]> git.proxmox.com Git - rustc.git/blame - src/llvm/utils/TableGen/DFAPacketizerEmitter.cpp
Imported Upstream version 0.7
[rustc.git] / src / llvm / utils / TableGen / DFAPacketizerEmitter.cpp
CommitLineData
223e47cc
LB
1//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class parses the Schedule.td file and produces an API that can be used
11// to reason about whether an instruction can be added to a packet on a VLIW
12// architecture. The class internally generates a deterministic finite
13// automaton (DFA) that models all possible mappings of machine instructions
14// to functional units as instructions are added to a packet.
15//
16//===----------------------------------------------------------------------===//
17
18#include "CodeGenTarget.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/TableGen/Record.h"
22#include "llvm/TableGen/TableGenBackend.h"
23#include <list>
24#include <map>
25#include <string>
26using namespace llvm;
27
28//
29// class DFAPacketizerEmitter: class that generates and prints out the DFA
30// for resource tracking.
31//
32namespace {
33class DFAPacketizerEmitter {
34private:
35 std::string TargetName;
36 //
37 // allInsnClasses is the set of all possible resources consumed by an
38 // InstrStage.
39 //
40 DenseSet<unsigned> allInsnClasses;
41 RecordKeeper &Records;
42
43public:
44 DFAPacketizerEmitter(RecordKeeper &R);
45
46 //
47 // collectAllInsnClasses: Populate allInsnClasses which is a set of units
48 // used in each stage.
49 //
50 void collectAllInsnClasses(const std::string &Name,
51 Record *ItinData,
52 unsigned &NStages,
53 raw_ostream &OS);
54
55 void run(raw_ostream &OS);
56};
57} // End anonymous namespace.
58
59//
60//
61// State represents the usage of machine resources if the packet contains
62// a set of instruction classes.
63//
64// Specifically, currentState is a set of bit-masks.
65// The nth bit in a bit-mask indicates whether the nth resource is being used
66// by this state. The set of bit-masks in a state represent the different
67// possible outcomes of transitioning to this state.
68// For example: consider a two resource architecture: resource L and resource M
69// with three instruction classes: L, M, and L_or_M.
70// From the initial state (currentState = 0x00), if we add instruction class
71// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
72// represents the possible resource states that can result from adding a L_or_M
73// instruction
74//
75// Another way of thinking about this transition is we are mapping a NDFA with
76// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
77//
78// A State instance also contains a collection of transitions from that state:
79// a map from inputs to new states.
80//
81namespace {
82class State {
83 public:
84 static int currentStateNum;
85 int stateNum;
86 bool isInitial;
87 std::set<unsigned> stateInfo;
88 typedef std::map<unsigned, State *> TransitionMap;
89 TransitionMap Transitions;
90
91 State();
92 State(const State &S);
93
94 bool operator<(const State &s) const {
95 return stateNum < s.stateNum;
96 }
97
98 //
99 // canAddInsnClass - Returns true if an instruction of type InsnClass is a
100 // valid transition from this state, i.e., can an instruction of type InsnClass
101 // be added to the packet represented by this state.
102 //
103 // PossibleStates is the set of valid resource states that ensue from valid
104 // transitions.
105 //
106 bool canAddInsnClass(unsigned InsnClass) const;
107 //
108 // AddInsnClass - Return all combinations of resource reservation
109 // which are possible from this state (PossibleStates).
110 //
111 void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates);
112 //
113 // addTransition - Add a transition from this state given the input InsnClass
114 //
115 void addTransition(unsigned InsnClass, State *To);
116 //
117 // hasTransition - Returns true if there is a transition from this state
118 // given the input InsnClass
119 //
120 bool hasTransition(unsigned InsnClass);
121};
122} // End anonymous namespace.
123
124//
125// class DFA: deterministic finite automaton for processor resource tracking.
126//
127namespace {
128class DFA {
129public:
130 DFA();
131 ~DFA();
132
133 // Set of states. Need to keep this sorted to emit the transition table.
134 typedef std::set<State *, less_ptr<State> > StateSet;
135 StateSet states;
136
137 State *currentState;
138
139 //
140 // Modify the DFA.
141 //
142 void initialize();
143 void addState(State *);
144
145 //
146 // writeTable: Print out a table representing the DFA.
147 //
148 void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
149};
150} // End anonymous namespace.
151
152
153//
154// Constructors and destructors for State and DFA
155//
156State::State() :
157 stateNum(currentStateNum++), isInitial(false) {}
158
159
160State::State(const State &S) :
161 stateNum(currentStateNum++), isInitial(S.isInitial),
162 stateInfo(S.stateInfo) {}
163
164DFA::DFA(): currentState(NULL) {}
165
166DFA::~DFA() {
167 DeleteContainerPointers(states);
168}
169
170//
171// addTransition - Add a transition from this state given the input InsnClass
172//
173void State::addTransition(unsigned InsnClass, State *To) {
174 assert(!Transitions.count(InsnClass) &&
175 "Cannot have multiple transitions for the same input");
176 Transitions[InsnClass] = To;
177}
178
179//
180// hasTransition - Returns true if there is a transition from this state
181// given the input InsnClass
182//
183bool State::hasTransition(unsigned InsnClass) {
184 return Transitions.count(InsnClass) > 0;
185}
186
187//
188// AddInsnClass - Return all combinations of resource reservation
189// which are possible from this state (PossibleStates).
190//
191void State::AddInsnClass(unsigned InsnClass,
192 std::set<unsigned> &PossibleStates) {
193 //
194 // Iterate over all resource states in currentState.
195 //
196
197 for (std::set<unsigned>::iterator SI = stateInfo.begin();
198 SI != stateInfo.end(); ++SI) {
199 unsigned thisState = *SI;
200
201 //
202 // Iterate over all possible resources used in InsnClass.
203 // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
204 //
205
206 DenseSet<unsigned> VisitedResourceStates;
207 for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
208 if ((0x1 << j) & InsnClass) {
209 //
210 // For each possible resource used in InsnClass, generate the
211 // resource state if that resource was used.
212 //
213 unsigned ResultingResourceState = thisState | (0x1 << j);
214 //
215 // Check if the resulting resource state can be accommodated in this
216 // packet.
217 // We compute ResultingResourceState OR thisState.
218 // If the result of the OR is different than thisState, it implies
219 // that there is at least one resource that can be used to schedule
220 // InsnClass in the current packet.
221 // Insert ResultingResourceState into PossibleStates only if we haven't
222 // processed ResultingResourceState before.
223 //
224 if ((ResultingResourceState != thisState) &&
225 (VisitedResourceStates.count(ResultingResourceState) == 0)) {
226 VisitedResourceStates.insert(ResultingResourceState);
227 PossibleStates.insert(ResultingResourceState);
228 }
229 }
230 }
231 }
232
233}
234
235
236//
237// canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a
238// valid transition from this state i.e., can an instruction of type InsnClass
239// be added to the packet represented by this state.
240//
241bool State::canAddInsnClass(unsigned InsnClass) const {
242 for (std::set<unsigned>::const_iterator SI = stateInfo.begin();
243 SI != stateInfo.end(); ++SI) {
244 if (~*SI & InsnClass)
245 return true;
246 }
247 return false;
248}
249
250
251void DFA::initialize() {
252 assert(currentState && "Missing current state");
253 currentState->isInitial = true;
254}
255
256
257void DFA::addState(State *S) {
258 assert(!states.count(S) && "State already exists");
259 states.insert(S);
260}
261
262
263int State::currentStateNum = 0;
264
265DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R):
266 TargetName(CodeGenTarget(R).getName()),
267 allInsnClasses(), Records(R) {}
268
269
270//
271// writeTableAndAPI - Print out a table representing the DFA and the
272// associated API to create a DFA packetizer.
273//
274// Format:
275// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
276// transitions.
277// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
278// the ith state.
279//
280//
281void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
970d7e83 282 static const std::string SentinelEntry = "{-1, -1}";
223e47cc
LB
283 DFA::StateSet::iterator SI = states.begin();
284 // This table provides a map to the beginning of the transitions for State s
285 // in DFAStateInputTable.
286 std::vector<int> StateEntry(states.size());
287
288 OS << "namespace llvm {\n\n";
289 OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
290
291 // Tracks the total valid transitions encountered so far. It is used
292 // to construct the StateEntry table.
293 int ValidTransitions = 0;
294 for (unsigned i = 0; i < states.size(); ++i, ++SI) {
295 assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
296 StateEntry[i] = ValidTransitions;
297 for (State::TransitionMap::iterator
298 II = (*SI)->Transitions.begin(), IE = (*SI)->Transitions.end();
299 II != IE; ++II) {
300 OS << "{" << II->first << ", "
301 << II->second->stateNum
302 << "}, ";
303 }
304 ValidTransitions += (*SI)->Transitions.size();
305
306 // If there are no valid transitions from this stage, we need a sentinel
307 // transition.
308 if (ValidTransitions == StateEntry[i]) {
970d7e83 309 OS << SentinelEntry << ",";
223e47cc
LB
310 ++ValidTransitions;
311 }
312
313 OS << "\n";
314 }
970d7e83
LB
315
316 // Print out a sentinel entry at the end of the StateInputTable. This is
317 // needed to iterate over StateInputTable in DFAPacketizer::ReadTable()
318 OS << SentinelEntry << "\n";
319
223e47cc
LB
320 OS << "};\n\n";
321 OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
322
323 // Multiply i by 2 since each entry in DFAStateInputTable is a set of
324 // two numbers.
325 for (unsigned i = 0; i < states.size(); ++i)
326 OS << StateEntry[i] << ", ";
327
970d7e83
LB
328 // Print out the index to the sentinel entry in StateInputTable
329 OS << ValidTransitions << ", ";
330
223e47cc
LB
331 OS << "\n};\n";
332 OS << "} // namespace\n";
333
334
335 //
336 // Emit DFA Packetizer tables if the target is a VLIW machine.
337 //
338 std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
339 OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
340 OS << "namespace llvm {\n";
341 OS << "DFAPacketizer *" << SubTargetClassName << "::"
342 << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
343 << " return new DFAPacketizer(IID, " << TargetName
344 << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
345 OS << "} // End llvm namespace \n";
346}
347
348
349//
350// collectAllInsnClasses - Populate allInsnClasses which is a set of units
351// used in each stage.
352//
353void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name,
354 Record *ItinData,
355 unsigned &NStages,
356 raw_ostream &OS) {
357 // Collect processor itineraries.
358 std::vector<Record*> ProcItinList =
359 Records.getAllDerivedDefinitions("ProcessorItineraries");
360
361 // If just no itinerary then don't bother.
362 if (ProcItinList.size() < 2)
363 return;
364 std::map<std::string, unsigned> NameToBitsMap;
365
366 // Parse functional units for all the itineraries.
367 for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
368 Record *Proc = ProcItinList[i];
369 std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
370
371 // Convert macros to bits for each stage.
372 for (unsigned i = 0, N = FUs.size(); i < N; ++i)
373 NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
374 }
375
376 const std::vector<Record*> &StageList =
377 ItinData->getValueAsListOfDefs("Stages");
378
379 // The number of stages.
380 NStages = StageList.size();
381
382 // For each unit.
383 unsigned UnitBitValue = 0;
384
385 // Compute the bitwise or of each unit used in this stage.
386 for (unsigned i = 0; i < NStages; ++i) {
387 const Record *Stage = StageList[i];
388
389 // Get unit list.
390 const std::vector<Record*> &UnitList =
391 Stage->getValueAsListOfDefs("Units");
392
393 for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
394 // Conduct bitwise or.
395 std::string UnitName = UnitList[j]->getName();
396 assert(NameToBitsMap.count(UnitName));
397 UnitBitValue |= NameToBitsMap[UnitName];
398 }
399
400 if (UnitBitValue != 0)
401 allInsnClasses.insert(UnitBitValue);
402 }
403}
404
405
406//
407// Run the worklist algorithm to generate the DFA.
408//
409void DFAPacketizerEmitter::run(raw_ostream &OS) {
410
411 // Collect processor iteraries.
412 std::vector<Record*> ProcItinList =
413 Records.getAllDerivedDefinitions("ProcessorItineraries");
414
415 //
416 // Collect the instruction classes.
417 //
418 for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
419 Record *Proc = ProcItinList[i];
420
421 // Get processor itinerary name.
422 const std::string &Name = Proc->getName();
423
424 // Skip default.
425 if (Name == "NoItineraries")
426 continue;
427
428 // Sanity check for at least one instruction itinerary class.
429 unsigned NItinClasses =
430 Records.getAllDerivedDefinitions("InstrItinClass").size();
431 if (NItinClasses == 0)
432 return;
433
434 // Get itinerary data list.
435 std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
436
437 // Collect instruction classes for all itinerary data.
438 for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
439 Record *ItinData = ItinDataList[j];
440 unsigned NStages;
441 collectAllInsnClasses(Name, ItinData, NStages, OS);
442 }
443 }
444
445
446 //
447 // Run a worklist algorithm to generate the DFA.
448 //
449 DFA D;
450 State *Initial = new State;
451 Initial->isInitial = true;
452 Initial->stateInfo.insert(0x0);
453 D.addState(Initial);
454 SmallVector<State*, 32> WorkList;
455 std::map<std::set<unsigned>, State*> Visited;
456
457 WorkList.push_back(Initial);
458
459 //
460 // Worklist algorithm to create a DFA for processor resource tracking.
461 // C = {set of InsnClasses}
462 // Begin with initial node in worklist. Initial node does not have
463 // any consumed resources,
464 // ResourceState = 0x0
465 // Visited = {}
466 // While worklist != empty
467 // S = first element of worklist
468 // For every instruction class C
469 // if we can accommodate C in S:
470 // S' = state with resource states = {S Union C}
471 // Add a new transition: S x C -> S'
472 // If S' is not in Visited:
473 // Add S' to worklist
474 // Add S' to Visited
475 //
476 while (!WorkList.empty()) {
477 State *current = WorkList.pop_back_val();
478 for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
479 CE = allInsnClasses.end(); CI != CE; ++CI) {
480 unsigned InsnClass = *CI;
481
482 std::set<unsigned> NewStateResources;
483 //
484 // If we haven't already created a transition for this input
485 // and the state can accommodate this InsnClass, create a transition.
486 //
487 if (!current->hasTransition(InsnClass) &&
488 current->canAddInsnClass(InsnClass)) {
489 State *NewState = NULL;
490 current->AddInsnClass(InsnClass, NewStateResources);
491 assert(NewStateResources.size() && "New states must be generated");
492
493 //
494 // If we have seen this state before, then do not create a new state.
495 //
496 //
497 std::map<std::set<unsigned>, State*>::iterator VI;
498 if ((VI = Visited.find(NewStateResources)) != Visited.end())
499 NewState = VI->second;
500 else {
501 NewState = new State;
502 NewState->stateInfo = NewStateResources;
503 D.addState(NewState);
504 Visited[NewStateResources] = NewState;
505 WorkList.push_back(NewState);
506 }
507
508 current->addTransition(InsnClass, NewState);
509 }
510 }
511 }
512
513 // Print out the table.
514 D.writeTableAndAPI(OS, TargetName);
515}
516
517namespace llvm {
518
519void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) {
520 emitSourceFileHeader("Target DFA Packetizer Tables", OS);
521 DFAPacketizerEmitter(RK).run(OS);
522}
523
524} // End llvm namespace