]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/ppc: introduce GEN_VSX_HELPER_R2 macro to fpu_helper.c
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
b8a9e8f1
FB
31#define EXCP_UDEF 1 /* undefined instruction */
32#define EXCP_SWI 2 /* software interrupt */
33#define EXCP_PREFETCH_ABORT 3
34#define EXCP_DATA_ABORT 4
b5ff1b31
FB
35#define EXCP_IRQ 5
36#define EXCP_FIQ 6
06c949e6 37#define EXCP_BKPT 7
9ee6e8bb 38#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 39#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 40#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 41#define EXCP_HYP_TRAP 12
e0d6e6a5 42#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
43#define EXCP_VIRQ 14
44#define EXCP_VFIQ 15
19a6e31c 45#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 46#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 47#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 48#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 49#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
50#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
53
54#define ARMV7M_EXCP_RESET 1
55#define ARMV7M_EXCP_NMI 2
56#define ARMV7M_EXCP_HARD 3
57#define ARMV7M_EXCP_MEM 4
58#define ARMV7M_EXCP_BUS 5
59#define ARMV7M_EXCP_USAGE 6
1e577cc7 60#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
acf94941
PM
66/* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
74 */
4a16724f
PM
75enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
79};
acf94941 80
403946c0
RH
81/* ARM-specific interrupt pending bits. */
82#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
83#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 85
e4fe830b
PM
86/* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
91 */
92#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 94#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
95#else
96#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
98#endif
99
136e67e9 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
101#define ARM_CPU_IRQ 0
102#define ARM_CPU_FIQ 1
136e67e9
EI
103#define ARM_CPU_VIRQ 2
104#define ARM_CPU_VFIQ 3
403946c0 105
aaa1f954
EI
106/* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
109 */
110#define TARGET_INSN_START_EXTRA_WORDS 2
111
112/* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
116 */
117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 119
b7bcbe95
FB
120/* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
126 */
b7bcbe95 127
200bf5b7
AB
128/**
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
134 */
135typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139} DynamicGDBXMLInfo;
140
55d284af
PM
141/* CPU state for each instance of a generic timer (in cp15 c14) */
142typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 144 uint64_t ctl; /* Timer Control register */
55d284af
PM
145} ARMGenericTimer;
146
147#define GTIMER_PHYS 0
148#define GTIMER_VIRT 1
b0e66d95 149#define GTIMER_HYP 2
b4d3978c
PM
150#define GTIMER_SEC 3
151#define NUM_GTIMERS 4
55d284af 152
11f136ee
FA
153typedef struct {
154 uint64_t raw_tcr;
155 uint32_t mask;
156 uint32_t base_mask;
157} TCR;
158
c39c2b90
RH
159/* Define a maximum sized vector register.
160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161 * For 64-bit, this is a 2048-bit SVE register.
162 *
163 * Note that the mapping between S, D, and Q views of the register bank
164 * differs between AArch64 and AArch32.
165 * In AArch32:
166 * Qn = regs[n].d[1]:regs[n].d[0]
167 * Dn = regs[n / 2].d[n & 1]
168 * Sn = regs[n / 4].d[n % 4 / 2],
169 * bits 31..0 for even n, and bits 63..32 for odd n
170 * (and regs[16] to regs[31] are inaccessible)
171 * In AArch64:
172 * Zn = regs[n].d[*]
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n].d[0]
175 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 176 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
177 *
178 * This corresponds to the architecturally defined mapping between
179 * the two execution states, and means we do not need to explicitly
180 * map these registers when changing states.
181 *
182 * Align the data for use with TCG host vector operations.
183 */
184
185#ifdef TARGET_AARCH64
186# define ARM_MAX_VQ 16
187#else
188# define ARM_MAX_VQ 1
189#endif
190
191typedef struct ARMVectorReg {
192 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
193} ARMVectorReg;
194
3c7d3086 195#ifdef TARGET_AARCH64
991ad91b 196/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
197typedef struct ARMPredicateReg {
198 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
199} ARMPredicateReg;
991ad91b
RH
200
201/* In AArch32 mode, PAC keys do not exist at all. */
202typedef struct ARMPACKey {
203 uint64_t lo, hi;
204} ARMPACKey;
3c7d3086
RH
205#endif
206
c39c2b90 207
2c0262af 208typedef struct CPUARMState {
b5ff1b31 209 /* Regs for current mode. */
2c0262af 210 uint32_t regs[16];
3926cc84
AG
211
212 /* 32/64 switch only happens when taking and returning from
213 * exceptions so the overlap semantics are taken care of then
214 * instead of having a complicated union.
215 */
216 /* Regs for A64 mode. */
217 uint64_t xregs[32];
218 uint64_t pc;
d356312f
PM
219 /* PSTATE isn't an architectural register for ARMv8. However, it is
220 * convenient for us to assemble the underlying state into a 32 bit format
221 * identical to the architectural format used for the SPSR. (This is also
222 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
223 * 'pstate' register are.) Of the PSTATE bits:
224 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
225 * semantics as for AArch32, as described in the comments on each field)
226 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 227 * DAIF (exception masks) are kept in env->daif
f6e52eaa 228 * BTYPE is kept in env->btype
d356312f 229 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
230 */
231 uint32_t pstate;
232 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
233
b90372ad 234 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 235 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
236 the whole CPSR. */
237 uint32_t uncached_cpsr;
238 uint32_t spsr;
239
240 /* Banked registers. */
28c9457d 241 uint64_t banked_spsr[8];
0b7d409d
FA
242 uint32_t banked_r13[8];
243 uint32_t banked_r14[8];
3b46e624 244
b5ff1b31
FB
245 /* These hold r8-r12. */
246 uint32_t usr_regs[5];
247 uint32_t fiq_regs[5];
3b46e624 248
2c0262af
FB
249 /* cpsr flag cache for faster execution */
250 uint32_t CF; /* 0 or 1 */
251 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
252 uint32_t NF; /* N is bit 31. All other bits are undefined. */
253 uint32_t ZF; /* Z set if zero. */
99c475ab 254 uint32_t QF; /* 0 or 1 */
9ee6e8bb 255 uint32_t GE; /* cpsr[19:16] */
b26eefb6 256 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 257 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 258 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 259 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 260
1b174238 261 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 262 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 263
b5ff1b31
FB
264 /* System control coprocessor (cp15) */
265 struct {
40f137e1 266 uint32_t c0_cpuid;
b85a1fd6
FA
267 union { /* Cache size selection */
268 struct {
269 uint64_t _unused_csselr0;
270 uint64_t csselr_ns;
271 uint64_t _unused_csselr1;
272 uint64_t csselr_s;
273 };
274 uint64_t csselr_el[4];
275 };
137feaa9
FA
276 union { /* System control register. */
277 struct {
278 uint64_t _unused_sctlr;
279 uint64_t sctlr_ns;
280 uint64_t hsctlr;
281 uint64_t sctlr_s;
282 };
283 uint64_t sctlr_el[4];
284 };
7ebd5f2e 285 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 286 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 287 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 288 uint64_t sder; /* Secure debug enable register. */
77022576 289 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
290 union { /* MMU translation table base 0. */
291 struct {
292 uint64_t _unused_ttbr0_0;
293 uint64_t ttbr0_ns;
294 uint64_t _unused_ttbr0_1;
295 uint64_t ttbr0_s;
296 };
297 uint64_t ttbr0_el[4];
298 };
299 union { /* MMU translation table base 1. */
300 struct {
301 uint64_t _unused_ttbr1_0;
302 uint64_t ttbr1_ns;
303 uint64_t _unused_ttbr1_1;
304 uint64_t ttbr1_s;
305 };
306 uint64_t ttbr1_el[4];
307 };
b698e9cf 308 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
309 /* MMU translation table base control. */
310 TCR tcr_el[4];
68e9c2fe 311 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
312 uint32_t c2_data; /* MPU data cacheable bits. */
313 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
314 union { /* MMU domain access control register
315 * MPU write buffer control.
316 */
317 struct {
318 uint64_t dacr_ns;
319 uint64_t dacr_s;
320 };
321 struct {
322 uint64_t dacr32_el2;
323 };
324 };
7e09797c
PM
325 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
326 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 327 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 328 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
329 union { /* Fault status registers. */
330 struct {
331 uint64_t ifsr_ns;
332 uint64_t ifsr_s;
333 };
334 struct {
335 uint64_t ifsr32_el2;
336 };
337 };
4a7e2d73
FA
338 union {
339 struct {
340 uint64_t _unused_dfsr;
341 uint64_t dfsr_ns;
342 uint64_t hsr;
343 uint64_t dfsr_s;
344 };
345 uint64_t esr_el[4];
346 };
ce819861 347 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
348 union { /* Fault address registers. */
349 struct {
350 uint64_t _unused_far0;
351#ifdef HOST_WORDS_BIGENDIAN
352 uint32_t ifar_ns;
353 uint32_t dfar_ns;
354 uint32_t ifar_s;
355 uint32_t dfar_s;
356#else
357 uint32_t dfar_ns;
358 uint32_t ifar_ns;
359 uint32_t dfar_s;
360 uint32_t ifar_s;
361#endif
362 uint64_t _unused_far3;
363 };
364 uint64_t far_el[4];
365 };
59e05530 366 uint64_t hpfar_el2;
2a5a9abd 367 uint64_t hstr_el2;
01c097f7
FA
368 union { /* Translation result. */
369 struct {
370 uint64_t _unused_par_0;
371 uint64_t par_ns;
372 uint64_t _unused_par_1;
373 uint64_t par_s;
374 };
375 uint64_t par_el[4];
376 };
6cb0b013 377
b5ff1b31
FB
378 uint32_t c9_insn; /* Cache lockdown registers. */
379 uint32_t c9_data;
8521466b
AF
380 uint64_t c9_pmcr; /* performance monitor control register */
381 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
382 uint64_t c9_pmovsr; /* perf monitor overflow status */
383 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 384 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 385 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
386 union { /* Memory attribute redirection */
387 struct {
388#ifdef HOST_WORDS_BIGENDIAN
389 uint64_t _unused_mair_0;
390 uint32_t mair1_ns;
391 uint32_t mair0_ns;
392 uint64_t _unused_mair_1;
393 uint32_t mair1_s;
394 uint32_t mair0_s;
395#else
396 uint64_t _unused_mair_0;
397 uint32_t mair0_ns;
398 uint32_t mair1_ns;
399 uint64_t _unused_mair_1;
400 uint32_t mair0_s;
401 uint32_t mair1_s;
402#endif
403 };
404 uint64_t mair_el[4];
405 };
fb6c91ba
GB
406 union { /* vector base address register */
407 struct {
408 uint64_t _unused_vbar;
409 uint64_t vbar_ns;
410 uint64_t hvbar;
411 uint64_t vbar_s;
412 };
413 uint64_t vbar_el[4];
414 };
e89e51a1 415 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
416 struct { /* FCSE PID. */
417 uint32_t fcseidr_ns;
418 uint32_t fcseidr_s;
419 };
420 union { /* Context ID. */
421 struct {
422 uint64_t _unused_contextidr_0;
423 uint64_t contextidr_ns;
424 uint64_t _unused_contextidr_1;
425 uint64_t contextidr_s;
426 };
427 uint64_t contextidr_el[4];
428 };
429 union { /* User RW Thread register. */
430 struct {
431 uint64_t tpidrurw_ns;
432 uint64_t tpidrprw_ns;
433 uint64_t htpidr;
434 uint64_t _tpidr_el3;
435 };
436 uint64_t tpidr_el[4];
437 };
438 /* The secure banks of these registers don't map anywhere */
439 uint64_t tpidrurw_s;
440 uint64_t tpidrprw_s;
441 uint64_t tpidruro_s;
442
443 union { /* User RO Thread register. */
444 uint64_t tpidruro_ns;
445 uint64_t tpidrro_el[1];
446 };
a7adc4b7
PM
447 uint64_t c14_cntfrq; /* Counter Frequency register */
448 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 449 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 450 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 451 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 452 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
453 uint32_t c15_ticonfig; /* TI925T configuration byte. */
454 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
455 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
456 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
457 uint32_t c15_config_base_address; /* SCU base address. */
458 uint32_t c15_diagnostic; /* diagnostic register */
459 uint32_t c15_power_diagnostic;
460 uint32_t c15_power_control; /* power control */
0b45451e
PM
461 uint64_t dbgbvr[16]; /* breakpoint value registers */
462 uint64_t dbgbcr[16]; /* breakpoint control registers */
463 uint64_t dbgwvr[16]; /* watchpoint value registers */
464 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 465 uint64_t mdscr_el1;
1424ca8d 466 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 467 uint64_t mdcr_el2;
5513c3ab 468 uint64_t mdcr_el3;
5d05b9d4
AL
469 /* Stores the architectural value of the counter *the last time it was
470 * updated* by pmccntr_op_start. Accesses should always be surrounded
471 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
472 * architecturally-correct value is being read/set.
7c2cb42b 473 */
c92c0687 474 uint64_t c15_ccnt;
5d05b9d4
AL
475 /* Stores the delta between the architectural value and the underlying
476 * cycle count during normal operation. It is used to update c15_ccnt
477 * to be the correct architectural value before accesses. During
478 * accesses, c15_ccnt_delta contains the underlying count being used
479 * for the access, after which it reverts to the delta value in
480 * pmccntr_op_finish.
481 */
482 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
483 uint64_t c14_pmevcntr[31];
484 uint64_t c14_pmevcntr_delta[31];
485 uint64_t c14_pmevtyper[31];
8521466b 486 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 487 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 488 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 489 } cp15;
40f137e1 490
9ee6e8bb 491 struct {
fb602cb7
PM
492 /* M profile has up to 4 stack pointers:
493 * a Main Stack Pointer and a Process Stack Pointer for each
494 * of the Secure and Non-Secure states. (If the CPU doesn't support
495 * the security extension then it has only two SPs.)
496 * In QEMU we always store the currently active SP in regs[13],
497 * and the non-active SP for the current security state in
498 * v7m.other_sp. The stack pointers for the inactive security state
499 * are stored in other_ss_msp and other_ss_psp.
500 * switch_v7m_security_state() is responsible for rearranging them
501 * when we change security state.
502 */
9ee6e8bb 503 uint32_t other_sp;
fb602cb7
PM
504 uint32_t other_ss_msp;
505 uint32_t other_ss_psp;
4a16724f
PM
506 uint32_t vecbase[M_REG_NUM_BANKS];
507 uint32_t basepri[M_REG_NUM_BANKS];
508 uint32_t control[M_REG_NUM_BANKS];
509 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
510 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
511 uint32_t hfsr; /* HardFault Status */
512 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 513 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 514 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 515 uint32_t bfar; /* BusFault Address */
bed079da 516 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 517 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 518 int exception;
4a16724f
PM
519 uint32_t primask[M_REG_NUM_BANKS];
520 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 521 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 522 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 523 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 524 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
525 uint32_t msplim[M_REG_NUM_BANKS];
526 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
527 uint32_t fpcar[M_REG_NUM_BANKS];
528 uint32_t fpccr[M_REG_NUM_BANKS];
529 uint32_t fpdscr[M_REG_NUM_BANKS];
530 uint32_t cpacr[M_REG_NUM_BANKS];
531 uint32_t nsacr;
9ee6e8bb
PB
532 } v7m;
533
abf1172f
PM
534 /* Information associated with an exception about to be taken:
535 * code which raises an exception must set cs->exception_index and
536 * the relevant parts of this structure; the cpu_do_interrupt function
537 * will then set the guest-visible registers as part of the exception
538 * entry process.
539 */
540 struct {
541 uint32_t syndrome; /* AArch64 format syndrome register */
542 uint32_t fsr; /* AArch32 format fault status register info */
543 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 544 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
545 /* If we implement EL2 we will also need to store information
546 * about the intermediate physical address for stage 2 faults.
547 */
548 } exception;
549
202ccb6b
DG
550 /* Information associated with an SError */
551 struct {
552 uint8_t pending;
553 uint8_t has_esr;
554 uint64_t esr;
555 } serror;
556
ed89f078
PM
557 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
558 uint32_t irq_line_state;
559
fe1479c3
PB
560 /* Thumb-2 EE state. */
561 uint32_t teecr;
562 uint32_t teehbr;
563
b7bcbe95
FB
564 /* VFP coprocessor state. */
565 struct {
c39c2b90 566 ARMVectorReg zregs[32];
b7bcbe95 567
3c7d3086
RH
568#ifdef TARGET_AARCH64
569 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 570#define FFR_PRED_NUM 16
3c7d3086 571 ARMPredicateReg pregs[17];
516e246a
RH
572 /* Scratch space for aa64 sve predicate temporary. */
573 ARMPredicateReg preg_tmp;
3c7d3086
RH
574#endif
575
b7bcbe95 576 /* We store these fpcsr fields separately for convenience. */
a4d58462 577 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
578 int vec_len;
579 int vec_stride;
580
a4d58462
RH
581 uint32_t xregs[16];
582
516e246a 583 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 584 uint32_t scratch[8];
3b46e624 585
d81ce0ef
AB
586 /* There are a number of distinct float control structures:
587 *
588 * fp_status: is the "normal" fp status.
589 * fp_status_fp16: used for half-precision calculations
590 * standard_fp_status : the ARM "Standard FPSCR Value"
591 *
592 * Half-precision operations are governed by a separate
593 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
594 * status structure to control this.
595 *
596 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
597 * round-to-nearest and is used by any operations (generally
598 * Neon) which the architecture defines as controlled by the
599 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
600 *
601 * To avoid having to transfer exception bits around, we simply
602 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 603 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
604 * only thing which needs to read the exception flags being
605 * an explicit FPSCR read.
606 */
53cd6637 607 float_status fp_status;
d81ce0ef 608 float_status fp_status_f16;
3a492f3a 609 float_status standard_fp_status;
5be5e8ed
RH
610
611 /* ZCR_EL[1-3] */
612 uint64_t zcr_el[4];
b7bcbe95 613 } vfp;
03d05e2d
PM
614 uint64_t exclusive_addr;
615 uint64_t exclusive_val;
616 uint64_t exclusive_high;
b7bcbe95 617
18c9b560
AZ
618 /* iwMMXt coprocessor state. */
619 struct {
620 uint64_t regs[16];
621 uint64_t val;
622
623 uint32_t cregs[16];
624 } iwmmxt;
625
991ad91b 626#ifdef TARGET_AARCH64
108b3ba8
RH
627 struct {
628 ARMPACKey apia;
629 ARMPACKey apib;
630 ARMPACKey apda;
631 ARMPACKey apdb;
632 ARMPACKey apga;
633 } keys;
991ad91b
RH
634#endif
635
ce4defa0
PB
636#if defined(CONFIG_USER_ONLY)
637 /* For usermode syscall translation. */
638 int eabi;
639#endif
640
46747d15 641 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
642 struct CPUWatchpoint *cpu_watchpoint[16];
643
1f5c00cf
AB
644 /* Fields up to this point are cleared by a CPU reset */
645 struct {} end_reset_fields;
646
e8b5fae5 647 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 648
581be094 649 /* Internal CPU feature flags. */
918f5dca 650 uint64_t features;
581be094 651
6cb0b013
PC
652 /* PMSAv7 MPU */
653 struct {
654 uint32_t *drbar;
655 uint32_t *drsr;
656 uint32_t *dracr;
4a16724f 657 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
658 } pmsav7;
659
0e1a46bb
PM
660 /* PMSAv8 MPU */
661 struct {
662 /* The PMSAv8 implementation also shares some PMSAv7 config
663 * and state:
664 * pmsav7.rnr (region number register)
665 * pmsav7_dregion (number of configured regions)
666 */
4a16724f
PM
667 uint32_t *rbar[M_REG_NUM_BANKS];
668 uint32_t *rlar[M_REG_NUM_BANKS];
669 uint32_t mair0[M_REG_NUM_BANKS];
670 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
671 } pmsav8;
672
9901c576
PM
673 /* v8M SAU */
674 struct {
675 uint32_t *rbar;
676 uint32_t *rlar;
677 uint32_t rnr;
678 uint32_t ctrl;
679 } sau;
680
983fe826 681 void *nvic;
462a8bc6 682 const struct arm_boot_info *boot_info;
d3a3e529
VK
683 /* Store GICv3CPUState to access from this struct */
684 void *gicv3state;
2c0262af
FB
685} CPUARMState;
686
bd7d00fc 687/**
08267487 688 * ARMELChangeHookFn:
bd7d00fc
PM
689 * type of a function which can be registered via arm_register_el_change_hook()
690 * to get callbacks when the CPU changes its exception level or mode.
691 */
08267487
AL
692typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
693typedef struct ARMELChangeHook ARMELChangeHook;
694struct ARMELChangeHook {
695 ARMELChangeHookFn *hook;
696 void *opaque;
697 QLIST_ENTRY(ARMELChangeHook) node;
698};
062ba099
AB
699
700/* These values map onto the return values for
701 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
702typedef enum ARMPSCIState {
d5affb0d
AJ
703 PSCI_ON = 0,
704 PSCI_OFF = 1,
062ba099
AB
705 PSCI_ON_PENDING = 2
706} ARMPSCIState;
707
962fcbf2
RH
708typedef struct ARMISARegisters ARMISARegisters;
709
74e75564
PB
710/**
711 * ARMCPU:
712 * @env: #CPUARMState
713 *
714 * An ARM CPU core.
715 */
716struct ARMCPU {
717 /*< private >*/
718 CPUState parent_obj;
719 /*< public >*/
720
5b146dc7 721 CPUNegativeOffsetState neg;
74e75564
PB
722 CPUARMState env;
723
724 /* Coprocessor information */
725 GHashTable *cp_regs;
726 /* For marshalling (mostly coprocessor) register state between the
727 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
728 * we use these arrays.
729 */
730 /* List of register indexes managed via these arrays; (full KVM style
731 * 64 bit indexes, not CPRegInfo 32 bit indexes)
732 */
733 uint64_t *cpreg_indexes;
734 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
735 uint64_t *cpreg_values;
736 /* Length of the indexes, values, reset_values arrays */
737 int32_t cpreg_array_len;
738 /* These are used only for migration: incoming data arrives in
739 * these fields and is sanity checked in post_load before copying
740 * to the working data structures above.
741 */
742 uint64_t *cpreg_vmstate_indexes;
743 uint64_t *cpreg_vmstate_values;
744 int32_t cpreg_vmstate_array_len;
745
200bf5b7
AB
746 DynamicGDBXMLInfo dyn_xml;
747
74e75564
PB
748 /* Timers used by the generic (architected) timer */
749 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
750 /*
751 * Timer used by the PMU. Its state is restored after migration by
752 * pmu_op_finish() - it does not need other handling during migration
753 */
754 QEMUTimer *pmu_timer;
74e75564
PB
755 /* GPIO outputs for generic timer */
756 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
757 /* GPIO output for GICv3 maintenance interrupt signal */
758 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
759 /* GPIO output for the PMU interrupt */
760 qemu_irq pmu_interrupt;
74e75564
PB
761
762 /* MemoryRegion to use for secure physical accesses */
763 MemoryRegion *secure_memory;
764
181962fd
PM
765 /* For v8M, pointer to the IDAU interface provided by board/SoC */
766 Object *idau;
767
74e75564
PB
768 /* 'compatible' string for this CPU for Linux device trees */
769 const char *dtb_compatible;
770
771 /* PSCI version for this CPU
772 * Bits[31:16] = Major Version
773 * Bits[15:0] = Minor Version
774 */
775 uint32_t psci_version;
776
777 /* Should CPU start in PSCI powered-off state? */
778 bool start_powered_off;
062ba099
AB
779
780 /* Current power state, access guarded by BQL */
781 ARMPSCIState power_state;
782
c25bd18a
PM
783 /* CPU has virtualization extension */
784 bool has_el2;
74e75564
PB
785 /* CPU has security extension */
786 bool has_el3;
5c0a3819
SZ
787 /* CPU has PMU (Performance Monitor Unit) */
788 bool has_pmu;
97a28b0e
PM
789 /* CPU has VFP */
790 bool has_vfp;
791 /* CPU has Neon */
792 bool has_neon;
ea90db0a
PM
793 /* CPU has M-profile DSP extension */
794 bool has_dsp;
74e75564
PB
795
796 /* CPU has memory protection unit */
797 bool has_mpu;
798 /* PMSAv7 MPU number of supported regions */
799 uint32_t pmsav7_dregion;
9901c576
PM
800 /* v8M SAU number of supported regions */
801 uint32_t sau_sregion;
74e75564
PB
802
803 /* PSCI conduit used to invoke PSCI methods
804 * 0 - disabled, 1 - smc, 2 - hvc
805 */
806 uint32_t psci_conduit;
807
38e2a77c
PM
808 /* For v8M, initial value of the Secure VTOR */
809 uint32_t init_svtor;
810
74e75564
PB
811 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
812 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
813 */
814 uint32_t kvm_target;
815
816 /* KVM init features for this CPU */
817 uint32_t kvm_init_features[7];
818
819 /* Uniprocessor system with MP extensions */
820 bool mp_is_up;
821
c4487d76
PM
822 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
823 * and the probe failed (so we need to report the error in realize)
824 */
825 bool host_cpu_probe_failed;
826
f9a69711
AF
827 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
828 * register.
829 */
830 int32_t core_count;
831
74e75564
PB
832 /* The instance init functions for implementation-specific subclasses
833 * set these fields to specify the implementation-dependent values of
834 * various constant registers and reset values of non-constant
835 * registers.
836 * Some of these might become QOM properties eventually.
837 * Field names match the official register names as defined in the
838 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
839 * is used for reset values of non-constant registers; no reset_
840 * prefix means a constant register.
47576b94
RH
841 * Some of these registers are split out into a substructure that
842 * is shared with the translators to control the ISA.
74e75564 843 */
47576b94
RH
844 struct ARMISARegisters {
845 uint32_t id_isar0;
846 uint32_t id_isar1;
847 uint32_t id_isar2;
848 uint32_t id_isar3;
849 uint32_t id_isar4;
850 uint32_t id_isar5;
851 uint32_t id_isar6;
852 uint32_t mvfr0;
853 uint32_t mvfr1;
854 uint32_t mvfr2;
855 uint64_t id_aa64isar0;
856 uint64_t id_aa64isar1;
857 uint64_t id_aa64pfr0;
858 uint64_t id_aa64pfr1;
3dc91ddb
PM
859 uint64_t id_aa64mmfr0;
860 uint64_t id_aa64mmfr1;
47576b94 861 } isar;
74e75564
PB
862 uint32_t midr;
863 uint32_t revidr;
864 uint32_t reset_fpsid;
74e75564
PB
865 uint32_t ctr;
866 uint32_t reset_sctlr;
867 uint32_t id_pfr0;
868 uint32_t id_pfr1;
869 uint32_t id_dfr0;
cad86737
AL
870 uint64_t pmceid0;
871 uint64_t pmceid1;
74e75564
PB
872 uint32_t id_afr0;
873 uint32_t id_mmfr0;
874 uint32_t id_mmfr1;
875 uint32_t id_mmfr2;
876 uint32_t id_mmfr3;
877 uint32_t id_mmfr4;
74e75564
PB
878 uint64_t id_aa64dfr0;
879 uint64_t id_aa64dfr1;
880 uint64_t id_aa64afr0;
881 uint64_t id_aa64afr1;
74e75564
PB
882 uint32_t dbgdidr;
883 uint32_t clidr;
884 uint64_t mp_affinity; /* MP ID without feature bits */
885 /* The elements of this array are the CCSIDR values for each cache,
886 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
887 */
888 uint32_t ccsidr[16];
889 uint64_t reset_cbar;
890 uint32_t reset_auxcr;
891 bool reset_hivecs;
892 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
893 uint32_t dcz_blocksize;
894 uint64_t rvbar;
bd7d00fc 895
e45868a3
PM
896 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
897 int gic_num_lrs; /* number of list registers */
898 int gic_vpribits; /* number of virtual priority bits */
899 int gic_vprebits; /* number of virtual preemption bits */
900
3a062d57
JB
901 /* Whether the cfgend input is high (i.e. this CPU should reset into
902 * big-endian mode). This setting isn't used directly: instead it modifies
903 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
904 * architecture version.
905 */
906 bool cfgend;
907
b5c53d1b 908 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 909 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
910
911 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
912
913 /* Used to synchronize KVM and QEMU in-kernel device levels */
914 uint8_t device_irq_level;
adf92eab
RH
915
916 /* Used to set the maximum vector length the cpu will support. */
917 uint32_t sve_max_vq;
74e75564
PB
918};
919
51e5ef45
MAL
920void arm_cpu_post_init(Object *obj);
921
46de5913
IM
922uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
923
74e75564
PB
924#ifndef CONFIG_USER_ONLY
925extern const struct VMStateDescription vmstate_arm_cpu;
926#endif
927
928void arm_cpu_do_interrupt(CPUState *cpu);
929void arm_v7m_cpu_do_interrupt(CPUState *cpu);
930bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
931
90c84c56 932void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
74e75564
PB
933
934hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
935 MemTxAttrs *attrs);
936
937int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
938int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
939
200bf5b7
AB
940/* Dynamically generates for gdb stub an XML description of the sysregs from
941 * the cp_regs hashtable. Returns the registered sysregs number.
942 */
943int arm_gen_dynamic_xml(CPUState *cpu);
944
945/* Returns the dynamically generated XML for the gdb stub.
946 * Returns a pointer to the XML contents for the specified XML file or NULL
947 * if the XML name doesn't match the predefined one.
948 */
949const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
950
74e75564
PB
951int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
952 int cpuid, void *opaque);
953int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
954 int cpuid, void *opaque);
955
956#ifdef TARGET_AARCH64
957int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
958int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 959void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
960void aarch64_sve_change_el(CPUARMState *env, int old_el,
961 int new_el, bool el0_a64);
0ab5953b
RH
962#else
963static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
964static inline void aarch64_sve_change_el(CPUARMState *env, int o,
965 int n, bool a)
966{ }
74e75564 967#endif
778c3a06 968
faacc041 969target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
970void aarch64_sync_32_to_64(CPUARMState *env);
971void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 972
ced31551
RH
973int fp_exception_el(CPUARMState *env, int cur_el);
974int sve_exception_el(CPUARMState *env, int cur_el);
975uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
976
3926cc84
AG
977static inline bool is_a64(CPUARMState *env)
978{
979 return env->aarch64;
980}
981
2c0262af
FB
982/* you can call this signal handler from your SIGBUS and SIGSEGV
983 signal handlers to inform the virtual CPU of exceptions. non zero
984 is returned if the signal was handled by the virtual CPU. */
5fafdf24 985int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
986 void *puc);
987
5d05b9d4
AL
988/**
989 * pmu_op_start/finish
ec7b4ce4
AF
990 * @env: CPUARMState
991 *
5d05b9d4
AL
992 * Convert all PMU counters between their delta form (the typical mode when
993 * they are enabled) and the guest-visible values. These two calls must
994 * surround any action which might affect the counters.
ec7b4ce4 995 */
5d05b9d4
AL
996void pmu_op_start(CPUARMState *env);
997void pmu_op_finish(CPUARMState *env);
ec7b4ce4 998
4e7beb0c
AL
999/*
1000 * Called when a PMU counter is due to overflow
1001 */
1002void arm_pmu_timer_cb(void *opaque);
1003
033614c4
AL
1004/**
1005 * Functions to register as EL change hooks for PMU mode filtering
1006 */
1007void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1008void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1009
57a4a11b 1010/*
bf8d0969
AL
1011 * pmu_init
1012 * @cpu: ARMCPU
57a4a11b 1013 *
bf8d0969
AL
1014 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1015 * for the current configuration
57a4a11b 1016 */
bf8d0969 1017void pmu_init(ARMCPU *cpu);
57a4a11b 1018
76e3e1bc
PM
1019/* SCTLR bit meanings. Several bits have been reused in newer
1020 * versions of the architecture; in that case we define constants
1021 * for both old and new bit meanings. Code which tests against those
1022 * bits should probably check or otherwise arrange that the CPU
1023 * is the architectural version it expects.
1024 */
1025#define SCTLR_M (1U << 0)
1026#define SCTLR_A (1U << 1)
1027#define SCTLR_C (1U << 2)
1028#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1029#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1030#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1031#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1032#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1033#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1034#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1035#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1036#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1037#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1038#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1039#define SCTLR_ITD (1U << 7) /* v8 onward */
1040#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1041#define SCTLR_SED (1U << 8) /* v8 onward */
1042#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1043#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1044#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1045#define SCTLR_SW (1U << 10) /* v7 */
1046#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1047#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1048#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1049#define SCTLR_I (1U << 12)
b2af69d0
RH
1050#define SCTLR_V (1U << 13) /* AArch32 only */
1051#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1052#define SCTLR_RR (1U << 14) /* up to v7 */
1053#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1054#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1055#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1056#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1057#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1058#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1059#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1060#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1061#define SCTLR_nTWE (1U << 18) /* v8 onward */
1062#define SCTLR_WXN (1U << 19)
1063#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1064#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1065#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1066#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1067#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1068#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1069#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1070#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1071#define SCTLR_VE (1U << 24) /* up to v7 */
1072#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1073#define SCTLR_EE (1U << 25)
1074#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1075#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1076#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1077#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1078#define SCTLR_TRE (1U << 28) /* AArch32 only */
1079#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1080#define SCTLR_AFE (1U << 29) /* AArch32 only */
1081#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1082#define SCTLR_TE (1U << 30) /* AArch32 only */
1083#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1084#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1085#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1086#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1087#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1088#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1089#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1090#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1091#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1092#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1093
c6f19164
GB
1094#define CPTR_TCPAC (1U << 31)
1095#define CPTR_TTA (1U << 20)
1096#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1097#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1098#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1099
187f678d
PM
1100#define MDCR_EPMAD (1U << 21)
1101#define MDCR_EDAD (1U << 20)
033614c4
AL
1102#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1103#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1104#define MDCR_SDD (1U << 16)
a8d64e73 1105#define MDCR_SPD (3U << 14)
187f678d
PM
1106#define MDCR_TDRA (1U << 11)
1107#define MDCR_TDOSA (1U << 10)
1108#define MDCR_TDA (1U << 9)
1109#define MDCR_TDE (1U << 8)
1110#define MDCR_HPME (1U << 7)
1111#define MDCR_TPM (1U << 6)
1112#define MDCR_TPMCR (1U << 5)
033614c4 1113#define MDCR_HPMN (0x1fU)
187f678d 1114
a8d64e73
PM
1115/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1116#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1117
78dbbbe4
PM
1118#define CPSR_M (0x1fU)
1119#define CPSR_T (1U << 5)
1120#define CPSR_F (1U << 6)
1121#define CPSR_I (1U << 7)
1122#define CPSR_A (1U << 8)
1123#define CPSR_E (1U << 9)
1124#define CPSR_IT_2_7 (0xfc00U)
1125#define CPSR_GE (0xfU << 16)
4051e12c
PM
1126#define CPSR_IL (1U << 20)
1127/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1128 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1129 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1130 * where it is live state but not accessible to the AArch32 code.
1131 */
1132#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1133#define CPSR_J (1U << 24)
1134#define CPSR_IT_0_1 (3U << 25)
1135#define CPSR_Q (1U << 27)
1136#define CPSR_V (1U << 28)
1137#define CPSR_C (1U << 29)
1138#define CPSR_Z (1U << 30)
1139#define CPSR_N (1U << 31)
9ee6e8bb 1140#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1141#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1142
1143#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1144#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1145 | CPSR_NZCV)
9ee6e8bb
PB
1146/* Bits writable in user mode. */
1147#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1148/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1149#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1150/* Mask of bits which may be set by exception return copying them from SPSR */
1151#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1152
987ab45e
PM
1153/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1154#define XPSR_EXCP 0x1ffU
1155#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1156#define XPSR_IT_2_7 CPSR_IT_2_7
1157#define XPSR_GE CPSR_GE
1158#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1159#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1160#define XPSR_IT_0_1 CPSR_IT_0_1
1161#define XPSR_Q CPSR_Q
1162#define XPSR_V CPSR_V
1163#define XPSR_C CPSR_C
1164#define XPSR_Z CPSR_Z
1165#define XPSR_N CPSR_N
1166#define XPSR_NZCV CPSR_NZCV
1167#define XPSR_IT CPSR_IT
1168
e389be16
FA
1169#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1170#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1171#define TTBCR_PD0 (1U << 4)
1172#define TTBCR_PD1 (1U << 5)
1173#define TTBCR_EPD0 (1U << 7)
1174#define TTBCR_IRGN0 (3U << 8)
1175#define TTBCR_ORGN0 (3U << 10)
1176#define TTBCR_SH0 (3U << 12)
1177#define TTBCR_T1SZ (3U << 16)
1178#define TTBCR_A1 (1U << 22)
1179#define TTBCR_EPD1 (1U << 23)
1180#define TTBCR_IRGN1 (3U << 24)
1181#define TTBCR_ORGN1 (3U << 26)
1182#define TTBCR_SH1 (1U << 28)
1183#define TTBCR_EAE (1U << 31)
1184
d356312f
PM
1185/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1186 * Only these are valid when in AArch64 mode; in
1187 * AArch32 mode SPSRs are basically CPSR-format.
1188 */
f502cfc2 1189#define PSTATE_SP (1U)
d356312f
PM
1190#define PSTATE_M (0xFU)
1191#define PSTATE_nRW (1U << 4)
1192#define PSTATE_F (1U << 6)
1193#define PSTATE_I (1U << 7)
1194#define PSTATE_A (1U << 8)
1195#define PSTATE_D (1U << 9)
f6e52eaa 1196#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1197#define PSTATE_IL (1U << 20)
1198#define PSTATE_SS (1U << 21)
1199#define PSTATE_V (1U << 28)
1200#define PSTATE_C (1U << 29)
1201#define PSTATE_Z (1U << 30)
1202#define PSTATE_N (1U << 31)
1203#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1204#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1205#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1206/* Mode values for AArch64 */
1207#define PSTATE_MODE_EL3h 13
1208#define PSTATE_MODE_EL3t 12
1209#define PSTATE_MODE_EL2h 9
1210#define PSTATE_MODE_EL2t 8
1211#define PSTATE_MODE_EL1h 5
1212#define PSTATE_MODE_EL1t 4
1213#define PSTATE_MODE_EL0t 0
1214
de2db7ec
PM
1215/* Write a new value to v7m.exception, thus transitioning into or out
1216 * of Handler mode; this may result in a change of active stack pointer.
1217 */
1218void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1219
9e729b57
EI
1220/* Map EL and handler into a PSTATE_MODE. */
1221static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1222{
1223 return (el << 2) | handler;
1224}
1225
d356312f
PM
1226/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1227 * interprocessing, so we don't attempt to sync with the cpsr state used by
1228 * the 32 bit decoder.
1229 */
1230static inline uint32_t pstate_read(CPUARMState *env)
1231{
1232 int ZF;
1233
1234 ZF = (env->ZF == 0);
1235 return (env->NF & 0x80000000) | (ZF << 30)
1236 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1237 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1238}
1239
1240static inline void pstate_write(CPUARMState *env, uint32_t val)
1241{
1242 env->ZF = (~val) & PSTATE_Z;
1243 env->NF = val;
1244 env->CF = (val >> 29) & 1;
1245 env->VF = (val << 3) & 0x80000000;
4cc35614 1246 env->daif = val & PSTATE_DAIF;
f6e52eaa 1247 env->btype = (val >> 10) & 3;
d356312f
PM
1248 env->pstate = val & ~CACHED_PSTATE_BITS;
1249}
1250
b5ff1b31 1251/* Return the current CPSR value. */
2f4a40e5 1252uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1253
1254typedef enum CPSRWriteType {
1255 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1256 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1257 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1258 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1259} CPSRWriteType;
1260
1261/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1262void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1263 CPSRWriteType write_type);
9ee6e8bb
PB
1264
1265/* Return the current xPSR value. */
1266static inline uint32_t xpsr_read(CPUARMState *env)
1267{
1268 int ZF;
6fbe23d5
PB
1269 ZF = (env->ZF == 0);
1270 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1271 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1272 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1273 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1274 | (env->GE << 16)
9ee6e8bb 1275 | env->v7m.exception;
b5ff1b31
FB
1276}
1277
9ee6e8bb
PB
1278/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1279static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1280{
987ab45e
PM
1281 if (mask & XPSR_NZCV) {
1282 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1283 env->NF = val;
9ee6e8bb
PB
1284 env->CF = (val >> 29) & 1;
1285 env->VF = (val << 3) & 0x80000000;
1286 }
987ab45e
PM
1287 if (mask & XPSR_Q) {
1288 env->QF = ((val & XPSR_Q) != 0);
1289 }
f1e2598c
PM
1290 if (mask & XPSR_GE) {
1291 env->GE = (val & XPSR_GE) >> 16;
1292 }
987ab45e
PM
1293 if (mask & XPSR_T) {
1294 env->thumb = ((val & XPSR_T) != 0);
1295 }
1296 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1297 env->condexec_bits &= ~3;
1298 env->condexec_bits |= (val >> 25) & 3;
1299 }
987ab45e 1300 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1301 env->condexec_bits &= 3;
1302 env->condexec_bits |= (val >> 8) & 0xfc;
1303 }
987ab45e 1304 if (mask & XPSR_EXCP) {
de2db7ec
PM
1305 /* Note that this only happens on exception exit */
1306 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1307 }
1308}
1309
f149e3e8
EI
1310#define HCR_VM (1ULL << 0)
1311#define HCR_SWIO (1ULL << 1)
1312#define HCR_PTW (1ULL << 2)
1313#define HCR_FMO (1ULL << 3)
1314#define HCR_IMO (1ULL << 4)
1315#define HCR_AMO (1ULL << 5)
1316#define HCR_VF (1ULL << 6)
1317#define HCR_VI (1ULL << 7)
1318#define HCR_VSE (1ULL << 8)
1319#define HCR_FB (1ULL << 9)
1320#define HCR_BSU_MASK (3ULL << 10)
1321#define HCR_DC (1ULL << 12)
1322#define HCR_TWI (1ULL << 13)
1323#define HCR_TWE (1ULL << 14)
1324#define HCR_TID0 (1ULL << 15)
1325#define HCR_TID1 (1ULL << 16)
1326#define HCR_TID2 (1ULL << 17)
1327#define HCR_TID3 (1ULL << 18)
1328#define HCR_TSC (1ULL << 19)
1329#define HCR_TIDCP (1ULL << 20)
1330#define HCR_TACR (1ULL << 21)
1331#define HCR_TSW (1ULL << 22)
099bf53b 1332#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1333#define HCR_TPU (1ULL << 24)
1334#define HCR_TTLB (1ULL << 25)
1335#define HCR_TVM (1ULL << 26)
1336#define HCR_TGE (1ULL << 27)
1337#define HCR_TDZ (1ULL << 28)
1338#define HCR_HCD (1ULL << 29)
1339#define HCR_TRVM (1ULL << 30)
1340#define HCR_RW (1ULL << 31)
1341#define HCR_CD (1ULL << 32)
1342#define HCR_ID (1ULL << 33)
ac656b16 1343#define HCR_E2H (1ULL << 34)
099bf53b
RH
1344#define HCR_TLOR (1ULL << 35)
1345#define HCR_TERR (1ULL << 36)
1346#define HCR_TEA (1ULL << 37)
1347#define HCR_MIOCNCE (1ULL << 38)
1348#define HCR_APK (1ULL << 40)
1349#define HCR_API (1ULL << 41)
1350#define HCR_NV (1ULL << 42)
1351#define HCR_NV1 (1ULL << 43)
1352#define HCR_AT (1ULL << 44)
1353#define HCR_NV2 (1ULL << 45)
1354#define HCR_FWB (1ULL << 46)
1355#define HCR_FIEN (1ULL << 47)
1356#define HCR_TID4 (1ULL << 49)
1357#define HCR_TICAB (1ULL << 50)
1358#define HCR_TOCU (1ULL << 52)
1359#define HCR_TTLBIS (1ULL << 54)
1360#define HCR_TTLBOS (1ULL << 55)
1361#define HCR_ATA (1ULL << 56)
1362#define HCR_DCT (1ULL << 57)
1363
ac656b16
PM
1364/*
1365 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1366 * HCR_MASK and then clear it again if the feature bit is not set in
1367 * hcr_write().
1368 */
f149e3e8
EI
1369#define HCR_MASK ((1ULL << 34) - 1)
1370
64e0e2de
EI
1371#define SCR_NS (1U << 0)
1372#define SCR_IRQ (1U << 1)
1373#define SCR_FIQ (1U << 2)
1374#define SCR_EA (1U << 3)
1375#define SCR_FW (1U << 4)
1376#define SCR_AW (1U << 5)
1377#define SCR_NET (1U << 6)
1378#define SCR_SMD (1U << 7)
1379#define SCR_HCE (1U << 8)
1380#define SCR_SIF (1U << 9)
1381#define SCR_RW (1U << 10)
1382#define SCR_ST (1U << 11)
1383#define SCR_TWI (1U << 12)
1384#define SCR_TWE (1U << 13)
99f8f86d
RH
1385#define SCR_TLOR (1U << 14)
1386#define SCR_TERR (1U << 15)
1387#define SCR_APK (1U << 16)
1388#define SCR_API (1U << 17)
1389#define SCR_EEL2 (1U << 18)
1390#define SCR_EASE (1U << 19)
1391#define SCR_NMEA (1U << 20)
1392#define SCR_FIEN (1U << 21)
1393#define SCR_ENSCXT (1U << 25)
1394#define SCR_ATA (1U << 26)
64e0e2de 1395
01653295
PM
1396/* Return the current FPSCR value. */
1397uint32_t vfp_get_fpscr(CPUARMState *env);
1398void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1399
d81ce0ef
AB
1400/* FPCR, Floating Point Control Register
1401 * FPSR, Floating Poiht Status Register
1402 *
1403 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1404 * FPCR and FPSR. However since they still use non-overlapping bits
1405 * we store the underlying state in fpscr and just mask on read/write.
1406 */
1407#define FPSR_MASK 0xf800009f
0b62159b 1408#define FPCR_MASK 0x07ff9f00
d81ce0ef 1409
a15945d9
PM
1410#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1411#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1412#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1413#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1414#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1415#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1416#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1417#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1418#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1419#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1420
f903fa22
PM
1421static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1422{
1423 return vfp_get_fpscr(env) & FPSR_MASK;
1424}
1425
1426static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1427{
1428 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1429 vfp_set_fpscr(env, new_fpscr);
1430}
1431
1432static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1433{
1434 return vfp_get_fpscr(env) & FPCR_MASK;
1435}
1436
1437static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1438{
1439 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1440 vfp_set_fpscr(env, new_fpscr);
1441}
1442
b5ff1b31
FB
1443enum arm_cpu_mode {
1444 ARM_CPU_MODE_USR = 0x10,
1445 ARM_CPU_MODE_FIQ = 0x11,
1446 ARM_CPU_MODE_IRQ = 0x12,
1447 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1448 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1449 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1450 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1451 ARM_CPU_MODE_UND = 0x1b,
1452 ARM_CPU_MODE_SYS = 0x1f
1453};
1454
40f137e1
PB
1455/* VFP system registers. */
1456#define ARM_VFP_FPSID 0
1457#define ARM_VFP_FPSCR 1
a50c0f51 1458#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1459#define ARM_VFP_MVFR1 6
1460#define ARM_VFP_MVFR0 7
40f137e1
PB
1461#define ARM_VFP_FPEXC 8
1462#define ARM_VFP_FPINST 9
1463#define ARM_VFP_FPINST2 10
1464
18c9b560 1465/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1466#define ARM_IWMMXT_wCID 0
1467#define ARM_IWMMXT_wCon 1
1468#define ARM_IWMMXT_wCSSF 2
1469#define ARM_IWMMXT_wCASF 3
1470#define ARM_IWMMXT_wCGR0 8
1471#define ARM_IWMMXT_wCGR1 9
1472#define ARM_IWMMXT_wCGR2 10
1473#define ARM_IWMMXT_wCGR3 11
18c9b560 1474
2c4da50d
PM
1475/* V7M CCR bits */
1476FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1477FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1478FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1479FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1480FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1481FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1482FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1483FIELD(V7M_CCR, DC, 16, 1)
1484FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1485FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1486
24ac0fb1
PM
1487/* V7M SCR bits */
1488FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1489FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1490FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1491FIELD(V7M_SCR, SEVONPEND, 4, 1)
1492
3b2e9344
PM
1493/* V7M AIRCR bits */
1494FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1495FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1496FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1497FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1498FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1499FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1500FIELD(V7M_AIRCR, PRIS, 14, 1)
1501FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1502FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1503
2c4da50d
PM
1504/* V7M CFSR bits for MMFSR */
1505FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1506FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1507FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1508FIELD(V7M_CFSR, MSTKERR, 4, 1)
1509FIELD(V7M_CFSR, MLSPERR, 5, 1)
1510FIELD(V7M_CFSR, MMARVALID, 7, 1)
1511
1512/* V7M CFSR bits for BFSR */
1513FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1514FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1515FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1516FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1517FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1518FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1519FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1520
1521/* V7M CFSR bits for UFSR */
1522FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1523FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1524FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1525FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1526FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1527FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1528FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1529
334e8dad
PM
1530/* V7M CFSR bit masks covering all of the subregister bits */
1531FIELD(V7M_CFSR, MMFSR, 0, 8)
1532FIELD(V7M_CFSR, BFSR, 8, 8)
1533FIELD(V7M_CFSR, UFSR, 16, 16)
1534
2c4da50d
PM
1535/* V7M HFSR bits */
1536FIELD(V7M_HFSR, VECTTBL, 1, 1)
1537FIELD(V7M_HFSR, FORCED, 30, 1)
1538FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1539
1540/* V7M DFSR bits */
1541FIELD(V7M_DFSR, HALTED, 0, 1)
1542FIELD(V7M_DFSR, BKPT, 1, 1)
1543FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1544FIELD(V7M_DFSR, VCATCH, 3, 1)
1545FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1546
bed079da
PM
1547/* V7M SFSR bits */
1548FIELD(V7M_SFSR, INVEP, 0, 1)
1549FIELD(V7M_SFSR, INVIS, 1, 1)
1550FIELD(V7M_SFSR, INVER, 2, 1)
1551FIELD(V7M_SFSR, AUVIOL, 3, 1)
1552FIELD(V7M_SFSR, INVTRAN, 4, 1)
1553FIELD(V7M_SFSR, LSPERR, 5, 1)
1554FIELD(V7M_SFSR, SFARVALID, 6, 1)
1555FIELD(V7M_SFSR, LSERR, 7, 1)
1556
29c483a5
MD
1557/* v7M MPU_CTRL bits */
1558FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1559FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1560FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1561
43bbce7f
PM
1562/* v7M CLIDR bits */
1563FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1564FIELD(V7M_CLIDR, LOUIS, 21, 3)
1565FIELD(V7M_CLIDR, LOC, 24, 3)
1566FIELD(V7M_CLIDR, LOUU, 27, 3)
1567FIELD(V7M_CLIDR, ICB, 30, 2)
1568
1569FIELD(V7M_CSSELR, IND, 0, 1)
1570FIELD(V7M_CSSELR, LEVEL, 1, 3)
1571/* We use the combination of InD and Level to index into cpu->ccsidr[];
1572 * define a mask for this and check that it doesn't permit running off
1573 * the end of the array.
1574 */
1575FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1576
1577/* v7M FPCCR bits */
1578FIELD(V7M_FPCCR, LSPACT, 0, 1)
1579FIELD(V7M_FPCCR, USER, 1, 1)
1580FIELD(V7M_FPCCR, S, 2, 1)
1581FIELD(V7M_FPCCR, THREAD, 3, 1)
1582FIELD(V7M_FPCCR, HFRDY, 4, 1)
1583FIELD(V7M_FPCCR, MMRDY, 5, 1)
1584FIELD(V7M_FPCCR, BFRDY, 6, 1)
1585FIELD(V7M_FPCCR, SFRDY, 7, 1)
1586FIELD(V7M_FPCCR, MONRDY, 8, 1)
1587FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1588FIELD(V7M_FPCCR, UFRDY, 10, 1)
1589FIELD(V7M_FPCCR, RES0, 11, 15)
1590FIELD(V7M_FPCCR, TS, 26, 1)
1591FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1592FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1593FIELD(V7M_FPCCR, LSPENS, 29, 1)
1594FIELD(V7M_FPCCR, LSPEN, 30, 1)
1595FIELD(V7M_FPCCR, ASPEN, 31, 1)
1596/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1597#define R_V7M_FPCCR_BANKED_MASK \
1598 (R_V7M_FPCCR_LSPACT_MASK | \
1599 R_V7M_FPCCR_USER_MASK | \
1600 R_V7M_FPCCR_THREAD_MASK | \
1601 R_V7M_FPCCR_MMRDY_MASK | \
1602 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1603 R_V7M_FPCCR_UFRDY_MASK | \
1604 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1605
a62e62af
RH
1606/*
1607 * System register ID fields.
1608 */
1609FIELD(ID_ISAR0, SWAP, 0, 4)
1610FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1611FIELD(ID_ISAR0, BITFIELD, 8, 4)
1612FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1613FIELD(ID_ISAR0, COPROC, 16, 4)
1614FIELD(ID_ISAR0, DEBUG, 20, 4)
1615FIELD(ID_ISAR0, DIVIDE, 24, 4)
1616
1617FIELD(ID_ISAR1, ENDIAN, 0, 4)
1618FIELD(ID_ISAR1, EXCEPT, 4, 4)
1619FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1620FIELD(ID_ISAR1, EXTEND, 12, 4)
1621FIELD(ID_ISAR1, IFTHEN, 16, 4)
1622FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1623FIELD(ID_ISAR1, INTERWORK, 24, 4)
1624FIELD(ID_ISAR1, JAZELLE, 28, 4)
1625
1626FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1627FIELD(ID_ISAR2, MEMHINT, 4, 4)
1628FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1629FIELD(ID_ISAR2, MULT, 12, 4)
1630FIELD(ID_ISAR2, MULTS, 16, 4)
1631FIELD(ID_ISAR2, MULTU, 20, 4)
1632FIELD(ID_ISAR2, PSR_AR, 24, 4)
1633FIELD(ID_ISAR2, REVERSAL, 28, 4)
1634
1635FIELD(ID_ISAR3, SATURATE, 0, 4)
1636FIELD(ID_ISAR3, SIMD, 4, 4)
1637FIELD(ID_ISAR3, SVC, 8, 4)
1638FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1639FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1640FIELD(ID_ISAR3, T32COPY, 20, 4)
1641FIELD(ID_ISAR3, TRUENOP, 24, 4)
1642FIELD(ID_ISAR3, T32EE, 28, 4)
1643
1644FIELD(ID_ISAR4, UNPRIV, 0, 4)
1645FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1646FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1647FIELD(ID_ISAR4, SMC, 12, 4)
1648FIELD(ID_ISAR4, BARRIER, 16, 4)
1649FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1650FIELD(ID_ISAR4, PSR_M, 24, 4)
1651FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1652
1653FIELD(ID_ISAR5, SEVL, 0, 4)
1654FIELD(ID_ISAR5, AES, 4, 4)
1655FIELD(ID_ISAR5, SHA1, 8, 4)
1656FIELD(ID_ISAR5, SHA2, 12, 4)
1657FIELD(ID_ISAR5, CRC32, 16, 4)
1658FIELD(ID_ISAR5, RDM, 24, 4)
1659FIELD(ID_ISAR5, VCMA, 28, 4)
1660
1661FIELD(ID_ISAR6, JSCVT, 0, 4)
1662FIELD(ID_ISAR6, DP, 4, 4)
1663FIELD(ID_ISAR6, FHM, 8, 4)
1664FIELD(ID_ISAR6, SB, 12, 4)
1665FIELD(ID_ISAR6, SPECRES, 16, 4)
1666
ab638a32
RH
1667FIELD(ID_MMFR4, SPECSEI, 0, 4)
1668FIELD(ID_MMFR4, AC2, 4, 4)
1669FIELD(ID_MMFR4, XNX, 8, 4)
1670FIELD(ID_MMFR4, CNP, 12, 4)
1671FIELD(ID_MMFR4, HPDS, 16, 4)
1672FIELD(ID_MMFR4, LSM, 20, 4)
1673FIELD(ID_MMFR4, CCIDX, 24, 4)
1674FIELD(ID_MMFR4, EVT, 28, 4)
1675
a62e62af
RH
1676FIELD(ID_AA64ISAR0, AES, 4, 4)
1677FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1678FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1679FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1680FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1681FIELD(ID_AA64ISAR0, RDM, 28, 4)
1682FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1683FIELD(ID_AA64ISAR0, SM3, 36, 4)
1684FIELD(ID_AA64ISAR0, SM4, 40, 4)
1685FIELD(ID_AA64ISAR0, DP, 44, 4)
1686FIELD(ID_AA64ISAR0, FHM, 48, 4)
1687FIELD(ID_AA64ISAR0, TS, 52, 4)
1688FIELD(ID_AA64ISAR0, TLB, 56, 4)
1689FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1690
1691FIELD(ID_AA64ISAR1, DPB, 0, 4)
1692FIELD(ID_AA64ISAR1, APA, 4, 4)
1693FIELD(ID_AA64ISAR1, API, 8, 4)
1694FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1695FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1696FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1697FIELD(ID_AA64ISAR1, GPA, 24, 4)
1698FIELD(ID_AA64ISAR1, GPI, 28, 4)
1699FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1700FIELD(ID_AA64ISAR1, SB, 36, 4)
1701FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1702
cd208a1c
RH
1703FIELD(ID_AA64PFR0, EL0, 0, 4)
1704FIELD(ID_AA64PFR0, EL1, 4, 4)
1705FIELD(ID_AA64PFR0, EL2, 8, 4)
1706FIELD(ID_AA64PFR0, EL3, 12, 4)
1707FIELD(ID_AA64PFR0, FP, 16, 4)
1708FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1709FIELD(ID_AA64PFR0, GIC, 24, 4)
1710FIELD(ID_AA64PFR0, RAS, 28, 4)
1711FIELD(ID_AA64PFR0, SVE, 32, 4)
1712
be53b6f4
RH
1713FIELD(ID_AA64PFR1, BT, 0, 4)
1714FIELD(ID_AA64PFR1, SBSS, 4, 4)
1715FIELD(ID_AA64PFR1, MTE, 8, 4)
1716FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1717
3dc91ddb
PM
1718FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1719FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1720FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1721FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1722FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1723FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1724FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1725FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1726FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1727FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1728FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1729FIELD(ID_AA64MMFR0, EXS, 44, 4)
1730
1731FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1732FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1733FIELD(ID_AA64MMFR1, VH, 8, 4)
1734FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1735FIELD(ID_AA64MMFR1, LO, 16, 4)
1736FIELD(ID_AA64MMFR1, PAN, 20, 4)
1737FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1738FIELD(ID_AA64MMFR1, XNX, 28, 4)
1739
beceb99c
AL
1740FIELD(ID_DFR0, COPDBG, 0, 4)
1741FIELD(ID_DFR0, COPSDBG, 4, 4)
1742FIELD(ID_DFR0, MMAPDBG, 8, 4)
1743FIELD(ID_DFR0, COPTRC, 12, 4)
1744FIELD(ID_DFR0, MMAPTRC, 16, 4)
1745FIELD(ID_DFR0, MPROFDBG, 20, 4)
1746FIELD(ID_DFR0, PERFMON, 24, 4)
1747FIELD(ID_DFR0, TRACEFILT, 28, 4)
1748
602f6e42
PM
1749FIELD(MVFR0, SIMDREG, 0, 4)
1750FIELD(MVFR0, FPSP, 4, 4)
1751FIELD(MVFR0, FPDP, 8, 4)
1752FIELD(MVFR0, FPTRAP, 12, 4)
1753FIELD(MVFR0, FPDIVIDE, 16, 4)
1754FIELD(MVFR0, FPSQRT, 20, 4)
1755FIELD(MVFR0, FPSHVEC, 24, 4)
1756FIELD(MVFR0, FPROUND, 28, 4)
1757
1758FIELD(MVFR1, FPFTZ, 0, 4)
1759FIELD(MVFR1, FPDNAN, 4, 4)
1760FIELD(MVFR1, SIMDLS, 8, 4)
1761FIELD(MVFR1, SIMDINT, 12, 4)
1762FIELD(MVFR1, SIMDSP, 16, 4)
1763FIELD(MVFR1, SIMDHP, 20, 4)
1764FIELD(MVFR1, FPHP, 24, 4)
1765FIELD(MVFR1, SIMDFMAC, 28, 4)
1766
1767FIELD(MVFR2, SIMDMISC, 0, 4)
1768FIELD(MVFR2, FPMISC, 4, 4)
1769
43bbce7f
PM
1770QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1771
ce854d7c
BC
1772/* If adding a feature bit which corresponds to a Linux ELF
1773 * HWCAP bit, remember to update the feature-bit-to-hwcap
1774 * mapping in linux-user/elfload.c:get_elf_hwcap().
1775 */
40f137e1
PB
1776enum arm_features {
1777 ARM_FEATURE_VFP,
c1713132
AZ
1778 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1779 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1780 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1781 ARM_FEATURE_V6,
1782 ARM_FEATURE_V6K,
1783 ARM_FEATURE_V7,
1784 ARM_FEATURE_THUMB2,
452a0955 1785 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1786 ARM_FEATURE_VFP3,
1787 ARM_FEATURE_NEON,
9ee6e8bb 1788 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1789 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1790 ARM_FEATURE_THUMB2EE,
be5e7a76 1791 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1792 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1793 ARM_FEATURE_V4T,
1794 ARM_FEATURE_V5,
5bc95aa2 1795 ARM_FEATURE_STRONGARM,
906879a9 1796 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1797 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1798 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1799 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1800 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1801 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1802 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1803 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1804 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1805 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1806 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1807 ARM_FEATURE_V8,
3926cc84 1808 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1809 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1810 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1811 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1812 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1813 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1814 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1815 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1816 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1817 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1818 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1819};
1820
1821static inline int arm_feature(CPUARMState *env, int feature)
1822{
918f5dca 1823 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1824}
1825
19e0fefa
FA
1826#if !defined(CONFIG_USER_ONLY)
1827/* Return true if exception levels below EL3 are in secure state,
1828 * or would be following an exception return to that level.
1829 * Unlike arm_is_secure() (which is always a question about the
1830 * _current_ state of the CPU) this doesn't care about the current
1831 * EL or mode.
1832 */
1833static inline bool arm_is_secure_below_el3(CPUARMState *env)
1834{
1835 if (arm_feature(env, ARM_FEATURE_EL3)) {
1836 return !(env->cp15.scr_el3 & SCR_NS);
1837 } else {
6b7f0b61 1838 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1839 * defined, in which case QEMU defaults to non-secure.
1840 */
1841 return false;
1842 }
1843}
1844
71205876
PM
1845/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1846static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1847{
1848 if (arm_feature(env, ARM_FEATURE_EL3)) {
1849 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1850 /* CPU currently in AArch64 state and EL3 */
1851 return true;
1852 } else if (!is_a64(env) &&
1853 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1854 /* CPU currently in AArch32 state and monitor mode */
1855 return true;
1856 }
1857 }
71205876
PM
1858 return false;
1859}
1860
1861/* Return true if the processor is in secure state */
1862static inline bool arm_is_secure(CPUARMState *env)
1863{
1864 if (arm_is_el3_or_mon(env)) {
1865 return true;
1866 }
19e0fefa
FA
1867 return arm_is_secure_below_el3(env);
1868}
1869
1870#else
1871static inline bool arm_is_secure_below_el3(CPUARMState *env)
1872{
1873 return false;
1874}
1875
1876static inline bool arm_is_secure(CPUARMState *env)
1877{
1878 return false;
1879}
1880#endif
1881
f7778444
RH
1882/**
1883 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1884 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1885 * "for all purposes other than a direct read or write access of HCR_EL2."
1886 * Not included here is HCR_RW.
1887 */
1888uint64_t arm_hcr_el2_eff(CPUARMState *env);
1889
1f79ee32
PM
1890/* Return true if the specified exception level is running in AArch64 state. */
1891static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1892{
446c81ab
PM
1893 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1894 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1895 */
446c81ab
PM
1896 assert(el >= 1 && el <= 3);
1897 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1898
446c81ab
PM
1899 /* The highest exception level is always at the maximum supported
1900 * register width, and then lower levels have a register width controlled
1901 * by bits in the SCR or HCR registers.
1f79ee32 1902 */
446c81ab
PM
1903 if (el == 3) {
1904 return aa64;
1905 }
1906
1907 if (arm_feature(env, ARM_FEATURE_EL3)) {
1908 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1909 }
1910
1911 if (el == 2) {
1912 return aa64;
1913 }
1914
1915 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1916 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1917 }
1918
1919 return aa64;
1f79ee32
PM
1920}
1921
3f342b9e
SF
1922/* Function for determing whether guest cp register reads and writes should
1923 * access the secure or non-secure bank of a cp register. When EL3 is
1924 * operating in AArch32 state, the NS-bit determines whether the secure
1925 * instance of a cp register should be used. When EL3 is AArch64 (or if
1926 * it doesn't exist at all) then there is no register banking, and all
1927 * accesses are to the non-secure version.
1928 */
1929static inline bool access_secure_reg(CPUARMState *env)
1930{
1931 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1932 !arm_el_is_aa64(env, 3) &&
1933 !(env->cp15.scr_el3 & SCR_NS));
1934
1935 return ret;
1936}
1937
ea30a4b8
FA
1938/* Macros for accessing a specified CP register bank */
1939#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1940 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1941
1942#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1943 do { \
1944 if (_secure) { \
1945 (_env)->cp15._regname##_s = (_val); \
1946 } else { \
1947 (_env)->cp15._regname##_ns = (_val); \
1948 } \
1949 } while (0)
1950
1951/* Macros for automatically accessing a specific CP register bank depending on
1952 * the current secure state of the system. These macros are not intended for
1953 * supporting instruction translation reads/writes as these are dependent
1954 * solely on the SCR.NS bit and not the mode.
1955 */
1956#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1957 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1958 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1959
1960#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1961 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1962 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1963 (_val))
1964
0442428a 1965void arm_cpu_list(void);
012a906b
GB
1966uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1967 uint32_t cur_el, bool secure);
40f137e1 1968
9ee6e8bb 1969/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1970#ifndef CONFIG_USER_ONLY
1971bool armv7m_nvic_can_take_pending_exception(void *opaque);
1972#else
1973static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1974{
1975 return true;
1976}
1977#endif
2fb50a33
PM
1978/**
1979 * armv7m_nvic_set_pending: mark the specified exception as pending
1980 * @opaque: the NVIC
1981 * @irq: the exception number to mark pending
1982 * @secure: false for non-banked exceptions or for the nonsecure
1983 * version of a banked exception, true for the secure version of a banked
1984 * exception.
1985 *
1986 * Marks the specified exception as pending. Note that we will assert()
1987 * if @secure is true and @irq does not specify one of the fixed set
1988 * of architecturally banked exceptions.
1989 */
1990void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1991/**
1992 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1993 * @opaque: the NVIC
1994 * @irq: the exception number to mark pending
1995 * @secure: false for non-banked exceptions or for the nonsecure
1996 * version of a banked exception, true for the secure version of a banked
1997 * exception.
1998 *
1999 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2000 * exceptions (exceptions generated in the course of trying to take
2001 * a different exception).
2002 */
2003void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2004/**
2005 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2006 * @opaque: the NVIC
2007 * @irq: the exception number to mark pending
2008 * @secure: false for non-banked exceptions or for the nonsecure
2009 * version of a banked exception, true for the secure version of a banked
2010 * exception.
2011 *
2012 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2013 * generated in the course of lazy stacking of FP registers.
2014 */
2015void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2016/**
2017 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2018 * exception, and whether it targets Secure state
2019 * @opaque: the NVIC
2020 * @pirq: set to pending exception number
2021 * @ptargets_secure: set to whether pending exception targets Secure
2022 *
2023 * This function writes the number of the highest priority pending
2024 * exception (the one which would be made active by
2025 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2026 * to true if the current highest priority pending exception should
2027 * be taken to Secure state, false for NS.
2028 */
2029void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2030 bool *ptargets_secure);
5cb18069
PM
2031/**
2032 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2033 * @opaque: the NVIC
2034 *
2035 * Move the current highest priority pending exception from the pending
2036 * state to the active state, and update v7m.exception to indicate that
2037 * it is the exception currently being handled.
5cb18069 2038 */
6c948518 2039void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2040/**
2041 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2042 * @opaque: the NVIC
2043 * @irq: the exception number to complete
5cb18069 2044 * @secure: true if this exception was secure
aa488fe3
PM
2045 *
2046 * Returns: -1 if the irq was not active
2047 * 1 if completing this irq brought us back to base (no active irqs)
2048 * 0 if there is still an irq active after this one was completed
2049 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2050 */
5cb18069 2051int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2052/**
2053 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2054 * @opaque: the NVIC
2055 * @irq: the exception number to mark pending
2056 * @secure: false for non-banked exceptions or for the nonsecure
2057 * version of a banked exception, true for the secure version of a banked
2058 * exception.
2059 *
2060 * Return whether an exception is "ready", i.e. whether the exception is
2061 * enabled and is configured at a priority which would allow it to
2062 * interrupt the current execution priority. This controls whether the
2063 * RDY bit for it in the FPCCR is set.
2064 */
2065bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2066/**
2067 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2068 * @opaque: the NVIC
2069 *
2070 * Returns: the raw execution priority as defined by the v8M architecture.
2071 * This is the execution priority minus the effects of AIRCR.PRIS,
2072 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2073 * (v8M ARM ARM I_PKLD.)
2074 */
2075int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2076/**
2077 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2078 * priority is negative for the specified security state.
2079 * @opaque: the NVIC
2080 * @secure: the security state to test
2081 * This corresponds to the pseudocode IsReqExecPriNeg().
2082 */
2083#ifndef CONFIG_USER_ONLY
2084bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2085#else
2086static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2087{
2088 return false;
2089}
2090#endif
9ee6e8bb 2091
4b6a83fb
PM
2092/* Interface for defining coprocessor registers.
2093 * Registers are defined in tables of arm_cp_reginfo structs
2094 * which are passed to define_arm_cp_regs().
2095 */
2096
2097/* When looking up a coprocessor register we look for it
2098 * via an integer which encodes all of:
2099 * coprocessor number
2100 * Crn, Crm, opc1, opc2 fields
2101 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2102 * or via MRRC/MCRR?)
51a79b03 2103 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2104 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2105 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2106 * For AArch64, there is no 32/64 bit size distinction;
2107 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2108 * and 4 bit CRn and CRm. The encoding patterns are chosen
2109 * to be easy to convert to and from the KVM encodings, and also
2110 * so that the hashtable can contain both AArch32 and AArch64
2111 * registers (to allow for interprocessing where we might run
2112 * 32 bit code on a 64 bit core).
4b6a83fb 2113 */
f5a0a5a5
PM
2114/* This bit is private to our hashtable cpreg; in KVM register
2115 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2116 * in the upper bits of the 64 bit ID.
2117 */
2118#define CP_REG_AA64_SHIFT 28
2119#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2120
51a79b03
PM
2121/* To enable banking of coprocessor registers depending on ns-bit we
2122 * add a bit to distinguish between secure and non-secure cpregs in the
2123 * hashtable.
2124 */
2125#define CP_REG_NS_SHIFT 29
2126#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2127
2128#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2129 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2130 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2131
f5a0a5a5
PM
2132#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2133 (CP_REG_AA64_MASK | \
2134 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2135 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2136 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2137 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2138 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2139 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2140
721fae12
PM
2141/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2142 * version used as a key for the coprocessor register hashtable
2143 */
2144static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2145{
2146 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2147 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2148 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2149 } else {
2150 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2151 cpregid |= (1 << 15);
2152 }
2153
2154 /* KVM is always non-secure so add the NS flag on AArch32 register
2155 * entries.
2156 */
2157 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2158 }
2159 return cpregid;
2160}
2161
2162/* Convert a truncated 32 bit hashtable key into the full
2163 * 64 bit KVM register ID.
2164 */
2165static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2166{
f5a0a5a5
PM
2167 uint64_t kvmid;
2168
2169 if (cpregid & CP_REG_AA64_MASK) {
2170 kvmid = cpregid & ~CP_REG_AA64_MASK;
2171 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2172 } else {
f5a0a5a5
PM
2173 kvmid = cpregid & ~(1 << 15);
2174 if (cpregid & (1 << 15)) {
2175 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2176 } else {
2177 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2178 }
721fae12
PM
2179 }
2180 return kvmid;
2181}
2182
4b6a83fb 2183/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2184 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2185 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2186 * TCG can assume the value to be constant (ie load at translate time)
2187 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2188 * indicates that the TB should not be ended after a write to this register
2189 * (the default is that the TB ends after cp writes). OVERRIDE permits
2190 * a register definition to override a previous definition for the
2191 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2192 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2193 * ALIAS indicates that this register is an alias view of some underlying
2194 * state which is also visible via another register, and that the other
b061a82b
SF
2195 * register is handling migration and reset; registers marked ALIAS will not be
2196 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2197 * NO_RAW indicates that this register has no underlying state and does not
2198 * support raw access for state saving/loading; it will not be used for either
2199 * migration or KVM state synchronization. (Typically this is for "registers"
2200 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2201 * IO indicates that this register does I/O and therefore its accesses
2202 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2203 * registers which implement clocks or timers require this.
4b6a83fb 2204 */
fe03d45f
RH
2205#define ARM_CP_SPECIAL 0x0001
2206#define ARM_CP_CONST 0x0002
2207#define ARM_CP_64BIT 0x0004
2208#define ARM_CP_SUPPRESS_TB_END 0x0008
2209#define ARM_CP_OVERRIDE 0x0010
2210#define ARM_CP_ALIAS 0x0020
2211#define ARM_CP_IO 0x0040
2212#define ARM_CP_NO_RAW 0x0080
2213#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2214#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2215#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2216#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2217#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2218#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2219#define ARM_CP_FPU 0x1000
490aa7f1 2220#define ARM_CP_SVE 0x2000
1f163787 2221#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2222/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2223#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2224/* Mask of only the flag bits in a type field */
1f163787 2225#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2226
f5a0a5a5
PM
2227/* Valid values for ARMCPRegInfo state field, indicating which of
2228 * the AArch32 and AArch64 execution states this register is visible in.
2229 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2230 * If the reginfo is declared to be visible in both states then a second
2231 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2232 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2233 * Note that we rely on the values of these enums as we iterate through
2234 * the various states in some places.
2235 */
2236enum {
2237 ARM_CP_STATE_AA32 = 0,
2238 ARM_CP_STATE_AA64 = 1,
2239 ARM_CP_STATE_BOTH = 2,
2240};
2241
c3e30260
FA
2242/* ARM CP register secure state flags. These flags identify security state
2243 * attributes for a given CP register entry.
2244 * The existence of both or neither secure and non-secure flags indicates that
2245 * the register has both a secure and non-secure hash entry. A single one of
2246 * these flags causes the register to only be hashed for the specified
2247 * security state.
2248 * Although definitions may have any combination of the S/NS bits, each
2249 * registered entry will only have one to identify whether the entry is secure
2250 * or non-secure.
2251 */
2252enum {
2253 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2254 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2255};
2256
4b6a83fb
PM
2257/* Return true if cptype is a valid type field. This is used to try to
2258 * catch errors where the sentinel has been accidentally left off the end
2259 * of a list of registers.
2260 */
2261static inline bool cptype_valid(int cptype)
2262{
2263 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2264 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2265 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2266}
2267
2268/* Access rights:
2269 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2270 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2271 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2272 * (ie any of the privileged modes in Secure state, or Monitor mode).
2273 * If a register is accessible in one privilege level it's always accessible
2274 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2275 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2276 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2277 * terminology a little and call this PL3.
f5a0a5a5
PM
2278 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2279 * with the ELx exception levels.
4b6a83fb
PM
2280 *
2281 * If access permissions for a register are more complex than can be
2282 * described with these bits, then use a laxer set of restrictions, and
2283 * do the more restrictive/complex check inside a helper function.
2284 */
2285#define PL3_R 0x80
2286#define PL3_W 0x40
2287#define PL2_R (0x20 | PL3_R)
2288#define PL2_W (0x10 | PL3_W)
2289#define PL1_R (0x08 | PL2_R)
2290#define PL1_W (0x04 | PL2_W)
2291#define PL0_R (0x02 | PL1_R)
2292#define PL0_W (0x01 | PL1_W)
2293
b5bd7440
AB
2294/*
2295 * For user-mode some registers are accessible to EL0 via a kernel
2296 * trap-and-emulate ABI. In this case we define the read permissions
2297 * as actually being PL0_R. However some bits of any given register
2298 * may still be masked.
2299 */
2300#ifdef CONFIG_USER_ONLY
2301#define PL0U_R PL0_R
2302#else
2303#define PL0U_R PL1_R
2304#endif
2305
4b6a83fb
PM
2306#define PL3_RW (PL3_R | PL3_W)
2307#define PL2_RW (PL2_R | PL2_W)
2308#define PL1_RW (PL1_R | PL1_W)
2309#define PL0_RW (PL0_R | PL0_W)
2310
75502672
PM
2311/* Return the highest implemented Exception Level */
2312static inline int arm_highest_el(CPUARMState *env)
2313{
2314 if (arm_feature(env, ARM_FEATURE_EL3)) {
2315 return 3;
2316 }
2317 if (arm_feature(env, ARM_FEATURE_EL2)) {
2318 return 2;
2319 }
2320 return 1;
2321}
2322
15b3f556
PM
2323/* Return true if a v7M CPU is in Handler mode */
2324static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2325{
2326 return env->v7m.exception != 0;
2327}
2328
dcbff19b
GB
2329/* Return the current Exception Level (as per ARMv8; note that this differs
2330 * from the ARMv7 Privilege Level).
2331 */
2332static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2333{
6d54ed3c 2334 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2335 return arm_v7m_is_handler_mode(env) ||
2336 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2337 }
2338
592125f8 2339 if (is_a64(env)) {
f5a0a5a5
PM
2340 return extract32(env->pstate, 2, 2);
2341 }
2342
592125f8
FA
2343 switch (env->uncached_cpsr & 0x1f) {
2344 case ARM_CPU_MODE_USR:
4b6a83fb 2345 return 0;
592125f8
FA
2346 case ARM_CPU_MODE_HYP:
2347 return 2;
2348 case ARM_CPU_MODE_MON:
2349 return 3;
2350 default:
2351 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2352 /* If EL3 is 32-bit then all secure privileged modes run in
2353 * EL3
2354 */
2355 return 3;
2356 }
2357
2358 return 1;
4b6a83fb 2359 }
4b6a83fb
PM
2360}
2361
2362typedef struct ARMCPRegInfo ARMCPRegInfo;
2363
f59df3f2
PM
2364typedef enum CPAccessResult {
2365 /* Access is permitted */
2366 CP_ACCESS_OK = 0,
2367 /* Access fails due to a configurable trap or enable which would
2368 * result in a categorized exception syndrome giving information about
2369 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2370 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2371 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2372 */
2373 CP_ACCESS_TRAP = 1,
2374 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2375 * Note that this is not a catch-all case -- the set of cases which may
2376 * result in this failure is specifically defined by the architecture.
2377 */
2378 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2379 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2380 CP_ACCESS_TRAP_EL2 = 3,
2381 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2382 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2383 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2384 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2385 /* Access fails and results in an exception syndrome for an FP access,
2386 * trapped directly to EL2 or EL3
2387 */
2388 CP_ACCESS_TRAP_FP_EL2 = 7,
2389 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2390} CPAccessResult;
2391
c4241c7d
PM
2392/* Access functions for coprocessor registers. These cannot fail and
2393 * may not raise exceptions.
2394 */
2395typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2396typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2397 uint64_t value);
f59df3f2 2398/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2399typedef CPAccessResult CPAccessFn(CPUARMState *env,
2400 const ARMCPRegInfo *opaque,
2401 bool isread);
4b6a83fb
PM
2402/* Hook function for register reset */
2403typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2404
2405#define CP_ANY 0xff
2406
2407/* Definition of an ARM coprocessor register */
2408struct ARMCPRegInfo {
2409 /* Name of register (useful mainly for debugging, need not be unique) */
2410 const char *name;
2411 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2412 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2413 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2414 * will be decoded to this register. The register read and write
2415 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2416 * used by the program, so it is possible to register a wildcard and
2417 * then behave differently on read/write if necessary.
2418 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2419 * must both be zero.
f5a0a5a5
PM
2420 * For AArch64-visible registers, opc0 is also used.
2421 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2422 * way to distinguish (for KVM's benefit) guest-visible system registers
2423 * from demuxed ones provided to preserve the "no side effects on
2424 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2425 * visible (to match KVM's encoding); cp==0 will be converted to
2426 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2427 */
2428 uint8_t cp;
2429 uint8_t crn;
2430 uint8_t crm;
f5a0a5a5 2431 uint8_t opc0;
4b6a83fb
PM
2432 uint8_t opc1;
2433 uint8_t opc2;
f5a0a5a5
PM
2434 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2435 int state;
4b6a83fb
PM
2436 /* Register type: ARM_CP_* bits/values */
2437 int type;
2438 /* Access rights: PL*_[RW] */
2439 int access;
c3e30260
FA
2440 /* Security state: ARM_CP_SECSTATE_* bits/values */
2441 int secure;
4b6a83fb
PM
2442 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2443 * this register was defined: can be used to hand data through to the
2444 * register read/write functions, since they are passed the ARMCPRegInfo*.
2445 */
2446 void *opaque;
2447 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2448 * fieldoffset is non-zero, the reset value of the register.
2449 */
2450 uint64_t resetvalue;
c3e30260
FA
2451 /* Offset of the field in CPUARMState for this register.
2452 *
2453 * This is not needed if either:
4b6a83fb
PM
2454 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2455 * 2. both readfn and writefn are specified
2456 */
2457 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2458
2459 /* Offsets of the secure and non-secure fields in CPUARMState for the
2460 * register if it is banked. These fields are only used during the static
2461 * registration of a register. During hashing the bank associated
2462 * with a given security state is copied to fieldoffset which is used from
2463 * there on out.
2464 *
2465 * It is expected that register definitions use either fieldoffset or
2466 * bank_fieldoffsets in the definition but not both. It is also expected
2467 * that both bank offsets are set when defining a banked register. This
2468 * use indicates that a register is banked.
2469 */
2470 ptrdiff_t bank_fieldoffsets[2];
2471
f59df3f2
PM
2472 /* Function for making any access checks for this register in addition to
2473 * those specified by the 'access' permissions bits. If NULL, no extra
2474 * checks required. The access check is performed at runtime, not at
2475 * translate time.
2476 */
2477 CPAccessFn *accessfn;
4b6a83fb
PM
2478 /* Function for handling reads of this register. If NULL, then reads
2479 * will be done by loading from the offset into CPUARMState specified
2480 * by fieldoffset.
2481 */
2482 CPReadFn *readfn;
2483 /* Function for handling writes of this register. If NULL, then writes
2484 * will be done by writing to the offset into CPUARMState specified
2485 * by fieldoffset.
2486 */
2487 CPWriteFn *writefn;
7023ec7e
PM
2488 /* Function for doing a "raw" read; used when we need to copy
2489 * coprocessor state to the kernel for KVM or out for
2490 * migration. This only needs to be provided if there is also a
c4241c7d 2491 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2492 */
2493 CPReadFn *raw_readfn;
2494 /* Function for doing a "raw" write; used when we need to copy KVM
2495 * kernel coprocessor state into userspace, or for inbound
2496 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2497 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2498 * or similar behaviour.
7023ec7e
PM
2499 */
2500 CPWriteFn *raw_writefn;
4b6a83fb
PM
2501 /* Function for resetting the register. If NULL, then reset will be done
2502 * by writing resetvalue to the field specified in fieldoffset. If
2503 * fieldoffset is 0 then no reset will be done.
2504 */
2505 CPResetFn *resetfn;
2506};
2507
2508/* Macros which are lvalues for the field in CPUARMState for the
2509 * ARMCPRegInfo *ri.
2510 */
2511#define CPREG_FIELD32(env, ri) \
2512 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2513#define CPREG_FIELD64(env, ri) \
2514 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2515
2516#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2517
2518void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2519 const ARMCPRegInfo *regs, void *opaque);
2520void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2521 const ARMCPRegInfo *regs, void *opaque);
2522static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2523{
2524 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2525}
2526static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2527{
2528 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2529}
60322b39 2530const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2531
6c5c0fec
AB
2532/*
2533 * Definition of an ARM co-processor register as viewed from
2534 * userspace. This is used for presenting sanitised versions of
2535 * registers to userspace when emulating the Linux AArch64 CPU
2536 * ID/feature ABI (advertised as HWCAP_CPUID).
2537 */
2538typedef struct ARMCPRegUserSpaceInfo {
2539 /* Name of register */
2540 const char *name;
2541
d040242e
AB
2542 /* Is the name actually a glob pattern */
2543 bool is_glob;
2544
6c5c0fec
AB
2545 /* Only some bits are exported to user space */
2546 uint64_t exported_bits;
2547
2548 /* Fixed bits are applied after the mask */
2549 uint64_t fixed_bits;
2550} ARMCPRegUserSpaceInfo;
2551
2552#define REGUSERINFO_SENTINEL { .name = NULL }
2553
2554void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2555
4b6a83fb 2556/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2557void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2558 uint64_t value);
4b6a83fb 2559/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2560uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2561
f5a0a5a5
PM
2562/* CPResetFn that does nothing, for use if no reset is required even
2563 * if fieldoffset is non zero.
2564 */
2565void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2566
67ed771d
PM
2567/* Return true if this reginfo struct's field in the cpu state struct
2568 * is 64 bits wide.
2569 */
2570static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2571{
2572 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2573}
2574
dcbff19b 2575static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2576 const ARMCPRegInfo *ri, int isread)
2577{
dcbff19b 2578 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2579}
2580
49a66191
PM
2581/* Raw read of a coprocessor register (as needed for migration, etc) */
2582uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2583
721fae12
PM
2584/**
2585 * write_list_to_cpustate
2586 * @cpu: ARMCPU
2587 *
2588 * For each register listed in the ARMCPU cpreg_indexes list, write
2589 * its value from the cpreg_values list into the ARMCPUState structure.
2590 * This updates TCG's working data structures from KVM data or
2591 * from incoming migration state.
2592 *
2593 * Returns: true if all register values were updated correctly,
2594 * false if some register was unknown or could not be written.
2595 * Note that we do not stop early on failure -- we will attempt
2596 * writing all registers in the list.
2597 */
2598bool write_list_to_cpustate(ARMCPU *cpu);
2599
2600/**
2601 * write_cpustate_to_list:
2602 * @cpu: ARMCPU
b698e4ee 2603 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2604 *
2605 * For each register listed in the ARMCPU cpreg_indexes list, write
2606 * its value from the ARMCPUState structure into the cpreg_values list.
2607 * This is used to copy info from TCG's working data structures into
2608 * KVM or for outbound migration.
2609 *
b698e4ee
PM
2610 * @kvm_sync is true if we are doing this in order to sync the
2611 * register state back to KVM. In this case we will only update
2612 * values in the list if the previous list->cpustate sync actually
2613 * successfully wrote the CPU state. Otherwise we will keep the value
2614 * that is in the list.
2615 *
721fae12
PM
2616 * Returns: true if all register values were read correctly,
2617 * false if some register was unknown or could not be read.
2618 * Note that we do not stop early on failure -- we will attempt
2619 * reading all registers in the list.
2620 */
b698e4ee 2621bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2622
9ee6e8bb
PB
2623#define ARM_CPUID_TI915T 0x54029152
2624#define ARM_CPUID_TI925T 0x54029252
40f137e1 2625
012a906b
GB
2626static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2627 unsigned int target_el)
043b7f8d
EI
2628{
2629 CPUARMState *env = cs->env_ptr;
dcbff19b 2630 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2631 bool secure = arm_is_secure(env);
57e3a0c7
GB
2632 bool pstate_unmasked;
2633 int8_t unmasked = 0;
f7778444 2634 uint64_t hcr_el2;
57e3a0c7
GB
2635
2636 /* Don't take exceptions if they target a lower EL.
2637 * This check should catch any exceptions that would not be taken but left
2638 * pending.
2639 */
dfafd090
EI
2640 if (cur_el > target_el) {
2641 return false;
2642 }
043b7f8d 2643
f7778444
RH
2644 hcr_el2 = arm_hcr_el2_eff(env);
2645
043b7f8d
EI
2646 switch (excp_idx) {
2647 case EXCP_FIQ:
57e3a0c7
GB
2648 pstate_unmasked = !(env->daif & PSTATE_F);
2649 break;
2650
043b7f8d 2651 case EXCP_IRQ:
57e3a0c7
GB
2652 pstate_unmasked = !(env->daif & PSTATE_I);
2653 break;
2654
136e67e9 2655 case EXCP_VFIQ:
f7778444 2656 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2657 /* VFIQs are only taken when hypervized and non-secure. */
2658 return false;
2659 }
2660 return !(env->daif & PSTATE_F);
2661 case EXCP_VIRQ:
f7778444 2662 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2663 /* VIRQs are only taken when hypervized and non-secure. */
2664 return false;
2665 }
b5c633c5 2666 return !(env->daif & PSTATE_I);
043b7f8d
EI
2667 default:
2668 g_assert_not_reached();
2669 }
57e3a0c7
GB
2670
2671 /* Use the target EL, current execution state and SCR/HCR settings to
2672 * determine whether the corresponding CPSR bit is used to mask the
2673 * interrupt.
2674 */
2675 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2676 /* Exceptions targeting a higher EL may not be maskable */
2677 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2678 /* 64-bit masking rules are simple: exceptions to EL3
2679 * can't be masked, and exceptions to EL2 can only be
2680 * masked from Secure state. The HCR and SCR settings
2681 * don't affect the masking logic, only the interrupt routing.
2682 */
2683 if (target_el == 3 || !secure) {
2684 unmasked = 1;
2685 }
2686 } else {
2687 /* The old 32-bit-only environment has a more complicated
2688 * masking setup. HCR and SCR bits not only affect interrupt
2689 * routing but also change the behaviour of masking.
2690 */
2691 bool hcr, scr;
2692
2693 switch (excp_idx) {
2694 case EXCP_FIQ:
2695 /* If FIQs are routed to EL3 or EL2 then there are cases where
2696 * we override the CPSR.F in determining if the exception is
2697 * masked or not. If neither of these are set then we fall back
2698 * to the CPSR.F setting otherwise we further assess the state
2699 * below.
2700 */
f7778444 2701 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2702 scr = (env->cp15.scr_el3 & SCR_FIQ);
2703
2704 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2705 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2706 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2707 * when non-secure but only when FIQs are only routed to EL3.
2708 */
2709 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2710 break;
2711 case EXCP_IRQ:
2712 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2713 * we may override the CPSR.I masking when in non-secure state.
2714 * The SCR.IRQ setting has already been taken into consideration
2715 * when setting the target EL, so it does not have a further
2716 * affect here.
2717 */
f7778444 2718 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2719 scr = false;
2720 break;
2721 default:
2722 g_assert_not_reached();
2723 }
2724
2725 if ((scr || hcr) && !secure) {
2726 unmasked = 1;
2727 }
57e3a0c7
GB
2728 }
2729 }
2730
2731 /* The PSTATE bits only mask the interrupt if we have not overriden the
2732 * ability above.
2733 */
2734 return unmasked || pstate_unmasked;
043b7f8d
EI
2735}
2736
ba1ba5cc
IM
2737#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2738#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2739#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2740
9467d44c 2741#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2742#define cpu_list arm_cpu_list
9467d44c 2743
c1e37810
PM
2744/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2745 *
2746 * If EL3 is 64-bit:
2747 * + NonSecure EL1 & 0 stage 1
2748 * + NonSecure EL1 & 0 stage 2
2749 * + NonSecure EL2
2750 * + Secure EL1 & EL0
2751 * + Secure EL3
2752 * If EL3 is 32-bit:
2753 * + NonSecure PL1 & 0 stage 1
2754 * + NonSecure PL1 & 0 stage 2
2755 * + NonSecure PL2
2756 * + Secure PL0 & PL1
2757 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2758 *
2759 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2760 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2761 * may differ in access permissions even if the VA->PA map is the same
2762 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2763 * translation, which means that we have one mmu_idx that deals with two
2764 * concatenated translation regimes [this sort of combined s1+2 TLB is
2765 * architecturally permitted]
2766 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2767 * handling via the TLB. The only way to do a stage 1 translation without
2768 * the immediate stage 2 translation is via the ATS or AT system insns,
2769 * which can be slow-pathed and always do a page table walk.
2770 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2771 * translation regimes, because they map reasonably well to each other
2772 * and they can't both be active at the same time.
2773 * This gives us the following list of mmu_idx values:
2774 *
2775 * NS EL0 (aka NS PL0) stage 1+2
2776 * NS EL1 (aka NS PL1) stage 1+2
2777 * NS EL2 (aka NS PL2)
2778 * S EL3 (aka S PL1)
2779 * S EL0 (aka S PL0)
2780 * S EL1 (not used if EL3 is 32 bit)
2781 * NS EL0+1 stage 2
2782 *
2783 * (The last of these is an mmu_idx because we want to be able to use the TLB
2784 * for the accesses done as part of a stage 1 page table walk, rather than
2785 * having to walk the stage 2 page table over and over.)
2786 *
3bef7012
PM
2787 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2788 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2789 * NS EL2 if we ever model a Cortex-R52).
2790 *
2791 * M profile CPUs are rather different as they do not have a true MMU.
2792 * They have the following different MMU indexes:
2793 * User
2794 * Privileged
62593718
PM
2795 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2796 * Privileged, execution priority negative (ditto)
66787c78
PM
2797 * If the CPU supports the v8M Security Extension then there are also:
2798 * Secure User
2799 * Secure Privileged
62593718
PM
2800 * Secure User, execution priority negative
2801 * Secure Privileged, execution priority negative
3bef7012 2802 *
8bd5c820
PM
2803 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2804 * are not quite the same -- different CPU types (most notably M profile
2805 * vs A/R profile) would like to use MMU indexes with different semantics,
2806 * but since we don't ever need to use all of those in a single CPU we
2807 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2808 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2809 * the same for any particular CPU.
2810 * Variables of type ARMMUIdx are always full values, and the core
2811 * index values are in variables of type 'int'.
2812 *
c1e37810
PM
2813 * Our enumeration includes at the end some entries which are not "true"
2814 * mmu_idx values in that they don't have corresponding TLBs and are only
2815 * valid for doing slow path page table walks.
2816 *
2817 * The constant names here are patterned after the general style of the names
2818 * of the AT/ATS operations.
2819 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2820 * For M profile we arrange them to have a bit for priv, a bit for negpri
2821 * and a bit for secure.
c1e37810 2822 */
e7b921c2 2823#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2824#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2825#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2826
62593718
PM
2827/* meanings of the bits for M profile mmu idx values */
2828#define ARM_MMU_IDX_M_PRIV 0x1
2829#define ARM_MMU_IDX_M_NEGPRI 0x2
2830#define ARM_MMU_IDX_M_S 0x4
2831
8bd5c820
PM
2832#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2833#define ARM_MMU_IDX_COREIDX_MASK 0x7
2834
c1e37810 2835typedef enum ARMMMUIdx {
8bd5c820
PM
2836 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2837 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2838 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2839 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2840 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2841 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2842 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2843 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2844 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2845 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2846 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2847 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2848 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2849 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2850 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2851 /* Indexes below here don't have TLBs and are used only for AT system
2852 * instructions or for the first stage of an S12 page table walk.
2853 */
8bd5c820
PM
2854 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2855 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2856} ARMMMUIdx;
2857
8bd5c820
PM
2858/* Bit macros for the core-mmu-index values for each index,
2859 * for use when calling tlb_flush_by_mmuidx() and friends.
2860 */
2861typedef enum ARMMMUIdxBit {
2862 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2863 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2864 ARMMMUIdxBit_S1E2 = 1 << 2,
2865 ARMMMUIdxBit_S1E3 = 1 << 3,
2866 ARMMMUIdxBit_S1SE0 = 1 << 4,
2867 ARMMMUIdxBit_S1SE1 = 1 << 5,
2868 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2869 ARMMMUIdxBit_MUser = 1 << 0,
2870 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2871 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2872 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2873 ARMMMUIdxBit_MSUser = 1 << 4,
2874 ARMMMUIdxBit_MSPriv = 1 << 5,
2875 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2876 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2877} ARMMMUIdxBit;
2878
f79fbf39 2879#define MMU_USER_IDX 0
c1e37810 2880
8bd5c820
PM
2881static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2882{
2883 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2884}
2885
2886static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2887{
e7b921c2
PM
2888 if (arm_feature(env, ARM_FEATURE_M)) {
2889 return mmu_idx | ARM_MMU_IDX_M;
2890 } else {
2891 return mmu_idx | ARM_MMU_IDX_A;
2892 }
8bd5c820
PM
2893}
2894
c1e37810
PM
2895/* Return the exception level we're running at if this is our mmu_idx */
2896static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2897{
8bd5c820
PM
2898 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2899 case ARM_MMU_IDX_A:
2900 return mmu_idx & 3;
e7b921c2 2901 case ARM_MMU_IDX_M:
62593718 2902 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2903 default:
2904 g_assert_not_reached();
2905 }
c1e37810
PM
2906}
2907
fa6252a9
PM
2908/*
2909 * Return the MMU index for a v7M CPU with all relevant information
2910 * manually specified.
2911 */
2912ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2913 bool secstate, bool priv, bool negpri);
2914
ec8e3340 2915/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2916 * privilege state.
ec8e3340 2917 */
65e4655c
RH
2918ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2919 bool secstate, bool priv);
b81ac0eb 2920
ec8e3340 2921/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2922ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2923
50494a27
RH
2924/**
2925 * cpu_mmu_index:
2926 * @env: The cpu environment
2927 * @ifetch: True for code access, false for data access.
2928 *
2929 * Return the core mmu index for the current translation regime.
2930 * This function is used by generic TCG code paths.
2931 */
65e4655c 2932int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2933
9e273ef2
PM
2934/* Indexes used when registering address spaces with cpu_address_space_init */
2935typedef enum ARMASIdx {
2936 ARMASIdx_NS = 0,
2937 ARMASIdx_S = 1,
2938} ARMASIdx;
2939
533e93f1 2940/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2941static inline int arm_debug_target_el(CPUARMState *env)
2942{
81669b8b
SF
2943 bool secure = arm_is_secure(env);
2944 bool route_to_el2 = false;
2945
2946 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2947 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2948 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2949 }
2950
2951 if (route_to_el2) {
2952 return 2;
2953 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2954 !arm_el_is_aa64(env, 3) && secure) {
2955 return 3;
2956 } else {
2957 return 1;
2958 }
3a298203
PM
2959}
2960
43bbce7f
PM
2961static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2962{
2963 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2964 * CSSELR is RAZ/WI.
2965 */
2966 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2967}
2968
22af9025 2969/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2970static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2971{
22af9025
AB
2972 int cur_el = arm_current_el(env);
2973 int debug_el;
2974
2975 if (cur_el == 3) {
2976 return false;
533e93f1
PM
2977 }
2978
22af9025
AB
2979 /* MDCR_EL3.SDD disables debug events from Secure state */
2980 if (arm_is_secure_below_el3(env)
2981 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2982 return false;
3a298203 2983 }
22af9025
AB
2984
2985 /*
2986 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2987 * while not masking the (D)ebug bit in DAIF.
2988 */
2989 debug_el = arm_debug_target_el(env);
2990
2991 if (cur_el == debug_el) {
2992 return extract32(env->cp15.mdscr_el1, 13, 1)
2993 && !(env->daif & PSTATE_D);
2994 }
2995
2996 /* Otherwise the debug target needs to be a higher EL */
2997 return debug_el > cur_el;
3a298203
PM
2998}
2999
3000static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3001{
533e93f1
PM
3002 int el = arm_current_el(env);
3003
3004 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3005 return aa64_generate_debug_exceptions(env);
3006 }
533e93f1
PM
3007
3008 if (arm_is_secure(env)) {
3009 int spd;
3010
3011 if (el == 0 && (env->cp15.sder & 1)) {
3012 /* SDER.SUIDEN means debug exceptions from Secure EL0
3013 * are always enabled. Otherwise they are controlled by
3014 * SDCR.SPD like those from other Secure ELs.
3015 */
3016 return true;
3017 }
3018
3019 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3020 switch (spd) {
3021 case 1:
3022 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3023 case 0:
3024 /* For 0b00 we return true if external secure invasive debug
3025 * is enabled. On real hardware this is controlled by external
3026 * signals to the core. QEMU always permits debug, and behaves
3027 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3028 */
3029 return true;
3030 case 2:
3031 return false;
3032 case 3:
3033 return true;
3034 }
3035 }
3036
3037 return el != 2;
3a298203
PM
3038}
3039
3040/* Return true if debugging exceptions are currently enabled.
3041 * This corresponds to what in ARM ARM pseudocode would be
3042 * if UsingAArch32() then
3043 * return AArch32.GenerateDebugExceptions()
3044 * else
3045 * return AArch64.GenerateDebugExceptions()
3046 * We choose to push the if() down into this function for clarity,
3047 * since the pseudocode has it at all callsites except for the one in
3048 * CheckSoftwareStep(), where it is elided because both branches would
3049 * always return the same value.
3a298203
PM
3050 */
3051static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3052{
3053 if (env->aarch64) {
3054 return aa64_generate_debug_exceptions(env);
3055 } else {
3056 return aa32_generate_debug_exceptions(env);
3057 }
3058}
3059
3060/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3061 * implicitly means this always returns false in pre-v8 CPUs.)
3062 */
3063static inline bool arm_singlestep_active(CPUARMState *env)
3064{
3065 return extract32(env->cp15.mdscr_el1, 0, 1)
3066 && arm_el_is_aa64(env, arm_debug_target_el(env))
3067 && arm_generate_debug_exceptions(env);
3068}
3069
f9fd40eb
PB
3070static inline bool arm_sctlr_b(CPUARMState *env)
3071{
3072 return
3073 /* We need not implement SCTLR.ITD in user-mode emulation, so
3074 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3075 * This lets people run BE32 binaries with "-cpu any".
3076 */
3077#ifndef CONFIG_USER_ONLY
3078 !arm_feature(env, ARM_FEATURE_V7) &&
3079#endif
3080 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3081}
3082
64e40755
RH
3083static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3084{
3085 if (el == 0) {
3086 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3087 return env->cp15.sctlr_el[1];
3088 } else {
3089 return env->cp15.sctlr_el[el];
3090 }
3091}
3092
3093
ed50ff78
PC
3094/* Return true if the processor is in big-endian mode. */
3095static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3096{
ed50ff78
PC
3097 /* In 32bit endianness is determined by looking at CPSR's E bit */
3098 if (!is_a64(env)) {
b2e62d9a
PC
3099 return
3100#ifdef CONFIG_USER_ONLY
3101 /* In system mode, BE32 is modelled in line with the
3102 * architecture (as word-invariant big-endianness), where loads
3103 * and stores are done little endian but from addresses which
3104 * are adjusted by XORing with the appropriate constant. So the
3105 * endianness to use for the raw data access is not affected by
3106 * SCTLR.B.
3107 * In user mode, however, we model BE32 as byte-invariant
3108 * big-endianness (because user-only code cannot tell the
3109 * difference), and so we need to use a data access endianness
3110 * that depends on SCTLR.B.
3111 */
3112 arm_sctlr_b(env) ||
3113#endif
3114 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
64e40755
RH
3115 } else {
3116 int cur_el = arm_current_el(env);
3117 uint64_t sctlr = arm_sctlr(env, cur_el);
ed50ff78 3118
64e40755 3119 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
ed50ff78 3120 }
ed50ff78
PC
3121}
3122
4f7c64b3 3123typedef CPUARMState CPUArchState;
2161a612 3124typedef ARMCPU ArchCPU;
4f7c64b3 3125
022c62cb 3126#include "exec/cpu-all.h"
622ed360 3127
3926cc84
AG
3128/* Bit usage in the TB flags field: bit 31 indicates whether we are
3129 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3130 * We put flags which are shared between 32 and 64 bit mode at the top
3131 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3132 */
aad821ac
RH
3133FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3134FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3135FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3136FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3137/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3138FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3139FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3140
3141/* Bit usage when in AArch32 state: */
aad821ac
RH
3142FIELD(TBFLAG_A32, THUMB, 0, 1)
3143FIELD(TBFLAG_A32, VECLEN, 1, 3)
3144FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
ea7ac69d
PM
3145/*
3146 * We store the bottom two bits of the CPAR as TB flags and handle
3147 * checks on the other bits at runtime. This shares the same bits as
3148 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3149 */
3150FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
7fbb535f
PM
3151/*
3152 * Indicates whether cp register reads and writes by guest code should access
3153 * the secure or nonsecure bank of banked registers; note that this is not
3154 * the same thing as the current security state of the processor!
3155 */
3156FIELD(TBFLAG_A32, NS, 6, 1)
aad821ac
RH
3157FIELD(TBFLAG_A32, VFPEN, 7, 1)
3158FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3159FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
e33cf0f8
PM
3160/* For M profile only, set if FPCCR.LSPACT is set */
3161FIELD(TBFLAG_A32, LSPACT, 18, 1)
6000531e
PM
3162/* For M profile only, set if we must create a new FP context */
3163FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
6d60c67a
PM
3164/* For M profile only, set if FPCCR.S does not match current security state */
3165FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
064c379c 3166/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3167FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3168/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3169FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3170
86fb3fa4 3171/* Bit usage when in AArch64 state */
476a4692 3172FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3173FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3174FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3175FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a
RH
3176FIELD(TBFLAG_A64, BT, 9, 1)
3177FIELD(TBFLAG_A64, BTYPE, 10, 2)
4a9ee99d 3178FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3179
f9fd40eb
PB
3180static inline bool bswap_code(bool sctlr_b)
3181{
3182#ifdef CONFIG_USER_ONLY
3183 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3184 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3185 * would also end up as a mixed-endian mode with BE code, LE data.
3186 */
3187 return
3188#ifdef TARGET_WORDS_BIGENDIAN
3189 1 ^
3190#endif
3191 sctlr_b;
3192#else
e334bd31
PB
3193 /* All code access in ARM is little endian, and there are no loaders
3194 * doing swaps that need to be reversed
f9fd40eb
PB
3195 */
3196 return 0;
3197#endif
3198}
3199
c3ae85fc
PB
3200#ifdef CONFIG_USER_ONLY
3201static inline bool arm_cpu_bswap_data(CPUARMState *env)
3202{
3203 return
3204#ifdef TARGET_WORDS_BIGENDIAN
3205 1 ^
3206#endif
3207 arm_cpu_data_is_big_endian(env);
3208}
3209#endif
3210
a9e01311
RH
3211void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3212 target_ulong *cs_base, uint32_t *flags);
6b917547 3213
98128601
RH
3214enum {
3215 QEMU_PSCI_CONDUIT_DISABLED = 0,
3216 QEMU_PSCI_CONDUIT_SMC = 1,
3217 QEMU_PSCI_CONDUIT_HVC = 2,
3218};
3219
017518c1
PM
3220#ifndef CONFIG_USER_ONLY
3221/* Return the address space index to use for a memory access */
3222static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3223{
3224 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3225}
5ce4ff65
PM
3226
3227/* Return the AddressSpace to use for a memory access
3228 * (which depends on whether the access is S or NS, and whether
3229 * the board gave us a separate AddressSpace for S accesses).
3230 */
3231static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3232{
3233 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3234}
017518c1
PM
3235#endif
3236
bd7d00fc 3237/**
b5c53d1b
AL
3238 * arm_register_pre_el_change_hook:
3239 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3240 * CPU changes exception level or mode. The hook function will be
3241 * passed a pointer to the ARMCPU and the opaque data pointer passed
3242 * to this function when the hook was registered.
b5c53d1b
AL
3243 *
3244 * Note that if a pre-change hook is called, any registered post-change hooks
3245 * are guaranteed to subsequently be called.
bd7d00fc 3246 */
b5c53d1b 3247void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3248 void *opaque);
b5c53d1b
AL
3249/**
3250 * arm_register_el_change_hook:
3251 * Register a hook function which will be called immediately after this
3252 * CPU changes exception level or mode. The hook function will be
3253 * passed a pointer to the ARMCPU and the opaque data pointer passed
3254 * to this function when the hook was registered.
3255 *
3256 * Note that any registered hooks registered here are guaranteed to be called
3257 * if pre-change hooks have been.
3258 */
3259void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3260 *opaque);
bd7d00fc 3261
9a2b5256
RH
3262/**
3263 * aa32_vfp_dreg:
3264 * Return a pointer to the Dn register within env in 32-bit mode.
3265 */
3266static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3267{
c39c2b90 3268 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3269}
3270
3271/**
3272 * aa32_vfp_qreg:
3273 * Return a pointer to the Qn register within env in 32-bit mode.
3274 */
3275static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3276{
c39c2b90 3277 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3278}
3279
3280/**
3281 * aa64_vfp_qreg:
3282 * Return a pointer to the Qn register within env in 64-bit mode.
3283 */
3284static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3285{
c39c2b90 3286 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3287}
3288
028e2a7b
RH
3289/* Shared between translate-sve.c and sve_helper.c. */
3290extern const uint64_t pred_esz_masks[4];
3291
962fcbf2
RH
3292/*
3293 * 32-bit feature tests via id registers.
3294 */
7e0cf8b4
RH
3295static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3296{
3297 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3298}
3299
3300static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3301{
3302 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3303}
3304
09cbd501
RH
3305static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3306{
3307 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3308}
3309
962fcbf2
RH
3310static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3311{
3312 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3313}
3314
3315static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3316{
3317 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3318}
3319
3320static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3321{
3322 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3323}
3324
3325static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3326{
3327 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3328}
3329
3330static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3331{
3332 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3333}
3334
3335static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3336{
3337 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3338}
3339
3340static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3341{
3342 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3343}
3344
6c1f6f27
RH
3345static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3346{
3347 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3348}
3349
962fcbf2
RH
3350static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3351{
3352 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3353}
3354
87732318
RH
3355static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3356{
3357 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3358}
3359
9888bd1e
RH
3360static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3361{
3362 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3363}
3364
cb570bd3
RH
3365static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3366{
3367 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3368}
3369
5763190f
RH
3370static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3371{
3372 /*
3373 * This is a placeholder for use by VCMA until the rest of
3374 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3375 * At which point we can properly set and check MVFR1.FPHP.
3376 */
3377 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3378}
3379
b3ff4b87
PM
3380static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3381{
3382 /* Return true if D16-D31 are implemented */
3383 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3384}
3385
266bd25c
PM
3386static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3387{
3388 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3389}
3390
1120827f
PM
3391static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3392{
3393 /* Return true if CPU supports double precision floating point */
3394 return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3395}
3396
602f6e42
PM
3397/*
3398 * We always set the FP and SIMD FP16 fields to indicate identical
3399 * levels of support (assuming SIMD is implemented at all), so
3400 * we only need one set of accessors.
3401 */
3402static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3403{
3404 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3405}
3406
3407static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3408{
3409 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3410}
3411
c0c760af
PM
3412static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3413{
3414 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3415}
3416
3417static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3418{
3419 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3420}
3421
3422static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3423{
3424 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3425}
3426
3427static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3428{
3429 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3430}
3431
962fcbf2
RH
3432/*
3433 * 64-bit feature tests via id registers.
3434 */
3435static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3436{
3437 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3438}
3439
3440static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3441{
3442 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3443}
3444
3445static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3446{
3447 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3448}
3449
3450static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3451{
3452 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3453}
3454
3455static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3456{
3457 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3458}
3459
3460static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3461{
3462 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3463}
3464
3465static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3466{
3467 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3468}
3469
3470static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3471{
3472 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3473}
3474
3475static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3476{
3477 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3478}
3479
3480static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3481{
3482 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3483}
3484
3485static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3486{
3487 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3488}
3489
3490static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3491{
3492 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3493}
3494
0caa5af8
RH
3495static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3496{
3497 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3498}
3499
b89d9c98
RH
3500static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3501{
3502 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3503}
3504
5ef84f11
RH
3505static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3506{
3507 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3508}
3509
de390645
RH
3510static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3511{
3512 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3513}
3514
6c1f6f27
RH
3515static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3516{
3517 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3518}
3519
962fcbf2
RH
3520static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3521{
3522 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3523}
3524
991ad91b
RH
3525static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3526{
3527 /*
3528 * Note that while QEMU will only implement the architected algorithm
3529 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3530 * defined algorithms, and thus API+GPI, and this predicate controls
3531 * migration of the 128-bit keys.
3532 */
3533 return (id->id_aa64isar1 &
3534 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3535 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3536 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3537 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3538}
3539
9888bd1e
RH
3540static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3541{
3542 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3543}
3544
cb570bd3
RH
3545static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3546{
3547 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3548}
3549
6bea2563
RH
3550static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3551{
3552 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3553}
3554
5763190f
RH
3555static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3556{
3557 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3558 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3559}
3560
0f8d06f1
RH
3561static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3562{
3563 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3564}
3565
cd208a1c
RH
3566static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3567{
3568 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3569}
3570
2d7137c1
RH
3571static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3572{
3573 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3574}
3575
be53b6f4
RH
3576static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3577{
3578 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3579}
3580
962fcbf2
RH
3581/*
3582 * Forward to the above feature tests given an ARMCPU pointer.
3583 */
3584#define cpu_isar_feature(name, cpu) \
3585 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3586
2c0262af 3587#endif