]>
Commit | Line | Data |
---|---|---|
dec9c2d4 AF |
1 | /* |
2 | * QEMU ARM CPU | |
3 | * | |
4 | * Copyright (c) 2012 SUSE LINUX Products GmbH | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU General Public License | |
8 | * as published by the Free Software Foundation; either version 2 | |
9 | * of the License, or (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
17 | * along with this program; if not, see | |
18 | * <http://www.gnu.org/licenses/gpl-2.0.html> | |
19 | */ | |
20 | ||
74c21bd0 | 21 | #include "qemu/osdep.h" |
86480615 | 22 | #include "qemu/qemu-print.h" |
b8012ecf | 23 | #include "qemu/timer.h" |
8cc2246c | 24 | #include "qemu/log.h" |
ec5f7ca8 | 25 | #include "exec/page-vary.h" |
181962fd | 26 | #include "target/arm/idau.h" |
0b8fa32f | 27 | #include "qemu/module.h" |
da34e65c | 28 | #include "qapi/error.h" |
f9f62e4c | 29 | #include "qapi/visitor.h" |
778c3a06 | 30 | #include "cpu.h" |
78271684 CF |
31 | #ifdef CONFIG_TCG |
32 | #include "hw/core/tcg-cpu-ops.h" | |
33 | #endif /* CONFIG_TCG */ | |
ccd38087 | 34 | #include "internals.h" |
63c91552 | 35 | #include "exec/exec-all.h" |
5de16430 | 36 | #include "hw/qdev-properties.h" |
3c30dd5a PM |
37 | #if !defined(CONFIG_USER_ONLY) |
38 | #include "hw/loader.h" | |
cc7d44c2 | 39 | #include "hw/boards.h" |
3c30dd5a | 40 | #endif |
14a48c1d | 41 | #include "sysemu/tcg.h" |
045e5064 | 42 | #include "sysemu/qtest.h" |
b3946626 | 43 | #include "sysemu/hw_accel.h" |
50a2c6e5 | 44 | #include "kvm_arm.h" |
110f6c70 | 45 | #include "disas/capstone.h" |
24f91e81 | 46 | #include "fpu/softfloat.h" |
cf7c6d10 | 47 | #include "cpregs.h" |
dec9c2d4 | 48 | |
f45748f1 AF |
49 | static void arm_cpu_set_pc(CPUState *cs, vaddr value) |
50 | { | |
51 | ARMCPU *cpu = ARM_CPU(cs); | |
42f6ed91 JS |
52 | CPUARMState *env = &cpu->env; |
53 | ||
54 | if (is_a64(env)) { | |
55 | env->pc = value; | |
063bbd80 | 56 | env->thumb = false; |
42f6ed91 JS |
57 | } else { |
58 | env->regs[15] = value & ~1; | |
59 | env->thumb = value & 1; | |
60 | } | |
61 | } | |
f45748f1 | 62 | |
e4fdf9df RH |
63 | static vaddr arm_cpu_get_pc(CPUState *cs) |
64 | { | |
65 | ARMCPU *cpu = ARM_CPU(cs); | |
66 | CPUARMState *env = &cpu->env; | |
67 | ||
68 | if (is_a64(env)) { | |
69 | return env->pc; | |
70 | } else { | |
71 | return env->regs[15]; | |
72 | } | |
73 | } | |
74 | ||
ec62595b | 75 | #ifdef CONFIG_TCG |
78271684 CF |
76 | void arm_cpu_synchronize_from_tb(CPUState *cs, |
77 | const TranslationBlock *tb) | |
42f6ed91 | 78 | { |
abb80995 RH |
79 | /* The program counter is always up to date with TARGET_TB_PCREL. */ |
80 | if (!TARGET_TB_PCREL) { | |
81 | CPUARMState *env = cs->env_ptr; | |
82 | /* | |
83 | * It's OK to look at env for the current mode here, because it's | |
84 | * never possible for an AArch64 TB to chain to an AArch32 TB. | |
85 | */ | |
86 | if (is_a64(env)) { | |
87 | env->pc = tb_pc(tb); | |
88 | } else { | |
89 | env->regs[15] = tb_pc(tb); | |
90 | } | |
42f6ed91 | 91 | } |
f45748f1 | 92 | } |
56c6c98d | 93 | |
475e56b6 EE |
94 | void arm_restore_state_to_opc(CPUState *cs, |
95 | const TranslationBlock *tb, | |
96 | const uint64_t *data) | |
56c6c98d RH |
97 | { |
98 | CPUARMState *env = cs->env_ptr; | |
99 | ||
100 | if (is_a64(env)) { | |
101 | if (TARGET_TB_PCREL) { | |
102 | env->pc = (env->pc & TARGET_PAGE_MASK) | data[0]; | |
103 | } else { | |
104 | env->pc = data[0]; | |
105 | } | |
106 | env->condexec_bits = 0; | |
107 | env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; | |
108 | } else { | |
109 | if (TARGET_TB_PCREL) { | |
110 | env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0]; | |
111 | } else { | |
112 | env->regs[15] = data[0]; | |
113 | } | |
114 | env->condexec_bits = data[1]; | |
115 | env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; | |
116 | } | |
117 | } | |
ec62595b | 118 | #endif /* CONFIG_TCG */ |
f45748f1 | 119 | |
8c2e1b00 AF |
120 | static bool arm_cpu_has_work(CPUState *cs) |
121 | { | |
543486db RH |
122 | ARMCPU *cpu = ARM_CPU(cs); |
123 | ||
062ba099 | 124 | return (cpu->power_state != PSCI_OFF) |
543486db | 125 | && cs->interrupt_request & |
136e67e9 | 126 | (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD |
3c29632f | 127 | | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR |
136e67e9 | 128 | | CPU_INTERRUPT_EXITTB); |
8c2e1b00 AF |
129 | } |
130 | ||
b5c53d1b AL |
131 | void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, |
132 | void *opaque) | |
133 | { | |
134 | ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); | |
135 | ||
136 | entry->hook = hook; | |
137 | entry->opaque = opaque; | |
138 | ||
139 | QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); | |
140 | } | |
141 | ||
08267487 | 142 | void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, |
bd7d00fc PM |
143 | void *opaque) |
144 | { | |
08267487 AL |
145 | ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); |
146 | ||
147 | entry->hook = hook; | |
148 | entry->opaque = opaque; | |
149 | ||
150 | QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); | |
bd7d00fc PM |
151 | } |
152 | ||
4b6a83fb PM |
153 | static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) |
154 | { | |
155 | /* Reset a single ARMCPRegInfo register */ | |
156 | ARMCPRegInfo *ri = value; | |
157 | ARMCPU *cpu = opaque; | |
158 | ||
87c3f0f2 | 159 | if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) { |
4b6a83fb PM |
160 | return; |
161 | } | |
162 | ||
163 | if (ri->resetfn) { | |
164 | ri->resetfn(&cpu->env, ri); | |
165 | return; | |
166 | } | |
167 | ||
168 | /* A zero offset is never possible as it would be regs[0] | |
169 | * so we use it to indicate that reset is being handled elsewhere. | |
170 | * This is basically only used for fields in non-core coprocessors | |
171 | * (like the pxa2xx ones). | |
172 | */ | |
173 | if (!ri->fieldoffset) { | |
174 | return; | |
175 | } | |
176 | ||
67ed771d | 177 | if (cpreg_field_is_64bit(ri)) { |
4b6a83fb PM |
178 | CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; |
179 | } else { | |
180 | CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; | |
181 | } | |
182 | } | |
183 | ||
49a66191 PM |
184 | static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) |
185 | { | |
186 | /* Purely an assertion check: we've already done reset once, | |
187 | * so now check that running the reset for the cpreg doesn't | |
188 | * change its value. This traps bugs where two different cpregs | |
189 | * both try to reset the same state field but to different values. | |
190 | */ | |
191 | ARMCPRegInfo *ri = value; | |
192 | ARMCPU *cpu = opaque; | |
193 | uint64_t oldvalue, newvalue; | |
194 | ||
87c3f0f2 | 195 | if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { |
49a66191 PM |
196 | return; |
197 | } | |
198 | ||
199 | oldvalue = read_raw_cp_reg(&cpu->env, ri); | |
200 | cp_reg_reset(key, value, opaque); | |
201 | newvalue = read_raw_cp_reg(&cpu->env, ri); | |
202 | assert(oldvalue == newvalue); | |
203 | } | |
204 | ||
781c67ca | 205 | static void arm_cpu_reset(DeviceState *dev) |
dec9c2d4 | 206 | { |
781c67ca | 207 | CPUState *s = CPU(dev); |
dec9c2d4 AF |
208 | ARMCPU *cpu = ARM_CPU(s); |
209 | ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); | |
3c30dd5a | 210 | CPUARMState *env = &cpu->env; |
3c30dd5a | 211 | |
781c67ca | 212 | acc->parent_reset(dev); |
dec9c2d4 | 213 | |
1f5c00cf AB |
214 | memset(env, 0, offsetof(CPUARMState, end_reset_fields)); |
215 | ||
4b6a83fb | 216 | g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); |
49a66191 PM |
217 | g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); |
218 | ||
3c30dd5a | 219 | env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; |
47576b94 RH |
220 | env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; |
221 | env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; | |
222 | env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; | |
3c30dd5a | 223 | |
c1b70158 | 224 | cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; |
543486db | 225 | |
3c30dd5a PM |
226 | if (arm_feature(env, ARM_FEATURE_IWMMXT)) { |
227 | env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; | |
228 | } | |
229 | ||
3926cc84 AG |
230 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
231 | /* 64 bit CPUs always start in 64 bit mode */ | |
53221552 | 232 | env->aarch64 = true; |
d356312f PM |
233 | #if defined(CONFIG_USER_ONLY) |
234 | env->pstate = PSTATE_MODE_EL0t; | |
14e5f106 | 235 | /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ |
137feaa9 | 236 | env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; |
276c6e81 RH |
237 | /* Enable all PAC keys. */ |
238 | env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | | |
239 | SCTLR_EnDA | SCTLR_EnDB); | |
cda86e2b RH |
240 | /* Trap on btype=3 for PACIxSP. */ |
241 | env->cp15.sctlr_el[1] |= SCTLR_BT0; | |
8c6afa6a | 242 | /* and to the FP/Neon instructions */ |
fab8ad39 RH |
243 | env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, |
244 | CPACR_EL1, FPEN, 3); | |
46303535 | 245 | /* and to the SVE instructions, with default vector length */ |
7b6a2198 | 246 | if (cpu_isar_feature(aa64_sve, cpu)) { |
46303535 RH |
247 | env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, |
248 | CPACR_EL1, ZEN, 3); | |
87252bde | 249 | env->vfp.zcr_el[1] = cpu->sve_default_vq - 1; |
7b6a2198 | 250 | } |
78011586 RH |
251 | /* and for SME instructions, with default vector length, and TPIDR2 */ |
252 | if (cpu_isar_feature(aa64_sme, cpu)) { | |
253 | env->cp15.sctlr_el[1] |= SCTLR_EnTP2; | |
254 | env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, | |
255 | CPACR_EL1, SMEN, 3); | |
256 | env->vfp.smcr_el[1] = cpu->sme_default_vq - 1; | |
257 | if (cpu_isar_feature(aa64_sme_fa64, cpu)) { | |
258 | env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1], | |
259 | SMCR, FA64, 1); | |
260 | } | |
261 | } | |
f6a148fe | 262 | /* |
691f1ffd | 263 | * Enable 48-bit address space (TODO: take reserved_va into account). |
16c84978 RH |
264 | * Enable TBI0 but not TBI1. |
265 | * Note that this must match useronly_clean_ptr. | |
f6a148fe | 266 | */ |
cb4a0a34 | 267 | env->cp15.tcr_el[1] = 5 | (1ULL << 37); |
e3232864 RH |
268 | |
269 | /* Enable MTE */ | |
270 | if (cpu_isar_feature(aa64_mte, cpu)) { | |
271 | /* Enable tag access, but leave TCF0 as No Effect (0). */ | |
272 | env->cp15.sctlr_el[1] |= SCTLR_ATA0; | |
273 | /* | |
274 | * Exclude all tags, so that tag 0 is always used. | |
275 | * This corresponds to Linux current->thread.gcr_incl = 0. | |
276 | * | |
277 | * Set RRND, so that helper_irg() will generate a seed later. | |
278 | * Here in cpu_reset(), the crypto subsystem has not yet been | |
279 | * initialized. | |
280 | */ | |
281 | env->cp15.gcr_el1 = 0x1ffff; | |
282 | } | |
7cb1e618 RH |
283 | /* |
284 | * Disable access to SCXTNUM_EL0 from CSV2_1p2. | |
285 | * This is not yet exposed from the Linux kernel in any way. | |
286 | */ | |
287 | env->cp15.sctlr_el[1] |= SCTLR_TSCXT; | |
d356312f | 288 | #else |
5097227c GB |
289 | /* Reset into the highest available EL */ |
290 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
291 | env->pstate = PSTATE_MODE_EL3h; | |
292 | } else if (arm_feature(env, ARM_FEATURE_EL2)) { | |
293 | env->pstate = PSTATE_MODE_EL2h; | |
294 | } else { | |
295 | env->pstate = PSTATE_MODE_EL1h; | |
296 | } | |
4a7319b7 EI |
297 | |
298 | /* Sample rvbar at reset. */ | |
299 | env->cp15.rvbar = cpu->rvbar_prop; | |
300 | env->pc = env->cp15.rvbar; | |
8c6afa6a PM |
301 | #endif |
302 | } else { | |
303 | #if defined(CONFIG_USER_ONLY) | |
304 | /* Userspace expects access to cp10 and cp11 for FP/Neon */ | |
fab8ad39 RH |
305 | env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, |
306 | CPACR, CP10, 3); | |
307 | env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, | |
308 | CPACR, CP11, 3); | |
d356312f | 309 | #endif |
3926cc84 AG |
310 | } |
311 | ||
3c30dd5a PM |
312 | #if defined(CONFIG_USER_ONLY) |
313 | env->uncached_cpsr = ARM_CPU_MODE_USR; | |
314 | /* For user mode we must enable access to coprocessors */ | |
315 | env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; | |
316 | if (arm_feature(env, ARM_FEATURE_IWMMXT)) { | |
317 | env->cp15.c15_cpar = 3; | |
318 | } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
319 | env->cp15.c15_cpar = 1; | |
320 | } | |
321 | #else | |
060a65df PM |
322 | |
323 | /* | |
324 | * If the highest available EL is EL2, AArch32 will start in Hyp | |
325 | * mode; otherwise it starts in SVC. Note that if we start in | |
326 | * AArch64 then these values in the uncached_cpsr will be ignored. | |
327 | */ | |
328 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
329 | !arm_feature(env, ARM_FEATURE_EL3)) { | |
330 | env->uncached_cpsr = ARM_CPU_MODE_HYP; | |
331 | } else { | |
332 | env->uncached_cpsr = ARM_CPU_MODE_SVC; | |
333 | } | |
4cc35614 | 334 | env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; |
1426f244 PM |
335 | |
336 | /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently | |
337 | * executing as AArch32 then check if highvecs are enabled and | |
338 | * adjust the PC accordingly. | |
339 | */ | |
340 | if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { | |
341 | env->regs[15] = 0xFFFF0000; | |
342 | } | |
343 | ||
344 | env->vfp.xregs[ARM_VFP_FPEXC] = 0; | |
b62ceeaf | 345 | #endif |
dc7abe4d | 346 | |
531c60a9 | 347 | if (arm_feature(env, ARM_FEATURE_M)) { |
b62ceeaf | 348 | #ifndef CONFIG_USER_ONLY |
6e3cf5df MG |
349 | uint32_t initial_msp; /* Loaded from 0x0 */ |
350 | uint32_t initial_pc; /* Loaded from 0x4 */ | |
3c30dd5a | 351 | uint8_t *rom; |
38e2a77c | 352 | uint32_t vecbase; |
b62ceeaf | 353 | #endif |
6e3cf5df | 354 | |
8128c8e8 PM |
355 | if (cpu_isar_feature(aa32_lob, cpu)) { |
356 | /* | |
357 | * LTPSIZE is constant 4 if MVE not implemented, and resets | |
358 | * to an UNKNOWN value if MVE is implemented. We choose to | |
359 | * always reset to 4. | |
360 | */ | |
361 | env->v7m.ltpsize = 4; | |
99c7834f PM |
362 | /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ |
363 | env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; | |
364 | env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; | |
8128c8e8 PM |
365 | } |
366 | ||
1e577cc7 PM |
367 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
368 | env->v7m.secure = true; | |
3b2e9344 PM |
369 | } else { |
370 | /* This bit resets to 0 if security is supported, but 1 if | |
371 | * it is not. The bit is not present in v7M, but we set it | |
372 | * here so we can avoid having to make checks on it conditional | |
373 | * on ARM_FEATURE_V8 (we don't let the guest see the bit). | |
374 | */ | |
375 | env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; | |
02ac2f7f PM |
376 | /* |
377 | * Set NSACR to indicate "NS access permitted to everything"; | |
378 | * this avoids having to have all the tests of it being | |
379 | * conditional on ARM_FEATURE_M_SECURITY. Note also that from | |
380 | * v8.1M the guest-visible value of NSACR in a CPU without the | |
381 | * Security Extension is 0xcff. | |
382 | */ | |
383 | env->v7m.nsacr = 0xcff; | |
1e577cc7 PM |
384 | } |
385 | ||
9d40cd8a | 386 | /* In v7M the reset value of this bit is IMPDEF, but ARM recommends |
2c4da50d | 387 | * that it resets to 1, so QEMU always does that rather than making |
9d40cd8a | 388 | * it dependent on CPU model. In v8M it is RES1. |
2c4da50d | 389 | */ |
9d40cd8a PM |
390 | env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; |
391 | env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; | |
392 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
393 | /* in v8M the NONBASETHRDENA bit [0] is RES1 */ | |
394 | env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; | |
395 | env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; | |
396 | } | |
22ab3460 JS |
397 | if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { |
398 | env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; | |
399 | env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; | |
400 | } | |
2c4da50d | 401 | |
7fbc6a40 | 402 | if (cpu_isar_feature(aa32_vfp_simd, cpu)) { |
d33abe82 PM |
403 | env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; |
404 | env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | | |
405 | R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; | |
406 | } | |
b62ceeaf PM |
407 | |
408 | #ifndef CONFIG_USER_ONLY | |
056f43df PM |
409 | /* Unlike A/R profile, M profile defines the reset LR value */ |
410 | env->regs[14] = 0xffffffff; | |
411 | ||
38e2a77c | 412 | env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; |
7cda2149 | 413 | env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; |
38e2a77c PM |
414 | |
415 | /* Load the initial SP and PC from offset 0 and 4 in the vector table */ | |
416 | vecbase = env->v7m.vecbase[env->v7m.secure]; | |
75ce72b7 | 417 | rom = rom_ptr_for_as(s->as, vecbase, 8); |
3c30dd5a | 418 | if (rom) { |
6e3cf5df MG |
419 | /* Address zero is covered by ROM which hasn't yet been |
420 | * copied into physical memory. | |
421 | */ | |
422 | initial_msp = ldl_p(rom); | |
423 | initial_pc = ldl_p(rom + 4); | |
424 | } else { | |
425 | /* Address zero not covered by a ROM blob, or the ROM blob | |
426 | * is in non-modifiable memory and this is a second reset after | |
427 | * it got copied into memory. In the latter case, rom_ptr | |
428 | * will return a NULL pointer and we should use ldl_phys instead. | |
429 | */ | |
38e2a77c PM |
430 | initial_msp = ldl_phys(s->as, vecbase); |
431 | initial_pc = ldl_phys(s->as, vecbase + 4); | |
3c30dd5a | 432 | } |
6e3cf5df | 433 | |
8cc2246c PM |
434 | qemu_log_mask(CPU_LOG_INT, |
435 | "Loaded reset SP 0x%x PC 0x%x from vector table\n", | |
436 | initial_msp, initial_pc); | |
437 | ||
6e3cf5df MG |
438 | env->regs[13] = initial_msp & 0xFFFFFFFC; |
439 | env->regs[15] = initial_pc & ~1; | |
440 | env->thumb = initial_pc & 1; | |
b62ceeaf PM |
441 | #else |
442 | /* | |
443 | * For user mode we run non-secure and with access to the FPU. | |
444 | * The FPU context is active (ie does not need further setup) | |
445 | * and is owned by non-secure. | |
446 | */ | |
447 | env->v7m.secure = false; | |
448 | env->v7m.nsacr = 0xcff; | |
449 | env->v7m.cpacr[M_REG_NS] = 0xf0ffff; | |
450 | env->v7m.fpccr[M_REG_S] &= | |
451 | ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); | |
452 | env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; | |
453 | #endif | |
3c30dd5a | 454 | } |
387f9806 | 455 | |
dc3c4c14 PM |
456 | /* M profile requires that reset clears the exclusive monitor; |
457 | * A profile does not, but clearing it makes more sense than having it | |
458 | * set with an exclusive access on address zero. | |
459 | */ | |
460 | arm_clear_exclusive(env); | |
461 | ||
0e1a46bb | 462 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
69ceea64 | 463 | if (cpu->pmsav7_dregion > 0) { |
0e1a46bb | 464 | if (arm_feature(env, ARM_FEATURE_V8)) { |
62c58ee0 PM |
465 | memset(env->pmsav8.rbar[M_REG_NS], 0, |
466 | sizeof(*env->pmsav8.rbar[M_REG_NS]) | |
467 | * cpu->pmsav7_dregion); | |
468 | memset(env->pmsav8.rlar[M_REG_NS], 0, | |
469 | sizeof(*env->pmsav8.rlar[M_REG_NS]) | |
470 | * cpu->pmsav7_dregion); | |
471 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
472 | memset(env->pmsav8.rbar[M_REG_S], 0, | |
473 | sizeof(*env->pmsav8.rbar[M_REG_S]) | |
474 | * cpu->pmsav7_dregion); | |
475 | memset(env->pmsav8.rlar[M_REG_S], 0, | |
476 | sizeof(*env->pmsav8.rlar[M_REG_S]) | |
477 | * cpu->pmsav7_dregion); | |
478 | } | |
0e1a46bb PM |
479 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
480 | memset(env->pmsav7.drbar, 0, | |
481 | sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); | |
482 | memset(env->pmsav7.drsr, 0, | |
483 | sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); | |
484 | memset(env->pmsav7.dracr, 0, | |
485 | sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); | |
486 | } | |
69ceea64 | 487 | } |
1bc04a88 PM |
488 | env->pmsav7.rnr[M_REG_NS] = 0; |
489 | env->pmsav7.rnr[M_REG_S] = 0; | |
4125e6fe PM |
490 | env->pmsav8.mair0[M_REG_NS] = 0; |
491 | env->pmsav8.mair0[M_REG_S] = 0; | |
492 | env->pmsav8.mair1[M_REG_NS] = 0; | |
493 | env->pmsav8.mair1[M_REG_S] = 0; | |
69ceea64 PM |
494 | } |
495 | ||
9901c576 PM |
496 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
497 | if (cpu->sau_sregion > 0) { | |
498 | memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); | |
499 | memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); | |
500 | } | |
501 | env->sau.rnr = 0; | |
502 | /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what | |
503 | * the Cortex-M33 does. | |
504 | */ | |
505 | env->sau.ctrl = 0; | |
506 | } | |
507 | ||
3c30dd5a PM |
508 | set_flush_to_zero(1, &env->vfp.standard_fp_status); |
509 | set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); | |
510 | set_default_nan_mode(1, &env->vfp.standard_fp_status); | |
aaae563b | 511 | set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); |
3c30dd5a PM |
512 | set_float_detect_tininess(float_tininess_before_rounding, |
513 | &env->vfp.fp_status); | |
514 | set_float_detect_tininess(float_tininess_before_rounding, | |
515 | &env->vfp.standard_fp_status); | |
bcc531f0 PM |
516 | set_float_detect_tininess(float_tininess_before_rounding, |
517 | &env->vfp.fp_status_f16); | |
aaae563b PM |
518 | set_float_detect_tininess(float_tininess_before_rounding, |
519 | &env->vfp.standard_fp_status_f16); | |
50a2c6e5 PB |
520 | #ifndef CONFIG_USER_ONLY |
521 | if (kvm_enabled()) { | |
522 | kvm_arm_reset_vcpu(cpu); | |
523 | } | |
524 | #endif | |
9ee98ce8 | 525 | |
46747d15 | 526 | hw_breakpoint_update_all(cpu); |
9ee98ce8 | 527 | hw_watchpoint_update_all(cpu); |
a8a79c7a | 528 | arm_rebuild_hflags(env); |
dec9c2d4 AF |
529 | } |
530 | ||
9e406eea | 531 | #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) |
083afd18 | 532 | |
310cedf3 | 533 | static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, |
be879556 RH |
534 | unsigned int target_el, |
535 | unsigned int cur_el, bool secure, | |
536 | uint64_t hcr_el2) | |
310cedf3 RH |
537 | { |
538 | CPUARMState *env = cs->env_ptr; | |
310cedf3 | 539 | bool pstate_unmasked; |
16e07f78 | 540 | bool unmasked = false; |
310cedf3 RH |
541 | |
542 | /* | |
543 | * Don't take exceptions if they target a lower EL. | |
544 | * This check should catch any exceptions that would not be taken | |
545 | * but left pending. | |
546 | */ | |
547 | if (cur_el > target_el) { | |
548 | return false; | |
549 | } | |
550 | ||
310cedf3 RH |
551 | switch (excp_idx) { |
552 | case EXCP_FIQ: | |
553 | pstate_unmasked = !(env->daif & PSTATE_F); | |
554 | break; | |
555 | ||
556 | case EXCP_IRQ: | |
557 | pstate_unmasked = !(env->daif & PSTATE_I); | |
558 | break; | |
559 | ||
560 | case EXCP_VFIQ: | |
cc974d5c RDC |
561 | if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { |
562 | /* VFIQs are only taken when hypervized. */ | |
310cedf3 RH |
563 | return false; |
564 | } | |
565 | return !(env->daif & PSTATE_F); | |
566 | case EXCP_VIRQ: | |
cc974d5c RDC |
567 | if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { |
568 | /* VIRQs are only taken when hypervized. */ | |
310cedf3 RH |
569 | return false; |
570 | } | |
571 | return !(env->daif & PSTATE_I); | |
3c29632f RH |
572 | case EXCP_VSERR: |
573 | if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) { | |
574 | /* VIRQs are only taken when hypervized. */ | |
575 | return false; | |
576 | } | |
577 | return !(env->daif & PSTATE_A); | |
310cedf3 RH |
578 | default: |
579 | g_assert_not_reached(); | |
580 | } | |
581 | ||
582 | /* | |
583 | * Use the target EL, current execution state and SCR/HCR settings to | |
584 | * determine whether the corresponding CPSR bit is used to mask the | |
585 | * interrupt. | |
586 | */ | |
587 | if ((target_el > cur_el) && (target_el != 1)) { | |
588 | /* Exceptions targeting a higher EL may not be maskable */ | |
589 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
c939a7c7 AK |
590 | switch (target_el) { |
591 | case 2: | |
592 | /* | |
593 | * According to ARM DDI 0487H.a, an interrupt can be masked | |
594 | * when HCR_E2H and HCR_TGE are both set regardless of the | |
595 | * current Security state. Note that we need to revisit this | |
596 | * part again once we need to support NMI. | |
597 | */ | |
598 | if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
599 | unmasked = true; | |
600 | } | |
601 | break; | |
602 | case 3: | |
603 | /* Interrupt cannot be masked when the target EL is 3 */ | |
16e07f78 | 604 | unmasked = true; |
c939a7c7 AK |
605 | break; |
606 | default: | |
607 | g_assert_not_reached(); | |
310cedf3 RH |
608 | } |
609 | } else { | |
610 | /* | |
611 | * The old 32-bit-only environment has a more complicated | |
612 | * masking setup. HCR and SCR bits not only affect interrupt | |
613 | * routing but also change the behaviour of masking. | |
614 | */ | |
615 | bool hcr, scr; | |
616 | ||
617 | switch (excp_idx) { | |
618 | case EXCP_FIQ: | |
619 | /* | |
620 | * If FIQs are routed to EL3 or EL2 then there are cases where | |
621 | * we override the CPSR.F in determining if the exception is | |
622 | * masked or not. If neither of these are set then we fall back | |
623 | * to the CPSR.F setting otherwise we further assess the state | |
624 | * below. | |
625 | */ | |
626 | hcr = hcr_el2 & HCR_FMO; | |
627 | scr = (env->cp15.scr_el3 & SCR_FIQ); | |
628 | ||
629 | /* | |
630 | * When EL3 is 32-bit, the SCR.FW bit controls whether the | |
631 | * CPSR.F bit masks FIQ interrupts when taken in non-secure | |
632 | * state. If SCR.FW is set then FIQs can be masked by CPSR.F | |
633 | * when non-secure but only when FIQs are only routed to EL3. | |
634 | */ | |
635 | scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); | |
636 | break; | |
637 | case EXCP_IRQ: | |
638 | /* | |
639 | * When EL3 execution state is 32-bit, if HCR.IMO is set then | |
640 | * we may override the CPSR.I masking when in non-secure state. | |
641 | * The SCR.IRQ setting has already been taken into consideration | |
642 | * when setting the target EL, so it does not have a further | |
643 | * affect here. | |
644 | */ | |
645 | hcr = hcr_el2 & HCR_IMO; | |
646 | scr = false; | |
647 | break; | |
648 | default: | |
649 | g_assert_not_reached(); | |
650 | } | |
651 | ||
652 | if ((scr || hcr) && !secure) { | |
16e07f78 | 653 | unmasked = true; |
310cedf3 RH |
654 | } |
655 | } | |
656 | } | |
657 | ||
658 | /* | |
659 | * The PSTATE bits only mask the interrupt if we have not overriden the | |
660 | * ability above. | |
661 | */ | |
662 | return unmasked || pstate_unmasked; | |
663 | } | |
664 | ||
083afd18 | 665 | static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
e8925712 RH |
666 | { |
667 | CPUClass *cc = CPU_GET_CLASS(cs); | |
012a906b GB |
668 | CPUARMState *env = cs->env_ptr; |
669 | uint32_t cur_el = arm_current_el(env); | |
670 | bool secure = arm_is_secure(env); | |
be879556 | 671 | uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
012a906b GB |
672 | uint32_t target_el; |
673 | uint32_t excp_idx; | |
d63d0ec5 RH |
674 | |
675 | /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ | |
e8925712 | 676 | |
012a906b GB |
677 | if (interrupt_request & CPU_INTERRUPT_FIQ) { |
678 | excp_idx = EXCP_FIQ; | |
679 | target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); | |
be879556 RH |
680 | if (arm_excp_unmasked(cs, excp_idx, target_el, |
681 | cur_el, secure, hcr_el2)) { | |
d63d0ec5 | 682 | goto found; |
012a906b | 683 | } |
e8925712 | 684 | } |
012a906b GB |
685 | if (interrupt_request & CPU_INTERRUPT_HARD) { |
686 | excp_idx = EXCP_IRQ; | |
687 | target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); | |
be879556 RH |
688 | if (arm_excp_unmasked(cs, excp_idx, target_el, |
689 | cur_el, secure, hcr_el2)) { | |
d63d0ec5 | 690 | goto found; |
012a906b | 691 | } |
e8925712 | 692 | } |
012a906b GB |
693 | if (interrupt_request & CPU_INTERRUPT_VIRQ) { |
694 | excp_idx = EXCP_VIRQ; | |
695 | target_el = 1; | |
be879556 RH |
696 | if (arm_excp_unmasked(cs, excp_idx, target_el, |
697 | cur_el, secure, hcr_el2)) { | |
d63d0ec5 | 698 | goto found; |
012a906b | 699 | } |
136e67e9 | 700 | } |
012a906b GB |
701 | if (interrupt_request & CPU_INTERRUPT_VFIQ) { |
702 | excp_idx = EXCP_VFIQ; | |
703 | target_el = 1; | |
be879556 RH |
704 | if (arm_excp_unmasked(cs, excp_idx, target_el, |
705 | cur_el, secure, hcr_el2)) { | |
d63d0ec5 | 706 | goto found; |
012a906b | 707 | } |
136e67e9 | 708 | } |
3c29632f RH |
709 | if (interrupt_request & CPU_INTERRUPT_VSERR) { |
710 | excp_idx = EXCP_VSERR; | |
711 | target_el = 1; | |
712 | if (arm_excp_unmasked(cs, excp_idx, target_el, | |
713 | cur_el, secure, hcr_el2)) { | |
714 | /* Taking a virtual abort clears HCR_EL2.VSE */ | |
715 | env->cp15.hcr_el2 &= ~HCR_VSE; | |
716 | cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); | |
717 | goto found; | |
718 | } | |
719 | } | |
d63d0ec5 | 720 | return false; |
e8925712 | 721 | |
d63d0ec5 RH |
722 | found: |
723 | cs->exception_index = excp_idx; | |
724 | env->exception.target_el = target_el; | |
78271684 | 725 | cc->tcg_ops->do_interrupt(cs); |
d63d0ec5 | 726 | return true; |
e8925712 | 727 | } |
9e406eea PMD |
728 | |
729 | #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ | |
e8925712 | 730 | |
89430fc6 PM |
731 | void arm_cpu_update_virq(ARMCPU *cpu) |
732 | { | |
733 | /* | |
734 | * Update the interrupt level for VIRQ, which is the logical OR of | |
735 | * the HCR_EL2.VI bit and the input line level from the GIC. | |
736 | */ | |
737 | CPUARMState *env = &cpu->env; | |
738 | CPUState *cs = CPU(cpu); | |
739 | ||
740 | bool new_state = (env->cp15.hcr_el2 & HCR_VI) || | |
741 | (env->irq_line_state & CPU_INTERRUPT_VIRQ); | |
742 | ||
743 | if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { | |
744 | if (new_state) { | |
745 | cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); | |
746 | } else { | |
747 | cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); | |
748 | } | |
749 | } | |
750 | } | |
751 | ||
752 | void arm_cpu_update_vfiq(ARMCPU *cpu) | |
753 | { | |
754 | /* | |
755 | * Update the interrupt level for VFIQ, which is the logical OR of | |
756 | * the HCR_EL2.VF bit and the input line level from the GIC. | |
757 | */ | |
758 | CPUARMState *env = &cpu->env; | |
759 | CPUState *cs = CPU(cpu); | |
760 | ||
761 | bool new_state = (env->cp15.hcr_el2 & HCR_VF) || | |
762 | (env->irq_line_state & CPU_INTERRUPT_VFIQ); | |
763 | ||
764 | if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { | |
765 | if (new_state) { | |
766 | cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); | |
767 | } else { | |
768 | cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); | |
769 | } | |
770 | } | |
771 | } | |
772 | ||
3c29632f RH |
773 | void arm_cpu_update_vserr(ARMCPU *cpu) |
774 | { | |
775 | /* | |
776 | * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit. | |
777 | */ | |
778 | CPUARMState *env = &cpu->env; | |
779 | CPUState *cs = CPU(cpu); | |
780 | ||
781 | bool new_state = env->cp15.hcr_el2 & HCR_VSE; | |
782 | ||
783 | if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) { | |
784 | if (new_state) { | |
785 | cpu_interrupt(cs, CPU_INTERRUPT_VSERR); | |
786 | } else { | |
787 | cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); | |
788 | } | |
789 | } | |
790 | } | |
791 | ||
7c1840b6 PM |
792 | #ifndef CONFIG_USER_ONLY |
793 | static void arm_cpu_set_irq(void *opaque, int irq, int level) | |
794 | { | |
795 | ARMCPU *cpu = opaque; | |
136e67e9 | 796 | CPUARMState *env = &cpu->env; |
7c1840b6 | 797 | CPUState *cs = CPU(cpu); |
136e67e9 EI |
798 | static const int mask[] = { |
799 | [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, | |
800 | [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, | |
801 | [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, | |
802 | [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ | |
803 | }; | |
7c1840b6 | 804 | |
9acd2d33 PM |
805 | if (!arm_feature(env, ARM_FEATURE_EL2) && |
806 | (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) { | |
807 | /* | |
808 | * The GIC might tell us about VIRQ and VFIQ state, but if we don't | |
809 | * have EL2 support we don't care. (Unless the guest is doing something | |
810 | * silly this will only be calls saying "level is still 0".) | |
811 | */ | |
812 | return; | |
813 | } | |
814 | ||
ed89f078 PM |
815 | if (level) { |
816 | env->irq_line_state |= mask[irq]; | |
817 | } else { | |
818 | env->irq_line_state &= ~mask[irq]; | |
819 | } | |
820 | ||
7c1840b6 | 821 | switch (irq) { |
136e67e9 | 822 | case ARM_CPU_VIRQ: |
89430fc6 PM |
823 | arm_cpu_update_virq(cpu); |
824 | break; | |
136e67e9 | 825 | case ARM_CPU_VFIQ: |
89430fc6 PM |
826 | arm_cpu_update_vfiq(cpu); |
827 | break; | |
136e67e9 | 828 | case ARM_CPU_IRQ: |
7c1840b6 PM |
829 | case ARM_CPU_FIQ: |
830 | if (level) { | |
136e67e9 | 831 | cpu_interrupt(cs, mask[irq]); |
7c1840b6 | 832 | } else { |
136e67e9 | 833 | cpu_reset_interrupt(cs, mask[irq]); |
7c1840b6 PM |
834 | } |
835 | break; | |
836 | default: | |
8f6fd322 | 837 | g_assert_not_reached(); |
7c1840b6 PM |
838 | } |
839 | } | |
840 | ||
841 | static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) | |
842 | { | |
843 | #ifdef CONFIG_KVM | |
844 | ARMCPU *cpu = opaque; | |
ed89f078 | 845 | CPUARMState *env = &cpu->env; |
7c1840b6 | 846 | CPUState *cs = CPU(cpu); |
ed89f078 | 847 | uint32_t linestate_bit; |
f6530926 | 848 | int irq_id; |
7c1840b6 PM |
849 | |
850 | switch (irq) { | |
851 | case ARM_CPU_IRQ: | |
f6530926 | 852 | irq_id = KVM_ARM_IRQ_CPU_IRQ; |
ed89f078 | 853 | linestate_bit = CPU_INTERRUPT_HARD; |
7c1840b6 PM |
854 | break; |
855 | case ARM_CPU_FIQ: | |
f6530926 | 856 | irq_id = KVM_ARM_IRQ_CPU_FIQ; |
ed89f078 | 857 | linestate_bit = CPU_INTERRUPT_FIQ; |
7c1840b6 PM |
858 | break; |
859 | default: | |
8f6fd322 | 860 | g_assert_not_reached(); |
7c1840b6 | 861 | } |
ed89f078 PM |
862 | |
863 | if (level) { | |
864 | env->irq_line_state |= linestate_bit; | |
865 | } else { | |
866 | env->irq_line_state &= ~linestate_bit; | |
867 | } | |
f6530926 | 868 | kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); |
7c1840b6 PM |
869 | #endif |
870 | } | |
84f2bed3 | 871 | |
ed50ff78 | 872 | static bool arm_cpu_virtio_is_big_endian(CPUState *cs) |
84f2bed3 PS |
873 | { |
874 | ARMCPU *cpu = ARM_CPU(cs); | |
875 | CPUARMState *env = &cpu->env; | |
84f2bed3 PS |
876 | |
877 | cpu_synchronize_state(cs); | |
ed50ff78 | 878 | return arm_cpu_data_is_big_endian(env); |
84f2bed3 PS |
879 | } |
880 | ||
7c1840b6 PM |
881 | #endif |
882 | ||
48440620 PC |
883 | static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) |
884 | { | |
885 | ARMCPU *ac = ARM_CPU(cpu); | |
886 | CPUARMState *env = &ac->env; | |
7bcdbf51 | 887 | bool sctlr_b; |
48440620 PC |
888 | |
889 | if (is_a64(env)) { | |
110f6c70 | 890 | info->cap_arch = CS_ARCH_ARM64; |
15fa1a0a RH |
891 | info->cap_insn_unit = 4; |
892 | info->cap_insn_split = 4; | |
48440620 | 893 | } else { |
110f6c70 RH |
894 | int cap_mode; |
895 | if (env->thumb) { | |
15fa1a0a RH |
896 | info->cap_insn_unit = 2; |
897 | info->cap_insn_split = 4; | |
110f6c70 RH |
898 | cap_mode = CS_MODE_THUMB; |
899 | } else { | |
15fa1a0a RH |
900 | info->cap_insn_unit = 4; |
901 | info->cap_insn_split = 4; | |
110f6c70 RH |
902 | cap_mode = CS_MODE_ARM; |
903 | } | |
904 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
905 | cap_mode |= CS_MODE_V8; | |
906 | } | |
907 | if (arm_feature(env, ARM_FEATURE_M)) { | |
908 | cap_mode |= CS_MODE_MCLASS; | |
909 | } | |
910 | info->cap_arch = CS_ARCH_ARM; | |
911 | info->cap_mode = cap_mode; | |
48440620 | 912 | } |
7bcdbf51 RH |
913 | |
914 | sctlr_b = arm_sctlr_b(env); | |
915 | if (bswap_code(sctlr_b)) { | |
ee3eb3a7 | 916 | #if TARGET_BIG_ENDIAN |
48440620 PC |
917 | info->endian = BFD_ENDIAN_LITTLE; |
918 | #else | |
919 | info->endian = BFD_ENDIAN_BIG; | |
920 | #endif | |
921 | } | |
f7478a92 | 922 | info->flags &= ~INSN_ARM_BE32; |
7bcdbf51 RH |
923 | #ifndef CONFIG_USER_ONLY |
924 | if (sctlr_b) { | |
f7478a92 JB |
925 | info->flags |= INSN_ARM_BE32; |
926 | } | |
7bcdbf51 | 927 | #endif |
48440620 PC |
928 | } |
929 | ||
86480615 PMD |
930 | #ifdef TARGET_AARCH64 |
931 | ||
932 | static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) | |
933 | { | |
934 | ARMCPU *cpu = ARM_CPU(cs); | |
935 | CPUARMState *env = &cpu->env; | |
936 | uint32_t psr = pstate_read(env); | |
937 | int i; | |
938 | int el = arm_current_el(env); | |
939 | const char *ns_status; | |
7a867dd5 | 940 | bool sve; |
86480615 PMD |
941 | |
942 | qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); | |
943 | for (i = 0; i < 32; i++) { | |
944 | if (i == 31) { | |
945 | qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); | |
946 | } else { | |
947 | qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], | |
948 | (i + 2) % 3 ? " " : "\n"); | |
949 | } | |
950 | } | |
951 | ||
952 | if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { | |
953 | ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; | |
954 | } else { | |
955 | ns_status = ""; | |
956 | } | |
957 | qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", | |
958 | psr, | |
959 | psr & PSTATE_N ? 'N' : '-', | |
960 | psr & PSTATE_Z ? 'Z' : '-', | |
961 | psr & PSTATE_C ? 'C' : '-', | |
962 | psr & PSTATE_V ? 'V' : '-', | |
963 | ns_status, | |
964 | el, | |
965 | psr & PSTATE_SP ? 'h' : 't'); | |
966 | ||
7a867dd5 RH |
967 | if (cpu_isar_feature(aa64_sme, cpu)) { |
968 | qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c", | |
969 | env->svcr, | |
970 | (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'), | |
971 | (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-')); | |
972 | } | |
86480615 PMD |
973 | if (cpu_isar_feature(aa64_bti, cpu)) { |
974 | qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); | |
975 | } | |
976 | if (!(flags & CPU_DUMP_FPU)) { | |
977 | qemu_fprintf(f, "\n"); | |
978 | return; | |
979 | } | |
980 | if (fp_exception_el(env, el) != 0) { | |
981 | qemu_fprintf(f, " FPU disabled\n"); | |
982 | return; | |
983 | } | |
984 | qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", | |
985 | vfp_get_fpcr(env), vfp_get_fpsr(env)); | |
986 | ||
7a867dd5 RH |
987 | if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) { |
988 | sve = sme_exception_el(env, el) == 0; | |
989 | } else if (cpu_isar_feature(aa64_sve, cpu)) { | |
990 | sve = sve_exception_el(env, el) == 0; | |
991 | } else { | |
992 | sve = false; | |
993 | } | |
994 | ||
995 | if (sve) { | |
5ef3cc56 | 996 | int j, zcr_len = sve_vqm1_for_el(env, el); |
86480615 PMD |
997 | |
998 | for (i = 0; i <= FFR_PRED_NUM; i++) { | |
999 | bool eol; | |
1000 | if (i == FFR_PRED_NUM) { | |
1001 | qemu_fprintf(f, "FFR="); | |
1002 | /* It's last, so end the line. */ | |
1003 | eol = true; | |
1004 | } else { | |
1005 | qemu_fprintf(f, "P%02d=", i); | |
1006 | switch (zcr_len) { | |
1007 | case 0: | |
1008 | eol = i % 8 == 7; | |
1009 | break; | |
1010 | case 1: | |
1011 | eol = i % 6 == 5; | |
1012 | break; | |
1013 | case 2: | |
1014 | case 3: | |
1015 | eol = i % 3 == 2; | |
1016 | break; | |
1017 | default: | |
1018 | /* More than one quadword per predicate. */ | |
1019 | eol = true; | |
1020 | break; | |
1021 | } | |
1022 | } | |
1023 | for (j = zcr_len / 4; j >= 0; j--) { | |
1024 | int digits; | |
1025 | if (j * 4 + 4 <= zcr_len + 1) { | |
1026 | digits = 16; | |
1027 | } else { | |
1028 | digits = (zcr_len % 4 + 1) * 4; | |
1029 | } | |
1030 | qemu_fprintf(f, "%0*" PRIx64 "%s", digits, | |
1031 | env->vfp.pregs[i].p[j], | |
1032 | j ? ":" : eol ? "\n" : " "); | |
1033 | } | |
1034 | } | |
1035 | ||
1036 | for (i = 0; i < 32; i++) { | |
1037 | if (zcr_len == 0) { | |
1038 | qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", | |
1039 | i, env->vfp.zregs[i].d[1], | |
1040 | env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); | |
1041 | } else if (zcr_len == 1) { | |
1042 | qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 | |
1043 | ":%016" PRIx64 ":%016" PRIx64 "\n", | |
1044 | i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], | |
1045 | env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); | |
1046 | } else { | |
1047 | for (j = zcr_len; j >= 0; j--) { | |
1048 | bool odd = (zcr_len - j) % 2 != 0; | |
1049 | if (j == zcr_len) { | |
1050 | qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); | |
1051 | } else if (!odd) { | |
1052 | if (j > 0) { | |
1053 | qemu_fprintf(f, " [%x-%x]=", j, j - 1); | |
1054 | } else { | |
1055 | qemu_fprintf(f, " [%x]=", j); | |
1056 | } | |
1057 | } | |
1058 | qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", | |
1059 | env->vfp.zregs[i].d[j * 2 + 1], | |
1060 | env->vfp.zregs[i].d[j * 2], | |
1061 | odd || j == 0 ? "\n" : ":"); | |
1062 | } | |
1063 | } | |
1064 | } | |
1065 | } else { | |
1066 | for (i = 0; i < 32; i++) { | |
1067 | uint64_t *q = aa64_vfp_qreg(env, i); | |
1068 | qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", | |
1069 | i, q[1], q[0], (i & 1 ? "\n" : " ")); | |
1070 | } | |
1071 | } | |
1072 | } | |
1073 | ||
1074 | #else | |
1075 | ||
1076 | static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) | |
1077 | { | |
1078 | g_assert_not_reached(); | |
1079 | } | |
1080 | ||
1081 | #endif | |
1082 | ||
1083 | static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) | |
1084 | { | |
1085 | ARMCPU *cpu = ARM_CPU(cs); | |
1086 | CPUARMState *env = &cpu->env; | |
1087 | int i; | |
1088 | ||
1089 | if (is_a64(env)) { | |
1090 | aarch64_cpu_dump_state(cs, f, flags); | |
1091 | return; | |
1092 | } | |
1093 | ||
1094 | for (i = 0; i < 16; i++) { | |
1095 | qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); | |
1096 | if ((i % 4) == 3) { | |
1097 | qemu_fprintf(f, "\n"); | |
1098 | } else { | |
1099 | qemu_fprintf(f, " "); | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1104 | uint32_t xpsr = xpsr_read(env); | |
1105 | const char *mode; | |
1106 | const char *ns_status = ""; | |
1107 | ||
1108 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
1109 | ns_status = env->v7m.secure ? "S " : "NS "; | |
1110 | } | |
1111 | ||
1112 | if (xpsr & XPSR_EXCP) { | |
1113 | mode = "handler"; | |
1114 | } else { | |
1115 | if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { | |
1116 | mode = "unpriv-thread"; | |
1117 | } else { | |
1118 | mode = "priv-thread"; | |
1119 | } | |
1120 | } | |
1121 | ||
1122 | qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", | |
1123 | xpsr, | |
1124 | xpsr & XPSR_N ? 'N' : '-', | |
1125 | xpsr & XPSR_Z ? 'Z' : '-', | |
1126 | xpsr & XPSR_C ? 'C' : '-', | |
1127 | xpsr & XPSR_V ? 'V' : '-', | |
1128 | xpsr & XPSR_T ? 'T' : 'A', | |
1129 | ns_status, | |
1130 | mode); | |
1131 | } else { | |
1132 | uint32_t psr = cpsr_read(env); | |
1133 | const char *ns_status = ""; | |
1134 | ||
1135 | if (arm_feature(env, ARM_FEATURE_EL3) && | |
1136 | (psr & CPSR_M) != ARM_CPU_MODE_MON) { | |
1137 | ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; | |
1138 | } | |
1139 | ||
1140 | qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", | |
1141 | psr, | |
1142 | psr & CPSR_N ? 'N' : '-', | |
1143 | psr & CPSR_Z ? 'Z' : '-', | |
1144 | psr & CPSR_C ? 'C' : '-', | |
1145 | psr & CPSR_V ? 'V' : '-', | |
1146 | psr & CPSR_T ? 'T' : 'A', | |
1147 | ns_status, | |
1148 | aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); | |
1149 | } | |
1150 | ||
1151 | if (flags & CPU_DUMP_FPU) { | |
1152 | int numvfpregs = 0; | |
a6627f5f RH |
1153 | if (cpu_isar_feature(aa32_simd_r32, cpu)) { |
1154 | numvfpregs = 32; | |
7fbc6a40 | 1155 | } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { |
a6627f5f | 1156 | numvfpregs = 16; |
86480615 PMD |
1157 | } |
1158 | for (i = 0; i < numvfpregs; i++) { | |
1159 | uint64_t v = *aa32_vfp_dreg(env, i); | |
1160 | qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", | |
1161 | i * 2, (uint32_t)v, | |
1162 | i * 2 + 1, (uint32_t)(v >> 32), | |
1163 | i, v); | |
1164 | } | |
1165 | qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); | |
aa291908 PM |
1166 | if (cpu_isar_feature(aa32_mve, cpu)) { |
1167 | qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); | |
1168 | } | |
86480615 PMD |
1169 | } |
1170 | } | |
1171 | ||
46de5913 IM |
1172 | uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) |
1173 | { | |
1174 | uint32_t Aff1 = idx / clustersz; | |
1175 | uint32_t Aff0 = idx % clustersz; | |
1176 | return (Aff1 << ARM_AFF1_SHIFT) | Aff0; | |
1177 | } | |
1178 | ||
777dc784 PM |
1179 | static void arm_cpu_initfn(Object *obj) |
1180 | { | |
1181 | ARMCPU *cpu = ARM_CPU(obj); | |
1182 | ||
7506ed90 | 1183 | cpu_set_cpustate_pointers(cpu); |
5860362d | 1184 | cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal, |
c27f5d3a | 1185 | NULL, g_free); |
79614b78 | 1186 | |
b5c53d1b | 1187 | QLIST_INIT(&cpu->pre_el_change_hooks); |
08267487 AL |
1188 | QLIST_INIT(&cpu->el_change_hooks); |
1189 | ||
b3d52804 RH |
1190 | #ifdef CONFIG_USER_ONLY |
1191 | # ifdef TARGET_AARCH64 | |
1192 | /* | |
e74c0976 RH |
1193 | * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME. |
1194 | * These values were chosen to fit within the default signal frame. | |
1195 | * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length, | |
1196 | * and our corresponding cpu property. | |
b3d52804 RH |
1197 | */ |
1198 | cpu->sve_default_vq = 4; | |
e74c0976 | 1199 | cpu->sme_default_vq = 2; |
b3d52804 RH |
1200 | # endif |
1201 | #else | |
7c1840b6 PM |
1202 | /* Our inbound IRQ and FIQ lines */ |
1203 | if (kvm_enabled()) { | |
136e67e9 EI |
1204 | /* VIRQ and VFIQ are unused with KVM but we add them to maintain |
1205 | * the same interface as non-KVM CPUs. | |
1206 | */ | |
1207 | qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); | |
7c1840b6 | 1208 | } else { |
136e67e9 | 1209 | qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); |
7c1840b6 | 1210 | } |
55d284af | 1211 | |
55d284af PM |
1212 | qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, |
1213 | ARRAY_SIZE(cpu->gt_timer_outputs)); | |
aa1b3111 PM |
1214 | |
1215 | qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, | |
1216 | "gicv3-maintenance-interrupt", 1); | |
07f48730 AJ |
1217 | qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, |
1218 | "pmu-interrupt", 1); | |
7c1840b6 PM |
1219 | #endif |
1220 | ||
54d3e3f5 PM |
1221 | /* DTB consumers generally don't in fact care what the 'compatible' |
1222 | * string is, so always provide some string and trust that a hypothetical | |
1223 | * picky DTB consumer will also provide a helpful error message. | |
1224 | */ | |
1225 | cpu->dtb_compatible = "qemu,unknown"; | |
0dc71c70 | 1226 | cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */ |
3541addc | 1227 | cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; |
54d3e3f5 | 1228 | |
2c9c0bf9 | 1229 | if (tcg_enabled() || hvf_enabled()) { |
0dc71c70 AO |
1230 | /* TCG and HVF implement PSCI 1.1 */ |
1231 | cpu->psci_version = QEMU_PSCI_VERSION_1_1; | |
79614b78 | 1232 | } |
4b6a83fb PM |
1233 | } |
1234 | ||
96eec6b2 AJ |
1235 | static Property arm_cpu_gt_cntfrq_property = |
1236 | DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, | |
1237 | NANOSECONDS_PER_SECOND / GTIMER_SCALE); | |
1238 | ||
07a5b0d2 | 1239 | static Property arm_cpu_reset_cbar_property = |
f318cec6 | 1240 | DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); |
07a5b0d2 | 1241 | |
68e0a40a AP |
1242 | static Property arm_cpu_reset_hivecs_property = |
1243 | DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); | |
1244 | ||
45ca3a14 | 1245 | #ifndef CONFIG_USER_ONLY |
c25bd18a PM |
1246 | static Property arm_cpu_has_el2_property = |
1247 | DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); | |
1248 | ||
51942aee GB |
1249 | static Property arm_cpu_has_el3_property = |
1250 | DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); | |
45ca3a14 | 1251 | #endif |
51942aee | 1252 | |
3a062d57 JB |
1253 | static Property arm_cpu_cfgend_property = |
1254 | DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); | |
1255 | ||
97a28b0e PM |
1256 | static Property arm_cpu_has_vfp_property = |
1257 | DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); | |
1258 | ||
1259 | static Property arm_cpu_has_neon_property = | |
1260 | DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); | |
1261 | ||
ea90db0a PM |
1262 | static Property arm_cpu_has_dsp_property = |
1263 | DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); | |
1264 | ||
8f325f56 PC |
1265 | static Property arm_cpu_has_mpu_property = |
1266 | DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); | |
1267 | ||
8d92e26b PM |
1268 | /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, |
1269 | * because the CPU initfn will have already set cpu->pmsav7_dregion to | |
1270 | * the right value for that particular CPU type, and we don't want | |
1271 | * to override that with an incorrect constant value. | |
1272 | */ | |
3281af81 | 1273 | static Property arm_cpu_pmsav7_dregion_property = |
8d92e26b PM |
1274 | DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, |
1275 | pmsav7_dregion, | |
1276 | qdev_prop_uint32, uint32_t); | |
3281af81 | 1277 | |
ae502508 AJ |
1278 | static bool arm_get_pmu(Object *obj, Error **errp) |
1279 | { | |
1280 | ARMCPU *cpu = ARM_CPU(obj); | |
1281 | ||
1282 | return cpu->has_pmu; | |
1283 | } | |
1284 | ||
1285 | static void arm_set_pmu(Object *obj, bool value, Error **errp) | |
1286 | { | |
1287 | ARMCPU *cpu = ARM_CPU(obj); | |
1288 | ||
1289 | if (value) { | |
7d20e681 | 1290 | if (kvm_enabled() && !kvm_arm_pmu_supported()) { |
ae502508 AJ |
1291 | error_setg(errp, "'pmu' feature not supported by KVM on this host"); |
1292 | return; | |
1293 | } | |
1294 | set_feature(&cpu->env, ARM_FEATURE_PMU); | |
1295 | } else { | |
1296 | unset_feature(&cpu->env, ARM_FEATURE_PMU); | |
1297 | } | |
1298 | cpu->has_pmu = value; | |
1299 | } | |
1300 | ||
7def8754 AJ |
1301 | unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) |
1302 | { | |
96eec6b2 AJ |
1303 | /* |
1304 | * The exact approach to calculating guest ticks is: | |
1305 | * | |
1306 | * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, | |
1307 | * NANOSECONDS_PER_SECOND); | |
1308 | * | |
1309 | * We don't do that. Rather we intentionally use integer division | |
1310 | * truncation below and in the caller for the conversion of host monotonic | |
1311 | * time to guest ticks to provide the exact inverse for the semantics of | |
1312 | * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so | |
1313 | * it loses precision when representing frequencies where | |
1314 | * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to | |
1315 | * provide an exact inverse leads to scheduling timers with negative | |
1316 | * periods, which in turn leads to sticky behaviour in the guest. | |
1317 | * | |
1318 | * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor | |
1319 | * cannot become zero. | |
1320 | */ | |
7def8754 AJ |
1321 | return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? |
1322 | NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; | |
1323 | } | |
1324 | ||
51e5ef45 | 1325 | void arm_cpu_post_init(Object *obj) |
07a5b0d2 PC |
1326 | { |
1327 | ARMCPU *cpu = ARM_CPU(obj); | |
07a5b0d2 | 1328 | |
790a1150 PM |
1329 | /* M profile implies PMSA. We have to do this here rather than |
1330 | * in realize with the other feature-implication checks because | |
1331 | * we look at the PMSA bit to see if we should add some properties. | |
1332 | */ | |
1333 | if (arm_feature(&cpu->env, ARM_FEATURE_M)) { | |
1334 | set_feature(&cpu->env, ARM_FEATURE_PMSA); | |
1335 | } | |
1336 | ||
f318cec6 PM |
1337 | if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || |
1338 | arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { | |
94d912d1 | 1339 | qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); |
07a5b0d2 | 1340 | } |
68e0a40a AP |
1341 | |
1342 | if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { | |
94d912d1 | 1343 | qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); |
68e0a40a | 1344 | } |
3933443e PM |
1345 | |
1346 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
4a7319b7 EI |
1347 | object_property_add_uint64_ptr(obj, "rvbar", |
1348 | &cpu->rvbar_prop, | |
1349 | OBJ_PROP_FLAG_READWRITE); | |
3933443e | 1350 | } |
51942aee | 1351 | |
45ca3a14 | 1352 | #ifndef CONFIG_USER_ONLY |
51942aee GB |
1353 | if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { |
1354 | /* Add the has_el3 state CPU property only if EL3 is allowed. This will | |
1355 | * prevent "has_el3" from existing on CPUs which cannot support EL3. | |
1356 | */ | |
94d912d1 | 1357 | qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); |
9e273ef2 | 1358 | |
9e273ef2 PM |
1359 | object_property_add_link(obj, "secure-memory", |
1360 | TYPE_MEMORY_REGION, | |
1361 | (Object **)&cpu->secure_memory, | |
1362 | qdev_prop_allow_set_link_before_realize, | |
d2623129 | 1363 | OBJ_PROP_LINK_STRONG); |
51942aee | 1364 | } |
8f325f56 | 1365 | |
c25bd18a | 1366 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { |
94d912d1 | 1367 | qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); |
c25bd18a | 1368 | } |
45ca3a14 | 1369 | #endif |
c25bd18a | 1370 | |
929e754d | 1371 | if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { |
ae502508 | 1372 | cpu->has_pmu = true; |
d2623129 | 1373 | object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); |
929e754d WH |
1374 | } |
1375 | ||
97a28b0e PM |
1376 | /* |
1377 | * Allow user to turn off VFP and Neon support, but only for TCG -- | |
1378 | * KVM does not currently allow us to lie to the guest about its | |
1379 | * ID/feature registers, so the guest always sees what the host has. | |
1380 | */ | |
7d63183f RH |
1381 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) |
1382 | ? cpu_isar_feature(aa64_fp_simd, cpu) | |
1383 | : cpu_isar_feature(aa32_vfp, cpu)) { | |
97a28b0e PM |
1384 | cpu->has_vfp = true; |
1385 | if (!kvm_enabled()) { | |
94d912d1 | 1386 | qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); |
97a28b0e PM |
1387 | } |
1388 | } | |
1389 | ||
1390 | if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { | |
1391 | cpu->has_neon = true; | |
1392 | if (!kvm_enabled()) { | |
94d912d1 | 1393 | qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); |
97a28b0e PM |
1394 | } |
1395 | } | |
1396 | ||
ea90db0a PM |
1397 | if (arm_feature(&cpu->env, ARM_FEATURE_M) && |
1398 | arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { | |
94d912d1 | 1399 | qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); |
ea90db0a PM |
1400 | } |
1401 | ||
452a0955 | 1402 | if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { |
94d912d1 | 1403 | qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); |
3281af81 PC |
1404 | if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { |
1405 | qdev_property_add_static(DEVICE(obj), | |
94d912d1 | 1406 | &arm_cpu_pmsav7_dregion_property); |
3281af81 | 1407 | } |
8f325f56 PC |
1408 | } |
1409 | ||
181962fd PM |
1410 | if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { |
1411 | object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, | |
1412 | qdev_prop_allow_set_link_before_realize, | |
d2623129 | 1413 | OBJ_PROP_LINK_STRONG); |
f9f62e4c PM |
1414 | /* |
1415 | * M profile: initial value of the Secure VTOR. We can't just use | |
1416 | * a simple DEFINE_PROP_UINT32 for this because we want to permit | |
1417 | * the property to be set after realize. | |
1418 | */ | |
64a7b8de FF |
1419 | object_property_add_uint32_ptr(obj, "init-svtor", |
1420 | &cpu->init_svtor, | |
d2623129 | 1421 | OBJ_PROP_FLAG_READWRITE); |
181962fd | 1422 | } |
7cda2149 PM |
1423 | if (arm_feature(&cpu->env, ARM_FEATURE_M)) { |
1424 | /* | |
1425 | * Initial value of the NS VTOR (for cores without the Security | |
1426 | * extension, this is the only VTOR) | |
1427 | */ | |
1428 | object_property_add_uint32_ptr(obj, "init-nsvtor", | |
1429 | &cpu->init_nsvtor, | |
1430 | OBJ_PROP_FLAG_READWRITE); | |
1431 | } | |
181962fd | 1432 | |
bddd892e PM |
1433 | /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */ |
1434 | object_property_add_uint32_ptr(obj, "psci-conduit", | |
1435 | &cpu->psci_conduit, | |
1436 | OBJ_PROP_FLAG_READWRITE); | |
1437 | ||
94d912d1 | 1438 | qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); |
96eec6b2 AJ |
1439 | |
1440 | if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { | |
94d912d1 | 1441 | qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); |
96eec6b2 | 1442 | } |
9e6f8d8a | 1443 | |
1444 | if (kvm_enabled()) { | |
1445 | kvm_arm_add_vcpu_properties(obj); | |
1446 | } | |
8bce44a2 RH |
1447 | |
1448 | #ifndef CONFIG_USER_ONLY | |
1449 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && | |
1450 | cpu_isar_feature(aa64_mte, cpu)) { | |
1451 | object_property_add_link(obj, "tag-memory", | |
1452 | TYPE_MEMORY_REGION, | |
1453 | (Object **)&cpu->tag_memory, | |
1454 | qdev_prop_allow_set_link_before_realize, | |
1455 | OBJ_PROP_LINK_STRONG); | |
1456 | ||
1457 | if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { | |
1458 | object_property_add_link(obj, "secure-tag-memory", | |
1459 | TYPE_MEMORY_REGION, | |
1460 | (Object **)&cpu->secure_tag_memory, | |
1461 | qdev_prop_allow_set_link_before_realize, | |
1462 | OBJ_PROP_LINK_STRONG); | |
1463 | } | |
1464 | } | |
1465 | #endif | |
07a5b0d2 PC |
1466 | } |
1467 | ||
4b6a83fb PM |
1468 | static void arm_cpu_finalizefn(Object *obj) |
1469 | { | |
1470 | ARMCPU *cpu = ARM_CPU(obj); | |
08267487 AL |
1471 | ARMELChangeHook *hook, *next; |
1472 | ||
4b6a83fb | 1473 | g_hash_table_destroy(cpu->cp_regs); |
08267487 | 1474 | |
b5c53d1b AL |
1475 | QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { |
1476 | QLIST_REMOVE(hook, node); | |
1477 | g_free(hook); | |
1478 | } | |
08267487 AL |
1479 | QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { |
1480 | QLIST_REMOVE(hook, node); | |
1481 | g_free(hook); | |
1482 | } | |
4e7beb0c AL |
1483 | #ifndef CONFIG_USER_ONLY |
1484 | if (cpu->pmu_timer) { | |
4e7beb0c AL |
1485 | timer_free(cpu->pmu_timer); |
1486 | } | |
1487 | #endif | |
777dc784 PM |
1488 | } |
1489 | ||
0df9142d AJ |
1490 | void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) |
1491 | { | |
1492 | Error *local_err = NULL; | |
1493 | ||
07301161 | 1494 | #ifdef TARGET_AARCH64 |
0df9142d AJ |
1495 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
1496 | arm_cpu_sve_finalize(cpu, &local_err); | |
68970d1e AJ |
1497 | if (local_err != NULL) { |
1498 | error_propagate(errp, local_err); | |
1499 | return; | |
1500 | } | |
eb94284d | 1501 | |
e74c0976 RH |
1502 | arm_cpu_sme_finalize(cpu, &local_err); |
1503 | if (local_err != NULL) { | |
1504 | error_propagate(errp, local_err); | |
1505 | return; | |
1506 | } | |
1507 | ||
95ea96e8 MZ |
1508 | arm_cpu_pauth_finalize(cpu, &local_err); |
1509 | if (local_err != NULL) { | |
1510 | error_propagate(errp, local_err); | |
1511 | return; | |
eb94284d | 1512 | } |
69b2265d RH |
1513 | |
1514 | arm_cpu_lpa2_finalize(cpu, &local_err); | |
1515 | if (local_err != NULL) { | |
1516 | error_propagate(errp, local_err); | |
1517 | return; | |
1518 | } | |
68970d1e | 1519 | } |
07301161 | 1520 | #endif |
68970d1e AJ |
1521 | |
1522 | if (kvm_enabled()) { | |
1523 | kvm_arm_steal_time_finalize(cpu, &local_err); | |
0df9142d AJ |
1524 | if (local_err != NULL) { |
1525 | error_propagate(errp, local_err); | |
1526 | return; | |
1527 | } | |
1528 | } | |
1529 | } | |
1530 | ||
14969266 | 1531 | static void arm_cpu_realizefn(DeviceState *dev, Error **errp) |
581be094 | 1532 | { |
14a10fc3 | 1533 | CPUState *cs = CPU(dev); |
14969266 AF |
1534 | ARMCPU *cpu = ARM_CPU(dev); |
1535 | ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); | |
581be094 | 1536 | CPUARMState *env = &cpu->env; |
e97da98f | 1537 | int pagebits; |
ce5b1bbf | 1538 | Error *local_err = NULL; |
0f8d06f1 | 1539 | bool no_aa32 = false; |
ce5b1bbf | 1540 | |
c4487d76 PM |
1541 | /* If we needed to query the host kernel for the CPU features |
1542 | * then it's possible that might have failed in the initfn, but | |
1543 | * this is the first point where we can report it. | |
1544 | */ | |
1545 | if (cpu->host_cpu_probe_failed) { | |
585df85e PM |
1546 | if (!kvm_enabled() && !hvf_enabled()) { |
1547 | error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); | |
c4487d76 PM |
1548 | } else { |
1549 | error_setg(errp, "Failed to retrieve host CPU features"); | |
1550 | } | |
1551 | return; | |
1552 | } | |
1553 | ||
95f87565 PM |
1554 | #ifndef CONFIG_USER_ONLY |
1555 | /* The NVIC and M-profile CPU are two halves of a single piece of | |
1556 | * hardware; trying to use one without the other is a command line | |
1557 | * error and will result in segfaults if not caught here. | |
1558 | */ | |
1559 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1560 | if (!env->nvic) { | |
1561 | error_setg(errp, "This board cannot be used with Cortex-M CPUs"); | |
1562 | return; | |
1563 | } | |
1564 | } else { | |
1565 | if (env->nvic) { | |
1566 | error_setg(errp, "This board can only be used with Cortex-M CPUs"); | |
1567 | return; | |
1568 | } | |
1569 | } | |
397cd31f | 1570 | |
045e5064 | 1571 | if (!tcg_enabled() && !qtest_enabled()) { |
49e7f191 | 1572 | /* |
045e5064 AG |
1573 | * We assume that no accelerator except TCG (and the "not really an |
1574 | * accelerator" qtest) can handle these features, because Arm hardware | |
1575 | * virtualization can't virtualize them. | |
1576 | * | |
49e7f191 PM |
1577 | * Catch all the cases which might cause us to create more than one |
1578 | * address space for the CPU (otherwise we will assert() later in | |
1579 | * cpu_address_space_init()). | |
1580 | */ | |
1581 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1582 | error_setg(errp, | |
045e5064 AG |
1583 | "Cannot enable %s when using an M-profile guest CPU", |
1584 | current_accel_name()); | |
49e7f191 PM |
1585 | return; |
1586 | } | |
1587 | if (cpu->has_el3) { | |
1588 | error_setg(errp, | |
045e5064 AG |
1589 | "Cannot enable %s when guest CPU has EL3 enabled", |
1590 | current_accel_name()); | |
49e7f191 PM |
1591 | return; |
1592 | } | |
1593 | if (cpu->tag_memory) { | |
1594 | error_setg(errp, | |
045e5064 AG |
1595 | "Cannot enable %s when guest CPUs has MTE enabled", |
1596 | current_accel_name()); | |
49e7f191 PM |
1597 | return; |
1598 | } | |
1599 | } | |
1600 | ||
96eec6b2 AJ |
1601 | { |
1602 | uint64_t scale; | |
1603 | ||
1604 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { | |
1605 | if (!cpu->gt_cntfrq_hz) { | |
1606 | error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", | |
1607 | cpu->gt_cntfrq_hz); | |
1608 | return; | |
1609 | } | |
1610 | scale = gt_cntfrq_period_ns(cpu); | |
1611 | } else { | |
1612 | scale = GTIMER_SCALE; | |
1613 | } | |
1614 | ||
1615 | cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, | |
1616 | arm_gt_ptimer_cb, cpu); | |
1617 | cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, | |
1618 | arm_gt_vtimer_cb, cpu); | |
1619 | cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, | |
1620 | arm_gt_htimer_cb, cpu); | |
1621 | cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, | |
1622 | arm_gt_stimer_cb, cpu); | |
8c94b071 RH |
1623 | cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, |
1624 | arm_gt_hvtimer_cb, cpu); | |
96eec6b2 | 1625 | } |
95f87565 PM |
1626 | #endif |
1627 | ||
ce5b1bbf LV |
1628 | cpu_exec_realizefn(cs, &local_err); |
1629 | if (local_err != NULL) { | |
1630 | error_propagate(errp, local_err); | |
1631 | return; | |
1632 | } | |
14969266 | 1633 | |
0df9142d AJ |
1634 | arm_cpu_finalize_features(cpu, &local_err); |
1635 | if (local_err != NULL) { | |
1636 | error_propagate(errp, local_err); | |
1637 | return; | |
1638 | } | |
1639 | ||
97a28b0e PM |
1640 | if (arm_feature(env, ARM_FEATURE_AARCH64) && |
1641 | cpu->has_vfp != cpu->has_neon) { | |
1642 | /* | |
1643 | * This is an architectural requirement for AArch64; AArch32 is | |
1644 | * more flexible and permits VFP-no-Neon and Neon-no-VFP. | |
1645 | */ | |
1646 | error_setg(errp, | |
1647 | "AArch64 CPUs must have both VFP and Neon or neither"); | |
1648 | return; | |
1649 | } | |
1650 | ||
1651 | if (!cpu->has_vfp) { | |
1652 | uint64_t t; | |
1653 | uint32_t u; | |
1654 | ||
97a28b0e PM |
1655 | t = cpu->isar.id_aa64isar1; |
1656 | t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); | |
1657 | cpu->isar.id_aa64isar1 = t; | |
1658 | ||
1659 | t = cpu->isar.id_aa64pfr0; | |
1660 | t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); | |
1661 | cpu->isar.id_aa64pfr0 = t; | |
1662 | ||
1663 | u = cpu->isar.id_isar6; | |
1664 | u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); | |
3c93dfa4 | 1665 | u = FIELD_DP32(u, ID_ISAR6, BF16, 0); |
97a28b0e PM |
1666 | cpu->isar.id_isar6 = u; |
1667 | ||
1668 | u = cpu->isar.mvfr0; | |
1669 | u = FIELD_DP32(u, MVFR0, FPSP, 0); | |
1670 | u = FIELD_DP32(u, MVFR0, FPDP, 0); | |
97a28b0e PM |
1671 | u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); |
1672 | u = FIELD_DP32(u, MVFR0, FPSQRT, 0); | |
97a28b0e | 1673 | u = FIELD_DP32(u, MVFR0, FPROUND, 0); |
532a3af5 PM |
1674 | if (!arm_feature(env, ARM_FEATURE_M)) { |
1675 | u = FIELD_DP32(u, MVFR0, FPTRAP, 0); | |
1676 | u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); | |
1677 | } | |
97a28b0e PM |
1678 | cpu->isar.mvfr0 = u; |
1679 | ||
1680 | u = cpu->isar.mvfr1; | |
1681 | u = FIELD_DP32(u, MVFR1, FPFTZ, 0); | |
1682 | u = FIELD_DP32(u, MVFR1, FPDNAN, 0); | |
1683 | u = FIELD_DP32(u, MVFR1, FPHP, 0); | |
532a3af5 PM |
1684 | if (arm_feature(env, ARM_FEATURE_M)) { |
1685 | u = FIELD_DP32(u, MVFR1, FP16, 0); | |
1686 | } | |
97a28b0e PM |
1687 | cpu->isar.mvfr1 = u; |
1688 | ||
1689 | u = cpu->isar.mvfr2; | |
1690 | u = FIELD_DP32(u, MVFR2, FPMISC, 0); | |
1691 | cpu->isar.mvfr2 = u; | |
1692 | } | |
1693 | ||
1694 | if (!cpu->has_neon) { | |
1695 | uint64_t t; | |
1696 | uint32_t u; | |
1697 | ||
1698 | unset_feature(env, ARM_FEATURE_NEON); | |
1699 | ||
1700 | t = cpu->isar.id_aa64isar0; | |
eb851c11 DH |
1701 | t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0); |
1702 | t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0); | |
1703 | t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0); | |
1704 | t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0); | |
1705 | t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0); | |
1706 | t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0); | |
97a28b0e PM |
1707 | t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); |
1708 | cpu->isar.id_aa64isar0 = t; | |
1709 | ||
1710 | t = cpu->isar.id_aa64isar1; | |
1711 | t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); | |
3c93dfa4 | 1712 | t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); |
f8680aaa | 1713 | t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); |
97a28b0e PM |
1714 | cpu->isar.id_aa64isar1 = t; |
1715 | ||
1716 | t = cpu->isar.id_aa64pfr0; | |
1717 | t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); | |
1718 | cpu->isar.id_aa64pfr0 = t; | |
1719 | ||
1720 | u = cpu->isar.id_isar5; | |
eb851c11 DH |
1721 | u = FIELD_DP32(u, ID_ISAR5, AES, 0); |
1722 | u = FIELD_DP32(u, ID_ISAR5, SHA1, 0); | |
1723 | u = FIELD_DP32(u, ID_ISAR5, SHA2, 0); | |
97a28b0e PM |
1724 | u = FIELD_DP32(u, ID_ISAR5, RDM, 0); |
1725 | u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); | |
1726 | cpu->isar.id_isar5 = u; | |
1727 | ||
1728 | u = cpu->isar.id_isar6; | |
1729 | u = FIELD_DP32(u, ID_ISAR6, DP, 0); | |
1730 | u = FIELD_DP32(u, ID_ISAR6, FHM, 0); | |
3c93dfa4 | 1731 | u = FIELD_DP32(u, ID_ISAR6, BF16, 0); |
f8680aaa | 1732 | u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); |
97a28b0e PM |
1733 | cpu->isar.id_isar6 = u; |
1734 | ||
532a3af5 PM |
1735 | if (!arm_feature(env, ARM_FEATURE_M)) { |
1736 | u = cpu->isar.mvfr1; | |
1737 | u = FIELD_DP32(u, MVFR1, SIMDLS, 0); | |
1738 | u = FIELD_DP32(u, MVFR1, SIMDINT, 0); | |
1739 | u = FIELD_DP32(u, MVFR1, SIMDSP, 0); | |
1740 | u = FIELD_DP32(u, MVFR1, SIMDHP, 0); | |
1741 | cpu->isar.mvfr1 = u; | |
1742 | ||
1743 | u = cpu->isar.mvfr2; | |
1744 | u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); | |
1745 | cpu->isar.mvfr2 = u; | |
1746 | } | |
97a28b0e PM |
1747 | } |
1748 | ||
1749 | if (!cpu->has_neon && !cpu->has_vfp) { | |
1750 | uint64_t t; | |
1751 | uint32_t u; | |
1752 | ||
1753 | t = cpu->isar.id_aa64isar0; | |
1754 | t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); | |
1755 | cpu->isar.id_aa64isar0 = t; | |
1756 | ||
1757 | t = cpu->isar.id_aa64isar1; | |
1758 | t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); | |
1759 | cpu->isar.id_aa64isar1 = t; | |
1760 | ||
1761 | u = cpu->isar.mvfr0; | |
1762 | u = FIELD_DP32(u, MVFR0, SIMDREG, 0); | |
1763 | cpu->isar.mvfr0 = u; | |
c52881bb RH |
1764 | |
1765 | /* Despite the name, this field covers both VFP and Neon */ | |
1766 | u = cpu->isar.mvfr1; | |
1767 | u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); | |
1768 | cpu->isar.mvfr1 = u; | |
97a28b0e PM |
1769 | } |
1770 | ||
ea90db0a PM |
1771 | if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { |
1772 | uint32_t u; | |
1773 | ||
1774 | unset_feature(env, ARM_FEATURE_THUMB_DSP); | |
1775 | ||
1776 | u = cpu->isar.id_isar1; | |
1777 | u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); | |
1778 | cpu->isar.id_isar1 = u; | |
1779 | ||
1780 | u = cpu->isar.id_isar2; | |
1781 | u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); | |
1782 | u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); | |
1783 | cpu->isar.id_isar2 = u; | |
1784 | ||
1785 | u = cpu->isar.id_isar3; | |
1786 | u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); | |
1787 | u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); | |
1788 | cpu->isar.id_isar3 = u; | |
1789 | } | |
1790 | ||
581be094 | 1791 | /* Some features automatically imply others: */ |
81e69fb0 | 1792 | if (arm_feature(env, ARM_FEATURE_V8)) { |
5256df88 RH |
1793 | if (arm_feature(env, ARM_FEATURE_M)) { |
1794 | set_feature(env, ARM_FEATURE_V7); | |
1795 | } else { | |
1796 | set_feature(env, ARM_FEATURE_V7VE); | |
1797 | } | |
5110e683 | 1798 | } |
0f8d06f1 RH |
1799 | |
1800 | /* | |
1801 | * There exist AArch64 cpus without AArch32 support. When KVM | |
1802 | * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. | |
1803 | * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. | |
8f4821d7 PM |
1804 | * As a general principle, we also do not make ID register |
1805 | * consistency checks anywhere unless using TCG, because only | |
1806 | * for TCG would a consistency-check failure be a QEMU bug. | |
0f8d06f1 RH |
1807 | */ |
1808 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
1809 | no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); | |
1810 | } | |
1811 | ||
5110e683 AL |
1812 | if (arm_feature(env, ARM_FEATURE_V7VE)) { |
1813 | /* v7 Virtualization Extensions. In real hardware this implies | |
1814 | * EL2 and also the presence of the Security Extensions. | |
1815 | * For QEMU, for backwards-compatibility we implement some | |
1816 | * CPUs or CPU configs which have no actual EL2 or EL3 but do | |
1817 | * include the various other features that V7VE implies. | |
1818 | * Presence of EL2 itself is ARM_FEATURE_EL2, and of the | |
1819 | * Security Extensions is ARM_FEATURE_EL3. | |
1820 | */ | |
873b73c0 PM |
1821 | assert(!tcg_enabled() || no_aa32 || |
1822 | cpu_isar_feature(aa32_arm_div, cpu)); | |
81e69fb0 | 1823 | set_feature(env, ARM_FEATURE_LPAE); |
5110e683 | 1824 | set_feature(env, ARM_FEATURE_V7); |
81e69fb0 | 1825 | } |
581be094 PM |
1826 | if (arm_feature(env, ARM_FEATURE_V7)) { |
1827 | set_feature(env, ARM_FEATURE_VAPA); | |
1828 | set_feature(env, ARM_FEATURE_THUMB2); | |
81bdde9d | 1829 | set_feature(env, ARM_FEATURE_MPIDR); |
581be094 PM |
1830 | if (!arm_feature(env, ARM_FEATURE_M)) { |
1831 | set_feature(env, ARM_FEATURE_V6K); | |
1832 | } else { | |
1833 | set_feature(env, ARM_FEATURE_V6); | |
1834 | } | |
91db4642 CLG |
1835 | |
1836 | /* Always define VBAR for V7 CPUs even if it doesn't exist in | |
1837 | * non-EL3 configs. This is needed by some legacy boards. | |
1838 | */ | |
1839 | set_feature(env, ARM_FEATURE_VBAR); | |
581be094 PM |
1840 | } |
1841 | if (arm_feature(env, ARM_FEATURE_V6K)) { | |
1842 | set_feature(env, ARM_FEATURE_V6); | |
1843 | set_feature(env, ARM_FEATURE_MVFR); | |
1844 | } | |
1845 | if (arm_feature(env, ARM_FEATURE_V6)) { | |
1846 | set_feature(env, ARM_FEATURE_V5); | |
1847 | if (!arm_feature(env, ARM_FEATURE_M)) { | |
873b73c0 PM |
1848 | assert(!tcg_enabled() || no_aa32 || |
1849 | cpu_isar_feature(aa32_jazelle, cpu)); | |
581be094 PM |
1850 | set_feature(env, ARM_FEATURE_AUXCR); |
1851 | } | |
1852 | } | |
1853 | if (arm_feature(env, ARM_FEATURE_V5)) { | |
1854 | set_feature(env, ARM_FEATURE_V4T); | |
1855 | } | |
de9b05b8 | 1856 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
bdcc150d | 1857 | set_feature(env, ARM_FEATURE_V7MP); |
de9b05b8 | 1858 | } |
f318cec6 PM |
1859 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { |
1860 | set_feature(env, ARM_FEATURE_CBAR); | |
1861 | } | |
62b44f05 AR |
1862 | if (arm_feature(env, ARM_FEATURE_THUMB2) && |
1863 | !arm_feature(env, ARM_FEATURE_M)) { | |
1864 | set_feature(env, ARM_FEATURE_THUMB_DSP); | |
1865 | } | |
2ceb98c0 | 1866 | |
ea7ac69d PM |
1867 | /* |
1868 | * We rely on no XScale CPU having VFP so we can use the same bits in the | |
1869 | * TB flags field for VECSTRIDE and XSCALE_CPAR. | |
1870 | */ | |
7d63183f RH |
1871 | assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || |
1872 | !cpu_isar_feature(aa32_vfp_simd, cpu) || | |
1873 | !arm_feature(env, ARM_FEATURE_XSCALE)); | |
ea7ac69d | 1874 | |
e97da98f PM |
1875 | if (arm_feature(env, ARM_FEATURE_V7) && |
1876 | !arm_feature(env, ARM_FEATURE_M) && | |
452a0955 | 1877 | !arm_feature(env, ARM_FEATURE_PMSA)) { |
e97da98f PM |
1878 | /* v7VMSA drops support for the old ARMv5 tiny pages, so we |
1879 | * can use 4K pages. | |
1880 | */ | |
1881 | pagebits = 12; | |
1882 | } else { | |
1883 | /* For CPUs which might have tiny 1K pages, or which have an | |
1884 | * MPU and might have small region sizes, stick with 1K pages. | |
1885 | */ | |
1886 | pagebits = 10; | |
1887 | } | |
1888 | if (!set_preferred_target_page_bits(pagebits)) { | |
1889 | /* This can only ever happen for hotplugging a CPU, or if | |
1890 | * the board code incorrectly creates a CPU which it has | |
1891 | * promised via minimum_page_size that it will not. | |
1892 | */ | |
1893 | error_setg(errp, "This CPU requires a smaller page size than the " | |
1894 | "system is using"); | |
1895 | return; | |
1896 | } | |
1897 | ||
ce5b1bbf LV |
1898 | /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. |
1899 | * We don't support setting cluster ID ([16..23]) (known as Aff2 | |
1900 | * in later ARM ARM versions), or any of the higher affinity level fields, | |
1901 | * so these bits always RAZ. | |
1902 | */ | |
1903 | if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { | |
46de5913 IM |
1904 | cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, |
1905 | ARM_DEFAULT_CPUS_PER_CLUSTER); | |
ce5b1bbf LV |
1906 | } |
1907 | ||
68e0a40a AP |
1908 | if (cpu->reset_hivecs) { |
1909 | cpu->reset_sctlr |= (1 << 13); | |
1910 | } | |
1911 | ||
3a062d57 JB |
1912 | if (cpu->cfgend) { |
1913 | if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { | |
1914 | cpu->reset_sctlr |= SCTLR_EE; | |
1915 | } else { | |
1916 | cpu->reset_sctlr |= SCTLR_B; | |
1917 | } | |
1918 | } | |
1919 | ||
40188188 | 1920 | if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { |
51942aee GB |
1921 | /* If the has_el3 CPU property is disabled then we need to disable the |
1922 | * feature. | |
1923 | */ | |
1924 | unset_feature(env, ARM_FEATURE_EL3); | |
1925 | ||
b13c91c0 RH |
1926 | /* |
1927 | * Disable the security extension feature bits in the processor | |
1928 | * feature registers as well. | |
51942aee | 1929 | */ |
b13c91c0 | 1930 | cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0); |
033a4f15 | 1931 | cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0); |
b13c91c0 RH |
1932 | cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, |
1933 | ID_AA64PFR0, EL3, 0); | |
51942aee GB |
1934 | } |
1935 | ||
c25bd18a PM |
1936 | if (!cpu->has_el2) { |
1937 | unset_feature(env, ARM_FEATURE_EL2); | |
1938 | } | |
1939 | ||
d6f02ce3 | 1940 | if (!cpu->has_pmu) { |
929e754d | 1941 | unset_feature(env, ARM_FEATURE_PMU); |
57a4a11b AL |
1942 | } |
1943 | if (arm_feature(env, ARM_FEATURE_PMU)) { | |
bf8d0969 | 1944 | pmu_init(cpu); |
57a4a11b AL |
1945 | |
1946 | if (!kvm_enabled()) { | |
1947 | arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); | |
1948 | arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); | |
1949 | } | |
4e7beb0c AL |
1950 | |
1951 | #ifndef CONFIG_USER_ONLY | |
1952 | cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, | |
1953 | cpu); | |
1954 | #endif | |
57a4a11b | 1955 | } else { |
2a609df8 PM |
1956 | cpu->isar.id_aa64dfr0 = |
1957 | FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); | |
a6179538 | 1958 | cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); |
57a4a11b AL |
1959 | cpu->pmceid0 = 0; |
1960 | cpu->pmceid1 = 0; | |
929e754d WH |
1961 | } |
1962 | ||
3c2f7bb3 | 1963 | if (!arm_feature(env, ARM_FEATURE_EL2)) { |
b13c91c0 RH |
1964 | /* |
1965 | * Disable the hypervisor feature bits in the processor feature | |
1966 | * registers if we don't have EL2. | |
3c2f7bb3 | 1967 | */ |
b13c91c0 RH |
1968 | cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, |
1969 | ID_AA64PFR0, EL2, 0); | |
1970 | cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, | |
1971 | ID_PFR1, VIRTUALIZATION, 0); | |
3c2f7bb3 PM |
1972 | } |
1973 | ||
6f4e1405 RH |
1974 | #ifndef CONFIG_USER_ONLY |
1975 | if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) { | |
1976 | /* | |
1977 | * Disable the MTE feature bits if we do not have tag-memory | |
1978 | * provided by the machine. | |
1979 | */ | |
1980 | cpu->isar.id_aa64pfr1 = | |
1981 | FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0); | |
1982 | } | |
1983 | #endif | |
1984 | ||
2daf518d PM |
1985 | if (tcg_enabled()) { |
1986 | /* | |
1987 | * Don't report the Statistical Profiling Extension in the ID | |
1988 | * registers, because TCG doesn't implement it yet (not even a | |
1989 | * minimal stub version) and guests will fall over when they | |
1990 | * try to access the non-existent system registers for it. | |
1991 | */ | |
1992 | cpu->isar.id_aa64dfr0 = | |
1993 | FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0); | |
1994 | } | |
1995 | ||
f50cd314 PM |
1996 | /* MPU can be configured out of a PMSA CPU either by setting has-mpu |
1997 | * to false or by setting pmsav7-dregion to 0. | |
1998 | */ | |
8f325f56 | 1999 | if (!cpu->has_mpu) { |
f50cd314 PM |
2000 | cpu->pmsav7_dregion = 0; |
2001 | } | |
2002 | if (cpu->pmsav7_dregion == 0) { | |
2003 | cpu->has_mpu = false; | |
8f325f56 PC |
2004 | } |
2005 | ||
452a0955 | 2006 | if (arm_feature(env, ARM_FEATURE_PMSA) && |
3281af81 PC |
2007 | arm_feature(env, ARM_FEATURE_V7)) { |
2008 | uint32_t nr = cpu->pmsav7_dregion; | |
2009 | ||
2010 | if (nr > 0xff) { | |
9af9e0fe | 2011 | error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); |
3281af81 PC |
2012 | return; |
2013 | } | |
6cb0b013 PC |
2014 | |
2015 | if (nr) { | |
0e1a46bb PM |
2016 | if (arm_feature(env, ARM_FEATURE_V8)) { |
2017 | /* PMSAv8 */ | |
62c58ee0 PM |
2018 | env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); |
2019 | env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); | |
2020 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
2021 | env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); | |
2022 | env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); | |
2023 | } | |
0e1a46bb PM |
2024 | } else { |
2025 | env->pmsav7.drbar = g_new0(uint32_t, nr); | |
2026 | env->pmsav7.drsr = g_new0(uint32_t, nr); | |
2027 | env->pmsav7.dracr = g_new0(uint32_t, nr); | |
2028 | } | |
6cb0b013 | 2029 | } |
3281af81 PC |
2030 | } |
2031 | ||
9901c576 PM |
2032 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
2033 | uint32_t nr = cpu->sau_sregion; | |
2034 | ||
2035 | if (nr > 0xff) { | |
2036 | error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); | |
2037 | return; | |
2038 | } | |
2039 | ||
2040 | if (nr) { | |
2041 | env->sau.rbar = g_new0(uint32_t, nr); | |
2042 | env->sau.rlar = g_new0(uint32_t, nr); | |
2043 | } | |
2044 | } | |
2045 | ||
91db4642 CLG |
2046 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
2047 | set_feature(env, ARM_FEATURE_VBAR); | |
2048 | } | |
2049 | ||
2ceb98c0 | 2050 | register_cp_regs_for_features(cpu); |
14969266 AF |
2051 | arm_cpu_register_gdb_regs_for_features(cpu); |
2052 | ||
721fae12 PM |
2053 | init_cpreg_list(cpu); |
2054 | ||
9e273ef2 | 2055 | #ifndef CONFIG_USER_ONLY |
cc7d44c2 LX |
2056 | MachineState *ms = MACHINE(qdev_get_machine()); |
2057 | unsigned int smp_cpus = ms->smp.cpus; | |
8bce44a2 | 2058 | bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); |
cc7d44c2 | 2059 | |
8bce44a2 RH |
2060 | /* |
2061 | * We must set cs->num_ases to the final value before | |
2062 | * the first call to cpu_address_space_init. | |
2063 | */ | |
2064 | if (cpu->tag_memory != NULL) { | |
2065 | cs->num_ases = 3 + has_secure; | |
2066 | } else { | |
2067 | cs->num_ases = 1 + has_secure; | |
2068 | } | |
1d2091bc | 2069 | |
8bce44a2 | 2070 | if (has_secure) { |
9e273ef2 PM |
2071 | if (!cpu->secure_memory) { |
2072 | cpu->secure_memory = cs->memory; | |
2073 | } | |
80ceb07a PX |
2074 | cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", |
2075 | cpu->secure_memory); | |
9e273ef2 | 2076 | } |
8bce44a2 RH |
2077 | |
2078 | if (cpu->tag_memory != NULL) { | |
2079 | cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", | |
2080 | cpu->tag_memory); | |
2081 | if (has_secure) { | |
2082 | cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", | |
2083 | cpu->secure_tag_memory); | |
2084 | } | |
8bce44a2 RH |
2085 | } |
2086 | ||
80ceb07a | 2087 | cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); |
f9a69711 AF |
2088 | |
2089 | /* No core_count specified, default to smp_cpus. */ | |
2090 | if (cpu->core_count == -1) { | |
2091 | cpu->core_count = smp_cpus; | |
2092 | } | |
9e273ef2 PM |
2093 | #endif |
2094 | ||
a4157b80 RH |
2095 | if (tcg_enabled()) { |
2096 | int dcz_blocklen = 4 << cpu->dcz_blocksize; | |
2097 | ||
2098 | /* | |
2099 | * We only support DCZ blocklen that fits on one page. | |
2100 | * | |
2101 | * Architectually this is always true. However TARGET_PAGE_SIZE | |
2102 | * is variable and, for compatibility with -machine virt-2.7, | |
2103 | * is only 1KiB, as an artifact of legacy ARMv5 subpage support. | |
2104 | * But even then, while the largest architectural DCZ blocklen | |
2105 | * is 2KiB, no cpu actually uses such a large blocklen. | |
2106 | */ | |
2107 | assert(dcz_blocklen <= TARGET_PAGE_SIZE); | |
2108 | ||
2109 | /* | |
2110 | * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say | |
2111 | * both nibbles of each byte storing tag data may be written at once. | |
2112 | * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. | |
2113 | */ | |
2114 | if (cpu_isar_feature(aa64_mte, cpu)) { | |
2115 | assert(dcz_blocklen >= 2 * TAG_GRANULE); | |
2116 | } | |
2117 | } | |
2118 | ||
14a10fc3 | 2119 | qemu_init_vcpu(cs); |
00d0f7cb | 2120 | cpu_reset(cs); |
14969266 AF |
2121 | |
2122 | acc->parent_realize(dev, errp); | |
581be094 PM |
2123 | } |
2124 | ||
5900d6b2 AF |
2125 | static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) |
2126 | { | |
2127 | ObjectClass *oc; | |
51492fd1 | 2128 | char *typename; |
fb8d6c24 | 2129 | char **cpuname; |
a0032cc5 | 2130 | const char *cpunamestr; |
5900d6b2 | 2131 | |
fb8d6c24 | 2132 | cpuname = g_strsplit(cpu_model, ",", 1); |
a0032cc5 PM |
2133 | cpunamestr = cpuname[0]; |
2134 | #ifdef CONFIG_USER_ONLY | |
2135 | /* For backwards compatibility usermode emulation allows "-cpu any", | |
2136 | * which has the same semantics as "-cpu max". | |
2137 | */ | |
2138 | if (!strcmp(cpunamestr, "any")) { | |
2139 | cpunamestr = "max"; | |
2140 | } | |
2141 | #endif | |
2142 | typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); | |
51492fd1 | 2143 | oc = object_class_by_name(typename); |
fb8d6c24 | 2144 | g_strfreev(cpuname); |
51492fd1 | 2145 | g_free(typename); |
245fb54d AF |
2146 | if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || |
2147 | object_class_is_abstract(oc)) { | |
5900d6b2 AF |
2148 | return NULL; |
2149 | } | |
2150 | return oc; | |
2151 | } | |
2152 | ||
5de16430 | 2153 | static Property arm_cpu_properties[] = { |
e544f800 | 2154 | DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), |
ce5b1bbf LV |
2155 | DEFINE_PROP_UINT64("mp-affinity", ARMCPU, |
2156 | mp_affinity, ARM64_AFFINITY_INVALID), | |
15f8b142 | 2157 | DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), |
f9a69711 | 2158 | DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), |
5de16430 PM |
2159 | DEFINE_PROP_END_OF_LIST() |
2160 | }; | |
2161 | ||
b3820e6c DH |
2162 | static gchar *arm_gdb_arch_name(CPUState *cs) |
2163 | { | |
2164 | ARMCPU *cpu = ARM_CPU(cs); | |
2165 | CPUARMState *env = &cpu->env; | |
2166 | ||
2167 | if (arm_feature(env, ARM_FEATURE_IWMMXT)) { | |
2168 | return g_strdup("iwmmxt"); | |
2169 | } | |
2170 | return g_strdup("arm"); | |
2171 | } | |
2172 | ||
8b80bd28 PMD |
2173 | #ifndef CONFIG_USER_ONLY |
2174 | #include "hw/core/sysemu-cpu-ops.h" | |
2175 | ||
2176 | static const struct SysemuCPUOps arm_sysemu_ops = { | |
08928c6d | 2177 | .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, |
faf39e82 | 2178 | .asidx_from_attrs = arm_asidx_from_attrs, |
715e3c1a PMD |
2179 | .write_elf32_note = arm_cpu_write_elf32_note, |
2180 | .write_elf64_note = arm_cpu_write_elf64_note, | |
da383e02 | 2181 | .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, |
feece4d0 | 2182 | .legacy_vmsd = &vmstate_arm_cpu, |
8b80bd28 PMD |
2183 | }; |
2184 | #endif | |
2185 | ||
78271684 | 2186 | #ifdef CONFIG_TCG |
11906557 | 2187 | static const struct TCGCPUOps arm_tcg_ops = { |
78271684 CF |
2188 | .initialize = arm_translate_init, |
2189 | .synchronize_from_tb = arm_cpu_synchronize_from_tb, | |
78271684 | 2190 | .debug_excp_handler = arm_debug_excp_handler, |
56c6c98d | 2191 | .restore_state_to_opc = arm_restore_state_to_opc, |
78271684 | 2192 | |
9b12b6b4 RH |
2193 | #ifdef CONFIG_USER_ONLY |
2194 | .record_sigsegv = arm_cpu_record_sigsegv, | |
39a099ca | 2195 | .record_sigbus = arm_cpu_record_sigbus, |
9b12b6b4 RH |
2196 | #else |
2197 | .tlb_fill = arm_cpu_tlb_fill, | |
083afd18 | 2198 | .cpu_exec_interrupt = arm_cpu_exec_interrupt, |
78271684 CF |
2199 | .do_interrupt = arm_cpu_do_interrupt, |
2200 | .do_transaction_failed = arm_cpu_do_transaction_failed, | |
2201 | .do_unaligned_access = arm_cpu_do_unaligned_access, | |
2202 | .adjust_watchpoint_address = arm_adjust_watchpoint_address, | |
2203 | .debug_check_watchpoint = arm_debug_check_watchpoint, | |
b00d86bc | 2204 | .debug_check_breakpoint = arm_debug_check_breakpoint, |
78271684 CF |
2205 | #endif /* !CONFIG_USER_ONLY */ |
2206 | }; | |
2207 | #endif /* CONFIG_TCG */ | |
2208 | ||
dec9c2d4 AF |
2209 | static void arm_cpu_class_init(ObjectClass *oc, void *data) |
2210 | { | |
2211 | ARMCPUClass *acc = ARM_CPU_CLASS(oc); | |
2212 | CPUClass *cc = CPU_CLASS(acc); | |
14969266 AF |
2213 | DeviceClass *dc = DEVICE_CLASS(oc); |
2214 | ||
bf853881 PMD |
2215 | device_class_set_parent_realize(dc, arm_cpu_realizefn, |
2216 | &acc->parent_realize); | |
dec9c2d4 | 2217 | |
4f67d30b | 2218 | device_class_set_props(dc, arm_cpu_properties); |
781c67ca | 2219 | device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset); |
5900d6b2 AF |
2220 | |
2221 | cc->class_by_name = arm_cpu_class_by_name; | |
8c2e1b00 | 2222 | cc->has_work = arm_cpu_has_work; |
878096ee | 2223 | cc->dump_state = arm_cpu_dump_state; |
f45748f1 | 2224 | cc->set_pc = arm_cpu_set_pc; |
e4fdf9df | 2225 | cc->get_pc = arm_cpu_get_pc; |
5b50e790 AF |
2226 | cc->gdb_read_register = arm_cpu_gdb_read_register; |
2227 | cc->gdb_write_register = arm_cpu_gdb_write_register; | |
7350d553 | 2228 | #ifndef CONFIG_USER_ONLY |
8b80bd28 | 2229 | cc->sysemu_ops = &arm_sysemu_ops; |
00b941e5 | 2230 | #endif |
a0e372f0 | 2231 | cc->gdb_num_core_regs = 26; |
5b24c641 | 2232 | cc->gdb_core_xml_file = "arm-core.xml"; |
b3820e6c | 2233 | cc->gdb_arch_name = arm_gdb_arch_name; |
200bf5b7 | 2234 | cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; |
2472b6c0 | 2235 | cc->gdb_stop_before_watchpoint = true; |
48440620 | 2236 | cc->disas_set_info = arm_disas_set_info; |
78271684 | 2237 | |
74d7fc7f | 2238 | #ifdef CONFIG_TCG |
78271684 | 2239 | cc->tcg_ops = &arm_tcg_ops; |
cbc183d2 | 2240 | #endif /* CONFIG_TCG */ |
dec9c2d4 AF |
2241 | } |
2242 | ||
51e5ef45 MAL |
2243 | static void arm_cpu_instance_init(Object *obj) |
2244 | { | |
2245 | ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); | |
2246 | ||
2247 | acc->info->initfn(obj); | |
2248 | arm_cpu_post_init(obj); | |
2249 | } | |
2250 | ||
2251 | static void cpu_register_class_init(ObjectClass *oc, void *data) | |
2252 | { | |
2253 | ARMCPUClass *acc = ARM_CPU_CLASS(oc); | |
2254 | ||
2255 | acc->info = data; | |
2256 | } | |
2257 | ||
37bcf244 | 2258 | void arm_cpu_register(const ARMCPUInfo *info) |
777dc784 PM |
2259 | { |
2260 | TypeInfo type_info = { | |
777dc784 PM |
2261 | .parent = TYPE_ARM_CPU, |
2262 | .instance_size = sizeof(ARMCPU), | |
d03087bd | 2263 | .instance_align = __alignof__(ARMCPU), |
51e5ef45 | 2264 | .instance_init = arm_cpu_instance_init, |
777dc784 | 2265 | .class_size = sizeof(ARMCPUClass), |
51e5ef45 MAL |
2266 | .class_init = info->class_init ?: cpu_register_class_init, |
2267 | .class_data = (void *)info, | |
777dc784 PM |
2268 | }; |
2269 | ||
51492fd1 | 2270 | type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); |
918fd083 | 2271 | type_register(&type_info); |
51492fd1 | 2272 | g_free((void *)type_info.name); |
777dc784 PM |
2273 | } |
2274 | ||
dec9c2d4 AF |
2275 | static const TypeInfo arm_cpu_type_info = { |
2276 | .name = TYPE_ARM_CPU, | |
2277 | .parent = TYPE_CPU, | |
2278 | .instance_size = sizeof(ARMCPU), | |
d03087bd | 2279 | .instance_align = __alignof__(ARMCPU), |
777dc784 | 2280 | .instance_init = arm_cpu_initfn, |
4b6a83fb | 2281 | .instance_finalize = arm_cpu_finalizefn, |
777dc784 | 2282 | .abstract = true, |
dec9c2d4 AF |
2283 | .class_size = sizeof(ARMCPUClass), |
2284 | .class_init = arm_cpu_class_init, | |
2285 | }; | |
2286 | ||
2287 | static void arm_cpu_register_types(void) | |
2288 | { | |
2289 | type_register_static(&arm_cpu_type_info); | |
2290 | } | |
2291 | ||
2292 | type_init(arm_cpu_register_types) |