]> git.proxmox.com Git - rustc.git/blame - src/llvm/utils/TableGen/DAGISelMatcherOpt.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / utils / TableGen / DAGISelMatcherOpt.cpp
CommitLineData
223e47cc
LB
1//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the DAG Matcher optimizer.
11//
12//===----------------------------------------------------------------------===//
13
223e47cc
LB
14#include "DAGISelMatcher.h"
15#include "CodeGenDAGPatterns.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/StringSet.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/raw_ostream.h"
20using namespace llvm;
21
1a4d82fc
JJ
22#define DEBUG_TYPE "isel-opt"
23
223e47cc
LB
24/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
25/// into single compound nodes like RecordChild.
1a4d82fc 26static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
223e47cc
LB
27 const CodeGenDAGPatterns &CGP) {
28 // If we reached the end of the chain, we're done.
29 Matcher *N = MatcherPtr.get();
1a4d82fc 30 if (!N) return;
223e47cc
LB
31
32 // If we have a scope node, walk down all of the children.
33 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
34 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
1a4d82fc 35 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
223e47cc 36 ContractNodes(Child, CGP);
1a4d82fc 37 Scope->resetChild(i, Child.release());
223e47cc
LB
38 }
39 return;
40 }
41
42 // If we found a movechild node with a node that comes in a 'foochild' form,
43 // transform it.
44 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
1a4d82fc 45 Matcher *New = nullptr;
223e47cc
LB
46 if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
47 if (MC->getChildNo() < 8) // Only have RecordChild0...7
48 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
49 RM->getResultNo());
1a4d82fc 50
223e47cc
LB
51 if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
52 if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
53 CT->getResNo() == 0) // CheckChildType checks res #0
54 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
1a4d82fc
JJ
55
56 if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
57 if (MC->getChildNo() < 4) // Only have CheckChildSame0...3
58 New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
59
60 if (CheckIntegerMatcher *CS = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
61 if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4
62 New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue());
63
223e47cc
LB
64 if (New) {
65 // Insert the new node.
1a4d82fc 66 New->setNext(MatcherPtr.release());
223e47cc
LB
67 MatcherPtr.reset(New);
68 // Remove the old one.
69 MC->setNext(MC->getNext()->takeNext());
70 return ContractNodes(MatcherPtr, CGP);
71 }
72 }
73
74 // Zap movechild -> moveparent.
75 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
76 if (MoveParentMatcher *MP =
77 dyn_cast<MoveParentMatcher>(MC->getNext())) {
78 MatcherPtr.reset(MP->takeNext());
79 return ContractNodes(MatcherPtr, CGP);
80 }
81
82 // Turn EmitNode->MarkFlagResults->CompleteMatch into
83 // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
84 // MorphNodeTo formation. This is safe because MarkFlagResults never refers
85 // to the root of the pattern.
86 if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) &&
87 isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
88 // Unlink the two nodes from the list.
1a4d82fc 89 Matcher *EmitNode = MatcherPtr.release();
223e47cc
LB
90 Matcher *MFR = EmitNode->takeNext();
91 Matcher *Tail = MFR->takeNext();
92
93 // Relink them.
94 MatcherPtr.reset(MFR);
95 MFR->setNext(EmitNode);
96 EmitNode->setNext(Tail);
97 return ContractNodes(MatcherPtr, CGP);
98 }
99
100 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
101 if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
102 if (CompleteMatchMatcher *CM =
103 dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
104 // We can only use MorphNodeTo if the result values match up.
105 unsigned RootResultFirst = EN->getFirstResultSlot();
106 bool ResultsMatch = true;
107 for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
108 if (CM->getResult(i) != RootResultFirst+i)
109 ResultsMatch = false;
110
111 // If the selected node defines a subset of the glue/chain results, we
112 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
113 // matched pattern has a chain but the root node doesn't.
114 const PatternToMatch &Pattern = CM->getPattern();
115
116 if (!EN->hasChain() &&
117 Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
118 ResultsMatch = false;
119
120 // If the matched node has glue and the output root doesn't, we can't
121 // use MorphNodeTo.
122 //
123 // NOTE: Strictly speaking, we don't have to check for glue here
124 // because the code in the pattern generator doesn't handle it right. We
125 // do it anyway for thoroughness.
126 if (!EN->hasOutFlag() &&
127 Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
128 ResultsMatch = false;
129
130
131 // If the root result node defines more results than the source root node
132 // *and* has a chain or glue input, then we can't match it because it
133 // would end up replacing the extra result with the chain/glue.
134#if 0
135 if ((EN->hasGlue() || EN->hasChain()) &&
136 EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
137 ResultMatch = false;
138#endif
139
140 if (ResultsMatch) {
141 const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
142 const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
143 MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
1a4d82fc 144 VTs, Operands,
223e47cc
LB
145 EN->hasChain(), EN->hasInFlag(),
146 EN->hasOutFlag(),
147 EN->hasMemRefs(),
148 EN->getNumFixedArityOperands(),
149 Pattern));
150 return;
151 }
152
153 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
154 // variants.
155 }
156
157 ContractNodes(N->getNextPtr(), CGP);
158
159
160 // If we have a CheckType/CheckChildType/Record node followed by a
161 // CheckOpcode, invert the two nodes. We prefer to do structural checks
162 // before type checks, as this opens opportunities for factoring on targets
163 // like X86 where many operations are valid on multiple types.
164 if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
165 isa<RecordMatcher>(N)) &&
166 isa<CheckOpcodeMatcher>(N->getNext())) {
167 // Unlink the two nodes from the list.
1a4d82fc 168 Matcher *CheckType = MatcherPtr.release();
223e47cc
LB
169 Matcher *CheckOpcode = CheckType->takeNext();
170 Matcher *Tail = CheckOpcode->takeNext();
171
172 // Relink them.
173 MatcherPtr.reset(CheckOpcode);
174 CheckOpcode->setNext(CheckType);
175 CheckType->setNext(Tail);
176 return ContractNodes(MatcherPtr, CGP);
177 }
178}
179
180/// SinkPatternPredicates - Pattern predicates can be checked at any level of
181/// the matching tree. The generator dumps them at the top level of the pattern
182/// though, which prevents factoring from being able to see past them. This
183/// optimization sinks them as far down into the pattern as possible.
184///
185/// Conceptually, we'd like to sink these predicates all the way to the last
186/// matcher predicate in the series. However, it turns out that some
187/// ComplexPatterns have side effects on the graph, so we really don't want to
1a4d82fc 188/// run a complex pattern if the pattern predicate will fail. For this
223e47cc
LB
189/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
190///
1a4d82fc 191static void SinkPatternPredicates(std::unique_ptr<Matcher> &MatcherPtr) {
223e47cc
LB
192 // Recursively scan for a PatternPredicate.
193 // If we reached the end of the chain, we're done.
194 Matcher *N = MatcherPtr.get();
1a4d82fc 195 if (!N) return;
223e47cc
LB
196
197 // Walk down all members of a scope node.
198 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
199 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
1a4d82fc 200 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
223e47cc 201 SinkPatternPredicates(Child);
1a4d82fc 202 Scope->resetChild(i, Child.release());
223e47cc
LB
203 }
204 return;
205 }
206
207 // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
208 // we find one.
209 CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
1a4d82fc 210 if (!CPPM)
223e47cc
LB
211 return SinkPatternPredicates(N->getNextPtr());
212
213 // Ok, we found one, lets try to sink it. Check if we can sink it past the
214 // next node in the chain. If not, we won't be able to change anything and
215 // might as well bail.
216 if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
217 return;
218
219 // Okay, we know we can sink it past at least one node. Unlink it from the
220 // chain and scan for the new insertion point.
1a4d82fc 221 MatcherPtr.release(); // Don't delete CPPM.
223e47cc
LB
222 MatcherPtr.reset(CPPM->takeNext());
223
224 N = MatcherPtr.get();
225 while (N->getNext()->isSafeToReorderWithPatternPredicate())
226 N = N->getNext();
227
228 // At this point, we want to insert CPPM after N.
229 CPPM->setNext(N->takeNext());
230 N->setNext(CPPM);
231}
232
233/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
234/// specified kind. Return null if we didn't find one otherwise return the
235/// matcher.
236static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
237 for (; M; M = M->getNext())
238 if (M->getKind() == Kind)
239 return M;
1a4d82fc 240 return nullptr;
223e47cc
LB
241}
242
243
244/// FactorNodes - Turn matches like this:
245/// Scope
246/// OPC_CheckType i32
247/// ABC
248/// OPC_CheckType i32
249/// XYZ
250/// into:
251/// OPC_CheckType i32
252/// Scope
253/// ABC
254/// XYZ
255///
1a4d82fc 256static void FactorNodes(std::unique_ptr<Matcher> &MatcherPtr) {
223e47cc
LB
257 // If we reached the end of the chain, we're done.
258 Matcher *N = MatcherPtr.get();
1a4d82fc 259 if (!N) return;
223e47cc
LB
260
261 // If this is not a push node, just scan for one.
262 ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
1a4d82fc 263 if (!Scope)
223e47cc
LB
264 return FactorNodes(N->getNextPtr());
265
266 // Okay, pull together the children of the scope node into a vector so we can
267 // inspect it more easily. While we're at it, bucket them up by the hash
268 // code of their first predicate.
269 SmallVector<Matcher*, 32> OptionsToMatch;
270
271 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
272 // Factor the subexpression.
1a4d82fc 273 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
223e47cc
LB
274 FactorNodes(Child);
275
1a4d82fc 276 if (Matcher *N = Child.release())
223e47cc
LB
277 OptionsToMatch.push_back(N);
278 }
279
280 SmallVector<Matcher*, 32> NewOptionsToMatch;
281
282 // Loop over options to match, merging neighboring patterns with identical
283 // starting nodes into a shared matcher.
284 for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
285 // Find the set of matchers that start with this node.
286 Matcher *Optn = OptionsToMatch[OptionIdx++];
287
288 if (OptionIdx == e) {
289 NewOptionsToMatch.push_back(Optn);
290 continue;
291 }
292
293 // See if the next option starts with the same matcher. If the two
294 // neighbors *do* start with the same matcher, we can factor the matcher out
295 // of at least these two patterns. See what the maximal set we can merge
296 // together is.
297 SmallVector<Matcher*, 8> EqualMatchers;
298 EqualMatchers.push_back(Optn);
299
300 // Factor all of the known-equal matchers after this one into the same
301 // group.
302 while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
303 EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
304
305 // If we found a non-equal matcher, see if it is contradictory with the
306 // current node. If so, we know that the ordering relation between the
307 // current sets of nodes and this node don't matter. Look past it to see if
308 // we can merge anything else into this matching group.
309 unsigned Scan = OptionIdx;
310 while (1) {
311 // If we ran out of stuff to scan, we're done.
312 if (Scan == e) break;
313
314 Matcher *ScanMatcher = OptionsToMatch[Scan];
315
316 // If we found an entry that matches out matcher, merge it into the set to
317 // handle.
318 if (Optn->isEqual(ScanMatcher)) {
319 // If is equal after all, add the option to EqualMatchers and remove it
320 // from OptionsToMatch.
321 EqualMatchers.push_back(ScanMatcher);
322 OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
323 --e;
324 continue;
325 }
326
327 // If the option we're checking for contradicts the start of the list,
328 // skip over it.
329 if (Optn->isContradictory(ScanMatcher)) {
330 ++Scan;
331 continue;
332 }
333
334 // If we're scanning for a simple node, see if it occurs later in the
335 // sequence. If so, and if we can move it up, it might be contradictory
336 // or the same as what we're looking for. If so, reorder it.
337 if (Optn->isSimplePredicateOrRecordNode()) {
338 Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
1a4d82fc 339 if (M2 && M2 != ScanMatcher &&
223e47cc
LB
340 M2->canMoveBefore(ScanMatcher) &&
341 (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
342 Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
343 M2->setNext(MatcherWithoutM2);
344 OptionsToMatch[Scan] = M2;
345 continue;
346 }
347 }
348
349 // Otherwise, we don't know how to handle this entry, we have to bail.
350 break;
351 }
352
353 if (Scan != e &&
354 // Don't print it's obvious nothing extra could be merged anyway.
355 Scan+1 != e) {
356 DEBUG(errs() << "Couldn't merge this:\n";
357 Optn->print(errs(), 4);
358 errs() << "into this:\n";
359 OptionsToMatch[Scan]->print(errs(), 4);
360 if (Scan+1 != e)
361 OptionsToMatch[Scan+1]->printOne(errs());
362 if (Scan+2 < e)
363 OptionsToMatch[Scan+2]->printOne(errs());
364 errs() << "\n");
365 }
366
367 // If we only found one option starting with this matcher, no factoring is
368 // possible.
369 if (EqualMatchers.size() == 1) {
370 NewOptionsToMatch.push_back(EqualMatchers[0]);
371 continue;
372 }
373
374 // Factor these checks by pulling the first node off each entry and
375 // discarding it. Take the first one off the first entry to reuse.
376 Matcher *Shared = Optn;
377 Optn = Optn->takeNext();
378 EqualMatchers[0] = Optn;
379
380 // Remove and delete the first node from the other matchers we're factoring.
381 for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
382 Matcher *Tmp = EqualMatchers[i]->takeNext();
383 delete EqualMatchers[i];
384 EqualMatchers[i] = Tmp;
385 }
386
1a4d82fc 387 Shared->setNext(new ScopeMatcher(EqualMatchers));
223e47cc
LB
388
389 // Recursively factor the newly created node.
390 FactorNodes(Shared->getNextPtr());
391
392 NewOptionsToMatch.push_back(Shared);
393 }
394
395 // If we're down to a single pattern to match, then we don't need this scope
396 // anymore.
397 if (NewOptionsToMatch.size() == 1) {
398 MatcherPtr.reset(NewOptionsToMatch[0]);
399 return;
400 }
401
402 if (NewOptionsToMatch.empty()) {
1a4d82fc 403 MatcherPtr.reset();
223e47cc
LB
404 return;
405 }
406
407 // If our factoring failed (didn't achieve anything) see if we can simplify in
408 // other ways.
409
410 // Check to see if all of the leading entries are now opcode checks. If so,
411 // we can convert this Scope to be a OpcodeSwitch instead.
412 bool AllOpcodeChecks = true, AllTypeChecks = true;
413 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
414 // Check to see if this breaks a series of CheckOpcodeMatchers.
415 if (AllOpcodeChecks &&
416 !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
417#if 0
418 if (i > 3) {
419 errs() << "FAILING OPC #" << i << "\n";
420 NewOptionsToMatch[i]->dump();
421 }
422#endif
423 AllOpcodeChecks = false;
424 }
425
426 // Check to see if this breaks a series of CheckTypeMatcher's.
427 if (AllTypeChecks) {
428 CheckTypeMatcher *CTM =
429 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
430 Matcher::CheckType));
1a4d82fc 431 if (!CTM ||
223e47cc
LB
432 // iPTR checks could alias any other case without us knowing, don't
433 // bother with them.
434 CTM->getType() == MVT::iPTR ||
435 // SwitchType only works for result #0.
436 CTM->getResNo() != 0 ||
437 // If the CheckType isn't at the start of the list, see if we can move
438 // it there.
439 !CTM->canMoveBefore(NewOptionsToMatch[i])) {
440#if 0
441 if (i > 3 && AllTypeChecks) {
442 errs() << "FAILING TYPE #" << i << "\n";
443 NewOptionsToMatch[i]->dump();
444 }
445#endif
446 AllTypeChecks = false;
447 }
448 }
449 }
450
451 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
452 if (AllOpcodeChecks) {
453 StringSet<> Opcodes;
454 SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
455 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
456 CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
85aaf69f 457 assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
223e47cc
LB
458 "Duplicate opcodes not factored?");
459 Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
460 }
461
1a4d82fc 462 MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
223e47cc
LB
463 return;
464 }
465
466 // If all the options are CheckType's, we can form the SwitchType, woot.
467 if (AllTypeChecks) {
468 DenseMap<unsigned, unsigned> TypeEntry;
469 SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
470 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
471 CheckTypeMatcher *CTM =
472 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
473 Matcher::CheckType));
474 Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
475 MVT::SimpleValueType CTMTy = CTM->getType();
476 delete CTM;
477
478 unsigned &Entry = TypeEntry[CTMTy];
479 if (Entry != 0) {
480 // If we have unfactored duplicate types, then we should factor them.
481 Matcher *PrevMatcher = Cases[Entry-1].second;
482 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
483 SM->setNumChildren(SM->getNumChildren()+1);
484 SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
485 continue;
486 }
487
488 Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
1a4d82fc 489 Cases[Entry-1].second = new ScopeMatcher(Entries);
223e47cc
LB
490 continue;
491 }
492
493 Entry = Cases.size()+1;
494 Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
495 }
496
497 if (Cases.size() != 1) {
1a4d82fc 498 MatcherPtr.reset(new SwitchTypeMatcher(Cases));
223e47cc
LB
499 } else {
500 // If we factored and ended up with one case, create it now.
501 MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
502 MatcherPtr->setNext(Cases[0].second);
503 }
504 return;
505 }
506
507
508 // Reassemble the Scope node with the adjusted children.
509 Scope->setNumChildren(NewOptionsToMatch.size());
510 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
511 Scope->resetChild(i, NewOptionsToMatch[i]);
512}
513
85aaf69f
SL
514void
515llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
516 const CodeGenDAGPatterns &CGP) {
223e47cc
LB
517 ContractNodes(MatcherPtr, CGP);
518 SinkPatternPredicates(MatcherPtr);
519 FactorNodes(MatcherPtr);
223e47cc 520}