]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.c
target/arm: Complete TBI clearing for user-only for SVE
[mirror_qemu.git] / target / arm / cpu.c
CommitLineData
dec9c2d4
AF
1/*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
74c21bd0 21#include "qemu/osdep.h"
86480615 22#include "qemu/qemu-print.h"
a8d25326 23#include "qemu-common.h"
181962fd 24#include "target/arm/idau.h"
0b8fa32f 25#include "qemu/module.h"
da34e65c 26#include "qapi/error.h"
f9f62e4c 27#include "qapi/visitor.h"
778c3a06 28#include "cpu.h"
ccd38087 29#include "internals.h"
63c91552 30#include "exec/exec-all.h"
5de16430 31#include "hw/qdev-properties.h"
3c30dd5a
PM
32#if !defined(CONFIG_USER_ONLY)
33#include "hw/loader.h"
cc7d44c2 34#include "hw/boards.h"
3c30dd5a 35#endif
9c17d615 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
b3946626 38#include "sysemu/hw_accel.h"
50a2c6e5 39#include "kvm_arm.h"
110f6c70 40#include "disas/capstone.h"
24f91e81 41#include "fpu/softfloat.h"
dec9c2d4 42
f45748f1
AF
43static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44{
45 ARMCPU *cpu = ARM_CPU(cs);
42f6ed91
JS
46 CPUARMState *env = &cpu->env;
47
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
54 }
55}
f45748f1 56
42f6ed91
JS
57static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58{
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
61
62 /*
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 */
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
70 }
f45748f1
AF
71}
72
8c2e1b00
AF
73static bool arm_cpu_has_work(CPUState *cs)
74{
543486db
RH
75 ARMCPU *cpu = ARM_CPU(cs);
76
062ba099 77 return (cpu->power_state != PSCI_OFF)
543486db 78 && cs->interrupt_request &
136e67e9
EI
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
8c2e1b00
AF
82}
83
b5c53d1b
AL
84void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
86{
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88
89 entry->hook = hook;
90 entry->opaque = opaque;
91
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93}
94
08267487 95void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc
PM
96 void *opaque)
97{
08267487
AL
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99
100 entry->hook = hook;
101 entry->opaque = opaque;
102
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
bd7d00fc
PM
104}
105
4b6a83fb
PM
106static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107{
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
111
b061a82b 112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
4b6a83fb
PM
113 return;
114 }
115
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
119 }
120
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
125 */
126 if (!ri->fieldoffset) {
127 return;
128 }
129
67ed771d 130 if (cpreg_field_is_64bit(ri)) {
4b6a83fb
PM
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134 }
135}
136
49a66191
PM
137static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
138{
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
143 */
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
147
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
150 }
151
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
156}
157
781c67ca 158static void arm_cpu_reset(DeviceState *dev)
dec9c2d4 159{
781c67ca 160 CPUState *s = CPU(dev);
dec9c2d4
AF
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
3c30dd5a 163 CPUARMState *env = &cpu->env;
3c30dd5a 164
781c67ca 165 acc->parent_reset(dev);
dec9c2d4 166
1f5c00cf
AB
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168
4b6a83fb 169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
49a66191
PM
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171
3c30dd5a 172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
47576b94
RH
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
3c30dd5a 176
062ba099 177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
543486db
RH
178 s->halted = cpu->start_powered_off;
179
3c30dd5a
PM
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 }
183
3926cc84
AG
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
d356312f
PM
187#if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
14e5f106 189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
137feaa9 190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
276c6e81
RH
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
8c6afa6a 194 /* and to the FP/Neon instructions */
7ebd5f2e 195 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
802ac0e1
RH
196 /* and to the SVE instructions */
197 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
7b6a2198
AB
198 /* with reasonable vector length */
199 if (cpu_isar_feature(aa64_sve, cpu)) {
200 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201 }
f6a148fe
RH
202 /*
203 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
204 * turning on both here will produce smaller code and otherwise
205 * make no difference to the user-level emulation.
c4af8ba1
RH
206 *
207 * In sve_probe_page, we assume that this is set.
208 * Do not modify this without other changes.
f6a148fe
RH
209 */
210 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
d356312f 211#else
5097227c
GB
212 /* Reset into the highest available EL */
213 if (arm_feature(env, ARM_FEATURE_EL3)) {
214 env->pstate = PSTATE_MODE_EL3h;
215 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
216 env->pstate = PSTATE_MODE_EL2h;
217 } else {
218 env->pstate = PSTATE_MODE_EL1h;
219 }
3933443e 220 env->pc = cpu->rvbar;
8c6afa6a
PM
221#endif
222 } else {
223#if defined(CONFIG_USER_ONLY)
224 /* Userspace expects access to cp10 and cp11 for FP/Neon */
7ebd5f2e 225 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
d356312f 226#endif
3926cc84
AG
227 }
228
3c30dd5a
PM
229#if defined(CONFIG_USER_ONLY)
230 env->uncached_cpsr = ARM_CPU_MODE_USR;
231 /* For user mode we must enable access to coprocessors */
232 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
233 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
234 env->cp15.c15_cpar = 3;
235 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
236 env->cp15.c15_cpar = 1;
237 }
238#else
060a65df
PM
239
240 /*
241 * If the highest available EL is EL2, AArch32 will start in Hyp
242 * mode; otherwise it starts in SVC. Note that if we start in
243 * AArch64 then these values in the uncached_cpsr will be ignored.
244 */
245 if (arm_feature(env, ARM_FEATURE_EL2) &&
246 !arm_feature(env, ARM_FEATURE_EL3)) {
247 env->uncached_cpsr = ARM_CPU_MODE_HYP;
248 } else {
249 env->uncached_cpsr = ARM_CPU_MODE_SVC;
250 }
4cc35614 251 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
dc7abe4d 252
531c60a9 253 if (arm_feature(env, ARM_FEATURE_M)) {
6e3cf5df
MG
254 uint32_t initial_msp; /* Loaded from 0x0 */
255 uint32_t initial_pc; /* Loaded from 0x4 */
3c30dd5a 256 uint8_t *rom;
38e2a77c 257 uint32_t vecbase;
6e3cf5df 258
1e577cc7
PM
259 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
260 env->v7m.secure = true;
3b2e9344
PM
261 } else {
262 /* This bit resets to 0 if security is supported, but 1 if
263 * it is not. The bit is not present in v7M, but we set it
264 * here so we can avoid having to make checks on it conditional
265 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266 */
267 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
02ac2f7f
PM
268 /*
269 * Set NSACR to indicate "NS access permitted to everything";
270 * this avoids having to have all the tests of it being
271 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
272 * v8.1M the guest-visible value of NSACR in a CPU without the
273 * Security Extension is 0xcff.
274 */
275 env->v7m.nsacr = 0xcff;
1e577cc7
PM
276 }
277
9d40cd8a 278 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
2c4da50d 279 * that it resets to 1, so QEMU always does that rather than making
9d40cd8a 280 * it dependent on CPU model. In v8M it is RES1.
2c4da50d 281 */
9d40cd8a
PM
282 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
283 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
284 if (arm_feature(env, ARM_FEATURE_V8)) {
285 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
286 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
287 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
288 }
22ab3460
JS
289 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
290 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
291 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
292 }
2c4da50d 293
7fbc6a40 294 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
d33abe82
PM
295 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
296 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
297 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
298 }
056f43df
PM
299 /* Unlike A/R profile, M profile defines the reset LR value */
300 env->regs[14] = 0xffffffff;
301
38e2a77c
PM
302 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
303
304 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
305 vecbase = env->v7m.vecbase[env->v7m.secure];
0f0f8b61 306 rom = rom_ptr(vecbase, 8);
3c30dd5a 307 if (rom) {
6e3cf5df
MG
308 /* Address zero is covered by ROM which hasn't yet been
309 * copied into physical memory.
310 */
311 initial_msp = ldl_p(rom);
312 initial_pc = ldl_p(rom + 4);
313 } else {
314 /* Address zero not covered by a ROM blob, or the ROM blob
315 * is in non-modifiable memory and this is a second reset after
316 * it got copied into memory. In the latter case, rom_ptr
317 * will return a NULL pointer and we should use ldl_phys instead.
318 */
38e2a77c
PM
319 initial_msp = ldl_phys(s->as, vecbase);
320 initial_pc = ldl_phys(s->as, vecbase + 4);
3c30dd5a 321 }
6e3cf5df
MG
322
323 env->regs[13] = initial_msp & 0xFFFFFFFC;
324 env->regs[15] = initial_pc & ~1;
325 env->thumb = initial_pc & 1;
3c30dd5a 326 }
387f9806 327
137feaa9
FA
328 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
329 * executing as AArch32 then check if highvecs are enabled and
330 * adjust the PC accordingly.
331 */
332 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
34bf7744 333 env->regs[15] = 0xFFFF0000;
387f9806
AP
334 }
335
dc3c4c14
PM
336 /* M profile requires that reset clears the exclusive monitor;
337 * A profile does not, but clearing it makes more sense than having it
338 * set with an exclusive access on address zero.
339 */
340 arm_clear_exclusive(env);
341
3c30dd5a 342 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
3c30dd5a 343#endif
69ceea64 344
0e1a46bb 345 if (arm_feature(env, ARM_FEATURE_PMSA)) {
69ceea64 346 if (cpu->pmsav7_dregion > 0) {
0e1a46bb 347 if (arm_feature(env, ARM_FEATURE_V8)) {
62c58ee0
PM
348 memset(env->pmsav8.rbar[M_REG_NS], 0,
349 sizeof(*env->pmsav8.rbar[M_REG_NS])
350 * cpu->pmsav7_dregion);
351 memset(env->pmsav8.rlar[M_REG_NS], 0,
352 sizeof(*env->pmsav8.rlar[M_REG_NS])
353 * cpu->pmsav7_dregion);
354 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
355 memset(env->pmsav8.rbar[M_REG_S], 0,
356 sizeof(*env->pmsav8.rbar[M_REG_S])
357 * cpu->pmsav7_dregion);
358 memset(env->pmsav8.rlar[M_REG_S], 0,
359 sizeof(*env->pmsav8.rlar[M_REG_S])
360 * cpu->pmsav7_dregion);
361 }
0e1a46bb
PM
362 } else if (arm_feature(env, ARM_FEATURE_V7)) {
363 memset(env->pmsav7.drbar, 0,
364 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
365 memset(env->pmsav7.drsr, 0,
366 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
367 memset(env->pmsav7.dracr, 0,
368 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
369 }
69ceea64 370 }
1bc04a88
PM
371 env->pmsav7.rnr[M_REG_NS] = 0;
372 env->pmsav7.rnr[M_REG_S] = 0;
4125e6fe
PM
373 env->pmsav8.mair0[M_REG_NS] = 0;
374 env->pmsav8.mair0[M_REG_S] = 0;
375 env->pmsav8.mair1[M_REG_NS] = 0;
376 env->pmsav8.mair1[M_REG_S] = 0;
69ceea64
PM
377 }
378
9901c576
PM
379 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
380 if (cpu->sau_sregion > 0) {
381 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
382 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
383 }
384 env->sau.rnr = 0;
385 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
386 * the Cortex-M33 does.
387 */
388 env->sau.ctrl = 0;
389 }
390
3c30dd5a
PM
391 set_flush_to_zero(1, &env->vfp.standard_fp_status);
392 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
393 set_default_nan_mode(1, &env->vfp.standard_fp_status);
394 set_float_detect_tininess(float_tininess_before_rounding,
395 &env->vfp.fp_status);
396 set_float_detect_tininess(float_tininess_before_rounding,
397 &env->vfp.standard_fp_status);
bcc531f0
PM
398 set_float_detect_tininess(float_tininess_before_rounding,
399 &env->vfp.fp_status_f16);
50a2c6e5
PB
400#ifndef CONFIG_USER_ONLY
401 if (kvm_enabled()) {
402 kvm_arm_reset_vcpu(cpu);
403 }
404#endif
9ee98ce8 405
46747d15 406 hw_breakpoint_update_all(cpu);
9ee98ce8 407 hw_watchpoint_update_all(cpu);
a8a79c7a 408 arm_rebuild_hflags(env);
dec9c2d4
AF
409}
410
310cedf3 411static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
be879556
RH
412 unsigned int target_el,
413 unsigned int cur_el, bool secure,
414 uint64_t hcr_el2)
310cedf3
RH
415{
416 CPUARMState *env = cs->env_ptr;
310cedf3 417 bool pstate_unmasked;
16e07f78 418 bool unmasked = false;
310cedf3
RH
419
420 /*
421 * Don't take exceptions if they target a lower EL.
422 * This check should catch any exceptions that would not be taken
423 * but left pending.
424 */
425 if (cur_el > target_el) {
426 return false;
427 }
428
310cedf3
RH
429 switch (excp_idx) {
430 case EXCP_FIQ:
431 pstate_unmasked = !(env->daif & PSTATE_F);
432 break;
433
434 case EXCP_IRQ:
435 pstate_unmasked = !(env->daif & PSTATE_I);
436 break;
437
438 case EXCP_VFIQ:
439 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
440 /* VFIQs are only taken when hypervized and non-secure. */
441 return false;
442 }
443 return !(env->daif & PSTATE_F);
444 case EXCP_VIRQ:
445 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
446 /* VIRQs are only taken when hypervized and non-secure. */
447 return false;
448 }
449 return !(env->daif & PSTATE_I);
450 default:
451 g_assert_not_reached();
452 }
453
454 /*
455 * Use the target EL, current execution state and SCR/HCR settings to
456 * determine whether the corresponding CPSR bit is used to mask the
457 * interrupt.
458 */
459 if ((target_el > cur_el) && (target_el != 1)) {
460 /* Exceptions targeting a higher EL may not be maskable */
461 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
462 /*
463 * 64-bit masking rules are simple: exceptions to EL3
464 * can't be masked, and exceptions to EL2 can only be
465 * masked from Secure state. The HCR and SCR settings
466 * don't affect the masking logic, only the interrupt routing.
467 */
468 if (target_el == 3 || !secure) {
16e07f78 469 unmasked = true;
310cedf3
RH
470 }
471 } else {
472 /*
473 * The old 32-bit-only environment has a more complicated
474 * masking setup. HCR and SCR bits not only affect interrupt
475 * routing but also change the behaviour of masking.
476 */
477 bool hcr, scr;
478
479 switch (excp_idx) {
480 case EXCP_FIQ:
481 /*
482 * If FIQs are routed to EL3 or EL2 then there are cases where
483 * we override the CPSR.F in determining if the exception is
484 * masked or not. If neither of these are set then we fall back
485 * to the CPSR.F setting otherwise we further assess the state
486 * below.
487 */
488 hcr = hcr_el2 & HCR_FMO;
489 scr = (env->cp15.scr_el3 & SCR_FIQ);
490
491 /*
492 * When EL3 is 32-bit, the SCR.FW bit controls whether the
493 * CPSR.F bit masks FIQ interrupts when taken in non-secure
494 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
495 * when non-secure but only when FIQs are only routed to EL3.
496 */
497 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
498 break;
499 case EXCP_IRQ:
500 /*
501 * When EL3 execution state is 32-bit, if HCR.IMO is set then
502 * we may override the CPSR.I masking when in non-secure state.
503 * The SCR.IRQ setting has already been taken into consideration
504 * when setting the target EL, so it does not have a further
505 * affect here.
506 */
507 hcr = hcr_el2 & HCR_IMO;
508 scr = false;
509 break;
510 default:
511 g_assert_not_reached();
512 }
513
514 if ((scr || hcr) && !secure) {
16e07f78 515 unmasked = true;
310cedf3
RH
516 }
517 }
518 }
519
520 /*
521 * The PSTATE bits only mask the interrupt if we have not overriden the
522 * ability above.
523 */
524 return unmasked || pstate_unmasked;
525}
526
e8925712
RH
527bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
528{
529 CPUClass *cc = CPU_GET_CLASS(cs);
012a906b
GB
530 CPUARMState *env = cs->env_ptr;
531 uint32_t cur_el = arm_current_el(env);
532 bool secure = arm_is_secure(env);
be879556 533 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
012a906b
GB
534 uint32_t target_el;
535 uint32_t excp_idx;
d63d0ec5
RH
536
537 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
e8925712 538
012a906b
GB
539 if (interrupt_request & CPU_INTERRUPT_FIQ) {
540 excp_idx = EXCP_FIQ;
541 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
be879556
RH
542 if (arm_excp_unmasked(cs, excp_idx, target_el,
543 cur_el, secure, hcr_el2)) {
d63d0ec5 544 goto found;
012a906b 545 }
e8925712 546 }
012a906b
GB
547 if (interrupt_request & CPU_INTERRUPT_HARD) {
548 excp_idx = EXCP_IRQ;
549 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
be879556
RH
550 if (arm_excp_unmasked(cs, excp_idx, target_el,
551 cur_el, secure, hcr_el2)) {
d63d0ec5 552 goto found;
012a906b 553 }
e8925712 554 }
012a906b
GB
555 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
556 excp_idx = EXCP_VIRQ;
557 target_el = 1;
be879556
RH
558 if (arm_excp_unmasked(cs, excp_idx, target_el,
559 cur_el, secure, hcr_el2)) {
d63d0ec5 560 goto found;
012a906b 561 }
136e67e9 562 }
012a906b
GB
563 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
564 excp_idx = EXCP_VFIQ;
565 target_el = 1;
be879556
RH
566 if (arm_excp_unmasked(cs, excp_idx, target_el,
567 cur_el, secure, hcr_el2)) {
d63d0ec5 568 goto found;
012a906b 569 }
136e67e9 570 }
d63d0ec5 571 return false;
e8925712 572
d63d0ec5
RH
573 found:
574 cs->exception_index = excp_idx;
575 env->exception.target_el = target_el;
576 cc->do_interrupt(cs);
577 return true;
e8925712
RH
578}
579
89430fc6
PM
580void arm_cpu_update_virq(ARMCPU *cpu)
581{
582 /*
583 * Update the interrupt level for VIRQ, which is the logical OR of
584 * the HCR_EL2.VI bit and the input line level from the GIC.
585 */
586 CPUARMState *env = &cpu->env;
587 CPUState *cs = CPU(cpu);
588
589 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
590 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
591
592 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
593 if (new_state) {
594 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
595 } else {
596 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
597 }
598 }
599}
600
601void arm_cpu_update_vfiq(ARMCPU *cpu)
602{
603 /*
604 * Update the interrupt level for VFIQ, which is the logical OR of
605 * the HCR_EL2.VF bit and the input line level from the GIC.
606 */
607 CPUARMState *env = &cpu->env;
608 CPUState *cs = CPU(cpu);
609
610 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
611 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
612
613 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
614 if (new_state) {
615 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
616 } else {
617 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
618 }
619 }
620}
621
7c1840b6
PM
622#ifndef CONFIG_USER_ONLY
623static void arm_cpu_set_irq(void *opaque, int irq, int level)
624{
625 ARMCPU *cpu = opaque;
136e67e9 626 CPUARMState *env = &cpu->env;
7c1840b6 627 CPUState *cs = CPU(cpu);
136e67e9
EI
628 static const int mask[] = {
629 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
630 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
631 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
632 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
633 };
7c1840b6 634
ed89f078
PM
635 if (level) {
636 env->irq_line_state |= mask[irq];
637 } else {
638 env->irq_line_state &= ~mask[irq];
639 }
640
7c1840b6 641 switch (irq) {
136e67e9 642 case ARM_CPU_VIRQ:
89430fc6
PM
643 assert(arm_feature(env, ARM_FEATURE_EL2));
644 arm_cpu_update_virq(cpu);
645 break;
136e67e9 646 case ARM_CPU_VFIQ:
f128bf29 647 assert(arm_feature(env, ARM_FEATURE_EL2));
89430fc6
PM
648 arm_cpu_update_vfiq(cpu);
649 break;
136e67e9 650 case ARM_CPU_IRQ:
7c1840b6
PM
651 case ARM_CPU_FIQ:
652 if (level) {
136e67e9 653 cpu_interrupt(cs, mask[irq]);
7c1840b6 654 } else {
136e67e9 655 cpu_reset_interrupt(cs, mask[irq]);
7c1840b6
PM
656 }
657 break;
658 default:
8f6fd322 659 g_assert_not_reached();
7c1840b6
PM
660 }
661}
662
663static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
664{
665#ifdef CONFIG_KVM
666 ARMCPU *cpu = opaque;
ed89f078 667 CPUARMState *env = &cpu->env;
7c1840b6 668 CPUState *cs = CPU(cpu);
ed89f078 669 uint32_t linestate_bit;
f6530926 670 int irq_id;
7c1840b6
PM
671
672 switch (irq) {
673 case ARM_CPU_IRQ:
f6530926 674 irq_id = KVM_ARM_IRQ_CPU_IRQ;
ed89f078 675 linestate_bit = CPU_INTERRUPT_HARD;
7c1840b6
PM
676 break;
677 case ARM_CPU_FIQ:
f6530926 678 irq_id = KVM_ARM_IRQ_CPU_FIQ;
ed89f078 679 linestate_bit = CPU_INTERRUPT_FIQ;
7c1840b6
PM
680 break;
681 default:
8f6fd322 682 g_assert_not_reached();
7c1840b6 683 }
ed89f078
PM
684
685 if (level) {
686 env->irq_line_state |= linestate_bit;
687 } else {
688 env->irq_line_state &= ~linestate_bit;
689 }
f6530926 690 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
7c1840b6
PM
691#endif
692}
84f2bed3 693
ed50ff78 694static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
84f2bed3
PS
695{
696 ARMCPU *cpu = ARM_CPU(cs);
697 CPUARMState *env = &cpu->env;
84f2bed3
PS
698
699 cpu_synchronize_state(cs);
ed50ff78 700 return arm_cpu_data_is_big_endian(env);
84f2bed3
PS
701}
702
7c1840b6
PM
703#endif
704
48440620
PC
705static int
706print_insn_thumb1(bfd_vma pc, disassemble_info *info)
707{
708 return print_insn_arm(pc | 1, info);
709}
710
711static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
712{
713 ARMCPU *ac = ARM_CPU(cpu);
714 CPUARMState *env = &ac->env;
7bcdbf51 715 bool sctlr_b;
48440620
PC
716
717 if (is_a64(env)) {
718 /* We might not be compiled with the A64 disassembler
719 * because it needs a C++ compiler. Leave print_insn
720 * unset in this case to use the caller default behaviour.
721 */
722#if defined(CONFIG_ARM_A64_DIS)
723 info->print_insn = print_insn_arm_a64;
724#endif
110f6c70 725 info->cap_arch = CS_ARCH_ARM64;
15fa1a0a
RH
726 info->cap_insn_unit = 4;
727 info->cap_insn_split = 4;
48440620 728 } else {
110f6c70
RH
729 int cap_mode;
730 if (env->thumb) {
731 info->print_insn = print_insn_thumb1;
15fa1a0a
RH
732 info->cap_insn_unit = 2;
733 info->cap_insn_split = 4;
110f6c70
RH
734 cap_mode = CS_MODE_THUMB;
735 } else {
736 info->print_insn = print_insn_arm;
15fa1a0a
RH
737 info->cap_insn_unit = 4;
738 info->cap_insn_split = 4;
110f6c70
RH
739 cap_mode = CS_MODE_ARM;
740 }
741 if (arm_feature(env, ARM_FEATURE_V8)) {
742 cap_mode |= CS_MODE_V8;
743 }
744 if (arm_feature(env, ARM_FEATURE_M)) {
745 cap_mode |= CS_MODE_MCLASS;
746 }
747 info->cap_arch = CS_ARCH_ARM;
748 info->cap_mode = cap_mode;
48440620 749 }
7bcdbf51
RH
750
751 sctlr_b = arm_sctlr_b(env);
752 if (bswap_code(sctlr_b)) {
48440620
PC
753#ifdef TARGET_WORDS_BIGENDIAN
754 info->endian = BFD_ENDIAN_LITTLE;
755#else
756 info->endian = BFD_ENDIAN_BIG;
757#endif
758 }
f7478a92 759 info->flags &= ~INSN_ARM_BE32;
7bcdbf51
RH
760#ifndef CONFIG_USER_ONLY
761 if (sctlr_b) {
f7478a92
JB
762 info->flags |= INSN_ARM_BE32;
763 }
7bcdbf51 764#endif
48440620
PC
765}
766
86480615
PMD
767#ifdef TARGET_AARCH64
768
769static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
770{
771 ARMCPU *cpu = ARM_CPU(cs);
772 CPUARMState *env = &cpu->env;
773 uint32_t psr = pstate_read(env);
774 int i;
775 int el = arm_current_el(env);
776 const char *ns_status;
777
778 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
779 for (i = 0; i < 32; i++) {
780 if (i == 31) {
781 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
782 } else {
783 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
784 (i + 2) % 3 ? " " : "\n");
785 }
786 }
787
788 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
789 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
790 } else {
791 ns_status = "";
792 }
793 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
794 psr,
795 psr & PSTATE_N ? 'N' : '-',
796 psr & PSTATE_Z ? 'Z' : '-',
797 psr & PSTATE_C ? 'C' : '-',
798 psr & PSTATE_V ? 'V' : '-',
799 ns_status,
800 el,
801 psr & PSTATE_SP ? 'h' : 't');
802
803 if (cpu_isar_feature(aa64_bti, cpu)) {
804 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
805 }
806 if (!(flags & CPU_DUMP_FPU)) {
807 qemu_fprintf(f, "\n");
808 return;
809 }
810 if (fp_exception_el(env, el) != 0) {
811 qemu_fprintf(f, " FPU disabled\n");
812 return;
813 }
814 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
815 vfp_get_fpcr(env), vfp_get_fpsr(env));
816
817 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
818 int j, zcr_len = sve_zcr_len_for_el(env, el);
819
820 for (i = 0; i <= FFR_PRED_NUM; i++) {
821 bool eol;
822 if (i == FFR_PRED_NUM) {
823 qemu_fprintf(f, "FFR=");
824 /* It's last, so end the line. */
825 eol = true;
826 } else {
827 qemu_fprintf(f, "P%02d=", i);
828 switch (zcr_len) {
829 case 0:
830 eol = i % 8 == 7;
831 break;
832 case 1:
833 eol = i % 6 == 5;
834 break;
835 case 2:
836 case 3:
837 eol = i % 3 == 2;
838 break;
839 default:
840 /* More than one quadword per predicate. */
841 eol = true;
842 break;
843 }
844 }
845 for (j = zcr_len / 4; j >= 0; j--) {
846 int digits;
847 if (j * 4 + 4 <= zcr_len + 1) {
848 digits = 16;
849 } else {
850 digits = (zcr_len % 4 + 1) * 4;
851 }
852 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
853 env->vfp.pregs[i].p[j],
854 j ? ":" : eol ? "\n" : " ");
855 }
856 }
857
858 for (i = 0; i < 32; i++) {
859 if (zcr_len == 0) {
860 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
861 i, env->vfp.zregs[i].d[1],
862 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
863 } else if (zcr_len == 1) {
864 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
865 ":%016" PRIx64 ":%016" PRIx64 "\n",
866 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
867 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
868 } else {
869 for (j = zcr_len; j >= 0; j--) {
870 bool odd = (zcr_len - j) % 2 != 0;
871 if (j == zcr_len) {
872 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
873 } else if (!odd) {
874 if (j > 0) {
875 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
876 } else {
877 qemu_fprintf(f, " [%x]=", j);
878 }
879 }
880 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
881 env->vfp.zregs[i].d[j * 2 + 1],
882 env->vfp.zregs[i].d[j * 2],
883 odd || j == 0 ? "\n" : ":");
884 }
885 }
886 }
887 } else {
888 for (i = 0; i < 32; i++) {
889 uint64_t *q = aa64_vfp_qreg(env, i);
890 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
891 i, q[1], q[0], (i & 1 ? "\n" : " "));
892 }
893 }
894}
895
896#else
897
898static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
899{
900 g_assert_not_reached();
901}
902
903#endif
904
905static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
906{
907 ARMCPU *cpu = ARM_CPU(cs);
908 CPUARMState *env = &cpu->env;
909 int i;
910
911 if (is_a64(env)) {
912 aarch64_cpu_dump_state(cs, f, flags);
913 return;
914 }
915
916 for (i = 0; i < 16; i++) {
917 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
918 if ((i % 4) == 3) {
919 qemu_fprintf(f, "\n");
920 } else {
921 qemu_fprintf(f, " ");
922 }
923 }
924
925 if (arm_feature(env, ARM_FEATURE_M)) {
926 uint32_t xpsr = xpsr_read(env);
927 const char *mode;
928 const char *ns_status = "";
929
930 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
931 ns_status = env->v7m.secure ? "S " : "NS ";
932 }
933
934 if (xpsr & XPSR_EXCP) {
935 mode = "handler";
936 } else {
937 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
938 mode = "unpriv-thread";
939 } else {
940 mode = "priv-thread";
941 }
942 }
943
944 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
945 xpsr,
946 xpsr & XPSR_N ? 'N' : '-',
947 xpsr & XPSR_Z ? 'Z' : '-',
948 xpsr & XPSR_C ? 'C' : '-',
949 xpsr & XPSR_V ? 'V' : '-',
950 xpsr & XPSR_T ? 'T' : 'A',
951 ns_status,
952 mode);
953 } else {
954 uint32_t psr = cpsr_read(env);
955 const char *ns_status = "";
956
957 if (arm_feature(env, ARM_FEATURE_EL3) &&
958 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
959 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
960 }
961
962 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
963 psr,
964 psr & CPSR_N ? 'N' : '-',
965 psr & CPSR_Z ? 'Z' : '-',
966 psr & CPSR_C ? 'C' : '-',
967 psr & CPSR_V ? 'V' : '-',
968 psr & CPSR_T ? 'T' : 'A',
969 ns_status,
970 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
971 }
972
973 if (flags & CPU_DUMP_FPU) {
974 int numvfpregs = 0;
a6627f5f
RH
975 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
976 numvfpregs = 32;
7fbc6a40 977 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
a6627f5f 978 numvfpregs = 16;
86480615
PMD
979 }
980 for (i = 0; i < numvfpregs; i++) {
981 uint64_t v = *aa32_vfp_dreg(env, i);
982 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
983 i * 2, (uint32_t)v,
984 i * 2 + 1, (uint32_t)(v >> 32),
985 i, v);
986 }
987 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
988 }
989}
990
46de5913
IM
991uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
992{
993 uint32_t Aff1 = idx / clustersz;
994 uint32_t Aff0 = idx % clustersz;
995 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
996}
997
ac87e507
PM
998static void cpreg_hashtable_data_destroy(gpointer data)
999{
1000 /*
1001 * Destroy function for cpu->cp_regs hashtable data entries.
1002 * We must free the name string because it was g_strdup()ed in
1003 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1004 * from r->name because we know we definitely allocated it.
1005 */
1006 ARMCPRegInfo *r = data;
1007
1008 g_free((void *)r->name);
1009 g_free(r);
1010}
1011
777dc784
PM
1012static void arm_cpu_initfn(Object *obj)
1013{
1014 ARMCPU *cpu = ARM_CPU(obj);
1015
7506ed90 1016 cpu_set_cpustate_pointers(cpu);
4b6a83fb 1017 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
ac87e507 1018 g_free, cpreg_hashtable_data_destroy);
79614b78 1019
b5c53d1b 1020 QLIST_INIT(&cpu->pre_el_change_hooks);
08267487
AL
1021 QLIST_INIT(&cpu->el_change_hooks);
1022
7c1840b6
PM
1023#ifndef CONFIG_USER_ONLY
1024 /* Our inbound IRQ and FIQ lines */
1025 if (kvm_enabled()) {
136e67e9
EI
1026 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1027 * the same interface as non-KVM CPUs.
1028 */
1029 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
7c1840b6 1030 } else {
136e67e9 1031 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
7c1840b6 1032 }
55d284af 1033
55d284af
PM
1034 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1035 ARRAY_SIZE(cpu->gt_timer_outputs));
aa1b3111
PM
1036
1037 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1038 "gicv3-maintenance-interrupt", 1);
07f48730
AJ
1039 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1040 "pmu-interrupt", 1);
7c1840b6
PM
1041#endif
1042
54d3e3f5
PM
1043 /* DTB consumers generally don't in fact care what the 'compatible'
1044 * string is, so always provide some string and trust that a hypothetical
1045 * picky DTB consumer will also provide a helpful error message.
1046 */
1047 cpu->dtb_compatible = "qemu,unknown";
dd032e34 1048 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
3541addc 1049 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
54d3e3f5 1050
98128601
RH
1051 if (tcg_enabled()) {
1052 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
79614b78 1053 }
4b6a83fb
PM
1054}
1055
96eec6b2
AJ
1056static Property arm_cpu_gt_cntfrq_property =
1057 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1058 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1059
07a5b0d2 1060static Property arm_cpu_reset_cbar_property =
f318cec6 1061 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
07a5b0d2 1062
68e0a40a
AP
1063static Property arm_cpu_reset_hivecs_property =
1064 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1065
3933443e
PM
1066static Property arm_cpu_rvbar_property =
1067 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1068
45ca3a14 1069#ifndef CONFIG_USER_ONLY
c25bd18a
PM
1070static Property arm_cpu_has_el2_property =
1071 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1072
51942aee
GB
1073static Property arm_cpu_has_el3_property =
1074 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
45ca3a14 1075#endif
51942aee 1076
3a062d57
JB
1077static Property arm_cpu_cfgend_property =
1078 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1079
97a28b0e
PM
1080static Property arm_cpu_has_vfp_property =
1081 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1082
1083static Property arm_cpu_has_neon_property =
1084 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1085
ea90db0a
PM
1086static Property arm_cpu_has_dsp_property =
1087 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1088
8f325f56
PC
1089static Property arm_cpu_has_mpu_property =
1090 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1091
8d92e26b
PM
1092/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1093 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1094 * the right value for that particular CPU type, and we don't want
1095 * to override that with an incorrect constant value.
1096 */
3281af81 1097static Property arm_cpu_pmsav7_dregion_property =
8d92e26b
PM
1098 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1099 pmsav7_dregion,
1100 qdev_prop_uint32, uint32_t);
3281af81 1101
ae502508
AJ
1102static bool arm_get_pmu(Object *obj, Error **errp)
1103{
1104 ARMCPU *cpu = ARM_CPU(obj);
1105
1106 return cpu->has_pmu;
1107}
1108
1109static void arm_set_pmu(Object *obj, bool value, Error **errp)
1110{
1111 ARMCPU *cpu = ARM_CPU(obj);
1112
1113 if (value) {
7d20e681 1114 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
ae502508
AJ
1115 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1116 return;
1117 }
1118 set_feature(&cpu->env, ARM_FEATURE_PMU);
1119 } else {
1120 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1121 }
1122 cpu->has_pmu = value;
1123}
1124
7def8754
AJ
1125unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1126{
96eec6b2
AJ
1127 /*
1128 * The exact approach to calculating guest ticks is:
1129 *
1130 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1131 * NANOSECONDS_PER_SECOND);
1132 *
1133 * We don't do that. Rather we intentionally use integer division
1134 * truncation below and in the caller for the conversion of host monotonic
1135 * time to guest ticks to provide the exact inverse for the semantics of
1136 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1137 * it loses precision when representing frequencies where
1138 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1139 * provide an exact inverse leads to scheduling timers with negative
1140 * periods, which in turn leads to sticky behaviour in the guest.
1141 *
1142 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1143 * cannot become zero.
1144 */
7def8754
AJ
1145 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1146 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1147}
1148
51e5ef45 1149void arm_cpu_post_init(Object *obj)
07a5b0d2
PC
1150{
1151 ARMCPU *cpu = ARM_CPU(obj);
07a5b0d2 1152
790a1150
PM
1153 /* M profile implies PMSA. We have to do this here rather than
1154 * in realize with the other feature-implication checks because
1155 * we look at the PMSA bit to see if we should add some properties.
1156 */
1157 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1158 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1159 }
1160
f318cec6
PM
1161 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1162 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
94d912d1 1163 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
07a5b0d2 1164 }
68e0a40a
AP
1165
1166 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
94d912d1 1167 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
68e0a40a 1168 }
3933443e
PM
1169
1170 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
94d912d1 1171 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
3933443e 1172 }
51942aee 1173
45ca3a14 1174#ifndef CONFIG_USER_ONLY
51942aee
GB
1175 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1176 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1177 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1178 */
94d912d1 1179 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
9e273ef2 1180
9e273ef2
PM
1181 object_property_add_link(obj, "secure-memory",
1182 TYPE_MEMORY_REGION,
1183 (Object **)&cpu->secure_memory,
1184 qdev_prop_allow_set_link_before_realize,
d2623129 1185 OBJ_PROP_LINK_STRONG);
51942aee 1186 }
8f325f56 1187
c25bd18a 1188 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
94d912d1 1189 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
c25bd18a 1190 }
45ca3a14 1191#endif
c25bd18a 1192
929e754d 1193 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
ae502508 1194 cpu->has_pmu = true;
d2623129 1195 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
929e754d
WH
1196 }
1197
97a28b0e
PM
1198 /*
1199 * Allow user to turn off VFP and Neon support, but only for TCG --
1200 * KVM does not currently allow us to lie to the guest about its
1201 * ID/feature registers, so the guest always sees what the host has.
1202 */
7d63183f
RH
1203 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1204 ? cpu_isar_feature(aa64_fp_simd, cpu)
1205 : cpu_isar_feature(aa32_vfp, cpu)) {
97a28b0e
PM
1206 cpu->has_vfp = true;
1207 if (!kvm_enabled()) {
94d912d1 1208 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
97a28b0e
PM
1209 }
1210 }
1211
1212 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1213 cpu->has_neon = true;
1214 if (!kvm_enabled()) {
94d912d1 1215 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
97a28b0e
PM
1216 }
1217 }
1218
ea90db0a
PM
1219 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1220 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
94d912d1 1221 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
ea90db0a
PM
1222 }
1223
452a0955 1224 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
94d912d1 1225 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
3281af81
PC
1226 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1227 qdev_property_add_static(DEVICE(obj),
94d912d1 1228 &arm_cpu_pmsav7_dregion_property);
3281af81 1229 }
8f325f56
PC
1230 }
1231
181962fd
PM
1232 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1233 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1234 qdev_prop_allow_set_link_before_realize,
d2623129 1235 OBJ_PROP_LINK_STRONG);
f9f62e4c
PM
1236 /*
1237 * M profile: initial value of the Secure VTOR. We can't just use
1238 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1239 * the property to be set after realize.
1240 */
64a7b8de
FF
1241 object_property_add_uint32_ptr(obj, "init-svtor",
1242 &cpu->init_svtor,
d2623129 1243 OBJ_PROP_FLAG_READWRITE);
181962fd
PM
1244 }
1245
94d912d1 1246 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
96eec6b2
AJ
1247
1248 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
94d912d1 1249 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
96eec6b2 1250 }
9e6f8d8a 1251
1252 if (kvm_enabled()) {
1253 kvm_arm_add_vcpu_properties(obj);
1254 }
07a5b0d2
PC
1255}
1256
4b6a83fb
PM
1257static void arm_cpu_finalizefn(Object *obj)
1258{
1259 ARMCPU *cpu = ARM_CPU(obj);
08267487
AL
1260 ARMELChangeHook *hook, *next;
1261
4b6a83fb 1262 g_hash_table_destroy(cpu->cp_regs);
08267487 1263
b5c53d1b
AL
1264 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1265 QLIST_REMOVE(hook, node);
1266 g_free(hook);
1267 }
08267487
AL
1268 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1269 QLIST_REMOVE(hook, node);
1270 g_free(hook);
1271 }
4e7beb0c
AL
1272#ifndef CONFIG_USER_ONLY
1273 if (cpu->pmu_timer) {
1274 timer_del(cpu->pmu_timer);
1275 timer_deinit(cpu->pmu_timer);
1276 timer_free(cpu->pmu_timer);
1277 }
1278#endif
777dc784
PM
1279}
1280
0df9142d
AJ
1281void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1282{
1283 Error *local_err = NULL;
1284
1285 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1286 arm_cpu_sve_finalize(cpu, &local_err);
1287 if (local_err != NULL) {
1288 error_propagate(errp, local_err);
1289 return;
1290 }
1291 }
1292}
1293
14969266 1294static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
581be094 1295{
14a10fc3 1296 CPUState *cs = CPU(dev);
14969266
AF
1297 ARMCPU *cpu = ARM_CPU(dev);
1298 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
581be094 1299 CPUARMState *env = &cpu->env;
e97da98f 1300 int pagebits;
ce5b1bbf 1301 Error *local_err = NULL;
0f8d06f1 1302 bool no_aa32 = false;
ce5b1bbf 1303
c4487d76
PM
1304 /* If we needed to query the host kernel for the CPU features
1305 * then it's possible that might have failed in the initfn, but
1306 * this is the first point where we can report it.
1307 */
1308 if (cpu->host_cpu_probe_failed) {
1309 if (!kvm_enabled()) {
1310 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1311 } else {
1312 error_setg(errp, "Failed to retrieve host CPU features");
1313 }
1314 return;
1315 }
1316
95f87565
PM
1317#ifndef CONFIG_USER_ONLY
1318 /* The NVIC and M-profile CPU are two halves of a single piece of
1319 * hardware; trying to use one without the other is a command line
1320 * error and will result in segfaults if not caught here.
1321 */
1322 if (arm_feature(env, ARM_FEATURE_M)) {
1323 if (!env->nvic) {
1324 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1325 return;
1326 }
1327 } else {
1328 if (env->nvic) {
1329 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1330 return;
1331 }
1332 }
397cd31f 1333
96eec6b2
AJ
1334 {
1335 uint64_t scale;
1336
1337 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1338 if (!cpu->gt_cntfrq_hz) {
1339 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1340 cpu->gt_cntfrq_hz);
1341 return;
1342 }
1343 scale = gt_cntfrq_period_ns(cpu);
1344 } else {
1345 scale = GTIMER_SCALE;
1346 }
1347
1348 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1349 arm_gt_ptimer_cb, cpu);
1350 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1351 arm_gt_vtimer_cb, cpu);
1352 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1353 arm_gt_htimer_cb, cpu);
1354 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1355 arm_gt_stimer_cb, cpu);
8c94b071
RH
1356 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1357 arm_gt_hvtimer_cb, cpu);
96eec6b2 1358 }
95f87565
PM
1359#endif
1360
ce5b1bbf
LV
1361 cpu_exec_realizefn(cs, &local_err);
1362 if (local_err != NULL) {
1363 error_propagate(errp, local_err);
1364 return;
1365 }
14969266 1366
0df9142d
AJ
1367 arm_cpu_finalize_features(cpu, &local_err);
1368 if (local_err != NULL) {
1369 error_propagate(errp, local_err);
1370 return;
1371 }
1372
97a28b0e
PM
1373 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1374 cpu->has_vfp != cpu->has_neon) {
1375 /*
1376 * This is an architectural requirement for AArch64; AArch32 is
1377 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1378 */
1379 error_setg(errp,
1380 "AArch64 CPUs must have both VFP and Neon or neither");
1381 return;
1382 }
1383
1384 if (!cpu->has_vfp) {
1385 uint64_t t;
1386 uint32_t u;
1387
97a28b0e
PM
1388 t = cpu->isar.id_aa64isar1;
1389 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1390 cpu->isar.id_aa64isar1 = t;
1391
1392 t = cpu->isar.id_aa64pfr0;
1393 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1394 cpu->isar.id_aa64pfr0 = t;
1395
1396 u = cpu->isar.id_isar6;
1397 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1398 cpu->isar.id_isar6 = u;
1399
1400 u = cpu->isar.mvfr0;
1401 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1402 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1403 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1404 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1405 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1406 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1407 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1408 cpu->isar.mvfr0 = u;
1409
1410 u = cpu->isar.mvfr1;
1411 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1412 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1413 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1414 cpu->isar.mvfr1 = u;
1415
1416 u = cpu->isar.mvfr2;
1417 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1418 cpu->isar.mvfr2 = u;
1419 }
1420
1421 if (!cpu->has_neon) {
1422 uint64_t t;
1423 uint32_t u;
1424
1425 unset_feature(env, ARM_FEATURE_NEON);
1426
1427 t = cpu->isar.id_aa64isar0;
1428 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1429 cpu->isar.id_aa64isar0 = t;
1430
1431 t = cpu->isar.id_aa64isar1;
1432 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1433 cpu->isar.id_aa64isar1 = t;
1434
1435 t = cpu->isar.id_aa64pfr0;
1436 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1437 cpu->isar.id_aa64pfr0 = t;
1438
1439 u = cpu->isar.id_isar5;
1440 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1441 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1442 cpu->isar.id_isar5 = u;
1443
1444 u = cpu->isar.id_isar6;
1445 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1446 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1447 cpu->isar.id_isar6 = u;
1448
1449 u = cpu->isar.mvfr1;
1450 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1451 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1452 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1453 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
97a28b0e
PM
1454 cpu->isar.mvfr1 = u;
1455
1456 u = cpu->isar.mvfr2;
1457 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1458 cpu->isar.mvfr2 = u;
1459 }
1460
1461 if (!cpu->has_neon && !cpu->has_vfp) {
1462 uint64_t t;
1463 uint32_t u;
1464
1465 t = cpu->isar.id_aa64isar0;
1466 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1467 cpu->isar.id_aa64isar0 = t;
1468
1469 t = cpu->isar.id_aa64isar1;
1470 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1471 cpu->isar.id_aa64isar1 = t;
1472
1473 u = cpu->isar.mvfr0;
1474 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1475 cpu->isar.mvfr0 = u;
c52881bb
RH
1476
1477 /* Despite the name, this field covers both VFP and Neon */
1478 u = cpu->isar.mvfr1;
1479 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1480 cpu->isar.mvfr1 = u;
97a28b0e
PM
1481 }
1482
ea90db0a
PM
1483 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1484 uint32_t u;
1485
1486 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1487
1488 u = cpu->isar.id_isar1;
1489 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1490 cpu->isar.id_isar1 = u;
1491
1492 u = cpu->isar.id_isar2;
1493 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1494 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1495 cpu->isar.id_isar2 = u;
1496
1497 u = cpu->isar.id_isar3;
1498 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1499 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1500 cpu->isar.id_isar3 = u;
1501 }
1502
581be094 1503 /* Some features automatically imply others: */
81e69fb0 1504 if (arm_feature(env, ARM_FEATURE_V8)) {
5256df88
RH
1505 if (arm_feature(env, ARM_FEATURE_M)) {
1506 set_feature(env, ARM_FEATURE_V7);
1507 } else {
1508 set_feature(env, ARM_FEATURE_V7VE);
1509 }
5110e683 1510 }
0f8d06f1
RH
1511
1512 /*
1513 * There exist AArch64 cpus without AArch32 support. When KVM
1514 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1515 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
8f4821d7
PM
1516 * As a general principle, we also do not make ID register
1517 * consistency checks anywhere unless using TCG, because only
1518 * for TCG would a consistency-check failure be a QEMU bug.
0f8d06f1
RH
1519 */
1520 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1521 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1522 }
1523
5110e683
AL
1524 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1525 /* v7 Virtualization Extensions. In real hardware this implies
1526 * EL2 and also the presence of the Security Extensions.
1527 * For QEMU, for backwards-compatibility we implement some
1528 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1529 * include the various other features that V7VE implies.
1530 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1531 * Security Extensions is ARM_FEATURE_EL3.
1532 */
873b73c0
PM
1533 assert(!tcg_enabled() || no_aa32 ||
1534 cpu_isar_feature(aa32_arm_div, cpu));
81e69fb0 1535 set_feature(env, ARM_FEATURE_LPAE);
5110e683 1536 set_feature(env, ARM_FEATURE_V7);
81e69fb0 1537 }
581be094
PM
1538 if (arm_feature(env, ARM_FEATURE_V7)) {
1539 set_feature(env, ARM_FEATURE_VAPA);
1540 set_feature(env, ARM_FEATURE_THUMB2);
81bdde9d 1541 set_feature(env, ARM_FEATURE_MPIDR);
581be094
PM
1542 if (!arm_feature(env, ARM_FEATURE_M)) {
1543 set_feature(env, ARM_FEATURE_V6K);
1544 } else {
1545 set_feature(env, ARM_FEATURE_V6);
1546 }
91db4642
CLG
1547
1548 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1549 * non-EL3 configs. This is needed by some legacy boards.
1550 */
1551 set_feature(env, ARM_FEATURE_VBAR);
581be094
PM
1552 }
1553 if (arm_feature(env, ARM_FEATURE_V6K)) {
1554 set_feature(env, ARM_FEATURE_V6);
1555 set_feature(env, ARM_FEATURE_MVFR);
1556 }
1557 if (arm_feature(env, ARM_FEATURE_V6)) {
1558 set_feature(env, ARM_FEATURE_V5);
1559 if (!arm_feature(env, ARM_FEATURE_M)) {
873b73c0
PM
1560 assert(!tcg_enabled() || no_aa32 ||
1561 cpu_isar_feature(aa32_jazelle, cpu));
581be094
PM
1562 set_feature(env, ARM_FEATURE_AUXCR);
1563 }
1564 }
1565 if (arm_feature(env, ARM_FEATURE_V5)) {
1566 set_feature(env, ARM_FEATURE_V4T);
1567 }
de9b05b8 1568 if (arm_feature(env, ARM_FEATURE_LPAE)) {
bdcc150d 1569 set_feature(env, ARM_FEATURE_V7MP);
de9b05b8
PM
1570 set_feature(env, ARM_FEATURE_PXN);
1571 }
f318cec6
PM
1572 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1573 set_feature(env, ARM_FEATURE_CBAR);
1574 }
62b44f05
AR
1575 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1576 !arm_feature(env, ARM_FEATURE_M)) {
1577 set_feature(env, ARM_FEATURE_THUMB_DSP);
1578 }
2ceb98c0 1579
ea7ac69d
PM
1580 /*
1581 * We rely on no XScale CPU having VFP so we can use the same bits in the
1582 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1583 */
7d63183f
RH
1584 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1585 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1586 !arm_feature(env, ARM_FEATURE_XSCALE));
ea7ac69d 1587
e97da98f
PM
1588 if (arm_feature(env, ARM_FEATURE_V7) &&
1589 !arm_feature(env, ARM_FEATURE_M) &&
452a0955 1590 !arm_feature(env, ARM_FEATURE_PMSA)) {
e97da98f
PM
1591 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1592 * can use 4K pages.
1593 */
1594 pagebits = 12;
1595 } else {
1596 /* For CPUs which might have tiny 1K pages, or which have an
1597 * MPU and might have small region sizes, stick with 1K pages.
1598 */
1599 pagebits = 10;
1600 }
1601 if (!set_preferred_target_page_bits(pagebits)) {
1602 /* This can only ever happen for hotplugging a CPU, or if
1603 * the board code incorrectly creates a CPU which it has
1604 * promised via minimum_page_size that it will not.
1605 */
1606 error_setg(errp, "This CPU requires a smaller page size than the "
1607 "system is using");
1608 return;
1609 }
1610
ce5b1bbf
LV
1611 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1612 * We don't support setting cluster ID ([16..23]) (known as Aff2
1613 * in later ARM ARM versions), or any of the higher affinity level fields,
1614 * so these bits always RAZ.
1615 */
1616 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
46de5913
IM
1617 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1618 ARM_DEFAULT_CPUS_PER_CLUSTER);
ce5b1bbf
LV
1619 }
1620
68e0a40a
AP
1621 if (cpu->reset_hivecs) {
1622 cpu->reset_sctlr |= (1 << 13);
1623 }
1624
3a062d57
JB
1625 if (cpu->cfgend) {
1626 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1627 cpu->reset_sctlr |= SCTLR_EE;
1628 } else {
1629 cpu->reset_sctlr |= SCTLR_B;
1630 }
1631 }
1632
51942aee
GB
1633 if (!cpu->has_el3) {
1634 /* If the has_el3 CPU property is disabled then we need to disable the
1635 * feature.
1636 */
1637 unset_feature(env, ARM_FEATURE_EL3);
1638
1639 /* Disable the security extension feature bits in the processor feature
3d5c84ff 1640 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
51942aee
GB
1641 */
1642 cpu->id_pfr1 &= ~0xf0;
47576b94 1643 cpu->isar.id_aa64pfr0 &= ~0xf000;
51942aee
GB
1644 }
1645
c25bd18a
PM
1646 if (!cpu->has_el2) {
1647 unset_feature(env, ARM_FEATURE_EL2);
1648 }
1649
d6f02ce3 1650 if (!cpu->has_pmu) {
929e754d 1651 unset_feature(env, ARM_FEATURE_PMU);
57a4a11b
AL
1652 }
1653 if (arm_feature(env, ARM_FEATURE_PMU)) {
bf8d0969 1654 pmu_init(cpu);
57a4a11b
AL
1655
1656 if (!kvm_enabled()) {
1657 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1658 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1659 }
4e7beb0c
AL
1660
1661#ifndef CONFIG_USER_ONLY
1662 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1663 cpu);
1664#endif
57a4a11b 1665 } else {
2a609df8
PM
1666 cpu->isar.id_aa64dfr0 =
1667 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
a6179538 1668 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
57a4a11b
AL
1669 cpu->pmceid0 = 0;
1670 cpu->pmceid1 = 0;
929e754d
WH
1671 }
1672
3c2f7bb3
PM
1673 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1674 /* Disable the hypervisor feature bits in the processor feature
1675 * registers if we don't have EL2. These are id_pfr1[15:12] and
1676 * id_aa64pfr0_el1[11:8].
1677 */
47576b94 1678 cpu->isar.id_aa64pfr0 &= ~0xf00;
3c2f7bb3
PM
1679 cpu->id_pfr1 &= ~0xf000;
1680 }
1681
f50cd314
PM
1682 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1683 * to false or by setting pmsav7-dregion to 0.
1684 */
8f325f56 1685 if (!cpu->has_mpu) {
f50cd314
PM
1686 cpu->pmsav7_dregion = 0;
1687 }
1688 if (cpu->pmsav7_dregion == 0) {
1689 cpu->has_mpu = false;
8f325f56
PC
1690 }
1691
452a0955 1692 if (arm_feature(env, ARM_FEATURE_PMSA) &&
3281af81
PC
1693 arm_feature(env, ARM_FEATURE_V7)) {
1694 uint32_t nr = cpu->pmsav7_dregion;
1695
1696 if (nr > 0xff) {
9af9e0fe 1697 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
3281af81
PC
1698 return;
1699 }
6cb0b013
PC
1700
1701 if (nr) {
0e1a46bb
PM
1702 if (arm_feature(env, ARM_FEATURE_V8)) {
1703 /* PMSAv8 */
62c58ee0
PM
1704 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1705 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1706 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1707 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1708 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1709 }
0e1a46bb
PM
1710 } else {
1711 env->pmsav7.drbar = g_new0(uint32_t, nr);
1712 env->pmsav7.drsr = g_new0(uint32_t, nr);
1713 env->pmsav7.dracr = g_new0(uint32_t, nr);
1714 }
6cb0b013 1715 }
3281af81
PC
1716 }
1717
9901c576
PM
1718 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1719 uint32_t nr = cpu->sau_sregion;
1720
1721 if (nr > 0xff) {
1722 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1723 return;
1724 }
1725
1726 if (nr) {
1727 env->sau.rbar = g_new0(uint32_t, nr);
1728 env->sau.rlar = g_new0(uint32_t, nr);
1729 }
1730 }
1731
91db4642
CLG
1732 if (arm_feature(env, ARM_FEATURE_EL3)) {
1733 set_feature(env, ARM_FEATURE_VBAR);
1734 }
1735
2ceb98c0 1736 register_cp_regs_for_features(cpu);
14969266
AF
1737 arm_cpu_register_gdb_regs_for_features(cpu);
1738
721fae12
PM
1739 init_cpreg_list(cpu);
1740
9e273ef2 1741#ifndef CONFIG_USER_ONLY
cc7d44c2
LX
1742 MachineState *ms = MACHINE(qdev_get_machine());
1743 unsigned int smp_cpus = ms->smp.cpus;
1744
1d2091bc 1745 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1d2091bc
PM
1746 cs->num_ases = 2;
1747
9e273ef2
PM
1748 if (!cpu->secure_memory) {
1749 cpu->secure_memory = cs->memory;
1750 }
80ceb07a
PX
1751 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1752 cpu->secure_memory);
1d2091bc
PM
1753 } else {
1754 cs->num_ases = 1;
9e273ef2 1755 }
80ceb07a 1756 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
f9a69711
AF
1757
1758 /* No core_count specified, default to smp_cpus. */
1759 if (cpu->core_count == -1) {
1760 cpu->core_count = smp_cpus;
1761 }
9e273ef2
PM
1762#endif
1763
a4157b80
RH
1764 if (tcg_enabled()) {
1765 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1766
1767 /*
1768 * We only support DCZ blocklen that fits on one page.
1769 *
1770 * Architectually this is always true. However TARGET_PAGE_SIZE
1771 * is variable and, for compatibility with -machine virt-2.7,
1772 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1773 * But even then, while the largest architectural DCZ blocklen
1774 * is 2KiB, no cpu actually uses such a large blocklen.
1775 */
1776 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1777
1778 /*
1779 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1780 * both nibbles of each byte storing tag data may be written at once.
1781 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1782 */
1783 if (cpu_isar_feature(aa64_mte, cpu)) {
1784 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1785 }
1786 }
1787
14a10fc3 1788 qemu_init_vcpu(cs);
00d0f7cb 1789 cpu_reset(cs);
14969266
AF
1790
1791 acc->parent_realize(dev, errp);
581be094
PM
1792}
1793
5900d6b2
AF
1794static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1795{
1796 ObjectClass *oc;
51492fd1 1797 char *typename;
fb8d6c24 1798 char **cpuname;
a0032cc5 1799 const char *cpunamestr;
5900d6b2 1800
fb8d6c24 1801 cpuname = g_strsplit(cpu_model, ",", 1);
a0032cc5
PM
1802 cpunamestr = cpuname[0];
1803#ifdef CONFIG_USER_ONLY
1804 /* For backwards compatibility usermode emulation allows "-cpu any",
1805 * which has the same semantics as "-cpu max".
1806 */
1807 if (!strcmp(cpunamestr, "any")) {
1808 cpunamestr = "max";
1809 }
1810#endif
1811 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
51492fd1 1812 oc = object_class_by_name(typename);
fb8d6c24 1813 g_strfreev(cpuname);
51492fd1 1814 g_free(typename);
245fb54d
AF
1815 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1816 object_class_is_abstract(oc)) {
5900d6b2
AF
1817 return NULL;
1818 }
1819 return oc;
1820}
1821
15ee776b
PM
1822/* CPU models. These are not needed for the AArch64 linux-user build. */
1823#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1824
34f90529
PM
1825static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1826 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1827 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1828 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1829 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1830 REGINFO_SENTINEL
1831};
1832
777dc784
PM
1833static void cortex_a8_initfn(Object *obj)
1834{
1835 ARMCPU *cpu = ARM_CPU(obj);
54d3e3f5
PM
1836
1837 cpu->dtb_compatible = "arm,cortex-a8";
581be094 1838 set_feature(&cpu->env, ARM_FEATURE_V7);
581be094
PM
1839 set_feature(&cpu->env, ARM_FEATURE_NEON);
1840 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
c4804214 1841 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
c0ccb02d 1842 set_feature(&cpu->env, ARM_FEATURE_EL3);
b2d06f96 1843 cpu->midr = 0x410fc080;
325b3cef 1844 cpu->reset_fpsid = 0x410330c0;
47576b94
RH
1845 cpu->isar.mvfr0 = 0x11110222;
1846 cpu->isar.mvfr1 = 0x00011111;
64e1671f 1847 cpu->ctr = 0x82048004;
0ca7e01c 1848 cpu->reset_sctlr = 0x00c50078;
2e4d7e3e
PM
1849 cpu->id_pfr0 = 0x1031;
1850 cpu->id_pfr1 = 0x11;
a6179538 1851 cpu->isar.id_dfr0 = 0x400;
2e4d7e3e 1852 cpu->id_afr0 = 0;
10054016
PM
1853 cpu->isar.id_mmfr0 = 0x31100003;
1854 cpu->isar.id_mmfr1 = 0x20000000;
1855 cpu->isar.id_mmfr2 = 0x01202000;
1856 cpu->isar.id_mmfr3 = 0x11;
47576b94
RH
1857 cpu->isar.id_isar0 = 0x00101111;
1858 cpu->isar.id_isar1 = 0x12112111;
1859 cpu->isar.id_isar2 = 0x21232031;
1860 cpu->isar.id_isar3 = 0x11112131;
1861 cpu->isar.id_isar4 = 0x00111142;
4426d361 1862 cpu->isar.dbgdidr = 0x15141000;
85df3786
PM
1863 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1864 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1865 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1866 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2771db27 1867 cpu->reset_auxcr = 2;
34f90529 1868 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
777dc784
PM
1869}
1870
1047b9d7
PM
1871static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1872 /* power_control should be set to maximum latency. Again,
1873 * default to 0 and set by private hook
1874 */
1875 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1876 .access = PL1_RW, .resetvalue = 0,
1877 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1878 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1879 .access = PL1_RW, .resetvalue = 0,
1880 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1881 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1882 .access = PL1_RW, .resetvalue = 0,
1883 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1884 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1885 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1886 /* TLB lockdown control */
1887 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1888 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1889 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1890 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1891 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1892 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1893 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1894 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1895 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1896 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1897 REGINFO_SENTINEL
1898};
1899
777dc784
PM
1900static void cortex_a9_initfn(Object *obj)
1901{
1902 ARMCPU *cpu = ARM_CPU(obj);
54d3e3f5
PM
1903
1904 cpu->dtb_compatible = "arm,cortex-a9";
581be094 1905 set_feature(&cpu->env, ARM_FEATURE_V7);
581be094
PM
1906 set_feature(&cpu->env, ARM_FEATURE_NEON);
1907 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
c0ccb02d 1908 set_feature(&cpu->env, ARM_FEATURE_EL3);
581be094
PM
1909 /* Note that A9 supports the MP extensions even for
1910 * A9UP and single-core A9MP (which are both different
1911 * and valid configurations; we don't model A9UP).
1912 */
1913 set_feature(&cpu->env, ARM_FEATURE_V7MP);
d8ba780b 1914 set_feature(&cpu->env, ARM_FEATURE_CBAR);
b2d06f96 1915 cpu->midr = 0x410fc090;
325b3cef 1916 cpu->reset_fpsid = 0x41033090;
47576b94
RH
1917 cpu->isar.mvfr0 = 0x11110222;
1918 cpu->isar.mvfr1 = 0x01111111;
64e1671f 1919 cpu->ctr = 0x80038003;
0ca7e01c 1920 cpu->reset_sctlr = 0x00c50078;
2e4d7e3e
PM
1921 cpu->id_pfr0 = 0x1031;
1922 cpu->id_pfr1 = 0x11;
a6179538 1923 cpu->isar.id_dfr0 = 0x000;
2e4d7e3e 1924 cpu->id_afr0 = 0;
10054016
PM
1925 cpu->isar.id_mmfr0 = 0x00100103;
1926 cpu->isar.id_mmfr1 = 0x20000000;
1927 cpu->isar.id_mmfr2 = 0x01230000;
1928 cpu->isar.id_mmfr3 = 0x00002111;
47576b94
RH
1929 cpu->isar.id_isar0 = 0x00101111;
1930 cpu->isar.id_isar1 = 0x13112111;
1931 cpu->isar.id_isar2 = 0x21232041;
1932 cpu->isar.id_isar3 = 0x11112131;
1933 cpu->isar.id_isar4 = 0x00111142;
4426d361 1934 cpu->isar.dbgdidr = 0x35141000;
85df3786 1935 cpu->clidr = (1 << 27) | (1 << 24) | 3;
f7838b52
PC
1936 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1937 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
d8ba780b 1938 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
777dc784
PM
1939}
1940
34f90529 1941#ifndef CONFIG_USER_ONLY
c4241c7d 1942static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
34f90529 1943{
cc7d44c2
LX
1944 MachineState *ms = MACHINE(qdev_get_machine());
1945
34f90529
PM
1946 /* Linux wants the number of processors from here.
1947 * Might as well set the interrupt-controller bit too.
1948 */
cc7d44c2 1949 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
34f90529
PM
1950}
1951#endif
1952
1953static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1954#ifndef CONFIG_USER_ONLY
1955 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1956 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1957 .writefn = arm_cp_write_ignore, },
1958#endif
1959 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1960 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1961 REGINFO_SENTINEL
1962};
1963
dcf578ed
AY
1964static void cortex_a7_initfn(Object *obj)
1965{
1966 ARMCPU *cpu = ARM_CPU(obj);
1967
1968 cpu->dtb_compatible = "arm,cortex-a7";
5110e683 1969 set_feature(&cpu->env, ARM_FEATURE_V7VE);
dcf578ed
AY
1970 set_feature(&cpu->env, ARM_FEATURE_NEON);
1971 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
dcf578ed
AY
1972 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1973 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1974 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
436c0cbb 1975 set_feature(&cpu->env, ARM_FEATURE_EL2);
dcf578ed 1976 set_feature(&cpu->env, ARM_FEATURE_EL3);
a46118fc 1977 set_feature(&cpu->env, ARM_FEATURE_PMU);
dcf578ed
AY
1978 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1979 cpu->midr = 0x410fc075;
1980 cpu->reset_fpsid = 0x41023075;
47576b94
RH
1981 cpu->isar.mvfr0 = 0x10110222;
1982 cpu->isar.mvfr1 = 0x11111111;
dcf578ed
AY
1983 cpu->ctr = 0x84448003;
1984 cpu->reset_sctlr = 0x00c50078;
1985 cpu->id_pfr0 = 0x00001131;
1986 cpu->id_pfr1 = 0x00011011;
a6179538 1987 cpu->isar.id_dfr0 = 0x02010555;
dcf578ed 1988 cpu->id_afr0 = 0x00000000;
10054016
PM
1989 cpu->isar.id_mmfr0 = 0x10101105;
1990 cpu->isar.id_mmfr1 = 0x40000000;
1991 cpu->isar.id_mmfr2 = 0x01240000;
1992 cpu->isar.id_mmfr3 = 0x02102211;
37bdda89
RH
1993 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1994 * table 4-41 gives 0x02101110, which includes the arm div insns.
1995 */
47576b94
RH
1996 cpu->isar.id_isar0 = 0x02101110;
1997 cpu->isar.id_isar1 = 0x13112111;
1998 cpu->isar.id_isar2 = 0x21232041;
1999 cpu->isar.id_isar3 = 0x11112131;
2000 cpu->isar.id_isar4 = 0x10011142;
4426d361 2001 cpu->isar.dbgdidr = 0x3515f005;
dcf578ed
AY
2002 cpu->clidr = 0x0a200023;
2003 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2004 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2005 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2006 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2007}
2008
777dc784
PM
2009static void cortex_a15_initfn(Object *obj)
2010{
2011 ARMCPU *cpu = ARM_CPU(obj);
54d3e3f5
PM
2012
2013 cpu->dtb_compatible = "arm,cortex-a15";
5110e683 2014 set_feature(&cpu->env, ARM_FEATURE_V7VE);
581be094
PM
2015 set_feature(&cpu->env, ARM_FEATURE_NEON);
2016 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
581be094 2017 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
c4804214 2018 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
c29f9a0a 2019 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
436c0cbb 2020 set_feature(&cpu->env, ARM_FEATURE_EL2);
c0ccb02d 2021 set_feature(&cpu->env, ARM_FEATURE_EL3);
a46118fc 2022 set_feature(&cpu->env, ARM_FEATURE_PMU);
3541addc 2023 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
b2d06f96 2024 cpu->midr = 0x412fc0f1;
325b3cef 2025 cpu->reset_fpsid = 0x410430f0;
47576b94
RH
2026 cpu->isar.mvfr0 = 0x10110222;
2027 cpu->isar.mvfr1 = 0x11111111;
64e1671f 2028 cpu->ctr = 0x8444c004;
0ca7e01c 2029 cpu->reset_sctlr = 0x00c50078;
2e4d7e3e
PM
2030 cpu->id_pfr0 = 0x00001131;
2031 cpu->id_pfr1 = 0x00011011;
a6179538 2032 cpu->isar.id_dfr0 = 0x02010555;
2e4d7e3e 2033 cpu->id_afr0 = 0x00000000;
10054016
PM
2034 cpu->isar.id_mmfr0 = 0x10201105;
2035 cpu->isar.id_mmfr1 = 0x20000000;
2036 cpu->isar.id_mmfr2 = 0x01240000;
2037 cpu->isar.id_mmfr3 = 0x02102211;
47576b94
RH
2038 cpu->isar.id_isar0 = 0x02101110;
2039 cpu->isar.id_isar1 = 0x13112111;
2040 cpu->isar.id_isar2 = 0x21232041;
2041 cpu->isar.id_isar3 = 0x11112131;
2042 cpu->isar.id_isar4 = 0x10011142;
4426d361 2043 cpu->isar.dbgdidr = 0x3515f021;
85df3786
PM
2044 cpu->clidr = 0x0a200023;
2045 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2046 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2047 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
34f90529 2048 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
777dc784
PM
2049}
2050
bab52d4b
PM
2051#ifndef TARGET_AARCH64
2052/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2053 * otherwise, a CPU with as many features enabled as our emulation supports.
2054 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2055 * this only needs to handle 32 bits.
2056 */
2057static void arm_max_initfn(Object *obj)
2058{
2059 ARMCPU *cpu = ARM_CPU(obj);
2060
2061 if (kvm_enabled()) {
2062 kvm_arm_set_cpu_features_from_host(cpu);
2063 } else {
2064 cortex_a15_initfn(obj);
973751fd
PM
2065
2066 /* old-style VFP short-vector support */
2067 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2068
a0032cc5
PM
2069#ifdef CONFIG_USER_ONLY
2070 /* We don't set these in system emulation mode for the moment,
962fcbf2
RH
2071 * since we don't correctly set (all of) the ID registers to
2072 * advertise them.
bab52d4b 2073 */
a0032cc5 2074 set_feature(&cpu->env, ARM_FEATURE_V8);
962fcbf2
RH
2075 {
2076 uint32_t t;
2077
2078 t = cpu->isar.id_isar5;
2079 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2080 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2081 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2082 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2083 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2084 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2085 cpu->isar.id_isar5 = t;
2086
2087 t = cpu->isar.id_isar6;
6c1f6f27 2088 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
962fcbf2 2089 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
991c0599 2090 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
9888bd1e 2091 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
cb570bd3 2092 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
962fcbf2 2093 cpu->isar.id_isar6 = t;
ab638a32 2094
45b1a243
AB
2095 t = cpu->isar.mvfr1;
2096 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2097 cpu->isar.mvfr1 = t;
2098
c8877d0f
RH
2099 t = cpu->isar.mvfr2;
2100 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2101 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2102 cpu->isar.mvfr2 = t;
2103
10054016 2104 t = cpu->isar.id_mmfr3;
e0fe7309 2105 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
10054016 2106 cpu->isar.id_mmfr3 = t;
e0fe7309 2107
10054016 2108 t = cpu->isar.id_mmfr4;
ab638a32 2109 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
f6287c24 2110 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
41a4bf1f 2111 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
ce3125be 2112 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
10054016 2113 cpu->isar.id_mmfr4 = t;
962fcbf2 2114 }
bab52d4b 2115#endif
a0032cc5 2116 }
777dc784 2117}
f5f6d38b 2118#endif
777dc784 2119
15ee776b
PM
2120#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2121
777dc784 2122static const ARMCPUInfo arm_cpus[] = {
15ee776b 2123#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
dcf578ed 2124 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
777dc784
PM
2125 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2126 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2127 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
bab52d4b
PM
2128#ifndef TARGET_AARCH64
2129 { .name = "max", .initfn = arm_max_initfn },
2130#endif
f5f6d38b 2131#ifdef CONFIG_USER_ONLY
a0032cc5 2132 { .name = "any", .initfn = arm_max_initfn },
f5f6d38b 2133#endif
15ee776b 2134#endif
777dc784
PM
2135};
2136
5de16430
PM
2137static Property arm_cpu_properties[] = {
2138 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
98128601 2139 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
e544f800 2140 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
ce5b1bbf
LV
2141 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2142 mp_affinity, ARM64_AFFINITY_INVALID),
15f8b142 2143 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
f9a69711 2144 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
5de16430
PM
2145 DEFINE_PROP_END_OF_LIST()
2146};
2147
b3820e6c
DH
2148static gchar *arm_gdb_arch_name(CPUState *cs)
2149{
2150 ARMCPU *cpu = ARM_CPU(cs);
2151 CPUARMState *env = &cpu->env;
2152
2153 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2154 return g_strdup("iwmmxt");
2155 }
2156 return g_strdup("arm");
2157}
2158
dec9c2d4
AF
2159static void arm_cpu_class_init(ObjectClass *oc, void *data)
2160{
2161 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2162 CPUClass *cc = CPU_CLASS(acc);
14969266
AF
2163 DeviceClass *dc = DEVICE_CLASS(oc);
2164
bf853881
PMD
2165 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2166 &acc->parent_realize);
dec9c2d4 2167
4f67d30b 2168 device_class_set_props(dc, arm_cpu_properties);
781c67ca 2169 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
5900d6b2
AF
2170
2171 cc->class_by_name = arm_cpu_class_by_name;
8c2e1b00 2172 cc->has_work = arm_cpu_has_work;
e8925712 2173 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
878096ee 2174 cc->dump_state = arm_cpu_dump_state;
f45748f1 2175 cc->set_pc = arm_cpu_set_pc;
42f6ed91 2176 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
5b50e790
AF
2177 cc->gdb_read_register = arm_cpu_gdb_read_register;
2178 cc->gdb_write_register = arm_cpu_gdb_write_register;
7350d553 2179#ifndef CONFIG_USER_ONLY
0adf7d3c 2180 cc->do_interrupt = arm_cpu_do_interrupt;
0faea0c7 2181 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
017518c1 2182 cc->asidx_from_attrs = arm_asidx_from_attrs;
00b941e5 2183 cc->vmsd = &vmstate_arm_cpu;
ed50ff78 2184 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
da2b9140
AJ
2185 cc->write_elf64_note = arm_cpu_write_elf64_note;
2186 cc->write_elf32_note = arm_cpu_write_elf32_note;
00b941e5 2187#endif
a0e372f0 2188 cc->gdb_num_core_regs = 26;
5b24c641 2189 cc->gdb_core_xml_file = "arm-core.xml";
b3820e6c 2190 cc->gdb_arch_name = arm_gdb_arch_name;
200bf5b7 2191 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2472b6c0 2192 cc->gdb_stop_before_watchpoint = true;
48440620 2193 cc->disas_set_info = arm_disas_set_info;
74d7fc7f 2194#ifdef CONFIG_TCG
55c3ceef 2195 cc->tcg_initialize = arm_translate_init;
7350d553 2196 cc->tlb_fill = arm_cpu_tlb_fill;
9dd5cca4
PMD
2197 cc->debug_excp_handler = arm_debug_excp_handler;
2198 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
e21b551c 2199 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
0d1762e9 2200#if !defined(CONFIG_USER_ONLY)
e21b551c 2201 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
9dd5cca4 2202 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
e21b551c 2203#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
74d7fc7f 2204#endif
dec9c2d4
AF
2205}
2206
86f0a186
PM
2207#ifdef CONFIG_KVM
2208static void arm_host_initfn(Object *obj)
2209{
2210 ARMCPU *cpu = ARM_CPU(obj);
2211
2212 kvm_arm_set_cpu_features_from_host(cpu);
87014c6b
AJ
2213 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2214 aarch64_add_sve_properties(obj);
2215 }
51e5ef45 2216 arm_cpu_post_init(obj);
86f0a186
PM
2217}
2218
2219static const TypeInfo host_arm_cpu_type_info = {
2220 .name = TYPE_ARM_HOST_CPU,
2221#ifdef TARGET_AARCH64
2222 .parent = TYPE_AARCH64_CPU,
2223#else
2224 .parent = TYPE_ARM_CPU,
2225#endif
2226 .instance_init = arm_host_initfn,
2227};
2228
2229#endif
2230
51e5ef45
MAL
2231static void arm_cpu_instance_init(Object *obj)
2232{
2233 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2234
2235 acc->info->initfn(obj);
2236 arm_cpu_post_init(obj);
2237}
2238
2239static void cpu_register_class_init(ObjectClass *oc, void *data)
2240{
2241 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2242
2243 acc->info = data;
2244}
2245
37bcf244 2246void arm_cpu_register(const ARMCPUInfo *info)
777dc784
PM
2247{
2248 TypeInfo type_info = {
777dc784
PM
2249 .parent = TYPE_ARM_CPU,
2250 .instance_size = sizeof(ARMCPU),
51e5ef45 2251 .instance_init = arm_cpu_instance_init,
777dc784 2252 .class_size = sizeof(ARMCPUClass),
51e5ef45
MAL
2253 .class_init = info->class_init ?: cpu_register_class_init,
2254 .class_data = (void *)info,
777dc784
PM
2255 };
2256
51492fd1 2257 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
918fd083 2258 type_register(&type_info);
51492fd1 2259 g_free((void *)type_info.name);
777dc784
PM
2260}
2261
dec9c2d4
AF
2262static const TypeInfo arm_cpu_type_info = {
2263 .name = TYPE_ARM_CPU,
2264 .parent = TYPE_CPU,
2265 .instance_size = sizeof(ARMCPU),
777dc784 2266 .instance_init = arm_cpu_initfn,
4b6a83fb 2267 .instance_finalize = arm_cpu_finalizefn,
777dc784 2268 .abstract = true,
dec9c2d4
AF
2269 .class_size = sizeof(ARMCPUClass),
2270 .class_init = arm_cpu_class_init,
2271};
2272
181962fd
PM
2273static const TypeInfo idau_interface_type_info = {
2274 .name = TYPE_IDAU_INTERFACE,
2275 .parent = TYPE_INTERFACE,
2276 .class_size = sizeof(IDAUInterfaceClass),
2277};
2278
dec9c2d4
AF
2279static void arm_cpu_register_types(void)
2280{
92b6a659 2281 const size_t cpu_count = ARRAY_SIZE(arm_cpus);
777dc784 2282
dec9c2d4 2283 type_register_static(&arm_cpu_type_info);
83e6813a 2284
86f0a186
PM
2285#ifdef CONFIG_KVM
2286 type_register_static(&host_arm_cpu_type_info);
2287#endif
92b6a659
PMD
2288
2289 if (cpu_count) {
2290 size_t i;
2291
fcdf0a90 2292 type_register_static(&idau_interface_type_info);
92b6a659
PMD
2293 for (i = 0; i < cpu_count; ++i) {
2294 arm_cpu_register(&arm_cpus[i]);
2295 }
2296 }
dec9c2d4
AF
2297}
2298
2299type_init(arm_cpu_register_types)