]> git.proxmox.com Git - rustc.git/blame - src/tools/clippy/clippy_lints/src/methods/mod.rs
New upstream version 1.52.1+dfsg1
[rustc.git] / src / tools / clippy / clippy_lints / src / methods / mod.rs
CommitLineData
f20569fa
XL
1mod bind_instead_of_map;
2mod bytes_nth;
3mod clone_on_copy;
4mod clone_on_ref_ptr;
5mod expect_fun_call;
6mod expect_used;
7mod filetype_is_file;
8mod filter_flat_map;
9mod filter_map;
10mod filter_map_flat_map;
11mod filter_map_identity;
12mod filter_map_map;
13mod filter_map_next;
14mod filter_next;
15mod flat_map_identity;
16mod from_iter_instead_of_collect;
17mod get_unwrap;
18mod implicit_clone;
19mod inefficient_to_string;
20mod inspect_for_each;
21mod into_iter_on_ref;
22mod iter_cloned_collect;
23mod iter_count;
24mod iter_next_slice;
25mod iter_nth;
26mod iter_nth_zero;
27mod iter_skip_next;
28mod iterator_step_by_zero;
29mod manual_saturating_arithmetic;
30mod map_collect_result_unit;
31mod map_flatten;
32mod map_unwrap_or;
33mod ok_expect;
34mod option_as_ref_deref;
35mod option_map_or_none;
36mod option_map_unwrap_or;
37mod or_fun_call;
38mod search_is_some;
39mod single_char_insert_string;
40mod single_char_pattern;
41mod single_char_push_string;
42mod skip_while_next;
43mod string_extend_chars;
44mod suspicious_map;
45mod uninit_assumed_init;
46mod unnecessary_filter_map;
47mod unnecessary_fold;
48mod unnecessary_lazy_eval;
49mod unwrap_used;
50mod useless_asref;
51mod wrong_self_convention;
52mod zst_offset;
53
54use bind_instead_of_map::BindInsteadOfMap;
55use if_chain::if_chain;
56use rustc_ast::ast;
57use rustc_errors::Applicability;
58use rustc_hir as hir;
59use rustc_hir::{TraitItem, TraitItemKind};
60use rustc_lint::{LateContext, LateLintPass, Lint, LintContext};
61use rustc_middle::lint::in_external_macro;
62use rustc_middle::ty::{self, TraitRef, Ty, TyS};
63use rustc_semver::RustcVersion;
64use rustc_session::{declare_tool_lint, impl_lint_pass};
65use rustc_span::symbol::{sym, SymbolStr};
66use rustc_typeck::hir_ty_to_ty;
67
68use crate::utils::{
69 contains_return, contains_ty, get_trait_def_id, implements_trait, in_macro, is_copy, is_type_diagnostic_item,
70 iter_input_pats, match_def_path, match_qpath, method_calls, method_chain_args, paths, return_ty,
71 single_segment_path, snippet_with_applicability, span_lint, span_lint_and_help, span_lint_and_sugg, SpanlessEq,
72};
73
74declare_clippy_lint! {
75 /// **What it does:** Checks for `.unwrap()` calls on `Option`s and on `Result`s.
76 ///
77 /// **Why is this bad?** It is better to handle the `None` or `Err` case,
78 /// or at least call `.expect(_)` with a more helpful message. Still, for a lot of
79 /// quick-and-dirty code, `unwrap` is a good choice, which is why this lint is
80 /// `Allow` by default.
81 ///
82 /// `result.unwrap()` will let the thread panic on `Err` values.
83 /// Normally, you want to implement more sophisticated error handling,
84 /// and propagate errors upwards with `?` operator.
85 ///
86 /// Even if you want to panic on errors, not all `Error`s implement good
87 /// messages on display. Therefore, it may be beneficial to look at the places
88 /// where they may get displayed. Activate this lint to do just that.
89 ///
90 /// **Known problems:** None.
91 ///
92 /// **Examples:**
93 /// ```rust
94 /// # let opt = Some(1);
95 ///
96 /// // Bad
97 /// opt.unwrap();
98 ///
99 /// // Good
100 /// opt.expect("more helpful message");
101 /// ```
102 ///
103 /// // or
104 ///
105 /// ```rust
106 /// # let res: Result<usize, ()> = Ok(1);
107 ///
108 /// // Bad
109 /// res.unwrap();
110 ///
111 /// // Good
112 /// res.expect("more helpful message");
113 /// ```
114 pub UNWRAP_USED,
115 restriction,
116 "using `.unwrap()` on `Result` or `Option`, which should at least get a better message using `expect()`"
117}
118
119declare_clippy_lint! {
120 /// **What it does:** Checks for `.expect()` calls on `Option`s and `Result`s.
121 ///
122 /// **Why is this bad?** Usually it is better to handle the `None` or `Err` case.
123 /// Still, for a lot of quick-and-dirty code, `expect` is a good choice, which is why
124 /// this lint is `Allow` by default.
125 ///
126 /// `result.expect()` will let the thread panic on `Err`
127 /// values. Normally, you want to implement more sophisticated error handling,
128 /// and propagate errors upwards with `?` operator.
129 ///
130 /// **Known problems:** None.
131 ///
132 /// **Examples:**
133 /// ```rust,ignore
134 /// # let opt = Some(1);
135 ///
136 /// // Bad
137 /// opt.expect("one");
138 ///
139 /// // Good
140 /// let opt = Some(1);
141 /// opt?;
142 /// ```
143 ///
144 /// // or
145 ///
146 /// ```rust
147 /// # let res: Result<usize, ()> = Ok(1);
148 ///
149 /// // Bad
150 /// res.expect("one");
151 ///
152 /// // Good
153 /// res?;
154 /// # Ok::<(), ()>(())
155 /// ```
156 pub EXPECT_USED,
157 restriction,
158 "using `.expect()` on `Result` or `Option`, which might be better handled"
159}
160
161declare_clippy_lint! {
162 /// **What it does:** Checks for methods that should live in a trait
163 /// implementation of a `std` trait (see [llogiq's blog
164 /// post](http://llogiq.github.io/2015/07/30/traits.html) for further
165 /// information) instead of an inherent implementation.
166 ///
167 /// **Why is this bad?** Implementing the traits improve ergonomics for users of
168 /// the code, often with very little cost. Also people seeing a `mul(...)`
169 /// method
170 /// may expect `*` to work equally, so you should have good reason to disappoint
171 /// them.
172 ///
173 /// **Known problems:** None.
174 ///
175 /// **Example:**
176 /// ```rust
177 /// struct X;
178 /// impl X {
179 /// fn add(&self, other: &X) -> X {
180 /// // ..
181 /// # X
182 /// }
183 /// }
184 /// ```
185 pub SHOULD_IMPLEMENT_TRAIT,
186 style,
187 "defining a method that should be implementing a std trait"
188}
189
190declare_clippy_lint! {
191 /// **What it does:** Checks for methods with certain name prefixes and which
192 /// doesn't match how self is taken. The actual rules are:
193 ///
194 /// |Prefix |`self` taken |
195 /// |-------|----------------------|
196 /// |`as_` |`&self` or `&mut self`|
197 /// |`from_`| none |
198 /// |`into_`|`self` |
199 /// |`is_` |`&self` or none |
200 /// |`to_` |`&self` |
201 ///
202 /// **Why is this bad?** Consistency breeds readability. If you follow the
203 /// conventions, your users won't be surprised that they, e.g., need to supply a
204 /// mutable reference to a `as_..` function.
205 ///
206 /// **Known problems:** None.
207 ///
208 /// **Example:**
209 /// ```rust
210 /// # struct X;
211 /// impl X {
212 /// fn as_str(self) -> &'static str {
213 /// // ..
214 /// # ""
215 /// }
216 /// }
217 /// ```
218 pub WRONG_SELF_CONVENTION,
219 style,
220 "defining a method named with an established prefix (like \"into_\") that takes `self` with the wrong convention"
221}
222
223declare_clippy_lint! {
224 /// **What it does:** This is the same as
225 /// [`wrong_self_convention`](#wrong_self_convention), but for public items.
226 ///
227 /// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention).
228 ///
229 /// **Known problems:** Actually *renaming* the function may break clients if
230 /// the function is part of the public interface. In that case, be mindful of
231 /// the stability guarantees you've given your users.
232 ///
233 /// **Example:**
234 /// ```rust
235 /// # struct X;
236 /// impl<'a> X {
237 /// pub fn as_str(self) -> &'a str {
238 /// "foo"
239 /// }
240 /// }
241 /// ```
242 pub WRONG_PUB_SELF_CONVENTION,
243 restriction,
244 "defining a public method named with an established prefix (like \"into_\") that takes `self` with the wrong convention"
245}
246
247declare_clippy_lint! {
248 /// **What it does:** Checks for usage of `ok().expect(..)`.
249 ///
250 /// **Why is this bad?** Because you usually call `expect()` on the `Result`
251 /// directly to get a better error message.
252 ///
253 /// **Known problems:** The error type needs to implement `Debug`
254 ///
255 /// **Example:**
256 /// ```rust
257 /// # let x = Ok::<_, ()>(());
258 ///
259 /// // Bad
260 /// x.ok().expect("why did I do this again?");
261 ///
262 /// // Good
263 /// x.expect("why did I do this again?");
264 /// ```
265 pub OK_EXPECT,
266 style,
267 "using `ok().expect()`, which gives worse error messages than calling `expect` directly on the Result"
268}
269
270declare_clippy_lint! {
271 /// **What it does:** Checks for usage of `option.map(_).unwrap_or(_)` or `option.map(_).unwrap_or_else(_)` or
272 /// `result.map(_).unwrap_or_else(_)`.
273 ///
274 /// **Why is this bad?** Readability, these can be written more concisely (resp.) as
275 /// `option.map_or(_, _)`, `option.map_or_else(_, _)` and `result.map_or_else(_, _)`.
276 ///
277 /// **Known problems:** The order of the arguments is not in execution order
278 ///
279 /// **Examples:**
280 /// ```rust
281 /// # let x = Some(1);
282 ///
283 /// // Bad
284 /// x.map(|a| a + 1).unwrap_or(0);
285 ///
286 /// // Good
287 /// x.map_or(0, |a| a + 1);
288 /// ```
289 ///
290 /// // or
291 ///
292 /// ```rust
293 /// # let x: Result<usize, ()> = Ok(1);
294 /// # fn some_function(foo: ()) -> usize { 1 }
295 ///
296 /// // Bad
297 /// x.map(|a| a + 1).unwrap_or_else(some_function);
298 ///
299 /// // Good
300 /// x.map_or_else(some_function, |a| a + 1);
301 /// ```
302 pub MAP_UNWRAP_OR,
303 pedantic,
304 "using `.map(f).unwrap_or(a)` or `.map(f).unwrap_or_else(func)`, which are more succinctly expressed as `map_or(a, f)` or `map_or_else(a, f)`"
305}
306
307declare_clippy_lint! {
308 /// **What it does:** Checks for usage of `_.map_or(None, _)`.
309 ///
310 /// **Why is this bad?** Readability, this can be written more concisely as
311 /// `_.and_then(_)`.
312 ///
313 /// **Known problems:** The order of the arguments is not in execution order.
314 ///
315 /// **Example:**
316 /// ```rust
317 /// # let opt = Some(1);
318 ///
319 /// // Bad
320 /// opt.map_or(None, |a| Some(a + 1));
321 ///
322 /// // Good
323 /// opt.and_then(|a| Some(a + 1));
324 /// ```
325 pub OPTION_MAP_OR_NONE,
326 style,
327 "using `Option.map_or(None, f)`, which is more succinctly expressed as `and_then(f)`"
328}
329
330declare_clippy_lint! {
331 /// **What it does:** Checks for usage of `_.map_or(None, Some)`.
332 ///
333 /// **Why is this bad?** Readability, this can be written more concisely as
334 /// `_.ok()`.
335 ///
336 /// **Known problems:** None.
337 ///
338 /// **Example:**
339 ///
340 /// Bad:
341 /// ```rust
342 /// # let r: Result<u32, &str> = Ok(1);
343 /// assert_eq!(Some(1), r.map_or(None, Some));
344 /// ```
345 ///
346 /// Good:
347 /// ```rust
348 /// # let r: Result<u32, &str> = Ok(1);
349 /// assert_eq!(Some(1), r.ok());
350 /// ```
351 pub RESULT_MAP_OR_INTO_OPTION,
352 style,
353 "using `Result.map_or(None, Some)`, which is more succinctly expressed as `ok()`"
354}
355
356declare_clippy_lint! {
357 /// **What it does:** Checks for usage of `_.and_then(|x| Some(y))`, `_.and_then(|x| Ok(y))` or
358 /// `_.or_else(|x| Err(y))`.
359 ///
360 /// **Why is this bad?** Readability, this can be written more concisely as
361 /// `_.map(|x| y)` or `_.map_err(|x| y)`.
362 ///
363 /// **Known problems:** None
364 ///
365 /// **Example:**
366 ///
367 /// ```rust
368 /// # fn opt() -> Option<&'static str> { Some("42") }
369 /// # fn res() -> Result<&'static str, &'static str> { Ok("42") }
370 /// let _ = opt().and_then(|s| Some(s.len()));
371 /// let _ = res().and_then(|s| if s.len() == 42 { Ok(10) } else { Ok(20) });
372 /// let _ = res().or_else(|s| if s.len() == 42 { Err(10) } else { Err(20) });
373 /// ```
374 ///
375 /// The correct use would be:
376 ///
377 /// ```rust
378 /// # fn opt() -> Option<&'static str> { Some("42") }
379 /// # fn res() -> Result<&'static str, &'static str> { Ok("42") }
380 /// let _ = opt().map(|s| s.len());
381 /// let _ = res().map(|s| if s.len() == 42 { 10 } else { 20 });
382 /// let _ = res().map_err(|s| if s.len() == 42 { 10 } else { 20 });
383 /// ```
384 pub BIND_INSTEAD_OF_MAP,
385 complexity,
386 "using `Option.and_then(|x| Some(y))`, which is more succinctly expressed as `map(|x| y)`"
387}
388
389declare_clippy_lint! {
390 /// **What it does:** Checks for usage of `_.filter(_).next()`.
391 ///
392 /// **Why is this bad?** Readability, this can be written more concisely as
393 /// `_.find(_)`.
394 ///
395 /// **Known problems:** None.
396 ///
397 /// **Example:**
398 /// ```rust
399 /// # let vec = vec![1];
400 /// vec.iter().filter(|x| **x == 0).next();
401 /// ```
402 /// Could be written as
403 /// ```rust
404 /// # let vec = vec![1];
405 /// vec.iter().find(|x| **x == 0);
406 /// ```
407 pub FILTER_NEXT,
408 complexity,
409 "using `filter(p).next()`, which is more succinctly expressed as `.find(p)`"
410}
411
412declare_clippy_lint! {
413 /// **What it does:** Checks for usage of `_.skip_while(condition).next()`.
414 ///
415 /// **Why is this bad?** Readability, this can be written more concisely as
416 /// `_.find(!condition)`.
417 ///
418 /// **Known problems:** None.
419 ///
420 /// **Example:**
421 /// ```rust
422 /// # let vec = vec![1];
423 /// vec.iter().skip_while(|x| **x == 0).next();
424 /// ```
425 /// Could be written as
426 /// ```rust
427 /// # let vec = vec![1];
428 /// vec.iter().find(|x| **x != 0);
429 /// ```
430 pub SKIP_WHILE_NEXT,
431 complexity,
432 "using `skip_while(p).next()`, which is more succinctly expressed as `.find(!p)`"
433}
434
435declare_clippy_lint! {
436 /// **What it does:** Checks for usage of `_.map(_).flatten(_)` on `Iterator` and `Option`
437 ///
438 /// **Why is this bad?** Readability, this can be written more concisely as
439 /// `_.flat_map(_)`
440 ///
441 /// **Known problems:**
442 ///
443 /// **Example:**
444 /// ```rust
445 /// let vec = vec![vec![1]];
446 ///
447 /// // Bad
448 /// vec.iter().map(|x| x.iter()).flatten();
449 ///
450 /// // Good
451 /// vec.iter().flat_map(|x| x.iter());
452 /// ```
453 pub MAP_FLATTEN,
454 pedantic,
455 "using combinations of `flatten` and `map` which can usually be written as a single method call"
456}
457
458declare_clippy_lint! {
459 /// **What it does:** Checks for usage of `_.filter(_).map(_)`,
460 /// `_.filter(_).flat_map(_)`, `_.filter_map(_).flat_map(_)` and similar.
461 ///
462 /// **Why is this bad?** Readability, this can be written more concisely as
463 /// `_.filter_map(_)`.
464 ///
465 /// **Known problems:** Often requires a condition + Option/Iterator creation
466 /// inside the closure.
467 ///
468 /// **Example:**
469 /// ```rust
470 /// let vec = vec![1];
471 ///
472 /// // Bad
473 /// vec.iter().filter(|x| **x == 0).map(|x| *x * 2);
474 ///
475 /// // Good
476 /// vec.iter().filter_map(|x| if *x == 0 {
477 /// Some(*x * 2)
478 /// } else {
479 /// None
480 /// });
481 /// ```
482 pub FILTER_MAP,
483 pedantic,
484 "using combinations of `filter`, `map`, `filter_map` and `flat_map` which can usually be written as a single method call"
485}
486
487declare_clippy_lint! {
488 /// **What it does:** Checks for usage of `_.filter(_).map(_)` that can be written more simply
489 /// as `filter_map(_)`.
490 ///
491 /// **Why is this bad?** Redundant code in the `filter` and `map` operations is poor style and
492 /// less performant.
493 ///
494 /// **Known problems:** None.
495 ///
496 /// **Example:**
497 /// Bad:
498 /// ```rust
499 /// (0_i32..10)
500 /// .filter(|n| n.checked_add(1).is_some())
501 /// .map(|n| n.checked_add(1).unwrap());
502 /// ```
503 ///
504 /// Good:
505 /// ```rust
506 /// (0_i32..10).filter_map(|n| n.checked_add(1));
507 /// ```
508 pub MANUAL_FILTER_MAP,
509 complexity,
510 "using `_.filter(_).map(_)` in a way that can be written more simply as `filter_map(_)`"
511}
512
513declare_clippy_lint! {
514 /// **What it does:** Checks for usage of `_.find(_).map(_)` that can be written more simply
515 /// as `find_map(_)`.
516 ///
517 /// **Why is this bad?** Redundant code in the `find` and `map` operations is poor style and
518 /// less performant.
519 ///
520 /// **Known problems:** None.
521 ///
522 /// **Example:**
523 /// Bad:
524 /// ```rust
525 /// (0_i32..10)
526 /// .find(|n| n.checked_add(1).is_some())
527 /// .map(|n| n.checked_add(1).unwrap());
528 /// ```
529 ///
530 /// Good:
531 /// ```rust
532 /// (0_i32..10).find_map(|n| n.checked_add(1));
533 /// ```
534 pub MANUAL_FIND_MAP,
535 complexity,
536 "using `_.find(_).map(_)` in a way that can be written more simply as `find_map(_)`"
537}
538
539declare_clippy_lint! {
540 /// **What it does:** Checks for usage of `_.filter_map(_).next()`.
541 ///
542 /// **Why is this bad?** Readability, this can be written more concisely as
543 /// `_.find_map(_)`.
544 ///
545 /// **Known problems:** None
546 ///
547 /// **Example:**
548 /// ```rust
549 /// (0..3).filter_map(|x| if x == 2 { Some(x) } else { None }).next();
550 /// ```
551 /// Can be written as
552 ///
553 /// ```rust
554 /// (0..3).find_map(|x| if x == 2 { Some(x) } else { None });
555 /// ```
556 pub FILTER_MAP_NEXT,
557 pedantic,
558 "using combination of `filter_map` and `next` which can usually be written as a single method call"
559}
560
561declare_clippy_lint! {
562 /// **What it does:** Checks for usage of `flat_map(|x| x)`.
563 ///
564 /// **Why is this bad?** Readability, this can be written more concisely by using `flatten`.
565 ///
566 /// **Known problems:** None
567 ///
568 /// **Example:**
569 /// ```rust
570 /// # let iter = vec![vec![0]].into_iter();
571 /// iter.flat_map(|x| x);
572 /// ```
573 /// Can be written as
574 /// ```rust
575 /// # let iter = vec![vec![0]].into_iter();
576 /// iter.flatten();
577 /// ```
578 pub FLAT_MAP_IDENTITY,
579 complexity,
580 "call to `flat_map` where `flatten` is sufficient"
581}
582
583declare_clippy_lint! {
584 /// **What it does:** Checks for an iterator or string search (such as `find()`,
585 /// `position()`, or `rposition()`) followed by a call to `is_some()`.
586 ///
587 /// **Why is this bad?** Readability, this can be written more concisely as
588 /// `_.any(_)` or `_.contains(_)`.
589 ///
590 /// **Known problems:** None.
591 ///
592 /// **Example:**
593 /// ```rust
594 /// # let vec = vec![1];
595 /// vec.iter().find(|x| **x == 0).is_some();
596 /// ```
597 /// Could be written as
598 /// ```rust
599 /// # let vec = vec![1];
600 /// vec.iter().any(|x| *x == 0);
601 /// ```
602 pub SEARCH_IS_SOME,
603 complexity,
604 "using an iterator or string search followed by `is_some()`, which is more succinctly expressed as a call to `any()` or `contains()`"
605}
606
607declare_clippy_lint! {
608 /// **What it does:** Checks for usage of `.chars().next()` on a `str` to check
609 /// if it starts with a given char.
610 ///
611 /// **Why is this bad?** Readability, this can be written more concisely as
612 /// `_.starts_with(_)`.
613 ///
614 /// **Known problems:** None.
615 ///
616 /// **Example:**
617 /// ```rust
618 /// let name = "foo";
619 /// if name.chars().next() == Some('_') {};
620 /// ```
621 /// Could be written as
622 /// ```rust
623 /// let name = "foo";
624 /// if name.starts_with('_') {};
625 /// ```
626 pub CHARS_NEXT_CMP,
627 style,
628 "using `.chars().next()` to check if a string starts with a char"
629}
630
631declare_clippy_lint! {
632 /// **What it does:** Checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`,
633 /// etc., and suggests to use `or_else`, `unwrap_or_else`, etc., or
634 /// `unwrap_or_default` instead.
635 ///
636 /// **Why is this bad?** The function will always be called and potentially
637 /// allocate an object acting as the default.
638 ///
639 /// **Known problems:** If the function has side-effects, not calling it will
640 /// change the semantic of the program, but you shouldn't rely on that anyway.
641 ///
642 /// **Example:**
643 /// ```rust
644 /// # let foo = Some(String::new());
645 /// foo.unwrap_or(String::new());
646 /// ```
647 /// this can instead be written:
648 /// ```rust
649 /// # let foo = Some(String::new());
650 /// foo.unwrap_or_else(String::new);
651 /// ```
652 /// or
653 /// ```rust
654 /// # let foo = Some(String::new());
655 /// foo.unwrap_or_default();
656 /// ```
657 pub OR_FUN_CALL,
658 perf,
659 "using any `*or` method with a function call, which suggests `*or_else`"
660}
661
662declare_clippy_lint! {
663 /// **What it does:** Checks for calls to `.expect(&format!(...))`, `.expect(foo(..))`,
664 /// etc., and suggests to use `unwrap_or_else` instead
665 ///
666 /// **Why is this bad?** The function will always be called.
667 ///
668 /// **Known problems:** If the function has side-effects, not calling it will
669 /// change the semantics of the program, but you shouldn't rely on that anyway.
670 ///
671 /// **Example:**
672 /// ```rust
673 /// # let foo = Some(String::new());
674 /// # let err_code = "418";
675 /// # let err_msg = "I'm a teapot";
676 /// foo.expect(&format!("Err {}: {}", err_code, err_msg));
677 /// ```
678 /// or
679 /// ```rust
680 /// # let foo = Some(String::new());
681 /// # let err_code = "418";
682 /// # let err_msg = "I'm a teapot";
683 /// foo.expect(format!("Err {}: {}", err_code, err_msg).as_str());
684 /// ```
685 /// this can instead be written:
686 /// ```rust
687 /// # let foo = Some(String::new());
688 /// # let err_code = "418";
689 /// # let err_msg = "I'm a teapot";
690 /// foo.unwrap_or_else(|| panic!("Err {}: {}", err_code, err_msg));
691 /// ```
692 pub EXPECT_FUN_CALL,
693 perf,
694 "using any `expect` method with a function call"
695}
696
697declare_clippy_lint! {
698 /// **What it does:** Checks for usage of `.clone()` on a `Copy` type.
699 ///
700 /// **Why is this bad?** The only reason `Copy` types implement `Clone` is for
701 /// generics, not for using the `clone` method on a concrete type.
702 ///
703 /// **Known problems:** None.
704 ///
705 /// **Example:**
706 /// ```rust
707 /// 42u64.clone();
708 /// ```
709 pub CLONE_ON_COPY,
710 complexity,
711 "using `clone` on a `Copy` type"
712}
713
714declare_clippy_lint! {
715 /// **What it does:** Checks for usage of `.clone()` on a ref-counted pointer,
716 /// (`Rc`, `Arc`, `rc::Weak`, or `sync::Weak`), and suggests calling Clone via unified
717 /// function syntax instead (e.g., `Rc::clone(foo)`).
718 ///
719 /// **Why is this bad?** Calling '.clone()' on an Rc, Arc, or Weak
720 /// can obscure the fact that only the pointer is being cloned, not the underlying
721 /// data.
722 ///
723 /// **Example:**
724 /// ```rust
725 /// # use std::rc::Rc;
726 /// let x = Rc::new(1);
727 ///
728 /// // Bad
729 /// x.clone();
730 ///
731 /// // Good
732 /// Rc::clone(&x);
733 /// ```
734 pub CLONE_ON_REF_PTR,
735 restriction,
736 "using 'clone' on a ref-counted pointer"
737}
738
739declare_clippy_lint! {
740 /// **What it does:** Checks for usage of `.clone()` on an `&&T`.
741 ///
742 /// **Why is this bad?** Cloning an `&&T` copies the inner `&T`, instead of
743 /// cloning the underlying `T`.
744 ///
745 /// **Known problems:** None.
746 ///
747 /// **Example:**
748 /// ```rust
749 /// fn main() {
750 /// let x = vec![1];
751 /// let y = &&x;
752 /// let z = y.clone();
753 /// println!("{:p} {:p}", *y, z); // prints out the same pointer
754 /// }
755 /// ```
756 pub CLONE_DOUBLE_REF,
757 correctness,
758 "using `clone` on `&&T`"
759}
760
761declare_clippy_lint! {
762 /// **What it does:** Checks for usage of `.to_string()` on an `&&T` where
763 /// `T` implements `ToString` directly (like `&&str` or `&&String`).
764 ///
765 /// **Why is this bad?** This bypasses the specialized implementation of
766 /// `ToString` and instead goes through the more expensive string formatting
767 /// facilities.
768 ///
769 /// **Known problems:** None.
770 ///
771 /// **Example:**
772 /// ```rust
773 /// // Generic implementation for `T: Display` is used (slow)
774 /// ["foo", "bar"].iter().map(|s| s.to_string());
775 ///
776 /// // OK, the specialized impl is used
777 /// ["foo", "bar"].iter().map(|&s| s.to_string());
778 /// ```
779 pub INEFFICIENT_TO_STRING,
780 pedantic,
781 "using `to_string` on `&&T` where `T: ToString`"
782}
783
784declare_clippy_lint! {
785 /// **What it does:** Checks for `new` not returning a type that contains `Self`.
786 ///
787 /// **Why is this bad?** As a convention, `new` methods are used to make a new
788 /// instance of a type.
789 ///
790 /// **Known problems:** None.
791 ///
792 /// **Example:**
793 /// In an impl block:
794 /// ```rust
795 /// # struct Foo;
796 /// # struct NotAFoo;
797 /// impl Foo {
798 /// fn new() -> NotAFoo {
799 /// # NotAFoo
800 /// }
801 /// }
802 /// ```
803 ///
804 /// ```rust
805 /// # struct Foo;
806 /// struct Bar(Foo);
807 /// impl Foo {
808 /// // Bad. The type name must contain `Self`
809 /// fn new() -> Bar {
810 /// # Bar(Foo)
811 /// }
812 /// }
813 /// ```
814 ///
815 /// ```rust
816 /// # struct Foo;
817 /// # struct FooError;
818 /// impl Foo {
819 /// // Good. Return type contains `Self`
820 /// fn new() -> Result<Foo, FooError> {
821 /// # Ok(Foo)
822 /// }
823 /// }
824 /// ```
825 ///
826 /// Or in a trait definition:
827 /// ```rust
828 /// pub trait Trait {
829 /// // Bad. The type name must contain `Self`
830 /// fn new();
831 /// }
832 /// ```
833 ///
834 /// ```rust
835 /// pub trait Trait {
836 /// // Good. Return type contains `Self`
837 /// fn new() -> Self;
838 /// }
839 /// ```
840 pub NEW_RET_NO_SELF,
841 style,
842 "not returning type containing `Self` in a `new` method"
843}
844
845declare_clippy_lint! {
846 /// **What it does:** Checks for string methods that receive a single-character
847 /// `str` as an argument, e.g., `_.split("x")`.
848 ///
849 /// **Why is this bad?** Performing these methods using a `char` is faster than
850 /// using a `str`.
851 ///
852 /// **Known problems:** Does not catch multi-byte unicode characters.
853 ///
854 /// **Example:**
855 /// ```rust,ignore
856 /// // Bad
857 /// _.split("x");
858 ///
859 /// // Good
860 /// _.split('x');
861 pub SINGLE_CHAR_PATTERN,
862 perf,
863 "using a single-character str where a char could be used, e.g., `_.split(\"x\")`"
864}
865
866declare_clippy_lint! {
867 /// **What it does:** Checks for calling `.step_by(0)` on iterators which panics.
868 ///
869 /// **Why is this bad?** This very much looks like an oversight. Use `panic!()` instead if you
870 /// actually intend to panic.
871 ///
872 /// **Known problems:** None.
873 ///
874 /// **Example:**
875 /// ```rust,should_panic
876 /// for x in (0..100).step_by(0) {
877 /// //..
878 /// }
879 /// ```
880 pub ITERATOR_STEP_BY_ZERO,
881 correctness,
882 "using `Iterator::step_by(0)`, which will panic at runtime"
883}
884
885declare_clippy_lint! {
886 /// **What it does:** Checks for the use of `iter.nth(0)`.
887 ///
888 /// **Why is this bad?** `iter.next()` is equivalent to
889 /// `iter.nth(0)`, as they both consume the next element,
890 /// but is more readable.
891 ///
892 /// **Known problems:** None.
893 ///
894 /// **Example:**
895 ///
896 /// ```rust
897 /// # use std::collections::HashSet;
898 /// // Bad
899 /// # let mut s = HashSet::new();
900 /// # s.insert(1);
901 /// let x = s.iter().nth(0);
902 ///
903 /// // Good
904 /// # let mut s = HashSet::new();
905 /// # s.insert(1);
906 /// let x = s.iter().next();
907 /// ```
908 pub ITER_NTH_ZERO,
909 style,
910 "replace `iter.nth(0)` with `iter.next()`"
911}
912
913declare_clippy_lint! {
914 /// **What it does:** Checks for use of `.iter().nth()` (and the related
915 /// `.iter_mut().nth()`) on standard library types with O(1) element access.
916 ///
917 /// **Why is this bad?** `.get()` and `.get_mut()` are more efficient and more
918 /// readable.
919 ///
920 /// **Known problems:** None.
921 ///
922 /// **Example:**
923 /// ```rust
924 /// let some_vec = vec![0, 1, 2, 3];
925 /// let bad_vec = some_vec.iter().nth(3);
926 /// let bad_slice = &some_vec[..].iter().nth(3);
927 /// ```
928 /// The correct use would be:
929 /// ```rust
930 /// let some_vec = vec![0, 1, 2, 3];
931 /// let bad_vec = some_vec.get(3);
932 /// let bad_slice = &some_vec[..].get(3);
933 /// ```
934 pub ITER_NTH,
935 perf,
936 "using `.iter().nth()` on a standard library type with O(1) element access"
937}
938
939declare_clippy_lint! {
940 /// **What it does:** Checks for use of `.skip(x).next()` on iterators.
941 ///
942 /// **Why is this bad?** `.nth(x)` is cleaner
943 ///
944 /// **Known problems:** None.
945 ///
946 /// **Example:**
947 /// ```rust
948 /// let some_vec = vec![0, 1, 2, 3];
949 /// let bad_vec = some_vec.iter().skip(3).next();
950 /// let bad_slice = &some_vec[..].iter().skip(3).next();
951 /// ```
952 /// The correct use would be:
953 /// ```rust
954 /// let some_vec = vec![0, 1, 2, 3];
955 /// let bad_vec = some_vec.iter().nth(3);
956 /// let bad_slice = &some_vec[..].iter().nth(3);
957 /// ```
958 pub ITER_SKIP_NEXT,
959 style,
960 "using `.skip(x).next()` on an iterator"
961}
962
963declare_clippy_lint! {
964 /// **What it does:** Checks for use of `.get().unwrap()` (or
965 /// `.get_mut().unwrap`) on a standard library type which implements `Index`
966 ///
967 /// **Why is this bad?** Using the Index trait (`[]`) is more clear and more
968 /// concise.
969 ///
970 /// **Known problems:** Not a replacement for error handling: Using either
971 /// `.unwrap()` or the Index trait (`[]`) carries the risk of causing a `panic`
972 /// if the value being accessed is `None`. If the use of `.get().unwrap()` is a
973 /// temporary placeholder for dealing with the `Option` type, then this does
974 /// not mitigate the need for error handling. If there is a chance that `.get()`
975 /// will be `None` in your program, then it is advisable that the `None` case
976 /// is handled in a future refactor instead of using `.unwrap()` or the Index
977 /// trait.
978 ///
979 /// **Example:**
980 /// ```rust
981 /// let mut some_vec = vec![0, 1, 2, 3];
982 /// let last = some_vec.get(3).unwrap();
983 /// *some_vec.get_mut(0).unwrap() = 1;
984 /// ```
985 /// The correct use would be:
986 /// ```rust
987 /// let mut some_vec = vec![0, 1, 2, 3];
988 /// let last = some_vec[3];
989 /// some_vec[0] = 1;
990 /// ```
991 pub GET_UNWRAP,
992 restriction,
993 "using `.get().unwrap()` or `.get_mut().unwrap()` when using `[]` would work instead"
994}
995
996declare_clippy_lint! {
997 /// **What it does:** Checks for the use of `.extend(s.chars())` where s is a
998 /// `&str` or `String`.
999 ///
1000 /// **Why is this bad?** `.push_str(s)` is clearer
1001 ///
1002 /// **Known problems:** None.
1003 ///
1004 /// **Example:**
1005 /// ```rust
1006 /// let abc = "abc";
1007 /// let def = String::from("def");
1008 /// let mut s = String::new();
1009 /// s.extend(abc.chars());
1010 /// s.extend(def.chars());
1011 /// ```
1012 /// The correct use would be:
1013 /// ```rust
1014 /// let abc = "abc";
1015 /// let def = String::from("def");
1016 /// let mut s = String::new();
1017 /// s.push_str(abc);
1018 /// s.push_str(&def);
1019 /// ```
1020 pub STRING_EXTEND_CHARS,
1021 style,
1022 "using `x.extend(s.chars())` where s is a `&str` or `String`"
1023}
1024
1025declare_clippy_lint! {
1026 /// **What it does:** Checks for the use of `.cloned().collect()` on slice to
1027 /// create a `Vec`.
1028 ///
1029 /// **Why is this bad?** `.to_vec()` is clearer
1030 ///
1031 /// **Known problems:** None.
1032 ///
1033 /// **Example:**
1034 /// ```rust
1035 /// let s = [1, 2, 3, 4, 5];
1036 /// let s2: Vec<isize> = s[..].iter().cloned().collect();
1037 /// ```
1038 /// The better use would be:
1039 /// ```rust
1040 /// let s = [1, 2, 3, 4, 5];
1041 /// let s2: Vec<isize> = s.to_vec();
1042 /// ```
1043 pub ITER_CLONED_COLLECT,
1044 style,
1045 "using `.cloned().collect()` on slice to create a `Vec`"
1046}
1047
1048declare_clippy_lint! {
1049 /// **What it does:** Checks for usage of `_.chars().last()` or
1050 /// `_.chars().next_back()` on a `str` to check if it ends with a given char.
1051 ///
1052 /// **Why is this bad?** Readability, this can be written more concisely as
1053 /// `_.ends_with(_)`.
1054 ///
1055 /// **Known problems:** None.
1056 ///
1057 /// **Example:**
1058 /// ```rust
1059 /// # let name = "_";
1060 ///
1061 /// // Bad
1062 /// name.chars().last() == Some('_') || name.chars().next_back() == Some('-');
1063 ///
1064 /// // Good
1065 /// name.ends_with('_') || name.ends_with('-');
1066 /// ```
1067 pub CHARS_LAST_CMP,
1068 style,
1069 "using `.chars().last()` or `.chars().next_back()` to check if a string ends with a char"
1070}
1071
1072declare_clippy_lint! {
1073 /// **What it does:** Checks for usage of `.as_ref()` or `.as_mut()` where the
1074 /// types before and after the call are the same.
1075 ///
1076 /// **Why is this bad?** The call is unnecessary.
1077 ///
1078 /// **Known problems:** None.
1079 ///
1080 /// **Example:**
1081 /// ```rust
1082 /// # fn do_stuff(x: &[i32]) {}
1083 /// let x: &[i32] = &[1, 2, 3, 4, 5];
1084 /// do_stuff(x.as_ref());
1085 /// ```
1086 /// The correct use would be:
1087 /// ```rust
1088 /// # fn do_stuff(x: &[i32]) {}
1089 /// let x: &[i32] = &[1, 2, 3, 4, 5];
1090 /// do_stuff(x);
1091 /// ```
1092 pub USELESS_ASREF,
1093 complexity,
1094 "using `as_ref` where the types before and after the call are the same"
1095}
1096
1097declare_clippy_lint! {
1098 /// **What it does:** Checks for using `fold` when a more succinct alternative exists.
1099 /// Specifically, this checks for `fold`s which could be replaced by `any`, `all`,
1100 /// `sum` or `product`.
1101 ///
1102 /// **Why is this bad?** Readability.
1103 ///
1104 /// **Known problems:** None.
1105 ///
1106 /// **Example:**
1107 /// ```rust
1108 /// let _ = (0..3).fold(false, |acc, x| acc || x > 2);
1109 /// ```
1110 /// This could be written as:
1111 /// ```rust
1112 /// let _ = (0..3).any(|x| x > 2);
1113 /// ```
1114 pub UNNECESSARY_FOLD,
1115 style,
1116 "using `fold` when a more succinct alternative exists"
1117}
1118
1119declare_clippy_lint! {
1120 /// **What it does:** Checks for `filter_map` calls which could be replaced by `filter` or `map`.
1121 /// More specifically it checks if the closure provided is only performing one of the
1122 /// filter or map operations and suggests the appropriate option.
1123 ///
1124 /// **Why is this bad?** Complexity. The intent is also clearer if only a single
1125 /// operation is being performed.
1126 ///
1127 /// **Known problems:** None
1128 ///
1129 /// **Example:**
1130 /// ```rust
1131 /// let _ = (0..3).filter_map(|x| if x > 2 { Some(x) } else { None });
1132 ///
1133 /// // As there is no transformation of the argument this could be written as:
1134 /// let _ = (0..3).filter(|&x| x > 2);
1135 /// ```
1136 ///
1137 /// ```rust
1138 /// let _ = (0..4).filter_map(|x| Some(x + 1));
1139 ///
1140 /// // As there is no conditional check on the argument this could be written as:
1141 /// let _ = (0..4).map(|x| x + 1);
1142 /// ```
1143 pub UNNECESSARY_FILTER_MAP,
1144 complexity,
1145 "using `filter_map` when a more succinct alternative exists"
1146}
1147
1148declare_clippy_lint! {
1149 /// **What it does:** Checks for `into_iter` calls on references which should be replaced by `iter`
1150 /// or `iter_mut`.
1151 ///
1152 /// **Why is this bad?** Readability. Calling `into_iter` on a reference will not move out its
1153 /// content into the resulting iterator, which is confusing. It is better just call `iter` or
1154 /// `iter_mut` directly.
1155 ///
1156 /// **Known problems:** None
1157 ///
1158 /// **Example:**
1159 ///
1160 /// ```rust
1161 /// // Bad
1162 /// let _ = (&vec![3, 4, 5]).into_iter();
1163 ///
1164 /// // Good
1165 /// let _ = (&vec![3, 4, 5]).iter();
1166 /// ```
1167 pub INTO_ITER_ON_REF,
1168 style,
1169 "using `.into_iter()` on a reference"
1170}
1171
1172declare_clippy_lint! {
1173 /// **What it does:** Checks for calls to `map` followed by a `count`.
1174 ///
1175 /// **Why is this bad?** It looks suspicious. Maybe `map` was confused with `filter`.
1176 /// If the `map` call is intentional, this should be rewritten. Or, if you intend to
1177 /// drive the iterator to completion, you can just use `for_each` instead.
1178 ///
1179 /// **Known problems:** None
1180 ///
1181 /// **Example:**
1182 ///
1183 /// ```rust
1184 /// let _ = (0..3).map(|x| x + 2).count();
1185 /// ```
1186 pub SUSPICIOUS_MAP,
1187 complexity,
1188 "suspicious usage of map"
1189}
1190
1191declare_clippy_lint! {
1192 /// **What it does:** Checks for `MaybeUninit::uninit().assume_init()`.
1193 ///
1194 /// **Why is this bad?** For most types, this is undefined behavior.
1195 ///
1196 /// **Known problems:** For now, we accept empty tuples and tuples / arrays
1197 /// of `MaybeUninit`. There may be other types that allow uninitialized
1198 /// data, but those are not yet rigorously defined.
1199 ///
1200 /// **Example:**
1201 ///
1202 /// ```rust
1203 /// // Beware the UB
1204 /// use std::mem::MaybeUninit;
1205 ///
1206 /// let _: usize = unsafe { MaybeUninit::uninit().assume_init() };
1207 /// ```
1208 ///
1209 /// Note that the following is OK:
1210 ///
1211 /// ```rust
1212 /// use std::mem::MaybeUninit;
1213 ///
1214 /// let _: [MaybeUninit<bool>; 5] = unsafe {
1215 /// MaybeUninit::uninit().assume_init()
1216 /// };
1217 /// ```
1218 pub UNINIT_ASSUMED_INIT,
1219 correctness,
1220 "`MaybeUninit::uninit().assume_init()`"
1221}
1222
1223declare_clippy_lint! {
1224 /// **What it does:** Checks for `.checked_add/sub(x).unwrap_or(MAX/MIN)`.
1225 ///
1226 /// **Why is this bad?** These can be written simply with `saturating_add/sub` methods.
1227 ///
1228 /// **Example:**
1229 ///
1230 /// ```rust
1231 /// # let y: u32 = 0;
1232 /// # let x: u32 = 100;
1233 /// let add = x.checked_add(y).unwrap_or(u32::MAX);
1234 /// let sub = x.checked_sub(y).unwrap_or(u32::MIN);
1235 /// ```
1236 ///
1237 /// can be written using dedicated methods for saturating addition/subtraction as:
1238 ///
1239 /// ```rust
1240 /// # let y: u32 = 0;
1241 /// # let x: u32 = 100;
1242 /// let add = x.saturating_add(y);
1243 /// let sub = x.saturating_sub(y);
1244 /// ```
1245 pub MANUAL_SATURATING_ARITHMETIC,
1246 style,
1247 "`.chcked_add/sub(x).unwrap_or(MAX/MIN)`"
1248}
1249
1250declare_clippy_lint! {
1251 /// **What it does:** Checks for `offset(_)`, `wrapping_`{`add`, `sub`}, etc. on raw pointers to
1252 /// zero-sized types
1253 ///
1254 /// **Why is this bad?** This is a no-op, and likely unintended
1255 ///
1256 /// **Known problems:** None
1257 ///
1258 /// **Example:**
1259 /// ```rust
1260 /// unsafe { (&() as *const ()).offset(1) };
1261 /// ```
1262 pub ZST_OFFSET,
1263 correctness,
1264 "Check for offset calculations on raw pointers to zero-sized types"
1265}
1266
1267declare_clippy_lint! {
1268 /// **What it does:** Checks for `FileType::is_file()`.
1269 ///
1270 /// **Why is this bad?** When people testing a file type with `FileType::is_file`
1271 /// they are testing whether a path is something they can get bytes from. But
1272 /// `is_file` doesn't cover special file types in unix-like systems, and doesn't cover
1273 /// symlink in windows. Using `!FileType::is_dir()` is a better way to that intention.
1274 ///
1275 /// **Example:**
1276 ///
1277 /// ```rust
1278 /// # || {
1279 /// let metadata = std::fs::metadata("foo.txt")?;
1280 /// let filetype = metadata.file_type();
1281 ///
1282 /// if filetype.is_file() {
1283 /// // read file
1284 /// }
1285 /// # Ok::<_, std::io::Error>(())
1286 /// # };
1287 /// ```
1288 ///
1289 /// should be written as:
1290 ///
1291 /// ```rust
1292 /// # || {
1293 /// let metadata = std::fs::metadata("foo.txt")?;
1294 /// let filetype = metadata.file_type();
1295 ///
1296 /// if !filetype.is_dir() {
1297 /// // read file
1298 /// }
1299 /// # Ok::<_, std::io::Error>(())
1300 /// # };
1301 /// ```
1302 pub FILETYPE_IS_FILE,
1303 restriction,
1304 "`FileType::is_file` is not recommended to test for readable file type"
1305}
1306
1307declare_clippy_lint! {
1308 /// **What it does:** Checks for usage of `_.as_ref().map(Deref::deref)` or it's aliases (such as String::as_str).
1309 ///
1310 /// **Why is this bad?** Readability, this can be written more concisely as
1311 /// `_.as_deref()`.
1312 ///
1313 /// **Known problems:** None.
1314 ///
1315 /// **Example:**
1316 /// ```rust
1317 /// # let opt = Some("".to_string());
1318 /// opt.as_ref().map(String::as_str)
1319 /// # ;
1320 /// ```
1321 /// Can be written as
1322 /// ```rust
1323 /// # let opt = Some("".to_string());
1324 /// opt.as_deref()
1325 /// # ;
1326 /// ```
1327 pub OPTION_AS_REF_DEREF,
1328 complexity,
1329 "using `as_ref().map(Deref::deref)`, which is more succinctly expressed as `as_deref()`"
1330}
1331
1332declare_clippy_lint! {
1333 /// **What it does:** Checks for usage of `iter().next()` on a Slice or an Array
1334 ///
1335 /// **Why is this bad?** These can be shortened into `.get()`
1336 ///
1337 /// **Known problems:** None.
1338 ///
1339 /// **Example:**
1340 /// ```rust
1341 /// # let a = [1, 2, 3];
1342 /// # let b = vec![1, 2, 3];
1343 /// a[2..].iter().next();
1344 /// b.iter().next();
1345 /// ```
1346 /// should be written as:
1347 /// ```rust
1348 /// # let a = [1, 2, 3];
1349 /// # let b = vec![1, 2, 3];
1350 /// a.get(2);
1351 /// b.get(0);
1352 /// ```
1353 pub ITER_NEXT_SLICE,
1354 style,
1355 "using `.iter().next()` on a sliced array, which can be shortened to just `.get()`"
1356}
1357
1358declare_clippy_lint! {
1359 /// **What it does:** Warns when using `push_str`/`insert_str` with a single-character string literal
1360 /// where `push`/`insert` with a `char` would work fine.
1361 ///
1362 /// **Why is this bad?** It's less clear that we are pushing a single character.
1363 ///
1364 /// **Known problems:** None
1365 ///
1366 /// **Example:**
1367 /// ```rust
1368 /// let mut string = String::new();
1369 /// string.insert_str(0, "R");
1370 /// string.push_str("R");
1371 /// ```
1372 /// Could be written as
1373 /// ```rust
1374 /// let mut string = String::new();
1375 /// string.insert(0, 'R');
1376 /// string.push('R');
1377 /// ```
1378 pub SINGLE_CHAR_ADD_STR,
1379 style,
1380 "`push_str()` or `insert_str()` used with a single-character string literal as parameter"
1381}
1382
1383declare_clippy_lint! {
1384 /// **What it does:** As the counterpart to `or_fun_call`, this lint looks for unnecessary
1385 /// lazily evaluated closures on `Option` and `Result`.
1386 ///
1387 /// This lint suggests changing the following functions, when eager evaluation results in
1388 /// simpler code:
1389 /// - `unwrap_or_else` to `unwrap_or`
1390 /// - `and_then` to `and`
1391 /// - `or_else` to `or`
1392 /// - `get_or_insert_with` to `get_or_insert`
1393 /// - `ok_or_else` to `ok_or`
1394 ///
1395 /// **Why is this bad?** Using eager evaluation is shorter and simpler in some cases.
1396 ///
1397 /// **Known problems:** It is possible, but not recommended for `Deref` and `Index` to have
1398 /// side effects. Eagerly evaluating them can change the semantics of the program.
1399 ///
1400 /// **Example:**
1401 ///
1402 /// ```rust
1403 /// // example code where clippy issues a warning
1404 /// let opt: Option<u32> = None;
1405 ///
1406 /// opt.unwrap_or_else(|| 42);
1407 /// ```
1408 /// Use instead:
1409 /// ```rust
1410 /// let opt: Option<u32> = None;
1411 ///
1412 /// opt.unwrap_or(42);
1413 /// ```
1414 pub UNNECESSARY_LAZY_EVALUATIONS,
1415 style,
1416 "using unnecessary lazy evaluation, which can be replaced with simpler eager evaluation"
1417}
1418
1419declare_clippy_lint! {
1420 /// **What it does:** Checks for usage of `_.map(_).collect::<Result<(), _>()`.
1421 ///
1422 /// **Why is this bad?** Using `try_for_each` instead is more readable and idiomatic.
1423 ///
1424 /// **Known problems:** None
1425 ///
1426 /// **Example:**
1427 ///
1428 /// ```rust
1429 /// (0..3).map(|t| Err(t)).collect::<Result<(), _>>();
1430 /// ```
1431 /// Use instead:
1432 /// ```rust
1433 /// (0..3).try_for_each(|t| Err(t));
1434 /// ```
1435 pub MAP_COLLECT_RESULT_UNIT,
1436 style,
1437 "using `.map(_).collect::<Result<(),_>()`, which can be replaced with `try_for_each`"
1438}
1439
1440declare_clippy_lint! {
1441 /// **What it does:** Checks for `from_iter()` function calls on types that implement the `FromIterator`
1442 /// trait.
1443 ///
1444 /// **Why is this bad?** It is recommended style to use collect. See
1445 /// [FromIterator documentation](https://doc.rust-lang.org/std/iter/trait.FromIterator.html)
1446 ///
1447 /// **Known problems:** None.
1448 ///
1449 /// **Example:**
1450 ///
1451 /// ```rust
1452 /// use std::iter::FromIterator;
1453 ///
1454 /// let five_fives = std::iter::repeat(5).take(5);
1455 ///
1456 /// let v = Vec::from_iter(five_fives);
1457 ///
1458 /// assert_eq!(v, vec![5, 5, 5, 5, 5]);
1459 /// ```
1460 /// Use instead:
1461 /// ```rust
1462 /// let five_fives = std::iter::repeat(5).take(5);
1463 ///
1464 /// let v: Vec<i32> = five_fives.collect();
1465 ///
1466 /// assert_eq!(v, vec![5, 5, 5, 5, 5]);
1467 /// ```
1468 pub FROM_ITER_INSTEAD_OF_COLLECT,
1469 style,
1470 "use `.collect()` instead of `::from_iter()`"
1471}
1472
1473declare_clippy_lint! {
1474 /// **What it does:** Checks for usage of `inspect().for_each()`.
1475 ///
1476 /// **Why is this bad?** It is the same as performing the computation
1477 /// inside `inspect` at the beginning of the closure in `for_each`.
1478 ///
1479 /// **Known problems:** None.
1480 ///
1481 /// **Example:**
1482 ///
1483 /// ```rust
1484 /// [1,2,3,4,5].iter()
1485 /// .inspect(|&x| println!("inspect the number: {}", x))
1486 /// .for_each(|&x| {
1487 /// assert!(x >= 0);
1488 /// });
1489 /// ```
1490 /// Can be written as
1491 /// ```rust
1492 /// [1,2,3,4,5].iter()
1493 /// .for_each(|&x| {
1494 /// println!("inspect the number: {}", x);
1495 /// assert!(x >= 0);
1496 /// });
1497 /// ```
1498 pub INSPECT_FOR_EACH,
1499 complexity,
1500 "using `.inspect().for_each()`, which can be replaced with `.for_each()`"
1501}
1502
1503declare_clippy_lint! {
1504 /// **What it does:** Checks for usage of `filter_map(|x| x)`.
1505 ///
1506 /// **Why is this bad?** Readability, this can be written more concisely by using `flatten`.
1507 ///
1508 /// **Known problems:** None.
1509 ///
1510 /// **Example:**
1511 ///
1512 /// ```rust
1513 /// # let iter = vec![Some(1)].into_iter();
1514 /// iter.filter_map(|x| x);
1515 /// ```
1516 /// Use instead:
1517 /// ```rust
1518 /// # let iter = vec![Some(1)].into_iter();
1519 /// iter.flatten();
1520 /// ```
1521 pub FILTER_MAP_IDENTITY,
1522 complexity,
1523 "call to `filter_map` where `flatten` is sufficient"
1524}
1525
1526declare_clippy_lint! {
1527 /// **What it does:** Checks for the use of `.bytes().nth()`.
1528 ///
1529 /// **Why is this bad?** `.as_bytes().get()` is more efficient and more
1530 /// readable.
1531 ///
1532 /// **Known problems:** None.
1533 ///
1534 /// **Example:**
1535 ///
1536 /// ```rust
1537 /// // Bad
1538 /// let _ = "Hello".bytes().nth(3);
1539 ///
1540 /// // Good
1541 /// let _ = "Hello".as_bytes().get(3);
1542 /// ```
1543 pub BYTES_NTH,
1544 style,
1545 "replace `.bytes().nth()` with `.as_bytes().get()`"
1546}
1547
1548declare_clippy_lint! {
1549 /// **What it does:** Checks for the usage of `_.to_owned()`, `vec.to_vec()`, or similar when calling `_.clone()` would be clearer.
1550 ///
1551 /// **Why is this bad?** These methods do the same thing as `_.clone()` but may be confusing as
1552 /// to why we are calling `to_vec` on something that is already a `Vec` or calling `to_owned` on something that is already owned.
1553 ///
1554 /// **Known problems:** None.
1555 ///
1556 /// **Example:**
1557 ///
1558 /// ```rust
1559 /// let a = vec![1, 2, 3];
1560 /// let b = a.to_vec();
1561 /// let c = a.to_owned();
1562 /// ```
1563 /// Use instead:
1564 /// ```rust
1565 /// let a = vec![1, 2, 3];
1566 /// let b = a.clone();
1567 /// let c = a.clone();
1568 /// ```
1569 pub IMPLICIT_CLONE,
1570 pedantic,
1571 "implicitly cloning a value by invoking a function on its dereferenced type"
1572}
1573
1574declare_clippy_lint! {
1575 /// **What it does:** Checks for the use of `.iter().count()`.
1576 ///
1577 /// **Why is this bad?** `.len()` is more efficient and more
1578 /// readable.
1579 ///
1580 /// **Known problems:** None.
1581 ///
1582 /// **Example:**
1583 ///
1584 /// ```rust
1585 /// // Bad
1586 /// let some_vec = vec![0, 1, 2, 3];
1587 /// let _ = some_vec.iter().count();
1588 /// let _ = &some_vec[..].iter().count();
1589 ///
1590 /// // Good
1591 /// let some_vec = vec![0, 1, 2, 3];
1592 /// let _ = some_vec.len();
1593 /// let _ = &some_vec[..].len();
1594 /// ```
1595 pub ITER_COUNT,
1596 complexity,
1597 "replace `.iter().count()` with `.len()`"
1598}
1599
1600pub struct Methods {
1601 msrv: Option<RustcVersion>,
1602}
1603
1604impl Methods {
1605 #[must_use]
1606 pub fn new(msrv: Option<RustcVersion>) -> Self {
1607 Self { msrv }
1608 }
1609}
1610
1611impl_lint_pass!(Methods => [
1612 UNWRAP_USED,
1613 EXPECT_USED,
1614 SHOULD_IMPLEMENT_TRAIT,
1615 WRONG_SELF_CONVENTION,
1616 WRONG_PUB_SELF_CONVENTION,
1617 OK_EXPECT,
1618 MAP_UNWRAP_OR,
1619 RESULT_MAP_OR_INTO_OPTION,
1620 OPTION_MAP_OR_NONE,
1621 BIND_INSTEAD_OF_MAP,
1622 OR_FUN_CALL,
1623 EXPECT_FUN_CALL,
1624 CHARS_NEXT_CMP,
1625 CHARS_LAST_CMP,
1626 CLONE_ON_COPY,
1627 CLONE_ON_REF_PTR,
1628 CLONE_DOUBLE_REF,
1629 INEFFICIENT_TO_STRING,
1630 NEW_RET_NO_SELF,
1631 SINGLE_CHAR_PATTERN,
1632 SINGLE_CHAR_ADD_STR,
1633 SEARCH_IS_SOME,
1634 FILTER_NEXT,
1635 SKIP_WHILE_NEXT,
1636 FILTER_MAP,
1637 FILTER_MAP_IDENTITY,
1638 MANUAL_FILTER_MAP,
1639 MANUAL_FIND_MAP,
1640 FILTER_MAP_NEXT,
1641 FLAT_MAP_IDENTITY,
1642 MAP_FLATTEN,
1643 ITERATOR_STEP_BY_ZERO,
1644 ITER_NEXT_SLICE,
1645 ITER_COUNT,
1646 ITER_NTH,
1647 ITER_NTH_ZERO,
1648 BYTES_NTH,
1649 ITER_SKIP_NEXT,
1650 GET_UNWRAP,
1651 STRING_EXTEND_CHARS,
1652 ITER_CLONED_COLLECT,
1653 USELESS_ASREF,
1654 UNNECESSARY_FOLD,
1655 UNNECESSARY_FILTER_MAP,
1656 INTO_ITER_ON_REF,
1657 SUSPICIOUS_MAP,
1658 UNINIT_ASSUMED_INIT,
1659 MANUAL_SATURATING_ARITHMETIC,
1660 ZST_OFFSET,
1661 FILETYPE_IS_FILE,
1662 OPTION_AS_REF_DEREF,
1663 UNNECESSARY_LAZY_EVALUATIONS,
1664 MAP_COLLECT_RESULT_UNIT,
1665 FROM_ITER_INSTEAD_OF_COLLECT,
1666 INSPECT_FOR_EACH,
1667 IMPLICIT_CLONE
1668]);
1669
1670impl<'tcx> LateLintPass<'tcx> for Methods {
1671 #[allow(clippy::too_many_lines)]
1672 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) {
1673 if in_macro(expr.span) {
1674 return;
1675 }
1676
1677 let (method_names, arg_lists, method_spans) = method_calls(expr, 2);
1678 let method_names: Vec<SymbolStr> = method_names.iter().map(|s| s.as_str()).collect();
1679 let method_names: Vec<&str> = method_names.iter().map(|s| &**s).collect();
1680
1681 match method_names.as_slice() {
1682 ["unwrap", "get"] => get_unwrap::check(cx, expr, arg_lists[1], false),
1683 ["unwrap", "get_mut"] => get_unwrap::check(cx, expr, arg_lists[1], true),
1684 ["unwrap", ..] => unwrap_used::check(cx, expr, arg_lists[0]),
1685 ["expect", "ok"] => ok_expect::check(cx, expr, arg_lists[1]),
1686 ["expect", ..] => expect_used::check(cx, expr, arg_lists[0]),
1687 ["unwrap_or", "map"] => option_map_unwrap_or::check(cx, expr, arg_lists[1], arg_lists[0], method_spans[1]),
1688 ["unwrap_or_else", "map"] => {
1689 if !map_unwrap_or::check(cx, expr, arg_lists[1], arg_lists[0], self.msrv.as_ref()) {
1690 unnecessary_lazy_eval::check(cx, expr, arg_lists[0], "unwrap_or");
1691 }
1692 },
1693 ["map_or", ..] => option_map_or_none::check(cx, expr, arg_lists[0]),
1694 ["and_then", ..] => {
1695 let biom_option_linted = bind_instead_of_map::OptionAndThenSome::check(cx, expr, arg_lists[0]);
1696 let biom_result_linted = bind_instead_of_map::ResultAndThenOk::check(cx, expr, arg_lists[0]);
1697 if !biom_option_linted && !biom_result_linted {
1698 unnecessary_lazy_eval::check(cx, expr, arg_lists[0], "and");
1699 }
1700 },
1701 ["or_else", ..] => {
1702 if !bind_instead_of_map::ResultOrElseErrInfo::check(cx, expr, arg_lists[0]) {
1703 unnecessary_lazy_eval::check(cx, expr, arg_lists[0], "or");
1704 }
1705 },
1706 ["next", "filter"] => filter_next::check(cx, expr, arg_lists[1]),
1707 ["next", "skip_while"] => skip_while_next::check(cx, expr, arg_lists[1]),
1708 ["next", "iter"] => iter_next_slice::check(cx, expr, arg_lists[1]),
1709 ["map", "filter"] => filter_map::check(cx, expr, false),
1710 ["map", "filter_map"] => filter_map_map::check(cx, expr, arg_lists[1], arg_lists[0]),
1711 ["next", "filter_map"] => filter_map_next::check(cx, expr, arg_lists[1], self.msrv.as_ref()),
1712 ["map", "find"] => filter_map::check(cx, expr, true),
1713 ["flat_map", "filter"] => filter_flat_map::check(cx, expr, arg_lists[1], arg_lists[0]),
1714 ["flat_map", "filter_map"] => filter_map_flat_map::check(cx, expr, arg_lists[1], arg_lists[0]),
1715 ["flat_map", ..] => flat_map_identity::check(cx, expr, arg_lists[0], method_spans[0]),
1716 ["flatten", "map"] => map_flatten::check(cx, expr, arg_lists[1]),
1717 ["is_some", "find"] => search_is_some::check(cx, expr, "find", arg_lists[1], arg_lists[0], method_spans[1]),
1718 ["is_some", "position"] => {
1719 search_is_some::check(cx, expr, "position", arg_lists[1], arg_lists[0], method_spans[1])
1720 },
1721 ["is_some", "rposition"] => {
1722 search_is_some::check(cx, expr, "rposition", arg_lists[1], arg_lists[0], method_spans[1])
1723 },
1724 ["extend", ..] => string_extend_chars::check(cx, expr, arg_lists[0]),
1725 ["count", "into_iter"] => iter_count::check(cx, expr, &arg_lists[1], "into_iter"),
1726 ["count", "iter"] => iter_count::check(cx, expr, &arg_lists[1], "iter"),
1727 ["count", "iter_mut"] => iter_count::check(cx, expr, &arg_lists[1], "iter_mut"),
1728 ["nth", "iter"] => iter_nth::check(cx, expr, &arg_lists, false),
1729 ["nth", "iter_mut"] => iter_nth::check(cx, expr, &arg_lists, true),
1730 ["nth", "bytes"] => bytes_nth::check(cx, expr, &arg_lists[1]),
1731 ["nth", ..] => iter_nth_zero::check(cx, expr, arg_lists[0]),
1732 ["step_by", ..] => iterator_step_by_zero::check(cx, expr, arg_lists[0]),
1733 ["next", "skip"] => iter_skip_next::check(cx, expr, arg_lists[1]),
1734 ["collect", "cloned"] => iter_cloned_collect::check(cx, expr, arg_lists[1]),
1735 ["as_ref"] => useless_asref::check(cx, expr, "as_ref", arg_lists[0]),
1736 ["as_mut"] => useless_asref::check(cx, expr, "as_mut", arg_lists[0]),
1737 ["fold", ..] => unnecessary_fold::check(cx, expr, arg_lists[0], method_spans[0]),
1738 ["filter_map", ..] => {
1739 unnecessary_filter_map::check(cx, expr, arg_lists[0]);
1740 filter_map_identity::check(cx, expr, arg_lists[0], method_spans[0]);
1741 },
1742 ["count", "map"] => suspicious_map::check(cx, expr),
1743 ["assume_init"] => uninit_assumed_init::check(cx, &arg_lists[0][0], expr),
1744 ["unwrap_or", arith @ ("checked_add" | "checked_sub" | "checked_mul")] => {
1745 manual_saturating_arithmetic::check(cx, expr, &arg_lists, &arith["checked_".len()..])
1746 },
1747 ["add" | "offset" | "sub" | "wrapping_offset" | "wrapping_add" | "wrapping_sub"] => {
1748 zst_offset::check(cx, expr, arg_lists[0])
1749 },
1750 ["is_file", ..] => filetype_is_file::check(cx, expr, arg_lists[0]),
1751 ["map", "as_ref"] => {
1752 option_as_ref_deref::check(cx, expr, arg_lists[1], arg_lists[0], false, self.msrv.as_ref())
1753 },
1754 ["map", "as_mut"] => {
1755 option_as_ref_deref::check(cx, expr, arg_lists[1], arg_lists[0], true, self.msrv.as_ref())
1756 },
1757 ["unwrap_or_else", ..] => unnecessary_lazy_eval::check(cx, expr, arg_lists[0], "unwrap_or"),
1758 ["get_or_insert_with", ..] => unnecessary_lazy_eval::check(cx, expr, arg_lists[0], "get_or_insert"),
1759 ["ok_or_else", ..] => unnecessary_lazy_eval::check(cx, expr, arg_lists[0], "ok_or"),
1760 ["collect", "map"] => map_collect_result_unit::check(cx, expr, arg_lists[1], arg_lists[0]),
1761 ["for_each", "inspect"] => inspect_for_each::check(cx, expr, method_spans[1]),
1762 ["to_owned", ..] => implicit_clone::check(cx, expr, sym::ToOwned),
1763 ["to_os_string", ..] => implicit_clone::check(cx, expr, sym::OsStr),
1764 ["to_path_buf", ..] => implicit_clone::check(cx, expr, sym::Path),
1765 ["to_vec", ..] => implicit_clone::check(cx, expr, sym::slice),
1766 _ => {},
1767 }
1768
1769 match expr.kind {
1770 hir::ExprKind::Call(ref func, ref args) => {
1771 if let hir::ExprKind::Path(path) = &func.kind {
1772 if match_qpath(path, &["from_iter"]) {
1773 from_iter_instead_of_collect::check(cx, expr, args);
1774 }
1775 }
1776 },
1777 hir::ExprKind::MethodCall(ref method_call, ref method_span, ref args, _) => {
1778 or_fun_call::check(cx, expr, *method_span, &method_call.ident.as_str(), args);
1779 expect_fun_call::check(cx, expr, *method_span, &method_call.ident.as_str(), args);
1780
1781 let self_ty = cx.typeck_results().expr_ty_adjusted(&args[0]);
1782 if args.len() == 1 && method_call.ident.name == sym::clone {
1783 clone_on_copy::check(cx, expr, &args[0], self_ty);
1784 clone_on_ref_ptr::check(cx, expr, &args[0]);
1785 }
1786 if args.len() == 1 && method_call.ident.name == sym!(to_string) {
1787 inefficient_to_string::check(cx, expr, &args[0], self_ty);
1788 }
1789
1790 if let Some(fn_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) {
1791 if match_def_path(cx, fn_def_id, &paths::PUSH_STR) {
1792 single_char_push_string::check(cx, expr, args);
1793 } else if match_def_path(cx, fn_def_id, &paths::INSERT_STR) {
1794 single_char_insert_string::check(cx, expr, args);
1795 }
1796 }
1797
1798 match self_ty.kind() {
1799 ty::Ref(_, ty, _) if *ty.kind() == ty::Str => {
1800 for &(method, pos) in &PATTERN_METHODS {
1801 if method_call.ident.name.as_str() == method && args.len() > pos {
1802 single_char_pattern::check(cx, expr, &args[pos]);
1803 }
1804 }
1805 },
1806 ty::Ref(..) if method_call.ident.name == sym::into_iter => {
1807 into_iter_on_ref::check(cx, expr, self_ty, *method_span);
1808 },
1809 _ => (),
1810 }
1811 },
1812 hir::ExprKind::Binary(op, ref lhs, ref rhs)
1813 if op.node == hir::BinOpKind::Eq || op.node == hir::BinOpKind::Ne =>
1814 {
1815 let mut info = BinaryExprInfo {
1816 expr,
1817 chain: lhs,
1818 other: rhs,
1819 eq: op.node == hir::BinOpKind::Eq,
1820 };
1821 lint_binary_expr_with_method_call(cx, &mut info);
1822 }
1823 _ => (),
1824 }
1825 }
1826
1827 #[allow(clippy::too_many_lines)]
1828 fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx hir::ImplItem<'_>) {
1829 if in_external_macro(cx.sess(), impl_item.span) {
1830 return;
1831 }
1832 let name = impl_item.ident.name.as_str();
1833 let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
1834 let item = cx.tcx.hir().expect_item(parent);
1835 let self_ty = cx.tcx.type_of(item.def_id);
1836
1837 // if this impl block implements a trait, lint in trait definition instead
1838 if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = item.kind {
1839 return;
1840 }
1841
1842 if_chain! {
1843 if let hir::ImplItemKind::Fn(ref sig, id) = impl_item.kind;
1844 if let Some(first_arg) = iter_input_pats(&sig.decl, cx.tcx.hir().body(id)).next();
1845
1846 let method_sig = cx.tcx.fn_sig(impl_item.def_id);
1847 let method_sig = cx.tcx.erase_late_bound_regions(method_sig);
1848
1849 let first_arg_ty = &method_sig.inputs().iter().next();
1850
1851 // check conventions w.r.t. conversion method names and predicates
1852 if let Some(first_arg_ty) = first_arg_ty;
1853
1854 then {
1855 if cx.access_levels.is_exported(impl_item.hir_id()) {
1856 // check missing trait implementations
1857 for method_config in &TRAIT_METHODS {
1858 if name == method_config.method_name &&
1859 sig.decl.inputs.len() == method_config.param_count &&
1860 method_config.output_type.matches(cx, &sig.decl.output) &&
1861 method_config.self_kind.matches(cx, self_ty, first_arg_ty) &&
1862 fn_header_equals(method_config.fn_header, sig.header) &&
1863 method_config.lifetime_param_cond(&impl_item)
1864 {
1865 span_lint_and_help(
1866 cx,
1867 SHOULD_IMPLEMENT_TRAIT,
1868 impl_item.span,
1869 &format!(
1870 "method `{}` can be confused for the standard trait method `{}::{}`",
1871 method_config.method_name,
1872 method_config.trait_name,
1873 method_config.method_name
1874 ),
1875 None,
1876 &format!(
1877 "consider implementing the trait `{}` or choosing a less ambiguous method name",
1878 method_config.trait_name
1879 )
1880 );
1881 }
1882 }
1883 }
1884
1885 wrong_self_convention::check(
1886 cx,
1887 &name,
1888 item.vis.node.is_pub(),
1889 self_ty,
1890 first_arg_ty,
1891 first_arg.pat.span
1892 );
1893 }
1894 }
1895
1896 if let hir::ImplItemKind::Fn(_, _) = impl_item.kind {
1897 let ret_ty = return_ty(cx, impl_item.hir_id());
1898
1899 // walk the return type and check for Self (this does not check associated types)
1900 if contains_ty(ret_ty, self_ty) {
1901 return;
1902 }
1903
1904 // if return type is impl trait, check the associated types
1905 if let ty::Opaque(def_id, _) = *ret_ty.kind() {
1906 // one of the associated types must be Self
1907 for &(predicate, _span) in cx.tcx.explicit_item_bounds(def_id) {
1908 if let ty::PredicateKind::Projection(projection_predicate) = predicate.kind().skip_binder() {
1909 // walk the associated type and check for Self
1910 if contains_ty(projection_predicate.ty, self_ty) {
1911 return;
1912 }
1913 }
1914 }
1915 }
1916
1917 if name == "new" && !TyS::same_type(ret_ty, self_ty) {
1918 span_lint(
1919 cx,
1920 NEW_RET_NO_SELF,
1921 impl_item.span,
1922 "methods called `new` usually return `Self`",
1923 );
1924 }
1925 }
1926 }
1927
1928 fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) {
1929 if in_external_macro(cx.tcx.sess, item.span) {
1930 return;
1931 }
1932
1933 if_chain! {
1934 if let TraitItemKind::Fn(ref sig, _) = item.kind;
1935 if let Some(first_arg_ty) = sig.decl.inputs.iter().next();
1936 let first_arg_span = first_arg_ty.span;
1937 let first_arg_ty = hir_ty_to_ty(cx.tcx, first_arg_ty);
1938 let self_ty = TraitRef::identity(cx.tcx, item.def_id.to_def_id()).self_ty();
1939
1940 then {
1941 wrong_self_convention::check(
1942 cx,
1943 &item.ident.name.as_str(),
1944 false,
1945 self_ty,
1946 first_arg_ty,
1947 first_arg_span
1948 );
1949 }
1950 }
1951
1952 if_chain! {
1953 if item.ident.name == sym::new;
1954 if let TraitItemKind::Fn(_, _) = item.kind;
1955 let ret_ty = return_ty(cx, item.hir_id());
1956 let self_ty = TraitRef::identity(cx.tcx, item.def_id.to_def_id()).self_ty();
1957 if !contains_ty(ret_ty, self_ty);
1958
1959 then {
1960 span_lint(
1961 cx,
1962 NEW_RET_NO_SELF,
1963 item.span,
1964 "methods called `new` usually return `Self`",
1965 );
1966 }
1967 }
1968 }
1969
1970 extract_msrv_attr!(LateContext);
1971}
1972
1973fn derefs_to_slice<'tcx>(
1974 cx: &LateContext<'tcx>,
1975 expr: &'tcx hir::Expr<'tcx>,
1976 ty: Ty<'tcx>,
1977) -> Option<&'tcx hir::Expr<'tcx>> {
1978 fn may_slice<'a>(cx: &LateContext<'a>, ty: Ty<'a>) -> bool {
1979 match ty.kind() {
1980 ty::Slice(_) => true,
1981 ty::Adt(def, _) if def.is_box() => may_slice(cx, ty.boxed_ty()),
1982 ty::Adt(..) => is_type_diagnostic_item(cx, ty, sym::vec_type),
1983 ty::Array(_, size) => size
1984 .try_eval_usize(cx.tcx, cx.param_env)
1985 .map_or(false, |size| size < 32),
1986 ty::Ref(_, inner, _) => may_slice(cx, inner),
1987 _ => false,
1988 }
1989 }
1990
1991 if let hir::ExprKind::MethodCall(ref path, _, ref args, _) = expr.kind {
1992 if path.ident.name == sym::iter && may_slice(cx, cx.typeck_results().expr_ty(&args[0])) {
1993 Some(&args[0])
1994 } else {
1995 None
1996 }
1997 } else {
1998 match ty.kind() {
1999 ty::Slice(_) => Some(expr),
2000 ty::Adt(def, _) if def.is_box() && may_slice(cx, ty.boxed_ty()) => Some(expr),
2001 ty::Ref(_, inner, _) => {
2002 if may_slice(cx, inner) {
2003 Some(expr)
2004 } else {
2005 None
2006 }
2007 },
2008 _ => None,
2009 }
2010 }
2011}
2012
2013/// Used for `lint_binary_expr_with_method_call`.
2014#[derive(Copy, Clone)]
2015struct BinaryExprInfo<'a> {
2016 expr: &'a hir::Expr<'a>,
2017 chain: &'a hir::Expr<'a>,
2018 other: &'a hir::Expr<'a>,
2019 eq: bool,
2020}
2021
2022/// Checks for the `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints.
2023fn lint_binary_expr_with_method_call(cx: &LateContext<'_>, info: &mut BinaryExprInfo<'_>) {
2024 macro_rules! lint_with_both_lhs_and_rhs {
2025 ($func:ident, $cx:expr, $info:ident) => {
2026 if !$func($cx, $info) {
2027 ::std::mem::swap(&mut $info.chain, &mut $info.other);
2028 if $func($cx, $info) {
2029 return;
2030 }
2031 }
2032 };
2033 }
2034
2035 lint_with_both_lhs_and_rhs!(lint_chars_next_cmp, cx, info);
2036 lint_with_both_lhs_and_rhs!(lint_chars_last_cmp, cx, info);
2037 lint_with_both_lhs_and_rhs!(lint_chars_next_cmp_with_unwrap, cx, info);
2038 lint_with_both_lhs_and_rhs!(lint_chars_last_cmp_with_unwrap, cx, info);
2039}
2040
2041/// Wrapper fn for `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints.
2042fn lint_chars_cmp(
2043 cx: &LateContext<'_>,
2044 info: &BinaryExprInfo<'_>,
2045 chain_methods: &[&str],
2046 lint: &'static Lint,
2047 suggest: &str,
2048) -> bool {
2049 if_chain! {
2050 if let Some(args) = method_chain_args(info.chain, chain_methods);
2051 if let hir::ExprKind::Call(ref fun, ref arg_char) = info.other.kind;
2052 if arg_char.len() == 1;
2053 if let hir::ExprKind::Path(ref qpath) = fun.kind;
2054 if let Some(segment) = single_segment_path(qpath);
2055 if segment.ident.name == sym::Some;
2056 then {
2057 let mut applicability = Applicability::MachineApplicable;
2058 let self_ty = cx.typeck_results().expr_ty_adjusted(&args[0][0]).peel_refs();
2059
2060 if *self_ty.kind() != ty::Str {
2061 return false;
2062 }
2063
2064 span_lint_and_sugg(
2065 cx,
2066 lint,
2067 info.expr.span,
2068 &format!("you should use the `{}` method", suggest),
2069 "like this",
2070 format!("{}{}.{}({})",
2071 if info.eq { "" } else { "!" },
2072 snippet_with_applicability(cx, args[0][0].span, "..", &mut applicability),
2073 suggest,
2074 snippet_with_applicability(cx, arg_char[0].span, "..", &mut applicability)),
2075 applicability,
2076 );
2077
2078 return true;
2079 }
2080 }
2081
2082 false
2083}
2084
2085/// Checks for the `CHARS_NEXT_CMP` lint.
2086fn lint_chars_next_cmp<'tcx>(cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>) -> bool {
2087 lint_chars_cmp(cx, info, &["chars", "next"], CHARS_NEXT_CMP, "starts_with")
2088}
2089
2090/// Checks for the `CHARS_LAST_CMP` lint.
2091fn lint_chars_last_cmp<'tcx>(cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>) -> bool {
2092 if lint_chars_cmp(cx, info, &["chars", "last"], CHARS_LAST_CMP, "ends_with") {
2093 true
2094 } else {
2095 lint_chars_cmp(cx, info, &["chars", "next_back"], CHARS_LAST_CMP, "ends_with")
2096 }
2097}
2098
2099/// Wrapper fn for `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints with `unwrap()`.
2100fn lint_chars_cmp_with_unwrap<'tcx>(
2101 cx: &LateContext<'tcx>,
2102 info: &BinaryExprInfo<'_>,
2103 chain_methods: &[&str],
2104 lint: &'static Lint,
2105 suggest: &str,
2106) -> bool {
2107 if_chain! {
2108 if let Some(args) = method_chain_args(info.chain, chain_methods);
2109 if let hir::ExprKind::Lit(ref lit) = info.other.kind;
2110 if let ast::LitKind::Char(c) = lit.node;
2111 then {
2112 let mut applicability = Applicability::MachineApplicable;
2113 span_lint_and_sugg(
2114 cx,
2115 lint,
2116 info.expr.span,
2117 &format!("you should use the `{}` method", suggest),
2118 "like this",
2119 format!("{}{}.{}('{}')",
2120 if info.eq { "" } else { "!" },
2121 snippet_with_applicability(cx, args[0][0].span, "..", &mut applicability),
2122 suggest,
2123 c),
2124 applicability,
2125 );
2126
2127 true
2128 } else {
2129 false
2130 }
2131 }
2132}
2133
2134/// Checks for the `CHARS_NEXT_CMP` lint with `unwrap()`.
2135fn lint_chars_next_cmp_with_unwrap<'tcx>(cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>) -> bool {
2136 lint_chars_cmp_with_unwrap(cx, info, &["chars", "next", "unwrap"], CHARS_NEXT_CMP, "starts_with")
2137}
2138
2139/// Checks for the `CHARS_LAST_CMP` lint with `unwrap()`.
2140fn lint_chars_last_cmp_with_unwrap<'tcx>(cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>) -> bool {
2141 if lint_chars_cmp_with_unwrap(cx, info, &["chars", "last", "unwrap"], CHARS_LAST_CMP, "ends_with") {
2142 true
2143 } else {
2144 lint_chars_cmp_with_unwrap(cx, info, &["chars", "next_back", "unwrap"], CHARS_LAST_CMP, "ends_with")
2145 }
2146}
2147
2148fn get_hint_if_single_char_arg(
2149 cx: &LateContext<'_>,
2150 arg: &hir::Expr<'_>,
2151 applicability: &mut Applicability,
2152) -> Option<String> {
2153 if_chain! {
2154 if let hir::ExprKind::Lit(lit) = &arg.kind;
2155 if let ast::LitKind::Str(r, style) = lit.node;
2156 let string = r.as_str();
2157 if string.chars().count() == 1;
2158 then {
2159 let snip = snippet_with_applicability(cx, arg.span, &string, applicability);
2160 let ch = if let ast::StrStyle::Raw(nhash) = style {
2161 let nhash = nhash as usize;
2162 // for raw string: r##"a"##
2163 &snip[(nhash + 2)..(snip.len() - 1 - nhash)]
2164 } else {
2165 // for regular string: "a"
2166 &snip[1..(snip.len() - 1)]
2167 };
2168 let hint = format!("'{}'", if ch == "'" { "\\'" } else { ch });
2169 Some(hint)
2170 } else {
2171 None
2172 }
2173 }
2174}
2175
2176const FN_HEADER: hir::FnHeader = hir::FnHeader {
2177 unsafety: hir::Unsafety::Normal,
2178 constness: hir::Constness::NotConst,
2179 asyncness: hir::IsAsync::NotAsync,
2180 abi: rustc_target::spec::abi::Abi::Rust,
2181};
2182
2183struct ShouldImplTraitCase {
2184 trait_name: &'static str,
2185 method_name: &'static str,
2186 param_count: usize,
2187 fn_header: hir::FnHeader,
2188 // implicit self kind expected (none, self, &self, ...)
2189 self_kind: SelfKind,
2190 // checks against the output type
2191 output_type: OutType,
2192 // certain methods with explicit lifetimes can't implement the equivalent trait method
2193 lint_explicit_lifetime: bool,
2194}
2195impl ShouldImplTraitCase {
2196 const fn new(
2197 trait_name: &'static str,
2198 method_name: &'static str,
2199 param_count: usize,
2200 fn_header: hir::FnHeader,
2201 self_kind: SelfKind,
2202 output_type: OutType,
2203 lint_explicit_lifetime: bool,
2204 ) -> ShouldImplTraitCase {
2205 ShouldImplTraitCase {
2206 trait_name,
2207 method_name,
2208 param_count,
2209 fn_header,
2210 self_kind,
2211 output_type,
2212 lint_explicit_lifetime,
2213 }
2214 }
2215
2216 fn lifetime_param_cond(&self, impl_item: &hir::ImplItem<'_>) -> bool {
2217 self.lint_explicit_lifetime
2218 || !impl_item.generics.params.iter().any(|p| {
2219 matches!(
2220 p.kind,
2221 hir::GenericParamKind::Lifetime {
2222 kind: hir::LifetimeParamKind::Explicit
2223 }
2224 )
2225 })
2226 }
2227}
2228
2229#[rustfmt::skip]
2230const TRAIT_METHODS: [ShouldImplTraitCase; 30] = [
2231 ShouldImplTraitCase::new("std::ops::Add", "add", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2232 ShouldImplTraitCase::new("std::convert::AsMut", "as_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true),
2233 ShouldImplTraitCase::new("std::convert::AsRef", "as_ref", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true),
2234 ShouldImplTraitCase::new("std::ops::BitAnd", "bitand", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2235 ShouldImplTraitCase::new("std::ops::BitOr", "bitor", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2236 ShouldImplTraitCase::new("std::ops::BitXor", "bitxor", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2237 ShouldImplTraitCase::new("std::borrow::Borrow", "borrow", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true),
2238 ShouldImplTraitCase::new("std::borrow::BorrowMut", "borrow_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true),
2239 ShouldImplTraitCase::new("std::clone::Clone", "clone", 1, FN_HEADER, SelfKind::Ref, OutType::Any, true),
2240 ShouldImplTraitCase::new("std::cmp::Ord", "cmp", 2, FN_HEADER, SelfKind::Ref, OutType::Any, true),
2241 // FIXME: default doesn't work
2242 ShouldImplTraitCase::new("std::default::Default", "default", 0, FN_HEADER, SelfKind::No, OutType::Any, true),
2243 ShouldImplTraitCase::new("std::ops::Deref", "deref", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true),
2244 ShouldImplTraitCase::new("std::ops::DerefMut", "deref_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true),
2245 ShouldImplTraitCase::new("std::ops::Div", "div", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2246 ShouldImplTraitCase::new("std::ops::Drop", "drop", 1, FN_HEADER, SelfKind::RefMut, OutType::Unit, true),
2247 ShouldImplTraitCase::new("std::cmp::PartialEq", "eq", 2, FN_HEADER, SelfKind::Ref, OutType::Bool, true),
2248 ShouldImplTraitCase::new("std::iter::FromIterator", "from_iter", 1, FN_HEADER, SelfKind::No, OutType::Any, true),
2249 ShouldImplTraitCase::new("std::str::FromStr", "from_str", 1, FN_HEADER, SelfKind::No, OutType::Any, true),
2250 ShouldImplTraitCase::new("std::hash::Hash", "hash", 2, FN_HEADER, SelfKind::Ref, OutType::Unit, true),
2251 ShouldImplTraitCase::new("std::ops::Index", "index", 2, FN_HEADER, SelfKind::Ref, OutType::Ref, true),
2252 ShouldImplTraitCase::new("std::ops::IndexMut", "index_mut", 2, FN_HEADER, SelfKind::RefMut, OutType::Ref, true),
2253 ShouldImplTraitCase::new("std::iter::IntoIterator", "into_iter", 1, FN_HEADER, SelfKind::Value, OutType::Any, true),
2254 ShouldImplTraitCase::new("std::ops::Mul", "mul", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2255 ShouldImplTraitCase::new("std::ops::Neg", "neg", 1, FN_HEADER, SelfKind::Value, OutType::Any, true),
2256 ShouldImplTraitCase::new("std::iter::Iterator", "next", 1, FN_HEADER, SelfKind::RefMut, OutType::Any, false),
2257 ShouldImplTraitCase::new("std::ops::Not", "not", 1, FN_HEADER, SelfKind::Value, OutType::Any, true),
2258 ShouldImplTraitCase::new("std::ops::Rem", "rem", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2259 ShouldImplTraitCase::new("std::ops::Shl", "shl", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2260 ShouldImplTraitCase::new("std::ops::Shr", "shr", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2261 ShouldImplTraitCase::new("std::ops::Sub", "sub", 2, FN_HEADER, SelfKind::Value, OutType::Any, true),
2262];
2263
2264#[rustfmt::skip]
2265const PATTERN_METHODS: [(&str, usize); 17] = [
2266 ("contains", 1),
2267 ("starts_with", 1),
2268 ("ends_with", 1),
2269 ("find", 1),
2270 ("rfind", 1),
2271 ("split", 1),
2272 ("rsplit", 1),
2273 ("split_terminator", 1),
2274 ("rsplit_terminator", 1),
2275 ("splitn", 2),
2276 ("rsplitn", 2),
2277 ("matches", 1),
2278 ("rmatches", 1),
2279 ("match_indices", 1),
2280 ("rmatch_indices", 1),
2281 ("trim_start_matches", 1),
2282 ("trim_end_matches", 1),
2283];
2284
2285#[derive(Clone, Copy, PartialEq, Debug)]
2286enum SelfKind {
2287 Value,
2288 Ref,
2289 RefMut,
2290 No,
2291}
2292
2293impl SelfKind {
2294 fn matches<'a>(self, cx: &LateContext<'a>, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool {
2295 fn matches_value<'a>(cx: &LateContext<'a>, parent_ty: Ty<'_>, ty: Ty<'_>) -> bool {
2296 if ty == parent_ty {
2297 true
2298 } else if ty.is_box() {
2299 ty.boxed_ty() == parent_ty
2300 } else if is_type_diagnostic_item(cx, ty, sym::Rc) || is_type_diagnostic_item(cx, ty, sym::Arc) {
2301 if let ty::Adt(_, substs) = ty.kind() {
2302 substs.types().next().map_or(false, |t| t == parent_ty)
2303 } else {
2304 false
2305 }
2306 } else {
2307 false
2308 }
2309 }
2310
2311 fn matches_ref<'a>(cx: &LateContext<'a>, mutability: hir::Mutability, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool {
2312 if let ty::Ref(_, t, m) = *ty.kind() {
2313 return m == mutability && t == parent_ty;
2314 }
2315
2316 let trait_path = match mutability {
2317 hir::Mutability::Not => &paths::ASREF_TRAIT,
2318 hir::Mutability::Mut => &paths::ASMUT_TRAIT,
2319 };
2320
2321 let trait_def_id = match get_trait_def_id(cx, trait_path) {
2322 Some(did) => did,
2323 None => return false,
2324 };
2325 implements_trait(cx, ty, trait_def_id, &[parent_ty.into()])
2326 }
2327
2328 match self {
2329 Self::Value => matches_value(cx, parent_ty, ty),
2330 Self::Ref => matches_ref(cx, hir::Mutability::Not, parent_ty, ty) || ty == parent_ty && is_copy(cx, ty),
2331 Self::RefMut => matches_ref(cx, hir::Mutability::Mut, parent_ty, ty),
2332 Self::No => ty != parent_ty,
2333 }
2334 }
2335
2336 #[must_use]
2337 fn description(self) -> &'static str {
2338 match self {
2339 Self::Value => "self by value",
2340 Self::Ref => "self by reference",
2341 Self::RefMut => "self by mutable reference",
2342 Self::No => "no self",
2343 }
2344 }
2345}
2346
2347#[derive(Clone, Copy)]
2348enum OutType {
2349 Unit,
2350 Bool,
2351 Any,
2352 Ref,
2353}
2354
2355impl OutType {
2356 fn matches(self, cx: &LateContext<'_>, ty: &hir::FnRetTy<'_>) -> bool {
2357 let is_unit = |ty: &hir::Ty<'_>| SpanlessEq::new(cx).eq_ty_kind(&ty.kind, &hir::TyKind::Tup(&[]));
2358 match (self, ty) {
2359 (Self::Unit, &hir::FnRetTy::DefaultReturn(_)) => true,
2360 (Self::Unit, &hir::FnRetTy::Return(ref ty)) if is_unit(ty) => true,
2361 (Self::Bool, &hir::FnRetTy::Return(ref ty)) if is_bool(ty) => true,
2362 (Self::Any, &hir::FnRetTy::Return(ref ty)) if !is_unit(ty) => true,
2363 (Self::Ref, &hir::FnRetTy::Return(ref ty)) => matches!(ty.kind, hir::TyKind::Rptr(_, _)),
2364 _ => false,
2365 }
2366 }
2367}
2368
2369fn is_bool(ty: &hir::Ty<'_>) -> bool {
2370 if let hir::TyKind::Path(ref p) = ty.kind {
2371 match_qpath(p, &["bool"])
2372 } else {
2373 false
2374 }
2375}
2376
2377fn fn_header_equals(expected: hir::FnHeader, actual: hir::FnHeader) -> bool {
2378 expected.constness == actual.constness
2379 && expected.unsafety == actual.unsafety
2380 && expected.asyncness == actual.asyncness
2381}