case CVT_Reg:\n"
970d7e83
LB
1726 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1727 << " Operands[*(p + 1)]->setConstraint(\"r\");\n"
1728 << " ++NumMCOperands;\n"
223e47cc
LB
1729 << " break;\n"
1730 << " case CVT_Tied:\n"
970d7e83 1731 << " ++NumMCOperands;\n"
223e47cc
LB
1732 << " break;\n";
1733
1734 // Pre-populate the operand conversion kinds with the standard always
1735 // available entries.
1736 OperandConversionKinds.insert("CVT_Done");
1737 OperandConversionKinds.insert("CVT_Reg");
1738 OperandConversionKinds.insert("CVT_Tied");
1739 enum { CVT_Done, CVT_Reg, CVT_Tied };
1740
85aaf69f 1741 for (auto &II : Infos) {
223e47cc
LB
1742 // Check if we have a custom match function.
1743 std::string AsmMatchConverter =
85aaf69f 1744 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
223e47cc
LB
1745 if (!AsmMatchConverter.empty()) {
1746 std::string Signature = "ConvertCustom_" + AsmMatchConverter;
85aaf69f 1747 II->ConversionFnKind = Signature;
223e47cc
LB
1748
1749 // Check if we have already generated this signature.
1750 if (!InstructionConversionKinds.insert(Signature))
1751 continue;
1752
1753 // Remember this converter for the kind enum.
1754 unsigned KindID = OperandConversionKinds.size();
970d7e83
LB
1755 OperandConversionKinds.insert("CVT_" +
1756 getEnumNameForToken(AsmMatchConverter));
223e47cc
LB
1757
1758 // Add the converter row for this instruction.
1759 ConversionTable.push_back(std::vector<uint8_t>());
1760 ConversionTable.back().push_back(KindID);
1761 ConversionTable.back().push_back(CVT_Done);
1762
1763 // Add the handler to the conversion driver function.
970d7e83
LB
1764 CvtOS << " case CVT_"
1765 << getEnumNameForToken(AsmMatchConverter) << ":\n"
223e47cc
LB
1766 << " " << AsmMatchConverter << "(Inst, Operands);\n"
1767 << " break;\n";
1768
1769 // FIXME: Handle the operand number lookup for custom match functions.
1770 continue;
1771 }
1772
1773 // Build the conversion function signature.
1774 std::string Signature = "Convert";
1775
1776 std::vector<uint8_t> ConversionRow;
1777
1778 // Compute the convert enum and the case body.
85aaf69f 1779 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
223e47cc 1780
85aaf69f
SL
1781 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
1782 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
223e47cc
LB
1783
1784 // Generate code to populate each result operand.
1785 switch (OpInfo.Kind) {
1786 case MatchableInfo::ResOperand::RenderAsmOperand: {
1787 // This comes from something we parsed.
85aaf69f
SL
1788 const MatchableInfo::AsmOperand &Op =
1789 II->AsmOperands[OpInfo.AsmOperandNum];
223e47cc
LB
1790
1791 // Registers are always converted the same, don't duplicate the
1792 // conversion function based on them.
1793 Signature += "__";
1794 std::string Class;
1795 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1796 Signature += Class;
1797 Signature += utostr(OpInfo.MINumOperands);
1798 Signature += "_" + itostr(OpInfo.AsmOperandNum);
1799
1800 // Add the conversion kind, if necessary, and get the associated ID
1801 // the index of its entry in the vector).
1802 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1803 Op.Class->RenderMethod);
970d7e83 1804 Name = getEnumNameForToken(Name);
223e47cc
LB
1805
1806 bool IsNewConverter = false;
1807 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1808 IsNewConverter);
1809
1810 // Add the operand entry to the instruction kind conversion row.
1811 ConversionRow.push_back(ID);
1812 ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
1813
1814 if (!IsNewConverter)
1815 break;
1816
1817 // This is a new operand kind. Add a handler for it to the
1818 // converter driver.
1819 CvtOS << " case " << Name << ":\n"
1820 << " static_cast<" << TargetOperandClass
1a4d82fc
JJ
1821 << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod
1822 << "(Inst, " << OpInfo.MINumOperands << ");\n"
223e47cc
LB
1823 << " break;\n";
1824
1825 // Add a handler for the operand number lookup.
1826 OpOS << " case " << Name << ":\n"
970d7e83
LB
1827 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
1828
1829 if (Op.Class->isRegisterClass())
1830 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
1831 else
1832 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
1833 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
223e47cc
LB
1834 << " break;\n";
1835 break;
1836 }
1837 case MatchableInfo::ResOperand::TiedOperand: {
1838 // If this operand is tied to a previous one, just copy the MCInst
1839 // operand from the earlier one.We can only tie single MCOperand values.
1a4d82fc 1840 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
223e47cc
LB
1841 unsigned TiedOp = OpInfo.TiedOperandNum;
1842 assert(i > TiedOp && "Tied operand precedes its target!");
1843 Signature += "__Tie" + utostr(TiedOp);
1844 ConversionRow.push_back(CVT_Tied);
1845 ConversionRow.push_back(TiedOp);
223e47cc
LB
1846 break;
1847 }
1848 case MatchableInfo::ResOperand::ImmOperand: {
1849 int64_t Val = OpInfo.ImmVal;
1850 std::string Ty = "imm_" + itostr(Val);
1851 Signature += "__" + Ty;
1852
1853 std::string Name = "CVT_" + Ty;
1854 bool IsNewConverter = false;
1855 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1856 IsNewConverter);
1857 // Add the operand entry to the instruction kind conversion row.
1858 ConversionRow.push_back(ID);
1859 ConversionRow.push_back(0);
1860
1861 if (!IsNewConverter)
1862 break;
1863
1864 CvtOS << " case " << Name << ":\n"
1865 << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
1866 << " break;\n";
1867
1868 OpOS << " case " << Name << ":\n"
970d7e83
LB
1869 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1870 << " Operands[*(p + 1)]->setConstraint(\"\");\n"
1871 << " ++NumMCOperands;\n"
223e47cc
LB
1872 << " break;\n";
1873 break;
1874 }
1875 case MatchableInfo::ResOperand::RegOperand: {
1876 std::string Reg, Name;
1a4d82fc 1877 if (!OpInfo.Register) {
223e47cc
LB
1878 Name = "reg0";
1879 Reg = "0";
1880 } else {
1881 Reg = getQualifiedName(OpInfo.Register);
1882 Name = "reg" + OpInfo.Register->getName();
1883 }
1884 Signature += "__" + Name;
1885 Name = "CVT_" + Name;
1886 bool IsNewConverter = false;
1887 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1888 IsNewConverter);
1889 // Add the operand entry to the instruction kind conversion row.
1890 ConversionRow.push_back(ID);
1891 ConversionRow.push_back(0);
1892
1893 if (!IsNewConverter)
1894 break;
1895 CvtOS << " case " << Name << ":\n"
1896 << " Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
1897 << " break;\n";
1898
1899 OpOS << " case " << Name << ":\n"
970d7e83
LB
1900 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1901 << " Operands[*(p + 1)]->setConstraint(\"m\");\n"
1902 << " ++NumMCOperands;\n"
223e47cc
LB
1903 << " break;\n";
1904 }
1905 }
1906 }
1907
1908 // If there were no operands, add to the signature to that effect
1909 if (Signature == "Convert")
1910 Signature += "_NoOperands";
1911
85aaf69f 1912 II->ConversionFnKind = Signature;
223e47cc
LB
1913
1914 // Save the signature. If we already have it, don't add a new row
1915 // to the table.
1916 if (!InstructionConversionKinds.insert(Signature))
1917 continue;
1918
1919 // Add the row to the table.
1920 ConversionTable.push_back(ConversionRow);
1921 }
1922
1923 // Finish up the converter driver function.
1924 CvtOS << " }\n }\n}\n\n";
1925
1926 // Finish up the operand number lookup function.
970d7e83 1927 OpOS << " }\n }\n}\n\n";
223e47cc
LB
1928
1929 OS << "namespace {\n";
1930
1931 // Output the operand conversion kind enum.
1932 OS << "enum OperatorConversionKind {\n";
1933 for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1934 OS << " " << OperandConversionKinds[i] << ",\n";
1935 OS << " CVT_NUM_CONVERTERS\n";
1936 OS << "};\n\n";
1937
1938 // Output the instruction conversion kind enum.
1939 OS << "enum InstructionConversionKind {\n";
1940 for (SetVector<std::string>::const_iterator
1941 i = InstructionConversionKinds.begin(),
1942 e = InstructionConversionKinds.end(); i != e; ++i)
1943 OS << " " << *i << ",\n";
1944 OS << " CVT_NUM_SIGNATURES\n";
1945 OS << "};\n\n";
1946
1947
1948 OS << "} // end anonymous namespace\n\n";
1949
1950 // Output the conversion table.
1951 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
1952 << MaxRowLength << "] = {\n";
1953
1954 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
1955 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
1956 OS << " // " << InstructionConversionKinds[Row] << "\n";
1957 OS << " { ";
1958 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
1959 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
1960 << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
1961 OS << "CVT_Done },\n";
1962 }
1963
1964 OS << "};\n\n";
1965
1966 // Spit out the conversion driver function.
1967 OS << CvtOS.str();
1968
1969 // Spit out the operand number lookup function.
1970 OS << OpOS.str();
1971}
1972
1973/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
1974static void emitMatchClassEnumeration(CodeGenTarget &Target,
85aaf69f 1975 std::forward_list<ClassInfo> &Infos,
223e47cc
LB
1976 raw_ostream &OS) {
1977 OS << "namespace {\n\n";
1978
1979 OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1980 << "/// instruction matching.\n";
1981 OS << "enum MatchClassKind {\n";
1982 OS << " InvalidMatchClass = 0,\n";
85aaf69f 1983 for (const auto &CI : Infos) {
223e47cc
LB
1984 OS << " " << CI.Name << ", // ";
1985 if (CI.Kind == ClassInfo::Token) {
1986 OS << "'" << CI.ValueName << "'\n";
1987 } else if (CI.isRegisterClass()) {
1988 if (!CI.ValueName.empty())
1989 OS << "register class '" << CI.ValueName << "'\n";
1990 else
1991 OS << "derived register class\n";
1992 } else {
1993 OS << "user defined class '" << CI.ValueName << "'\n";
1994 }
1995 }
1996 OS << " NumMatchClassKinds\n";
1997 OS << "};\n\n";
1998
1999 OS << "}\n\n";
2000}
2001
2002/// emitValidateOperandClass - Emit the function to validate an operand class.
2003static void emitValidateOperandClass(AsmMatcherInfo &Info,
2004 raw_ostream &OS) {
1a4d82fc 2005 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
223e47cc 2006 << "MatchClassKind Kind) {\n";
1a4d82fc
JJ
2007 OS << " " << Info.Target.getName() << "Operand &Operand = ("
2008 << Info.Target.getName() << "Operand&)GOp;\n";
223e47cc
LB
2009
2010 // The InvalidMatchClass is not to match any operand.
2011 OS << " if (Kind == InvalidMatchClass)\n";
2012 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2013
2014 // Check for Token operands first.
2015 // FIXME: Use a more specific diagnostic type.
2016 OS << " if (Operand.isToken())\n";
2017 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2018 << " MCTargetAsmParser::Match_Success :\n"
2019 << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
2020
2021 // Check the user classes. We don't care what order since we're only
2022 // actually matching against one of them.
85aaf69f 2023 for (const auto &CI : Info.Classes) {
223e47cc
LB
2024 if (!CI.isUserClass())
2025 continue;
2026
2027 OS << " // '" << CI.ClassName << "' class\n";
2028 OS << " if (Kind == " << CI.Name << ") {\n";
2029 OS << " if (Operand." << CI.PredicateMethod << "())\n";
2030 OS << " return MCTargetAsmParser::Match_Success;\n";
2031 if (!CI.DiagnosticType.empty())
2032 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2033 << CI.DiagnosticType << ";\n";
2034 OS << " }\n\n";
2035 }
2036
2037 // Check for register operands, including sub-classes.
2038 OS << " if (Operand.isReg()) {\n";
2039 OS << " MatchClassKind OpKind;\n";
2040 OS << " switch (Operand.getReg()) {\n";
2041 OS << " default: OpKind = InvalidMatchClass; break;\n";
85aaf69f 2042 for (const auto &RC : Info.RegisterClasses)
223e47cc 2043 OS << " case " << Info.Target.getName() << "::"
85aaf69f 2044 << RC.first->getName() << ": OpKind = " << RC.second->Name
223e47cc
LB
2045 << "; break;\n";
2046 OS << " }\n";
2047 OS << " return isSubclass(OpKind, Kind) ? "
2048 << "MCTargetAsmParser::Match_Success :\n "
2049 << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n";
2050
2051 // Generic fallthrough match failure case for operands that don't have
2052 // specialized diagnostic types.
2053 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2054 OS << "}\n\n";
2055}
2056
2057/// emitIsSubclass - Emit the subclass predicate function.
2058static void emitIsSubclass(CodeGenTarget &Target,
85aaf69f 2059 std::forward_list<ClassInfo> &Infos,
223e47cc
LB
2060 raw_ostream &OS) {
2061 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2062 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2063 OS << " if (A == B)\n";
2064 OS << " return true;\n\n";
2065
1a4d82fc
JJ
2066 std::string OStr;
2067 raw_string_ostream SS(OStr);
2068 unsigned Count = 0;
2069 SS << " switch (A) {\n";
2070 SS << " default:\n";
2071 SS << " return false;\n";
85aaf69f 2072 for (const auto &A : Infos) {
223e47cc 2073 std::vector<StringRef> SuperClasses;
85aaf69f 2074 for (const auto &B : Infos) {
223e47cc
LB
2075 if (&A != &B && A.isSubsetOf(B))
2076 SuperClasses.push_back(B.Name);
2077 }
2078
2079 if (SuperClasses.empty())
2080 continue;
1a4d82fc 2081 ++Count;
223e47cc 2082
1a4d82fc 2083 SS << "\n case " << A.Name << ":\n";
223e47cc
LB
2084
2085 if (SuperClasses.size() == 1) {
1a4d82fc 2086 SS << " return B == " << SuperClasses.back().str() << ";\n";
223e47cc
LB
2087 continue;
2088 }
2089
1a4d82fc
JJ
2090 if (!SuperClasses.empty()) {
2091 SS << " switch (B) {\n";
2092 SS << " default: return false;\n";
2093 for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2094 SS << " case " << SuperClasses[i].str() << ": return true;\n";
2095 SS << " }\n";
2096 } else {
2097 // No case statement to emit
2098 SS << " return false;\n";
2099 }
223e47cc 2100 }
1a4d82fc
JJ
2101 SS << " }\n";
2102
2103 // If there were case statements emitted into the string stream, write them
2104 // to the output stream, otherwise write the default.
2105 if (Count)
2106 OS << SS.str();
2107 else
2108 OS << " return false;\n";
2109
223e47cc
LB
2110 OS << "}\n\n";
2111}
2112
2113/// emitMatchTokenString - Emit the function to match a token string to the
2114/// appropriate match class value.
2115static void emitMatchTokenString(CodeGenTarget &Target,
85aaf69f 2116 std::forward_list<ClassInfo> &Infos,
223e47cc
LB
2117 raw_ostream &OS) {
2118 // Construct the match list.
2119 std::vector<StringMatcher::StringPair> Matches;
85aaf69f 2120 for (const auto &CI : Infos) {
223e47cc 2121 if (CI.Kind == ClassInfo::Token)
85aaf69f
SL
2122 Matches.push_back(
2123 StringMatcher::StringPair(CI.ValueName, "return " + CI.Name + ";"));
223e47cc
LB
2124 }
2125
2126 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2127
2128 StringMatcher("Name", Matches, OS).Emit();
2129
2130 OS << " return InvalidMatchClass;\n";
2131 OS << "}\n\n";
2132}
2133
2134/// emitMatchRegisterName - Emit the function to match a string to the target
2135/// specific register enum.
2136static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2137 raw_ostream &OS) {
2138 // Construct the match list.
2139 std::vector<StringMatcher::StringPair> Matches;
85aaf69f
SL
2140 const auto &Regs = Target.getRegBank().getRegisters();
2141 for (const CodeGenRegister &Reg : Regs) {
2142 if (Reg.TheDef->getValueAsString("AsmName").empty())
223e47cc
LB
2143 continue;
2144
85aaf69f
SL
2145 Matches.push_back(
2146 StringMatcher::StringPair(Reg.TheDef->getValueAsString("AsmName"),
2147 "return " + utostr(Reg.EnumValue) + ";"));
223e47cc
LB
2148 }
2149
2150 OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2151
2152 StringMatcher("Name", Matches, OS).Emit();
2153
2154 OS << " return 0;\n";
2155 OS << "}\n\n";
2156}
2157
1a4d82fc
JJ
2158static const char *getMinimalTypeForRange(uint64_t Range) {
2159 assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
2160 if (Range > 0xFFFFFFFFULL)
2161 return "uint64_t";
2162 if (Range > 0xFFFF)
2163 return "uint32_t";
2164 if (Range > 0xFF)
2165 return "uint16_t";
2166 return "uint8_t";
2167}
2168
2169static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
2170 uint64_t MaxIndex = Info.SubtargetFeatures.size();
2171 if (MaxIndex > 0)
2172 MaxIndex--;
2173 return getMinimalTypeForRange(1ULL << MaxIndex);
2174}
2175
223e47cc
LB
2176/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2177/// definitions.
2178static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2179 raw_ostream &OS) {
2180 OS << "// Flags for subtarget features that participate in "
2181 << "instruction matching.\n";
1a4d82fc
JJ
2182 OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
2183 << " {\n";
85aaf69f
SL
2184 for (const auto &SF : Info.SubtargetFeatures) {
2185 const SubtargetFeatureInfo &SFI = SF.second;
1a4d82fc 2186 OS << " " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
223e47cc
LB
2187 }
2188 OS << " Feature_None = 0\n";
2189 OS << "};\n\n";
2190}
2191
2192/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2193static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2194 // Get the set of diagnostic types from all of the operand classes.
2195 std::set<StringRef> Types;
2196 for (std::map<Record*, ClassInfo*>::const_iterator
2197 I = Info.AsmOperandClasses.begin(),
2198 E = Info.AsmOperandClasses.end(); I != E; ++I) {
2199 if (!I->second->DiagnosticType.empty())
2200 Types.insert(I->second->DiagnosticType);
2201 }
2202
2203 if (Types.empty()) return;
2204
2205 // Now emit the enum entries.
2206 for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2207 I != E; ++I)
2208 OS << " Match_" << *I << ",\n";
2209 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
2210}
2211
2212/// emitGetSubtargetFeatureName - Emit the helper function to get the
2213/// user-level name for a subtarget feature.
2214static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2215 OS << "// User-level names for subtarget features that participate in\n"
2216 << "// instruction matching.\n"
1a4d82fc
JJ
2217 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2218 if (!Info.SubtargetFeatures.empty()) {
2219 OS << " switch(Val) {\n";
85aaf69f
SL
2220 for (const auto &SF : Info.SubtargetFeatures) {
2221 const SubtargetFeatureInfo &SFI = SF.second;
1a4d82fc
JJ
2222 // FIXME: Totally just a placeholder name to get the algorithm working.
2223 OS << " case " << SFI.getEnumName() << ": return \""
2224 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2225 }
2226 OS << " default: return \"(unknown)\";\n";
2227 OS << " }\n";
2228 } else {
2229 // Nothing to emit, so skip the switch
2230 OS << " return \"(unknown)\";\n";
223e47cc 2231 }
1a4d82fc 2232 OS << "}\n\n";
223e47cc
LB
2233}
2234
2235/// emitComputeAvailableFeatures - Emit the function to compute the list of
2236/// available features given a subtarget.
2237static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2238 raw_ostream &OS) {
2239 std::string ClassName =
2240 Info.AsmParser->getValueAsString("AsmParserClassName");
2241
1a4d82fc 2242 OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
223e47cc 2243 << "ComputeAvailableFeatures(uint64_t FB) const {\n";
1a4d82fc 2244 OS << " uint64_t Features = 0;\n";
85aaf69f
SL
2245 for (const auto &SF : Info.SubtargetFeatures) {
2246 const SubtargetFeatureInfo &SFI = SF.second;
223e47cc
LB
2247
2248 OS << " if (";
2249 std::string CondStorage =
2250 SFI.TheDef->getValueAsString("AssemblerCondString");
2251 StringRef Conds = CondStorage;
2252 std::pair<StringRef,StringRef> Comma = Conds.split(',');
2253 bool First = true;
2254 do {
2255 if (!First)
2256 OS << " && ";
2257
2258 bool Neg = false;
2259 StringRef Cond = Comma.first;
2260 if (Cond[0] == '!') {
2261 Neg = true;
2262 Cond = Cond.substr(1);
2263 }
2264
2265 OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
2266 if (Neg)
2267 OS << " == 0";
2268 else
2269 OS << " != 0";
2270 OS << ")";
2271
2272 if (Comma.second.empty())
2273 break;
2274
2275 First = false;
2276 Comma = Comma.second.split(',');
2277 } while (true);
2278
2279 OS << ")\n";
2280 OS << " Features |= " << SFI.getEnumName() << ";\n";
2281 }
2282 OS << " return Features;\n";
2283 OS << "}\n\n";
2284}
2285
2286static std::string GetAliasRequiredFeatures(Record *R,
2287 const AsmMatcherInfo &Info) {
2288 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2289 std::string Result;
2290 unsigned NumFeatures = 0;
2291 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
85aaf69f 2292 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
223e47cc 2293
1a4d82fc 2294 if (!F)
970d7e83 2295 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
223e47cc
LB
2296 "' is not marked as an AssemblerPredicate!");
2297
2298 if (NumFeatures)
2299 Result += '|';
2300
2301 Result += F->getEnumName();
2302 ++NumFeatures;
2303 }
2304
2305 if (NumFeatures > 1)
2306 Result = '(' + Result + ')';
2307 return Result;
2308}
2309
1a4d82fc
JJ
2310static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2311 std::vector<Record*> &Aliases,
2312 unsigned Indent = 0,
2313 StringRef AsmParserVariantName = StringRef()){
223e47cc
LB
2314 // Keep track of all the aliases from a mnemonic. Use an std::map so that the
2315 // iteration order of the map is stable.
2316 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2317
2318 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2319 Record *R = Aliases[i];
1a4d82fc
JJ
2320 // FIXME: Allow AssemblerVariantName to be a comma separated list.
2321 std::string AsmVariantName = R->getValueAsString("AsmVariantName");
2322 if (AsmVariantName != AsmParserVariantName)
2323 continue;
223e47cc
LB
2324 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2325 }
1a4d82fc
JJ
2326 if (AliasesFromMnemonic.empty())
2327 return;
223e47cc
LB
2328
2329 // Process each alias a "from" mnemonic at a time, building the code executed
2330 // by the string remapper.
2331 std::vector<StringMatcher::StringPair> Cases;
2332 for (std::map<std::string, std::vector<Record*> >::iterator
2333 I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2334 I != E; ++I) {
2335 const std::vector<Record*> &ToVec = I->second;
2336
2337 // Loop through each alias and emit code that handles each case. If there
2338 // are two instructions without predicates, emit an error. If there is one,
2339 // emit it last.
2340 std::string MatchCode;
2341 int AliasWithNoPredicate = -1;
2342
2343 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2344 Record *R = ToVec[i];
2345 std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2346
2347 // If this unconditionally matches, remember it for later and diagnose
2348 // duplicates.
2349 if (FeatureMask.empty()) {
2350 if (AliasWithNoPredicate != -1) {
2351 // We can't have two aliases from the same mnemonic with no predicate.
2352 PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2353 "two MnemonicAliases with the same 'from' mnemonic!");
970d7e83 2354 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
223e47cc
LB
2355 }
2356
2357 AliasWithNoPredicate = i;
2358 continue;
2359 }
2360 if (R->getValueAsString("ToMnemonic") == I->first)
970d7e83 2361 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
223e47cc
LB
2362
2363 if (!MatchCode.empty())
2364 MatchCode += "else ";
2365 MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2366 MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2367 }
2368
2369 if (AliasWithNoPredicate != -1) {
2370 Record *R = ToVec[AliasWithNoPredicate];
2371 if (!MatchCode.empty())
2372 MatchCode += "else\n ";
2373 MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2374 }
2375
2376 MatchCode += "return;";
2377
2378 Cases.push_back(std::make_pair(I->first, MatchCode));
2379 }
1a4d82fc
JJ
2380 StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2381}
2382
2383/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2384/// emit a function for them and return true, otherwise return false.
2385static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2386 CodeGenTarget &Target) {
2387 // Ignore aliases when match-prefix is set.
2388 if (!MatchPrefix.empty())
2389 return false;
2390
2391 std::vector<Record*> Aliases =
2392 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2393 if (Aliases.empty()) return false;
2394
2395 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2396 "uint64_t Features, unsigned VariantID) {\n";
2397 OS << " switch (VariantID) {\n";
2398 unsigned VariantCount = Target.getAsmParserVariantCount();
2399 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2400 Record *AsmVariant = Target.getAsmParserVariant(VC);
2401 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2402 std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
2403 OS << " case " << AsmParserVariantNo << ":\n";
2404 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2405 AsmParserVariantName);
2406 OS << " break;\n";
2407 }
2408 OS << " }\n";
2409
2410 // Emit aliases that apply to all variants.
2411 emitMnemonicAliasVariant(OS, Info, Aliases);
223e47cc 2412
223e47cc
LB
2413 OS << "}\n\n";
2414
2415 return true;
2416}
2417
223e47cc
LB
2418static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2419 const AsmMatcherInfo &Info, StringRef ClassName,
2420 StringToOffsetTable &StringTable,
2421 unsigned MaxMnemonicIndex) {
2422 unsigned MaxMask = 0;
2423 for (std::vector<OperandMatchEntry>::const_iterator it =
2424 Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2425 it != ie; ++it) {
2426 MaxMask |= it->OperandMask;
2427 }
2428
2429 // Emit the static custom operand parsing table;
2430 OS << "namespace {\n";
2431 OS << " struct OperandMatchEntry {\n";
1a4d82fc 2432 OS << " " << getMinimalRequiredFeaturesType(Info)
223e47cc
LB
2433 << " RequiredFeatures;\n";
2434 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
2435 << " Mnemonic;\n";
85aaf69f
SL
2436 OS << " " << getMinimalTypeForRange(std::distance(
2437 Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
223e47cc
LB
2438 OS << " " << getMinimalTypeForRange(MaxMask)
2439 << " OperandMask;\n\n";
2440 OS << " StringRef getMnemonic() const {\n";
2441 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2442 OS << " MnemonicTable[Mnemonic]);\n";
2443 OS << " }\n";
2444 OS << " };\n\n";
2445
2446 OS << " // Predicate for searching for an opcode.\n";
2447 OS << " struct LessOpcodeOperand {\n";
2448 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2449 OS << " return LHS.getMnemonic() < RHS;\n";
2450 OS << " }\n";
2451 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2452 OS << " return LHS < RHS.getMnemonic();\n";
2453 OS << " }\n";
2454 OS << " bool operator()(const OperandMatchEntry &LHS,";
2455 OS << " const OperandMatchEntry &RHS) {\n";
2456 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2457 OS << " }\n";
2458 OS << " };\n";
2459
2460 OS << "} // end anonymous namespace.\n\n";
2461
2462 OS << "static const OperandMatchEntry OperandMatchTable["
2463 << Info.OperandMatchInfo.size() << "] = {\n";
2464
2465 OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2466 for (std::vector<OperandMatchEntry>::const_iterator it =
2467 Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2468 it != ie; ++it) {
2469 const OperandMatchEntry &OMI = *it;
2470 const MatchableInfo &II = *OMI.MI;
2471
2472 OS << " { ";
2473
2474 // Write the required features mask.
2475 if (!II.RequiredFeatures.empty()) {
2476 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2477 if (i) OS << "|";
2478 OS << II.RequiredFeatures[i]->getEnumName();
2479 }
2480 } else
2481 OS << "0";
2482
2483 // Store a pascal-style length byte in the mnemonic.
2484 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2485 OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2486 << " /* " << II.Mnemonic << " */, ";
2487
2488 OS << OMI.CI->Name;
2489
2490 OS << ", " << OMI.OperandMask;
2491 OS << " /* ";
2492 bool printComma = false;
2493 for (int i = 0, e = 31; i !=e; ++i)
2494 if (OMI.OperandMask & (1 << i)) {
2495 if (printComma)
2496 OS << ", ";
2497 OS << i;
2498 printComma = true;
2499 }
2500 OS << " */";
2501
2502 OS << " },\n";
2503 }
2504 OS << "};\n\n";
2505
2506 // Emit the operand class switch to call the correct custom parser for
2507 // the found operand class.
2508 OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2509 << Target.getName() << ClassName << "::\n"
1a4d82fc 2510 << "tryCustomParseOperand(OperandVector"
223e47cc
LB
2511 << " &Operands,\n unsigned MCK) {\n\n"
2512 << " switch(MCK) {\n";
2513
85aaf69f
SL
2514 for (const auto &CI : Info.Classes) {
2515 if (CI.ParserMethod.empty())
223e47cc 2516 continue;
85aaf69f
SL
2517 OS << " case " << CI.Name << ":\n"
2518 << " return " << CI.ParserMethod << "(Operands);\n";
223e47cc
LB
2519 }
2520
2521 OS << " default:\n";
2522 OS << " return MatchOperand_NoMatch;\n";
2523 OS << " }\n";
2524 OS << " return MatchOperand_NoMatch;\n";
2525 OS << "}\n\n";
2526
2527 // Emit the static custom operand parser. This code is very similar with
2528 // the other matcher. Also use MatchResultTy here just in case we go for
2529 // a better error handling.
2530 OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2531 << Target.getName() << ClassName << "::\n"
1a4d82fc 2532 << "MatchOperandParserImpl(OperandVector"
223e47cc
LB
2533 << " &Operands,\n StringRef Mnemonic) {\n";
2534
2535 // Emit code to get the available features.
2536 OS << " // Get the current feature set.\n";
1a4d82fc 2537 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
223e47cc
LB
2538
2539 OS << " // Get the next operand index.\n";
2540 OS << " unsigned NextOpNum = Operands.size()-1;\n";
2541
2542 // Emit code to search the table.
2543 OS << " // Search the table.\n";
2544 OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2545 OS << " MnemonicRange =\n";
2546 OS << " std::equal_range(OperandMatchTable, OperandMatchTable+"
2547 << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2548 << " LessOpcodeOperand());\n\n";
2549
2550 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2551 OS << " return MatchOperand_NoMatch;\n\n";
2552
2553 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2554 << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
2555
2556 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2557 OS << " assert(Mnemonic == it->getMnemonic());\n\n";
2558
2559 // Emit check that the required features are available.
2560 OS << " // check if the available features match\n";
2561 OS << " if ((AvailableFeatures & it->RequiredFeatures) "
2562 << "!= it->RequiredFeatures) {\n";
2563 OS << " continue;\n";
2564 OS << " }\n\n";
2565
2566 // Emit check to ensure the operand number matches.
2567 OS << " // check if the operand in question has a custom parser.\n";
2568 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
2569 OS << " continue;\n\n";
2570
2571 // Emit call to the custom parser method
2572 OS << " // call custom parse method to handle the operand\n";
2573 OS << " OperandMatchResultTy Result = ";
2574 OS << "tryCustomParseOperand(Operands, it->Class);\n";
2575 OS << " if (Result != MatchOperand_NoMatch)\n";
2576 OS << " return Result;\n";
2577 OS << " }\n\n";
2578
2579 OS << " // Okay, we had no match.\n";
2580 OS << " return MatchOperand_NoMatch;\n";
2581 OS << "}\n\n";
2582}
2583
2584void AsmMatcherEmitter::run(raw_ostream &OS) {
2585 CodeGenTarget Target(Records);
2586 Record *AsmParser = Target.getAsmParser();
2587 std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2588
2589 // Compute the information on the instructions to match.
2590 AsmMatcherInfo Info(AsmParser, Target, Records);
2591 Info.buildInfo();
2592
2593 // Sort the instruction table using the partial order on classes. We use
2594 // stable_sort to ensure that ambiguous instructions are still
2595 // deterministically ordered.
2596 std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
85aaf69f
SL
2597 [](const std::unique_ptr<MatchableInfo> &a,
2598 const std::unique_ptr<MatchableInfo> &b){
2599 return *a < *b;});
223e47cc
LB
2600
2601 DEBUG_WITH_TYPE("instruction_info", {
85aaf69f
SL
2602 for (const auto &MI : Info.Matchables)
2603 MI->dump();
223e47cc
LB
2604 });
2605
2606 // Check for ambiguous matchables.
2607 DEBUG_WITH_TYPE("ambiguous_instrs", {
2608 unsigned NumAmbiguous = 0;
85aaf69f
SL
2609 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
2610 ++I) {
2611 for (auto J = std::next(I); J != E; ++J) {
2612 const MatchableInfo &A = **I;
2613 const MatchableInfo &B = **J;
223e47cc
LB
2614
2615 if (A.couldMatchAmbiguouslyWith(B)) {
2616 errs() << "warning: ambiguous matchables:\n";
2617 A.dump();
2618 errs() << "\nis incomparable with:\n";
2619 B.dump();
2620 errs() << "\n\n";
2621 ++NumAmbiguous;
2622 }
2623 }
2624 }
2625 if (NumAmbiguous)
2626 errs() << "warning: " << NumAmbiguous
2627 << " ambiguous matchables!\n";
2628 });
2629
2630 // Compute the information on the custom operand parsing.
2631 Info.buildOperandMatchInfo();
2632
2633 // Write the output.
2634
2635 // Information for the class declaration.
2636 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2637 OS << "#undef GET_ASSEMBLER_HEADER\n";
2638 OS << " // This should be included into the middle of the declaration of\n";
2639 OS << " // your subclasses implementation of MCTargetAsmParser.\n";
1a4d82fc 2640 OS << " uint64_t ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
223e47cc
LB
2641 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
2642 << "unsigned Opcode,\n"
1a4d82fc 2643 << " const OperandVector "
223e47cc 2644 << "&Operands);\n";
970d7e83 2645 OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
1a4d82fc
JJ
2646 OS << " const OperandVector &Operands) override;\n";
2647 OS << " bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n";
85aaf69f 2648 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
970d7e83 2649 << " MCInst &Inst,\n"
1a4d82fc 2650 << " uint64_t &ErrorInfo,"
970d7e83
LB
2651 << " bool matchingInlineAsm,\n"
2652 << " unsigned VariantID = 0);\n";
223e47cc
LB
2653
2654 if (Info.OperandMatchInfo.size()) {
2655 OS << "\n enum OperandMatchResultTy {\n";
2656 OS << " MatchOperand_Success, // operand matched successfully\n";
2657 OS << " MatchOperand_NoMatch, // operand did not match\n";
2658 OS << " MatchOperand_ParseFail // operand matched but had errors\n";
2659 OS << " };\n";
2660 OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
1a4d82fc 2661 OS << " OperandVector &Operands,\n";
223e47cc
LB
2662 OS << " StringRef Mnemonic);\n";
2663
2664 OS << " OperandMatchResultTy tryCustomParseOperand(\n";
1a4d82fc 2665 OS << " OperandVector &Operands,\n";
223e47cc
LB
2666 OS << " unsigned MCK);\n\n";
2667 }
2668
2669 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2670
2671 // Emit the operand match diagnostic enum names.
2672 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2673 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2674 emitOperandDiagnosticTypes(Info, OS);
2675 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2676
2677
2678 OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2679 OS << "#undef GET_REGISTER_MATCHER\n\n";
2680
2681 // Emit the subtarget feature enumeration.
2682 emitSubtargetFeatureFlagEnumeration(Info, OS);
2683
2684 // Emit the function to match a register name to number.
2685 // This should be omitted for Mips target
2686 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2687 emitMatchRegisterName(Target, AsmParser, OS);
2688
2689 OS << "#endif // GET_REGISTER_MATCHER\n\n";
2690
2691 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2692 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2693
2694 // Generate the helper function to get the names for subtarget features.
2695 emitGetSubtargetFeatureName(Info, OS);
2696
2697 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2698
2699 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2700 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2701
2702 // Generate the function that remaps for mnemonic aliases.
1a4d82fc 2703 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
223e47cc 2704
970d7e83
LB
2705 // Generate the convertToMCInst function to convert operands into an MCInst.
2706 // Also, generate the convertToMapAndConstraints function for MS-style inline
2707 // assembly. The latter doesn't actually generate a MCInst.
2708 emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
223e47cc
LB
2709
2710 // Emit the enumeration for classes which participate in matching.
2711 emitMatchClassEnumeration(Target, Info.Classes, OS);
2712
2713 // Emit the routine to match token strings to their match class.
2714 emitMatchTokenString(Target, Info.Classes, OS);
2715
2716 // Emit the subclass predicate routine.
2717 emitIsSubclass(Target, Info.Classes, OS);
2718
2719 // Emit the routine to validate an operand against a match class.
2720 emitValidateOperandClass(Info, OS);
2721
2722 // Emit the available features compute function.
2723 emitComputeAvailableFeatures(Info, OS);
2724
2725
2726 StringToOffsetTable StringTable;
2727
2728 size_t MaxNumOperands = 0;
2729 unsigned MaxMnemonicIndex = 0;
1a4d82fc 2730 bool HasDeprecation = false;
85aaf69f
SL
2731 for (const auto &MI : Info.Matchables) {
2732 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
2733 HasDeprecation |= MI->HasDeprecation;
223e47cc
LB
2734
2735 // Store a pascal-style length byte in the mnemonic.
85aaf69f 2736 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
223e47cc
LB
2737 MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2738 StringTable.GetOrAddStringOffset(LenMnemonic, false));
2739 }
2740
2741 OS << "static const char *const MnemonicTable =\n";
2742 StringTable.EmitString(OS);
2743 OS << ";\n\n";
2744
2745 // Emit the static match table; unused classes get initalized to 0 which is
2746 // guaranteed to be InvalidMatchClass.
2747 //
2748 // FIXME: We can reduce the size of this table very easily. First, we change
2749 // it so that store the kinds in separate bit-fields for each index, which
2750 // only needs to be the max width used for classes at that index (we also need
2751 // to reject based on this during classification). If we then make sure to
2752 // order the match kinds appropriately (putting mnemonics last), then we
2753 // should only end up using a few bits for each class, especially the ones
2754 // following the mnemonic.
2755 OS << "namespace {\n";
2756 OS << " struct MatchEntry {\n";
2757 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
2758 << " Mnemonic;\n";
2759 OS << " uint16_t Opcode;\n";
2760 OS << " " << getMinimalTypeForRange(Info.Matchables.size())
2761 << " ConvertFn;\n";
1a4d82fc 2762 OS << " " << getMinimalRequiredFeaturesType(Info)
223e47cc 2763 << " RequiredFeatures;\n";
85aaf69f
SL
2764 OS << " " << getMinimalTypeForRange(
2765 std::distance(Info.Classes.begin(), Info.Classes.end()))
2766 << " Classes[" << MaxNumOperands << "];\n";
223e47cc
LB
2767 OS << " StringRef getMnemonic() const {\n";
2768 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2769 OS << " MnemonicTable[Mnemonic]);\n";
2770 OS << " }\n";
2771 OS << " };\n\n";
2772
2773 OS << " // Predicate for searching for an opcode.\n";
2774 OS << " struct LessOpcode {\n";
2775 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2776 OS << " return LHS.getMnemonic() < RHS;\n";
2777 OS << " }\n";
2778 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2779 OS << " return LHS < RHS.getMnemonic();\n";
2780 OS << " }\n";
2781 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2782 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2783 OS << " }\n";
2784 OS << " };\n";
2785
2786 OS << "} // end anonymous namespace.\n\n";
2787
1a4d82fc
JJ
2788 unsigned VariantCount = Target.getAsmParserVariantCount();
2789 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2790 Record *AsmVariant = Target.getAsmParserVariant(VC);
2791 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
223e47cc 2792
1a4d82fc 2793 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
223e47cc 2794
85aaf69f
SL
2795 for (const auto &MI : Info.Matchables) {
2796 if (MI->AsmVariantID != AsmVariantNo)
1a4d82fc 2797 continue;
223e47cc 2798
1a4d82fc 2799 // Store a pascal-style length byte in the mnemonic.
85aaf69f 2800 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
1a4d82fc 2801 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
85aaf69f 2802 << " /* " << MI->Mnemonic << " */, "
1a4d82fc 2803 << Target.getName() << "::"
85aaf69f
SL
2804 << MI->getResultInst()->TheDef->getName() << ", "
2805 << MI->ConversionFnKind << ", ";
1a4d82fc
JJ
2806
2807 // Write the required features mask.
85aaf69f
SL
2808 if (!MI->RequiredFeatures.empty()) {
2809 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
1a4d82fc 2810 if (i) OS << "|";
85aaf69f 2811 OS << MI->RequiredFeatures[i]->getEnumName();
1a4d82fc
JJ
2812 }
2813 } else
2814 OS << "0";
223e47cc 2815
1a4d82fc 2816 OS << ", { ";
85aaf69f
SL
2817 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
2818 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
223e47cc 2819
1a4d82fc
JJ
2820 if (i) OS << ", ";
2821 OS << Op.Class->Name;
2822 }
2823 OS << " }, },\n";
223e47cc 2824 }
223e47cc 2825
1a4d82fc
JJ
2826 OS << "};\n\n";
2827 }
223e47cc
LB
2828
2829 // A method to determine if a mnemonic is in the list.
2830 OS << "bool " << Target.getName() << ClassName << "::\n"
1a4d82fc
JJ
2831 << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
2832 OS << " // Find the appropriate table for this asm variant.\n";
2833 OS << " const MatchEntry *Start, *End;\n";
2834 OS << " switch (VariantID) {\n";
85aaf69f 2835 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
1a4d82fc
JJ
2836 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2837 Record *AsmVariant = Target.getAsmParserVariant(VC);
2838 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2839 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2840 << "); End = std::end(MatchTable" << VC << "); break;\n";
2841 }
2842 OS << " }\n";
223e47cc
LB
2843 OS << " // Search the table.\n";
2844 OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
1a4d82fc 2845 OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
223e47cc
LB
2846 OS << " return MnemonicRange.first != MnemonicRange.second;\n";
2847 OS << "}\n\n";
2848
2849 // Finally, build the match function.
1a4d82fc 2850 OS << "unsigned " << Target.getName() << ClassName << "::\n"
85aaf69f
SL
2851 << "MatchInstructionImpl(const OperandVector &Operands,\n";
2852 OS << " MCInst &Inst, uint64_t &ErrorInfo,\n"
2853 << " bool matchingInlineAsm, unsigned VariantID) {\n";
223e47cc
LB
2854
2855 OS << " // Eliminate obvious mismatches.\n";
2856 OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2857 OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2858 OS << " return Match_InvalidOperand;\n";
2859 OS << " }\n\n";
2860
2861 // Emit code to get the available features.
2862 OS << " // Get the current feature set.\n";
1a4d82fc 2863 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
223e47cc
LB
2864
2865 OS << " // Get the instruction mnemonic, which is the first token.\n";
2866 OS << " StringRef Mnemonic = ((" << Target.getName()
1a4d82fc 2867 << "Operand&)*Operands[0]).getToken();\n\n";
223e47cc
LB
2868
2869 if (HasMnemonicAliases) {
2870 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
1a4d82fc 2871 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
223e47cc
LB
2872 }
2873
2874 // Emit code to compute the class list for this operand vector.
2875 OS << " // Some state to try to produce better error messages.\n";
2876 OS << " bool HadMatchOtherThanFeatures = false;\n";
2877 OS << " bool HadMatchOtherThanPredicate = false;\n";
2878 OS << " unsigned RetCode = Match_InvalidOperand;\n";
1a4d82fc 2879 OS << " uint64_t MissingFeatures = ~0ULL;\n";
223e47cc
LB
2880 OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
2881 OS << " // wrong for all instances of the instruction.\n";
2882 OS << " ErrorInfo = ~0U;\n";
2883
2884 // Emit code to search the table.
1a4d82fc
JJ
2885 OS << " // Find the appropriate table for this asm variant.\n";
2886 OS << " const MatchEntry *Start, *End;\n";
2887 OS << " switch (VariantID) {\n";
85aaf69f 2888 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
1a4d82fc
JJ
2889 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2890 Record *AsmVariant = Target.getAsmParserVariant(VC);
2891 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2892 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2893 << "); End = std::end(MatchTable" << VC << "); break;\n";
2894 }
2895 OS << " }\n";
223e47cc
LB
2896 OS << " // Search the table.\n";
2897 OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
1a4d82fc 2898 OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
223e47cc
LB
2899
2900 OS << " // Return a more specific error code if no mnemonics match.\n";
2901 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2902 OS << " return Match_MnemonicFail;\n\n";
2903
2904 OS << " for (const MatchEntry *it = MnemonicRange.first, "
2905 << "*ie = MnemonicRange.second;\n";
2906 OS << " it != ie; ++it) {\n";
2907
2908 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2909 OS << " assert(Mnemonic == it->getMnemonic());\n";
2910
2911 // Emit check that the subclasses match.
223e47cc
LB
2912 OS << " bool OperandsValid = true;\n";
2913 OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2914 OS << " if (i + 1 >= Operands.size()) {\n";
2915 OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2916 OS << " if (!OperandsValid) ErrorInfo = i + 1;\n";
2917 OS << " break;\n";
2918 OS << " }\n";
1a4d82fc 2919 OS << " unsigned Diag = validateOperandClass(*Operands[i+1],\n";
223e47cc
LB
2920 OS.indent(43);
2921 OS << "(MatchClassKind)it->Classes[i]);\n";
2922 OS << " if (Diag == Match_Success)\n";
2923 OS << " continue;\n";
970d7e83
LB
2924 OS << " // If the generic handler indicates an invalid operand\n";
2925 OS << " // failure, check for a special case.\n";
2926 OS << " if (Diag == Match_InvalidOperand) {\n";
1a4d82fc 2927 OS << " Diag = validateTargetOperandClass(*Operands[i+1],\n";
970d7e83
LB
2928 OS.indent(43);
2929 OS << "(MatchClassKind)it->Classes[i]);\n";
2930 OS << " if (Diag == Match_Success)\n";
2931 OS << " continue;\n";
2932 OS << " }\n";
223e47cc
LB
2933 OS << " // If this operand is broken for all of the instances of this\n";
2934 OS << " // mnemonic, keep track of it so we can report loc info.\n";
2935 OS << " // If we already had a match that only failed due to a\n";
2936 OS << " // target predicate, that diagnostic is preferred.\n";
2937 OS << " if (!HadMatchOtherThanPredicate &&\n";
2938 OS << " (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
2939 OS << " ErrorInfo = i+1;\n";
2940 OS << " // InvalidOperand is the default. Prefer specificity.\n";
2941 OS << " if (Diag != Match_InvalidOperand)\n";
2942 OS << " RetCode = Diag;\n";
2943 OS << " }\n";
2944 OS << " // Otherwise, just reject this instance of the mnemonic.\n";
2945 OS << " OperandsValid = false;\n";
2946 OS << " break;\n";
2947 OS << " }\n\n";
2948
2949 OS << " if (!OperandsValid) continue;\n";
2950
2951 // Emit check that the required features are available.
2952 OS << " if ((AvailableFeatures & it->RequiredFeatures) "
2953 << "!= it->RequiredFeatures) {\n";
2954 OS << " HadMatchOtherThanFeatures = true;\n";
1a4d82fc 2955 OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & "
223e47cc 2956 "~AvailableFeatures;\n";
1a4d82fc
JJ
2957 OS << " if (CountPopulation_64(NewMissingFeatures) <=\n"
2958 " CountPopulation_64(MissingFeatures))\n";
223e47cc
LB
2959 OS << " MissingFeatures = NewMissingFeatures;\n";
2960 OS << " continue;\n";
2961 OS << " }\n";
2962 OS << "\n";
85aaf69f 2963 OS << " Inst.clear();\n\n";
970d7e83
LB
2964 OS << " if (matchingInlineAsm) {\n";
2965 OS << " Inst.setOpcode(it->Opcode);\n";
2966 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
2967 OS << " return Match_Success;\n";
2968 OS << " }\n\n";
223e47cc
LB
2969 OS << " // We have selected a definite instruction, convert the parsed\n"
2970 << " // operands into the appropriate MCInst.\n";
2971 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
2972 OS << "\n";
2973
2974 // Verify the instruction with the target-specific match predicate function.
2975 OS << " // We have a potential match. Check the target predicate to\n"
2976 << " // handle any context sensitive constraints.\n"
2977 << " unsigned MatchResult;\n"
2978 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2979 << " Match_Success) {\n"
2980 << " Inst.clear();\n"
2981 << " RetCode = MatchResult;\n"
2982 << " HadMatchOtherThanPredicate = true;\n"
2983 << " continue;\n"
2984 << " }\n\n";
2985
2986 // Call the post-processing function, if used.
2987 std::string InsnCleanupFn =
2988 AsmParser->getValueAsString("AsmParserInstCleanup");
2989 if (!InsnCleanupFn.empty())
2990 OS << " " << InsnCleanupFn << "(Inst);\n";
2991
1a4d82fc
JJ
2992 if (HasDeprecation) {
2993 OS << " std::string Info;\n";
2994 OS << " if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, STI, Info)) {\n";
2995 OS << " SMLoc Loc = ((" << Target.getName()
2996 << "Operand&)*Operands[0]).getStartLoc();\n";
85aaf69f 2997 OS << " getParser().Warning(Loc, Info, None);\n";
1a4d82fc
JJ
2998 OS << " }\n";
2999 }
3000
223e47cc
LB
3001 OS << " return Match_Success;\n";
3002 OS << " }\n\n";
3003
3004 OS << " // Okay, we had no match. Try to return a useful error code.\n";
3005 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3006 OS << " return RetCode;\n\n";
3007 OS << " // Missing feature matches return which features were missing\n";
3008 OS << " ErrorInfo = MissingFeatures;\n";
3009 OS << " return Match_MissingFeature;\n";
3010 OS << "}\n\n";
3011
3012 if (Info.OperandMatchInfo.size())
3013 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3014 MaxMnemonicIndex);
3015
3016 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3017}
3018
3019namespace llvm {
3020
3021void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3022 emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3023 AsmMatcherEmitter(RK).run(OS);
3024}
3025
3026} // End llvm namespace