]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.c
cpu: move debug_check_watchpoint to tcg_ops
[mirror_qemu.git] / target / arm / cpu.c
CommitLineData
dec9c2d4
AF
1/*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
74c21bd0 21#include "qemu/osdep.h"
86480615 22#include "qemu/qemu-print.h"
a8d25326 23#include "qemu-common.h"
181962fd 24#include "target/arm/idau.h"
0b8fa32f 25#include "qemu/module.h"
da34e65c 26#include "qapi/error.h"
f9f62e4c 27#include "qapi/visitor.h"
778c3a06 28#include "cpu.h"
ccd38087 29#include "internals.h"
63c91552 30#include "exec/exec-all.h"
5de16430 31#include "hw/qdev-properties.h"
3c30dd5a
PM
32#if !defined(CONFIG_USER_ONLY)
33#include "hw/loader.h"
cc7d44c2 34#include "hw/boards.h"
3c30dd5a 35#endif
9c17d615 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
b3946626 38#include "sysemu/hw_accel.h"
50a2c6e5 39#include "kvm_arm.h"
110f6c70 40#include "disas/capstone.h"
24f91e81 41#include "fpu/softfloat.h"
dec9c2d4 42
f45748f1
AF
43static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44{
45 ARMCPU *cpu = ARM_CPU(cs);
42f6ed91
JS
46 CPUARMState *env = &cpu->env;
47
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
54 }
55}
f45748f1 56
ec62595b 57#ifdef CONFIG_TCG
04a37d4c
RH
58static void arm_cpu_synchronize_from_tb(CPUState *cs,
59 const TranslationBlock *tb)
42f6ed91
JS
60{
61 ARMCPU *cpu = ARM_CPU(cs);
62 CPUARMState *env = &cpu->env;
63
64 /*
65 * It's OK to look at env for the current mode here, because it's
66 * never possible for an AArch64 TB to chain to an AArch32 TB.
67 */
68 if (is_a64(env)) {
69 env->pc = tb->pc;
70 } else {
71 env->regs[15] = tb->pc;
72 }
f45748f1 73}
ec62595b 74#endif /* CONFIG_TCG */
f45748f1 75
8c2e1b00
AF
76static bool arm_cpu_has_work(CPUState *cs)
77{
543486db
RH
78 ARMCPU *cpu = ARM_CPU(cs);
79
062ba099 80 return (cpu->power_state != PSCI_OFF)
543486db 81 && cs->interrupt_request &
136e67e9
EI
82 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
83 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
84 | CPU_INTERRUPT_EXITTB);
8c2e1b00
AF
85}
86
b5c53d1b
AL
87void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
88 void *opaque)
89{
90 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
91
92 entry->hook = hook;
93 entry->opaque = opaque;
94
95 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
96}
97
08267487 98void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc
PM
99 void *opaque)
100{
08267487
AL
101 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
102
103 entry->hook = hook;
104 entry->opaque = opaque;
105
106 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
bd7d00fc
PM
107}
108
4b6a83fb
PM
109static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
110{
111 /* Reset a single ARMCPRegInfo register */
112 ARMCPRegInfo *ri = value;
113 ARMCPU *cpu = opaque;
114
b061a82b 115 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
4b6a83fb
PM
116 return;
117 }
118
119 if (ri->resetfn) {
120 ri->resetfn(&cpu->env, ri);
121 return;
122 }
123
124 /* A zero offset is never possible as it would be regs[0]
125 * so we use it to indicate that reset is being handled elsewhere.
126 * This is basically only used for fields in non-core coprocessors
127 * (like the pxa2xx ones).
128 */
129 if (!ri->fieldoffset) {
130 return;
131 }
132
67ed771d 133 if (cpreg_field_is_64bit(ri)) {
4b6a83fb
PM
134 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
135 } else {
136 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
137 }
138}
139
49a66191
PM
140static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
141{
142 /* Purely an assertion check: we've already done reset once,
143 * so now check that running the reset for the cpreg doesn't
144 * change its value. This traps bugs where two different cpregs
145 * both try to reset the same state field but to different values.
146 */
147 ARMCPRegInfo *ri = value;
148 ARMCPU *cpu = opaque;
149 uint64_t oldvalue, newvalue;
150
151 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
152 return;
153 }
154
155 oldvalue = read_raw_cp_reg(&cpu->env, ri);
156 cp_reg_reset(key, value, opaque);
157 newvalue = read_raw_cp_reg(&cpu->env, ri);
158 assert(oldvalue == newvalue);
159}
160
781c67ca 161static void arm_cpu_reset(DeviceState *dev)
dec9c2d4 162{
781c67ca 163 CPUState *s = CPU(dev);
dec9c2d4
AF
164 ARMCPU *cpu = ARM_CPU(s);
165 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
3c30dd5a 166 CPUARMState *env = &cpu->env;
3c30dd5a 167
781c67ca 168 acc->parent_reset(dev);
dec9c2d4 169
1f5c00cf
AB
170 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
171
4b6a83fb 172 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
49a66191
PM
173 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
174
3c30dd5a 175 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
47576b94
RH
176 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
177 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
178 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
3c30dd5a 179
c1b70158 180 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
543486db 181
3c30dd5a
PM
182 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
183 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
184 }
185
3926cc84
AG
186 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
187 /* 64 bit CPUs always start in 64 bit mode */
188 env->aarch64 = 1;
d356312f
PM
189#if defined(CONFIG_USER_ONLY)
190 env->pstate = PSTATE_MODE_EL0t;
14e5f106 191 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
137feaa9 192 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
276c6e81
RH
193 /* Enable all PAC keys. */
194 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
195 SCTLR_EnDA | SCTLR_EnDB);
8c6afa6a 196 /* and to the FP/Neon instructions */
7ebd5f2e 197 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
802ac0e1
RH
198 /* and to the SVE instructions */
199 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
7b6a2198
AB
200 /* with reasonable vector length */
201 if (cpu_isar_feature(aa64_sve, cpu)) {
202 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
203 }
f6a148fe
RH
204 /*
205 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
206 * turning on both here will produce smaller code and otherwise
207 * make no difference to the user-level emulation.
c4af8ba1
RH
208 *
209 * In sve_probe_page, we assume that this is set.
210 * Do not modify this without other changes.
f6a148fe
RH
211 */
212 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
d356312f 213#else
5097227c
GB
214 /* Reset into the highest available EL */
215 if (arm_feature(env, ARM_FEATURE_EL3)) {
216 env->pstate = PSTATE_MODE_EL3h;
217 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218 env->pstate = PSTATE_MODE_EL2h;
219 } else {
220 env->pstate = PSTATE_MODE_EL1h;
221 }
3933443e 222 env->pc = cpu->rvbar;
8c6afa6a
PM
223#endif
224 } else {
225#if defined(CONFIG_USER_ONLY)
226 /* Userspace expects access to cp10 and cp11 for FP/Neon */
7ebd5f2e 227 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
d356312f 228#endif
3926cc84
AG
229 }
230
3c30dd5a
PM
231#if defined(CONFIG_USER_ONLY)
232 env->uncached_cpsr = ARM_CPU_MODE_USR;
233 /* For user mode we must enable access to coprocessors */
234 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236 env->cp15.c15_cpar = 3;
237 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238 env->cp15.c15_cpar = 1;
239 }
240#else
060a65df
PM
241
242 /*
243 * If the highest available EL is EL2, AArch32 will start in Hyp
244 * mode; otherwise it starts in SVC. Note that if we start in
245 * AArch64 then these values in the uncached_cpsr will be ignored.
246 */
247 if (arm_feature(env, ARM_FEATURE_EL2) &&
248 !arm_feature(env, ARM_FEATURE_EL3)) {
249 env->uncached_cpsr = ARM_CPU_MODE_HYP;
250 } else {
251 env->uncached_cpsr = ARM_CPU_MODE_SVC;
252 }
4cc35614 253 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
dc7abe4d 254
531c60a9 255 if (arm_feature(env, ARM_FEATURE_M)) {
6e3cf5df
MG
256 uint32_t initial_msp; /* Loaded from 0x0 */
257 uint32_t initial_pc; /* Loaded from 0x4 */
3c30dd5a 258 uint8_t *rom;
38e2a77c 259 uint32_t vecbase;
6e3cf5df 260
8128c8e8
PM
261 if (cpu_isar_feature(aa32_lob, cpu)) {
262 /*
263 * LTPSIZE is constant 4 if MVE not implemented, and resets
264 * to an UNKNOWN value if MVE is implemented. We choose to
265 * always reset to 4.
266 */
267 env->v7m.ltpsize = 4;
99c7834f
PM
268 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
269 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
270 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
8128c8e8
PM
271 }
272
1e577cc7
PM
273 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
274 env->v7m.secure = true;
3b2e9344
PM
275 } else {
276 /* This bit resets to 0 if security is supported, but 1 if
277 * it is not. The bit is not present in v7M, but we set it
278 * here so we can avoid having to make checks on it conditional
279 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
280 */
281 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
02ac2f7f
PM
282 /*
283 * Set NSACR to indicate "NS access permitted to everything";
284 * this avoids having to have all the tests of it being
285 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
286 * v8.1M the guest-visible value of NSACR in a CPU without the
287 * Security Extension is 0xcff.
288 */
289 env->v7m.nsacr = 0xcff;
1e577cc7
PM
290 }
291
9d40cd8a 292 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
2c4da50d 293 * that it resets to 1, so QEMU always does that rather than making
9d40cd8a 294 * it dependent on CPU model. In v8M it is RES1.
2c4da50d 295 */
9d40cd8a
PM
296 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
297 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
298 if (arm_feature(env, ARM_FEATURE_V8)) {
299 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
300 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
301 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
302 }
22ab3460
JS
303 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
304 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
305 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
306 }
2c4da50d 307
7fbc6a40 308 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
d33abe82
PM
309 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
310 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
311 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
312 }
056f43df
PM
313 /* Unlike A/R profile, M profile defines the reset LR value */
314 env->regs[14] = 0xffffffff;
315
38e2a77c
PM
316 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
317
318 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
319 vecbase = env->v7m.vecbase[env->v7m.secure];
0f0f8b61 320 rom = rom_ptr(vecbase, 8);
3c30dd5a 321 if (rom) {
6e3cf5df
MG
322 /* Address zero is covered by ROM which hasn't yet been
323 * copied into physical memory.
324 */
325 initial_msp = ldl_p(rom);
326 initial_pc = ldl_p(rom + 4);
327 } else {
328 /* Address zero not covered by a ROM blob, or the ROM blob
329 * is in non-modifiable memory and this is a second reset after
330 * it got copied into memory. In the latter case, rom_ptr
331 * will return a NULL pointer and we should use ldl_phys instead.
332 */
38e2a77c
PM
333 initial_msp = ldl_phys(s->as, vecbase);
334 initial_pc = ldl_phys(s->as, vecbase + 4);
3c30dd5a 335 }
6e3cf5df
MG
336
337 env->regs[13] = initial_msp & 0xFFFFFFFC;
338 env->regs[15] = initial_pc & ~1;
339 env->thumb = initial_pc & 1;
3c30dd5a 340 }
387f9806 341
137feaa9
FA
342 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
343 * executing as AArch32 then check if highvecs are enabled and
344 * adjust the PC accordingly.
345 */
346 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
34bf7744 347 env->regs[15] = 0xFFFF0000;
387f9806
AP
348 }
349
dc3c4c14
PM
350 /* M profile requires that reset clears the exclusive monitor;
351 * A profile does not, but clearing it makes more sense than having it
352 * set with an exclusive access on address zero.
353 */
354 arm_clear_exclusive(env);
355
3c30dd5a 356 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
3c30dd5a 357#endif
69ceea64 358
0e1a46bb 359 if (arm_feature(env, ARM_FEATURE_PMSA)) {
69ceea64 360 if (cpu->pmsav7_dregion > 0) {
0e1a46bb 361 if (arm_feature(env, ARM_FEATURE_V8)) {
62c58ee0
PM
362 memset(env->pmsav8.rbar[M_REG_NS], 0,
363 sizeof(*env->pmsav8.rbar[M_REG_NS])
364 * cpu->pmsav7_dregion);
365 memset(env->pmsav8.rlar[M_REG_NS], 0,
366 sizeof(*env->pmsav8.rlar[M_REG_NS])
367 * cpu->pmsav7_dregion);
368 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
369 memset(env->pmsav8.rbar[M_REG_S], 0,
370 sizeof(*env->pmsav8.rbar[M_REG_S])
371 * cpu->pmsav7_dregion);
372 memset(env->pmsav8.rlar[M_REG_S], 0,
373 sizeof(*env->pmsav8.rlar[M_REG_S])
374 * cpu->pmsav7_dregion);
375 }
0e1a46bb
PM
376 } else if (arm_feature(env, ARM_FEATURE_V7)) {
377 memset(env->pmsav7.drbar, 0,
378 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
379 memset(env->pmsav7.drsr, 0,
380 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
381 memset(env->pmsav7.dracr, 0,
382 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
383 }
69ceea64 384 }
1bc04a88
PM
385 env->pmsav7.rnr[M_REG_NS] = 0;
386 env->pmsav7.rnr[M_REG_S] = 0;
4125e6fe
PM
387 env->pmsav8.mair0[M_REG_NS] = 0;
388 env->pmsav8.mair0[M_REG_S] = 0;
389 env->pmsav8.mair1[M_REG_NS] = 0;
390 env->pmsav8.mair1[M_REG_S] = 0;
69ceea64
PM
391 }
392
9901c576
PM
393 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
394 if (cpu->sau_sregion > 0) {
395 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
396 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
397 }
398 env->sau.rnr = 0;
399 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
400 * the Cortex-M33 does.
401 */
402 env->sau.ctrl = 0;
403 }
404
3c30dd5a
PM
405 set_flush_to_zero(1, &env->vfp.standard_fp_status);
406 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
407 set_default_nan_mode(1, &env->vfp.standard_fp_status);
aaae563b 408 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
3c30dd5a
PM
409 set_float_detect_tininess(float_tininess_before_rounding,
410 &env->vfp.fp_status);
411 set_float_detect_tininess(float_tininess_before_rounding,
412 &env->vfp.standard_fp_status);
bcc531f0
PM
413 set_float_detect_tininess(float_tininess_before_rounding,
414 &env->vfp.fp_status_f16);
aaae563b
PM
415 set_float_detect_tininess(float_tininess_before_rounding,
416 &env->vfp.standard_fp_status_f16);
50a2c6e5
PB
417#ifndef CONFIG_USER_ONLY
418 if (kvm_enabled()) {
419 kvm_arm_reset_vcpu(cpu);
420 }
421#endif
9ee98ce8 422
46747d15 423 hw_breakpoint_update_all(cpu);
9ee98ce8 424 hw_watchpoint_update_all(cpu);
a8a79c7a 425 arm_rebuild_hflags(env);
dec9c2d4
AF
426}
427
310cedf3 428static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
be879556
RH
429 unsigned int target_el,
430 unsigned int cur_el, bool secure,
431 uint64_t hcr_el2)
310cedf3
RH
432{
433 CPUARMState *env = cs->env_ptr;
310cedf3 434 bool pstate_unmasked;
16e07f78 435 bool unmasked = false;
310cedf3
RH
436
437 /*
438 * Don't take exceptions if they target a lower EL.
439 * This check should catch any exceptions that would not be taken
440 * but left pending.
441 */
442 if (cur_el > target_el) {
443 return false;
444 }
445
310cedf3
RH
446 switch (excp_idx) {
447 case EXCP_FIQ:
448 pstate_unmasked = !(env->daif & PSTATE_F);
449 break;
450
451 case EXCP_IRQ:
452 pstate_unmasked = !(env->daif & PSTATE_I);
453 break;
454
455 case EXCP_VFIQ:
cc974d5c
RDC
456 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
457 /* VFIQs are only taken when hypervized. */
310cedf3
RH
458 return false;
459 }
460 return !(env->daif & PSTATE_F);
461 case EXCP_VIRQ:
cc974d5c
RDC
462 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
463 /* VIRQs are only taken when hypervized. */
310cedf3
RH
464 return false;
465 }
466 return !(env->daif & PSTATE_I);
467 default:
468 g_assert_not_reached();
469 }
470
471 /*
472 * Use the target EL, current execution state and SCR/HCR settings to
473 * determine whether the corresponding CPSR bit is used to mask the
474 * interrupt.
475 */
476 if ((target_el > cur_el) && (target_el != 1)) {
477 /* Exceptions targeting a higher EL may not be maskable */
478 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
479 /*
480 * 64-bit masking rules are simple: exceptions to EL3
481 * can't be masked, and exceptions to EL2 can only be
482 * masked from Secure state. The HCR and SCR settings
483 * don't affect the masking logic, only the interrupt routing.
484 */
926c1b97 485 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
16e07f78 486 unmasked = true;
310cedf3
RH
487 }
488 } else {
489 /*
490 * The old 32-bit-only environment has a more complicated
491 * masking setup. HCR and SCR bits not only affect interrupt
492 * routing but also change the behaviour of masking.
493 */
494 bool hcr, scr;
495
496 switch (excp_idx) {
497 case EXCP_FIQ:
498 /*
499 * If FIQs are routed to EL3 or EL2 then there are cases where
500 * we override the CPSR.F in determining if the exception is
501 * masked or not. If neither of these are set then we fall back
502 * to the CPSR.F setting otherwise we further assess the state
503 * below.
504 */
505 hcr = hcr_el2 & HCR_FMO;
506 scr = (env->cp15.scr_el3 & SCR_FIQ);
507
508 /*
509 * When EL3 is 32-bit, the SCR.FW bit controls whether the
510 * CPSR.F bit masks FIQ interrupts when taken in non-secure
511 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
512 * when non-secure but only when FIQs are only routed to EL3.
513 */
514 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
515 break;
516 case EXCP_IRQ:
517 /*
518 * When EL3 execution state is 32-bit, if HCR.IMO is set then
519 * we may override the CPSR.I masking when in non-secure state.
520 * The SCR.IRQ setting has already been taken into consideration
521 * when setting the target EL, so it does not have a further
522 * affect here.
523 */
524 hcr = hcr_el2 & HCR_IMO;
525 scr = false;
526 break;
527 default:
528 g_assert_not_reached();
529 }
530
531 if ((scr || hcr) && !secure) {
16e07f78 532 unmasked = true;
310cedf3
RH
533 }
534 }
535 }
536
537 /*
538 * The PSTATE bits only mask the interrupt if we have not overriden the
539 * ability above.
540 */
541 return unmasked || pstate_unmasked;
542}
543
e8925712
RH
544bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
545{
546 CPUClass *cc = CPU_GET_CLASS(cs);
012a906b
GB
547 CPUARMState *env = cs->env_ptr;
548 uint32_t cur_el = arm_current_el(env);
549 bool secure = arm_is_secure(env);
be879556 550 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
012a906b
GB
551 uint32_t target_el;
552 uint32_t excp_idx;
d63d0ec5
RH
553
554 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
e8925712 555
012a906b
GB
556 if (interrupt_request & CPU_INTERRUPT_FIQ) {
557 excp_idx = EXCP_FIQ;
558 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
be879556
RH
559 if (arm_excp_unmasked(cs, excp_idx, target_el,
560 cur_el, secure, hcr_el2)) {
d63d0ec5 561 goto found;
012a906b 562 }
e8925712 563 }
012a906b
GB
564 if (interrupt_request & CPU_INTERRUPT_HARD) {
565 excp_idx = EXCP_IRQ;
566 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
be879556
RH
567 if (arm_excp_unmasked(cs, excp_idx, target_el,
568 cur_el, secure, hcr_el2)) {
d63d0ec5 569 goto found;
012a906b 570 }
e8925712 571 }
012a906b
GB
572 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
573 excp_idx = EXCP_VIRQ;
574 target_el = 1;
be879556
RH
575 if (arm_excp_unmasked(cs, excp_idx, target_el,
576 cur_el, secure, hcr_el2)) {
d63d0ec5 577 goto found;
012a906b 578 }
136e67e9 579 }
012a906b
GB
580 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
581 excp_idx = EXCP_VFIQ;
582 target_el = 1;
be879556
RH
583 if (arm_excp_unmasked(cs, excp_idx, target_el,
584 cur_el, secure, hcr_el2)) {
d63d0ec5 585 goto found;
012a906b 586 }
136e67e9 587 }
d63d0ec5 588 return false;
e8925712 589
d63d0ec5
RH
590 found:
591 cs->exception_index = excp_idx;
592 env->exception.target_el = target_el;
05456080 593 cc->tcg_ops.do_interrupt(cs);
d63d0ec5 594 return true;
e8925712
RH
595}
596
89430fc6
PM
597void arm_cpu_update_virq(ARMCPU *cpu)
598{
599 /*
600 * Update the interrupt level for VIRQ, which is the logical OR of
601 * the HCR_EL2.VI bit and the input line level from the GIC.
602 */
603 CPUARMState *env = &cpu->env;
604 CPUState *cs = CPU(cpu);
605
606 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
607 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
608
609 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
610 if (new_state) {
611 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
612 } else {
613 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
614 }
615 }
616}
617
618void arm_cpu_update_vfiq(ARMCPU *cpu)
619{
620 /*
621 * Update the interrupt level for VFIQ, which is the logical OR of
622 * the HCR_EL2.VF bit and the input line level from the GIC.
623 */
624 CPUARMState *env = &cpu->env;
625 CPUState *cs = CPU(cpu);
626
627 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
628 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
629
630 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
631 if (new_state) {
632 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
633 } else {
634 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
635 }
636 }
637}
638
7c1840b6
PM
639#ifndef CONFIG_USER_ONLY
640static void arm_cpu_set_irq(void *opaque, int irq, int level)
641{
642 ARMCPU *cpu = opaque;
136e67e9 643 CPUARMState *env = &cpu->env;
7c1840b6 644 CPUState *cs = CPU(cpu);
136e67e9
EI
645 static const int mask[] = {
646 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
647 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
648 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
649 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
650 };
7c1840b6 651
ed89f078
PM
652 if (level) {
653 env->irq_line_state |= mask[irq];
654 } else {
655 env->irq_line_state &= ~mask[irq];
656 }
657
7c1840b6 658 switch (irq) {
136e67e9 659 case ARM_CPU_VIRQ:
89430fc6
PM
660 assert(arm_feature(env, ARM_FEATURE_EL2));
661 arm_cpu_update_virq(cpu);
662 break;
136e67e9 663 case ARM_CPU_VFIQ:
f128bf29 664 assert(arm_feature(env, ARM_FEATURE_EL2));
89430fc6
PM
665 arm_cpu_update_vfiq(cpu);
666 break;
136e67e9 667 case ARM_CPU_IRQ:
7c1840b6
PM
668 case ARM_CPU_FIQ:
669 if (level) {
136e67e9 670 cpu_interrupt(cs, mask[irq]);
7c1840b6 671 } else {
136e67e9 672 cpu_reset_interrupt(cs, mask[irq]);
7c1840b6
PM
673 }
674 break;
675 default:
8f6fd322 676 g_assert_not_reached();
7c1840b6
PM
677 }
678}
679
680static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
681{
682#ifdef CONFIG_KVM
683 ARMCPU *cpu = opaque;
ed89f078 684 CPUARMState *env = &cpu->env;
7c1840b6 685 CPUState *cs = CPU(cpu);
ed89f078 686 uint32_t linestate_bit;
f6530926 687 int irq_id;
7c1840b6
PM
688
689 switch (irq) {
690 case ARM_CPU_IRQ:
f6530926 691 irq_id = KVM_ARM_IRQ_CPU_IRQ;
ed89f078 692 linestate_bit = CPU_INTERRUPT_HARD;
7c1840b6
PM
693 break;
694 case ARM_CPU_FIQ:
f6530926 695 irq_id = KVM_ARM_IRQ_CPU_FIQ;
ed89f078 696 linestate_bit = CPU_INTERRUPT_FIQ;
7c1840b6
PM
697 break;
698 default:
8f6fd322 699 g_assert_not_reached();
7c1840b6 700 }
ed89f078
PM
701
702 if (level) {
703 env->irq_line_state |= linestate_bit;
704 } else {
705 env->irq_line_state &= ~linestate_bit;
706 }
f6530926 707 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
7c1840b6
PM
708#endif
709}
84f2bed3 710
ed50ff78 711static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
84f2bed3
PS
712{
713 ARMCPU *cpu = ARM_CPU(cs);
714 CPUARMState *env = &cpu->env;
84f2bed3
PS
715
716 cpu_synchronize_state(cs);
ed50ff78 717 return arm_cpu_data_is_big_endian(env);
84f2bed3
PS
718}
719
7c1840b6
PM
720#endif
721
48440620
PC
722static int
723print_insn_thumb1(bfd_vma pc, disassemble_info *info)
724{
725 return print_insn_arm(pc | 1, info);
726}
727
728static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
729{
730 ARMCPU *ac = ARM_CPU(cpu);
731 CPUARMState *env = &ac->env;
7bcdbf51 732 bool sctlr_b;
48440620
PC
733
734 if (is_a64(env)) {
735 /* We might not be compiled with the A64 disassembler
736 * because it needs a C++ compiler. Leave print_insn
737 * unset in this case to use the caller default behaviour.
738 */
739#if defined(CONFIG_ARM_A64_DIS)
740 info->print_insn = print_insn_arm_a64;
741#endif
110f6c70 742 info->cap_arch = CS_ARCH_ARM64;
15fa1a0a
RH
743 info->cap_insn_unit = 4;
744 info->cap_insn_split = 4;
48440620 745 } else {
110f6c70
RH
746 int cap_mode;
747 if (env->thumb) {
748 info->print_insn = print_insn_thumb1;
15fa1a0a
RH
749 info->cap_insn_unit = 2;
750 info->cap_insn_split = 4;
110f6c70
RH
751 cap_mode = CS_MODE_THUMB;
752 } else {
753 info->print_insn = print_insn_arm;
15fa1a0a
RH
754 info->cap_insn_unit = 4;
755 info->cap_insn_split = 4;
110f6c70
RH
756 cap_mode = CS_MODE_ARM;
757 }
758 if (arm_feature(env, ARM_FEATURE_V8)) {
759 cap_mode |= CS_MODE_V8;
760 }
761 if (arm_feature(env, ARM_FEATURE_M)) {
762 cap_mode |= CS_MODE_MCLASS;
763 }
764 info->cap_arch = CS_ARCH_ARM;
765 info->cap_mode = cap_mode;
48440620 766 }
7bcdbf51
RH
767
768 sctlr_b = arm_sctlr_b(env);
769 if (bswap_code(sctlr_b)) {
48440620
PC
770#ifdef TARGET_WORDS_BIGENDIAN
771 info->endian = BFD_ENDIAN_LITTLE;
772#else
773 info->endian = BFD_ENDIAN_BIG;
774#endif
775 }
f7478a92 776 info->flags &= ~INSN_ARM_BE32;
7bcdbf51
RH
777#ifndef CONFIG_USER_ONLY
778 if (sctlr_b) {
f7478a92
JB
779 info->flags |= INSN_ARM_BE32;
780 }
7bcdbf51 781#endif
48440620
PC
782}
783
86480615
PMD
784#ifdef TARGET_AARCH64
785
786static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
787{
788 ARMCPU *cpu = ARM_CPU(cs);
789 CPUARMState *env = &cpu->env;
790 uint32_t psr = pstate_read(env);
791 int i;
792 int el = arm_current_el(env);
793 const char *ns_status;
794
795 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
796 for (i = 0; i < 32; i++) {
797 if (i == 31) {
798 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
799 } else {
800 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
801 (i + 2) % 3 ? " " : "\n");
802 }
803 }
804
805 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
806 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
807 } else {
808 ns_status = "";
809 }
810 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
811 psr,
812 psr & PSTATE_N ? 'N' : '-',
813 psr & PSTATE_Z ? 'Z' : '-',
814 psr & PSTATE_C ? 'C' : '-',
815 psr & PSTATE_V ? 'V' : '-',
816 ns_status,
817 el,
818 psr & PSTATE_SP ? 'h' : 't');
819
820 if (cpu_isar_feature(aa64_bti, cpu)) {
821 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
822 }
823 if (!(flags & CPU_DUMP_FPU)) {
824 qemu_fprintf(f, "\n");
825 return;
826 }
827 if (fp_exception_el(env, el) != 0) {
828 qemu_fprintf(f, " FPU disabled\n");
829 return;
830 }
831 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
832 vfp_get_fpcr(env), vfp_get_fpsr(env));
833
834 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
835 int j, zcr_len = sve_zcr_len_for_el(env, el);
836
837 for (i = 0; i <= FFR_PRED_NUM; i++) {
838 bool eol;
839 if (i == FFR_PRED_NUM) {
840 qemu_fprintf(f, "FFR=");
841 /* It's last, so end the line. */
842 eol = true;
843 } else {
844 qemu_fprintf(f, "P%02d=", i);
845 switch (zcr_len) {
846 case 0:
847 eol = i % 8 == 7;
848 break;
849 case 1:
850 eol = i % 6 == 5;
851 break;
852 case 2:
853 case 3:
854 eol = i % 3 == 2;
855 break;
856 default:
857 /* More than one quadword per predicate. */
858 eol = true;
859 break;
860 }
861 }
862 for (j = zcr_len / 4; j >= 0; j--) {
863 int digits;
864 if (j * 4 + 4 <= zcr_len + 1) {
865 digits = 16;
866 } else {
867 digits = (zcr_len % 4 + 1) * 4;
868 }
869 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
870 env->vfp.pregs[i].p[j],
871 j ? ":" : eol ? "\n" : " ");
872 }
873 }
874
875 for (i = 0; i < 32; i++) {
876 if (zcr_len == 0) {
877 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
878 i, env->vfp.zregs[i].d[1],
879 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
880 } else if (zcr_len == 1) {
881 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
882 ":%016" PRIx64 ":%016" PRIx64 "\n",
883 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
884 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
885 } else {
886 for (j = zcr_len; j >= 0; j--) {
887 bool odd = (zcr_len - j) % 2 != 0;
888 if (j == zcr_len) {
889 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
890 } else if (!odd) {
891 if (j > 0) {
892 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
893 } else {
894 qemu_fprintf(f, " [%x]=", j);
895 }
896 }
897 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
898 env->vfp.zregs[i].d[j * 2 + 1],
899 env->vfp.zregs[i].d[j * 2],
900 odd || j == 0 ? "\n" : ":");
901 }
902 }
903 }
904 } else {
905 for (i = 0; i < 32; i++) {
906 uint64_t *q = aa64_vfp_qreg(env, i);
907 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
908 i, q[1], q[0], (i & 1 ? "\n" : " "));
909 }
910 }
911}
912
913#else
914
915static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
916{
917 g_assert_not_reached();
918}
919
920#endif
921
922static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
923{
924 ARMCPU *cpu = ARM_CPU(cs);
925 CPUARMState *env = &cpu->env;
926 int i;
927
928 if (is_a64(env)) {
929 aarch64_cpu_dump_state(cs, f, flags);
930 return;
931 }
932
933 for (i = 0; i < 16; i++) {
934 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
935 if ((i % 4) == 3) {
936 qemu_fprintf(f, "\n");
937 } else {
938 qemu_fprintf(f, " ");
939 }
940 }
941
942 if (arm_feature(env, ARM_FEATURE_M)) {
943 uint32_t xpsr = xpsr_read(env);
944 const char *mode;
945 const char *ns_status = "";
946
947 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
948 ns_status = env->v7m.secure ? "S " : "NS ";
949 }
950
951 if (xpsr & XPSR_EXCP) {
952 mode = "handler";
953 } else {
954 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
955 mode = "unpriv-thread";
956 } else {
957 mode = "priv-thread";
958 }
959 }
960
961 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
962 xpsr,
963 xpsr & XPSR_N ? 'N' : '-',
964 xpsr & XPSR_Z ? 'Z' : '-',
965 xpsr & XPSR_C ? 'C' : '-',
966 xpsr & XPSR_V ? 'V' : '-',
967 xpsr & XPSR_T ? 'T' : 'A',
968 ns_status,
969 mode);
970 } else {
971 uint32_t psr = cpsr_read(env);
972 const char *ns_status = "";
973
974 if (arm_feature(env, ARM_FEATURE_EL3) &&
975 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
976 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
977 }
978
979 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
980 psr,
981 psr & CPSR_N ? 'N' : '-',
982 psr & CPSR_Z ? 'Z' : '-',
983 psr & CPSR_C ? 'C' : '-',
984 psr & CPSR_V ? 'V' : '-',
985 psr & CPSR_T ? 'T' : 'A',
986 ns_status,
987 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
988 }
989
990 if (flags & CPU_DUMP_FPU) {
991 int numvfpregs = 0;
a6627f5f
RH
992 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
993 numvfpregs = 32;
7fbc6a40 994 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
a6627f5f 995 numvfpregs = 16;
86480615
PMD
996 }
997 for (i = 0; i < numvfpregs; i++) {
998 uint64_t v = *aa32_vfp_dreg(env, i);
999 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1000 i * 2, (uint32_t)v,
1001 i * 2 + 1, (uint32_t)(v >> 32),
1002 i, v);
1003 }
1004 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1005 }
1006}
1007
46de5913
IM
1008uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1009{
1010 uint32_t Aff1 = idx / clustersz;
1011 uint32_t Aff0 = idx % clustersz;
1012 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1013}
1014
ac87e507
PM
1015static void cpreg_hashtable_data_destroy(gpointer data)
1016{
1017 /*
1018 * Destroy function for cpu->cp_regs hashtable data entries.
1019 * We must free the name string because it was g_strdup()ed in
1020 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1021 * from r->name because we know we definitely allocated it.
1022 */
1023 ARMCPRegInfo *r = data;
1024
1025 g_free((void *)r->name);
1026 g_free(r);
1027}
1028
777dc784
PM
1029static void arm_cpu_initfn(Object *obj)
1030{
1031 ARMCPU *cpu = ARM_CPU(obj);
1032
7506ed90 1033 cpu_set_cpustate_pointers(cpu);
4b6a83fb 1034 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
ac87e507 1035 g_free, cpreg_hashtable_data_destroy);
79614b78 1036
b5c53d1b 1037 QLIST_INIT(&cpu->pre_el_change_hooks);
08267487
AL
1038 QLIST_INIT(&cpu->el_change_hooks);
1039
7c1840b6
PM
1040#ifndef CONFIG_USER_ONLY
1041 /* Our inbound IRQ and FIQ lines */
1042 if (kvm_enabled()) {
136e67e9
EI
1043 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1044 * the same interface as non-KVM CPUs.
1045 */
1046 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
7c1840b6 1047 } else {
136e67e9 1048 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
7c1840b6 1049 }
55d284af 1050
55d284af
PM
1051 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1052 ARRAY_SIZE(cpu->gt_timer_outputs));
aa1b3111
PM
1053
1054 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1055 "gicv3-maintenance-interrupt", 1);
07f48730
AJ
1056 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1057 "pmu-interrupt", 1);
7c1840b6
PM
1058#endif
1059
54d3e3f5
PM
1060 /* DTB consumers generally don't in fact care what the 'compatible'
1061 * string is, so always provide some string and trust that a hypothetical
1062 * picky DTB consumer will also provide a helpful error message.
1063 */
1064 cpu->dtb_compatible = "qemu,unknown";
dd032e34 1065 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
3541addc 1066 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
54d3e3f5 1067
98128601
RH
1068 if (tcg_enabled()) {
1069 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
79614b78 1070 }
4b6a83fb
PM
1071}
1072
96eec6b2
AJ
1073static Property arm_cpu_gt_cntfrq_property =
1074 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1075 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1076
07a5b0d2 1077static Property arm_cpu_reset_cbar_property =
f318cec6 1078 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
07a5b0d2 1079
68e0a40a
AP
1080static Property arm_cpu_reset_hivecs_property =
1081 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1082
3933443e
PM
1083static Property arm_cpu_rvbar_property =
1084 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1085
45ca3a14 1086#ifndef CONFIG_USER_ONLY
c25bd18a
PM
1087static Property arm_cpu_has_el2_property =
1088 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1089
51942aee
GB
1090static Property arm_cpu_has_el3_property =
1091 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
45ca3a14 1092#endif
51942aee 1093
3a062d57
JB
1094static Property arm_cpu_cfgend_property =
1095 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1096
97a28b0e
PM
1097static Property arm_cpu_has_vfp_property =
1098 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1099
1100static Property arm_cpu_has_neon_property =
1101 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1102
ea90db0a
PM
1103static Property arm_cpu_has_dsp_property =
1104 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1105
8f325f56
PC
1106static Property arm_cpu_has_mpu_property =
1107 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1108
8d92e26b
PM
1109/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1110 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1111 * the right value for that particular CPU type, and we don't want
1112 * to override that with an incorrect constant value.
1113 */
3281af81 1114static Property arm_cpu_pmsav7_dregion_property =
8d92e26b
PM
1115 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1116 pmsav7_dregion,
1117 qdev_prop_uint32, uint32_t);
3281af81 1118
ae502508
AJ
1119static bool arm_get_pmu(Object *obj, Error **errp)
1120{
1121 ARMCPU *cpu = ARM_CPU(obj);
1122
1123 return cpu->has_pmu;
1124}
1125
1126static void arm_set_pmu(Object *obj, bool value, Error **errp)
1127{
1128 ARMCPU *cpu = ARM_CPU(obj);
1129
1130 if (value) {
7d20e681 1131 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
ae502508
AJ
1132 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1133 return;
1134 }
1135 set_feature(&cpu->env, ARM_FEATURE_PMU);
1136 } else {
1137 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1138 }
1139 cpu->has_pmu = value;
1140}
1141
7def8754
AJ
1142unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1143{
96eec6b2
AJ
1144 /*
1145 * The exact approach to calculating guest ticks is:
1146 *
1147 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1148 * NANOSECONDS_PER_SECOND);
1149 *
1150 * We don't do that. Rather we intentionally use integer division
1151 * truncation below and in the caller for the conversion of host monotonic
1152 * time to guest ticks to provide the exact inverse for the semantics of
1153 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1154 * it loses precision when representing frequencies where
1155 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1156 * provide an exact inverse leads to scheduling timers with negative
1157 * periods, which in turn leads to sticky behaviour in the guest.
1158 *
1159 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1160 * cannot become zero.
1161 */
7def8754
AJ
1162 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1163 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1164}
1165
51e5ef45 1166void arm_cpu_post_init(Object *obj)
07a5b0d2
PC
1167{
1168 ARMCPU *cpu = ARM_CPU(obj);
07a5b0d2 1169
790a1150
PM
1170 /* M profile implies PMSA. We have to do this here rather than
1171 * in realize with the other feature-implication checks because
1172 * we look at the PMSA bit to see if we should add some properties.
1173 */
1174 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1175 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1176 }
1177
f318cec6
PM
1178 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1179 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
94d912d1 1180 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
07a5b0d2 1181 }
68e0a40a
AP
1182
1183 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
94d912d1 1184 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
68e0a40a 1185 }
3933443e
PM
1186
1187 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
94d912d1 1188 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
3933443e 1189 }
51942aee 1190
45ca3a14 1191#ifndef CONFIG_USER_ONLY
51942aee
GB
1192 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1193 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1194 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1195 */
94d912d1 1196 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
9e273ef2 1197
9e273ef2
PM
1198 object_property_add_link(obj, "secure-memory",
1199 TYPE_MEMORY_REGION,
1200 (Object **)&cpu->secure_memory,
1201 qdev_prop_allow_set_link_before_realize,
d2623129 1202 OBJ_PROP_LINK_STRONG);
51942aee 1203 }
8f325f56 1204
c25bd18a 1205 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
94d912d1 1206 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
c25bd18a 1207 }
45ca3a14 1208#endif
c25bd18a 1209
929e754d 1210 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
ae502508 1211 cpu->has_pmu = true;
d2623129 1212 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
929e754d
WH
1213 }
1214
97a28b0e
PM
1215 /*
1216 * Allow user to turn off VFP and Neon support, but only for TCG --
1217 * KVM does not currently allow us to lie to the guest about its
1218 * ID/feature registers, so the guest always sees what the host has.
1219 */
7d63183f
RH
1220 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1221 ? cpu_isar_feature(aa64_fp_simd, cpu)
1222 : cpu_isar_feature(aa32_vfp, cpu)) {
97a28b0e
PM
1223 cpu->has_vfp = true;
1224 if (!kvm_enabled()) {
94d912d1 1225 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
97a28b0e
PM
1226 }
1227 }
1228
1229 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1230 cpu->has_neon = true;
1231 if (!kvm_enabled()) {
94d912d1 1232 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
97a28b0e
PM
1233 }
1234 }
1235
ea90db0a
PM
1236 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1237 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
94d912d1 1238 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
ea90db0a
PM
1239 }
1240
452a0955 1241 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
94d912d1 1242 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
3281af81
PC
1243 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1244 qdev_property_add_static(DEVICE(obj),
94d912d1 1245 &arm_cpu_pmsav7_dregion_property);
3281af81 1246 }
8f325f56
PC
1247 }
1248
181962fd
PM
1249 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1250 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1251 qdev_prop_allow_set_link_before_realize,
d2623129 1252 OBJ_PROP_LINK_STRONG);
f9f62e4c
PM
1253 /*
1254 * M profile: initial value of the Secure VTOR. We can't just use
1255 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1256 * the property to be set after realize.
1257 */
64a7b8de
FF
1258 object_property_add_uint32_ptr(obj, "init-svtor",
1259 &cpu->init_svtor,
d2623129 1260 OBJ_PROP_FLAG_READWRITE);
181962fd
PM
1261 }
1262
94d912d1 1263 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
96eec6b2
AJ
1264
1265 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
94d912d1 1266 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
96eec6b2 1267 }
9e6f8d8a 1268
1269 if (kvm_enabled()) {
1270 kvm_arm_add_vcpu_properties(obj);
1271 }
8bce44a2
RH
1272
1273#ifndef CONFIG_USER_ONLY
1274 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1275 cpu_isar_feature(aa64_mte, cpu)) {
1276 object_property_add_link(obj, "tag-memory",
1277 TYPE_MEMORY_REGION,
1278 (Object **)&cpu->tag_memory,
1279 qdev_prop_allow_set_link_before_realize,
1280 OBJ_PROP_LINK_STRONG);
1281
1282 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1283 object_property_add_link(obj, "secure-tag-memory",
1284 TYPE_MEMORY_REGION,
1285 (Object **)&cpu->secure_tag_memory,
1286 qdev_prop_allow_set_link_before_realize,
1287 OBJ_PROP_LINK_STRONG);
1288 }
1289 }
1290#endif
07a5b0d2
PC
1291}
1292
4b6a83fb
PM
1293static void arm_cpu_finalizefn(Object *obj)
1294{
1295 ARMCPU *cpu = ARM_CPU(obj);
08267487
AL
1296 ARMELChangeHook *hook, *next;
1297
4b6a83fb 1298 g_hash_table_destroy(cpu->cp_regs);
08267487 1299
b5c53d1b
AL
1300 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1301 QLIST_REMOVE(hook, node);
1302 g_free(hook);
1303 }
08267487
AL
1304 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1305 QLIST_REMOVE(hook, node);
1306 g_free(hook);
1307 }
4e7beb0c
AL
1308#ifndef CONFIG_USER_ONLY
1309 if (cpu->pmu_timer) {
4e7beb0c
AL
1310 timer_free(cpu->pmu_timer);
1311 }
1312#endif
777dc784
PM
1313}
1314
0df9142d
AJ
1315void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1316{
1317 Error *local_err = NULL;
1318
1319 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1320 arm_cpu_sve_finalize(cpu, &local_err);
68970d1e
AJ
1321 if (local_err != NULL) {
1322 error_propagate(errp, local_err);
1323 return;
1324 }
eb94284d
RH
1325
1326 /*
1327 * KVM does not support modifications to this feature.
1328 * We have not registered the cpu properties when KVM
1329 * is in use, so the user will not be able to set them.
1330 */
1331 if (!kvm_enabled()) {
1332 arm_cpu_pauth_finalize(cpu, &local_err);
1333 if (local_err != NULL) {
1334 error_propagate(errp, local_err);
1335 return;
1336 }
1337 }
68970d1e
AJ
1338 }
1339
1340 if (kvm_enabled()) {
1341 kvm_arm_steal_time_finalize(cpu, &local_err);
0df9142d
AJ
1342 if (local_err != NULL) {
1343 error_propagate(errp, local_err);
1344 return;
1345 }
1346 }
1347}
1348
14969266 1349static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
581be094 1350{
14a10fc3 1351 CPUState *cs = CPU(dev);
14969266
AF
1352 ARMCPU *cpu = ARM_CPU(dev);
1353 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
581be094 1354 CPUARMState *env = &cpu->env;
e97da98f 1355 int pagebits;
ce5b1bbf 1356 Error *local_err = NULL;
0f8d06f1 1357 bool no_aa32 = false;
ce5b1bbf 1358
c4487d76
PM
1359 /* If we needed to query the host kernel for the CPU features
1360 * then it's possible that might have failed in the initfn, but
1361 * this is the first point where we can report it.
1362 */
1363 if (cpu->host_cpu_probe_failed) {
1364 if (!kvm_enabled()) {
1365 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1366 } else {
1367 error_setg(errp, "Failed to retrieve host CPU features");
1368 }
1369 return;
1370 }
1371
95f87565
PM
1372#ifndef CONFIG_USER_ONLY
1373 /* The NVIC and M-profile CPU are two halves of a single piece of
1374 * hardware; trying to use one without the other is a command line
1375 * error and will result in segfaults if not caught here.
1376 */
1377 if (arm_feature(env, ARM_FEATURE_M)) {
1378 if (!env->nvic) {
1379 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1380 return;
1381 }
1382 } else {
1383 if (env->nvic) {
1384 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1385 return;
1386 }
1387 }
397cd31f 1388
96eec6b2
AJ
1389 {
1390 uint64_t scale;
1391
1392 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1393 if (!cpu->gt_cntfrq_hz) {
1394 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1395 cpu->gt_cntfrq_hz);
1396 return;
1397 }
1398 scale = gt_cntfrq_period_ns(cpu);
1399 } else {
1400 scale = GTIMER_SCALE;
1401 }
1402
1403 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1404 arm_gt_ptimer_cb, cpu);
1405 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1406 arm_gt_vtimer_cb, cpu);
1407 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1408 arm_gt_htimer_cb, cpu);
1409 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1410 arm_gt_stimer_cb, cpu);
8c94b071
RH
1411 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1412 arm_gt_hvtimer_cb, cpu);
96eec6b2 1413 }
95f87565
PM
1414#endif
1415
ce5b1bbf
LV
1416 cpu_exec_realizefn(cs, &local_err);
1417 if (local_err != NULL) {
1418 error_propagate(errp, local_err);
1419 return;
1420 }
14969266 1421
0df9142d
AJ
1422 arm_cpu_finalize_features(cpu, &local_err);
1423 if (local_err != NULL) {
1424 error_propagate(errp, local_err);
1425 return;
1426 }
1427
97a28b0e
PM
1428 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1429 cpu->has_vfp != cpu->has_neon) {
1430 /*
1431 * This is an architectural requirement for AArch64; AArch32 is
1432 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1433 */
1434 error_setg(errp,
1435 "AArch64 CPUs must have both VFP and Neon or neither");
1436 return;
1437 }
1438
1439 if (!cpu->has_vfp) {
1440 uint64_t t;
1441 uint32_t u;
1442
97a28b0e
PM
1443 t = cpu->isar.id_aa64isar1;
1444 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1445 cpu->isar.id_aa64isar1 = t;
1446
1447 t = cpu->isar.id_aa64pfr0;
1448 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1449 cpu->isar.id_aa64pfr0 = t;
1450
1451 u = cpu->isar.id_isar6;
1452 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1453 cpu->isar.id_isar6 = u;
1454
1455 u = cpu->isar.mvfr0;
1456 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1457 u = FIELD_DP32(u, MVFR0, FPDP, 0);
97a28b0e
PM
1458 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1459 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
97a28b0e 1460 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
532a3af5
PM
1461 if (!arm_feature(env, ARM_FEATURE_M)) {
1462 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1463 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1464 }
97a28b0e
PM
1465 cpu->isar.mvfr0 = u;
1466
1467 u = cpu->isar.mvfr1;
1468 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1469 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1470 u = FIELD_DP32(u, MVFR1, FPHP, 0);
532a3af5
PM
1471 if (arm_feature(env, ARM_FEATURE_M)) {
1472 u = FIELD_DP32(u, MVFR1, FP16, 0);
1473 }
97a28b0e
PM
1474 cpu->isar.mvfr1 = u;
1475
1476 u = cpu->isar.mvfr2;
1477 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1478 cpu->isar.mvfr2 = u;
1479 }
1480
1481 if (!cpu->has_neon) {
1482 uint64_t t;
1483 uint32_t u;
1484
1485 unset_feature(env, ARM_FEATURE_NEON);
1486
1487 t = cpu->isar.id_aa64isar0;
1488 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1489 cpu->isar.id_aa64isar0 = t;
1490
1491 t = cpu->isar.id_aa64isar1;
1492 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1493 cpu->isar.id_aa64isar1 = t;
1494
1495 t = cpu->isar.id_aa64pfr0;
1496 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1497 cpu->isar.id_aa64pfr0 = t;
1498
1499 u = cpu->isar.id_isar5;
1500 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1501 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1502 cpu->isar.id_isar5 = u;
1503
1504 u = cpu->isar.id_isar6;
1505 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1506 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1507 cpu->isar.id_isar6 = u;
1508
532a3af5
PM
1509 if (!arm_feature(env, ARM_FEATURE_M)) {
1510 u = cpu->isar.mvfr1;
1511 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1512 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1513 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1514 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1515 cpu->isar.mvfr1 = u;
1516
1517 u = cpu->isar.mvfr2;
1518 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1519 cpu->isar.mvfr2 = u;
1520 }
97a28b0e
PM
1521 }
1522
1523 if (!cpu->has_neon && !cpu->has_vfp) {
1524 uint64_t t;
1525 uint32_t u;
1526
1527 t = cpu->isar.id_aa64isar0;
1528 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1529 cpu->isar.id_aa64isar0 = t;
1530
1531 t = cpu->isar.id_aa64isar1;
1532 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1533 cpu->isar.id_aa64isar1 = t;
1534
1535 u = cpu->isar.mvfr0;
1536 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1537 cpu->isar.mvfr0 = u;
c52881bb
RH
1538
1539 /* Despite the name, this field covers both VFP and Neon */
1540 u = cpu->isar.mvfr1;
1541 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1542 cpu->isar.mvfr1 = u;
97a28b0e
PM
1543 }
1544
ea90db0a
PM
1545 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1546 uint32_t u;
1547
1548 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1549
1550 u = cpu->isar.id_isar1;
1551 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1552 cpu->isar.id_isar1 = u;
1553
1554 u = cpu->isar.id_isar2;
1555 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1556 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1557 cpu->isar.id_isar2 = u;
1558
1559 u = cpu->isar.id_isar3;
1560 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1561 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1562 cpu->isar.id_isar3 = u;
1563 }
1564
581be094 1565 /* Some features automatically imply others: */
81e69fb0 1566 if (arm_feature(env, ARM_FEATURE_V8)) {
5256df88
RH
1567 if (arm_feature(env, ARM_FEATURE_M)) {
1568 set_feature(env, ARM_FEATURE_V7);
1569 } else {
1570 set_feature(env, ARM_FEATURE_V7VE);
1571 }
5110e683 1572 }
0f8d06f1
RH
1573
1574 /*
1575 * There exist AArch64 cpus without AArch32 support. When KVM
1576 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1577 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
8f4821d7
PM
1578 * As a general principle, we also do not make ID register
1579 * consistency checks anywhere unless using TCG, because only
1580 * for TCG would a consistency-check failure be a QEMU bug.
0f8d06f1
RH
1581 */
1582 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1583 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1584 }
1585
5110e683
AL
1586 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1587 /* v7 Virtualization Extensions. In real hardware this implies
1588 * EL2 and also the presence of the Security Extensions.
1589 * For QEMU, for backwards-compatibility we implement some
1590 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1591 * include the various other features that V7VE implies.
1592 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1593 * Security Extensions is ARM_FEATURE_EL3.
1594 */
873b73c0
PM
1595 assert(!tcg_enabled() || no_aa32 ||
1596 cpu_isar_feature(aa32_arm_div, cpu));
81e69fb0 1597 set_feature(env, ARM_FEATURE_LPAE);
5110e683 1598 set_feature(env, ARM_FEATURE_V7);
81e69fb0 1599 }
581be094
PM
1600 if (arm_feature(env, ARM_FEATURE_V7)) {
1601 set_feature(env, ARM_FEATURE_VAPA);
1602 set_feature(env, ARM_FEATURE_THUMB2);
81bdde9d 1603 set_feature(env, ARM_FEATURE_MPIDR);
581be094
PM
1604 if (!arm_feature(env, ARM_FEATURE_M)) {
1605 set_feature(env, ARM_FEATURE_V6K);
1606 } else {
1607 set_feature(env, ARM_FEATURE_V6);
1608 }
91db4642
CLG
1609
1610 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1611 * non-EL3 configs. This is needed by some legacy boards.
1612 */
1613 set_feature(env, ARM_FEATURE_VBAR);
581be094
PM
1614 }
1615 if (arm_feature(env, ARM_FEATURE_V6K)) {
1616 set_feature(env, ARM_FEATURE_V6);
1617 set_feature(env, ARM_FEATURE_MVFR);
1618 }
1619 if (arm_feature(env, ARM_FEATURE_V6)) {
1620 set_feature(env, ARM_FEATURE_V5);
1621 if (!arm_feature(env, ARM_FEATURE_M)) {
873b73c0
PM
1622 assert(!tcg_enabled() || no_aa32 ||
1623 cpu_isar_feature(aa32_jazelle, cpu));
581be094
PM
1624 set_feature(env, ARM_FEATURE_AUXCR);
1625 }
1626 }
1627 if (arm_feature(env, ARM_FEATURE_V5)) {
1628 set_feature(env, ARM_FEATURE_V4T);
1629 }
de9b05b8 1630 if (arm_feature(env, ARM_FEATURE_LPAE)) {
bdcc150d 1631 set_feature(env, ARM_FEATURE_V7MP);
de9b05b8 1632 }
f318cec6
PM
1633 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1634 set_feature(env, ARM_FEATURE_CBAR);
1635 }
62b44f05
AR
1636 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1637 !arm_feature(env, ARM_FEATURE_M)) {
1638 set_feature(env, ARM_FEATURE_THUMB_DSP);
1639 }
2ceb98c0 1640
ea7ac69d
PM
1641 /*
1642 * We rely on no XScale CPU having VFP so we can use the same bits in the
1643 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1644 */
7d63183f
RH
1645 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1646 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1647 !arm_feature(env, ARM_FEATURE_XSCALE));
ea7ac69d 1648
e97da98f
PM
1649 if (arm_feature(env, ARM_FEATURE_V7) &&
1650 !arm_feature(env, ARM_FEATURE_M) &&
452a0955 1651 !arm_feature(env, ARM_FEATURE_PMSA)) {
e97da98f
PM
1652 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1653 * can use 4K pages.
1654 */
1655 pagebits = 12;
1656 } else {
1657 /* For CPUs which might have tiny 1K pages, or which have an
1658 * MPU and might have small region sizes, stick with 1K pages.
1659 */
1660 pagebits = 10;
1661 }
1662 if (!set_preferred_target_page_bits(pagebits)) {
1663 /* This can only ever happen for hotplugging a CPU, or if
1664 * the board code incorrectly creates a CPU which it has
1665 * promised via minimum_page_size that it will not.
1666 */
1667 error_setg(errp, "This CPU requires a smaller page size than the "
1668 "system is using");
1669 return;
1670 }
1671
ce5b1bbf
LV
1672 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1673 * We don't support setting cluster ID ([16..23]) (known as Aff2
1674 * in later ARM ARM versions), or any of the higher affinity level fields,
1675 * so these bits always RAZ.
1676 */
1677 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
46de5913
IM
1678 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1679 ARM_DEFAULT_CPUS_PER_CLUSTER);
ce5b1bbf
LV
1680 }
1681
68e0a40a
AP
1682 if (cpu->reset_hivecs) {
1683 cpu->reset_sctlr |= (1 << 13);
1684 }
1685
3a062d57
JB
1686 if (cpu->cfgend) {
1687 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1688 cpu->reset_sctlr |= SCTLR_EE;
1689 } else {
1690 cpu->reset_sctlr |= SCTLR_B;
1691 }
1692 }
1693
40188188 1694 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
51942aee
GB
1695 /* If the has_el3 CPU property is disabled then we need to disable the
1696 * feature.
1697 */
1698 unset_feature(env, ARM_FEATURE_EL3);
1699
1700 /* Disable the security extension feature bits in the processor feature
3d5c84ff 1701 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
51942aee 1702 */
8a130a7b 1703 cpu->isar.id_pfr1 &= ~0xf0;
47576b94 1704 cpu->isar.id_aa64pfr0 &= ~0xf000;
51942aee
GB
1705 }
1706
c25bd18a
PM
1707 if (!cpu->has_el2) {
1708 unset_feature(env, ARM_FEATURE_EL2);
1709 }
1710
d6f02ce3 1711 if (!cpu->has_pmu) {
929e754d 1712 unset_feature(env, ARM_FEATURE_PMU);
57a4a11b
AL
1713 }
1714 if (arm_feature(env, ARM_FEATURE_PMU)) {
bf8d0969 1715 pmu_init(cpu);
57a4a11b
AL
1716
1717 if (!kvm_enabled()) {
1718 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1719 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1720 }
4e7beb0c
AL
1721
1722#ifndef CONFIG_USER_ONLY
1723 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1724 cpu);
1725#endif
57a4a11b 1726 } else {
2a609df8
PM
1727 cpu->isar.id_aa64dfr0 =
1728 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
a6179538 1729 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
57a4a11b
AL
1730 cpu->pmceid0 = 0;
1731 cpu->pmceid1 = 0;
929e754d
WH
1732 }
1733
3c2f7bb3
PM
1734 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1735 /* Disable the hypervisor feature bits in the processor feature
1736 * registers if we don't have EL2. These are id_pfr1[15:12] and
1737 * id_aa64pfr0_el1[11:8].
1738 */
47576b94 1739 cpu->isar.id_aa64pfr0 &= ~0xf00;
8a130a7b 1740 cpu->isar.id_pfr1 &= ~0xf000;
3c2f7bb3
PM
1741 }
1742
6f4e1405
RH
1743#ifndef CONFIG_USER_ONLY
1744 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1745 /*
1746 * Disable the MTE feature bits if we do not have tag-memory
1747 * provided by the machine.
1748 */
1749 cpu->isar.id_aa64pfr1 =
1750 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1751 }
1752#endif
1753
f50cd314
PM
1754 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1755 * to false or by setting pmsav7-dregion to 0.
1756 */
8f325f56 1757 if (!cpu->has_mpu) {
f50cd314
PM
1758 cpu->pmsav7_dregion = 0;
1759 }
1760 if (cpu->pmsav7_dregion == 0) {
1761 cpu->has_mpu = false;
8f325f56
PC
1762 }
1763
452a0955 1764 if (arm_feature(env, ARM_FEATURE_PMSA) &&
3281af81
PC
1765 arm_feature(env, ARM_FEATURE_V7)) {
1766 uint32_t nr = cpu->pmsav7_dregion;
1767
1768 if (nr > 0xff) {
9af9e0fe 1769 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
3281af81
PC
1770 return;
1771 }
6cb0b013
PC
1772
1773 if (nr) {
0e1a46bb
PM
1774 if (arm_feature(env, ARM_FEATURE_V8)) {
1775 /* PMSAv8 */
62c58ee0
PM
1776 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1777 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1778 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1779 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1780 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1781 }
0e1a46bb
PM
1782 } else {
1783 env->pmsav7.drbar = g_new0(uint32_t, nr);
1784 env->pmsav7.drsr = g_new0(uint32_t, nr);
1785 env->pmsav7.dracr = g_new0(uint32_t, nr);
1786 }
6cb0b013 1787 }
3281af81
PC
1788 }
1789
9901c576
PM
1790 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1791 uint32_t nr = cpu->sau_sregion;
1792
1793 if (nr > 0xff) {
1794 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1795 return;
1796 }
1797
1798 if (nr) {
1799 env->sau.rbar = g_new0(uint32_t, nr);
1800 env->sau.rlar = g_new0(uint32_t, nr);
1801 }
1802 }
1803
91db4642
CLG
1804 if (arm_feature(env, ARM_FEATURE_EL3)) {
1805 set_feature(env, ARM_FEATURE_VBAR);
1806 }
1807
2ceb98c0 1808 register_cp_regs_for_features(cpu);
14969266
AF
1809 arm_cpu_register_gdb_regs_for_features(cpu);
1810
721fae12
PM
1811 init_cpreg_list(cpu);
1812
9e273ef2 1813#ifndef CONFIG_USER_ONLY
cc7d44c2
LX
1814 MachineState *ms = MACHINE(qdev_get_machine());
1815 unsigned int smp_cpus = ms->smp.cpus;
8bce44a2 1816 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
cc7d44c2 1817
8bce44a2
RH
1818 /*
1819 * We must set cs->num_ases to the final value before
1820 * the first call to cpu_address_space_init.
1821 */
1822 if (cpu->tag_memory != NULL) {
1823 cs->num_ases = 3 + has_secure;
1824 } else {
1825 cs->num_ases = 1 + has_secure;
1826 }
1d2091bc 1827
8bce44a2 1828 if (has_secure) {
9e273ef2
PM
1829 if (!cpu->secure_memory) {
1830 cpu->secure_memory = cs->memory;
1831 }
80ceb07a
PX
1832 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1833 cpu->secure_memory);
9e273ef2 1834 }
8bce44a2
RH
1835
1836 if (cpu->tag_memory != NULL) {
1837 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1838 cpu->tag_memory);
1839 if (has_secure) {
1840 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1841 cpu->secure_tag_memory);
1842 }
8bce44a2
RH
1843 }
1844
80ceb07a 1845 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
f9a69711
AF
1846
1847 /* No core_count specified, default to smp_cpus. */
1848 if (cpu->core_count == -1) {
1849 cpu->core_count = smp_cpus;
1850 }
9e273ef2
PM
1851#endif
1852
a4157b80
RH
1853 if (tcg_enabled()) {
1854 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1855
1856 /*
1857 * We only support DCZ blocklen that fits on one page.
1858 *
1859 * Architectually this is always true. However TARGET_PAGE_SIZE
1860 * is variable and, for compatibility with -machine virt-2.7,
1861 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1862 * But even then, while the largest architectural DCZ blocklen
1863 * is 2KiB, no cpu actually uses such a large blocklen.
1864 */
1865 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1866
1867 /*
1868 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1869 * both nibbles of each byte storing tag data may be written at once.
1870 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1871 */
1872 if (cpu_isar_feature(aa64_mte, cpu)) {
1873 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1874 }
1875 }
1876
14a10fc3 1877 qemu_init_vcpu(cs);
00d0f7cb 1878 cpu_reset(cs);
14969266
AF
1879
1880 acc->parent_realize(dev, errp);
581be094
PM
1881}
1882
5900d6b2
AF
1883static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1884{
1885 ObjectClass *oc;
51492fd1 1886 char *typename;
fb8d6c24 1887 char **cpuname;
a0032cc5 1888 const char *cpunamestr;
5900d6b2 1889
fb8d6c24 1890 cpuname = g_strsplit(cpu_model, ",", 1);
a0032cc5
PM
1891 cpunamestr = cpuname[0];
1892#ifdef CONFIG_USER_ONLY
1893 /* For backwards compatibility usermode emulation allows "-cpu any",
1894 * which has the same semantics as "-cpu max".
1895 */
1896 if (!strcmp(cpunamestr, "any")) {
1897 cpunamestr = "max";
1898 }
1899#endif
1900 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
51492fd1 1901 oc = object_class_by_name(typename);
fb8d6c24 1902 g_strfreev(cpuname);
51492fd1 1903 g_free(typename);
245fb54d
AF
1904 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1905 object_class_is_abstract(oc)) {
5900d6b2
AF
1906 return NULL;
1907 }
1908 return oc;
1909}
1910
15ee776b
PM
1911/* CPU models. These are not needed for the AArch64 linux-user build. */
1912#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1913
34f90529
PM
1914static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1915 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1916 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1917 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1918 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1919 REGINFO_SENTINEL
1920};
1921
777dc784
PM
1922static void cortex_a8_initfn(Object *obj)
1923{
1924 ARMCPU *cpu = ARM_CPU(obj);
54d3e3f5
PM
1925
1926 cpu->dtb_compatible = "arm,cortex-a8";
581be094 1927 set_feature(&cpu->env, ARM_FEATURE_V7);
581be094
PM
1928 set_feature(&cpu->env, ARM_FEATURE_NEON);
1929 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
c4804214 1930 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
c0ccb02d 1931 set_feature(&cpu->env, ARM_FEATURE_EL3);
b2d06f96 1932 cpu->midr = 0x410fc080;
325b3cef 1933 cpu->reset_fpsid = 0x410330c0;
47576b94
RH
1934 cpu->isar.mvfr0 = 0x11110222;
1935 cpu->isar.mvfr1 = 0x00011111;
64e1671f 1936 cpu->ctr = 0x82048004;
0ca7e01c 1937 cpu->reset_sctlr = 0x00c50078;
8a130a7b
PM
1938 cpu->isar.id_pfr0 = 0x1031;
1939 cpu->isar.id_pfr1 = 0x11;
a6179538 1940 cpu->isar.id_dfr0 = 0x400;
2e4d7e3e 1941 cpu->id_afr0 = 0;
10054016
PM
1942 cpu->isar.id_mmfr0 = 0x31100003;
1943 cpu->isar.id_mmfr1 = 0x20000000;
1944 cpu->isar.id_mmfr2 = 0x01202000;
1945 cpu->isar.id_mmfr3 = 0x11;
47576b94
RH
1946 cpu->isar.id_isar0 = 0x00101111;
1947 cpu->isar.id_isar1 = 0x12112111;
1948 cpu->isar.id_isar2 = 0x21232031;
1949 cpu->isar.id_isar3 = 0x11112131;
1950 cpu->isar.id_isar4 = 0x00111142;
4426d361 1951 cpu->isar.dbgdidr = 0x15141000;
85df3786
PM
1952 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1953 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1954 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1955 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2771db27 1956 cpu->reset_auxcr = 2;
34f90529 1957 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
777dc784
PM
1958}
1959
1047b9d7
PM
1960static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1961 /* power_control should be set to maximum latency. Again,
1962 * default to 0 and set by private hook
1963 */
1964 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1965 .access = PL1_RW, .resetvalue = 0,
1966 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1967 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1968 .access = PL1_RW, .resetvalue = 0,
1969 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1970 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1971 .access = PL1_RW, .resetvalue = 0,
1972 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1973 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1974 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1975 /* TLB lockdown control */
1976 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1977 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1978 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1979 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1980 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1981 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1982 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1983 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1984 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1985 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1986 REGINFO_SENTINEL
1987};
1988
777dc784
PM
1989static void cortex_a9_initfn(Object *obj)
1990{
1991 ARMCPU *cpu = ARM_CPU(obj);
54d3e3f5
PM
1992
1993 cpu->dtb_compatible = "arm,cortex-a9";
581be094 1994 set_feature(&cpu->env, ARM_FEATURE_V7);
581be094
PM
1995 set_feature(&cpu->env, ARM_FEATURE_NEON);
1996 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
c0ccb02d 1997 set_feature(&cpu->env, ARM_FEATURE_EL3);
581be094
PM
1998 /* Note that A9 supports the MP extensions even for
1999 * A9UP and single-core A9MP (which are both different
2000 * and valid configurations; we don't model A9UP).
2001 */
2002 set_feature(&cpu->env, ARM_FEATURE_V7MP);
d8ba780b 2003 set_feature(&cpu->env, ARM_FEATURE_CBAR);
b2d06f96 2004 cpu->midr = 0x410fc090;
325b3cef 2005 cpu->reset_fpsid = 0x41033090;
47576b94
RH
2006 cpu->isar.mvfr0 = 0x11110222;
2007 cpu->isar.mvfr1 = 0x01111111;
64e1671f 2008 cpu->ctr = 0x80038003;
0ca7e01c 2009 cpu->reset_sctlr = 0x00c50078;
8a130a7b
PM
2010 cpu->isar.id_pfr0 = 0x1031;
2011 cpu->isar.id_pfr1 = 0x11;
a6179538 2012 cpu->isar.id_dfr0 = 0x000;
2e4d7e3e 2013 cpu->id_afr0 = 0;
10054016
PM
2014 cpu->isar.id_mmfr0 = 0x00100103;
2015 cpu->isar.id_mmfr1 = 0x20000000;
2016 cpu->isar.id_mmfr2 = 0x01230000;
2017 cpu->isar.id_mmfr3 = 0x00002111;
47576b94
RH
2018 cpu->isar.id_isar0 = 0x00101111;
2019 cpu->isar.id_isar1 = 0x13112111;
2020 cpu->isar.id_isar2 = 0x21232041;
2021 cpu->isar.id_isar3 = 0x11112131;
2022 cpu->isar.id_isar4 = 0x00111142;
4426d361 2023 cpu->isar.dbgdidr = 0x35141000;
85df3786 2024 cpu->clidr = (1 << 27) | (1 << 24) | 3;
f7838b52
PC
2025 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2026 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
d8ba780b 2027 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
777dc784
PM
2028}
2029
34f90529 2030#ifndef CONFIG_USER_ONLY
c4241c7d 2031static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
34f90529 2032{
cc7d44c2
LX
2033 MachineState *ms = MACHINE(qdev_get_machine());
2034
34f90529
PM
2035 /* Linux wants the number of processors from here.
2036 * Might as well set the interrupt-controller bit too.
2037 */
cc7d44c2 2038 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
34f90529
PM
2039}
2040#endif
2041
2042static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2043#ifndef CONFIG_USER_ONLY
2044 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2045 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2046 .writefn = arm_cp_write_ignore, },
2047#endif
2048 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2049 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2050 REGINFO_SENTINEL
2051};
2052
dcf578ed
AY
2053static void cortex_a7_initfn(Object *obj)
2054{
2055 ARMCPU *cpu = ARM_CPU(obj);
2056
2057 cpu->dtb_compatible = "arm,cortex-a7";
5110e683 2058 set_feature(&cpu->env, ARM_FEATURE_V7VE);
dcf578ed
AY
2059 set_feature(&cpu->env, ARM_FEATURE_NEON);
2060 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
dcf578ed
AY
2061 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2062 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2063 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
436c0cbb 2064 set_feature(&cpu->env, ARM_FEATURE_EL2);
dcf578ed 2065 set_feature(&cpu->env, ARM_FEATURE_EL3);
a46118fc 2066 set_feature(&cpu->env, ARM_FEATURE_PMU);
dcf578ed
AY
2067 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2068 cpu->midr = 0x410fc075;
2069 cpu->reset_fpsid = 0x41023075;
47576b94
RH
2070 cpu->isar.mvfr0 = 0x10110222;
2071 cpu->isar.mvfr1 = 0x11111111;
dcf578ed
AY
2072 cpu->ctr = 0x84448003;
2073 cpu->reset_sctlr = 0x00c50078;
8a130a7b
PM
2074 cpu->isar.id_pfr0 = 0x00001131;
2075 cpu->isar.id_pfr1 = 0x00011011;
a6179538 2076 cpu->isar.id_dfr0 = 0x02010555;
dcf578ed 2077 cpu->id_afr0 = 0x00000000;
10054016
PM
2078 cpu->isar.id_mmfr0 = 0x10101105;
2079 cpu->isar.id_mmfr1 = 0x40000000;
2080 cpu->isar.id_mmfr2 = 0x01240000;
2081 cpu->isar.id_mmfr3 = 0x02102211;
37bdda89
RH
2082 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2083 * table 4-41 gives 0x02101110, which includes the arm div insns.
2084 */
47576b94
RH
2085 cpu->isar.id_isar0 = 0x02101110;
2086 cpu->isar.id_isar1 = 0x13112111;
2087 cpu->isar.id_isar2 = 0x21232041;
2088 cpu->isar.id_isar3 = 0x11112131;
2089 cpu->isar.id_isar4 = 0x10011142;
4426d361 2090 cpu->isar.dbgdidr = 0x3515f005;
dcf578ed
AY
2091 cpu->clidr = 0x0a200023;
2092 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2093 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2094 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2095 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2096}
2097
777dc784
PM
2098static void cortex_a15_initfn(Object *obj)
2099{
2100 ARMCPU *cpu = ARM_CPU(obj);
54d3e3f5
PM
2101
2102 cpu->dtb_compatible = "arm,cortex-a15";
5110e683 2103 set_feature(&cpu->env, ARM_FEATURE_V7VE);
581be094
PM
2104 set_feature(&cpu->env, ARM_FEATURE_NEON);
2105 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
581be094 2106 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
c4804214 2107 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
c29f9a0a 2108 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
436c0cbb 2109 set_feature(&cpu->env, ARM_FEATURE_EL2);
c0ccb02d 2110 set_feature(&cpu->env, ARM_FEATURE_EL3);
a46118fc 2111 set_feature(&cpu->env, ARM_FEATURE_PMU);
3541addc 2112 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
b2d06f96 2113 cpu->midr = 0x412fc0f1;
325b3cef 2114 cpu->reset_fpsid = 0x410430f0;
47576b94
RH
2115 cpu->isar.mvfr0 = 0x10110222;
2116 cpu->isar.mvfr1 = 0x11111111;
64e1671f 2117 cpu->ctr = 0x8444c004;
0ca7e01c 2118 cpu->reset_sctlr = 0x00c50078;
8a130a7b
PM
2119 cpu->isar.id_pfr0 = 0x00001131;
2120 cpu->isar.id_pfr1 = 0x00011011;
a6179538 2121 cpu->isar.id_dfr0 = 0x02010555;
2e4d7e3e 2122 cpu->id_afr0 = 0x00000000;
10054016
PM
2123 cpu->isar.id_mmfr0 = 0x10201105;
2124 cpu->isar.id_mmfr1 = 0x20000000;
2125 cpu->isar.id_mmfr2 = 0x01240000;
2126 cpu->isar.id_mmfr3 = 0x02102211;
47576b94
RH
2127 cpu->isar.id_isar0 = 0x02101110;
2128 cpu->isar.id_isar1 = 0x13112111;
2129 cpu->isar.id_isar2 = 0x21232041;
2130 cpu->isar.id_isar3 = 0x11112131;
2131 cpu->isar.id_isar4 = 0x10011142;
4426d361 2132 cpu->isar.dbgdidr = 0x3515f021;
85df3786
PM
2133 cpu->clidr = 0x0a200023;
2134 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2135 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2136 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
34f90529 2137 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
777dc784
PM
2138}
2139
bab52d4b 2140#ifndef TARGET_AARCH64
e9b2bfaa
PM
2141/*
2142 * -cpu max: a CPU with as many features enabled as our emulation supports.
bab52d4b 2143 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
e9b2bfaa 2144 * this only needs to handle 32 bits, and need not care about KVM.
bab52d4b
PM
2145 */
2146static void arm_max_initfn(Object *obj)
2147{
2148 ARMCPU *cpu = ARM_CPU(obj);
2149
e9b2bfaa 2150 cortex_a15_initfn(obj);
973751fd 2151
e9b2bfaa
PM
2152 /* old-style VFP short-vector support */
2153 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
973751fd 2154
a0032cc5 2155#ifdef CONFIG_USER_ONLY
e9b2bfaa
PM
2156 /*
2157 * We don't set these in system emulation mode for the moment,
2158 * since we don't correctly set (all of) the ID registers to
2159 * advertise them.
2160 */
2161 set_feature(&cpu->env, ARM_FEATURE_V8);
2162 {
2163 uint32_t t;
2164
2165 t = cpu->isar.id_isar5;
2166 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2167 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2168 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2169 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2170 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2171 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2172 cpu->isar.id_isar5 = t;
2173
2174 t = cpu->isar.id_isar6;
2175 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2176 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2177 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2178 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2179 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2180 cpu->isar.id_isar6 = t;
2181
2182 t = cpu->isar.mvfr1;
2183 t = FIELD_DP32(t, MVFR1, FPHP, 3); /* v8.2-FP16 */
2184 t = FIELD_DP32(t, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
2185 cpu->isar.mvfr1 = t;
2186
2187 t = cpu->isar.mvfr2;
2188 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2189 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2190 cpu->isar.mvfr2 = t;
2191
2192 t = cpu->isar.id_mmfr3;
2193 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2194 cpu->isar.id_mmfr3 = t;
2195
2196 t = cpu->isar.id_mmfr4;
2197 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2198 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2199 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2200 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2201 cpu->isar.id_mmfr4 = t;
a0032cc5 2202 }
e9b2bfaa 2203#endif
777dc784 2204}
f5f6d38b 2205#endif
777dc784 2206
15ee776b
PM
2207#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2208
777dc784 2209static const ARMCPUInfo arm_cpus[] = {
15ee776b 2210#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
dcf578ed 2211 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
777dc784
PM
2212 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2213 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2214 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
bab52d4b
PM
2215#ifndef TARGET_AARCH64
2216 { .name = "max", .initfn = arm_max_initfn },
2217#endif
f5f6d38b 2218#ifdef CONFIG_USER_ONLY
a0032cc5 2219 { .name = "any", .initfn = arm_max_initfn },
f5f6d38b 2220#endif
15ee776b 2221#endif
777dc784
PM
2222};
2223
5de16430 2224static Property arm_cpu_properties[] = {
98128601 2225 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
e544f800 2226 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
ce5b1bbf
LV
2227 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2228 mp_affinity, ARM64_AFFINITY_INVALID),
15f8b142 2229 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
f9a69711 2230 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
5de16430
PM
2231 DEFINE_PROP_END_OF_LIST()
2232};
2233
b3820e6c
DH
2234static gchar *arm_gdb_arch_name(CPUState *cs)
2235{
2236 ARMCPU *cpu = ARM_CPU(cs);
2237 CPUARMState *env = &cpu->env;
2238
2239 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2240 return g_strdup("iwmmxt");
2241 }
2242 return g_strdup("arm");
2243}
2244
dec9c2d4
AF
2245static void arm_cpu_class_init(ObjectClass *oc, void *data)
2246{
2247 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2248 CPUClass *cc = CPU_CLASS(acc);
14969266
AF
2249 DeviceClass *dc = DEVICE_CLASS(oc);
2250
bf853881
PMD
2251 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2252 &acc->parent_realize);
dec9c2d4 2253
4f67d30b 2254 device_class_set_props(dc, arm_cpu_properties);
781c67ca 2255 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
5900d6b2
AF
2256
2257 cc->class_by_name = arm_cpu_class_by_name;
8c2e1b00 2258 cc->has_work = arm_cpu_has_work;
878096ee 2259 cc->dump_state = arm_cpu_dump_state;
f45748f1 2260 cc->set_pc = arm_cpu_set_pc;
5b50e790
AF
2261 cc->gdb_read_register = arm_cpu_gdb_read_register;
2262 cc->gdb_write_register = arm_cpu_gdb_write_register;
7350d553 2263#ifndef CONFIG_USER_ONLY
0faea0c7 2264 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
017518c1 2265 cc->asidx_from_attrs = arm_asidx_from_attrs;
00b941e5 2266 cc->vmsd = &vmstate_arm_cpu;
ed50ff78 2267 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
da2b9140
AJ
2268 cc->write_elf64_note = arm_cpu_write_elf64_note;
2269 cc->write_elf32_note = arm_cpu_write_elf32_note;
00b941e5 2270#endif
a0e372f0 2271 cc->gdb_num_core_regs = 26;
5b24c641 2272 cc->gdb_core_xml_file = "arm-core.xml";
b3820e6c 2273 cc->gdb_arch_name = arm_gdb_arch_name;
200bf5b7 2274 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2472b6c0 2275 cc->gdb_stop_before_watchpoint = true;
48440620 2276 cc->disas_set_info = arm_disas_set_info;
74d7fc7f 2277#ifdef CONFIG_TCG
e9e51b71 2278 cc->tcg_ops.initialize = arm_translate_init;
48c1a3e3 2279 cc->tcg_ops.cpu_exec_interrupt = arm_cpu_exec_interrupt;
ec62595b 2280 cc->tcg_ops.synchronize_from_tb = arm_cpu_synchronize_from_tb;
e124536f 2281 cc->tcg_ops.tlb_fill = arm_cpu_tlb_fill;
e9ce43e9 2282 cc->tcg_ops.debug_excp_handler = arm_debug_excp_handler;
0d1762e9 2283#if !defined(CONFIG_USER_ONLY)
c73bdb35 2284 cc->tcg_ops.do_interrupt = arm_cpu_do_interrupt;
cbc183d2 2285 cc->tcg_ops.do_transaction_failed = arm_cpu_do_transaction_failed;
8535dd70 2286 cc->tcg_ops.do_unaligned_access = arm_cpu_do_unaligned_access;
9ea9087b 2287 cc->tcg_ops.adjust_watchpoint_address = arm_adjust_watchpoint_address;
c73bdb35 2288 cc->tcg_ops.debug_check_watchpoint = arm_debug_check_watchpoint;
e21b551c 2289#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
cbc183d2 2290#endif /* CONFIG_TCG */
dec9c2d4
AF
2291}
2292
86f0a186
PM
2293#ifdef CONFIG_KVM
2294static void arm_host_initfn(Object *obj)
2295{
2296 ARMCPU *cpu = ARM_CPU(obj);
2297
2298 kvm_arm_set_cpu_features_from_host(cpu);
87014c6b
AJ
2299 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2300 aarch64_add_sve_properties(obj);
2301 }
51e5ef45 2302 arm_cpu_post_init(obj);
86f0a186
PM
2303}
2304
2305static const TypeInfo host_arm_cpu_type_info = {
2306 .name = TYPE_ARM_HOST_CPU,
86f0a186 2307 .parent = TYPE_AARCH64_CPU,
86f0a186
PM
2308 .instance_init = arm_host_initfn,
2309};
2310
2311#endif
2312
51e5ef45
MAL
2313static void arm_cpu_instance_init(Object *obj)
2314{
2315 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2316
2317 acc->info->initfn(obj);
2318 arm_cpu_post_init(obj);
2319}
2320
2321static void cpu_register_class_init(ObjectClass *oc, void *data)
2322{
2323 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2324
2325 acc->info = data;
2326}
2327
37bcf244 2328void arm_cpu_register(const ARMCPUInfo *info)
777dc784
PM
2329{
2330 TypeInfo type_info = {
777dc784
PM
2331 .parent = TYPE_ARM_CPU,
2332 .instance_size = sizeof(ARMCPU),
d03087bd 2333 .instance_align = __alignof__(ARMCPU),
51e5ef45 2334 .instance_init = arm_cpu_instance_init,
777dc784 2335 .class_size = sizeof(ARMCPUClass),
51e5ef45
MAL
2336 .class_init = info->class_init ?: cpu_register_class_init,
2337 .class_data = (void *)info,
777dc784
PM
2338 };
2339
51492fd1 2340 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
918fd083 2341 type_register(&type_info);
51492fd1 2342 g_free((void *)type_info.name);
777dc784
PM
2343}
2344
dec9c2d4
AF
2345static const TypeInfo arm_cpu_type_info = {
2346 .name = TYPE_ARM_CPU,
2347 .parent = TYPE_CPU,
2348 .instance_size = sizeof(ARMCPU),
d03087bd 2349 .instance_align = __alignof__(ARMCPU),
777dc784 2350 .instance_init = arm_cpu_initfn,
4b6a83fb 2351 .instance_finalize = arm_cpu_finalizefn,
777dc784 2352 .abstract = true,
dec9c2d4
AF
2353 .class_size = sizeof(ARMCPUClass),
2354 .class_init = arm_cpu_class_init,
2355};
2356
181962fd
PM
2357static const TypeInfo idau_interface_type_info = {
2358 .name = TYPE_IDAU_INTERFACE,
2359 .parent = TYPE_INTERFACE,
2360 .class_size = sizeof(IDAUInterfaceClass),
2361};
2362
dec9c2d4
AF
2363static void arm_cpu_register_types(void)
2364{
92b6a659 2365 const size_t cpu_count = ARRAY_SIZE(arm_cpus);
777dc784 2366
dec9c2d4 2367 type_register_static(&arm_cpu_type_info);
83e6813a 2368
86f0a186
PM
2369#ifdef CONFIG_KVM
2370 type_register_static(&host_arm_cpu_type_info);
2371#endif
92b6a659
PMD
2372
2373 if (cpu_count) {
2374 size_t i;
2375
fcdf0a90 2376 type_register_static(&idau_interface_type_info);
92b6a659
PMD
2377 for (i = 0; i < cpu_count; ++i) {
2378 arm_cpu_register(&arm_cpus[i]);
2379 }
2380 }
dec9c2d4
AF
2381}
2382
2383type_init(arm_cpu_register_types)