]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/hppa: Update to SeaBIOS-hppa version 8
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
e9152ee9
RDC
169#define VTCR_NSW (1u << 29)
170#define VTCR_NSA (1u << 30)
171#define VSTCR_SW VTCR_NSW
172#define VSTCR_SA VTCR_NSA
173
c39c2b90
RH
174/* Define a maximum sized vector register.
175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176 * For 64-bit, this is a 2048-bit SVE register.
177 *
178 * Note that the mapping between S, D, and Q views of the register bank
179 * differs between AArch64 and AArch32.
180 * In AArch32:
181 * Qn = regs[n].d[1]:regs[n].d[0]
182 * Dn = regs[n / 2].d[n & 1]
183 * Sn = regs[n / 4].d[n % 4 / 2],
184 * bits 31..0 for even n, and bits 63..32 for odd n
185 * (and regs[16] to regs[31] are inaccessible)
186 * In AArch64:
187 * Zn = regs[n].d[*]
188 * Qn = regs[n].d[1]:regs[n].d[0]
189 * Dn = regs[n].d[0]
190 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 191 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
192 *
193 * This corresponds to the architecturally defined mapping between
194 * the two execution states, and means we do not need to explicitly
195 * map these registers when changing states.
196 *
197 * Align the data for use with TCG host vector operations.
198 */
199
200#ifdef TARGET_AARCH64
201# define ARM_MAX_VQ 16
202#else
203# define ARM_MAX_VQ 1
204#endif
205
206typedef struct ARMVectorReg {
207 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208} ARMVectorReg;
209
3c7d3086 210#ifdef TARGET_AARCH64
991ad91b 211/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 212typedef struct ARMPredicateReg {
46417784 213 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 214} ARMPredicateReg;
991ad91b
RH
215
216/* In AArch32 mode, PAC keys do not exist at all. */
217typedef struct ARMPACKey {
218 uint64_t lo, hi;
219} ARMPACKey;
3c7d3086
RH
220#endif
221
3902bfc6
RH
222/* See the commentary above the TBFLAG field definitions. */
223typedef struct CPUARMTBFlags {
224 uint32_t flags;
a378206a 225 target_ulong flags2;
3902bfc6 226} CPUARMTBFlags;
c39c2b90 227
f3639a64
RH
228typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
229
8f4e07c9
PMD
230typedef struct NVICState NVICState;
231
1ea4a06a 232typedef struct CPUArchState {
b5ff1b31 233 /* Regs for current mode. */
2c0262af 234 uint32_t regs[16];
3926cc84
AG
235
236 /* 32/64 switch only happens when taking and returning from
237 * exceptions so the overlap semantics are taken care of then
238 * instead of having a complicated union.
239 */
240 /* Regs for A64 mode. */
241 uint64_t xregs[32];
242 uint64_t pc;
d356312f
PM
243 /* PSTATE isn't an architectural register for ARMv8. However, it is
244 * convenient for us to assemble the underlying state into a 32 bit format
245 * identical to the architectural format used for the SPSR. (This is also
246 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
247 * 'pstate' register are.) Of the PSTATE bits:
248 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
249 * semantics as for AArch32, as described in the comments on each field)
250 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 251 * DAIF (exception masks) are kept in env->daif
f6e52eaa 252 * BTYPE is kept in env->btype
c37e6ac9 253 * SM and ZA are kept in env->svcr
d356312f 254 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
255 */
256 uint32_t pstate;
53221552 257 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 258 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 259
fdd1b228 260 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 261 CPUARMTBFlags hflags;
fdd1b228 262
b90372ad 263 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 264 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
265 the whole CPSR. */
266 uint32_t uncached_cpsr;
267 uint32_t spsr;
268
269 /* Banked registers. */
28c9457d 270 uint64_t banked_spsr[8];
0b7d409d
FA
271 uint32_t banked_r13[8];
272 uint32_t banked_r14[8];
3b46e624 273
b5ff1b31
FB
274 /* These hold r8-r12. */
275 uint32_t usr_regs[5];
276 uint32_t fiq_regs[5];
3b46e624 277
2c0262af
FB
278 /* cpsr flag cache for faster execution */
279 uint32_t CF; /* 0 or 1 */
280 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
281 uint32_t NF; /* N is bit 31. All other bits are undefined. */
282 uint32_t ZF; /* Z set if zero. */
99c475ab 283 uint32_t QF; /* 0 or 1 */
9ee6e8bb 284 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 285 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 286 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 287 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 288 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 289
1b174238 290 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 291 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 292
b5ff1b31
FB
293 /* System control coprocessor (cp15) */
294 struct {
40f137e1 295 uint32_t c0_cpuid;
b85a1fd6
FA
296 union { /* Cache size selection */
297 struct {
298 uint64_t _unused_csselr0;
299 uint64_t csselr_ns;
300 uint64_t _unused_csselr1;
301 uint64_t csselr_s;
302 };
303 uint64_t csselr_el[4];
304 };
137feaa9
FA
305 union { /* System control register. */
306 struct {
307 uint64_t _unused_sctlr;
308 uint64_t sctlr_ns;
309 uint64_t hsctlr;
310 uint64_t sctlr_s;
311 };
312 uint64_t sctlr_el[4];
313 };
761c4642 314 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 315 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 316 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 317 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 318 uint64_t sder; /* Secure debug enable register. */
77022576 319 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
320 union { /* MMU translation table base 0. */
321 struct {
322 uint64_t _unused_ttbr0_0;
323 uint64_t ttbr0_ns;
324 uint64_t _unused_ttbr0_1;
325 uint64_t ttbr0_s;
326 };
327 uint64_t ttbr0_el[4];
328 };
329 union { /* MMU translation table base 1. */
330 struct {
331 uint64_t _unused_ttbr1_0;
332 uint64_t ttbr1_ns;
333 uint64_t _unused_ttbr1_1;
334 uint64_t ttbr1_s;
335 };
336 uint64_t ttbr1_el[4];
337 };
b698e9cf 338 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 339 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 340 /* MMU translation table base control. */
cb4a0a34 341 uint64_t tcr_el[4];
988cc190
PM
342 uint64_t vtcr_el2; /* Virtualization Translation Control. */
343 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
344 uint32_t c2_data; /* MPU data cacheable bits. */
345 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
346 union { /* MMU domain access control register
347 * MPU write buffer control.
348 */
349 struct {
350 uint64_t dacr_ns;
351 uint64_t dacr_s;
352 };
353 struct {
354 uint64_t dacr32_el2;
355 };
356 };
7e09797c
PM
357 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
358 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 359 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 360 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 361 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
362 union { /* Fault status registers. */
363 struct {
364 uint64_t ifsr_ns;
365 uint64_t ifsr_s;
366 };
367 struct {
368 uint64_t ifsr32_el2;
369 };
370 };
4a7e2d73
FA
371 union {
372 struct {
373 uint64_t _unused_dfsr;
374 uint64_t dfsr_ns;
375 uint64_t hsr;
376 uint64_t dfsr_s;
377 };
378 uint64_t esr_el[4];
379 };
ce819861 380 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
381 union { /* Fault address registers. */
382 struct {
383 uint64_t _unused_far0;
e03b5686 384#if HOST_BIG_ENDIAN
b848ce2b
FA
385 uint32_t ifar_ns;
386 uint32_t dfar_ns;
387 uint32_t ifar_s;
388 uint32_t dfar_s;
389#else
390 uint32_t dfar_ns;
391 uint32_t ifar_ns;
392 uint32_t dfar_s;
393 uint32_t ifar_s;
394#endif
395 uint64_t _unused_far3;
396 };
397 uint64_t far_el[4];
398 };
59e05530 399 uint64_t hpfar_el2;
2a5a9abd 400 uint64_t hstr_el2;
01c097f7
FA
401 union { /* Translation result. */
402 struct {
403 uint64_t _unused_par_0;
404 uint64_t par_ns;
405 uint64_t _unused_par_1;
406 uint64_t par_s;
407 };
408 uint64_t par_el[4];
409 };
6cb0b013 410
b5ff1b31
FB
411 uint32_t c9_insn; /* Cache lockdown registers. */
412 uint32_t c9_data;
8521466b
AF
413 uint64_t c9_pmcr; /* performance monitor control register */
414 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
415 uint64_t c9_pmovsr; /* perf monitor overflow status */
416 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 417 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 418 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
419 union { /* Memory attribute redirection */
420 struct {
e03b5686 421#if HOST_BIG_ENDIAN
be693c87
GB
422 uint64_t _unused_mair_0;
423 uint32_t mair1_ns;
424 uint32_t mair0_ns;
425 uint64_t _unused_mair_1;
426 uint32_t mair1_s;
427 uint32_t mair0_s;
428#else
429 uint64_t _unused_mair_0;
430 uint32_t mair0_ns;
431 uint32_t mair1_ns;
432 uint64_t _unused_mair_1;
433 uint32_t mair0_s;
434 uint32_t mair1_s;
435#endif
436 };
437 uint64_t mair_el[4];
438 };
fb6c91ba
GB
439 union { /* vector base address register */
440 struct {
441 uint64_t _unused_vbar;
442 uint64_t vbar_ns;
443 uint64_t hvbar;
444 uint64_t vbar_s;
445 };
446 uint64_t vbar_el[4];
447 };
e89e51a1 448 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 449 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
450 struct { /* FCSE PID. */
451 uint32_t fcseidr_ns;
452 uint32_t fcseidr_s;
453 };
454 union { /* Context ID. */
455 struct {
456 uint64_t _unused_contextidr_0;
457 uint64_t contextidr_ns;
458 uint64_t _unused_contextidr_1;
459 uint64_t contextidr_s;
460 };
461 uint64_t contextidr_el[4];
462 };
463 union { /* User RW Thread register. */
464 struct {
465 uint64_t tpidrurw_ns;
466 uint64_t tpidrprw_ns;
467 uint64_t htpidr;
468 uint64_t _tpidr_el3;
469 };
470 uint64_t tpidr_el[4];
471 };
9e5ec745 472 uint64_t tpidr2_el0;
54bf36ed
FA
473 /* The secure banks of these registers don't map anywhere */
474 uint64_t tpidrurw_s;
475 uint64_t tpidrprw_s;
476 uint64_t tpidruro_s;
477
478 union { /* User RO Thread register. */
479 uint64_t tpidruro_ns;
480 uint64_t tpidrro_el[1];
481 };
a7adc4b7
PM
482 uint64_t c14_cntfrq; /* Counter Frequency register */
483 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 484 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 485 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 486 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 487 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
488 uint32_t c15_ticonfig; /* TI925T configuration byte. */
489 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
490 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
491 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
492 uint32_t c15_config_base_address; /* SCU base address. */
493 uint32_t c15_diagnostic; /* diagnostic register */
494 uint32_t c15_power_diagnostic;
495 uint32_t c15_power_control; /* power control */
0b45451e
PM
496 uint64_t dbgbvr[16]; /* breakpoint value registers */
497 uint64_t dbgbcr[16]; /* breakpoint control registers */
498 uint64_t dbgwvr[16]; /* watchpoint value registers */
499 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 500 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 501 uint64_t mdscr_el1;
1424ca8d 502 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 503 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 504 uint64_t mdcr_el2;
5513c3ab 505 uint64_t mdcr_el3;
5d05b9d4
AL
506 /* Stores the architectural value of the counter *the last time it was
507 * updated* by pmccntr_op_start. Accesses should always be surrounded
508 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
509 * architecturally-correct value is being read/set.
7c2cb42b 510 */
c92c0687 511 uint64_t c15_ccnt;
5d05b9d4
AL
512 /* Stores the delta between the architectural value and the underlying
513 * cycle count during normal operation. It is used to update c15_ccnt
514 * to be the correct architectural value before accesses. During
515 * accesses, c15_ccnt_delta contains the underlying count being used
516 * for the access, after which it reverts to the delta value in
517 * pmccntr_op_finish.
518 */
519 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
520 uint64_t c14_pmevcntr[31];
521 uint64_t c14_pmevcntr_delta[31];
522 uint64_t c14_pmevtyper[31];
8521466b 523 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 524 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 525 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
526 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
527 uint64_t gcr_el1;
528 uint64_t rgsr_el1;
58e93b48
RH
529
530 /* Minimal RAS registers */
531 uint64_t disr_el1;
532 uint64_t vdisr_el2;
533 uint64_t vsesr_el2;
15126d9c
PM
534
535 /*
536 * Fine-Grained Trap registers. We store these as arrays so the
537 * access checking code doesn't have to manually select
538 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
539 * FEAT_FGT2 will add more elements to these arrays.
540 */
541 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
542 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
543 uint64_t fgt_exec[1]; /* HFGITR */
b5ff1b31 544 } cp15;
40f137e1 545
9ee6e8bb 546 struct {
fb602cb7
PM
547 /* M profile has up to 4 stack pointers:
548 * a Main Stack Pointer and a Process Stack Pointer for each
549 * of the Secure and Non-Secure states. (If the CPU doesn't support
550 * the security extension then it has only two SPs.)
551 * In QEMU we always store the currently active SP in regs[13],
552 * and the non-active SP for the current security state in
553 * v7m.other_sp. The stack pointers for the inactive security state
554 * are stored in other_ss_msp and other_ss_psp.
555 * switch_v7m_security_state() is responsible for rearranging them
556 * when we change security state.
557 */
9ee6e8bb 558 uint32_t other_sp;
fb602cb7
PM
559 uint32_t other_ss_msp;
560 uint32_t other_ss_psp;
4a16724f
PM
561 uint32_t vecbase[M_REG_NUM_BANKS];
562 uint32_t basepri[M_REG_NUM_BANKS];
563 uint32_t control[M_REG_NUM_BANKS];
564 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
565 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
566 uint32_t hfsr; /* HardFault Status */
567 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 568 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 569 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 570 uint32_t bfar; /* BusFault Address */
bed079da 571 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 572 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 573 int exception;
4a16724f
PM
574 uint32_t primask[M_REG_NUM_BANKS];
575 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 576 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 577 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 578 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 579 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
580 uint32_t msplim[M_REG_NUM_BANKS];
581 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
582 uint32_t fpcar[M_REG_NUM_BANKS];
583 uint32_t fpccr[M_REG_NUM_BANKS];
584 uint32_t fpdscr[M_REG_NUM_BANKS];
585 uint32_t cpacr[M_REG_NUM_BANKS];
586 uint32_t nsacr;
b26b5629 587 uint32_t ltpsize;
7c3d47da 588 uint32_t vpr;
9ee6e8bb
PB
589 } v7m;
590
abf1172f
PM
591 /* Information associated with an exception about to be taken:
592 * code which raises an exception must set cs->exception_index and
593 * the relevant parts of this structure; the cpu_do_interrupt function
594 * will then set the guest-visible registers as part of the exception
595 * entry process.
596 */
597 struct {
598 uint32_t syndrome; /* AArch64 format syndrome register */
599 uint32_t fsr; /* AArch32 format fault status register info */
600 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 601 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
602 /* If we implement EL2 we will also need to store information
603 * about the intermediate physical address for stage 2 faults.
604 */
605 } exception;
606
202ccb6b
DG
607 /* Information associated with an SError */
608 struct {
609 uint8_t pending;
610 uint8_t has_esr;
611 uint64_t esr;
612 } serror;
613
1711bfa5
BM
614 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
615
ed89f078
PM
616 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
617 uint32_t irq_line_state;
618
fe1479c3
PB
619 /* Thumb-2 EE state. */
620 uint32_t teecr;
621 uint32_t teehbr;
622
b7bcbe95
FB
623 /* VFP coprocessor state. */
624 struct {
c39c2b90 625 ARMVectorReg zregs[32];
b7bcbe95 626
3c7d3086
RH
627#ifdef TARGET_AARCH64
628 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 629#define FFR_PRED_NUM 16
3c7d3086 630 ARMPredicateReg pregs[17];
516e246a
RH
631 /* Scratch space for aa64 sve predicate temporary. */
632 ARMPredicateReg preg_tmp;
3c7d3086
RH
633#endif
634
b7bcbe95 635 /* We store these fpcsr fields separately for convenience. */
a4d58462 636 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
637 int vec_len;
638 int vec_stride;
639
a4d58462
RH
640 uint32_t xregs[16];
641
516e246a 642 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 643 uint32_t scratch[8];
3b46e624 644
d81ce0ef
AB
645 /* There are a number of distinct float control structures:
646 *
647 * fp_status: is the "normal" fp status.
648 * fp_status_fp16: used for half-precision calculations
649 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
650 * standard_fp_status_fp16 : used for half-precision
651 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
652 *
653 * Half-precision operations are governed by a separate
654 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
655 * status structure to control this.
656 *
657 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
658 * round-to-nearest and is used by any operations (generally
659 * Neon) which the architecture defines as controlled by the
660 * standard FPSCR value rather than the FPSCR.
3a492f3a 661 *
aaae563b
PM
662 * The "standard FPSCR but for fp16 ops" is needed because
663 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
664 * using a fixed value for it.
665 *
3a492f3a
PM
666 * To avoid having to transfer exception bits around, we simply
667 * say that the FPSCR cumulative exception flags are the logical
aaae563b 668 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
669 * only thing which needs to read the exception flags being
670 * an explicit FPSCR read.
671 */
53cd6637 672 float_status fp_status;
d81ce0ef 673 float_status fp_status_f16;
3a492f3a 674 float_status standard_fp_status;
aaae563b 675 float_status standard_fp_status_f16;
5be5e8ed 676
de561988
RH
677 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
678 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 679 } vfp;
0f08429c 680
03d05e2d
PM
681 uint64_t exclusive_addr;
682 uint64_t exclusive_val;
0f08429c
RH
683 /*
684 * Contains the 'val' for the second 64-bit register of LDXP, which comes
685 * from the higher address, not the high part of a complete 128-bit value.
686 * In some ways it might be more convenient to record the exclusive value
687 * as the low and high halves of a 128 bit data value, but the current
688 * semantics of these fields are baked into the migration format.
689 */
03d05e2d 690 uint64_t exclusive_high;
b7bcbe95 691
18c9b560
AZ
692 /* iwMMXt coprocessor state. */
693 struct {
694 uint64_t regs[16];
695 uint64_t val;
696
697 uint32_t cregs[16];
698 } iwmmxt;
699
991ad91b 700#ifdef TARGET_AARCH64
108b3ba8
RH
701 struct {
702 ARMPACKey apia;
703 ARMPACKey apib;
704 ARMPACKey apda;
705 ARMPACKey apdb;
706 ARMPACKey apga;
707 } keys;
7cb1e618
RH
708
709 uint64_t scxtnum_el[4];
dc993a01
RH
710
711 /*
712 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
713 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
714 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
715 * When SVL is less than the architectural maximum, the accessible
716 * storage is restricted, such that if the SVL is X bytes the guest can
717 * see only the bottom X elements of zarray[], and only the least
718 * significant X bytes of each element of the array. (In other words,
719 * the observable part is always square.)
720 *
721 * The ZA storage can also be considered as a set of square tiles of
722 * elements of different sizes. The mapping from tiles to the ZA array
723 * is architecturally defined, such that for tiles of elements of esz
724 * bytes, the Nth row (or "horizontal slice") of tile T is in
725 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
726 * in the ZA storage, because its rows are striped through the ZA array.
727 *
728 * Because this is so large, keep this toward the end of the reset area,
729 * to keep the offsets into the rest of the structure smaller.
730 */
731 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
732#endif
733
46747d15 734 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
735 struct CPUWatchpoint *cpu_watchpoint[16];
736
f3639a64
RH
737 /* Optional fault info across tlb lookup. */
738 ARMMMUFaultInfo *tlb_fi;
739
1f5c00cf
AB
740 /* Fields up to this point are cleared by a CPU reset */
741 struct {} end_reset_fields;
742
e8b5fae5 743 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 744
581be094 745 /* Internal CPU feature flags. */
918f5dca 746 uint64_t features;
581be094 747
6cb0b013
PC
748 /* PMSAv7 MPU */
749 struct {
750 uint32_t *drbar;
751 uint32_t *drsr;
752 uint32_t *dracr;
4a16724f 753 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
754 } pmsav7;
755
0e1a46bb
PM
756 /* PMSAv8 MPU */
757 struct {
758 /* The PMSAv8 implementation also shares some PMSAv7 config
759 * and state:
760 * pmsav7.rnr (region number register)
761 * pmsav7_dregion (number of configured regions)
762 */
4a16724f
PM
763 uint32_t *rbar[M_REG_NUM_BANKS];
764 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
765 uint32_t *hprbar;
766 uint32_t *hprlar;
4a16724f
PM
767 uint32_t mair0[M_REG_NUM_BANKS];
768 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 769 uint32_t hprselr;
0e1a46bb
PM
770 } pmsav8;
771
9901c576
PM
772 /* v8M SAU */
773 struct {
774 uint32_t *rbar;
775 uint32_t *rlar;
776 uint32_t rnr;
777 uint32_t ctrl;
778 } sau;
779
1701d70e 780#if !defined(CONFIG_USER_ONLY)
8f4e07c9 781 NVICState *nvic;
2a94a507 782 const struct arm_boot_info *boot_info;
d3a3e529
VK
783 /* Store GICv3CPUState to access from this struct */
784 void *gicv3state;
1701d70e 785#else /* CONFIG_USER_ONLY */
26f08561
PMD
786 /* For usermode syscall translation. */
787 bool eabi;
788#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
789
790#ifdef TARGET_TAGGED_ADDRESSES
791 /* Linux syscall tagged address support */
792 bool tagged_addr_enable;
793#endif
2c0262af
FB
794} CPUARMState;
795
5fda9504
TH
796static inline void set_feature(CPUARMState *env, int feature)
797{
798 env->features |= 1ULL << feature;
799}
800
801static inline void unset_feature(CPUARMState *env, int feature)
802{
803 env->features &= ~(1ULL << feature);
804}
805
bd7d00fc 806/**
08267487 807 * ARMELChangeHookFn:
bd7d00fc
PM
808 * type of a function which can be registered via arm_register_el_change_hook()
809 * to get callbacks when the CPU changes its exception level or mode.
810 */
08267487
AL
811typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
812typedef struct ARMELChangeHook ARMELChangeHook;
813struct ARMELChangeHook {
814 ARMELChangeHookFn *hook;
815 void *opaque;
816 QLIST_ENTRY(ARMELChangeHook) node;
817};
062ba099
AB
818
819/* These values map onto the return values for
820 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
821typedef enum ARMPSCIState {
d5affb0d
AJ
822 PSCI_ON = 0,
823 PSCI_OFF = 1,
062ba099
AB
824 PSCI_ON_PENDING = 2
825} ARMPSCIState;
826
962fcbf2
RH
827typedef struct ARMISARegisters ARMISARegisters;
828
7f9e25a6
RH
829/*
830 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
831 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
832 *
833 * While processing properties during initialization, corresponding init bits
834 * are set for bits in sve_vq_map that have been set by properties.
835 *
836 * Bits set in supported represent valid vector lengths for the CPU type.
837 */
838typedef struct {
839 uint32_t map, init, supported;
840} ARMVQMap;
841
74e75564
PB
842/**
843 * ARMCPU:
844 * @env: #CPUARMState
845 *
846 * An ARM CPU core.
847 */
b36e239e 848struct ArchCPU {
74e75564
PB
849 /*< private >*/
850 CPUState parent_obj;
851 /*< public >*/
852
5b146dc7 853 CPUNegativeOffsetState neg;
74e75564
PB
854 CPUARMState env;
855
856 /* Coprocessor information */
857 GHashTable *cp_regs;
858 /* For marshalling (mostly coprocessor) register state between the
859 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
860 * we use these arrays.
861 */
862 /* List of register indexes managed via these arrays; (full KVM style
863 * 64 bit indexes, not CPRegInfo 32 bit indexes)
864 */
865 uint64_t *cpreg_indexes;
866 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
867 uint64_t *cpreg_values;
868 /* Length of the indexes, values, reset_values arrays */
869 int32_t cpreg_array_len;
870 /* These are used only for migration: incoming data arrives in
871 * these fields and is sanity checked in post_load before copying
872 * to the working data structures above.
873 */
874 uint64_t *cpreg_vmstate_indexes;
875 uint64_t *cpreg_vmstate_values;
876 int32_t cpreg_vmstate_array_len;
877
448d4d14 878 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 879 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
880 DynamicGDBXMLInfo dyn_m_systemreg_xml;
881 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 882
74e75564
PB
883 /* Timers used by the generic (architected) timer */
884 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
885 /*
886 * Timer used by the PMU. Its state is restored after migration by
887 * pmu_op_finish() - it does not need other handling during migration
888 */
889 QEMUTimer *pmu_timer;
74e75564
PB
890 /* GPIO outputs for generic timer */
891 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
892 /* GPIO output for GICv3 maintenance interrupt signal */
893 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
894 /* GPIO output for the PMU interrupt */
895 qemu_irq pmu_interrupt;
74e75564
PB
896
897 /* MemoryRegion to use for secure physical accesses */
898 MemoryRegion *secure_memory;
899
8bce44a2
RH
900 /* MemoryRegion to use for allocation tag accesses */
901 MemoryRegion *tag_memory;
902 MemoryRegion *secure_tag_memory;
903
181962fd
PM
904 /* For v8M, pointer to the IDAU interface provided by board/SoC */
905 Object *idau;
906
74e75564
PB
907 /* 'compatible' string for this CPU for Linux device trees */
908 const char *dtb_compatible;
909
910 /* PSCI version for this CPU
911 * Bits[31:16] = Major Version
912 * Bits[15:0] = Minor Version
913 */
914 uint32_t psci_version;
915
062ba099
AB
916 /* Current power state, access guarded by BQL */
917 ARMPSCIState power_state;
918
c25bd18a
PM
919 /* CPU has virtualization extension */
920 bool has_el2;
74e75564
PB
921 /* CPU has security extension */
922 bool has_el3;
5c0a3819
SZ
923 /* CPU has PMU (Performance Monitor Unit) */
924 bool has_pmu;
97a28b0e
PM
925 /* CPU has VFP */
926 bool has_vfp;
42bea956
CLG
927 /* CPU has 32 VFP registers */
928 bool has_vfp_d32;
97a28b0e
PM
929 /* CPU has Neon */
930 bool has_neon;
ea90db0a
PM
931 /* CPU has M-profile DSP extension */
932 bool has_dsp;
74e75564
PB
933
934 /* CPU has memory protection unit */
935 bool has_mpu;
936 /* PMSAv7 MPU number of supported regions */
937 uint32_t pmsav7_dregion;
761c4642
TR
938 /* PMSAv8 MPU number of supported hyp regions */
939 uint32_t pmsav8r_hdregion;
9901c576
PM
940 /* v8M SAU number of supported regions */
941 uint32_t sau_sregion;
74e75564
PB
942
943 /* PSCI conduit used to invoke PSCI methods
944 * 0 - disabled, 1 - smc, 2 - hvc
945 */
946 uint32_t psci_conduit;
947
38e2a77c
PM
948 /* For v8M, initial value of the Secure VTOR */
949 uint32_t init_svtor;
7cda2149
PM
950 /* For v8M, initial value of the Non-secure VTOR */
951 uint32_t init_nsvtor;
38e2a77c 952
74e75564
PB
953 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
954 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
955 */
956 uint32_t kvm_target;
957
958 /* KVM init features for this CPU */
959 uint32_t kvm_init_features[7];
960
e5ac4200
AJ
961 /* KVM CPU state */
962
963 /* KVM virtual time adjustment */
964 bool kvm_adjvtime;
965 bool kvm_vtime_dirty;
966 uint64_t kvm_vtime;
967
68970d1e
AJ
968 /* KVM steal time */
969 OnOffAuto kvm_steal_time;
970
74e75564
PB
971 /* Uniprocessor system with MP extensions */
972 bool mp_is_up;
973
c4487d76
PM
974 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
975 * and the probe failed (so we need to report the error in realize)
976 */
977 bool host_cpu_probe_failed;
978
f9a69711
AF
979 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
980 * register.
981 */
982 int32_t core_count;
983
74e75564
PB
984 /* The instance init functions for implementation-specific subclasses
985 * set these fields to specify the implementation-dependent values of
986 * various constant registers and reset values of non-constant
987 * registers.
988 * Some of these might become QOM properties eventually.
989 * Field names match the official register names as defined in the
990 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
991 * is used for reset values of non-constant registers; no reset_
992 * prefix means a constant register.
47576b94
RH
993 * Some of these registers are split out into a substructure that
994 * is shared with the translators to control the ISA.
1548a7b2
PM
995 *
996 * Note that if you add an ID register to the ARMISARegisters struct
997 * you need to also update the 32-bit and 64-bit versions of the
998 * kvm_arm_get_host_cpu_features() function to correctly populate the
999 * field by reading the value from the KVM vCPU.
74e75564 1000 */
47576b94
RH
1001 struct ARMISARegisters {
1002 uint32_t id_isar0;
1003 uint32_t id_isar1;
1004 uint32_t id_isar2;
1005 uint32_t id_isar3;
1006 uint32_t id_isar4;
1007 uint32_t id_isar5;
1008 uint32_t id_isar6;
10054016
PM
1009 uint32_t id_mmfr0;
1010 uint32_t id_mmfr1;
1011 uint32_t id_mmfr2;
1012 uint32_t id_mmfr3;
1013 uint32_t id_mmfr4;
32957aad 1014 uint32_t id_mmfr5;
8a130a7b
PM
1015 uint32_t id_pfr0;
1016 uint32_t id_pfr1;
1d51bc96 1017 uint32_t id_pfr2;
47576b94
RH
1018 uint32_t mvfr0;
1019 uint32_t mvfr1;
1020 uint32_t mvfr2;
a6179538 1021 uint32_t id_dfr0;
d22c5649 1022 uint32_t id_dfr1;
4426d361 1023 uint32_t dbgdidr;
09754ca8
PM
1024 uint32_t dbgdevid;
1025 uint32_t dbgdevid1;
47576b94
RH
1026 uint64_t id_aa64isar0;
1027 uint64_t id_aa64isar1;
1028 uint64_t id_aa64pfr0;
1029 uint64_t id_aa64pfr1;
3dc91ddb
PM
1030 uint64_t id_aa64mmfr0;
1031 uint64_t id_aa64mmfr1;
64761e10 1032 uint64_t id_aa64mmfr2;
2a609df8
PM
1033 uint64_t id_aa64dfr0;
1034 uint64_t id_aa64dfr1;
2dc10fa2 1035 uint64_t id_aa64zfr0;
414c54d5 1036 uint64_t id_aa64smfr0;
24526bb9 1037 uint64_t reset_pmcr_el0;
47576b94 1038 } isar;
e544f800 1039 uint64_t midr;
74e75564
PB
1040 uint32_t revidr;
1041 uint32_t reset_fpsid;
a5fd319a 1042 uint64_t ctr;
74e75564 1043 uint32_t reset_sctlr;
cad86737
AL
1044 uint64_t pmceid0;
1045 uint64_t pmceid1;
74e75564 1046 uint32_t id_afr0;
74e75564
PB
1047 uint64_t id_aa64afr0;
1048 uint64_t id_aa64afr1;
f6450bcb 1049 uint64_t clidr;
74e75564
PB
1050 uint64_t mp_affinity; /* MP ID without feature bits */
1051 /* The elements of this array are the CCSIDR values for each cache,
1052 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1053 */
957e6155 1054 uint64_t ccsidr[16];
74e75564
PB
1055 uint64_t reset_cbar;
1056 uint32_t reset_auxcr;
1057 bool reset_hivecs;
eb94284d
RH
1058
1059 /*
1060 * Intermediate values used during property parsing.
69b2265d 1061 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1062 */
1063 bool prop_pauth;
1064 bool prop_pauth_impdef;
69b2265d 1065 bool prop_lpa2;
eb94284d 1066
74e75564
PB
1067 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1068 uint32_t dcz_blocksize;
4a7319b7 1069 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1070
e45868a3
PM
1071 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1072 int gic_num_lrs; /* number of list registers */
1073 int gic_vpribits; /* number of virtual priority bits */
1074 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1075 int gic_pribits; /* number of physical priority bits */
e45868a3 1076
3a062d57
JB
1077 /* Whether the cfgend input is high (i.e. this CPU should reset into
1078 * big-endian mode). This setting isn't used directly: instead it modifies
1079 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1080 * architecture version.
1081 */
1082 bool cfgend;
1083
b5c53d1b 1084 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1085 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1086
1087 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1088
1089 /* Used to synchronize KVM and QEMU in-kernel device levels */
1090 uint8_t device_irq_level;
adf92eab
RH
1091
1092 /* Used to set the maximum vector length the cpu will support. */
1093 uint32_t sve_max_vq;
0df9142d 1094
b3d52804
RH
1095#ifdef CONFIG_USER_ONLY
1096 /* Used to set the default vector length at process start. */
1097 uint32_t sve_default_vq;
e74c0976 1098 uint32_t sme_default_vq;
b3d52804
RH
1099#endif
1100
7f9e25a6 1101 ARMVQMap sve_vq;
e74c0976 1102 ARMVQMap sme_vq;
7def8754
AJ
1103
1104 /* Generic timer counter frequency, in Hz */
1105 uint64_t gt_cntfrq_hz;
74e75564
PB
1106};
1107
7def8754
AJ
1108unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1109
51e5ef45
MAL
1110void arm_cpu_post_init(Object *obj);
1111
46de5913
IM
1112uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1113
74e75564 1114#ifndef CONFIG_USER_ONLY
8a9358cc 1115extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1116
1117void arm_cpu_do_interrupt(CPUState *cpu);
1118void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1119
74e75564
PB
1120hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1121 MemTxAttrs *attrs);
6d2d454a 1122#endif /* !CONFIG_USER_ONLY */
74e75564 1123
a010bdbe 1124int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1125int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1126
200bf5b7
AB
1127/* Returns the dynamically generated XML for the gdb stub.
1128 * Returns a pointer to the XML contents for the specified XML file or NULL
1129 * if the XML name doesn't match the predefined one.
1130 */
1131const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1132
74e75564 1133int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1134 int cpuid, DumpState *s);
74e75564 1135int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1136 int cpuid, DumpState *s);
74e75564
PB
1137
1138#ifdef TARGET_AARCH64
a010bdbe 1139int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1140int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1141void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1142void aarch64_sve_change_el(CPUARMState *env, int old_el,
1143 int new_el, bool el0_a64);
2a8af382 1144void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1145
1146/*
1147 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1148 * The byte at offset i from the start of the in-memory representation contains
1149 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1150 * lowest offsets are stored in the lowest memory addresses, then that nearly
1151 * matches QEMU's representation, which is to use an array of host-endian
1152 * uint64_t's, where the lower offsets are at the lower indices. To complete
1153 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1154 */
1155static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1156{
e03b5686 1157#if HOST_BIG_ENDIAN
538baab2
AJ
1158 int i;
1159
1160 for (i = 0; i < nr; ++i) {
1161 dst[i] = bswap64(src[i]);
1162 }
1163
1164 return dst;
1165#else
1166 return src;
1167#endif
1168}
1169
0ab5953b
RH
1170#else
1171static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1172static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1173 int n, bool a)
1174{ }
74e75564 1175#endif
778c3a06 1176
ce02049d
GB
1177void aarch64_sync_32_to_64(CPUARMState *env);
1178void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1179
ced31551
RH
1180int fp_exception_el(CPUARMState *env, int cur_el);
1181int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1182int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1183
1184/**
6ca54aa9 1185 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1186 * @env: CPUARMState
1187 * @el: exception level
6ca54aa9 1188 * @sm: streaming mode
5ef3cc56 1189 *
6ca54aa9 1190 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1191 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1192 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1193 */
6ca54aa9
RH
1194uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1195
1196/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1197uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1198
3926cc84
AG
1199static inline bool is_a64(CPUARMState *env)
1200{
1201 return env->aarch64;
1202}
1203
5d05b9d4
AL
1204/**
1205 * pmu_op_start/finish
ec7b4ce4
AF
1206 * @env: CPUARMState
1207 *
5d05b9d4
AL
1208 * Convert all PMU counters between their delta form (the typical mode when
1209 * they are enabled) and the guest-visible values. These two calls must
1210 * surround any action which might affect the counters.
ec7b4ce4 1211 */
5d05b9d4
AL
1212void pmu_op_start(CPUARMState *env);
1213void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1214
4e7beb0c
AL
1215/*
1216 * Called when a PMU counter is due to overflow
1217 */
1218void arm_pmu_timer_cb(void *opaque);
1219
033614c4
AL
1220/**
1221 * Functions to register as EL change hooks for PMU mode filtering
1222 */
1223void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1224void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1225
57a4a11b 1226/*
bf8d0969
AL
1227 * pmu_init
1228 * @cpu: ARMCPU
57a4a11b 1229 *
bf8d0969
AL
1230 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1231 * for the current configuration
57a4a11b 1232 */
bf8d0969 1233void pmu_init(ARMCPU *cpu);
57a4a11b 1234
76e3e1bc
PM
1235/* SCTLR bit meanings. Several bits have been reused in newer
1236 * versions of the architecture; in that case we define constants
1237 * for both old and new bit meanings. Code which tests against those
1238 * bits should probably check or otherwise arrange that the CPU
1239 * is the architectural version it expects.
1240 */
1241#define SCTLR_M (1U << 0)
1242#define SCTLR_A (1U << 1)
1243#define SCTLR_C (1U << 2)
1244#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1245#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1246#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1247#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1248#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1249#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1250#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1251#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1252#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1253#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1254#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1255#define SCTLR_ITD (1U << 7) /* v8 onward */
1256#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1257#define SCTLR_SED (1U << 8) /* v8 onward */
1258#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1259#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1260#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1261#define SCTLR_SW (1U << 10) /* v7 */
1262#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1263#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1264#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1265#define SCTLR_I (1U << 12)
b2af69d0
RH
1266#define SCTLR_V (1U << 13) /* AArch32 only */
1267#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1268#define SCTLR_RR (1U << 14) /* up to v7 */
1269#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1270#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1271#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1272#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1273#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1274#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1275#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1276#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1277#define SCTLR_nTWE (1U << 18) /* v8 onward */
1278#define SCTLR_WXN (1U << 19)
1279#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1280#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1281#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1282#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1283#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1284#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1285#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1286#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1287#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1288#define SCTLR_VE (1U << 24) /* up to v7 */
1289#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1290#define SCTLR_EE (1U << 25)
1291#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1292#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1293#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1294#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1295#define SCTLR_TRE (1U << 28) /* AArch32 only */
1296#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1297#define SCTLR_AFE (1U << 29) /* AArch32 only */
1298#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1299#define SCTLR_TE (1U << 30) /* AArch32 only */
1300#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1301#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1302#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1303#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1304#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1305#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1306#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1307#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1308#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1309#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1310#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1311#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1312#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1313#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1314#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1315#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1316#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1317#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1318#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1319#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1320#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1321#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1322#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1323#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1324#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1325
fab8ad39
RH
1326/* Bit definitions for CPACR (AArch32 only) */
1327FIELD(CPACR, CP10, 20, 2)
1328FIELD(CPACR, CP11, 22, 2)
1329FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1330FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1331FIELD(CPACR, ASEDIS, 31, 1)
1332
1333/* Bit definitions for CPACR_EL1 (AArch64 only) */
1334FIELD(CPACR_EL1, ZEN, 16, 2)
1335FIELD(CPACR_EL1, FPEN, 20, 2)
1336FIELD(CPACR_EL1, SMEN, 24, 2)
1337FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1338
1339/* Bit definitions for HCPTR (AArch32 only) */
1340FIELD(HCPTR, TCP10, 10, 1)
1341FIELD(HCPTR, TCP11, 11, 1)
1342FIELD(HCPTR, TASE, 15, 1)
1343FIELD(HCPTR, TTA, 20, 1)
1344FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1345FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1346
1347/* Bit definitions for CPTR_EL2 (AArch64 only) */
1348FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1349FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1350FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1351FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1352FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1353FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1354FIELD(CPTR_EL2, TTA, 28, 1)
1355FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1356FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1357
1358/* Bit definitions for CPTR_EL3 (AArch64 only) */
1359FIELD(CPTR_EL3, EZ, 8, 1)
1360FIELD(CPTR_EL3, TFP, 10, 1)
1361FIELD(CPTR_EL3, ESM, 12, 1)
1362FIELD(CPTR_EL3, TTA, 20, 1)
1363FIELD(CPTR_EL3, TAM, 30, 1)
1364FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1365
f190bd1d
PM
1366#define MDCR_MTPME (1U << 28)
1367#define MDCR_TDCC (1U << 27)
47b385da 1368#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1369#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1370#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1371#define MDCR_EPMAD (1U << 21)
1372#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1373#define MDCR_TTRF (1U << 19)
1374#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1375#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1376#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1377#define MDCR_SDD (1U << 16)
a8d64e73 1378#define MDCR_SPD (3U << 14)
187f678d
PM
1379#define MDCR_TDRA (1U << 11)
1380#define MDCR_TDOSA (1U << 10)
1381#define MDCR_TDA (1U << 9)
1382#define MDCR_TDE (1U << 8)
1383#define MDCR_HPME (1U << 7)
1384#define MDCR_TPM (1U << 6)
1385#define MDCR_TPMCR (1U << 5)
033614c4 1386#define MDCR_HPMN (0x1fU)
187f678d 1387
a8d64e73 1388/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1389#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1390 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1391 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1392
78dbbbe4
PM
1393#define CPSR_M (0x1fU)
1394#define CPSR_T (1U << 5)
1395#define CPSR_F (1U << 6)
1396#define CPSR_I (1U << 7)
1397#define CPSR_A (1U << 8)
1398#define CPSR_E (1U << 9)
1399#define CPSR_IT_2_7 (0xfc00U)
1400#define CPSR_GE (0xfU << 16)
4051e12c 1401#define CPSR_IL (1U << 20)
dc8b1853 1402#define CPSR_DIT (1U << 21)
220f508f 1403#define CPSR_PAN (1U << 22)
f2f68a78 1404#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1405#define CPSR_J (1U << 24)
1406#define CPSR_IT_0_1 (3U << 25)
1407#define CPSR_Q (1U << 27)
1408#define CPSR_V (1U << 28)
1409#define CPSR_C (1U << 29)
1410#define CPSR_Z (1U << 30)
1411#define CPSR_N (1U << 31)
9ee6e8bb 1412#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1413#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1414
1415#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1416#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1417 | CPSR_NZCV)
9ee6e8bb 1418/* Bits writable in user mode. */
268b1b3d 1419#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1420/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1421#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1422
987ab45e
PM
1423/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1424#define XPSR_EXCP 0x1ffU
1425#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1426#define XPSR_IT_2_7 CPSR_IT_2_7
1427#define XPSR_GE CPSR_GE
1428#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1429#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1430#define XPSR_IT_0_1 CPSR_IT_0_1
1431#define XPSR_Q CPSR_Q
1432#define XPSR_V CPSR_V
1433#define XPSR_C CPSR_C
1434#define XPSR_Z CPSR_Z
1435#define XPSR_N CPSR_N
1436#define XPSR_NZCV CPSR_NZCV
1437#define XPSR_IT CPSR_IT
1438
e389be16
FA
1439#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1440#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1441#define TTBCR_PD0 (1U << 4)
1442#define TTBCR_PD1 (1U << 5)
1443#define TTBCR_EPD0 (1U << 7)
1444#define TTBCR_IRGN0 (3U << 8)
1445#define TTBCR_ORGN0 (3U << 10)
1446#define TTBCR_SH0 (3U << 12)
1447#define TTBCR_T1SZ (3U << 16)
1448#define TTBCR_A1 (1U << 22)
1449#define TTBCR_EPD1 (1U << 23)
1450#define TTBCR_IRGN1 (3U << 24)
1451#define TTBCR_ORGN1 (3U << 26)
1452#define TTBCR_SH1 (1U << 28)
1453#define TTBCR_EAE (1U << 31)
1454
f04383e7
PM
1455FIELD(VTCR, T0SZ, 0, 6)
1456FIELD(VTCR, SL0, 6, 2)
1457FIELD(VTCR, IRGN0, 8, 2)
1458FIELD(VTCR, ORGN0, 10, 2)
1459FIELD(VTCR, SH0, 12, 2)
1460FIELD(VTCR, TG0, 14, 2)
1461FIELD(VTCR, PS, 16, 3)
1462FIELD(VTCR, VS, 19, 1)
1463FIELD(VTCR, HA, 21, 1)
1464FIELD(VTCR, HD, 22, 1)
1465FIELD(VTCR, HWU59, 25, 1)
1466FIELD(VTCR, HWU60, 26, 1)
1467FIELD(VTCR, HWU61, 27, 1)
1468FIELD(VTCR, HWU62, 28, 1)
1469FIELD(VTCR, NSW, 29, 1)
1470FIELD(VTCR, NSA, 30, 1)
1471FIELD(VTCR, DS, 32, 1)
1472FIELD(VTCR, SL2, 33, 1)
1473
d356312f
PM
1474/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1475 * Only these are valid when in AArch64 mode; in
1476 * AArch32 mode SPSRs are basically CPSR-format.
1477 */
f502cfc2 1478#define PSTATE_SP (1U)
d356312f
PM
1479#define PSTATE_M (0xFU)
1480#define PSTATE_nRW (1U << 4)
1481#define PSTATE_F (1U << 6)
1482#define PSTATE_I (1U << 7)
1483#define PSTATE_A (1U << 8)
1484#define PSTATE_D (1U << 9)
f6e52eaa 1485#define PSTATE_BTYPE (3U << 10)
f2f68a78 1486#define PSTATE_SSBS (1U << 12)
d356312f
PM
1487#define PSTATE_IL (1U << 20)
1488#define PSTATE_SS (1U << 21)
220f508f 1489#define PSTATE_PAN (1U << 22)
9eeb7a1c 1490#define PSTATE_UAO (1U << 23)
dc8b1853 1491#define PSTATE_DIT (1U << 24)
4b779ceb 1492#define PSTATE_TCO (1U << 25)
d356312f
PM
1493#define PSTATE_V (1U << 28)
1494#define PSTATE_C (1U << 29)
1495#define PSTATE_Z (1U << 30)
1496#define PSTATE_N (1U << 31)
1497#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1498#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1499#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1500/* Mode values for AArch64 */
1501#define PSTATE_MODE_EL3h 13
1502#define PSTATE_MODE_EL3t 12
1503#define PSTATE_MODE_EL2h 9
1504#define PSTATE_MODE_EL2t 8
1505#define PSTATE_MODE_EL1h 5
1506#define PSTATE_MODE_EL1t 4
1507#define PSTATE_MODE_EL0t 0
1508
c37e6ac9
RH
1509/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1510FIELD(SVCR, SM, 0, 1)
1511FIELD(SVCR, ZA, 1, 1)
1512
de561988
RH
1513/* Fields for SMCR_ELx. */
1514FIELD(SMCR, LEN, 0, 4)
1515FIELD(SMCR, FA64, 31, 1)
1516
de2db7ec
PM
1517/* Write a new value to v7m.exception, thus transitioning into or out
1518 * of Handler mode; this may result in a change of active stack pointer.
1519 */
1520void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1521
9e729b57
EI
1522/* Map EL and handler into a PSTATE_MODE. */
1523static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1524{
1525 return (el << 2) | handler;
1526}
1527
d356312f
PM
1528/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1529 * interprocessing, so we don't attempt to sync with the cpsr state used by
1530 * the 32 bit decoder.
1531 */
1532static inline uint32_t pstate_read(CPUARMState *env)
1533{
1534 int ZF;
1535
1536 ZF = (env->ZF == 0);
1537 return (env->NF & 0x80000000) | (ZF << 30)
1538 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1539 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1540}
1541
1542static inline void pstate_write(CPUARMState *env, uint32_t val)
1543{
1544 env->ZF = (~val) & PSTATE_Z;
1545 env->NF = val;
1546 env->CF = (val >> 29) & 1;
1547 env->VF = (val << 3) & 0x80000000;
4cc35614 1548 env->daif = val & PSTATE_DAIF;
f6e52eaa 1549 env->btype = (val >> 10) & 3;
d356312f
PM
1550 env->pstate = val & ~CACHED_PSTATE_BITS;
1551}
1552
b5ff1b31 1553/* Return the current CPSR value. */
2f4a40e5 1554uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1555
1556typedef enum CPSRWriteType {
1557 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1558 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1559 CPSRWriteRaw = 2,
1560 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1561 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1562} CPSRWriteType;
1563
e784807c
PM
1564/*
1565 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1566 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1567 * correspond to TB flags bits cached in the hflags, unless @write_type
1568 * is CPSRWriteRaw.
1569 */
50866ba5
PM
1570void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1571 CPSRWriteType write_type);
9ee6e8bb
PB
1572
1573/* Return the current xPSR value. */
1574static inline uint32_t xpsr_read(CPUARMState *env)
1575{
1576 int ZF;
6fbe23d5
PB
1577 ZF = (env->ZF == 0);
1578 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1579 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1580 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1581 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1582 | (env->GE << 16)
9ee6e8bb 1583 | env->v7m.exception;
b5ff1b31
FB
1584}
1585
9ee6e8bb
PB
1586/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1587static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1588{
987ab45e
PM
1589 if (mask & XPSR_NZCV) {
1590 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1591 env->NF = val;
9ee6e8bb
PB
1592 env->CF = (val >> 29) & 1;
1593 env->VF = (val << 3) & 0x80000000;
1594 }
987ab45e
PM
1595 if (mask & XPSR_Q) {
1596 env->QF = ((val & XPSR_Q) != 0);
1597 }
f1e2598c
PM
1598 if (mask & XPSR_GE) {
1599 env->GE = (val & XPSR_GE) >> 16;
1600 }
04c9c81b 1601#ifndef CONFIG_USER_ONLY
987ab45e
PM
1602 if (mask & XPSR_T) {
1603 env->thumb = ((val & XPSR_T) != 0);
1604 }
1605 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1606 env->condexec_bits &= ~3;
1607 env->condexec_bits |= (val >> 25) & 3;
1608 }
987ab45e 1609 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1610 env->condexec_bits &= 3;
1611 env->condexec_bits |= (val >> 8) & 0xfc;
1612 }
987ab45e 1613 if (mask & XPSR_EXCP) {
de2db7ec
PM
1614 /* Note that this only happens on exception exit */
1615 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1616 }
04c9c81b 1617#endif
9ee6e8bb
PB
1618}
1619
f149e3e8
EI
1620#define HCR_VM (1ULL << 0)
1621#define HCR_SWIO (1ULL << 1)
1622#define HCR_PTW (1ULL << 2)
1623#define HCR_FMO (1ULL << 3)
1624#define HCR_IMO (1ULL << 4)
1625#define HCR_AMO (1ULL << 5)
1626#define HCR_VF (1ULL << 6)
1627#define HCR_VI (1ULL << 7)
1628#define HCR_VSE (1ULL << 8)
1629#define HCR_FB (1ULL << 9)
1630#define HCR_BSU_MASK (3ULL << 10)
1631#define HCR_DC (1ULL << 12)
1632#define HCR_TWI (1ULL << 13)
1633#define HCR_TWE (1ULL << 14)
1634#define HCR_TID0 (1ULL << 15)
1635#define HCR_TID1 (1ULL << 16)
1636#define HCR_TID2 (1ULL << 17)
1637#define HCR_TID3 (1ULL << 18)
1638#define HCR_TSC (1ULL << 19)
1639#define HCR_TIDCP (1ULL << 20)
1640#define HCR_TACR (1ULL << 21)
1641#define HCR_TSW (1ULL << 22)
099bf53b 1642#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1643#define HCR_TPU (1ULL << 24)
1644#define HCR_TTLB (1ULL << 25)
1645#define HCR_TVM (1ULL << 26)
1646#define HCR_TGE (1ULL << 27)
1647#define HCR_TDZ (1ULL << 28)
1648#define HCR_HCD (1ULL << 29)
1649#define HCR_TRVM (1ULL << 30)
1650#define HCR_RW (1ULL << 31)
1651#define HCR_CD (1ULL << 32)
1652#define HCR_ID (1ULL << 33)
ac656b16 1653#define HCR_E2H (1ULL << 34)
099bf53b
RH
1654#define HCR_TLOR (1ULL << 35)
1655#define HCR_TERR (1ULL << 36)
1656#define HCR_TEA (1ULL << 37)
1657#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1658/* RES0 bit 39 */
099bf53b
RH
1659#define HCR_APK (1ULL << 40)
1660#define HCR_API (1ULL << 41)
1661#define HCR_NV (1ULL << 42)
1662#define HCR_NV1 (1ULL << 43)
1663#define HCR_AT (1ULL << 44)
1664#define HCR_NV2 (1ULL << 45)
1665#define HCR_FWB (1ULL << 46)
1666#define HCR_FIEN (1ULL << 47)
e0a38bb3 1667/* RES0 bit 48 */
099bf53b
RH
1668#define HCR_TID4 (1ULL << 49)
1669#define HCR_TICAB (1ULL << 50)
e0a38bb3 1670#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1671#define HCR_TOCU (1ULL << 52)
e0a38bb3 1672#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1673#define HCR_TTLBIS (1ULL << 54)
1674#define HCR_TTLBOS (1ULL << 55)
1675#define HCR_ATA (1ULL << 56)
1676#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1677#define HCR_TID5 (1ULL << 58)
1678#define HCR_TWEDEN (1ULL << 59)
1679#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1680
5814d587
RH
1681#define HCRX_ENAS0 (1ULL << 0)
1682#define HCRX_ENALS (1ULL << 1)
1683#define HCRX_ENASR (1ULL << 2)
1684#define HCRX_FNXS (1ULL << 3)
1685#define HCRX_FGTNXS (1ULL << 4)
1686#define HCRX_SMPME (1ULL << 5)
1687#define HCRX_TALLINT (1ULL << 6)
1688#define HCRX_VINMI (1ULL << 7)
1689#define HCRX_VFNMI (1ULL << 8)
1690#define HCRX_CMOW (1ULL << 9)
1691#define HCRX_MCE2 (1ULL << 10)
1692#define HCRX_MSCEN (1ULL << 11)
1693
9861248f
RDC
1694#define HPFAR_NS (1ULL << 63)
1695
06f2adcc
JF
1696#define SCR_NS (1ULL << 0)
1697#define SCR_IRQ (1ULL << 1)
1698#define SCR_FIQ (1ULL << 2)
1699#define SCR_EA (1ULL << 3)
1700#define SCR_FW (1ULL << 4)
1701#define SCR_AW (1ULL << 5)
1702#define SCR_NET (1ULL << 6)
1703#define SCR_SMD (1ULL << 7)
1704#define SCR_HCE (1ULL << 8)
1705#define SCR_SIF (1ULL << 9)
1706#define SCR_RW (1ULL << 10)
1707#define SCR_ST (1ULL << 11)
1708#define SCR_TWI (1ULL << 12)
1709#define SCR_TWE (1ULL << 13)
1710#define SCR_TLOR (1ULL << 14)
1711#define SCR_TERR (1ULL << 15)
1712#define SCR_APK (1ULL << 16)
1713#define SCR_API (1ULL << 17)
1714#define SCR_EEL2 (1ULL << 18)
1715#define SCR_EASE (1ULL << 19)
1716#define SCR_NMEA (1ULL << 20)
1717#define SCR_FIEN (1ULL << 21)
1718#define SCR_ENSCXT (1ULL << 25)
1719#define SCR_ATA (1ULL << 26)
1720#define SCR_FGTEN (1ULL << 27)
1721#define SCR_ECVEN (1ULL << 28)
1722#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1723#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1724#define SCR_TME (1ULL << 34)
1725#define SCR_AMVOFFEN (1ULL << 35)
1726#define SCR_ENAS0 (1ULL << 36)
1727#define SCR_ADEN (1ULL << 37)
1728#define SCR_HXEN (1ULL << 38)
1729#define SCR_TRNDR (1ULL << 40)
1730#define SCR_ENTP2 (1ULL << 41)
1731#define SCR_GPF (1ULL << 48)
64e0e2de 1732
cc7613bf 1733#define HSTR_TTEE (1 << 16)
8e228c9e 1734#define HSTR_TJDBX (1 << 17)
cc7613bf 1735
01653295
PM
1736/* Return the current FPSCR value. */
1737uint32_t vfp_get_fpscr(CPUARMState *env);
1738void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1739
d81ce0ef
AB
1740/* FPCR, Floating Point Control Register
1741 * FPSR, Floating Poiht Status Register
1742 *
1743 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1744 * FPCR and FPSR. However since they still use non-overlapping bits
1745 * we store the underlying state in fpscr and just mask on read/write.
1746 */
1747#define FPSR_MASK 0xf800009f
0b62159b 1748#define FPCR_MASK 0x07ff9f00
d81ce0ef 1749
a15945d9
PM
1750#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1751#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1752#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1753#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1754#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1755#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1756#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1757#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1758#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1759#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1760#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1761#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1762#define FPCR_V (1 << 28) /* FP overflow flag */
1763#define FPCR_C (1 << 29) /* FP carry flag */
1764#define FPCR_Z (1 << 30) /* FP zero flag */
1765#define FPCR_N (1 << 31) /* FP negative flag */
1766
99c7834f
PM
1767#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1768#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1769#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1770
9542c30b
PM
1771#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1772#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1773
f903fa22
PM
1774static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1775{
1776 return vfp_get_fpscr(env) & FPSR_MASK;
1777}
1778
1779static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1780{
1781 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1782 vfp_set_fpscr(env, new_fpscr);
1783}
1784
1785static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1786{
1787 return vfp_get_fpscr(env) & FPCR_MASK;
1788}
1789
1790static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1791{
1792 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1793 vfp_set_fpscr(env, new_fpscr);
1794}
1795
b5ff1b31
FB
1796enum arm_cpu_mode {
1797 ARM_CPU_MODE_USR = 0x10,
1798 ARM_CPU_MODE_FIQ = 0x11,
1799 ARM_CPU_MODE_IRQ = 0x12,
1800 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1801 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1802 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1803 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1804 ARM_CPU_MODE_UND = 0x1b,
1805 ARM_CPU_MODE_SYS = 0x1f
1806};
1807
40f137e1
PB
1808/* VFP system registers. */
1809#define ARM_VFP_FPSID 0
1810#define ARM_VFP_FPSCR 1
a50c0f51 1811#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1812#define ARM_VFP_MVFR1 6
1813#define ARM_VFP_MVFR0 7
40f137e1
PB
1814#define ARM_VFP_FPEXC 8
1815#define ARM_VFP_FPINST 9
1816#define ARM_VFP_FPINST2 10
9542c30b
PM
1817/* These ones are M-profile only */
1818#define ARM_VFP_FPSCR_NZCVQC 2
1819#define ARM_VFP_VPR 12
1820#define ARM_VFP_P0 13
1821#define ARM_VFP_FPCXT_NS 14
1822#define ARM_VFP_FPCXT_S 15
40f137e1 1823
32a290b8
PM
1824/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1825#define QEMU_VFP_FPSCR_NZCV 0xffff
1826
18c9b560 1827/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1828#define ARM_IWMMXT_wCID 0
1829#define ARM_IWMMXT_wCon 1
1830#define ARM_IWMMXT_wCSSF 2
1831#define ARM_IWMMXT_wCASF 3
1832#define ARM_IWMMXT_wCGR0 8
1833#define ARM_IWMMXT_wCGR1 9
1834#define ARM_IWMMXT_wCGR2 10
1835#define ARM_IWMMXT_wCGR3 11
18c9b560 1836
2c4da50d
PM
1837/* V7M CCR bits */
1838FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1839FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1840FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1841FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1842FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1843FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1844FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1845FIELD(V7M_CCR, DC, 16, 1)
1846FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1847FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1848FIELD(V7M_CCR, LOB, 19, 1)
1849FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1850
24ac0fb1
PM
1851/* V7M SCR bits */
1852FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1853FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1854FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1855FIELD(V7M_SCR, SEVONPEND, 4, 1)
1856
3b2e9344
PM
1857/* V7M AIRCR bits */
1858FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1859FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1860FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1861FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1862FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1863FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1864FIELD(V7M_AIRCR, PRIS, 14, 1)
1865FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1866FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1867
2c4da50d
PM
1868/* V7M CFSR bits for MMFSR */
1869FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1870FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1871FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1872FIELD(V7M_CFSR, MSTKERR, 4, 1)
1873FIELD(V7M_CFSR, MLSPERR, 5, 1)
1874FIELD(V7M_CFSR, MMARVALID, 7, 1)
1875
1876/* V7M CFSR bits for BFSR */
1877FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1878FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1879FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1880FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1881FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1882FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1883FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1884
1885/* V7M CFSR bits for UFSR */
1886FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1887FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1888FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1889FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1890FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1891FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1892FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1893
334e8dad
PM
1894/* V7M CFSR bit masks covering all of the subregister bits */
1895FIELD(V7M_CFSR, MMFSR, 0, 8)
1896FIELD(V7M_CFSR, BFSR, 8, 8)
1897FIELD(V7M_CFSR, UFSR, 16, 16)
1898
2c4da50d
PM
1899/* V7M HFSR bits */
1900FIELD(V7M_HFSR, VECTTBL, 1, 1)
1901FIELD(V7M_HFSR, FORCED, 30, 1)
1902FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1903
1904/* V7M DFSR bits */
1905FIELD(V7M_DFSR, HALTED, 0, 1)
1906FIELD(V7M_DFSR, BKPT, 1, 1)
1907FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1908FIELD(V7M_DFSR, VCATCH, 3, 1)
1909FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1910
bed079da
PM
1911/* V7M SFSR bits */
1912FIELD(V7M_SFSR, INVEP, 0, 1)
1913FIELD(V7M_SFSR, INVIS, 1, 1)
1914FIELD(V7M_SFSR, INVER, 2, 1)
1915FIELD(V7M_SFSR, AUVIOL, 3, 1)
1916FIELD(V7M_SFSR, INVTRAN, 4, 1)
1917FIELD(V7M_SFSR, LSPERR, 5, 1)
1918FIELD(V7M_SFSR, SFARVALID, 6, 1)
1919FIELD(V7M_SFSR, LSERR, 7, 1)
1920
29c483a5
MD
1921/* v7M MPU_CTRL bits */
1922FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1923FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1924FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1925
43bbce7f
PM
1926/* v7M CLIDR bits */
1927FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1928FIELD(V7M_CLIDR, LOUIS, 21, 3)
1929FIELD(V7M_CLIDR, LOC, 24, 3)
1930FIELD(V7M_CLIDR, LOUU, 27, 3)
1931FIELD(V7M_CLIDR, ICB, 30, 2)
1932
1933FIELD(V7M_CSSELR, IND, 0, 1)
1934FIELD(V7M_CSSELR, LEVEL, 1, 3)
1935/* We use the combination of InD and Level to index into cpu->ccsidr[];
1936 * define a mask for this and check that it doesn't permit running off
1937 * the end of the array.
1938 */
1939FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1940
1941/* v7M FPCCR bits */
1942FIELD(V7M_FPCCR, LSPACT, 0, 1)
1943FIELD(V7M_FPCCR, USER, 1, 1)
1944FIELD(V7M_FPCCR, S, 2, 1)
1945FIELD(V7M_FPCCR, THREAD, 3, 1)
1946FIELD(V7M_FPCCR, HFRDY, 4, 1)
1947FIELD(V7M_FPCCR, MMRDY, 5, 1)
1948FIELD(V7M_FPCCR, BFRDY, 6, 1)
1949FIELD(V7M_FPCCR, SFRDY, 7, 1)
1950FIELD(V7M_FPCCR, MONRDY, 8, 1)
1951FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1952FIELD(V7M_FPCCR, UFRDY, 10, 1)
1953FIELD(V7M_FPCCR, RES0, 11, 15)
1954FIELD(V7M_FPCCR, TS, 26, 1)
1955FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1956FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1957FIELD(V7M_FPCCR, LSPENS, 29, 1)
1958FIELD(V7M_FPCCR, LSPEN, 30, 1)
1959FIELD(V7M_FPCCR, ASPEN, 31, 1)
1960/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1961#define R_V7M_FPCCR_BANKED_MASK \
1962 (R_V7M_FPCCR_LSPACT_MASK | \
1963 R_V7M_FPCCR_USER_MASK | \
1964 R_V7M_FPCCR_THREAD_MASK | \
1965 R_V7M_FPCCR_MMRDY_MASK | \
1966 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1967 R_V7M_FPCCR_UFRDY_MASK | \
1968 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1969
7c3d47da
PM
1970/* v7M VPR bits */
1971FIELD(V7M_VPR, P0, 0, 16)
1972FIELD(V7M_VPR, MASK01, 16, 4)
1973FIELD(V7M_VPR, MASK23, 20, 4)
1974
a62e62af
RH
1975/*
1976 * System register ID fields.
1977 */
2a14526a
LL
1978FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1979FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1980FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1981FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1982FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1983FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1984FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1985FIELD(CLIDR_EL1, LOUIS, 21, 3)
1986FIELD(CLIDR_EL1, LOC, 24, 3)
1987FIELD(CLIDR_EL1, LOUU, 27, 3)
1988FIELD(CLIDR_EL1, ICB, 30, 3)
1989
1990/* When FEAT_CCIDX is implemented */
1991FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1992FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1993FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1994
1995/* When FEAT_CCIDX is not implemented */
1996FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1997FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1998FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1999
2000FIELD(CTR_EL0, IMINLINE, 0, 4)
2001FIELD(CTR_EL0, L1IP, 14, 2)
2002FIELD(CTR_EL0, DMINLINE, 16, 4)
2003FIELD(CTR_EL0, ERG, 20, 4)
2004FIELD(CTR_EL0, CWG, 24, 4)
2005FIELD(CTR_EL0, IDC, 28, 1)
2006FIELD(CTR_EL0, DIC, 29, 1)
2007FIELD(CTR_EL0, TMINLINE, 32, 6)
2008
2bd5f41c
AB
2009FIELD(MIDR_EL1, REVISION, 0, 4)
2010FIELD(MIDR_EL1, PARTNUM, 4, 12)
2011FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2012FIELD(MIDR_EL1, VARIANT, 20, 4)
2013FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2014
a62e62af
RH
2015FIELD(ID_ISAR0, SWAP, 0, 4)
2016FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2017FIELD(ID_ISAR0, BITFIELD, 8, 4)
2018FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2019FIELD(ID_ISAR0, COPROC, 16, 4)
2020FIELD(ID_ISAR0, DEBUG, 20, 4)
2021FIELD(ID_ISAR0, DIVIDE, 24, 4)
2022
2023FIELD(ID_ISAR1, ENDIAN, 0, 4)
2024FIELD(ID_ISAR1, EXCEPT, 4, 4)
2025FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2026FIELD(ID_ISAR1, EXTEND, 12, 4)
2027FIELD(ID_ISAR1, IFTHEN, 16, 4)
2028FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2029FIELD(ID_ISAR1, INTERWORK, 24, 4)
2030FIELD(ID_ISAR1, JAZELLE, 28, 4)
2031
2032FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2033FIELD(ID_ISAR2, MEMHINT, 4, 4)
2034FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2035FIELD(ID_ISAR2, MULT, 12, 4)
2036FIELD(ID_ISAR2, MULTS, 16, 4)
2037FIELD(ID_ISAR2, MULTU, 20, 4)
2038FIELD(ID_ISAR2, PSR_AR, 24, 4)
2039FIELD(ID_ISAR2, REVERSAL, 28, 4)
2040
2041FIELD(ID_ISAR3, SATURATE, 0, 4)
2042FIELD(ID_ISAR3, SIMD, 4, 4)
2043FIELD(ID_ISAR3, SVC, 8, 4)
2044FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2045FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2046FIELD(ID_ISAR3, T32COPY, 20, 4)
2047FIELD(ID_ISAR3, TRUENOP, 24, 4)
2048FIELD(ID_ISAR3, T32EE, 28, 4)
2049
2050FIELD(ID_ISAR4, UNPRIV, 0, 4)
2051FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2052FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2053FIELD(ID_ISAR4, SMC, 12, 4)
2054FIELD(ID_ISAR4, BARRIER, 16, 4)
2055FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2056FIELD(ID_ISAR4, PSR_M, 24, 4)
2057FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2058
2059FIELD(ID_ISAR5, SEVL, 0, 4)
2060FIELD(ID_ISAR5, AES, 4, 4)
2061FIELD(ID_ISAR5, SHA1, 8, 4)
2062FIELD(ID_ISAR5, SHA2, 12, 4)
2063FIELD(ID_ISAR5, CRC32, 16, 4)
2064FIELD(ID_ISAR5, RDM, 24, 4)
2065FIELD(ID_ISAR5, VCMA, 28, 4)
2066
2067FIELD(ID_ISAR6, JSCVT, 0, 4)
2068FIELD(ID_ISAR6, DP, 4, 4)
2069FIELD(ID_ISAR6, FHM, 8, 4)
2070FIELD(ID_ISAR6, SB, 12, 4)
2071FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2072FIELD(ID_ISAR6, BF16, 20, 4)
2073FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2074
0ae0326b
PM
2075FIELD(ID_MMFR0, VMSA, 0, 4)
2076FIELD(ID_MMFR0, PMSA, 4, 4)
2077FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2078FIELD(ID_MMFR0, SHARELVL, 12, 4)
2079FIELD(ID_MMFR0, TCM, 16, 4)
2080FIELD(ID_MMFR0, AUXREG, 20, 4)
2081FIELD(ID_MMFR0, FCSE, 24, 4)
2082FIELD(ID_MMFR0, INNERSHR, 28, 4)
2083
bd78b6be
LL
2084FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2085FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2086FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2087FIELD(ID_MMFR1, L1UNISW, 12, 4)
2088FIELD(ID_MMFR1, L1HVD, 16, 4)
2089FIELD(ID_MMFR1, L1UNI, 20, 4)
2090FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2091FIELD(ID_MMFR1, BPRED, 28, 4)
2092
2093FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2094FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2095FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2096FIELD(ID_MMFR2, HVDTLB, 12, 4)
2097FIELD(ID_MMFR2, UNITLB, 16, 4)
2098FIELD(ID_MMFR2, MEMBARR, 20, 4)
2099FIELD(ID_MMFR2, WFISTALL, 24, 4)
2100FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2101
3d6ad6bb
RH
2102FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2103FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2104FIELD(ID_MMFR3, BPMAINT, 8, 4)
2105FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2106FIELD(ID_MMFR3, PAN, 16, 4)
2107FIELD(ID_MMFR3, COHWALK, 20, 4)
2108FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2109FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2110
ab638a32
RH
2111FIELD(ID_MMFR4, SPECSEI, 0, 4)
2112FIELD(ID_MMFR4, AC2, 4, 4)
2113FIELD(ID_MMFR4, XNX, 8, 4)
2114FIELD(ID_MMFR4, CNP, 12, 4)
2115FIELD(ID_MMFR4, HPDS, 16, 4)
2116FIELD(ID_MMFR4, LSM, 20, 4)
2117FIELD(ID_MMFR4, CCIDX, 24, 4)
2118FIELD(ID_MMFR4, EVT, 28, 4)
2119
bd78b6be 2120FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2121FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2122
46f4976f
PM
2123FIELD(ID_PFR0, STATE0, 0, 4)
2124FIELD(ID_PFR0, STATE1, 4, 4)
2125FIELD(ID_PFR0, STATE2, 8, 4)
2126FIELD(ID_PFR0, STATE3, 12, 4)
2127FIELD(ID_PFR0, CSV2, 16, 4)
2128FIELD(ID_PFR0, AMU, 20, 4)
2129FIELD(ID_PFR0, DIT, 24, 4)
2130FIELD(ID_PFR0, RAS, 28, 4)
2131
dfc523a8
PM
2132FIELD(ID_PFR1, PROGMOD, 0, 4)
2133FIELD(ID_PFR1, SECURITY, 4, 4)
2134FIELD(ID_PFR1, MPROGMOD, 8, 4)
2135FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2136FIELD(ID_PFR1, GENTIMER, 16, 4)
2137FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2138FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2139FIELD(ID_PFR1, GIC, 28, 4)
2140
bd78b6be
LL
2141FIELD(ID_PFR2, CSV3, 0, 4)
2142FIELD(ID_PFR2, SSBS, 4, 4)
2143FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2144
a62e62af
RH
2145FIELD(ID_AA64ISAR0, AES, 4, 4)
2146FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2147FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2148FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2149FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2150FIELD(ID_AA64ISAR0, RDM, 28, 4)
2151FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2152FIELD(ID_AA64ISAR0, SM3, 36, 4)
2153FIELD(ID_AA64ISAR0, SM4, 40, 4)
2154FIELD(ID_AA64ISAR0, DP, 44, 4)
2155FIELD(ID_AA64ISAR0, FHM, 48, 4)
2156FIELD(ID_AA64ISAR0, TS, 52, 4)
2157FIELD(ID_AA64ISAR0, TLB, 56, 4)
2158FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2159
2160FIELD(ID_AA64ISAR1, DPB, 0, 4)
2161FIELD(ID_AA64ISAR1, APA, 4, 4)
2162FIELD(ID_AA64ISAR1, API, 8, 4)
2163FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2164FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2165FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2166FIELD(ID_AA64ISAR1, GPA, 24, 4)
2167FIELD(ID_AA64ISAR1, GPI, 28, 4)
2168FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2169FIELD(ID_AA64ISAR1, SB, 36, 4)
2170FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2171FIELD(ID_AA64ISAR1, BF16, 44, 4)
2172FIELD(ID_AA64ISAR1, DGH, 48, 4)
2173FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2174FIELD(ID_AA64ISAR1, XS, 56, 4)
2175FIELD(ID_AA64ISAR1, LS64, 60, 4)
2176
2177FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2178FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2179FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2180FIELD(ID_AA64ISAR2, APA3, 12, 4)
2181FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2182FIELD(ID_AA64ISAR2, BC, 20, 4)
2183FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2184
cd208a1c
RH
2185FIELD(ID_AA64PFR0, EL0, 0, 4)
2186FIELD(ID_AA64PFR0, EL1, 4, 4)
2187FIELD(ID_AA64PFR0, EL2, 8, 4)
2188FIELD(ID_AA64PFR0, EL3, 12, 4)
2189FIELD(ID_AA64PFR0, FP, 16, 4)
2190FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2191FIELD(ID_AA64PFR0, GIC, 24, 4)
2192FIELD(ID_AA64PFR0, RAS, 28, 4)
2193FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2194FIELD(ID_AA64PFR0, SEL2, 36, 4)
2195FIELD(ID_AA64PFR0, MPAM, 40, 4)
2196FIELD(ID_AA64PFR0, AMU, 44, 4)
2197FIELD(ID_AA64PFR0, DIT, 48, 4)
2198FIELD(ID_AA64PFR0, CSV2, 56, 4)
2199FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2200
be53b6f4 2201FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2202FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2203FIELD(ID_AA64PFR1, MTE, 8, 4)
2204FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2205FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2206FIELD(ID_AA64PFR1, SME, 24, 4)
2207FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2208FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2209FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2210
3dc91ddb
PM
2211FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2212FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2213FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2214FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2215FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2216FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2217FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2218FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2219FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2220FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2221FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2222FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2223FIELD(ID_AA64MMFR0, FGT, 56, 4)
2224FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2225
2226FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2227FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2228FIELD(ID_AA64MMFR1, VH, 8, 4)
2229FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2230FIELD(ID_AA64MMFR1, LO, 16, 4)
2231FIELD(ID_AA64MMFR1, PAN, 20, 4)
2232FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2233FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2234FIELD(ID_AA64MMFR1, TWED, 32, 4)
2235FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2236FIELD(ID_AA64MMFR1, HCX, 40, 4)
2237FIELD(ID_AA64MMFR1, AFP, 44, 4)
2238FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2239FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2240FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2241
64761e10
RH
2242FIELD(ID_AA64MMFR2, CNP, 0, 4)
2243FIELD(ID_AA64MMFR2, UAO, 4, 4)
2244FIELD(ID_AA64MMFR2, LSM, 8, 4)
2245FIELD(ID_AA64MMFR2, IESB, 12, 4)
2246FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2247FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2248FIELD(ID_AA64MMFR2, NV, 24, 4)
2249FIELD(ID_AA64MMFR2, ST, 28, 4)
2250FIELD(ID_AA64MMFR2, AT, 32, 4)
2251FIELD(ID_AA64MMFR2, IDS, 36, 4)
2252FIELD(ID_AA64MMFR2, FWB, 40, 4)
2253FIELD(ID_AA64MMFR2, TTL, 48, 4)
2254FIELD(ID_AA64MMFR2, BBM, 52, 4)
2255FIELD(ID_AA64MMFR2, EVT, 56, 4)
2256FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2257
ceb2744b
PM
2258FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2259FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2260FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2261FIELD(ID_AA64DFR0, BRPS, 12, 4)
2262FIELD(ID_AA64DFR0, WRPS, 20, 4)
2263FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2264FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2265FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2266FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2267FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2268FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2269FIELD(ID_AA64DFR0, BRBE, 52, 4)
2270FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2271
2dc10fa2
RH
2272FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2273FIELD(ID_AA64ZFR0, AES, 4, 4)
2274FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2275FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2276FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2277FIELD(ID_AA64ZFR0, SM4, 40, 4)
2278FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2279FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2280FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2281
414c54d5
RH
2282FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2283FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2284FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2285FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2286FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2287FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2288FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2289FIELD(ID_AA64SMFR0, FA64, 63, 1)
2290
beceb99c
AL
2291FIELD(ID_DFR0, COPDBG, 0, 4)
2292FIELD(ID_DFR0, COPSDBG, 4, 4)
2293FIELD(ID_DFR0, MMAPDBG, 8, 4)
2294FIELD(ID_DFR0, COPTRC, 12, 4)
2295FIELD(ID_DFR0, MMAPTRC, 16, 4)
2296FIELD(ID_DFR0, MPROFDBG, 20, 4)
2297FIELD(ID_DFR0, PERFMON, 24, 4)
2298FIELD(ID_DFR0, TRACEFILT, 28, 4)
2299
bd78b6be 2300FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2301FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2302
88ce6c6e
PM
2303FIELD(DBGDIDR, SE_IMP, 12, 1)
2304FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2305FIELD(DBGDIDR, VERSION, 16, 4)
2306FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2307FIELD(DBGDIDR, BRPS, 24, 4)
2308FIELD(DBGDIDR, WRPS, 28, 4)
2309
f94a6df5
PM
2310FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2311FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2312FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2313FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2314FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2315FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2316FIELD(DBGDEVID, AUXREGS, 24, 4)
2317FIELD(DBGDEVID, CIDMASK, 28, 4)
2318
602f6e42
PM
2319FIELD(MVFR0, SIMDREG, 0, 4)
2320FIELD(MVFR0, FPSP, 4, 4)
2321FIELD(MVFR0, FPDP, 8, 4)
2322FIELD(MVFR0, FPTRAP, 12, 4)
2323FIELD(MVFR0, FPDIVIDE, 16, 4)
2324FIELD(MVFR0, FPSQRT, 20, 4)
2325FIELD(MVFR0, FPSHVEC, 24, 4)
2326FIELD(MVFR0, FPROUND, 28, 4)
2327
2328FIELD(MVFR1, FPFTZ, 0, 4)
2329FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2330FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2331FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2332FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2333FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2334FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2335FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2336FIELD(MVFR1, FPHP, 24, 4)
2337FIELD(MVFR1, SIMDFMAC, 28, 4)
2338
2339FIELD(MVFR2, SIMDMISC, 0, 4)
2340FIELD(MVFR2, FPMISC, 4, 4)
2341
43bbce7f
PM
2342QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2343
ce854d7c
BC
2344/* If adding a feature bit which corresponds to a Linux ELF
2345 * HWCAP bit, remember to update the feature-bit-to-hwcap
2346 * mapping in linux-user/elfload.c:get_elf_hwcap().
2347 */
40f137e1 2348enum arm_features {
c1713132
AZ
2349 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2350 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2351 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2352 ARM_FEATURE_V6,
2353 ARM_FEATURE_V6K,
2354 ARM_FEATURE_V7,
2355 ARM_FEATURE_THUMB2,
452a0955 2356 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2357 ARM_FEATURE_NEON,
9ee6e8bb 2358 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2359 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2360 ARM_FEATURE_THUMB2EE,
be5e7a76 2361 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2362 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2363 ARM_FEATURE_V4T,
2364 ARM_FEATURE_V5,
5bc95aa2 2365 ARM_FEATURE_STRONGARM,
906879a9 2366 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2367 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2368 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2369 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2370 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2371 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2372 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2373 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2374 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2375 ARM_FEATURE_V8,
3926cc84 2376 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2377 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2378 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2379 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2380 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2381 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2382 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2383 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2384 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2385 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2386 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2387};
2388
2389static inline int arm_feature(CPUARMState *env, int feature)
2390{
918f5dca 2391 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2392}
2393
0df9142d
AJ
2394void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2395
19e0fefa 2396#if !defined(CONFIG_USER_ONLY)
fcc7404e
RH
2397/*
2398 * Return true if exception levels below EL3 are in secure state,
19e0fefa
FA
2399 * or would be following an exception return to that level.
2400 * Unlike arm_is_secure() (which is always a question about the
2401 * _current_ state of the CPU) this doesn't care about the current
2402 * EL or mode.
2403 */
2404static inline bool arm_is_secure_below_el3(CPUARMState *env)
2405{
fcc7404e 2406 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2407 if (arm_feature(env, ARM_FEATURE_EL3)) {
2408 return !(env->cp15.scr_el3 & SCR_NS);
2409 } else {
6b7f0b61 2410 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2411 * defined, in which case QEMU defaults to non-secure.
2412 */
2413 return false;
2414 }
2415}
2416
71205876
PM
2417/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2418static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2419{
fcc7404e 2420 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2421 if (arm_feature(env, ARM_FEATURE_EL3)) {
2422 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2423 /* CPU currently in AArch64 state and EL3 */
2424 return true;
2425 } else if (!is_a64(env) &&
2426 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2427 /* CPU currently in AArch32 state and monitor mode */
2428 return true;
2429 }
2430 }
71205876
PM
2431 return false;
2432}
2433
2434/* Return true if the processor is in secure state */
2435static inline bool arm_is_secure(CPUARMState *env)
2436{
9094f955
RH
2437 if (arm_feature(env, ARM_FEATURE_M)) {
2438 return env->v7m.secure;
2439 }
71205876
PM
2440 if (arm_is_el3_or_mon(env)) {
2441 return true;
2442 }
19e0fefa
FA
2443 return arm_is_secure_below_el3(env);
2444}
2445
f3ee5160
RDC
2446/*
2447 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2448 * This corresponds to the pseudocode EL2Enabled()
2449 */
b74c0443
RH
2450static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2451{
2452 return arm_feature(env, ARM_FEATURE_EL2)
2453 && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2454}
2455
f3ee5160
RDC
2456static inline bool arm_is_el2_enabled(CPUARMState *env)
2457{
b74c0443 2458 return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
f3ee5160
RDC
2459}
2460
19e0fefa
FA
2461#else
2462static inline bool arm_is_secure_below_el3(CPUARMState *env)
2463{
2464 return false;
2465}
2466
2467static inline bool arm_is_secure(CPUARMState *env)
2468{
2469 return false;
2470}
f3ee5160 2471
b74c0443
RH
2472static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2473{
2474 return false;
2475}
2476
f3ee5160
RDC
2477static inline bool arm_is_el2_enabled(CPUARMState *env)
2478{
2479 return false;
2480}
19e0fefa
FA
2481#endif
2482
f7778444
RH
2483/**
2484 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2485 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2486 * "for all purposes other than a direct read or write access of HCR_EL2."
2487 * Not included here is HCR_RW.
2488 */
b74c0443 2489uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
f7778444 2490uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2491uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2492
1f79ee32
PM
2493/* Return true if the specified exception level is running in AArch64 state. */
2494static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2495{
446c81ab
PM
2496 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2497 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2498 */
446c81ab
PM
2499 assert(el >= 1 && el <= 3);
2500 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2501
446c81ab
PM
2502 /* The highest exception level is always at the maximum supported
2503 * register width, and then lower levels have a register width controlled
2504 * by bits in the SCR or HCR registers.
1f79ee32 2505 */
446c81ab
PM
2506 if (el == 3) {
2507 return aa64;
2508 }
2509
926c1b97
RDC
2510 if (arm_feature(env, ARM_FEATURE_EL3) &&
2511 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2512 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2513 }
2514
2515 if (el == 2) {
2516 return aa64;
2517 }
2518
e6ef0169 2519 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2520 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2521 }
2522
2523 return aa64;
1f79ee32
PM
2524}
2525
3f342b9e
SF
2526/* Function for determing whether guest cp register reads and writes should
2527 * access the secure or non-secure bank of a cp register. When EL3 is
2528 * operating in AArch32 state, the NS-bit determines whether the secure
2529 * instance of a cp register should be used. When EL3 is AArch64 (or if
2530 * it doesn't exist at all) then there is no register banking, and all
2531 * accesses are to the non-secure version.
2532 */
2533static inline bool access_secure_reg(CPUARMState *env)
2534{
2535 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2536 !arm_el_is_aa64(env, 3) &&
2537 !(env->cp15.scr_el3 & SCR_NS));
2538
2539 return ret;
2540}
2541
ea30a4b8
FA
2542/* Macros for accessing a specified CP register bank */
2543#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2544 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2545
2546#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2547 do { \
2548 if (_secure) { \
2549 (_env)->cp15._regname##_s = (_val); \
2550 } else { \
2551 (_env)->cp15._regname##_ns = (_val); \
2552 } \
2553 } while (0)
2554
2555/* Macros for automatically accessing a specific CP register bank depending on
2556 * the current secure state of the system. These macros are not intended for
2557 * supporting instruction translation reads/writes as these are dependent
2558 * solely on the SCR.NS bit and not the mode.
2559 */
2560#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2561 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2562 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2563
2564#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2565 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2566 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2567 (_val))
2568
0442428a 2569void arm_cpu_list(void);
012a906b
GB
2570uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2571 uint32_t cur_el, bool secure);
40f137e1 2572
75502672
PM
2573/* Return the highest implemented Exception Level */
2574static inline int arm_highest_el(CPUARMState *env)
2575{
2576 if (arm_feature(env, ARM_FEATURE_EL3)) {
2577 return 3;
2578 }
2579 if (arm_feature(env, ARM_FEATURE_EL2)) {
2580 return 2;
2581 }
2582 return 1;
2583}
2584
15b3f556
PM
2585/* Return true if a v7M CPU is in Handler mode */
2586static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2587{
2588 return env->v7m.exception != 0;
2589}
2590
dcbff19b
GB
2591/* Return the current Exception Level (as per ARMv8; note that this differs
2592 * from the ARMv7 Privilege Level).
2593 */
2594static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2595{
6d54ed3c 2596 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2597 return arm_v7m_is_handler_mode(env) ||
2598 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2599 }
2600
592125f8 2601 if (is_a64(env)) {
f5a0a5a5
PM
2602 return extract32(env->pstate, 2, 2);
2603 }
2604
592125f8
FA
2605 switch (env->uncached_cpsr & 0x1f) {
2606 case ARM_CPU_MODE_USR:
4b6a83fb 2607 return 0;
592125f8
FA
2608 case ARM_CPU_MODE_HYP:
2609 return 2;
2610 case ARM_CPU_MODE_MON:
2611 return 3;
2612 default:
2613 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2614 /* If EL3 is 32-bit then all secure privileged modes run in
2615 * EL3
2616 */
2617 return 3;
2618 }
2619
2620 return 1;
4b6a83fb 2621 }
4b6a83fb
PM
2622}
2623
721fae12
PM
2624/**
2625 * write_list_to_cpustate
2626 * @cpu: ARMCPU
2627 *
2628 * For each register listed in the ARMCPU cpreg_indexes list, write
2629 * its value from the cpreg_values list into the ARMCPUState structure.
2630 * This updates TCG's working data structures from KVM data or
2631 * from incoming migration state.
2632 *
2633 * Returns: true if all register values were updated correctly,
2634 * false if some register was unknown or could not be written.
2635 * Note that we do not stop early on failure -- we will attempt
2636 * writing all registers in the list.
2637 */
2638bool write_list_to_cpustate(ARMCPU *cpu);
2639
2640/**
2641 * write_cpustate_to_list:
2642 * @cpu: ARMCPU
b698e4ee 2643 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2644 *
2645 * For each register listed in the ARMCPU cpreg_indexes list, write
2646 * its value from the ARMCPUState structure into the cpreg_values list.
2647 * This is used to copy info from TCG's working data structures into
2648 * KVM or for outbound migration.
2649 *
b698e4ee
PM
2650 * @kvm_sync is true if we are doing this in order to sync the
2651 * register state back to KVM. In this case we will only update
2652 * values in the list if the previous list->cpustate sync actually
2653 * successfully wrote the CPU state. Otherwise we will keep the value
2654 * that is in the list.
2655 *
721fae12
PM
2656 * Returns: true if all register values were read correctly,
2657 * false if some register was unknown or could not be read.
2658 * Note that we do not stop early on failure -- we will attempt
2659 * reading all registers in the list.
2660 */
b698e4ee 2661bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2662
9ee6e8bb
PB
2663#define ARM_CPUID_TI915T 0x54029152
2664#define ARM_CPUID_TI925T 0x54029252
40f137e1 2665
ba1ba5cc
IM
2666#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2667#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2668#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2669
585df85e
PM
2670#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2671
c732abe2 2672#define cpu_list arm_cpu_list
9467d44c 2673
c1e37810
PM
2674/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2675 *
2676 * If EL3 is 64-bit:
2677 * + NonSecure EL1 & 0 stage 1
2678 * + NonSecure EL1 & 0 stage 2
2679 * + NonSecure EL2
b9f6033c
RH
2680 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2681 * + Secure EL1 & 0
c1e37810
PM
2682 * + Secure EL3
2683 * If EL3 is 32-bit:
2684 * + NonSecure PL1 & 0 stage 1
2685 * + NonSecure PL1 & 0 stage 2
2686 * + NonSecure PL2
b9f6033c
RH
2687 * + Secure PL0
2688 * + Secure PL1
c1e37810
PM
2689 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2690 *
2691 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2692 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2693 * because they may differ in access permissions even if the VA->PA map is
2694 * the same
c1e37810
PM
2695 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2696 * translation, which means that we have one mmu_idx that deals with two
2697 * concatenated translation regimes [this sort of combined s1+2 TLB is
2698 * architecturally permitted]
2699 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2700 * handling via the TLB. The only way to do a stage 1 translation without
2701 * the immediate stage 2 translation is via the ATS or AT system insns,
2702 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2703 * The only use of stage 2 translations is either as part of an s1+2
2704 * lookup or when loading the descriptors during a stage 1 page table walk,
2705 * and in both those cases we don't use the TLB.
c1e37810
PM
2706 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2707 * translation regimes, because they map reasonably well to each other
2708 * and they can't both be active at the same time.
b9f6033c
RH
2709 * 5. we want to be able to use the TLB for accesses done as part of a
2710 * stage1 page table walk, rather than having to walk the stage2 page
2711 * table over and over.
452ef8cb
RH
2712 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2713 * Never (PAN) bit within PSTATE.
d902ae75
RH
2714 * 7. we fold together the secure and non-secure regimes for A-profile,
2715 * because there are no banked system registers for aarch64, so the
2716 * process of switching between secure and non-secure is
2717 * already heavyweight.
c1e37810 2718 *
b9f6033c
RH
2719 * This gives us the following list of cases:
2720 *
d902ae75
RH
2721 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2722 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2723 * EL1 EL1&0 stage 1+2 +PAN
2724 * EL0 EL2&0
2725 * EL2 EL2&0
2726 * EL2 EL2&0 +PAN
2727 * EL2 (aka NS PL2)
2728 * EL3 (aka S PL1)
a1ce3084 2729 * Physical (NS & S)
575a94af 2730 * Stage2 (NS & S)
c1e37810 2731 *
575a94af 2732 * for a total of 12 different mmu_idx.
c1e37810 2733 *
3bef7012 2734 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2735 * as A profile. They only need to distinguish EL0 and EL1 (and
2736 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2737 *
2738 * M profile CPUs are rather different as they do not have a true MMU.
2739 * They have the following different MMU indexes:
2740 * User
2741 * Privileged
62593718
PM
2742 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2743 * Privileged, execution priority negative (ditto)
66787c78
PM
2744 * If the CPU supports the v8M Security Extension then there are also:
2745 * Secure User
2746 * Secure Privileged
62593718
PM
2747 * Secure User, execution priority negative
2748 * Secure Privileged, execution priority negative
3bef7012 2749 *
8bd5c820
PM
2750 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2751 * are not quite the same -- different CPU types (most notably M profile
2752 * vs A/R profile) would like to use MMU indexes with different semantics,
2753 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2754 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2755 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2756 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2757 * the same for any particular CPU.
2758 * Variables of type ARMMUIdx are always full values, and the core
2759 * index values are in variables of type 'int'.
2760 *
c1e37810
PM
2761 * Our enumeration includes at the end some entries which are not "true"
2762 * mmu_idx values in that they don't have corresponding TLBs and are only
2763 * valid for doing slow path page table walks.
2764 *
2765 * The constant names here are patterned after the general style of the names
2766 * of the AT/ATS operations.
2767 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2768 * For M profile we arrange them to have a bit for priv, a bit for negpri
2769 * and a bit for secure.
c1e37810 2770 */
b9f6033c
RH
2771#define ARM_MMU_IDX_A 0x10 /* A profile */
2772#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2773#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2774
b9f6033c
RH
2775/* Meanings of the bits for M profile mmu idx values */
2776#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2777#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2778#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2779
b9f6033c
RH
2780#define ARM_MMU_IDX_TYPE_MASK \
2781 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2782#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2783
c1e37810 2784typedef enum ARMMMUIdx {
b9f6033c
RH
2785 /*
2786 * A-profile.
2787 */
d902ae75
RH
2788 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2789 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2790 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2791 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2792 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2793 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2794 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2795 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2796
a1ce3084
RH
2797 /* TLBs with 1-1 mapping to the physical address spaces. */
2798 ARMMMUIdx_Phys_NS = 8 | ARM_MMU_IDX_A,
2799 ARMMMUIdx_Phys_S = 9 | ARM_MMU_IDX_A,
2800
575a94af
RH
2801 /*
2802 * Used for second stage of an S12 page table walk, or for descriptor
2803 * loads during first stage of an S1 page table walk. Note that both
2804 * are in use simultaneously for SecureEL2: the security state for
2805 * the S2 ptw is selected by the NS bit from the S1 ptw.
2806 */
2807 ARMMMUIdx_Stage2 = 10 | ARM_MMU_IDX_A,
2808 ARMMMUIdx_Stage2_S = 11 | ARM_MMU_IDX_A,
2809
b9f6033c
RH
2810 /*
2811 * These are not allocated TLBs and are used only for AT system
2812 * instructions or for the first stage of an S12 page table walk.
2813 */
2814 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2815 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2816 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2817
2818 /*
2819 * M-profile.
2820 */
25568316
RH
2821 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2822 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2823 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2824 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2825 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2826 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2827 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2828 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2829} ARMMMUIdx;
2830
5f09a6df
RH
2831/*
2832 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2833 * for use when calling tlb_flush_by_mmuidx() and friends.
2834 */
5f09a6df
RH
2835#define TO_CORE_BIT(NAME) \
2836 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2837
8bd5c820 2838typedef enum ARMMMUIdxBit {
5f09a6df 2839 TO_CORE_BIT(E10_0),
b9f6033c 2840 TO_CORE_BIT(E20_0),
5f09a6df 2841 TO_CORE_BIT(E10_1),
452ef8cb 2842 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2843 TO_CORE_BIT(E2),
b9f6033c 2844 TO_CORE_BIT(E20_2),
452ef8cb 2845 TO_CORE_BIT(E20_2_PAN),
d902ae75 2846 TO_CORE_BIT(E3),
575a94af
RH
2847 TO_CORE_BIT(Stage2),
2848 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2849
2850 TO_CORE_BIT(MUser),
2851 TO_CORE_BIT(MPriv),
2852 TO_CORE_BIT(MUserNegPri),
2853 TO_CORE_BIT(MPrivNegPri),
2854 TO_CORE_BIT(MSUser),
2855 TO_CORE_BIT(MSPriv),
2856 TO_CORE_BIT(MSUserNegPri),
2857 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2858} ARMMMUIdxBit;
2859
5f09a6df
RH
2860#undef TO_CORE_BIT
2861
f79fbf39 2862#define MMU_USER_IDX 0
c1e37810 2863
9e273ef2
PM
2864/* Indexes used when registering address spaces with cpu_address_space_init */
2865typedef enum ARMASIdx {
2866 ARMASIdx_NS = 0,
2867 ARMASIdx_S = 1,
8bce44a2
RH
2868 ARMASIdx_TagNS = 2,
2869 ARMASIdx_TagS = 3,
9e273ef2
PM
2870} ARMASIdx;
2871
43bbce7f
PM
2872static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2873{
2874 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2875 * CSSELR is RAZ/WI.
2876 */
2877 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2878}
2879
f9fd40eb
PB
2880static inline bool arm_sctlr_b(CPUARMState *env)
2881{
2882 return
2883 /* We need not implement SCTLR.ITD in user-mode emulation, so
2884 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2885 * This lets people run BE32 binaries with "-cpu any".
2886 */
2887#ifndef CONFIG_USER_ONLY
2888 !arm_feature(env, ARM_FEATURE_V7) &&
2889#endif
2890 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2891}
2892
aaec1432 2893uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 2894
8061a649
RH
2895static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2896 bool sctlr_b)
2897{
2898#ifdef CONFIG_USER_ONLY
2899 /*
2900 * In system mode, BE32 is modelled in line with the
2901 * architecture (as word-invariant big-endianness), where loads
2902 * and stores are done little endian but from addresses which
2903 * are adjusted by XORing with the appropriate constant. So the
2904 * endianness to use for the raw data access is not affected by
2905 * SCTLR.B.
2906 * In user mode, however, we model BE32 as byte-invariant
2907 * big-endianness (because user-only code cannot tell the
2908 * difference), and so we need to use a data access endianness
2909 * that depends on SCTLR.B.
2910 */
2911 if (sctlr_b) {
2912 return true;
2913 }
2914#endif
2915 /* In 32bit endianness is determined by looking at CPSR's E bit */
2916 return env->uncached_cpsr & CPSR_E;
2917}
2918
2919static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2920{
2921 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2922}
64e40755 2923
ed50ff78
PC
2924/* Return true if the processor is in big-endian mode. */
2925static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2926{
ed50ff78 2927 if (!is_a64(env)) {
8061a649 2928 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
2929 } else {
2930 int cur_el = arm_current_el(env);
2931 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 2932 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 2933 }
ed50ff78
PC
2934}
2935
022c62cb 2936#include "exec/cpu-all.h"
622ed360 2937
fdd1b228 2938/*
a378206a
RH
2939 * We have more than 32-bits worth of state per TB, so we split the data
2940 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2941 * We collect these two parts in CPUARMTBFlags where they are named
2942 * flags and flags2 respectively.
fdd1b228 2943 *
a378206a
RH
2944 * The flags that are shared between all execution modes, TBFLAG_ANY,
2945 * are stored in flags. The flags that are specific to a given mode
2946 * are stores in flags2. Since cs_base is sized on the configured
2947 * address size, flags2 always has 64-bits for A64, and a minimum of
2948 * 32-bits for A32 and M32.
2949 *
2950 * The bits for 32-bit A-profile and M-profile partially overlap:
2951 *
5896f392
RH
2952 * 31 23 11 10 0
2953 * +-------------+----------+----------------+
2954 * | | | TBFLAG_A32 |
2955 * | TBFLAG_AM32 | +-----+----------+
2956 * | | |TBFLAG_M32|
2957 * +-------------+----------------+----------+
26702213 2958 * 31 23 6 5 0
79cabf1f 2959 *
fdd1b228 2960 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 2961 */
eee81d41
RH
2962FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
2963FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
2964FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
2965FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
2966FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 2967/* Target EL if we take a floating-point-disabled exception */
eee81d41 2968FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 2969/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
2970FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
2971FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 2972FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 2973FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 2974
8bd587c1 2975/*
79cabf1f 2976 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 2977 */
5896f392
RH
2978FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
2979FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 2980
79cabf1f
RH
2981/*
2982 * Bit usage when in AArch32 state, for A-profile only.
2983 */
5896f392
RH
2984FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
2985FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
2986/*
2987 * We store the bottom two bits of the CPAR as TB flags and handle
2988 * checks on the other bits at runtime. This shares the same bits as
2989 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 2990 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 2991 */
5896f392
RH
2992FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
2993FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
2994FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
2995FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
2996/*
2997 * Indicates whether cp register reads and writes by guest code should access
2998 * the secure or nonsecure bank of banked registers; note that this is not
2999 * the same thing as the current security state of the processor!
3000 */
5896f392 3001FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3002/*
3003 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3004 * This requires an SME trap from AArch32 mode when using NEON.
3005 */
3006FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3007
3008/*
3009 * Bit usage when in AArch32 state, for M-profile only.
3010 */
3011/* Handler (ie not Thread) mode */
5896f392 3012FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3013/* Whether we should generate stack-limit checks */
5896f392 3014FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3015/* Set if FPCCR.LSPACT is set */
5896f392 3016FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3017/* Set if we must create a new FP context */
5896f392 3018FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3019/* Set if FPCCR.S does not match current security state */
5896f392 3020FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3021/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3022FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3023/* Set if in secure mode */
3024FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3025
3026/*
3027 * Bit usage when in AArch64 state
3028 */
476a4692 3029FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3030FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3031/* The current vector length, either NVL or SVL. */
3032FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3033FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3034FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3035FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3036FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3037FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3038FIELD(TBFLAG_A64, ATA, 15, 1)
3039FIELD(TBFLAG_A64, TCMA, 16, 2)
3040FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3041FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3042FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3043FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3044FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3045FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3046/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3047FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
5572f755 3048FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
83f624d9 3049FIELD(TBFLAG_A64, NAA, 30, 1)
a1705768 3050
a729a46b
RH
3051/*
3052 * Helpers for using the above.
3053 */
3054#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3055 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3056#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3057 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3058#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3059 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3060#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3061 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3062#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3063 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3064
3902bfc6 3065#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3066#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3067#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3068#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3069#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3070
fb901c90
RH
3071/**
3072 * cpu_mmu_index:
3073 * @env: The cpu environment
3074 * @ifetch: True for code access, false for data access.
3075 *
3076 * Return the core mmu index for the current translation regime.
3077 * This function is used by generic TCG code paths.
3078 */
3079static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3080{
a729a46b 3081 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3082}
3083
8b599e5c
RH
3084/**
3085 * sve_vq
3086 * @env: the cpu context
3087 *
3088 * Return the VL cached within env->hflags, in units of quadwords.
3089 */
3090static inline int sve_vq(CPUARMState *env)
3091{
3092 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3093}
3094
5d7953ad
RH
3095/**
3096 * sme_vq
3097 * @env: the cpu context
3098 *
3099 * Return the SVL cached within env->hflags, in units of quadwords.
3100 */
3101static inline int sme_vq(CPUARMState *env)
3102{
3103 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3104}
3105
f9fd40eb
PB
3106static inline bool bswap_code(bool sctlr_b)
3107{
3108#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3109 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3110 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3111 * would also end up as a mixed-endian mode with BE code, LE data.
3112 */
3113 return
ee3eb3a7 3114#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3115 1 ^
3116#endif
3117 sctlr_b;
3118#else
e334bd31
PB
3119 /* All code access in ARM is little endian, and there are no loaders
3120 * doing swaps that need to be reversed
f9fd40eb
PB
3121 */
3122 return 0;
3123#endif
3124}
3125
c3ae85fc
PB
3126#ifdef CONFIG_USER_ONLY
3127static inline bool arm_cpu_bswap_data(CPUARMState *env)
3128{
3129 return
ee3eb3a7 3130#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3131 1 ^
3132#endif
3133 arm_cpu_data_is_big_endian(env);
3134}
3135#endif
3136
a9e01311
RH
3137void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3138 target_ulong *cs_base, uint32_t *flags);
6b917547 3139
98128601
RH
3140enum {
3141 QEMU_PSCI_CONDUIT_DISABLED = 0,
3142 QEMU_PSCI_CONDUIT_SMC = 1,
3143 QEMU_PSCI_CONDUIT_HVC = 2,
3144};
3145
017518c1
PM
3146#ifndef CONFIG_USER_ONLY
3147/* Return the address space index to use for a memory access */
3148static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3149{
3150 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3151}
5ce4ff65
PM
3152
3153/* Return the AddressSpace to use for a memory access
3154 * (which depends on whether the access is S or NS, and whether
3155 * the board gave us a separate AddressSpace for S accesses).
3156 */
3157static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3158{
3159 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3160}
017518c1
PM
3161#endif
3162
bd7d00fc 3163/**
b5c53d1b
AL
3164 * arm_register_pre_el_change_hook:
3165 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3166 * CPU changes exception level or mode. The hook function will be
3167 * passed a pointer to the ARMCPU and the opaque data pointer passed
3168 * to this function when the hook was registered.
b5c53d1b
AL
3169 *
3170 * Note that if a pre-change hook is called, any registered post-change hooks
3171 * are guaranteed to subsequently be called.
bd7d00fc 3172 */
b5c53d1b 3173void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3174 void *opaque);
b5c53d1b
AL
3175/**
3176 * arm_register_el_change_hook:
3177 * Register a hook function which will be called immediately after this
3178 * CPU changes exception level or mode. The hook function will be
3179 * passed a pointer to the ARMCPU and the opaque data pointer passed
3180 * to this function when the hook was registered.
3181 *
3182 * Note that any registered hooks registered here are guaranteed to be called
3183 * if pre-change hooks have been.
3184 */
3185void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3186 *opaque);
bd7d00fc 3187
3d74e2e9
RH
3188/**
3189 * arm_rebuild_hflags:
3190 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3191 */
3192void arm_rebuild_hflags(CPUARMState *env);
3193
9a2b5256
RH
3194/**
3195 * aa32_vfp_dreg:
3196 * Return a pointer to the Dn register within env in 32-bit mode.
3197 */
3198static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3199{
c39c2b90 3200 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3201}
3202
3203/**
3204 * aa32_vfp_qreg:
3205 * Return a pointer to the Qn register within env in 32-bit mode.
3206 */
3207static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3208{
c39c2b90 3209 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3210}
3211
3212/**
3213 * aa64_vfp_qreg:
3214 * Return a pointer to the Qn register within env in 64-bit mode.
3215 */
3216static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3217{
c39c2b90 3218 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3219}
3220
028e2a7b 3221/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3222extern const uint64_t pred_esz_masks[5];
028e2a7b 3223
be5d6f48
RH
3224/*
3225 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3226 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3227 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3228 */
7f2cf760
RH
3229#define PAGE_BTI PAGE_TARGET_1
3230#define PAGE_MTE PAGE_TARGET_2
3231#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3232
50d4c8c1
RH
3233/* We associate one allocation tag per 16 bytes, the minimum. */
3234#define LOG2_TAG_GRANULE 4
3235#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3236
3237#ifdef CONFIG_USER_ONLY
3238#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3239#endif
3240
0e0c030c
RH
3241#ifdef TARGET_TAGGED_ADDRESSES
3242/**
3243 * cpu_untagged_addr:
3244 * @cs: CPU context
3245 * @x: tagged address
3246 *
3247 * Remove any address tag from @x. This is explicitly related to the
3248 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3249 *
3250 * There should be a better place to put this, but we need this in
3251 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3252 */
3253static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3254{
3255 ARMCPU *cpu = ARM_CPU(cs);
3256 if (cpu->env.tagged_addr_enable) {
3257 /*
3258 * TBI is enabled for userspace but not kernelspace addresses.
3259 * Only clear the tag if bit 55 is clear.
3260 */
3261 x &= sextract64(x, 0, 56);
3262 }
3263 return x;
3264}
3265#endif
3266
873b73c0
PM
3267/*
3268 * Naming convention for isar_feature functions:
3269 * Functions which test 32-bit ID registers should have _aa32_ in
3270 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3271 * _aa64_ in their name. These must only be used in code where we
3272 * know for certain that the CPU has AArch32 or AArch64 respectively
3273 * or where the correct answer for a CPU which doesn't implement that
3274 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3275 * system registers that are specific to that CPU state, for "should
3276 * we let this system register bit be set" tests where the 32-bit
3277 * flavour of the register doesn't have the bit, and so on).
3278 * Functions which simply ask "does this feature exist at all" have
3279 * _any_ in their name, and always return the logical OR of the _aa64_
3280 * and the _aa32_ function.
873b73c0
PM
3281 */
3282
962fcbf2
RH
3283/*
3284 * 32-bit feature tests via id registers.
3285 */
873b73c0 3286static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3287{
3288 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3289}
3290
873b73c0 3291static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3292{
3293 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3294}
05903f03
PM
3295
3296static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3297{
3298 /* (M-profile) low-overhead loops and branch future */
3299 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3300}
7e0cf8b4 3301
873b73c0 3302static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3303{
3304 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3305}
3306
962fcbf2
RH
3307static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3308{
3309 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3310}
3311
3312static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3313{
3314 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3315}
3316
3317static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3318{
3319 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3320}
3321
3322static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3323{
3324 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3325}
3326
3327static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3328{
3329 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3330}
3331
3332static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3333{
3334 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3335}
3336
3337static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3338{
3339 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3340}
3341
6c1f6f27
RH
3342static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3343{
3344 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3345}
3346
962fcbf2
RH
3347static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3348{
3349 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3350}
3351
87732318
RH
3352static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3353{
3354 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3355}
3356
9888bd1e
RH
3357static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3358{
3359 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3360}
3361
cb570bd3
RH
3362static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3363{
3364 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3365}
3366
c0b9e8a4
RH
3367static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3368{
3369 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3370}
3371
51879c67
RH
3372static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3373{
3374 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3375}
3376
46f4976f
PM
3377static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3378{
3379 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3380}
3381
dfc523a8
PM
3382static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3383{
3384 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3385}
3386
83ff3d6a
PM
3387static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3388{
3389 /*
3390 * Return true if M-profile state handling insns
3391 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3392 */
3393 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3394}
3395
5763190f
RH
3396static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3397{
dfc523a8
PM
3398 /* Sadly this is encoded differently for A-profile and M-profile */
3399 if (isar_feature_aa32_mprofile(id)) {
3400 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3401 } else {
3402 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3403 }
5763190f
RH
3404}
3405
7df6a1ff
PM
3406static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3407{
3408 /*
3409 * Return true if MVE is supported (either integer or floating point).
3410 * We must check for M-profile as the MVFR1 field means something
3411 * else for A-profile.
3412 */
3413 return isar_feature_aa32_mprofile(id) &&
3414 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3415}
3416
3417static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3418{
3419 /*
3420 * Return true if MVE is supported (either integer or floating point).
3421 * We must check for M-profile as the MVFR1 field means something
3422 * else for A-profile.
3423 */
3424 return isar_feature_aa32_mprofile(id) &&
3425 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3426}
3427
7fbc6a40
RH
3428static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3429{
3430 /*
3431 * Return true if either VFP or SIMD is implemented.
3432 * In this case, a minimum of VFP w/ D0-D15.
3433 */
3434 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3435}
3436
0e13ba78 3437static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3438{
3439 /* Return true if D16-D31 are implemented */
b3a816f6 3440 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3441}
3442
266bd25c
PM
3443static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3444{
b3a816f6 3445 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3446}
3447
f67957e1
RH
3448static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3449{
3450 /* Return true if CPU supports single precision floating point, VFPv2 */
3451 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3452}
3453
3454static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3455{
3456 /* Return true if CPU supports single precision floating point, VFPv3 */
3457 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3458}
3459
c4ff8735 3460static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3461{
c4ff8735 3462 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3463 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3464}
3465
f67957e1
RH
3466static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3467{
3468 /* Return true if CPU supports double precision floating point, VFPv3 */
3469 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3470}
3471
7d63183f
RH
3472static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3473{
3474 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3475}
3476
602f6e42
PM
3477/*
3478 * We always set the FP and SIMD FP16 fields to indicate identical
3479 * levels of support (assuming SIMD is implemented at all), so
3480 * we only need one set of accessors.
3481 */
3482static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3483{
b3a816f6 3484 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3485}
3486
3487static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3488{
b3a816f6 3489 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3490}
3491
c52881bb
RH
3492/*
3493 * Note that this ID register field covers both VFP and Neon FMAC,
3494 * so should usually be tested in combination with some other
3495 * check that confirms the presence of whichever of VFP or Neon is
3496 * relevant, to avoid accidentally enabling a Neon feature on
3497 * a VFP-no-Neon core or vice-versa.
3498 */
3499static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3500{
3501 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3502}
3503
c0c760af
PM
3504static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3505{
b3a816f6 3506 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3507}
3508
3509static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3510{
b3a816f6 3511 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3512}
3513
3514static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3515{
b3a816f6 3516 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3517}
3518
3519static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3520{
b3a816f6 3521 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3522}
3523
0ae0326b
PM
3524static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3525{
3526 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3527}
3528
3d6ad6bb
RH
3529static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3530{
10054016 3531 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3532}
3533
3534static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3535{
10054016 3536 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3537}
3538
a793bcd0 3539static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3540{
3541 /* 0xf means "non-standard IMPDEF PMU" */
3542 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3543 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3544}
3545
a793bcd0 3546static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3547{
3548 /* 0xf means "non-standard IMPDEF PMU" */
3549 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3550 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3551}
3552
0b42f4fa
PM
3553static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3554{
3555 /* 0xf means "non-standard IMPDEF PMU" */
3556 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3557 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3558}
3559
4036b7d1
PM
3560static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3561{
3562 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3563}
3564
f6287c24
PM
3565static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3566{
3567 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3568}
3569
957e6155
PM
3570static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3571{
3572 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3573}
3574
ce3125be
PM
3575static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3576{
3577 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3578}
3579
d2fd9313
PM
3580static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3581{
3582 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3583}
3584
3585static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3586{
3587 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3588}
3589
dc8b1853
RC
3590static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3591{
3592 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3593}
3594
f2f68a78
RC
3595static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3596{
3597 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3598}
3599
09754ca8
PM
3600static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3601{
3602 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3603}
3604
ca56aac5
RH
3605static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3606{
3607 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3608}
3609
f94a6df5
PM
3610static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3611{
3612 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3613}
3614
962fcbf2
RH
3615/*
3616 * 64-bit feature tests via id registers.
3617 */
3618static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3619{
3620 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3621}
3622
3623static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3624{
3625 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3626}
3627
3628static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3629{
3630 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3631}
3632
3633static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3634{
3635 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3636}
3637
3638static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3639{
3640 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3641}
3642
3643static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3644{
3645 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3646}
3647
3648static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3649{
3650 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3651}
3652
3653static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3654{
3655 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3656}
3657
3658static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3659{
3660 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3661}
3662
3663static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3664{
3665 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3666}
3667
3668static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3669{
3670 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3671}
3672
3673static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3674{
3675 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3676}
3677
0caa5af8
RH
3678static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3679{
3680 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3681}
3682
b89d9c98
RH
3683static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3684{
3685 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3686}
3687
5ef84f11
RH
3688static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3689{
3690 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3691}
3692
de390645
RH
3693static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3694{
3695 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3696}
3697
6c1f6f27
RH
3698static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3699{
3700 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3701}
3702
962fcbf2
RH
3703static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3704{
3705 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3706}
3707
991ad91b
RH
3708static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3709{
3710 /*
283fc52a
RH
3711 * Return true if any form of pauth is enabled, as this
3712 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3713 */
3714 return (id->id_aa64isar1 &
3715 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3716 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3717 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3718 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3719}
3720
283fc52a
RH
3721static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3722{
3723 /*
3724 * Return true if pauth is enabled with the architected QARMA algorithm.
3725 * QEMU will always set APA+GPA to the same value.
3726 */
3727 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3728}
3729
84940ed8
RC
3730static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3731{
3732 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3733}
3734
7113d618
RC
3735static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3736{
3737 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3738}
3739
9888bd1e
RH
3740static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3741{
3742 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3743}
3744
cb570bd3
RH
3745static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3746{
3747 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3748}
3749
6bea2563
RH
3750static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3751{
3752 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3753}
3754
0d57b499
BM
3755static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3756{
3757 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3758}
3759
3760static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3761{
3762 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3763}
3764
c0b9e8a4
RH
3765static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3766{
3767 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3768}
3769
7d63183f
RH
3770static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3771{
3772 /* We always set the AdvSIMD and FP fields identically. */
3773 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3774}
3775
5763190f
RH
3776static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3777{
3778 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3779 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3780}
3781
0f8d06f1
RH
3782static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3783{
3784 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3785}
3786
10d0ef3e
MN
3787static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3788{
3789 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3790}
3791
6bcbb07a
RH
3792static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3793{
3794 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3795}
3796
25e168ab
RH
3797static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3798{
3799 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3800}
3801
7ac61020
PM
3802static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3803{
3804 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3805}
3806
cd208a1c
RH
3807static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3808{
3809 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3810}
3811
5ca192df
RDC
3812static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3813{
3814 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3815}
3816
8fc2ea21
RH
3817static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3818{
3819 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3820}
3821
2d7137c1
RH
3822static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3823{
3824 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3825}
3826
3d6ad6bb
RH
3827static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3828{
3829 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3830}
3831
3832static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3833{
3834 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3835}
3836
dd17143f
PM
3837static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3838{
3839 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3840}
3841
5814d587
RH
3842static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3843{
3844 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3845}
3846
9eeb7a1c
RH
3847static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3848{
3849 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3850}
3851
c36c65ea
RDC
3852static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3853{
3854 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3855}
3856
cf1cbf50
RH
3857static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
3858{
3859 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
3860}
3861
8c7e17ef
PM
3862static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3863{
3864 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3865}
3866
75662f36
PM
3867static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3868{
3869 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3870}
3871
d2fd9313
PM
3872static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
3873{
3874 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
3875}
3876
3877static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
3878{
3879 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
3880}
3881
be53b6f4
RH
3882static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3883{
3884 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3885}
3886
c7fd0baa
RH
3887static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3888{
3889 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3890}
3891
3892static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3893{
3894 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3895}
3896
f305bf94
RH
3897static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3898{
3899 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3900}
3901
a793bcd0 3902static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
3903{
3904 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3905 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3906}
3907
a793bcd0 3908static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 3909{
54117b90
PM
3910 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3911 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3912}
3913
0b42f4fa
PM
3914static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
3915{
3916 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
3917 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3918}
3919
2677cf9f
PM
3920static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3921{
3922 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3923}
3924
a1229109
PM
3925static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3926{
3927 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3928}
3929
f7da051f
RH
3930static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3931{
3932 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3933}
3934
ef56c242
RH
3935static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3936{
3937 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3938}
3939
3940static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3941{
3942 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3943 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
3944}
3945
3946static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
3947{
3948 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
3949}
3950
3951static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
3952{
3953 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
3954 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
3955}
3956
104f703d
PM
3957static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
3958{
3959 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
3960}
3961
3962static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
3963{
3964 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
3965}
3966
3967static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
3968{
3969 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
3970}
3971
3972static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
3973{
3974 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3975 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
3976}
3977
3978static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
3979{
3980 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
3981 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
3982}
3983
3984static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
3985{
3986 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
3987 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
3988}
3989
15126d9c
PM
3990static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
3991{
3992 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
3993}
3994
957e6155
PM
3995static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3996{
3997 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3998}
3999
0af312b6
RH
4000static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4001{
4002 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4003}
4004
e4c93e44
PM
4005static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4006{
4007 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4008}
4009
980a6892
RH
4010static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4011{
4012 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4013}
4014
4015static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4016{
4017 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4018}
4019
ce3125be
PM
4020static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4021{
4022 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4023}
4024
dc8b1853
RC
4025static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4026{
4027 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4028}
4029
7cb1e618
RH
4030static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4031{
4032 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4033 if (key >= 2) {
4034 return true; /* FEAT_CSV2_2 */
4035 }
4036 if (key == 1) {
4037 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4038 return key >= 2; /* FEAT_CSV2_1p2 */
4039 }
4040 return false;
4041}
4042
f2f68a78
RC
4043static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4044{
4045 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4046}
4047
ca56aac5
RH
4048static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4049{
4050 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4051}
4052
2dc10fa2
RH
4053static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4054{
4055 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4056}
4057
e3a56131
RH
4058static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4059{
4060 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4061}
4062
4063static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4064{
4065 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4066}
4067
cb9c33b8
RH
4068static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4069{
4070 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4071}
4072
c0b9e8a4
RH
4073static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4074{
4075 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4076}
4077
3358eb3f
RH
4078static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4079{
4080 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4081}
4082
3cc7a88e
RH
4083static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4084{
4085 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4086}
4087
2867039a
RH
4088static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4089{
4090 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4091}
4092
4f26756b
SL
4093static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4094{
4095 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4096}
4097
4098static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4099{
4100 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4101}
4102
414c54d5
RH
4103static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4104{
4105 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4106}
4107
4108static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4109{
4110 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4111}
4112
4113static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4114{
4115 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4116}
4117
f94a6df5
PM
4118static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4119{
4120 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4121}
4122
6e61f839
PM
4123/*
4124 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4125 */
4126static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4127{
4128 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4129}
4130
22e57073
PM
4131static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4132{
4133 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4134}
4135
a793bcd0 4136static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4137{
a793bcd0 4138 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4139}
4140
a793bcd0 4141static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4142{
a793bcd0 4143 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4144}
4145
0b42f4fa
PM
4146static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4147{
4148 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4149}
4150
957e6155
PM
4151static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4152{
4153 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4154}
4155
ce3125be
PM
4156static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4157{
4158 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4159}
4160
ca56aac5
RH
4161static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4162{
4163 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4164}
4165
25e168ab
RH
4166static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4167{
4168 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4169}
4170
d2fd9313
PM
4171static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4172{
4173 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4174}
4175
4176static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4177{
4178 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4179}
4180
962fcbf2
RH
4181/*
4182 * Forward to the above feature tests given an ARMCPU pointer.
4183 */
4184#define cpu_isar_feature(name, cpu) \
4185 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4186
2c0262af 4187#endif