]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.c
Merge remote-tracking branch 'remotes/bonzini-gitlab/tags/for-upstream' into staging
[mirror_qemu.git] / target / arm / cpu.c
CommitLineData
dec9c2d4
AF
1/*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
74c21bd0 21#include "qemu/osdep.h"
86480615 22#include "qemu/qemu-print.h"
a8d25326 23#include "qemu-common.h"
181962fd 24#include "target/arm/idau.h"
0b8fa32f 25#include "qemu/module.h"
da34e65c 26#include "qapi/error.h"
f9f62e4c 27#include "qapi/visitor.h"
778c3a06 28#include "cpu.h"
78271684
CF
29#ifdef CONFIG_TCG
30#include "hw/core/tcg-cpu-ops.h"
31#endif /* CONFIG_TCG */
ccd38087 32#include "internals.h"
63c91552 33#include "exec/exec-all.h"
5de16430 34#include "hw/qdev-properties.h"
3c30dd5a
PM
35#if !defined(CONFIG_USER_ONLY)
36#include "hw/loader.h"
cc7d44c2 37#include "hw/boards.h"
3c30dd5a 38#endif
14a48c1d 39#include "sysemu/tcg.h"
b3946626 40#include "sysemu/hw_accel.h"
50a2c6e5 41#include "kvm_arm.h"
110f6c70 42#include "disas/capstone.h"
24f91e81 43#include "fpu/softfloat.h"
dec9c2d4 44
f45748f1
AF
45static void arm_cpu_set_pc(CPUState *cs, vaddr value)
46{
47 ARMCPU *cpu = ARM_CPU(cs);
42f6ed91
JS
48 CPUARMState *env = &cpu->env;
49
50 if (is_a64(env)) {
51 env->pc = value;
52 env->thumb = 0;
53 } else {
54 env->regs[15] = value & ~1;
55 env->thumb = value & 1;
56 }
57}
f45748f1 58
ec62595b 59#ifdef CONFIG_TCG
78271684
CF
60void arm_cpu_synchronize_from_tb(CPUState *cs,
61 const TranslationBlock *tb)
42f6ed91
JS
62{
63 ARMCPU *cpu = ARM_CPU(cs);
64 CPUARMState *env = &cpu->env;
65
66 /*
67 * It's OK to look at env for the current mode here, because it's
68 * never possible for an AArch64 TB to chain to an AArch32 TB.
69 */
70 if (is_a64(env)) {
71 env->pc = tb->pc;
72 } else {
73 env->regs[15] = tb->pc;
74 }
f45748f1 75}
ec62595b 76#endif /* CONFIG_TCG */
f45748f1 77
8c2e1b00
AF
78static bool arm_cpu_has_work(CPUState *cs)
79{
543486db
RH
80 ARMCPU *cpu = ARM_CPU(cs);
81
062ba099 82 return (cpu->power_state != PSCI_OFF)
543486db 83 && cs->interrupt_request &
136e67e9
EI
84 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86 | CPU_INTERRUPT_EXITTB);
8c2e1b00
AF
87}
88
b5c53d1b
AL
89void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90 void *opaque)
91{
92 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
93
94 entry->hook = hook;
95 entry->opaque = opaque;
96
97 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
98}
99
08267487 100void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc
PM
101 void *opaque)
102{
08267487
AL
103 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
104
105 entry->hook = hook;
106 entry->opaque = opaque;
107
108 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
bd7d00fc
PM
109}
110
4b6a83fb
PM
111static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
112{
113 /* Reset a single ARMCPRegInfo register */
114 ARMCPRegInfo *ri = value;
115 ARMCPU *cpu = opaque;
116
b061a82b 117 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
4b6a83fb
PM
118 return;
119 }
120
121 if (ri->resetfn) {
122 ri->resetfn(&cpu->env, ri);
123 return;
124 }
125
126 /* A zero offset is never possible as it would be regs[0]
127 * so we use it to indicate that reset is being handled elsewhere.
128 * This is basically only used for fields in non-core coprocessors
129 * (like the pxa2xx ones).
130 */
131 if (!ri->fieldoffset) {
132 return;
133 }
134
67ed771d 135 if (cpreg_field_is_64bit(ri)) {
4b6a83fb
PM
136 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137 } else {
138 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
139 }
140}
141
49a66191
PM
142static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
143{
144 /* Purely an assertion check: we've already done reset once,
145 * so now check that running the reset for the cpreg doesn't
146 * change its value. This traps bugs where two different cpregs
147 * both try to reset the same state field but to different values.
148 */
149 ARMCPRegInfo *ri = value;
150 ARMCPU *cpu = opaque;
151 uint64_t oldvalue, newvalue;
152
153 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154 return;
155 }
156
157 oldvalue = read_raw_cp_reg(&cpu->env, ri);
158 cp_reg_reset(key, value, opaque);
159 newvalue = read_raw_cp_reg(&cpu->env, ri);
160 assert(oldvalue == newvalue);
161}
162
781c67ca 163static void arm_cpu_reset(DeviceState *dev)
dec9c2d4 164{
781c67ca 165 CPUState *s = CPU(dev);
dec9c2d4
AF
166 ARMCPU *cpu = ARM_CPU(s);
167 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
3c30dd5a 168 CPUARMState *env = &cpu->env;
3c30dd5a 169
781c67ca 170 acc->parent_reset(dev);
dec9c2d4 171
1f5c00cf
AB
172 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
173
4b6a83fb 174 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
49a66191
PM
175 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
176
3c30dd5a 177 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
47576b94
RH
178 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
3c30dd5a 181
c1b70158 182 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
543486db 183
3c30dd5a
PM
184 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
186 }
187
3926cc84
AG
188 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189 /* 64 bit CPUs always start in 64 bit mode */
190 env->aarch64 = 1;
d356312f
PM
191#if defined(CONFIG_USER_ONLY)
192 env->pstate = PSTATE_MODE_EL0t;
14e5f106 193 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
137feaa9 194 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
276c6e81
RH
195 /* Enable all PAC keys. */
196 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197 SCTLR_EnDA | SCTLR_EnDB);
8c6afa6a 198 /* and to the FP/Neon instructions */
7ebd5f2e 199 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
802ac0e1
RH
200 /* and to the SVE instructions */
201 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
7b6a2198
AB
202 /* with reasonable vector length */
203 if (cpu_isar_feature(aa64_sve, cpu)) {
204 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
205 }
f6a148fe 206 /*
16c84978
RH
207 * Enable TBI0 but not TBI1.
208 * Note that this must match useronly_clean_ptr.
f6a148fe 209 */
16c84978 210 env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
e3232864
RH
211
212 /* Enable MTE */
213 if (cpu_isar_feature(aa64_mte, cpu)) {
214 /* Enable tag access, but leave TCF0 as No Effect (0). */
215 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
216 /*
217 * Exclude all tags, so that tag 0 is always used.
218 * This corresponds to Linux current->thread.gcr_incl = 0.
219 *
220 * Set RRND, so that helper_irg() will generate a seed later.
221 * Here in cpu_reset(), the crypto subsystem has not yet been
222 * initialized.
223 */
224 env->cp15.gcr_el1 = 0x1ffff;
225 }
d356312f 226#else
5097227c
GB
227 /* Reset into the highest available EL */
228 if (arm_feature(env, ARM_FEATURE_EL3)) {
229 env->pstate = PSTATE_MODE_EL3h;
230 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
231 env->pstate = PSTATE_MODE_EL2h;
232 } else {
233 env->pstate = PSTATE_MODE_EL1h;
234 }
3933443e 235 env->pc = cpu->rvbar;
8c6afa6a
PM
236#endif
237 } else {
238#if defined(CONFIG_USER_ONLY)
239 /* Userspace expects access to cp10 and cp11 for FP/Neon */
7ebd5f2e 240 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
d356312f 241#endif
3926cc84
AG
242 }
243
3c30dd5a
PM
244#if defined(CONFIG_USER_ONLY)
245 env->uncached_cpsr = ARM_CPU_MODE_USR;
246 /* For user mode we must enable access to coprocessors */
247 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
248 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
249 env->cp15.c15_cpar = 3;
250 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
251 env->cp15.c15_cpar = 1;
252 }
253#else
060a65df
PM
254
255 /*
256 * If the highest available EL is EL2, AArch32 will start in Hyp
257 * mode; otherwise it starts in SVC. Note that if we start in
258 * AArch64 then these values in the uncached_cpsr will be ignored.
259 */
260 if (arm_feature(env, ARM_FEATURE_EL2) &&
261 !arm_feature(env, ARM_FEATURE_EL3)) {
262 env->uncached_cpsr = ARM_CPU_MODE_HYP;
263 } else {
264 env->uncached_cpsr = ARM_CPU_MODE_SVC;
265 }
4cc35614 266 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
dc7abe4d 267
531c60a9 268 if (arm_feature(env, ARM_FEATURE_M)) {
6e3cf5df
MG
269 uint32_t initial_msp; /* Loaded from 0x0 */
270 uint32_t initial_pc; /* Loaded from 0x4 */
3c30dd5a 271 uint8_t *rom;
38e2a77c 272 uint32_t vecbase;
6e3cf5df 273
8128c8e8
PM
274 if (cpu_isar_feature(aa32_lob, cpu)) {
275 /*
276 * LTPSIZE is constant 4 if MVE not implemented, and resets
277 * to an UNKNOWN value if MVE is implemented. We choose to
278 * always reset to 4.
279 */
280 env->v7m.ltpsize = 4;
99c7834f
PM
281 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
282 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
283 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
8128c8e8
PM
284 }
285
1e577cc7
PM
286 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
287 env->v7m.secure = true;
3b2e9344
PM
288 } else {
289 /* This bit resets to 0 if security is supported, but 1 if
290 * it is not. The bit is not present in v7M, but we set it
291 * here so we can avoid having to make checks on it conditional
292 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
293 */
294 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
02ac2f7f
PM
295 /*
296 * Set NSACR to indicate "NS access permitted to everything";
297 * this avoids having to have all the tests of it being
298 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
299 * v8.1M the guest-visible value of NSACR in a CPU without the
300 * Security Extension is 0xcff.
301 */
302 env->v7m.nsacr = 0xcff;
1e577cc7
PM
303 }
304
9d40cd8a 305 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
2c4da50d 306 * that it resets to 1, so QEMU always does that rather than making
9d40cd8a 307 * it dependent on CPU model. In v8M it is RES1.
2c4da50d 308 */
9d40cd8a
PM
309 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
310 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
311 if (arm_feature(env, ARM_FEATURE_V8)) {
312 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
313 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
314 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
315 }
22ab3460
JS
316 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
317 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
318 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
319 }
2c4da50d 320
7fbc6a40 321 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
d33abe82
PM
322 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
323 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
324 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
325 }
056f43df
PM
326 /* Unlike A/R profile, M profile defines the reset LR value */
327 env->regs[14] = 0xffffffff;
328
38e2a77c 329 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
7cda2149 330 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
38e2a77c
PM
331
332 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
333 vecbase = env->v7m.vecbase[env->v7m.secure];
75ce72b7 334 rom = rom_ptr_for_as(s->as, vecbase, 8);
3c30dd5a 335 if (rom) {
6e3cf5df
MG
336 /* Address zero is covered by ROM which hasn't yet been
337 * copied into physical memory.
338 */
339 initial_msp = ldl_p(rom);
340 initial_pc = ldl_p(rom + 4);
341 } else {
342 /* Address zero not covered by a ROM blob, or the ROM blob
343 * is in non-modifiable memory and this is a second reset after
344 * it got copied into memory. In the latter case, rom_ptr
345 * will return a NULL pointer and we should use ldl_phys instead.
346 */
38e2a77c
PM
347 initial_msp = ldl_phys(s->as, vecbase);
348 initial_pc = ldl_phys(s->as, vecbase + 4);
3c30dd5a 349 }
6e3cf5df
MG
350
351 env->regs[13] = initial_msp & 0xFFFFFFFC;
352 env->regs[15] = initial_pc & ~1;
353 env->thumb = initial_pc & 1;
3c30dd5a 354 }
387f9806 355
137feaa9
FA
356 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
357 * executing as AArch32 then check if highvecs are enabled and
358 * adjust the PC accordingly.
359 */
360 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
34bf7744 361 env->regs[15] = 0xFFFF0000;
387f9806
AP
362 }
363
dc3c4c14
PM
364 /* M profile requires that reset clears the exclusive monitor;
365 * A profile does not, but clearing it makes more sense than having it
366 * set with an exclusive access on address zero.
367 */
368 arm_clear_exclusive(env);
369
3c30dd5a 370 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
3c30dd5a 371#endif
69ceea64 372
0e1a46bb 373 if (arm_feature(env, ARM_FEATURE_PMSA)) {
69ceea64 374 if (cpu->pmsav7_dregion > 0) {
0e1a46bb 375 if (arm_feature(env, ARM_FEATURE_V8)) {
62c58ee0
PM
376 memset(env->pmsav8.rbar[M_REG_NS], 0,
377 sizeof(*env->pmsav8.rbar[M_REG_NS])
378 * cpu->pmsav7_dregion);
379 memset(env->pmsav8.rlar[M_REG_NS], 0,
380 sizeof(*env->pmsav8.rlar[M_REG_NS])
381 * cpu->pmsav7_dregion);
382 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
383 memset(env->pmsav8.rbar[M_REG_S], 0,
384 sizeof(*env->pmsav8.rbar[M_REG_S])
385 * cpu->pmsav7_dregion);
386 memset(env->pmsav8.rlar[M_REG_S], 0,
387 sizeof(*env->pmsav8.rlar[M_REG_S])
388 * cpu->pmsav7_dregion);
389 }
0e1a46bb
PM
390 } else if (arm_feature(env, ARM_FEATURE_V7)) {
391 memset(env->pmsav7.drbar, 0,
392 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
393 memset(env->pmsav7.drsr, 0,
394 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
395 memset(env->pmsav7.dracr, 0,
396 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
397 }
69ceea64 398 }
1bc04a88
PM
399 env->pmsav7.rnr[M_REG_NS] = 0;
400 env->pmsav7.rnr[M_REG_S] = 0;
4125e6fe
PM
401 env->pmsav8.mair0[M_REG_NS] = 0;
402 env->pmsav8.mair0[M_REG_S] = 0;
403 env->pmsav8.mair1[M_REG_NS] = 0;
404 env->pmsav8.mair1[M_REG_S] = 0;
69ceea64
PM
405 }
406
9901c576
PM
407 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
408 if (cpu->sau_sregion > 0) {
409 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
410 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
411 }
412 env->sau.rnr = 0;
413 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
414 * the Cortex-M33 does.
415 */
416 env->sau.ctrl = 0;
417 }
418
3c30dd5a
PM
419 set_flush_to_zero(1, &env->vfp.standard_fp_status);
420 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
421 set_default_nan_mode(1, &env->vfp.standard_fp_status);
aaae563b 422 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
3c30dd5a
PM
423 set_float_detect_tininess(float_tininess_before_rounding,
424 &env->vfp.fp_status);
425 set_float_detect_tininess(float_tininess_before_rounding,
426 &env->vfp.standard_fp_status);
bcc531f0
PM
427 set_float_detect_tininess(float_tininess_before_rounding,
428 &env->vfp.fp_status_f16);
aaae563b
PM
429 set_float_detect_tininess(float_tininess_before_rounding,
430 &env->vfp.standard_fp_status_f16);
50a2c6e5
PB
431#ifndef CONFIG_USER_ONLY
432 if (kvm_enabled()) {
433 kvm_arm_reset_vcpu(cpu);
434 }
435#endif
9ee98ce8 436
46747d15 437 hw_breakpoint_update_all(cpu);
9ee98ce8 438 hw_watchpoint_update_all(cpu);
a8a79c7a 439 arm_rebuild_hflags(env);
dec9c2d4
AF
440}
441
310cedf3 442static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
be879556
RH
443 unsigned int target_el,
444 unsigned int cur_el, bool secure,
445 uint64_t hcr_el2)
310cedf3
RH
446{
447 CPUARMState *env = cs->env_ptr;
310cedf3 448 bool pstate_unmasked;
16e07f78 449 bool unmasked = false;
310cedf3
RH
450
451 /*
452 * Don't take exceptions if they target a lower EL.
453 * This check should catch any exceptions that would not be taken
454 * but left pending.
455 */
456 if (cur_el > target_el) {
457 return false;
458 }
459
310cedf3
RH
460 switch (excp_idx) {
461 case EXCP_FIQ:
462 pstate_unmasked = !(env->daif & PSTATE_F);
463 break;
464
465 case EXCP_IRQ:
466 pstate_unmasked = !(env->daif & PSTATE_I);
467 break;
468
469 case EXCP_VFIQ:
cc974d5c
RDC
470 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
471 /* VFIQs are only taken when hypervized. */
310cedf3
RH
472 return false;
473 }
474 return !(env->daif & PSTATE_F);
475 case EXCP_VIRQ:
cc974d5c
RDC
476 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
477 /* VIRQs are only taken when hypervized. */
310cedf3
RH
478 return false;
479 }
480 return !(env->daif & PSTATE_I);
481 default:
482 g_assert_not_reached();
483 }
484
485 /*
486 * Use the target EL, current execution state and SCR/HCR settings to
487 * determine whether the corresponding CPSR bit is used to mask the
488 * interrupt.
489 */
490 if ((target_el > cur_el) && (target_el != 1)) {
491 /* Exceptions targeting a higher EL may not be maskable */
492 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
493 /*
494 * 64-bit masking rules are simple: exceptions to EL3
495 * can't be masked, and exceptions to EL2 can only be
496 * masked from Secure state. The HCR and SCR settings
497 * don't affect the masking logic, only the interrupt routing.
498 */
926c1b97 499 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
16e07f78 500 unmasked = true;
310cedf3
RH
501 }
502 } else {
503 /*
504 * The old 32-bit-only environment has a more complicated
505 * masking setup. HCR and SCR bits not only affect interrupt
506 * routing but also change the behaviour of masking.
507 */
508 bool hcr, scr;
509
510 switch (excp_idx) {
511 case EXCP_FIQ:
512 /*
513 * If FIQs are routed to EL3 or EL2 then there are cases where
514 * we override the CPSR.F in determining if the exception is
515 * masked or not. If neither of these are set then we fall back
516 * to the CPSR.F setting otherwise we further assess the state
517 * below.
518 */
519 hcr = hcr_el2 & HCR_FMO;
520 scr = (env->cp15.scr_el3 & SCR_FIQ);
521
522 /*
523 * When EL3 is 32-bit, the SCR.FW bit controls whether the
524 * CPSR.F bit masks FIQ interrupts when taken in non-secure
525 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
526 * when non-secure but only when FIQs are only routed to EL3.
527 */
528 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
529 break;
530 case EXCP_IRQ:
531 /*
532 * When EL3 execution state is 32-bit, if HCR.IMO is set then
533 * we may override the CPSR.I masking when in non-secure state.
534 * The SCR.IRQ setting has already been taken into consideration
535 * when setting the target EL, so it does not have a further
536 * affect here.
537 */
538 hcr = hcr_el2 & HCR_IMO;
539 scr = false;
540 break;
541 default:
542 g_assert_not_reached();
543 }
544
545 if ((scr || hcr) && !secure) {
16e07f78 546 unmasked = true;
310cedf3
RH
547 }
548 }
549 }
550
551 /*
552 * The PSTATE bits only mask the interrupt if we have not overriden the
553 * ability above.
554 */
555 return unmasked || pstate_unmasked;
556}
557
e8925712
RH
558bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
559{
560 CPUClass *cc = CPU_GET_CLASS(cs);
012a906b
GB
561 CPUARMState *env = cs->env_ptr;
562 uint32_t cur_el = arm_current_el(env);
563 bool secure = arm_is_secure(env);
be879556 564 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
012a906b
GB
565 uint32_t target_el;
566 uint32_t excp_idx;
d63d0ec5
RH
567
568 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
e8925712 569
012a906b
GB
570 if (interrupt_request & CPU_INTERRUPT_FIQ) {
571 excp_idx = EXCP_FIQ;
572 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
be879556
RH
573 if (arm_excp_unmasked(cs, excp_idx, target_el,
574 cur_el, secure, hcr_el2)) {
d63d0ec5 575 goto found;
012a906b 576 }
e8925712 577 }
012a906b
GB
578 if (interrupt_request & CPU_INTERRUPT_HARD) {
579 excp_idx = EXCP_IRQ;
580 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
be879556
RH
581 if (arm_excp_unmasked(cs, excp_idx, target_el,
582 cur_el, secure, hcr_el2)) {
d63d0ec5 583 goto found;
012a906b 584 }
e8925712 585 }
012a906b
GB
586 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
587 excp_idx = EXCP_VIRQ;
588 target_el = 1;
be879556
RH
589 if (arm_excp_unmasked(cs, excp_idx, target_el,
590 cur_el, secure, hcr_el2)) {
d63d0ec5 591 goto found;
012a906b 592 }
136e67e9 593 }
012a906b
GB
594 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
595 excp_idx = EXCP_VFIQ;
596 target_el = 1;
be879556
RH
597 if (arm_excp_unmasked(cs, excp_idx, target_el,
598 cur_el, secure, hcr_el2)) {
d63d0ec5 599 goto found;
012a906b 600 }
136e67e9 601 }
d63d0ec5 602 return false;
e8925712 603
d63d0ec5
RH
604 found:
605 cs->exception_index = excp_idx;
606 env->exception.target_el = target_el;
78271684 607 cc->tcg_ops->do_interrupt(cs);
d63d0ec5 608 return true;
e8925712
RH
609}
610
89430fc6
PM
611void arm_cpu_update_virq(ARMCPU *cpu)
612{
613 /*
614 * Update the interrupt level for VIRQ, which is the logical OR of
615 * the HCR_EL2.VI bit and the input line level from the GIC.
616 */
617 CPUARMState *env = &cpu->env;
618 CPUState *cs = CPU(cpu);
619
620 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
621 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
622
623 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
624 if (new_state) {
625 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
626 } else {
627 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
628 }
629 }
630}
631
632void arm_cpu_update_vfiq(ARMCPU *cpu)
633{
634 /*
635 * Update the interrupt level for VFIQ, which is the logical OR of
636 * the HCR_EL2.VF bit and the input line level from the GIC.
637 */
638 CPUARMState *env = &cpu->env;
639 CPUState *cs = CPU(cpu);
640
641 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
642 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
643
644 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
645 if (new_state) {
646 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
647 } else {
648 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
649 }
650 }
651}
652
7c1840b6
PM
653#ifndef CONFIG_USER_ONLY
654static void arm_cpu_set_irq(void *opaque, int irq, int level)
655{
656 ARMCPU *cpu = opaque;
136e67e9 657 CPUARMState *env = &cpu->env;
7c1840b6 658 CPUState *cs = CPU(cpu);
136e67e9
EI
659 static const int mask[] = {
660 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
661 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
662 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
663 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
664 };
7c1840b6 665
ed89f078
PM
666 if (level) {
667 env->irq_line_state |= mask[irq];
668 } else {
669 env->irq_line_state &= ~mask[irq];
670 }
671
7c1840b6 672 switch (irq) {
136e67e9 673 case ARM_CPU_VIRQ:
89430fc6
PM
674 assert(arm_feature(env, ARM_FEATURE_EL2));
675 arm_cpu_update_virq(cpu);
676 break;
136e67e9 677 case ARM_CPU_VFIQ:
f128bf29 678 assert(arm_feature(env, ARM_FEATURE_EL2));
89430fc6
PM
679 arm_cpu_update_vfiq(cpu);
680 break;
136e67e9 681 case ARM_CPU_IRQ:
7c1840b6
PM
682 case ARM_CPU_FIQ:
683 if (level) {
136e67e9 684 cpu_interrupt(cs, mask[irq]);
7c1840b6 685 } else {
136e67e9 686 cpu_reset_interrupt(cs, mask[irq]);
7c1840b6
PM
687 }
688 break;
689 default:
8f6fd322 690 g_assert_not_reached();
7c1840b6
PM
691 }
692}
693
694static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
695{
696#ifdef CONFIG_KVM
697 ARMCPU *cpu = opaque;
ed89f078 698 CPUARMState *env = &cpu->env;
7c1840b6 699 CPUState *cs = CPU(cpu);
ed89f078 700 uint32_t linestate_bit;
f6530926 701 int irq_id;
7c1840b6
PM
702
703 switch (irq) {
704 case ARM_CPU_IRQ:
f6530926 705 irq_id = KVM_ARM_IRQ_CPU_IRQ;
ed89f078 706 linestate_bit = CPU_INTERRUPT_HARD;
7c1840b6
PM
707 break;
708 case ARM_CPU_FIQ:
f6530926 709 irq_id = KVM_ARM_IRQ_CPU_FIQ;
ed89f078 710 linestate_bit = CPU_INTERRUPT_FIQ;
7c1840b6
PM
711 break;
712 default:
8f6fd322 713 g_assert_not_reached();
7c1840b6 714 }
ed89f078
PM
715
716 if (level) {
717 env->irq_line_state |= linestate_bit;
718 } else {
719 env->irq_line_state &= ~linestate_bit;
720 }
f6530926 721 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
7c1840b6
PM
722#endif
723}
84f2bed3 724
ed50ff78 725static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
84f2bed3
PS
726{
727 ARMCPU *cpu = ARM_CPU(cs);
728 CPUARMState *env = &cpu->env;
84f2bed3
PS
729
730 cpu_synchronize_state(cs);
ed50ff78 731 return arm_cpu_data_is_big_endian(env);
84f2bed3
PS
732}
733
7c1840b6
PM
734#endif
735
48440620
PC
736static int
737print_insn_thumb1(bfd_vma pc, disassemble_info *info)
738{
739 return print_insn_arm(pc | 1, info);
740}
741
742static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
743{
744 ARMCPU *ac = ARM_CPU(cpu);
745 CPUARMState *env = &ac->env;
7bcdbf51 746 bool sctlr_b;
48440620
PC
747
748 if (is_a64(env)) {
749 /* We might not be compiled with the A64 disassembler
750 * because it needs a C++ compiler. Leave print_insn
751 * unset in this case to use the caller default behaviour.
752 */
753#if defined(CONFIG_ARM_A64_DIS)
754 info->print_insn = print_insn_arm_a64;
755#endif
110f6c70 756 info->cap_arch = CS_ARCH_ARM64;
15fa1a0a
RH
757 info->cap_insn_unit = 4;
758 info->cap_insn_split = 4;
48440620 759 } else {
110f6c70
RH
760 int cap_mode;
761 if (env->thumb) {
762 info->print_insn = print_insn_thumb1;
15fa1a0a
RH
763 info->cap_insn_unit = 2;
764 info->cap_insn_split = 4;
110f6c70
RH
765 cap_mode = CS_MODE_THUMB;
766 } else {
767 info->print_insn = print_insn_arm;
15fa1a0a
RH
768 info->cap_insn_unit = 4;
769 info->cap_insn_split = 4;
110f6c70
RH
770 cap_mode = CS_MODE_ARM;
771 }
772 if (arm_feature(env, ARM_FEATURE_V8)) {
773 cap_mode |= CS_MODE_V8;
774 }
775 if (arm_feature(env, ARM_FEATURE_M)) {
776 cap_mode |= CS_MODE_MCLASS;
777 }
778 info->cap_arch = CS_ARCH_ARM;
779 info->cap_mode = cap_mode;
48440620 780 }
7bcdbf51
RH
781
782 sctlr_b = arm_sctlr_b(env);
783 if (bswap_code(sctlr_b)) {
48440620
PC
784#ifdef TARGET_WORDS_BIGENDIAN
785 info->endian = BFD_ENDIAN_LITTLE;
786#else
787 info->endian = BFD_ENDIAN_BIG;
788#endif
789 }
f7478a92 790 info->flags &= ~INSN_ARM_BE32;
7bcdbf51
RH
791#ifndef CONFIG_USER_ONLY
792 if (sctlr_b) {
f7478a92
JB
793 info->flags |= INSN_ARM_BE32;
794 }
7bcdbf51 795#endif
48440620
PC
796}
797
86480615
PMD
798#ifdef TARGET_AARCH64
799
800static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
801{
802 ARMCPU *cpu = ARM_CPU(cs);
803 CPUARMState *env = &cpu->env;
804 uint32_t psr = pstate_read(env);
805 int i;
806 int el = arm_current_el(env);
807 const char *ns_status;
808
809 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
810 for (i = 0; i < 32; i++) {
811 if (i == 31) {
812 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
813 } else {
814 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
815 (i + 2) % 3 ? " " : "\n");
816 }
817 }
818
819 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
820 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
821 } else {
822 ns_status = "";
823 }
824 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
825 psr,
826 psr & PSTATE_N ? 'N' : '-',
827 psr & PSTATE_Z ? 'Z' : '-',
828 psr & PSTATE_C ? 'C' : '-',
829 psr & PSTATE_V ? 'V' : '-',
830 ns_status,
831 el,
832 psr & PSTATE_SP ? 'h' : 't');
833
834 if (cpu_isar_feature(aa64_bti, cpu)) {
835 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
836 }
837 if (!(flags & CPU_DUMP_FPU)) {
838 qemu_fprintf(f, "\n");
839 return;
840 }
841 if (fp_exception_el(env, el) != 0) {
842 qemu_fprintf(f, " FPU disabled\n");
843 return;
844 }
845 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
846 vfp_get_fpcr(env), vfp_get_fpsr(env));
847
848 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
849 int j, zcr_len = sve_zcr_len_for_el(env, el);
850
851 for (i = 0; i <= FFR_PRED_NUM; i++) {
852 bool eol;
853 if (i == FFR_PRED_NUM) {
854 qemu_fprintf(f, "FFR=");
855 /* It's last, so end the line. */
856 eol = true;
857 } else {
858 qemu_fprintf(f, "P%02d=", i);
859 switch (zcr_len) {
860 case 0:
861 eol = i % 8 == 7;
862 break;
863 case 1:
864 eol = i % 6 == 5;
865 break;
866 case 2:
867 case 3:
868 eol = i % 3 == 2;
869 break;
870 default:
871 /* More than one quadword per predicate. */
872 eol = true;
873 break;
874 }
875 }
876 for (j = zcr_len / 4; j >= 0; j--) {
877 int digits;
878 if (j * 4 + 4 <= zcr_len + 1) {
879 digits = 16;
880 } else {
881 digits = (zcr_len % 4 + 1) * 4;
882 }
883 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
884 env->vfp.pregs[i].p[j],
885 j ? ":" : eol ? "\n" : " ");
886 }
887 }
888
889 for (i = 0; i < 32; i++) {
890 if (zcr_len == 0) {
891 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
892 i, env->vfp.zregs[i].d[1],
893 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
894 } else if (zcr_len == 1) {
895 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
896 ":%016" PRIx64 ":%016" PRIx64 "\n",
897 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
898 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
899 } else {
900 for (j = zcr_len; j >= 0; j--) {
901 bool odd = (zcr_len - j) % 2 != 0;
902 if (j == zcr_len) {
903 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
904 } else if (!odd) {
905 if (j > 0) {
906 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
907 } else {
908 qemu_fprintf(f, " [%x]=", j);
909 }
910 }
911 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
912 env->vfp.zregs[i].d[j * 2 + 1],
913 env->vfp.zregs[i].d[j * 2],
914 odd || j == 0 ? "\n" : ":");
915 }
916 }
917 }
918 } else {
919 for (i = 0; i < 32; i++) {
920 uint64_t *q = aa64_vfp_qreg(env, i);
921 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
922 i, q[1], q[0], (i & 1 ? "\n" : " "));
923 }
924 }
925}
926
927#else
928
929static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
930{
931 g_assert_not_reached();
932}
933
934#endif
935
936static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
937{
938 ARMCPU *cpu = ARM_CPU(cs);
939 CPUARMState *env = &cpu->env;
940 int i;
941
942 if (is_a64(env)) {
943 aarch64_cpu_dump_state(cs, f, flags);
944 return;
945 }
946
947 for (i = 0; i < 16; i++) {
948 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
949 if ((i % 4) == 3) {
950 qemu_fprintf(f, "\n");
951 } else {
952 qemu_fprintf(f, " ");
953 }
954 }
955
956 if (arm_feature(env, ARM_FEATURE_M)) {
957 uint32_t xpsr = xpsr_read(env);
958 const char *mode;
959 const char *ns_status = "";
960
961 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
962 ns_status = env->v7m.secure ? "S " : "NS ";
963 }
964
965 if (xpsr & XPSR_EXCP) {
966 mode = "handler";
967 } else {
968 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
969 mode = "unpriv-thread";
970 } else {
971 mode = "priv-thread";
972 }
973 }
974
975 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
976 xpsr,
977 xpsr & XPSR_N ? 'N' : '-',
978 xpsr & XPSR_Z ? 'Z' : '-',
979 xpsr & XPSR_C ? 'C' : '-',
980 xpsr & XPSR_V ? 'V' : '-',
981 xpsr & XPSR_T ? 'T' : 'A',
982 ns_status,
983 mode);
984 } else {
985 uint32_t psr = cpsr_read(env);
986 const char *ns_status = "";
987
988 if (arm_feature(env, ARM_FEATURE_EL3) &&
989 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
990 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
991 }
992
993 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
994 psr,
995 psr & CPSR_N ? 'N' : '-',
996 psr & CPSR_Z ? 'Z' : '-',
997 psr & CPSR_C ? 'C' : '-',
998 psr & CPSR_V ? 'V' : '-',
999 psr & CPSR_T ? 'T' : 'A',
1000 ns_status,
1001 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1002 }
1003
1004 if (flags & CPU_DUMP_FPU) {
1005 int numvfpregs = 0;
a6627f5f
RH
1006 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1007 numvfpregs = 32;
7fbc6a40 1008 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
a6627f5f 1009 numvfpregs = 16;
86480615
PMD
1010 }
1011 for (i = 0; i < numvfpregs; i++) {
1012 uint64_t v = *aa32_vfp_dreg(env, i);
1013 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1014 i * 2, (uint32_t)v,
1015 i * 2 + 1, (uint32_t)(v >> 32),
1016 i, v);
1017 }
1018 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1019 }
1020}
1021
46de5913
IM
1022uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1023{
1024 uint32_t Aff1 = idx / clustersz;
1025 uint32_t Aff0 = idx % clustersz;
1026 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1027}
1028
ac87e507
PM
1029static void cpreg_hashtable_data_destroy(gpointer data)
1030{
1031 /*
1032 * Destroy function for cpu->cp_regs hashtable data entries.
1033 * We must free the name string because it was g_strdup()ed in
1034 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1035 * from r->name because we know we definitely allocated it.
1036 */
1037 ARMCPRegInfo *r = data;
1038
1039 g_free((void *)r->name);
1040 g_free(r);
1041}
1042
777dc784
PM
1043static void arm_cpu_initfn(Object *obj)
1044{
1045 ARMCPU *cpu = ARM_CPU(obj);
1046
7506ed90 1047 cpu_set_cpustate_pointers(cpu);
4b6a83fb 1048 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
ac87e507 1049 g_free, cpreg_hashtable_data_destroy);
79614b78 1050
b5c53d1b 1051 QLIST_INIT(&cpu->pre_el_change_hooks);
08267487
AL
1052 QLIST_INIT(&cpu->el_change_hooks);
1053
7c1840b6
PM
1054#ifndef CONFIG_USER_ONLY
1055 /* Our inbound IRQ and FIQ lines */
1056 if (kvm_enabled()) {
136e67e9
EI
1057 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1058 * the same interface as non-KVM CPUs.
1059 */
1060 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
7c1840b6 1061 } else {
136e67e9 1062 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
7c1840b6 1063 }
55d284af 1064
55d284af
PM
1065 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1066 ARRAY_SIZE(cpu->gt_timer_outputs));
aa1b3111
PM
1067
1068 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1069 "gicv3-maintenance-interrupt", 1);
07f48730
AJ
1070 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1071 "pmu-interrupt", 1);
7c1840b6
PM
1072#endif
1073
54d3e3f5
PM
1074 /* DTB consumers generally don't in fact care what the 'compatible'
1075 * string is, so always provide some string and trust that a hypothetical
1076 * picky DTB consumer will also provide a helpful error message.
1077 */
1078 cpu->dtb_compatible = "qemu,unknown";
dd032e34 1079 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
3541addc 1080 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
54d3e3f5 1081
98128601
RH
1082 if (tcg_enabled()) {
1083 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
79614b78 1084 }
4b6a83fb
PM
1085}
1086
96eec6b2
AJ
1087static Property arm_cpu_gt_cntfrq_property =
1088 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1089 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1090
07a5b0d2 1091static Property arm_cpu_reset_cbar_property =
f318cec6 1092 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
07a5b0d2 1093
68e0a40a
AP
1094static Property arm_cpu_reset_hivecs_property =
1095 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1096
3933443e
PM
1097static Property arm_cpu_rvbar_property =
1098 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1099
45ca3a14 1100#ifndef CONFIG_USER_ONLY
c25bd18a
PM
1101static Property arm_cpu_has_el2_property =
1102 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1103
51942aee
GB
1104static Property arm_cpu_has_el3_property =
1105 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
45ca3a14 1106#endif
51942aee 1107
3a062d57
JB
1108static Property arm_cpu_cfgend_property =
1109 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1110
97a28b0e
PM
1111static Property arm_cpu_has_vfp_property =
1112 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1113
1114static Property arm_cpu_has_neon_property =
1115 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1116
ea90db0a
PM
1117static Property arm_cpu_has_dsp_property =
1118 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1119
8f325f56
PC
1120static Property arm_cpu_has_mpu_property =
1121 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1122
8d92e26b
PM
1123/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1124 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1125 * the right value for that particular CPU type, and we don't want
1126 * to override that with an incorrect constant value.
1127 */
3281af81 1128static Property arm_cpu_pmsav7_dregion_property =
8d92e26b
PM
1129 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1130 pmsav7_dregion,
1131 qdev_prop_uint32, uint32_t);
3281af81 1132
ae502508
AJ
1133static bool arm_get_pmu(Object *obj, Error **errp)
1134{
1135 ARMCPU *cpu = ARM_CPU(obj);
1136
1137 return cpu->has_pmu;
1138}
1139
1140static void arm_set_pmu(Object *obj, bool value, Error **errp)
1141{
1142 ARMCPU *cpu = ARM_CPU(obj);
1143
1144 if (value) {
7d20e681 1145 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
ae502508
AJ
1146 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1147 return;
1148 }
1149 set_feature(&cpu->env, ARM_FEATURE_PMU);
1150 } else {
1151 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1152 }
1153 cpu->has_pmu = value;
1154}
1155
7def8754
AJ
1156unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1157{
96eec6b2
AJ
1158 /*
1159 * The exact approach to calculating guest ticks is:
1160 *
1161 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1162 * NANOSECONDS_PER_SECOND);
1163 *
1164 * We don't do that. Rather we intentionally use integer division
1165 * truncation below and in the caller for the conversion of host monotonic
1166 * time to guest ticks to provide the exact inverse for the semantics of
1167 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1168 * it loses precision when representing frequencies where
1169 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1170 * provide an exact inverse leads to scheduling timers with negative
1171 * periods, which in turn leads to sticky behaviour in the guest.
1172 *
1173 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1174 * cannot become zero.
1175 */
7def8754
AJ
1176 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1177 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1178}
1179
51e5ef45 1180void arm_cpu_post_init(Object *obj)
07a5b0d2
PC
1181{
1182 ARMCPU *cpu = ARM_CPU(obj);
07a5b0d2 1183
790a1150
PM
1184 /* M profile implies PMSA. We have to do this here rather than
1185 * in realize with the other feature-implication checks because
1186 * we look at the PMSA bit to see if we should add some properties.
1187 */
1188 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1189 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1190 }
1191
f318cec6
PM
1192 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1193 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
94d912d1 1194 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
07a5b0d2 1195 }
68e0a40a
AP
1196
1197 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
94d912d1 1198 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
68e0a40a 1199 }
3933443e
PM
1200
1201 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
94d912d1 1202 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
3933443e 1203 }
51942aee 1204
45ca3a14 1205#ifndef CONFIG_USER_ONLY
51942aee
GB
1206 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1207 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1208 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1209 */
94d912d1 1210 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
9e273ef2 1211
9e273ef2
PM
1212 object_property_add_link(obj, "secure-memory",
1213 TYPE_MEMORY_REGION,
1214 (Object **)&cpu->secure_memory,
1215 qdev_prop_allow_set_link_before_realize,
d2623129 1216 OBJ_PROP_LINK_STRONG);
51942aee 1217 }
8f325f56 1218
c25bd18a 1219 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
94d912d1 1220 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
c25bd18a 1221 }
45ca3a14 1222#endif
c25bd18a 1223
929e754d 1224 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
ae502508 1225 cpu->has_pmu = true;
d2623129 1226 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
929e754d
WH
1227 }
1228
97a28b0e
PM
1229 /*
1230 * Allow user to turn off VFP and Neon support, but only for TCG --
1231 * KVM does not currently allow us to lie to the guest about its
1232 * ID/feature registers, so the guest always sees what the host has.
1233 */
7d63183f
RH
1234 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1235 ? cpu_isar_feature(aa64_fp_simd, cpu)
1236 : cpu_isar_feature(aa32_vfp, cpu)) {
97a28b0e
PM
1237 cpu->has_vfp = true;
1238 if (!kvm_enabled()) {
94d912d1 1239 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
97a28b0e
PM
1240 }
1241 }
1242
1243 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1244 cpu->has_neon = true;
1245 if (!kvm_enabled()) {
94d912d1 1246 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
97a28b0e
PM
1247 }
1248 }
1249
ea90db0a
PM
1250 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1251 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
94d912d1 1252 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
ea90db0a
PM
1253 }
1254
452a0955 1255 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
94d912d1 1256 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
3281af81
PC
1257 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1258 qdev_property_add_static(DEVICE(obj),
94d912d1 1259 &arm_cpu_pmsav7_dregion_property);
3281af81 1260 }
8f325f56
PC
1261 }
1262
181962fd
PM
1263 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1264 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1265 qdev_prop_allow_set_link_before_realize,
d2623129 1266 OBJ_PROP_LINK_STRONG);
f9f62e4c
PM
1267 /*
1268 * M profile: initial value of the Secure VTOR. We can't just use
1269 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1270 * the property to be set after realize.
1271 */
64a7b8de
FF
1272 object_property_add_uint32_ptr(obj, "init-svtor",
1273 &cpu->init_svtor,
d2623129 1274 OBJ_PROP_FLAG_READWRITE);
181962fd 1275 }
7cda2149
PM
1276 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1277 /*
1278 * Initial value of the NS VTOR (for cores without the Security
1279 * extension, this is the only VTOR)
1280 */
1281 object_property_add_uint32_ptr(obj, "init-nsvtor",
1282 &cpu->init_nsvtor,
1283 OBJ_PROP_FLAG_READWRITE);
1284 }
181962fd 1285
94d912d1 1286 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
96eec6b2
AJ
1287
1288 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
94d912d1 1289 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
96eec6b2 1290 }
9e6f8d8a 1291
1292 if (kvm_enabled()) {
1293 kvm_arm_add_vcpu_properties(obj);
1294 }
8bce44a2
RH
1295
1296#ifndef CONFIG_USER_ONLY
1297 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1298 cpu_isar_feature(aa64_mte, cpu)) {
1299 object_property_add_link(obj, "tag-memory",
1300 TYPE_MEMORY_REGION,
1301 (Object **)&cpu->tag_memory,
1302 qdev_prop_allow_set_link_before_realize,
1303 OBJ_PROP_LINK_STRONG);
1304
1305 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1306 object_property_add_link(obj, "secure-tag-memory",
1307 TYPE_MEMORY_REGION,
1308 (Object **)&cpu->secure_tag_memory,
1309 qdev_prop_allow_set_link_before_realize,
1310 OBJ_PROP_LINK_STRONG);
1311 }
1312 }
1313#endif
07a5b0d2
PC
1314}
1315
4b6a83fb
PM
1316static void arm_cpu_finalizefn(Object *obj)
1317{
1318 ARMCPU *cpu = ARM_CPU(obj);
08267487
AL
1319 ARMELChangeHook *hook, *next;
1320
4b6a83fb 1321 g_hash_table_destroy(cpu->cp_regs);
08267487 1322
b5c53d1b
AL
1323 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1324 QLIST_REMOVE(hook, node);
1325 g_free(hook);
1326 }
08267487
AL
1327 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1328 QLIST_REMOVE(hook, node);
1329 g_free(hook);
1330 }
4e7beb0c
AL
1331#ifndef CONFIG_USER_ONLY
1332 if (cpu->pmu_timer) {
4e7beb0c
AL
1333 timer_free(cpu->pmu_timer);
1334 }
1335#endif
777dc784
PM
1336}
1337
0df9142d
AJ
1338void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1339{
1340 Error *local_err = NULL;
1341
1342 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1343 arm_cpu_sve_finalize(cpu, &local_err);
68970d1e
AJ
1344 if (local_err != NULL) {
1345 error_propagate(errp, local_err);
1346 return;
1347 }
eb94284d
RH
1348
1349 /*
1350 * KVM does not support modifications to this feature.
1351 * We have not registered the cpu properties when KVM
1352 * is in use, so the user will not be able to set them.
1353 */
1354 if (!kvm_enabled()) {
1355 arm_cpu_pauth_finalize(cpu, &local_err);
1356 if (local_err != NULL) {
1357 error_propagate(errp, local_err);
1358 return;
1359 }
1360 }
68970d1e
AJ
1361 }
1362
1363 if (kvm_enabled()) {
1364 kvm_arm_steal_time_finalize(cpu, &local_err);
0df9142d
AJ
1365 if (local_err != NULL) {
1366 error_propagate(errp, local_err);
1367 return;
1368 }
1369 }
1370}
1371
14969266 1372static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
581be094 1373{
14a10fc3 1374 CPUState *cs = CPU(dev);
14969266
AF
1375 ARMCPU *cpu = ARM_CPU(dev);
1376 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
581be094 1377 CPUARMState *env = &cpu->env;
e97da98f 1378 int pagebits;
ce5b1bbf 1379 Error *local_err = NULL;
0f8d06f1 1380 bool no_aa32 = false;
ce5b1bbf 1381
c4487d76
PM
1382 /* If we needed to query the host kernel for the CPU features
1383 * then it's possible that might have failed in the initfn, but
1384 * this is the first point where we can report it.
1385 */
1386 if (cpu->host_cpu_probe_failed) {
1387 if (!kvm_enabled()) {
1388 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1389 } else {
1390 error_setg(errp, "Failed to retrieve host CPU features");
1391 }
1392 return;
1393 }
1394
95f87565
PM
1395#ifndef CONFIG_USER_ONLY
1396 /* The NVIC and M-profile CPU are two halves of a single piece of
1397 * hardware; trying to use one without the other is a command line
1398 * error and will result in segfaults if not caught here.
1399 */
1400 if (arm_feature(env, ARM_FEATURE_M)) {
1401 if (!env->nvic) {
1402 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1403 return;
1404 }
1405 } else {
1406 if (env->nvic) {
1407 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1408 return;
1409 }
1410 }
397cd31f 1411
96eec6b2
AJ
1412 {
1413 uint64_t scale;
1414
1415 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1416 if (!cpu->gt_cntfrq_hz) {
1417 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1418 cpu->gt_cntfrq_hz);
1419 return;
1420 }
1421 scale = gt_cntfrq_period_ns(cpu);
1422 } else {
1423 scale = GTIMER_SCALE;
1424 }
1425
1426 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1427 arm_gt_ptimer_cb, cpu);
1428 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1429 arm_gt_vtimer_cb, cpu);
1430 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1431 arm_gt_htimer_cb, cpu);
1432 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1433 arm_gt_stimer_cb, cpu);
8c94b071
RH
1434 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1435 arm_gt_hvtimer_cb, cpu);
96eec6b2 1436 }
95f87565
PM
1437#endif
1438
ce5b1bbf
LV
1439 cpu_exec_realizefn(cs, &local_err);
1440 if (local_err != NULL) {
1441 error_propagate(errp, local_err);
1442 return;
1443 }
14969266 1444
0df9142d
AJ
1445 arm_cpu_finalize_features(cpu, &local_err);
1446 if (local_err != NULL) {
1447 error_propagate(errp, local_err);
1448 return;
1449 }
1450
97a28b0e
PM
1451 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1452 cpu->has_vfp != cpu->has_neon) {
1453 /*
1454 * This is an architectural requirement for AArch64; AArch32 is
1455 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1456 */
1457 error_setg(errp,
1458 "AArch64 CPUs must have both VFP and Neon or neither");
1459 return;
1460 }
1461
1462 if (!cpu->has_vfp) {
1463 uint64_t t;
1464 uint32_t u;
1465
97a28b0e
PM
1466 t = cpu->isar.id_aa64isar1;
1467 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1468 cpu->isar.id_aa64isar1 = t;
1469
1470 t = cpu->isar.id_aa64pfr0;
1471 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1472 cpu->isar.id_aa64pfr0 = t;
1473
1474 u = cpu->isar.id_isar6;
1475 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
3c93dfa4 1476 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
97a28b0e
PM
1477 cpu->isar.id_isar6 = u;
1478
1479 u = cpu->isar.mvfr0;
1480 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1481 u = FIELD_DP32(u, MVFR0, FPDP, 0);
97a28b0e
PM
1482 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1483 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
97a28b0e 1484 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
532a3af5
PM
1485 if (!arm_feature(env, ARM_FEATURE_M)) {
1486 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1487 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1488 }
97a28b0e
PM
1489 cpu->isar.mvfr0 = u;
1490
1491 u = cpu->isar.mvfr1;
1492 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1493 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1494 u = FIELD_DP32(u, MVFR1, FPHP, 0);
532a3af5
PM
1495 if (arm_feature(env, ARM_FEATURE_M)) {
1496 u = FIELD_DP32(u, MVFR1, FP16, 0);
1497 }
97a28b0e
PM
1498 cpu->isar.mvfr1 = u;
1499
1500 u = cpu->isar.mvfr2;
1501 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1502 cpu->isar.mvfr2 = u;
1503 }
1504
1505 if (!cpu->has_neon) {
1506 uint64_t t;
1507 uint32_t u;
1508
1509 unset_feature(env, ARM_FEATURE_NEON);
1510
1511 t = cpu->isar.id_aa64isar0;
1512 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1513 cpu->isar.id_aa64isar0 = t;
1514
1515 t = cpu->isar.id_aa64isar1;
1516 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
3c93dfa4 1517 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
f8680aaa 1518 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
97a28b0e
PM
1519 cpu->isar.id_aa64isar1 = t;
1520
1521 t = cpu->isar.id_aa64pfr0;
1522 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1523 cpu->isar.id_aa64pfr0 = t;
1524
1525 u = cpu->isar.id_isar5;
1526 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1527 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1528 cpu->isar.id_isar5 = u;
1529
1530 u = cpu->isar.id_isar6;
1531 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1532 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
3c93dfa4 1533 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
f8680aaa 1534 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
97a28b0e
PM
1535 cpu->isar.id_isar6 = u;
1536
532a3af5
PM
1537 if (!arm_feature(env, ARM_FEATURE_M)) {
1538 u = cpu->isar.mvfr1;
1539 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1540 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1541 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1542 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1543 cpu->isar.mvfr1 = u;
1544
1545 u = cpu->isar.mvfr2;
1546 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1547 cpu->isar.mvfr2 = u;
1548 }
97a28b0e
PM
1549 }
1550
1551 if (!cpu->has_neon && !cpu->has_vfp) {
1552 uint64_t t;
1553 uint32_t u;
1554
1555 t = cpu->isar.id_aa64isar0;
1556 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1557 cpu->isar.id_aa64isar0 = t;
1558
1559 t = cpu->isar.id_aa64isar1;
1560 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1561 cpu->isar.id_aa64isar1 = t;
1562
1563 u = cpu->isar.mvfr0;
1564 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1565 cpu->isar.mvfr0 = u;
c52881bb
RH
1566
1567 /* Despite the name, this field covers both VFP and Neon */
1568 u = cpu->isar.mvfr1;
1569 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1570 cpu->isar.mvfr1 = u;
97a28b0e
PM
1571 }
1572
ea90db0a
PM
1573 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1574 uint32_t u;
1575
1576 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1577
1578 u = cpu->isar.id_isar1;
1579 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1580 cpu->isar.id_isar1 = u;
1581
1582 u = cpu->isar.id_isar2;
1583 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1584 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1585 cpu->isar.id_isar2 = u;
1586
1587 u = cpu->isar.id_isar3;
1588 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1589 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1590 cpu->isar.id_isar3 = u;
1591 }
1592
581be094 1593 /* Some features automatically imply others: */
81e69fb0 1594 if (arm_feature(env, ARM_FEATURE_V8)) {
5256df88
RH
1595 if (arm_feature(env, ARM_FEATURE_M)) {
1596 set_feature(env, ARM_FEATURE_V7);
1597 } else {
1598 set_feature(env, ARM_FEATURE_V7VE);
1599 }
5110e683 1600 }
0f8d06f1
RH
1601
1602 /*
1603 * There exist AArch64 cpus without AArch32 support. When KVM
1604 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1605 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
8f4821d7
PM
1606 * As a general principle, we also do not make ID register
1607 * consistency checks anywhere unless using TCG, because only
1608 * for TCG would a consistency-check failure be a QEMU bug.
0f8d06f1
RH
1609 */
1610 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1611 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1612 }
1613
5110e683
AL
1614 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1615 /* v7 Virtualization Extensions. In real hardware this implies
1616 * EL2 and also the presence of the Security Extensions.
1617 * For QEMU, for backwards-compatibility we implement some
1618 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1619 * include the various other features that V7VE implies.
1620 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1621 * Security Extensions is ARM_FEATURE_EL3.
1622 */
873b73c0
PM
1623 assert(!tcg_enabled() || no_aa32 ||
1624 cpu_isar_feature(aa32_arm_div, cpu));
81e69fb0 1625 set_feature(env, ARM_FEATURE_LPAE);
5110e683 1626 set_feature(env, ARM_FEATURE_V7);
81e69fb0 1627 }
581be094
PM
1628 if (arm_feature(env, ARM_FEATURE_V7)) {
1629 set_feature(env, ARM_FEATURE_VAPA);
1630 set_feature(env, ARM_FEATURE_THUMB2);
81bdde9d 1631 set_feature(env, ARM_FEATURE_MPIDR);
581be094
PM
1632 if (!arm_feature(env, ARM_FEATURE_M)) {
1633 set_feature(env, ARM_FEATURE_V6K);
1634 } else {
1635 set_feature(env, ARM_FEATURE_V6);
1636 }
91db4642
CLG
1637
1638 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1639 * non-EL3 configs. This is needed by some legacy boards.
1640 */
1641 set_feature(env, ARM_FEATURE_VBAR);
581be094
PM
1642 }
1643 if (arm_feature(env, ARM_FEATURE_V6K)) {
1644 set_feature(env, ARM_FEATURE_V6);
1645 set_feature(env, ARM_FEATURE_MVFR);
1646 }
1647 if (arm_feature(env, ARM_FEATURE_V6)) {
1648 set_feature(env, ARM_FEATURE_V5);
1649 if (!arm_feature(env, ARM_FEATURE_M)) {
873b73c0
PM
1650 assert(!tcg_enabled() || no_aa32 ||
1651 cpu_isar_feature(aa32_jazelle, cpu));
581be094
PM
1652 set_feature(env, ARM_FEATURE_AUXCR);
1653 }
1654 }
1655 if (arm_feature(env, ARM_FEATURE_V5)) {
1656 set_feature(env, ARM_FEATURE_V4T);
1657 }
de9b05b8 1658 if (arm_feature(env, ARM_FEATURE_LPAE)) {
bdcc150d 1659 set_feature(env, ARM_FEATURE_V7MP);
de9b05b8 1660 }
f318cec6
PM
1661 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1662 set_feature(env, ARM_FEATURE_CBAR);
1663 }
62b44f05
AR
1664 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1665 !arm_feature(env, ARM_FEATURE_M)) {
1666 set_feature(env, ARM_FEATURE_THUMB_DSP);
1667 }
2ceb98c0 1668
ea7ac69d
PM
1669 /*
1670 * We rely on no XScale CPU having VFP so we can use the same bits in the
1671 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1672 */
7d63183f
RH
1673 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1674 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1675 !arm_feature(env, ARM_FEATURE_XSCALE));
ea7ac69d 1676
e97da98f
PM
1677 if (arm_feature(env, ARM_FEATURE_V7) &&
1678 !arm_feature(env, ARM_FEATURE_M) &&
452a0955 1679 !arm_feature(env, ARM_FEATURE_PMSA)) {
e97da98f
PM
1680 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1681 * can use 4K pages.
1682 */
1683 pagebits = 12;
1684 } else {
1685 /* For CPUs which might have tiny 1K pages, or which have an
1686 * MPU and might have small region sizes, stick with 1K pages.
1687 */
1688 pagebits = 10;
1689 }
1690 if (!set_preferred_target_page_bits(pagebits)) {
1691 /* This can only ever happen for hotplugging a CPU, or if
1692 * the board code incorrectly creates a CPU which it has
1693 * promised via minimum_page_size that it will not.
1694 */
1695 error_setg(errp, "This CPU requires a smaller page size than the "
1696 "system is using");
1697 return;
1698 }
1699
ce5b1bbf
LV
1700 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1701 * We don't support setting cluster ID ([16..23]) (known as Aff2
1702 * in later ARM ARM versions), or any of the higher affinity level fields,
1703 * so these bits always RAZ.
1704 */
1705 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
46de5913
IM
1706 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1707 ARM_DEFAULT_CPUS_PER_CLUSTER);
ce5b1bbf
LV
1708 }
1709
68e0a40a
AP
1710 if (cpu->reset_hivecs) {
1711 cpu->reset_sctlr |= (1 << 13);
1712 }
1713
3a062d57
JB
1714 if (cpu->cfgend) {
1715 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1716 cpu->reset_sctlr |= SCTLR_EE;
1717 } else {
1718 cpu->reset_sctlr |= SCTLR_B;
1719 }
1720 }
1721
40188188 1722 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
51942aee
GB
1723 /* If the has_el3 CPU property is disabled then we need to disable the
1724 * feature.
1725 */
1726 unset_feature(env, ARM_FEATURE_EL3);
1727
1728 /* Disable the security extension feature bits in the processor feature
3d5c84ff 1729 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
51942aee 1730 */
8a130a7b 1731 cpu->isar.id_pfr1 &= ~0xf0;
47576b94 1732 cpu->isar.id_aa64pfr0 &= ~0xf000;
51942aee
GB
1733 }
1734
c25bd18a
PM
1735 if (!cpu->has_el2) {
1736 unset_feature(env, ARM_FEATURE_EL2);
1737 }
1738
d6f02ce3 1739 if (!cpu->has_pmu) {
929e754d 1740 unset_feature(env, ARM_FEATURE_PMU);
57a4a11b
AL
1741 }
1742 if (arm_feature(env, ARM_FEATURE_PMU)) {
bf8d0969 1743 pmu_init(cpu);
57a4a11b
AL
1744
1745 if (!kvm_enabled()) {
1746 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1747 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1748 }
4e7beb0c
AL
1749
1750#ifndef CONFIG_USER_ONLY
1751 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1752 cpu);
1753#endif
57a4a11b 1754 } else {
2a609df8
PM
1755 cpu->isar.id_aa64dfr0 =
1756 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
a6179538 1757 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
57a4a11b
AL
1758 cpu->pmceid0 = 0;
1759 cpu->pmceid1 = 0;
929e754d
WH
1760 }
1761
3c2f7bb3
PM
1762 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1763 /* Disable the hypervisor feature bits in the processor feature
1764 * registers if we don't have EL2. These are id_pfr1[15:12] and
1765 * id_aa64pfr0_el1[11:8].
1766 */
47576b94 1767 cpu->isar.id_aa64pfr0 &= ~0xf00;
8a130a7b 1768 cpu->isar.id_pfr1 &= ~0xf000;
3c2f7bb3
PM
1769 }
1770
6f4e1405
RH
1771#ifndef CONFIG_USER_ONLY
1772 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1773 /*
1774 * Disable the MTE feature bits if we do not have tag-memory
1775 * provided by the machine.
1776 */
1777 cpu->isar.id_aa64pfr1 =
1778 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1779 }
1780#endif
1781
f50cd314
PM
1782 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1783 * to false or by setting pmsav7-dregion to 0.
1784 */
8f325f56 1785 if (!cpu->has_mpu) {
f50cd314
PM
1786 cpu->pmsav7_dregion = 0;
1787 }
1788 if (cpu->pmsav7_dregion == 0) {
1789 cpu->has_mpu = false;
8f325f56
PC
1790 }
1791
452a0955 1792 if (arm_feature(env, ARM_FEATURE_PMSA) &&
3281af81
PC
1793 arm_feature(env, ARM_FEATURE_V7)) {
1794 uint32_t nr = cpu->pmsav7_dregion;
1795
1796 if (nr > 0xff) {
9af9e0fe 1797 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
3281af81
PC
1798 return;
1799 }
6cb0b013
PC
1800
1801 if (nr) {
0e1a46bb
PM
1802 if (arm_feature(env, ARM_FEATURE_V8)) {
1803 /* PMSAv8 */
62c58ee0
PM
1804 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1805 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1806 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1807 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1808 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1809 }
0e1a46bb
PM
1810 } else {
1811 env->pmsav7.drbar = g_new0(uint32_t, nr);
1812 env->pmsav7.drsr = g_new0(uint32_t, nr);
1813 env->pmsav7.dracr = g_new0(uint32_t, nr);
1814 }
6cb0b013 1815 }
3281af81
PC
1816 }
1817
9901c576
PM
1818 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1819 uint32_t nr = cpu->sau_sregion;
1820
1821 if (nr > 0xff) {
1822 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1823 return;
1824 }
1825
1826 if (nr) {
1827 env->sau.rbar = g_new0(uint32_t, nr);
1828 env->sau.rlar = g_new0(uint32_t, nr);
1829 }
1830 }
1831
91db4642
CLG
1832 if (arm_feature(env, ARM_FEATURE_EL3)) {
1833 set_feature(env, ARM_FEATURE_VBAR);
1834 }
1835
2ceb98c0 1836 register_cp_regs_for_features(cpu);
14969266
AF
1837 arm_cpu_register_gdb_regs_for_features(cpu);
1838
721fae12
PM
1839 init_cpreg_list(cpu);
1840
9e273ef2 1841#ifndef CONFIG_USER_ONLY
cc7d44c2
LX
1842 MachineState *ms = MACHINE(qdev_get_machine());
1843 unsigned int smp_cpus = ms->smp.cpus;
8bce44a2 1844 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
cc7d44c2 1845
8bce44a2
RH
1846 /*
1847 * We must set cs->num_ases to the final value before
1848 * the first call to cpu_address_space_init.
1849 */
1850 if (cpu->tag_memory != NULL) {
1851 cs->num_ases = 3 + has_secure;
1852 } else {
1853 cs->num_ases = 1 + has_secure;
1854 }
1d2091bc 1855
8bce44a2 1856 if (has_secure) {
9e273ef2
PM
1857 if (!cpu->secure_memory) {
1858 cpu->secure_memory = cs->memory;
1859 }
80ceb07a
PX
1860 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1861 cpu->secure_memory);
9e273ef2 1862 }
8bce44a2
RH
1863
1864 if (cpu->tag_memory != NULL) {
1865 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1866 cpu->tag_memory);
1867 if (has_secure) {
1868 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1869 cpu->secure_tag_memory);
1870 }
8bce44a2
RH
1871 }
1872
80ceb07a 1873 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
f9a69711
AF
1874
1875 /* No core_count specified, default to smp_cpus. */
1876 if (cpu->core_count == -1) {
1877 cpu->core_count = smp_cpus;
1878 }
9e273ef2
PM
1879#endif
1880
a4157b80
RH
1881 if (tcg_enabled()) {
1882 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1883
1884 /*
1885 * We only support DCZ blocklen that fits on one page.
1886 *
1887 * Architectually this is always true. However TARGET_PAGE_SIZE
1888 * is variable and, for compatibility with -machine virt-2.7,
1889 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1890 * But even then, while the largest architectural DCZ blocklen
1891 * is 2KiB, no cpu actually uses such a large blocklen.
1892 */
1893 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1894
1895 /*
1896 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1897 * both nibbles of each byte storing tag data may be written at once.
1898 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1899 */
1900 if (cpu_isar_feature(aa64_mte, cpu)) {
1901 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1902 }
1903 }
1904
14a10fc3 1905 qemu_init_vcpu(cs);
00d0f7cb 1906 cpu_reset(cs);
14969266
AF
1907
1908 acc->parent_realize(dev, errp);
581be094
PM
1909}
1910
5900d6b2
AF
1911static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1912{
1913 ObjectClass *oc;
51492fd1 1914 char *typename;
fb8d6c24 1915 char **cpuname;
a0032cc5 1916 const char *cpunamestr;
5900d6b2 1917
fb8d6c24 1918 cpuname = g_strsplit(cpu_model, ",", 1);
a0032cc5
PM
1919 cpunamestr = cpuname[0];
1920#ifdef CONFIG_USER_ONLY
1921 /* For backwards compatibility usermode emulation allows "-cpu any",
1922 * which has the same semantics as "-cpu max".
1923 */
1924 if (!strcmp(cpunamestr, "any")) {
1925 cpunamestr = "max";
1926 }
1927#endif
1928 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
51492fd1 1929 oc = object_class_by_name(typename);
fb8d6c24 1930 g_strfreev(cpuname);
51492fd1 1931 g_free(typename);
245fb54d
AF
1932 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1933 object_class_is_abstract(oc)) {
5900d6b2
AF
1934 return NULL;
1935 }
1936 return oc;
1937}
1938
5de16430 1939static Property arm_cpu_properties[] = {
98128601 1940 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
e544f800 1941 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
ce5b1bbf
LV
1942 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1943 mp_affinity, ARM64_AFFINITY_INVALID),
15f8b142 1944 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
f9a69711 1945 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
5de16430
PM
1946 DEFINE_PROP_END_OF_LIST()
1947};
1948
b3820e6c
DH
1949static gchar *arm_gdb_arch_name(CPUState *cs)
1950{
1951 ARMCPU *cpu = ARM_CPU(cs);
1952 CPUARMState *env = &cpu->env;
1953
1954 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1955 return g_strdup("iwmmxt");
1956 }
1957 return g_strdup("arm");
1958}
1959
8b80bd28
PMD
1960#ifndef CONFIG_USER_ONLY
1961#include "hw/core/sysemu-cpu-ops.h"
1962
1963static const struct SysemuCPUOps arm_sysemu_ops = {
08928c6d 1964 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
faf39e82 1965 .asidx_from_attrs = arm_asidx_from_attrs,
715e3c1a
PMD
1966 .write_elf32_note = arm_cpu_write_elf32_note,
1967 .write_elf64_note = arm_cpu_write_elf64_note,
da383e02 1968 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
feece4d0 1969 .legacy_vmsd = &vmstate_arm_cpu,
8b80bd28
PMD
1970};
1971#endif
1972
78271684 1973#ifdef CONFIG_TCG
11906557 1974static const struct TCGCPUOps arm_tcg_ops = {
78271684
CF
1975 .initialize = arm_translate_init,
1976 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1977 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1978 .tlb_fill = arm_cpu_tlb_fill,
1979 .debug_excp_handler = arm_debug_excp_handler,
1980
1981#if !defined(CONFIG_USER_ONLY)
1982 .do_interrupt = arm_cpu_do_interrupt,
1983 .do_transaction_failed = arm_cpu_do_transaction_failed,
1984 .do_unaligned_access = arm_cpu_do_unaligned_access,
1985 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1986 .debug_check_watchpoint = arm_debug_check_watchpoint,
b00d86bc 1987 .debug_check_breakpoint = arm_debug_check_breakpoint,
78271684
CF
1988#endif /* !CONFIG_USER_ONLY */
1989};
1990#endif /* CONFIG_TCG */
1991
dec9c2d4
AF
1992static void arm_cpu_class_init(ObjectClass *oc, void *data)
1993{
1994 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1995 CPUClass *cc = CPU_CLASS(acc);
14969266
AF
1996 DeviceClass *dc = DEVICE_CLASS(oc);
1997
bf853881
PMD
1998 device_class_set_parent_realize(dc, arm_cpu_realizefn,
1999 &acc->parent_realize);
dec9c2d4 2000
4f67d30b 2001 device_class_set_props(dc, arm_cpu_properties);
781c67ca 2002 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
5900d6b2
AF
2003
2004 cc->class_by_name = arm_cpu_class_by_name;
8c2e1b00 2005 cc->has_work = arm_cpu_has_work;
878096ee 2006 cc->dump_state = arm_cpu_dump_state;
f45748f1 2007 cc->set_pc = arm_cpu_set_pc;
5b50e790
AF
2008 cc->gdb_read_register = arm_cpu_gdb_read_register;
2009 cc->gdb_write_register = arm_cpu_gdb_write_register;
7350d553 2010#ifndef CONFIG_USER_ONLY
8b80bd28 2011 cc->sysemu_ops = &arm_sysemu_ops;
00b941e5 2012#endif
a0e372f0 2013 cc->gdb_num_core_regs = 26;
5b24c641 2014 cc->gdb_core_xml_file = "arm-core.xml";
b3820e6c 2015 cc->gdb_arch_name = arm_gdb_arch_name;
200bf5b7 2016 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2472b6c0 2017 cc->gdb_stop_before_watchpoint = true;
48440620 2018 cc->disas_set_info = arm_disas_set_info;
78271684 2019
74d7fc7f 2020#ifdef CONFIG_TCG
78271684 2021 cc->tcg_ops = &arm_tcg_ops;
cbc183d2 2022#endif /* CONFIG_TCG */
dec9c2d4
AF
2023}
2024
86f0a186
PM
2025#ifdef CONFIG_KVM
2026static void arm_host_initfn(Object *obj)
2027{
2028 ARMCPU *cpu = ARM_CPU(obj);
2029
2030 kvm_arm_set_cpu_features_from_host(cpu);
87014c6b
AJ
2031 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2032 aarch64_add_sve_properties(obj);
2033 }
51e5ef45 2034 arm_cpu_post_init(obj);
86f0a186
PM
2035}
2036
2037static const TypeInfo host_arm_cpu_type_info = {
2038 .name = TYPE_ARM_HOST_CPU,
86f0a186 2039 .parent = TYPE_AARCH64_CPU,
86f0a186
PM
2040 .instance_init = arm_host_initfn,
2041};
2042
2043#endif
2044
51e5ef45
MAL
2045static void arm_cpu_instance_init(Object *obj)
2046{
2047 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2048
2049 acc->info->initfn(obj);
2050 arm_cpu_post_init(obj);
2051}
2052
2053static void cpu_register_class_init(ObjectClass *oc, void *data)
2054{
2055 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2056
2057 acc->info = data;
2058}
2059
37bcf244 2060void arm_cpu_register(const ARMCPUInfo *info)
777dc784
PM
2061{
2062 TypeInfo type_info = {
777dc784
PM
2063 .parent = TYPE_ARM_CPU,
2064 .instance_size = sizeof(ARMCPU),
d03087bd 2065 .instance_align = __alignof__(ARMCPU),
51e5ef45 2066 .instance_init = arm_cpu_instance_init,
777dc784 2067 .class_size = sizeof(ARMCPUClass),
51e5ef45
MAL
2068 .class_init = info->class_init ?: cpu_register_class_init,
2069 .class_data = (void *)info,
777dc784
PM
2070 };
2071
51492fd1 2072 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
918fd083 2073 type_register(&type_info);
51492fd1 2074 g_free((void *)type_info.name);
777dc784
PM
2075}
2076
dec9c2d4
AF
2077static const TypeInfo arm_cpu_type_info = {
2078 .name = TYPE_ARM_CPU,
2079 .parent = TYPE_CPU,
2080 .instance_size = sizeof(ARMCPU),
d03087bd 2081 .instance_align = __alignof__(ARMCPU),
777dc784 2082 .instance_init = arm_cpu_initfn,
4b6a83fb 2083 .instance_finalize = arm_cpu_finalizefn,
777dc784 2084 .abstract = true,
dec9c2d4
AF
2085 .class_size = sizeof(ARMCPUClass),
2086 .class_init = arm_cpu_class_init,
2087};
2088
2089static void arm_cpu_register_types(void)
2090{
2091 type_register_static(&arm_cpu_type_info);
83e6813a 2092
86f0a186
PM
2093#ifdef CONFIG_KVM
2094 type_register_static(&host_arm_cpu_type_info);
2095#endif
dec9c2d4
AF
2096}
2097
2098type_init(arm_cpu_register_types)