]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Implement the ARMv8.1-HPD extension
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086
RH
204/* In AArch32 mode, predicate registers do not exist at all. */
205#ifdef TARGET_AARCH64
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
209#endif
210
c39c2b90 211
2c0262af 212typedef struct CPUARMState {
b5ff1b31 213 /* Regs for current mode. */
2c0262af 214 uint32_t regs[16];
3926cc84
AG
215
216 /* 32/64 switch only happens when taking and returning from
217 * exceptions so the overlap semantics are taken care of then
218 * instead of having a complicated union.
219 */
220 /* Regs for A64 mode. */
221 uint64_t xregs[32];
222 uint64_t pc;
d356312f
PM
223 /* PSTATE isn't an architectural register for ARMv8. However, it is
224 * convenient for us to assemble the underlying state into a 32 bit format
225 * identical to the architectural format used for the SPSR. (This is also
226 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
227 * 'pstate' register are.) Of the PSTATE bits:
228 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
229 * semantics as for AArch32, as described in the comments on each field)
230 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 231 * DAIF (exception masks) are kept in env->daif
d356312f 232 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
233 */
234 uint32_t pstate;
235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236
b90372ad 237 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 238 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
239 the whole CPSR. */
240 uint32_t uncached_cpsr;
241 uint32_t spsr;
242
243 /* Banked registers. */
28c9457d 244 uint64_t banked_spsr[8];
0b7d409d
FA
245 uint32_t banked_r13[8];
246 uint32_t banked_r14[8];
3b46e624 247
b5ff1b31
FB
248 /* These hold r8-r12. */
249 uint32_t usr_regs[5];
250 uint32_t fiq_regs[5];
3b46e624 251
2c0262af
FB
252 /* cpsr flag cache for faster execution */
253 uint32_t CF; /* 0 or 1 */
254 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
255 uint32_t NF; /* N is bit 31. All other bits are undefined. */
256 uint32_t ZF; /* Z set if zero. */
99c475ab 257 uint32_t QF; /* 0 or 1 */
9ee6e8bb 258 uint32_t GE; /* cpsr[19:16] */
b26eefb6 259 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 261 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 262
1b174238 263 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 264 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 265
b5ff1b31
FB
266 /* System control coprocessor (cp15) */
267 struct {
40f137e1 268 uint32_t c0_cpuid;
b85a1fd6
FA
269 union { /* Cache size selection */
270 struct {
271 uint64_t _unused_csselr0;
272 uint64_t csselr_ns;
273 uint64_t _unused_csselr1;
274 uint64_t csselr_s;
275 };
276 uint64_t csselr_el[4];
277 };
137feaa9
FA
278 union { /* System control register. */
279 struct {
280 uint64_t _unused_sctlr;
281 uint64_t sctlr_ns;
282 uint64_t hsctlr;
283 uint64_t sctlr_s;
284 };
285 uint64_t sctlr_el[4];
286 };
7ebd5f2e 287 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 288 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 289 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 290 uint64_t sder; /* Secure debug enable register. */
77022576 291 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
292 union { /* MMU translation table base 0. */
293 struct {
294 uint64_t _unused_ttbr0_0;
295 uint64_t ttbr0_ns;
296 uint64_t _unused_ttbr0_1;
297 uint64_t ttbr0_s;
298 };
299 uint64_t ttbr0_el[4];
300 };
301 union { /* MMU translation table base 1. */
302 struct {
303 uint64_t _unused_ttbr1_0;
304 uint64_t ttbr1_ns;
305 uint64_t _unused_ttbr1_1;
306 uint64_t ttbr1_s;
307 };
308 uint64_t ttbr1_el[4];
309 };
b698e9cf 310 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
311 /* MMU translation table base control. */
312 TCR tcr_el[4];
68e9c2fe 313 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
314 uint32_t c2_data; /* MPU data cacheable bits. */
315 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
316 union { /* MMU domain access control register
317 * MPU write buffer control.
318 */
319 struct {
320 uint64_t dacr_ns;
321 uint64_t dacr_s;
322 };
323 struct {
324 uint64_t dacr32_el2;
325 };
326 };
7e09797c
PM
327 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
328 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 329 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 330 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
331 union { /* Fault status registers. */
332 struct {
333 uint64_t ifsr_ns;
334 uint64_t ifsr_s;
335 };
336 struct {
337 uint64_t ifsr32_el2;
338 };
339 };
4a7e2d73
FA
340 union {
341 struct {
342 uint64_t _unused_dfsr;
343 uint64_t dfsr_ns;
344 uint64_t hsr;
345 uint64_t dfsr_s;
346 };
347 uint64_t esr_el[4];
348 };
ce819861 349 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
350 union { /* Fault address registers. */
351 struct {
352 uint64_t _unused_far0;
353#ifdef HOST_WORDS_BIGENDIAN
354 uint32_t ifar_ns;
355 uint32_t dfar_ns;
356 uint32_t ifar_s;
357 uint32_t dfar_s;
358#else
359 uint32_t dfar_ns;
360 uint32_t ifar_ns;
361 uint32_t dfar_s;
362 uint32_t ifar_s;
363#endif
364 uint64_t _unused_far3;
365 };
366 uint64_t far_el[4];
367 };
59e05530 368 uint64_t hpfar_el2;
2a5a9abd 369 uint64_t hstr_el2;
01c097f7
FA
370 union { /* Translation result. */
371 struct {
372 uint64_t _unused_par_0;
373 uint64_t par_ns;
374 uint64_t _unused_par_1;
375 uint64_t par_s;
376 };
377 uint64_t par_el[4];
378 };
6cb0b013 379
b5ff1b31
FB
380 uint32_t c9_insn; /* Cache lockdown registers. */
381 uint32_t c9_data;
8521466b
AF
382 uint64_t c9_pmcr; /* performance monitor control register */
383 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
384 uint64_t c9_pmovsr; /* perf monitor overflow status */
385 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 386 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 387 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
388 union { /* Memory attribute redirection */
389 struct {
390#ifdef HOST_WORDS_BIGENDIAN
391 uint64_t _unused_mair_0;
392 uint32_t mair1_ns;
393 uint32_t mair0_ns;
394 uint64_t _unused_mair_1;
395 uint32_t mair1_s;
396 uint32_t mair0_s;
397#else
398 uint64_t _unused_mair_0;
399 uint32_t mair0_ns;
400 uint32_t mair1_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair0_s;
403 uint32_t mair1_s;
404#endif
405 };
406 uint64_t mair_el[4];
407 };
fb6c91ba
GB
408 union { /* vector base address register */
409 struct {
410 uint64_t _unused_vbar;
411 uint64_t vbar_ns;
412 uint64_t hvbar;
413 uint64_t vbar_s;
414 };
415 uint64_t vbar_el[4];
416 };
e89e51a1 417 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
418 struct { /* FCSE PID. */
419 uint32_t fcseidr_ns;
420 uint32_t fcseidr_s;
421 };
422 union { /* Context ID. */
423 struct {
424 uint64_t _unused_contextidr_0;
425 uint64_t contextidr_ns;
426 uint64_t _unused_contextidr_1;
427 uint64_t contextidr_s;
428 };
429 uint64_t contextidr_el[4];
430 };
431 union { /* User RW Thread register. */
432 struct {
433 uint64_t tpidrurw_ns;
434 uint64_t tpidrprw_ns;
435 uint64_t htpidr;
436 uint64_t _tpidr_el3;
437 };
438 uint64_t tpidr_el[4];
439 };
440 /* The secure banks of these registers don't map anywhere */
441 uint64_t tpidrurw_s;
442 uint64_t tpidrprw_s;
443 uint64_t tpidruro_s;
444
445 union { /* User RO Thread register. */
446 uint64_t tpidruro_ns;
447 uint64_t tpidrro_el[1];
448 };
a7adc4b7
PM
449 uint64_t c14_cntfrq; /* Counter Frequency register */
450 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 451 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 452 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 453 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 454 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
455 uint32_t c15_ticonfig; /* TI925T configuration byte. */
456 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
457 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
458 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
459 uint32_t c15_config_base_address; /* SCU base address. */
460 uint32_t c15_diagnostic; /* diagnostic register */
461 uint32_t c15_power_diagnostic;
462 uint32_t c15_power_control; /* power control */
0b45451e
PM
463 uint64_t dbgbvr[16]; /* breakpoint value registers */
464 uint64_t dbgbcr[16]; /* breakpoint control registers */
465 uint64_t dbgwvr[16]; /* watchpoint value registers */
466 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 467 uint64_t mdscr_el1;
1424ca8d 468 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 469 uint64_t mdcr_el2;
5513c3ab 470 uint64_t mdcr_el3;
7c2cb42b
AF
471 /* If the counter is enabled, this stores the last time the counter
472 * was reset. Otherwise it stores the counter value
473 */
c92c0687 474 uint64_t c15_ccnt;
8521466b 475 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 476 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 477 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 478 } cp15;
40f137e1 479
9ee6e8bb 480 struct {
fb602cb7
PM
481 /* M profile has up to 4 stack pointers:
482 * a Main Stack Pointer and a Process Stack Pointer for each
483 * of the Secure and Non-Secure states. (If the CPU doesn't support
484 * the security extension then it has only two SPs.)
485 * In QEMU we always store the currently active SP in regs[13],
486 * and the non-active SP for the current security state in
487 * v7m.other_sp. The stack pointers for the inactive security state
488 * are stored in other_ss_msp and other_ss_psp.
489 * switch_v7m_security_state() is responsible for rearranging them
490 * when we change security state.
491 */
9ee6e8bb 492 uint32_t other_sp;
fb602cb7
PM
493 uint32_t other_ss_msp;
494 uint32_t other_ss_psp;
4a16724f
PM
495 uint32_t vecbase[M_REG_NUM_BANKS];
496 uint32_t basepri[M_REG_NUM_BANKS];
497 uint32_t control[M_REG_NUM_BANKS];
498 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
499 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
500 uint32_t hfsr; /* HardFault Status */
501 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 502 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 503 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 504 uint32_t bfar; /* BusFault Address */
bed079da 505 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 506 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 507 int exception;
4a16724f
PM
508 uint32_t primask[M_REG_NUM_BANKS];
509 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 510 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 511 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 512 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 513 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
514 uint32_t msplim[M_REG_NUM_BANKS];
515 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
516 } v7m;
517
abf1172f
PM
518 /* Information associated with an exception about to be taken:
519 * code which raises an exception must set cs->exception_index and
520 * the relevant parts of this structure; the cpu_do_interrupt function
521 * will then set the guest-visible registers as part of the exception
522 * entry process.
523 */
524 struct {
525 uint32_t syndrome; /* AArch64 format syndrome register */
526 uint32_t fsr; /* AArch32 format fault status register info */
527 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 528 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
529 /* If we implement EL2 we will also need to store information
530 * about the intermediate physical address for stage 2 faults.
531 */
532 } exception;
533
202ccb6b
DG
534 /* Information associated with an SError */
535 struct {
536 uint8_t pending;
537 uint8_t has_esr;
538 uint64_t esr;
539 } serror;
540
ed89f078
PM
541 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
542 uint32_t irq_line_state;
543
fe1479c3
PB
544 /* Thumb-2 EE state. */
545 uint32_t teecr;
546 uint32_t teehbr;
547
b7bcbe95
FB
548 /* VFP coprocessor state. */
549 struct {
c39c2b90 550 ARMVectorReg zregs[32];
b7bcbe95 551
3c7d3086
RH
552#ifdef TARGET_AARCH64
553 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 554#define FFR_PRED_NUM 16
3c7d3086 555 ARMPredicateReg pregs[17];
516e246a
RH
556 /* Scratch space for aa64 sve predicate temporary. */
557 ARMPredicateReg preg_tmp;
3c7d3086
RH
558#endif
559
40f137e1 560 uint32_t xregs[16];
b7bcbe95
FB
561 /* We store these fpcsr fields separately for convenience. */
562 int vec_len;
563 int vec_stride;
564
516e246a 565 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 566 uint32_t scratch[8];
3b46e624 567
d81ce0ef
AB
568 /* There are a number of distinct float control structures:
569 *
570 * fp_status: is the "normal" fp status.
571 * fp_status_fp16: used for half-precision calculations
572 * standard_fp_status : the ARM "Standard FPSCR Value"
573 *
574 * Half-precision operations are governed by a separate
575 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
576 * status structure to control this.
577 *
578 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
579 * round-to-nearest and is used by any operations (generally
580 * Neon) which the architecture defines as controlled by the
581 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
582 *
583 * To avoid having to transfer exception bits around, we simply
584 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 585 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
586 * only thing which needs to read the exception flags being
587 * an explicit FPSCR read.
588 */
53cd6637 589 float_status fp_status;
d81ce0ef 590 float_status fp_status_f16;
3a492f3a 591 float_status standard_fp_status;
5be5e8ed
RH
592
593 /* ZCR_EL[1-3] */
594 uint64_t zcr_el[4];
b7bcbe95 595 } vfp;
03d05e2d
PM
596 uint64_t exclusive_addr;
597 uint64_t exclusive_val;
598 uint64_t exclusive_high;
b7bcbe95 599
18c9b560
AZ
600 /* iwMMXt coprocessor state. */
601 struct {
602 uint64_t regs[16];
603 uint64_t val;
604
605 uint32_t cregs[16];
606 } iwmmxt;
607
ce4defa0
PB
608#if defined(CONFIG_USER_ONLY)
609 /* For usermode syscall translation. */
610 int eabi;
611#endif
612
46747d15 613 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
614 struct CPUWatchpoint *cpu_watchpoint[16];
615
1f5c00cf
AB
616 /* Fields up to this point are cleared by a CPU reset */
617 struct {} end_reset_fields;
618
a316d335
FB
619 CPU_COMMON
620
1f5c00cf 621 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 622
581be094 623 /* Internal CPU feature flags. */
918f5dca 624 uint64_t features;
581be094 625
6cb0b013
PC
626 /* PMSAv7 MPU */
627 struct {
628 uint32_t *drbar;
629 uint32_t *drsr;
630 uint32_t *dracr;
4a16724f 631 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
632 } pmsav7;
633
0e1a46bb
PM
634 /* PMSAv8 MPU */
635 struct {
636 /* The PMSAv8 implementation also shares some PMSAv7 config
637 * and state:
638 * pmsav7.rnr (region number register)
639 * pmsav7_dregion (number of configured regions)
640 */
4a16724f
PM
641 uint32_t *rbar[M_REG_NUM_BANKS];
642 uint32_t *rlar[M_REG_NUM_BANKS];
643 uint32_t mair0[M_REG_NUM_BANKS];
644 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
645 } pmsav8;
646
9901c576
PM
647 /* v8M SAU */
648 struct {
649 uint32_t *rbar;
650 uint32_t *rlar;
651 uint32_t rnr;
652 uint32_t ctrl;
653 } sau;
654
983fe826 655 void *nvic;
462a8bc6 656 const struct arm_boot_info *boot_info;
d3a3e529
VK
657 /* Store GICv3CPUState to access from this struct */
658 void *gicv3state;
2c0262af
FB
659} CPUARMState;
660
bd7d00fc 661/**
08267487 662 * ARMELChangeHookFn:
bd7d00fc
PM
663 * type of a function which can be registered via arm_register_el_change_hook()
664 * to get callbacks when the CPU changes its exception level or mode.
665 */
08267487
AL
666typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
667typedef struct ARMELChangeHook ARMELChangeHook;
668struct ARMELChangeHook {
669 ARMELChangeHookFn *hook;
670 void *opaque;
671 QLIST_ENTRY(ARMELChangeHook) node;
672};
062ba099
AB
673
674/* These values map onto the return values for
675 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
676typedef enum ARMPSCIState {
d5affb0d
AJ
677 PSCI_ON = 0,
678 PSCI_OFF = 1,
062ba099
AB
679 PSCI_ON_PENDING = 2
680} ARMPSCIState;
681
962fcbf2
RH
682typedef struct ARMISARegisters ARMISARegisters;
683
74e75564
PB
684/**
685 * ARMCPU:
686 * @env: #CPUARMState
687 *
688 * An ARM CPU core.
689 */
690struct ARMCPU {
691 /*< private >*/
692 CPUState parent_obj;
693 /*< public >*/
694
695 CPUARMState env;
696
697 /* Coprocessor information */
698 GHashTable *cp_regs;
699 /* For marshalling (mostly coprocessor) register state between the
700 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
701 * we use these arrays.
702 */
703 /* List of register indexes managed via these arrays; (full KVM style
704 * 64 bit indexes, not CPRegInfo 32 bit indexes)
705 */
706 uint64_t *cpreg_indexes;
707 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
708 uint64_t *cpreg_values;
709 /* Length of the indexes, values, reset_values arrays */
710 int32_t cpreg_array_len;
711 /* These are used only for migration: incoming data arrives in
712 * these fields and is sanity checked in post_load before copying
713 * to the working data structures above.
714 */
715 uint64_t *cpreg_vmstate_indexes;
716 uint64_t *cpreg_vmstate_values;
717 int32_t cpreg_vmstate_array_len;
718
200bf5b7
AB
719 DynamicGDBXMLInfo dyn_xml;
720
74e75564
PB
721 /* Timers used by the generic (architected) timer */
722 QEMUTimer *gt_timer[NUM_GTIMERS];
723 /* GPIO outputs for generic timer */
724 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
725 /* GPIO output for GICv3 maintenance interrupt signal */
726 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
727 /* GPIO output for the PMU interrupt */
728 qemu_irq pmu_interrupt;
74e75564
PB
729
730 /* MemoryRegion to use for secure physical accesses */
731 MemoryRegion *secure_memory;
732
181962fd
PM
733 /* For v8M, pointer to the IDAU interface provided by board/SoC */
734 Object *idau;
735
74e75564
PB
736 /* 'compatible' string for this CPU for Linux device trees */
737 const char *dtb_compatible;
738
739 /* PSCI version for this CPU
740 * Bits[31:16] = Major Version
741 * Bits[15:0] = Minor Version
742 */
743 uint32_t psci_version;
744
745 /* Should CPU start in PSCI powered-off state? */
746 bool start_powered_off;
062ba099
AB
747
748 /* Current power state, access guarded by BQL */
749 ARMPSCIState power_state;
750
c25bd18a
PM
751 /* CPU has virtualization extension */
752 bool has_el2;
74e75564
PB
753 /* CPU has security extension */
754 bool has_el3;
5c0a3819
SZ
755 /* CPU has PMU (Performance Monitor Unit) */
756 bool has_pmu;
74e75564
PB
757
758 /* CPU has memory protection unit */
759 bool has_mpu;
760 /* PMSAv7 MPU number of supported regions */
761 uint32_t pmsav7_dregion;
9901c576
PM
762 /* v8M SAU number of supported regions */
763 uint32_t sau_sregion;
74e75564
PB
764
765 /* PSCI conduit used to invoke PSCI methods
766 * 0 - disabled, 1 - smc, 2 - hvc
767 */
768 uint32_t psci_conduit;
769
38e2a77c
PM
770 /* For v8M, initial value of the Secure VTOR */
771 uint32_t init_svtor;
772
74e75564
PB
773 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
774 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
775 */
776 uint32_t kvm_target;
777
778 /* KVM init features for this CPU */
779 uint32_t kvm_init_features[7];
780
781 /* Uniprocessor system with MP extensions */
782 bool mp_is_up;
783
c4487d76
PM
784 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
785 * and the probe failed (so we need to report the error in realize)
786 */
787 bool host_cpu_probe_failed;
788
f9a69711
AF
789 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
790 * register.
791 */
792 int32_t core_count;
793
74e75564
PB
794 /* The instance init functions for implementation-specific subclasses
795 * set these fields to specify the implementation-dependent values of
796 * various constant registers and reset values of non-constant
797 * registers.
798 * Some of these might become QOM properties eventually.
799 * Field names match the official register names as defined in the
800 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
801 * is used for reset values of non-constant registers; no reset_
802 * prefix means a constant register.
47576b94
RH
803 * Some of these registers are split out into a substructure that
804 * is shared with the translators to control the ISA.
74e75564 805 */
47576b94
RH
806 struct ARMISARegisters {
807 uint32_t id_isar0;
808 uint32_t id_isar1;
809 uint32_t id_isar2;
810 uint32_t id_isar3;
811 uint32_t id_isar4;
812 uint32_t id_isar5;
813 uint32_t id_isar6;
814 uint32_t mvfr0;
815 uint32_t mvfr1;
816 uint32_t mvfr2;
817 uint64_t id_aa64isar0;
818 uint64_t id_aa64isar1;
819 uint64_t id_aa64pfr0;
820 uint64_t id_aa64pfr1;
3dc91ddb
PM
821 uint64_t id_aa64mmfr0;
822 uint64_t id_aa64mmfr1;
47576b94 823 } isar;
74e75564
PB
824 uint32_t midr;
825 uint32_t revidr;
826 uint32_t reset_fpsid;
74e75564
PB
827 uint32_t ctr;
828 uint32_t reset_sctlr;
829 uint32_t id_pfr0;
830 uint32_t id_pfr1;
831 uint32_t id_dfr0;
832 uint32_t pmceid0;
833 uint32_t pmceid1;
834 uint32_t id_afr0;
835 uint32_t id_mmfr0;
836 uint32_t id_mmfr1;
837 uint32_t id_mmfr2;
838 uint32_t id_mmfr3;
839 uint32_t id_mmfr4;
74e75564
PB
840 uint64_t id_aa64dfr0;
841 uint64_t id_aa64dfr1;
842 uint64_t id_aa64afr0;
843 uint64_t id_aa64afr1;
74e75564
PB
844 uint32_t dbgdidr;
845 uint32_t clidr;
846 uint64_t mp_affinity; /* MP ID without feature bits */
847 /* The elements of this array are the CCSIDR values for each cache,
848 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
849 */
850 uint32_t ccsidr[16];
851 uint64_t reset_cbar;
852 uint32_t reset_auxcr;
853 bool reset_hivecs;
854 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
855 uint32_t dcz_blocksize;
856 uint64_t rvbar;
bd7d00fc 857
e45868a3
PM
858 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
859 int gic_num_lrs; /* number of list registers */
860 int gic_vpribits; /* number of virtual priority bits */
861 int gic_vprebits; /* number of virtual preemption bits */
862
3a062d57
JB
863 /* Whether the cfgend input is high (i.e. this CPU should reset into
864 * big-endian mode). This setting isn't used directly: instead it modifies
865 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
866 * architecture version.
867 */
868 bool cfgend;
869
b5c53d1b 870 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 871 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
872
873 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
874
875 /* Used to synchronize KVM and QEMU in-kernel device levels */
876 uint8_t device_irq_level;
adf92eab
RH
877
878 /* Used to set the maximum vector length the cpu will support. */
879 uint32_t sve_max_vq;
74e75564
PB
880};
881
882static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
883{
884 return container_of(env, ARMCPU, env);
885}
886
46de5913
IM
887uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
888
74e75564
PB
889#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
890
891#define ENV_OFFSET offsetof(ARMCPU, env)
892
893#ifndef CONFIG_USER_ONLY
894extern const struct VMStateDescription vmstate_arm_cpu;
895#endif
896
897void arm_cpu_do_interrupt(CPUState *cpu);
898void arm_v7m_cpu_do_interrupt(CPUState *cpu);
899bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
900
901void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
902 int flags);
903
904hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
905 MemTxAttrs *attrs);
906
907int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
908int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
909
200bf5b7
AB
910/* Dynamically generates for gdb stub an XML description of the sysregs from
911 * the cp_regs hashtable. Returns the registered sysregs number.
912 */
913int arm_gen_dynamic_xml(CPUState *cpu);
914
915/* Returns the dynamically generated XML for the gdb stub.
916 * Returns a pointer to the XML contents for the specified XML file or NULL
917 * if the XML name doesn't match the predefined one.
918 */
919const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
920
74e75564
PB
921int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
922 int cpuid, void *opaque);
923int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
924 int cpuid, void *opaque);
925
926#ifdef TARGET_AARCH64
927int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
928int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 929void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
930void aarch64_sve_change_el(CPUARMState *env, int old_el,
931 int new_el, bool el0_a64);
0ab5953b
RH
932#else
933static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
934static inline void aarch64_sve_change_el(CPUARMState *env, int o,
935 int n, bool a)
936{ }
74e75564 937#endif
778c3a06 938
faacc041 939target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
940void aarch64_sync_32_to_64(CPUARMState *env);
941void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 942
ced31551
RH
943int fp_exception_el(CPUARMState *env, int cur_el);
944int sve_exception_el(CPUARMState *env, int cur_el);
945uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
946
3926cc84
AG
947static inline bool is_a64(CPUARMState *env)
948{
949 return env->aarch64;
950}
951
2c0262af
FB
952/* you can call this signal handler from your SIGBUS and SIGSEGV
953 signal handlers to inform the virtual CPU of exceptions. non zero
954 is returned if the signal was handled by the virtual CPU. */
5fafdf24 955int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
956 void *puc);
957
ec7b4ce4
AF
958/**
959 * pmccntr_sync
960 * @env: CPUARMState
961 *
962 * Synchronises the counter in the PMCCNTR. This must always be called twice,
963 * once before any action that might affect the timer and again afterwards.
964 * The function is used to swap the state of the register if required.
965 * This only happens when not in user mode (!CONFIG_USER_ONLY)
966 */
967void pmccntr_sync(CPUARMState *env);
968
76e3e1bc
PM
969/* SCTLR bit meanings. Several bits have been reused in newer
970 * versions of the architecture; in that case we define constants
971 * for both old and new bit meanings. Code which tests against those
972 * bits should probably check or otherwise arrange that the CPU
973 * is the architectural version it expects.
974 */
975#define SCTLR_M (1U << 0)
976#define SCTLR_A (1U << 1)
977#define SCTLR_C (1U << 2)
978#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
979#define SCTLR_SA (1U << 3)
980#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
981#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
982#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
983#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
984#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
985#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
986#define SCTLR_ITD (1U << 7) /* v8 onward */
987#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
988#define SCTLR_SED (1U << 8) /* v8 onward */
989#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
990#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
991#define SCTLR_F (1U << 10) /* up to v6 */
992#define SCTLR_SW (1U << 10) /* v7 onward */
993#define SCTLR_Z (1U << 11)
994#define SCTLR_I (1U << 12)
995#define SCTLR_V (1U << 13)
996#define SCTLR_RR (1U << 14) /* up to v7 */
997#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
998#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
999#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1000#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1001#define SCTLR_nTWI (1U << 16) /* v8 onward */
1002#define SCTLR_HA (1U << 17)
f6bda88f 1003#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1004#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1005#define SCTLR_nTWE (1U << 18) /* v8 onward */
1006#define SCTLR_WXN (1U << 19)
1007#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1008#define SCTLR_UWXN (1U << 20) /* v7 onward */
1009#define SCTLR_FI (1U << 21)
1010#define SCTLR_U (1U << 22)
1011#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1012#define SCTLR_VE (1U << 24) /* up to v7 */
1013#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1014#define SCTLR_EE (1U << 25)
1015#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1016#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1017#define SCTLR_NMFI (1U << 27)
1018#define SCTLR_TRE (1U << 28)
1019#define SCTLR_AFE (1U << 29)
1020#define SCTLR_TE (1U << 30)
1021
c6f19164
GB
1022#define CPTR_TCPAC (1U << 31)
1023#define CPTR_TTA (1U << 20)
1024#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1025#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1026#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1027
187f678d
PM
1028#define MDCR_EPMAD (1U << 21)
1029#define MDCR_EDAD (1U << 20)
1030#define MDCR_SPME (1U << 17)
1031#define MDCR_SDD (1U << 16)
a8d64e73 1032#define MDCR_SPD (3U << 14)
187f678d
PM
1033#define MDCR_TDRA (1U << 11)
1034#define MDCR_TDOSA (1U << 10)
1035#define MDCR_TDA (1U << 9)
1036#define MDCR_TDE (1U << 8)
1037#define MDCR_HPME (1U << 7)
1038#define MDCR_TPM (1U << 6)
1039#define MDCR_TPMCR (1U << 5)
1040
a8d64e73
PM
1041/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1042#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1043
78dbbbe4
PM
1044#define CPSR_M (0x1fU)
1045#define CPSR_T (1U << 5)
1046#define CPSR_F (1U << 6)
1047#define CPSR_I (1U << 7)
1048#define CPSR_A (1U << 8)
1049#define CPSR_E (1U << 9)
1050#define CPSR_IT_2_7 (0xfc00U)
1051#define CPSR_GE (0xfU << 16)
4051e12c
PM
1052#define CPSR_IL (1U << 20)
1053/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1054 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1055 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1056 * where it is live state but not accessible to the AArch32 code.
1057 */
1058#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1059#define CPSR_J (1U << 24)
1060#define CPSR_IT_0_1 (3U << 25)
1061#define CPSR_Q (1U << 27)
1062#define CPSR_V (1U << 28)
1063#define CPSR_C (1U << 29)
1064#define CPSR_Z (1U << 30)
1065#define CPSR_N (1U << 31)
9ee6e8bb 1066#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1067#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1068
1069#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1070#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1071 | CPSR_NZCV)
9ee6e8bb
PB
1072/* Bits writable in user mode. */
1073#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1074/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1075#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1076/* Mask of bits which may be set by exception return copying them from SPSR */
1077#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1078
987ab45e
PM
1079/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1080#define XPSR_EXCP 0x1ffU
1081#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1082#define XPSR_IT_2_7 CPSR_IT_2_7
1083#define XPSR_GE CPSR_GE
1084#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1085#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1086#define XPSR_IT_0_1 CPSR_IT_0_1
1087#define XPSR_Q CPSR_Q
1088#define XPSR_V CPSR_V
1089#define XPSR_C CPSR_C
1090#define XPSR_Z CPSR_Z
1091#define XPSR_N CPSR_N
1092#define XPSR_NZCV CPSR_NZCV
1093#define XPSR_IT CPSR_IT
1094
e389be16
FA
1095#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1096#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1097#define TTBCR_PD0 (1U << 4)
1098#define TTBCR_PD1 (1U << 5)
1099#define TTBCR_EPD0 (1U << 7)
1100#define TTBCR_IRGN0 (3U << 8)
1101#define TTBCR_ORGN0 (3U << 10)
1102#define TTBCR_SH0 (3U << 12)
1103#define TTBCR_T1SZ (3U << 16)
1104#define TTBCR_A1 (1U << 22)
1105#define TTBCR_EPD1 (1U << 23)
1106#define TTBCR_IRGN1 (3U << 24)
1107#define TTBCR_ORGN1 (3U << 26)
1108#define TTBCR_SH1 (1U << 28)
1109#define TTBCR_EAE (1U << 31)
1110
d356312f
PM
1111/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1112 * Only these are valid when in AArch64 mode; in
1113 * AArch32 mode SPSRs are basically CPSR-format.
1114 */
f502cfc2 1115#define PSTATE_SP (1U)
d356312f
PM
1116#define PSTATE_M (0xFU)
1117#define PSTATE_nRW (1U << 4)
1118#define PSTATE_F (1U << 6)
1119#define PSTATE_I (1U << 7)
1120#define PSTATE_A (1U << 8)
1121#define PSTATE_D (1U << 9)
1122#define PSTATE_IL (1U << 20)
1123#define PSTATE_SS (1U << 21)
1124#define PSTATE_V (1U << 28)
1125#define PSTATE_C (1U << 29)
1126#define PSTATE_Z (1U << 30)
1127#define PSTATE_N (1U << 31)
1128#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
1129#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1130#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
1131/* Mode values for AArch64 */
1132#define PSTATE_MODE_EL3h 13
1133#define PSTATE_MODE_EL3t 12
1134#define PSTATE_MODE_EL2h 9
1135#define PSTATE_MODE_EL2t 8
1136#define PSTATE_MODE_EL1h 5
1137#define PSTATE_MODE_EL1t 4
1138#define PSTATE_MODE_EL0t 0
1139
de2db7ec
PM
1140/* Write a new value to v7m.exception, thus transitioning into or out
1141 * of Handler mode; this may result in a change of active stack pointer.
1142 */
1143void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1144
9e729b57
EI
1145/* Map EL and handler into a PSTATE_MODE. */
1146static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1147{
1148 return (el << 2) | handler;
1149}
1150
d356312f
PM
1151/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1152 * interprocessing, so we don't attempt to sync with the cpsr state used by
1153 * the 32 bit decoder.
1154 */
1155static inline uint32_t pstate_read(CPUARMState *env)
1156{
1157 int ZF;
1158
1159 ZF = (env->ZF == 0);
1160 return (env->NF & 0x80000000) | (ZF << 30)
1161 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1162 | env->pstate | env->daif;
d356312f
PM
1163}
1164
1165static inline void pstate_write(CPUARMState *env, uint32_t val)
1166{
1167 env->ZF = (~val) & PSTATE_Z;
1168 env->NF = val;
1169 env->CF = (val >> 29) & 1;
1170 env->VF = (val << 3) & 0x80000000;
4cc35614 1171 env->daif = val & PSTATE_DAIF;
d356312f
PM
1172 env->pstate = val & ~CACHED_PSTATE_BITS;
1173}
1174
b5ff1b31 1175/* Return the current CPSR value. */
2f4a40e5 1176uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1177
1178typedef enum CPSRWriteType {
1179 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1180 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1181 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1182 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1183} CPSRWriteType;
1184
1185/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1186void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1187 CPSRWriteType write_type);
9ee6e8bb
PB
1188
1189/* Return the current xPSR value. */
1190static inline uint32_t xpsr_read(CPUARMState *env)
1191{
1192 int ZF;
6fbe23d5
PB
1193 ZF = (env->ZF == 0);
1194 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1195 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1196 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1197 | ((env->condexec_bits & 0xfc) << 8)
1198 | env->v7m.exception;
b5ff1b31
FB
1199}
1200
9ee6e8bb
PB
1201/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1202static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1203{
987ab45e
PM
1204 if (mask & XPSR_NZCV) {
1205 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1206 env->NF = val;
9ee6e8bb
PB
1207 env->CF = (val >> 29) & 1;
1208 env->VF = (val << 3) & 0x80000000;
1209 }
987ab45e
PM
1210 if (mask & XPSR_Q) {
1211 env->QF = ((val & XPSR_Q) != 0);
1212 }
1213 if (mask & XPSR_T) {
1214 env->thumb = ((val & XPSR_T) != 0);
1215 }
1216 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1217 env->condexec_bits &= ~3;
1218 env->condexec_bits |= (val >> 25) & 3;
1219 }
987ab45e 1220 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1221 env->condexec_bits &= 3;
1222 env->condexec_bits |= (val >> 8) & 0xfc;
1223 }
987ab45e 1224 if (mask & XPSR_EXCP) {
de2db7ec
PM
1225 /* Note that this only happens on exception exit */
1226 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1227 }
1228}
1229
f149e3e8
EI
1230#define HCR_VM (1ULL << 0)
1231#define HCR_SWIO (1ULL << 1)
1232#define HCR_PTW (1ULL << 2)
1233#define HCR_FMO (1ULL << 3)
1234#define HCR_IMO (1ULL << 4)
1235#define HCR_AMO (1ULL << 5)
1236#define HCR_VF (1ULL << 6)
1237#define HCR_VI (1ULL << 7)
1238#define HCR_VSE (1ULL << 8)
1239#define HCR_FB (1ULL << 9)
1240#define HCR_BSU_MASK (3ULL << 10)
1241#define HCR_DC (1ULL << 12)
1242#define HCR_TWI (1ULL << 13)
1243#define HCR_TWE (1ULL << 14)
1244#define HCR_TID0 (1ULL << 15)
1245#define HCR_TID1 (1ULL << 16)
1246#define HCR_TID2 (1ULL << 17)
1247#define HCR_TID3 (1ULL << 18)
1248#define HCR_TSC (1ULL << 19)
1249#define HCR_TIDCP (1ULL << 20)
1250#define HCR_TACR (1ULL << 21)
1251#define HCR_TSW (1ULL << 22)
099bf53b 1252#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1253#define HCR_TPU (1ULL << 24)
1254#define HCR_TTLB (1ULL << 25)
1255#define HCR_TVM (1ULL << 26)
1256#define HCR_TGE (1ULL << 27)
1257#define HCR_TDZ (1ULL << 28)
1258#define HCR_HCD (1ULL << 29)
1259#define HCR_TRVM (1ULL << 30)
1260#define HCR_RW (1ULL << 31)
1261#define HCR_CD (1ULL << 32)
1262#define HCR_ID (1ULL << 33)
ac656b16 1263#define HCR_E2H (1ULL << 34)
099bf53b
RH
1264#define HCR_TLOR (1ULL << 35)
1265#define HCR_TERR (1ULL << 36)
1266#define HCR_TEA (1ULL << 37)
1267#define HCR_MIOCNCE (1ULL << 38)
1268#define HCR_APK (1ULL << 40)
1269#define HCR_API (1ULL << 41)
1270#define HCR_NV (1ULL << 42)
1271#define HCR_NV1 (1ULL << 43)
1272#define HCR_AT (1ULL << 44)
1273#define HCR_NV2 (1ULL << 45)
1274#define HCR_FWB (1ULL << 46)
1275#define HCR_FIEN (1ULL << 47)
1276#define HCR_TID4 (1ULL << 49)
1277#define HCR_TICAB (1ULL << 50)
1278#define HCR_TOCU (1ULL << 52)
1279#define HCR_TTLBIS (1ULL << 54)
1280#define HCR_TTLBOS (1ULL << 55)
1281#define HCR_ATA (1ULL << 56)
1282#define HCR_DCT (1ULL << 57)
1283
ac656b16
PM
1284/*
1285 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1286 * HCR_MASK and then clear it again if the feature bit is not set in
1287 * hcr_write().
1288 */
f149e3e8
EI
1289#define HCR_MASK ((1ULL << 34) - 1)
1290
64e0e2de
EI
1291#define SCR_NS (1U << 0)
1292#define SCR_IRQ (1U << 1)
1293#define SCR_FIQ (1U << 2)
1294#define SCR_EA (1U << 3)
1295#define SCR_FW (1U << 4)
1296#define SCR_AW (1U << 5)
1297#define SCR_NET (1U << 6)
1298#define SCR_SMD (1U << 7)
1299#define SCR_HCE (1U << 8)
1300#define SCR_SIF (1U << 9)
1301#define SCR_RW (1U << 10)
1302#define SCR_ST (1U << 11)
1303#define SCR_TWI (1U << 12)
1304#define SCR_TWE (1U << 13)
99f8f86d
RH
1305#define SCR_TLOR (1U << 14)
1306#define SCR_TERR (1U << 15)
1307#define SCR_APK (1U << 16)
1308#define SCR_API (1U << 17)
1309#define SCR_EEL2 (1U << 18)
1310#define SCR_EASE (1U << 19)
1311#define SCR_NMEA (1U << 20)
1312#define SCR_FIEN (1U << 21)
1313#define SCR_ENSCXT (1U << 25)
1314#define SCR_ATA (1U << 26)
64e0e2de 1315
01653295
PM
1316/* Return the current FPSCR value. */
1317uint32_t vfp_get_fpscr(CPUARMState *env);
1318void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1319
d81ce0ef
AB
1320/* FPCR, Floating Point Control Register
1321 * FPSR, Floating Poiht Status Register
1322 *
1323 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1324 * FPCR and FPSR. However since they still use non-overlapping bits
1325 * we store the underlying state in fpscr and just mask on read/write.
1326 */
1327#define FPSR_MASK 0xf800009f
0b62159b 1328#define FPCR_MASK 0x07ff9f00
d81ce0ef
AB
1329
1330#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1331#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1332#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1333
f903fa22
PM
1334static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1335{
1336 return vfp_get_fpscr(env) & FPSR_MASK;
1337}
1338
1339static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1340{
1341 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1342 vfp_set_fpscr(env, new_fpscr);
1343}
1344
1345static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1346{
1347 return vfp_get_fpscr(env) & FPCR_MASK;
1348}
1349
1350static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1351{
1352 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1353 vfp_set_fpscr(env, new_fpscr);
1354}
1355
b5ff1b31
FB
1356enum arm_cpu_mode {
1357 ARM_CPU_MODE_USR = 0x10,
1358 ARM_CPU_MODE_FIQ = 0x11,
1359 ARM_CPU_MODE_IRQ = 0x12,
1360 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1361 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1362 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1363 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1364 ARM_CPU_MODE_UND = 0x1b,
1365 ARM_CPU_MODE_SYS = 0x1f
1366};
1367
40f137e1
PB
1368/* VFP system registers. */
1369#define ARM_VFP_FPSID 0
1370#define ARM_VFP_FPSCR 1
a50c0f51 1371#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1372#define ARM_VFP_MVFR1 6
1373#define ARM_VFP_MVFR0 7
40f137e1
PB
1374#define ARM_VFP_FPEXC 8
1375#define ARM_VFP_FPINST 9
1376#define ARM_VFP_FPINST2 10
1377
18c9b560 1378/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1379#define ARM_IWMMXT_wCID 0
1380#define ARM_IWMMXT_wCon 1
1381#define ARM_IWMMXT_wCSSF 2
1382#define ARM_IWMMXT_wCASF 3
1383#define ARM_IWMMXT_wCGR0 8
1384#define ARM_IWMMXT_wCGR1 9
1385#define ARM_IWMMXT_wCGR2 10
1386#define ARM_IWMMXT_wCGR3 11
18c9b560 1387
2c4da50d
PM
1388/* V7M CCR bits */
1389FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1390FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1391FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1392FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1393FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1394FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1395FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1396FIELD(V7M_CCR, DC, 16, 1)
1397FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1398FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1399
24ac0fb1
PM
1400/* V7M SCR bits */
1401FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1402FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1403FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1404FIELD(V7M_SCR, SEVONPEND, 4, 1)
1405
3b2e9344
PM
1406/* V7M AIRCR bits */
1407FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1408FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1409FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1410FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1411FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1412FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1413FIELD(V7M_AIRCR, PRIS, 14, 1)
1414FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1415FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1416
2c4da50d
PM
1417/* V7M CFSR bits for MMFSR */
1418FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1419FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1420FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1421FIELD(V7M_CFSR, MSTKERR, 4, 1)
1422FIELD(V7M_CFSR, MLSPERR, 5, 1)
1423FIELD(V7M_CFSR, MMARVALID, 7, 1)
1424
1425/* V7M CFSR bits for BFSR */
1426FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1427FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1428FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1429FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1430FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1431FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1432FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1433
1434/* V7M CFSR bits for UFSR */
1435FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1436FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1437FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1438FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1439FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1440FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1441FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1442
334e8dad
PM
1443/* V7M CFSR bit masks covering all of the subregister bits */
1444FIELD(V7M_CFSR, MMFSR, 0, 8)
1445FIELD(V7M_CFSR, BFSR, 8, 8)
1446FIELD(V7M_CFSR, UFSR, 16, 16)
1447
2c4da50d
PM
1448/* V7M HFSR bits */
1449FIELD(V7M_HFSR, VECTTBL, 1, 1)
1450FIELD(V7M_HFSR, FORCED, 30, 1)
1451FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1452
1453/* V7M DFSR bits */
1454FIELD(V7M_DFSR, HALTED, 0, 1)
1455FIELD(V7M_DFSR, BKPT, 1, 1)
1456FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1457FIELD(V7M_DFSR, VCATCH, 3, 1)
1458FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1459
bed079da
PM
1460/* V7M SFSR bits */
1461FIELD(V7M_SFSR, INVEP, 0, 1)
1462FIELD(V7M_SFSR, INVIS, 1, 1)
1463FIELD(V7M_SFSR, INVER, 2, 1)
1464FIELD(V7M_SFSR, AUVIOL, 3, 1)
1465FIELD(V7M_SFSR, INVTRAN, 4, 1)
1466FIELD(V7M_SFSR, LSPERR, 5, 1)
1467FIELD(V7M_SFSR, SFARVALID, 6, 1)
1468FIELD(V7M_SFSR, LSERR, 7, 1)
1469
29c483a5
MD
1470/* v7M MPU_CTRL bits */
1471FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1472FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1473FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1474
43bbce7f
PM
1475/* v7M CLIDR bits */
1476FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1477FIELD(V7M_CLIDR, LOUIS, 21, 3)
1478FIELD(V7M_CLIDR, LOC, 24, 3)
1479FIELD(V7M_CLIDR, LOUU, 27, 3)
1480FIELD(V7M_CLIDR, ICB, 30, 2)
1481
1482FIELD(V7M_CSSELR, IND, 0, 1)
1483FIELD(V7M_CSSELR, LEVEL, 1, 3)
1484/* We use the combination of InD and Level to index into cpu->ccsidr[];
1485 * define a mask for this and check that it doesn't permit running off
1486 * the end of the array.
1487 */
1488FIELD(V7M_CSSELR, INDEX, 0, 4)
1489
a62e62af
RH
1490/*
1491 * System register ID fields.
1492 */
1493FIELD(ID_ISAR0, SWAP, 0, 4)
1494FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1495FIELD(ID_ISAR0, BITFIELD, 8, 4)
1496FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1497FIELD(ID_ISAR0, COPROC, 16, 4)
1498FIELD(ID_ISAR0, DEBUG, 20, 4)
1499FIELD(ID_ISAR0, DIVIDE, 24, 4)
1500
1501FIELD(ID_ISAR1, ENDIAN, 0, 4)
1502FIELD(ID_ISAR1, EXCEPT, 4, 4)
1503FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1504FIELD(ID_ISAR1, EXTEND, 12, 4)
1505FIELD(ID_ISAR1, IFTHEN, 16, 4)
1506FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1507FIELD(ID_ISAR1, INTERWORK, 24, 4)
1508FIELD(ID_ISAR1, JAZELLE, 28, 4)
1509
1510FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1511FIELD(ID_ISAR2, MEMHINT, 4, 4)
1512FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1513FIELD(ID_ISAR2, MULT, 12, 4)
1514FIELD(ID_ISAR2, MULTS, 16, 4)
1515FIELD(ID_ISAR2, MULTU, 20, 4)
1516FIELD(ID_ISAR2, PSR_AR, 24, 4)
1517FIELD(ID_ISAR2, REVERSAL, 28, 4)
1518
1519FIELD(ID_ISAR3, SATURATE, 0, 4)
1520FIELD(ID_ISAR3, SIMD, 4, 4)
1521FIELD(ID_ISAR3, SVC, 8, 4)
1522FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1523FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1524FIELD(ID_ISAR3, T32COPY, 20, 4)
1525FIELD(ID_ISAR3, TRUENOP, 24, 4)
1526FIELD(ID_ISAR3, T32EE, 28, 4)
1527
1528FIELD(ID_ISAR4, UNPRIV, 0, 4)
1529FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1530FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1531FIELD(ID_ISAR4, SMC, 12, 4)
1532FIELD(ID_ISAR4, BARRIER, 16, 4)
1533FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1534FIELD(ID_ISAR4, PSR_M, 24, 4)
1535FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1536
1537FIELD(ID_ISAR5, SEVL, 0, 4)
1538FIELD(ID_ISAR5, AES, 4, 4)
1539FIELD(ID_ISAR5, SHA1, 8, 4)
1540FIELD(ID_ISAR5, SHA2, 12, 4)
1541FIELD(ID_ISAR5, CRC32, 16, 4)
1542FIELD(ID_ISAR5, RDM, 24, 4)
1543FIELD(ID_ISAR5, VCMA, 28, 4)
1544
1545FIELD(ID_ISAR6, JSCVT, 0, 4)
1546FIELD(ID_ISAR6, DP, 4, 4)
1547FIELD(ID_ISAR6, FHM, 8, 4)
1548FIELD(ID_ISAR6, SB, 12, 4)
1549FIELD(ID_ISAR6, SPECRES, 16, 4)
1550
1551FIELD(ID_AA64ISAR0, AES, 4, 4)
1552FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1553FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1554FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1555FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1556FIELD(ID_AA64ISAR0, RDM, 28, 4)
1557FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1558FIELD(ID_AA64ISAR0, SM3, 36, 4)
1559FIELD(ID_AA64ISAR0, SM4, 40, 4)
1560FIELD(ID_AA64ISAR0, DP, 44, 4)
1561FIELD(ID_AA64ISAR0, FHM, 48, 4)
1562FIELD(ID_AA64ISAR0, TS, 52, 4)
1563FIELD(ID_AA64ISAR0, TLB, 56, 4)
1564FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1565
1566FIELD(ID_AA64ISAR1, DPB, 0, 4)
1567FIELD(ID_AA64ISAR1, APA, 4, 4)
1568FIELD(ID_AA64ISAR1, API, 8, 4)
1569FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1570FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1571FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1572FIELD(ID_AA64ISAR1, GPA, 24, 4)
1573FIELD(ID_AA64ISAR1, GPI, 28, 4)
1574FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1575FIELD(ID_AA64ISAR1, SB, 36, 4)
1576FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1577
cd208a1c
RH
1578FIELD(ID_AA64PFR0, EL0, 0, 4)
1579FIELD(ID_AA64PFR0, EL1, 4, 4)
1580FIELD(ID_AA64PFR0, EL2, 8, 4)
1581FIELD(ID_AA64PFR0, EL3, 12, 4)
1582FIELD(ID_AA64PFR0, FP, 16, 4)
1583FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1584FIELD(ID_AA64PFR0, GIC, 24, 4)
1585FIELD(ID_AA64PFR0, RAS, 28, 4)
1586FIELD(ID_AA64PFR0, SVE, 32, 4)
1587
3dc91ddb
PM
1588FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1589FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1590FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1591FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1592FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1593FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1594FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1595FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1596FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1597FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1598FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1599FIELD(ID_AA64MMFR0, EXS, 44, 4)
1600
1601FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1602FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1603FIELD(ID_AA64MMFR1, VH, 8, 4)
1604FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1605FIELD(ID_AA64MMFR1, LO, 16, 4)
1606FIELD(ID_AA64MMFR1, PAN, 20, 4)
1607FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1608FIELD(ID_AA64MMFR1, XNX, 28, 4)
1609
43bbce7f
PM
1610QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1611
ce854d7c
BC
1612/* If adding a feature bit which corresponds to a Linux ELF
1613 * HWCAP bit, remember to update the feature-bit-to-hwcap
1614 * mapping in linux-user/elfload.c:get_elf_hwcap().
1615 */
40f137e1
PB
1616enum arm_features {
1617 ARM_FEATURE_VFP,
c1713132
AZ
1618 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1619 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1620 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1621 ARM_FEATURE_V6,
1622 ARM_FEATURE_V6K,
1623 ARM_FEATURE_V7,
1624 ARM_FEATURE_THUMB2,
452a0955 1625 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1626 ARM_FEATURE_VFP3,
60011498 1627 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1628 ARM_FEATURE_NEON,
9ee6e8bb 1629 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1630 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1631 ARM_FEATURE_THUMB2EE,
be5e7a76 1632 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1633 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1634 ARM_FEATURE_V4T,
1635 ARM_FEATURE_V5,
5bc95aa2 1636 ARM_FEATURE_STRONGARM,
906879a9 1637 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1638 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1639 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1640 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1641 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1642 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1643 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1644 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1645 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1646 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1647 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1648 ARM_FEATURE_V8,
3926cc84 1649 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1650 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1651 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1652 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1653 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1654 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1655 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1656 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1657 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1658 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1659 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1660};
1661
1662static inline int arm_feature(CPUARMState *env, int feature)
1663{
918f5dca 1664 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1665}
1666
19e0fefa
FA
1667#if !defined(CONFIG_USER_ONLY)
1668/* Return true if exception levels below EL3 are in secure state,
1669 * or would be following an exception return to that level.
1670 * Unlike arm_is_secure() (which is always a question about the
1671 * _current_ state of the CPU) this doesn't care about the current
1672 * EL or mode.
1673 */
1674static inline bool arm_is_secure_below_el3(CPUARMState *env)
1675{
1676 if (arm_feature(env, ARM_FEATURE_EL3)) {
1677 return !(env->cp15.scr_el3 & SCR_NS);
1678 } else {
6b7f0b61 1679 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1680 * defined, in which case QEMU defaults to non-secure.
1681 */
1682 return false;
1683 }
1684}
1685
71205876
PM
1686/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1687static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1688{
1689 if (arm_feature(env, ARM_FEATURE_EL3)) {
1690 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1691 /* CPU currently in AArch64 state and EL3 */
1692 return true;
1693 } else if (!is_a64(env) &&
1694 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1695 /* CPU currently in AArch32 state and monitor mode */
1696 return true;
1697 }
1698 }
71205876
PM
1699 return false;
1700}
1701
1702/* Return true if the processor is in secure state */
1703static inline bool arm_is_secure(CPUARMState *env)
1704{
1705 if (arm_is_el3_or_mon(env)) {
1706 return true;
1707 }
19e0fefa
FA
1708 return arm_is_secure_below_el3(env);
1709}
1710
1711#else
1712static inline bool arm_is_secure_below_el3(CPUARMState *env)
1713{
1714 return false;
1715}
1716
1717static inline bool arm_is_secure(CPUARMState *env)
1718{
1719 return false;
1720}
1721#endif
1722
1f79ee32
PM
1723/* Return true if the specified exception level is running in AArch64 state. */
1724static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1725{
446c81ab
PM
1726 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1727 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1728 */
446c81ab
PM
1729 assert(el >= 1 && el <= 3);
1730 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1731
446c81ab
PM
1732 /* The highest exception level is always at the maximum supported
1733 * register width, and then lower levels have a register width controlled
1734 * by bits in the SCR or HCR registers.
1f79ee32 1735 */
446c81ab
PM
1736 if (el == 3) {
1737 return aa64;
1738 }
1739
1740 if (arm_feature(env, ARM_FEATURE_EL3)) {
1741 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1742 }
1743
1744 if (el == 2) {
1745 return aa64;
1746 }
1747
1748 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1749 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1750 }
1751
1752 return aa64;
1f79ee32
PM
1753}
1754
3f342b9e
SF
1755/* Function for determing whether guest cp register reads and writes should
1756 * access the secure or non-secure bank of a cp register. When EL3 is
1757 * operating in AArch32 state, the NS-bit determines whether the secure
1758 * instance of a cp register should be used. When EL3 is AArch64 (or if
1759 * it doesn't exist at all) then there is no register banking, and all
1760 * accesses are to the non-secure version.
1761 */
1762static inline bool access_secure_reg(CPUARMState *env)
1763{
1764 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1765 !arm_el_is_aa64(env, 3) &&
1766 !(env->cp15.scr_el3 & SCR_NS));
1767
1768 return ret;
1769}
1770
ea30a4b8
FA
1771/* Macros for accessing a specified CP register bank */
1772#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1773 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1774
1775#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1776 do { \
1777 if (_secure) { \
1778 (_env)->cp15._regname##_s = (_val); \
1779 } else { \
1780 (_env)->cp15._regname##_ns = (_val); \
1781 } \
1782 } while (0)
1783
1784/* Macros for automatically accessing a specific CP register bank depending on
1785 * the current secure state of the system. These macros are not intended for
1786 * supporting instruction translation reads/writes as these are dependent
1787 * solely on the SCR.NS bit and not the mode.
1788 */
1789#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1790 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1791 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1792
1793#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1794 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1795 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1796 (_val))
1797
9a78eead 1798void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1799uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1800 uint32_t cur_el, bool secure);
40f137e1 1801
9ee6e8bb 1802/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1803#ifndef CONFIG_USER_ONLY
1804bool armv7m_nvic_can_take_pending_exception(void *opaque);
1805#else
1806static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1807{
1808 return true;
1809}
1810#endif
2fb50a33
PM
1811/**
1812 * armv7m_nvic_set_pending: mark the specified exception as pending
1813 * @opaque: the NVIC
1814 * @irq: the exception number to mark pending
1815 * @secure: false for non-banked exceptions or for the nonsecure
1816 * version of a banked exception, true for the secure version of a banked
1817 * exception.
1818 *
1819 * Marks the specified exception as pending. Note that we will assert()
1820 * if @secure is true and @irq does not specify one of the fixed set
1821 * of architecturally banked exceptions.
1822 */
1823void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1824/**
1825 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1826 * @opaque: the NVIC
1827 * @irq: the exception number to mark pending
1828 * @secure: false for non-banked exceptions or for the nonsecure
1829 * version of a banked exception, true for the secure version of a banked
1830 * exception.
1831 *
1832 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1833 * exceptions (exceptions generated in the course of trying to take
1834 * a different exception).
1835 */
1836void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1837/**
1838 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1839 * exception, and whether it targets Secure state
1840 * @opaque: the NVIC
1841 * @pirq: set to pending exception number
1842 * @ptargets_secure: set to whether pending exception targets Secure
1843 *
1844 * This function writes the number of the highest priority pending
1845 * exception (the one which would be made active by
1846 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1847 * to true if the current highest priority pending exception should
1848 * be taken to Secure state, false for NS.
1849 */
1850void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1851 bool *ptargets_secure);
5cb18069
PM
1852/**
1853 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1854 * @opaque: the NVIC
1855 *
1856 * Move the current highest priority pending exception from the pending
1857 * state to the active state, and update v7m.exception to indicate that
1858 * it is the exception currently being handled.
5cb18069 1859 */
6c948518 1860void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1861/**
1862 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1863 * @opaque: the NVIC
1864 * @irq: the exception number to complete
5cb18069 1865 * @secure: true if this exception was secure
aa488fe3
PM
1866 *
1867 * Returns: -1 if the irq was not active
1868 * 1 if completing this irq brought us back to base (no active irqs)
1869 * 0 if there is still an irq active after this one was completed
1870 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1871 */
5cb18069 1872int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1873/**
1874 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1875 * @opaque: the NVIC
1876 *
1877 * Returns: the raw execution priority as defined by the v8M architecture.
1878 * This is the execution priority minus the effects of AIRCR.PRIS,
1879 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1880 * (v8M ARM ARM I_PKLD.)
1881 */
1882int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
1883/**
1884 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1885 * priority is negative for the specified security state.
1886 * @opaque: the NVIC
1887 * @secure: the security state to test
1888 * This corresponds to the pseudocode IsReqExecPriNeg().
1889 */
1890#ifndef CONFIG_USER_ONLY
1891bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1892#else
1893static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1894{
1895 return false;
1896}
1897#endif
9ee6e8bb 1898
4b6a83fb
PM
1899/* Interface for defining coprocessor registers.
1900 * Registers are defined in tables of arm_cp_reginfo structs
1901 * which are passed to define_arm_cp_regs().
1902 */
1903
1904/* When looking up a coprocessor register we look for it
1905 * via an integer which encodes all of:
1906 * coprocessor number
1907 * Crn, Crm, opc1, opc2 fields
1908 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1909 * or via MRRC/MCRR?)
51a79b03 1910 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1911 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1912 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1913 * For AArch64, there is no 32/64 bit size distinction;
1914 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1915 * and 4 bit CRn and CRm. The encoding patterns are chosen
1916 * to be easy to convert to and from the KVM encodings, and also
1917 * so that the hashtable can contain both AArch32 and AArch64
1918 * registers (to allow for interprocessing where we might run
1919 * 32 bit code on a 64 bit core).
4b6a83fb 1920 */
f5a0a5a5
PM
1921/* This bit is private to our hashtable cpreg; in KVM register
1922 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1923 * in the upper bits of the 64 bit ID.
1924 */
1925#define CP_REG_AA64_SHIFT 28
1926#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1927
51a79b03
PM
1928/* To enable banking of coprocessor registers depending on ns-bit we
1929 * add a bit to distinguish between secure and non-secure cpregs in the
1930 * hashtable.
1931 */
1932#define CP_REG_NS_SHIFT 29
1933#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1934
1935#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1936 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1937 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1938
f5a0a5a5
PM
1939#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1940 (CP_REG_AA64_MASK | \
1941 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1942 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1943 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1944 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1945 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1946 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1947
721fae12
PM
1948/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1949 * version used as a key for the coprocessor register hashtable
1950 */
1951static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1952{
1953 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1954 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1955 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1956 } else {
1957 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1958 cpregid |= (1 << 15);
1959 }
1960
1961 /* KVM is always non-secure so add the NS flag on AArch32 register
1962 * entries.
1963 */
1964 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1965 }
1966 return cpregid;
1967}
1968
1969/* Convert a truncated 32 bit hashtable key into the full
1970 * 64 bit KVM register ID.
1971 */
1972static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1973{
f5a0a5a5
PM
1974 uint64_t kvmid;
1975
1976 if (cpregid & CP_REG_AA64_MASK) {
1977 kvmid = cpregid & ~CP_REG_AA64_MASK;
1978 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1979 } else {
f5a0a5a5
PM
1980 kvmid = cpregid & ~(1 << 15);
1981 if (cpregid & (1 << 15)) {
1982 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1983 } else {
1984 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1985 }
721fae12
PM
1986 }
1987 return kvmid;
1988}
1989
4b6a83fb 1990/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 1991 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
1992 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1993 * TCG can assume the value to be constant (ie load at translate time)
1994 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1995 * indicates that the TB should not be ended after a write to this register
1996 * (the default is that the TB ends after cp writes). OVERRIDE permits
1997 * a register definition to override a previous definition for the
1998 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1999 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2000 * ALIAS indicates that this register is an alias view of some underlying
2001 * state which is also visible via another register, and that the other
b061a82b
SF
2002 * register is handling migration and reset; registers marked ALIAS will not be
2003 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2004 * NO_RAW indicates that this register has no underlying state and does not
2005 * support raw access for state saving/loading; it will not be used for either
2006 * migration or KVM state synchronization. (Typically this is for "registers"
2007 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2008 * IO indicates that this register does I/O and therefore its accesses
2009 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2010 * registers which implement clocks or timers require this.
4b6a83fb 2011 */
fe03d45f
RH
2012#define ARM_CP_SPECIAL 0x0001
2013#define ARM_CP_CONST 0x0002
2014#define ARM_CP_64BIT 0x0004
2015#define ARM_CP_SUPPRESS_TB_END 0x0008
2016#define ARM_CP_OVERRIDE 0x0010
2017#define ARM_CP_ALIAS 0x0020
2018#define ARM_CP_IO 0x0040
2019#define ARM_CP_NO_RAW 0x0080
2020#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2021#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2022#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2023#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2024#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2025#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2026#define ARM_CP_FPU 0x1000
490aa7f1 2027#define ARM_CP_SVE 0x2000
1f163787 2028#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2029/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2030#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2031/* Mask of only the flag bits in a type field */
1f163787 2032#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2033
f5a0a5a5
PM
2034/* Valid values for ARMCPRegInfo state field, indicating which of
2035 * the AArch32 and AArch64 execution states this register is visible in.
2036 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2037 * If the reginfo is declared to be visible in both states then a second
2038 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2039 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2040 * Note that we rely on the values of these enums as we iterate through
2041 * the various states in some places.
2042 */
2043enum {
2044 ARM_CP_STATE_AA32 = 0,
2045 ARM_CP_STATE_AA64 = 1,
2046 ARM_CP_STATE_BOTH = 2,
2047};
2048
c3e30260
FA
2049/* ARM CP register secure state flags. These flags identify security state
2050 * attributes for a given CP register entry.
2051 * The existence of both or neither secure and non-secure flags indicates that
2052 * the register has both a secure and non-secure hash entry. A single one of
2053 * these flags causes the register to only be hashed for the specified
2054 * security state.
2055 * Although definitions may have any combination of the S/NS bits, each
2056 * registered entry will only have one to identify whether the entry is secure
2057 * or non-secure.
2058 */
2059enum {
2060 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2061 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2062};
2063
4b6a83fb
PM
2064/* Return true if cptype is a valid type field. This is used to try to
2065 * catch errors where the sentinel has been accidentally left off the end
2066 * of a list of registers.
2067 */
2068static inline bool cptype_valid(int cptype)
2069{
2070 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2071 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2072 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2073}
2074
2075/* Access rights:
2076 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2077 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2078 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2079 * (ie any of the privileged modes in Secure state, or Monitor mode).
2080 * If a register is accessible in one privilege level it's always accessible
2081 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2082 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2083 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2084 * terminology a little and call this PL3.
f5a0a5a5
PM
2085 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2086 * with the ELx exception levels.
4b6a83fb
PM
2087 *
2088 * If access permissions for a register are more complex than can be
2089 * described with these bits, then use a laxer set of restrictions, and
2090 * do the more restrictive/complex check inside a helper function.
2091 */
2092#define PL3_R 0x80
2093#define PL3_W 0x40
2094#define PL2_R (0x20 | PL3_R)
2095#define PL2_W (0x10 | PL3_W)
2096#define PL1_R (0x08 | PL2_R)
2097#define PL1_W (0x04 | PL2_W)
2098#define PL0_R (0x02 | PL1_R)
2099#define PL0_W (0x01 | PL1_W)
2100
2101#define PL3_RW (PL3_R | PL3_W)
2102#define PL2_RW (PL2_R | PL2_W)
2103#define PL1_RW (PL1_R | PL1_W)
2104#define PL0_RW (PL0_R | PL0_W)
2105
75502672
PM
2106/* Return the highest implemented Exception Level */
2107static inline int arm_highest_el(CPUARMState *env)
2108{
2109 if (arm_feature(env, ARM_FEATURE_EL3)) {
2110 return 3;
2111 }
2112 if (arm_feature(env, ARM_FEATURE_EL2)) {
2113 return 2;
2114 }
2115 return 1;
2116}
2117
15b3f556
PM
2118/* Return true if a v7M CPU is in Handler mode */
2119static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2120{
2121 return env->v7m.exception != 0;
2122}
2123
dcbff19b
GB
2124/* Return the current Exception Level (as per ARMv8; note that this differs
2125 * from the ARMv7 Privilege Level).
2126 */
2127static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2128{
6d54ed3c 2129 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2130 return arm_v7m_is_handler_mode(env) ||
2131 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2132 }
2133
592125f8 2134 if (is_a64(env)) {
f5a0a5a5
PM
2135 return extract32(env->pstate, 2, 2);
2136 }
2137
592125f8
FA
2138 switch (env->uncached_cpsr & 0x1f) {
2139 case ARM_CPU_MODE_USR:
4b6a83fb 2140 return 0;
592125f8
FA
2141 case ARM_CPU_MODE_HYP:
2142 return 2;
2143 case ARM_CPU_MODE_MON:
2144 return 3;
2145 default:
2146 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2147 /* If EL3 is 32-bit then all secure privileged modes run in
2148 * EL3
2149 */
2150 return 3;
2151 }
2152
2153 return 1;
4b6a83fb 2154 }
4b6a83fb
PM
2155}
2156
2157typedef struct ARMCPRegInfo ARMCPRegInfo;
2158
f59df3f2
PM
2159typedef enum CPAccessResult {
2160 /* Access is permitted */
2161 CP_ACCESS_OK = 0,
2162 /* Access fails due to a configurable trap or enable which would
2163 * result in a categorized exception syndrome giving information about
2164 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2165 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2166 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2167 */
2168 CP_ACCESS_TRAP = 1,
2169 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2170 * Note that this is not a catch-all case -- the set of cases which may
2171 * result in this failure is specifically defined by the architecture.
2172 */
2173 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2174 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2175 CP_ACCESS_TRAP_EL2 = 3,
2176 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2177 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2178 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2179 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2180 /* Access fails and results in an exception syndrome for an FP access,
2181 * trapped directly to EL2 or EL3
2182 */
2183 CP_ACCESS_TRAP_FP_EL2 = 7,
2184 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2185} CPAccessResult;
2186
c4241c7d
PM
2187/* Access functions for coprocessor registers. These cannot fail and
2188 * may not raise exceptions.
2189 */
2190typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2191typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2192 uint64_t value);
f59df3f2 2193/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2194typedef CPAccessResult CPAccessFn(CPUARMState *env,
2195 const ARMCPRegInfo *opaque,
2196 bool isread);
4b6a83fb
PM
2197/* Hook function for register reset */
2198typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2199
2200#define CP_ANY 0xff
2201
2202/* Definition of an ARM coprocessor register */
2203struct ARMCPRegInfo {
2204 /* Name of register (useful mainly for debugging, need not be unique) */
2205 const char *name;
2206 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2207 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2208 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2209 * will be decoded to this register. The register read and write
2210 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2211 * used by the program, so it is possible to register a wildcard and
2212 * then behave differently on read/write if necessary.
2213 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2214 * must both be zero.
f5a0a5a5
PM
2215 * For AArch64-visible registers, opc0 is also used.
2216 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2217 * way to distinguish (for KVM's benefit) guest-visible system registers
2218 * from demuxed ones provided to preserve the "no side effects on
2219 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2220 * visible (to match KVM's encoding); cp==0 will be converted to
2221 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2222 */
2223 uint8_t cp;
2224 uint8_t crn;
2225 uint8_t crm;
f5a0a5a5 2226 uint8_t opc0;
4b6a83fb
PM
2227 uint8_t opc1;
2228 uint8_t opc2;
f5a0a5a5
PM
2229 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2230 int state;
4b6a83fb
PM
2231 /* Register type: ARM_CP_* bits/values */
2232 int type;
2233 /* Access rights: PL*_[RW] */
2234 int access;
c3e30260
FA
2235 /* Security state: ARM_CP_SECSTATE_* bits/values */
2236 int secure;
4b6a83fb
PM
2237 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2238 * this register was defined: can be used to hand data through to the
2239 * register read/write functions, since they are passed the ARMCPRegInfo*.
2240 */
2241 void *opaque;
2242 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2243 * fieldoffset is non-zero, the reset value of the register.
2244 */
2245 uint64_t resetvalue;
c3e30260
FA
2246 /* Offset of the field in CPUARMState for this register.
2247 *
2248 * This is not needed if either:
4b6a83fb
PM
2249 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2250 * 2. both readfn and writefn are specified
2251 */
2252 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2253
2254 /* Offsets of the secure and non-secure fields in CPUARMState for the
2255 * register if it is banked. These fields are only used during the static
2256 * registration of a register. During hashing the bank associated
2257 * with a given security state is copied to fieldoffset which is used from
2258 * there on out.
2259 *
2260 * It is expected that register definitions use either fieldoffset or
2261 * bank_fieldoffsets in the definition but not both. It is also expected
2262 * that both bank offsets are set when defining a banked register. This
2263 * use indicates that a register is banked.
2264 */
2265 ptrdiff_t bank_fieldoffsets[2];
2266
f59df3f2
PM
2267 /* Function for making any access checks for this register in addition to
2268 * those specified by the 'access' permissions bits. If NULL, no extra
2269 * checks required. The access check is performed at runtime, not at
2270 * translate time.
2271 */
2272 CPAccessFn *accessfn;
4b6a83fb
PM
2273 /* Function for handling reads of this register. If NULL, then reads
2274 * will be done by loading from the offset into CPUARMState specified
2275 * by fieldoffset.
2276 */
2277 CPReadFn *readfn;
2278 /* Function for handling writes of this register. If NULL, then writes
2279 * will be done by writing to the offset into CPUARMState specified
2280 * by fieldoffset.
2281 */
2282 CPWriteFn *writefn;
7023ec7e
PM
2283 /* Function for doing a "raw" read; used when we need to copy
2284 * coprocessor state to the kernel for KVM or out for
2285 * migration. This only needs to be provided if there is also a
c4241c7d 2286 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2287 */
2288 CPReadFn *raw_readfn;
2289 /* Function for doing a "raw" write; used when we need to copy KVM
2290 * kernel coprocessor state into userspace, or for inbound
2291 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2292 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2293 * or similar behaviour.
7023ec7e
PM
2294 */
2295 CPWriteFn *raw_writefn;
4b6a83fb
PM
2296 /* Function for resetting the register. If NULL, then reset will be done
2297 * by writing resetvalue to the field specified in fieldoffset. If
2298 * fieldoffset is 0 then no reset will be done.
2299 */
2300 CPResetFn *resetfn;
2301};
2302
2303/* Macros which are lvalues for the field in CPUARMState for the
2304 * ARMCPRegInfo *ri.
2305 */
2306#define CPREG_FIELD32(env, ri) \
2307 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2308#define CPREG_FIELD64(env, ri) \
2309 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2310
2311#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2312
2313void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2314 const ARMCPRegInfo *regs, void *opaque);
2315void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2316 const ARMCPRegInfo *regs, void *opaque);
2317static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2318{
2319 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2320}
2321static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2322{
2323 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2324}
60322b39 2325const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2326
2327/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2328void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2329 uint64_t value);
4b6a83fb 2330/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2331uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2332
f5a0a5a5
PM
2333/* CPResetFn that does nothing, for use if no reset is required even
2334 * if fieldoffset is non zero.
2335 */
2336void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2337
67ed771d
PM
2338/* Return true if this reginfo struct's field in the cpu state struct
2339 * is 64 bits wide.
2340 */
2341static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2342{
2343 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2344}
2345
dcbff19b 2346static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2347 const ARMCPRegInfo *ri, int isread)
2348{
dcbff19b 2349 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2350}
2351
49a66191
PM
2352/* Raw read of a coprocessor register (as needed for migration, etc) */
2353uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2354
721fae12
PM
2355/**
2356 * write_list_to_cpustate
2357 * @cpu: ARMCPU
2358 *
2359 * For each register listed in the ARMCPU cpreg_indexes list, write
2360 * its value from the cpreg_values list into the ARMCPUState structure.
2361 * This updates TCG's working data structures from KVM data or
2362 * from incoming migration state.
2363 *
2364 * Returns: true if all register values were updated correctly,
2365 * false if some register was unknown or could not be written.
2366 * Note that we do not stop early on failure -- we will attempt
2367 * writing all registers in the list.
2368 */
2369bool write_list_to_cpustate(ARMCPU *cpu);
2370
2371/**
2372 * write_cpustate_to_list:
2373 * @cpu: ARMCPU
2374 *
2375 * For each register listed in the ARMCPU cpreg_indexes list, write
2376 * its value from the ARMCPUState structure into the cpreg_values list.
2377 * This is used to copy info from TCG's working data structures into
2378 * KVM or for outbound migration.
2379 *
2380 * Returns: true if all register values were read correctly,
2381 * false if some register was unknown or could not be read.
2382 * Note that we do not stop early on failure -- we will attempt
2383 * reading all registers in the list.
2384 */
2385bool write_cpustate_to_list(ARMCPU *cpu);
2386
9ee6e8bb
PB
2387#define ARM_CPUID_TI915T 0x54029152
2388#define ARM_CPUID_TI925T 0x54029252
40f137e1 2389
b5ff1b31 2390#if defined(CONFIG_USER_ONLY)
2c0262af 2391#define TARGET_PAGE_BITS 12
b5ff1b31 2392#else
e97da98f
PM
2393/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2394 * have to support 1K tiny pages.
2395 */
2396#define TARGET_PAGE_BITS_VARY
2397#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2398#endif
9467d44c 2399
3926cc84
AG
2400#if defined(TARGET_AARCH64)
2401# define TARGET_PHYS_ADDR_SPACE_BITS 48
2402# define TARGET_VIRT_ADDR_SPACE_BITS 64
2403#else
2404# define TARGET_PHYS_ADDR_SPACE_BITS 40
2405# define TARGET_VIRT_ADDR_SPACE_BITS 32
2406#endif
52705890 2407
ac656b16
PM
2408/**
2409 * arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
2410 * Depending on the values of HCR_EL2.E2H and TGE, this may be
2411 * "behaves as 1 for all purposes other than direct read/write" or
2412 * "behaves as 0 for all purposes other than direct read/write"
2413 */
2414static inline bool arm_hcr_el2_imo(CPUARMState *env)
2415{
2416 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2417 case HCR_TGE:
2418 return true;
2419 case HCR_TGE | HCR_E2H:
2420 return false;
2421 default:
2422 return env->cp15.hcr_el2 & HCR_IMO;
2423 }
2424}
2425
2426/**
2427 * arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
2428 */
2429static inline bool arm_hcr_el2_fmo(CPUARMState *env)
2430{
2431 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2432 case HCR_TGE:
2433 return true;
2434 case HCR_TGE | HCR_E2H:
2435 return false;
2436 default:
2437 return env->cp15.hcr_el2 & HCR_FMO;
2438 }
2439}
2440
2441/**
2442 * arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
2443 */
2444static inline bool arm_hcr_el2_amo(CPUARMState *env)
2445{
2446 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2447 case HCR_TGE:
2448 return true;
2449 case HCR_TGE | HCR_E2H:
2450 return false;
2451 default:
2452 return env->cp15.hcr_el2 & HCR_AMO;
2453 }
2454}
2455
012a906b
GB
2456static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2457 unsigned int target_el)
043b7f8d
EI
2458{
2459 CPUARMState *env = cs->env_ptr;
dcbff19b 2460 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2461 bool secure = arm_is_secure(env);
57e3a0c7
GB
2462 bool pstate_unmasked;
2463 int8_t unmasked = 0;
2464
2465 /* Don't take exceptions if they target a lower EL.
2466 * This check should catch any exceptions that would not be taken but left
2467 * pending.
2468 */
dfafd090
EI
2469 if (cur_el > target_el) {
2470 return false;
2471 }
043b7f8d
EI
2472
2473 switch (excp_idx) {
2474 case EXCP_FIQ:
57e3a0c7
GB
2475 pstate_unmasked = !(env->daif & PSTATE_F);
2476 break;
2477
043b7f8d 2478 case EXCP_IRQ:
57e3a0c7
GB
2479 pstate_unmasked = !(env->daif & PSTATE_I);
2480 break;
2481
136e67e9 2482 case EXCP_VFIQ:
ac656b16 2483 if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2484 /* VFIQs are only taken when hypervized and non-secure. */
2485 return false;
2486 }
2487 return !(env->daif & PSTATE_F);
2488 case EXCP_VIRQ:
ac656b16 2489 if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2490 /* VIRQs are only taken when hypervized and non-secure. */
2491 return false;
2492 }
b5c633c5 2493 return !(env->daif & PSTATE_I);
043b7f8d
EI
2494 default:
2495 g_assert_not_reached();
2496 }
57e3a0c7
GB
2497
2498 /* Use the target EL, current execution state and SCR/HCR settings to
2499 * determine whether the corresponding CPSR bit is used to mask the
2500 * interrupt.
2501 */
2502 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2503 /* Exceptions targeting a higher EL may not be maskable */
2504 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2505 /* 64-bit masking rules are simple: exceptions to EL3
2506 * can't be masked, and exceptions to EL2 can only be
2507 * masked from Secure state. The HCR and SCR settings
2508 * don't affect the masking logic, only the interrupt routing.
2509 */
2510 if (target_el == 3 || !secure) {
2511 unmasked = 1;
2512 }
2513 } else {
2514 /* The old 32-bit-only environment has a more complicated
2515 * masking setup. HCR and SCR bits not only affect interrupt
2516 * routing but also change the behaviour of masking.
2517 */
2518 bool hcr, scr;
2519
2520 switch (excp_idx) {
2521 case EXCP_FIQ:
2522 /* If FIQs are routed to EL3 or EL2 then there are cases where
2523 * we override the CPSR.F in determining if the exception is
2524 * masked or not. If neither of these are set then we fall back
2525 * to the CPSR.F setting otherwise we further assess the state
2526 * below.
2527 */
ac656b16 2528 hcr = arm_hcr_el2_fmo(env);
7cd6de3b
PM
2529 scr = (env->cp15.scr_el3 & SCR_FIQ);
2530
2531 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2532 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2533 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2534 * when non-secure but only when FIQs are only routed to EL3.
2535 */
2536 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2537 break;
2538 case EXCP_IRQ:
2539 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2540 * we may override the CPSR.I masking when in non-secure state.
2541 * The SCR.IRQ setting has already been taken into consideration
2542 * when setting the target EL, so it does not have a further
2543 * affect here.
2544 */
ac656b16 2545 hcr = arm_hcr_el2_imo(env);
7cd6de3b
PM
2546 scr = false;
2547 break;
2548 default:
2549 g_assert_not_reached();
2550 }
2551
2552 if ((scr || hcr) && !secure) {
2553 unmasked = 1;
2554 }
57e3a0c7
GB
2555 }
2556 }
2557
2558 /* The PSTATE bits only mask the interrupt if we have not overriden the
2559 * ability above.
2560 */
2561 return unmasked || pstate_unmasked;
043b7f8d
EI
2562}
2563
ba1ba5cc
IM
2564#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2565#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2566#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2567
9467d44c 2568#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2569#define cpu_list arm_cpu_list
9467d44c 2570
c1e37810
PM
2571/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2572 *
2573 * If EL3 is 64-bit:
2574 * + NonSecure EL1 & 0 stage 1
2575 * + NonSecure EL1 & 0 stage 2
2576 * + NonSecure EL2
2577 * + Secure EL1 & EL0
2578 * + Secure EL3
2579 * If EL3 is 32-bit:
2580 * + NonSecure PL1 & 0 stage 1
2581 * + NonSecure PL1 & 0 stage 2
2582 * + NonSecure PL2
2583 * + Secure PL0 & PL1
2584 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2585 *
2586 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2587 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2588 * may differ in access permissions even if the VA->PA map is the same
2589 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2590 * translation, which means that we have one mmu_idx that deals with two
2591 * concatenated translation regimes [this sort of combined s1+2 TLB is
2592 * architecturally permitted]
2593 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2594 * handling via the TLB. The only way to do a stage 1 translation without
2595 * the immediate stage 2 translation is via the ATS or AT system insns,
2596 * which can be slow-pathed and always do a page table walk.
2597 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2598 * translation regimes, because they map reasonably well to each other
2599 * and they can't both be active at the same time.
2600 * This gives us the following list of mmu_idx values:
2601 *
2602 * NS EL0 (aka NS PL0) stage 1+2
2603 * NS EL1 (aka NS PL1) stage 1+2
2604 * NS EL2 (aka NS PL2)
2605 * S EL3 (aka S PL1)
2606 * S EL0 (aka S PL0)
2607 * S EL1 (not used if EL3 is 32 bit)
2608 * NS EL0+1 stage 2
2609 *
2610 * (The last of these is an mmu_idx because we want to be able to use the TLB
2611 * for the accesses done as part of a stage 1 page table walk, rather than
2612 * having to walk the stage 2 page table over and over.)
2613 *
3bef7012
PM
2614 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2615 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2616 * NS EL2 if we ever model a Cortex-R52).
2617 *
2618 * M profile CPUs are rather different as they do not have a true MMU.
2619 * They have the following different MMU indexes:
2620 * User
2621 * Privileged
62593718
PM
2622 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2623 * Privileged, execution priority negative (ditto)
66787c78
PM
2624 * If the CPU supports the v8M Security Extension then there are also:
2625 * Secure User
2626 * Secure Privileged
62593718
PM
2627 * Secure User, execution priority negative
2628 * Secure Privileged, execution priority negative
3bef7012 2629 *
8bd5c820
PM
2630 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2631 * are not quite the same -- different CPU types (most notably M profile
2632 * vs A/R profile) would like to use MMU indexes with different semantics,
2633 * but since we don't ever need to use all of those in a single CPU we
2634 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2635 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2636 * the same for any particular CPU.
2637 * Variables of type ARMMUIdx are always full values, and the core
2638 * index values are in variables of type 'int'.
2639 *
c1e37810
PM
2640 * Our enumeration includes at the end some entries which are not "true"
2641 * mmu_idx values in that they don't have corresponding TLBs and are only
2642 * valid for doing slow path page table walks.
2643 *
2644 * The constant names here are patterned after the general style of the names
2645 * of the AT/ATS operations.
2646 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2647 * For M profile we arrange them to have a bit for priv, a bit for negpri
2648 * and a bit for secure.
c1e37810 2649 */
e7b921c2 2650#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2651#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2652#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2653
62593718
PM
2654/* meanings of the bits for M profile mmu idx values */
2655#define ARM_MMU_IDX_M_PRIV 0x1
2656#define ARM_MMU_IDX_M_NEGPRI 0x2
2657#define ARM_MMU_IDX_M_S 0x4
2658
8bd5c820
PM
2659#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2660#define ARM_MMU_IDX_COREIDX_MASK 0x7
2661
c1e37810 2662typedef enum ARMMMUIdx {
8bd5c820
PM
2663 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2664 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2665 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2666 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2667 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2668 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2669 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2670 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2671 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2672 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2673 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2674 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2675 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2676 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2677 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2678 /* Indexes below here don't have TLBs and are used only for AT system
2679 * instructions or for the first stage of an S12 page table walk.
2680 */
8bd5c820
PM
2681 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2682 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2683} ARMMMUIdx;
2684
8bd5c820
PM
2685/* Bit macros for the core-mmu-index values for each index,
2686 * for use when calling tlb_flush_by_mmuidx() and friends.
2687 */
2688typedef enum ARMMMUIdxBit {
2689 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2690 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2691 ARMMMUIdxBit_S1E2 = 1 << 2,
2692 ARMMMUIdxBit_S1E3 = 1 << 3,
2693 ARMMMUIdxBit_S1SE0 = 1 << 4,
2694 ARMMMUIdxBit_S1SE1 = 1 << 5,
2695 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2696 ARMMMUIdxBit_MUser = 1 << 0,
2697 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2698 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2699 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2700 ARMMMUIdxBit_MSUser = 1 << 4,
2701 ARMMMUIdxBit_MSPriv = 1 << 5,
2702 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2703 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2704} ARMMMUIdxBit;
2705
f79fbf39 2706#define MMU_USER_IDX 0
c1e37810 2707
8bd5c820
PM
2708static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2709{
2710 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2711}
2712
2713static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2714{
e7b921c2
PM
2715 if (arm_feature(env, ARM_FEATURE_M)) {
2716 return mmu_idx | ARM_MMU_IDX_M;
2717 } else {
2718 return mmu_idx | ARM_MMU_IDX_A;
2719 }
8bd5c820
PM
2720}
2721
c1e37810
PM
2722/* Return the exception level we're running at if this is our mmu_idx */
2723static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2724{
8bd5c820
PM
2725 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2726 case ARM_MMU_IDX_A:
2727 return mmu_idx & 3;
e7b921c2 2728 case ARM_MMU_IDX_M:
62593718 2729 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2730 default:
2731 g_assert_not_reached();
2732 }
c1e37810
PM
2733}
2734
ec8e3340
PM
2735/* Return the MMU index for a v7M CPU in the specified security and
2736 * privilege state
2737 */
2738static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2739 bool secstate,
2740 bool priv)
b81ac0eb 2741{
62593718 2742 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
b81ac0eb 2743
ec8e3340 2744 if (priv) {
62593718 2745 mmu_idx |= ARM_MMU_IDX_M_PRIV;
b81ac0eb
PM
2746 }
2747
2748 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
62593718
PM
2749 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2750 }
2751
2752 if (secstate) {
2753 mmu_idx |= ARM_MMU_IDX_M_S;
b81ac0eb
PM
2754 }
2755
2756 return mmu_idx;
2757}
2758
ec8e3340
PM
2759/* Return the MMU index for a v7M CPU in the specified security state */
2760static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2761 bool secstate)
2762{
2763 bool priv = arm_current_el(env) != 0;
2764
2765 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2766}
2767
c1e37810 2768/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 2769static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
2770{
2771 int el = arm_current_el(env);
2772
e7b921c2 2773 if (arm_feature(env, ARM_FEATURE_M)) {
b81ac0eb 2774 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
3bef7012 2775
e7b921c2
PM
2776 return arm_to_core_mmu_idx(mmu_idx);
2777 }
2778
c1e37810 2779 if (el < 2 && arm_is_secure_below_el3(env)) {
8bd5c820 2780 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
c1e37810
PM
2781 }
2782 return el;
6ebbf390
JM
2783}
2784
9e273ef2
PM
2785/* Indexes used when registering address spaces with cpu_address_space_init */
2786typedef enum ARMASIdx {
2787 ARMASIdx_NS = 0,
2788 ARMASIdx_S = 1,
2789} ARMASIdx;
2790
533e93f1 2791/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2792static inline int arm_debug_target_el(CPUARMState *env)
2793{
81669b8b
SF
2794 bool secure = arm_is_secure(env);
2795 bool route_to_el2 = false;
2796
2797 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2798 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2799 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2800 }
2801
2802 if (route_to_el2) {
2803 return 2;
2804 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2805 !arm_el_is_aa64(env, 3) && secure) {
2806 return 3;
2807 } else {
2808 return 1;
2809 }
3a298203
PM
2810}
2811
43bbce7f
PM
2812static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2813{
2814 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2815 * CSSELR is RAZ/WI.
2816 */
2817 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2818}
2819
22af9025 2820/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2821static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2822{
22af9025
AB
2823 int cur_el = arm_current_el(env);
2824 int debug_el;
2825
2826 if (cur_el == 3) {
2827 return false;
533e93f1
PM
2828 }
2829
22af9025
AB
2830 /* MDCR_EL3.SDD disables debug events from Secure state */
2831 if (arm_is_secure_below_el3(env)
2832 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2833 return false;
3a298203 2834 }
22af9025
AB
2835
2836 /*
2837 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2838 * while not masking the (D)ebug bit in DAIF.
2839 */
2840 debug_el = arm_debug_target_el(env);
2841
2842 if (cur_el == debug_el) {
2843 return extract32(env->cp15.mdscr_el1, 13, 1)
2844 && !(env->daif & PSTATE_D);
2845 }
2846
2847 /* Otherwise the debug target needs to be a higher EL */
2848 return debug_el > cur_el;
3a298203
PM
2849}
2850
2851static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2852{
533e93f1
PM
2853 int el = arm_current_el(env);
2854
2855 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2856 return aa64_generate_debug_exceptions(env);
2857 }
533e93f1
PM
2858
2859 if (arm_is_secure(env)) {
2860 int spd;
2861
2862 if (el == 0 && (env->cp15.sder & 1)) {
2863 /* SDER.SUIDEN means debug exceptions from Secure EL0
2864 * are always enabled. Otherwise they are controlled by
2865 * SDCR.SPD like those from other Secure ELs.
2866 */
2867 return true;
2868 }
2869
2870 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2871 switch (spd) {
2872 case 1:
2873 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2874 case 0:
2875 /* For 0b00 we return true if external secure invasive debug
2876 * is enabled. On real hardware this is controlled by external
2877 * signals to the core. QEMU always permits debug, and behaves
2878 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2879 */
2880 return true;
2881 case 2:
2882 return false;
2883 case 3:
2884 return true;
2885 }
2886 }
2887
2888 return el != 2;
3a298203
PM
2889}
2890
2891/* Return true if debugging exceptions are currently enabled.
2892 * This corresponds to what in ARM ARM pseudocode would be
2893 * if UsingAArch32() then
2894 * return AArch32.GenerateDebugExceptions()
2895 * else
2896 * return AArch64.GenerateDebugExceptions()
2897 * We choose to push the if() down into this function for clarity,
2898 * since the pseudocode has it at all callsites except for the one in
2899 * CheckSoftwareStep(), where it is elided because both branches would
2900 * always return the same value.
3a298203
PM
2901 */
2902static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2903{
2904 if (env->aarch64) {
2905 return aa64_generate_debug_exceptions(env);
2906 } else {
2907 return aa32_generate_debug_exceptions(env);
2908 }
2909}
2910
2911/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2912 * implicitly means this always returns false in pre-v8 CPUs.)
2913 */
2914static inline bool arm_singlestep_active(CPUARMState *env)
2915{
2916 return extract32(env->cp15.mdscr_el1, 0, 1)
2917 && arm_el_is_aa64(env, arm_debug_target_el(env))
2918 && arm_generate_debug_exceptions(env);
2919}
2920
f9fd40eb
PB
2921static inline bool arm_sctlr_b(CPUARMState *env)
2922{
2923 return
2924 /* We need not implement SCTLR.ITD in user-mode emulation, so
2925 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2926 * This lets people run BE32 binaries with "-cpu any".
2927 */
2928#ifndef CONFIG_USER_ONLY
2929 !arm_feature(env, ARM_FEATURE_V7) &&
2930#endif
2931 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2932}
2933
ed50ff78
PC
2934/* Return true if the processor is in big-endian mode. */
2935static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2936{
2937 int cur_el;
2938
2939 /* In 32bit endianness is determined by looking at CPSR's E bit */
2940 if (!is_a64(env)) {
b2e62d9a
PC
2941 return
2942#ifdef CONFIG_USER_ONLY
2943 /* In system mode, BE32 is modelled in line with the
2944 * architecture (as word-invariant big-endianness), where loads
2945 * and stores are done little endian but from addresses which
2946 * are adjusted by XORing with the appropriate constant. So the
2947 * endianness to use for the raw data access is not affected by
2948 * SCTLR.B.
2949 * In user mode, however, we model BE32 as byte-invariant
2950 * big-endianness (because user-only code cannot tell the
2951 * difference), and so we need to use a data access endianness
2952 * that depends on SCTLR.B.
2953 */
2954 arm_sctlr_b(env) ||
2955#endif
2956 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2957 }
2958
2959 cur_el = arm_current_el(env);
2960
2961 if (cur_el == 0) {
2962 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2963 }
2964
2965 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2966}
2967
022c62cb 2968#include "exec/cpu-all.h"
622ed360 2969
3926cc84
AG
2970/* Bit usage in the TB flags field: bit 31 indicates whether we are
2971 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2972 * We put flags which are shared between 32 and 64 bit mode at the top
2973 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
2974 */
2975#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2976#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2977#define ARM_TBFLAG_MMUIDX_SHIFT 28
2978#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2979#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2980#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2981#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2982#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2983/* Target EL if we take a floating-point-disabled exception */
2984#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2985#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
2986
2987/* Bit usage when in AArch32 state: */
a1705768
PM
2988#define ARM_TBFLAG_THUMB_SHIFT 0
2989#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2990#define ARM_TBFLAG_VECLEN_SHIFT 1
2991#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2992#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2993#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2994#define ARM_TBFLAG_VFPEN_SHIFT 7
2995#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2996#define ARM_TBFLAG_CONDEXEC_SHIFT 8
2997#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2998#define ARM_TBFLAG_SCTLR_B_SHIFT 16
2999#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
3000/* We store the bottom two bits of the CPAR as TB flags and handle
3001 * checks on the other bits at runtime
3002 */
647f767b 3003#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 3004#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
3005/* Indicates whether cp register reads and writes by guest code should access
3006 * the secure or nonsecure bank of banked registers; note that this is not
3007 * the same thing as the current security state of the processor!
3008 */
647f767b 3009#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 3010#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
3011#define ARM_TBFLAG_BE_DATA_SHIFT 20
3012#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
3013/* For M profile only, Handler (ie not Thread) mode */
3014#define ARM_TBFLAG_HANDLER_SHIFT 21
3015#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
4730fb85
PM
3016/* For M profile only, whether we should generate stack-limit checks */
3017#define ARM_TBFLAG_STACKCHECK_SHIFT 22
3018#define ARM_TBFLAG_STACKCHECK_MASK (1 << ARM_TBFLAG_STACKCHECK_SHIFT)
3926cc84 3019
86fb3fa4
TH
3020/* Bit usage when in AArch64 state */
3021#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
3022#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
3023#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
3024#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
3025#define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
3026#define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
3027#define ARM_TBFLAG_ZCR_LEN_SHIFT 4
3028#define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768
PM
3029
3030/* some convenience accessor macros */
3926cc84
AG
3031#define ARM_TBFLAG_AARCH64_STATE(F) \
3032 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
3033#define ARM_TBFLAG_MMUIDX(F) \
3034 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
3035#define ARM_TBFLAG_SS_ACTIVE(F) \
3036 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
3037#define ARM_TBFLAG_PSTATE_SS(F) \
3038 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
3039#define ARM_TBFLAG_FPEXC_EL(F) \
3040 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
3041#define ARM_TBFLAG_THUMB(F) \
3042 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
3043#define ARM_TBFLAG_VECLEN(F) \
3044 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
3045#define ARM_TBFLAG_VECSTRIDE(F) \
3046 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
3047#define ARM_TBFLAG_VFPEN(F) \
3048 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
3049#define ARM_TBFLAG_CONDEXEC(F) \
3050 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
3051#define ARM_TBFLAG_SCTLR_B(F) \
3052 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
3053#define ARM_TBFLAG_XSCALE_CPAR(F) \
3054 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
3055#define ARM_TBFLAG_NS(F) \
3056 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
3057#define ARM_TBFLAG_BE_DATA(F) \
3058 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
3059#define ARM_TBFLAG_HANDLER(F) \
3060 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
4730fb85
PM
3061#define ARM_TBFLAG_STACKCHECK(F) \
3062 (((F) & ARM_TBFLAG_STACKCHECK_MASK) >> ARM_TBFLAG_STACKCHECK_SHIFT)
86fb3fa4
TH
3063#define ARM_TBFLAG_TBI0(F) \
3064 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
3065#define ARM_TBFLAG_TBI1(F) \
3066 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
3067#define ARM_TBFLAG_SVEEXC_EL(F) \
3068 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
3069#define ARM_TBFLAG_ZCR_LEN(F) \
3070 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768 3071
f9fd40eb
PB
3072static inline bool bswap_code(bool sctlr_b)
3073{
3074#ifdef CONFIG_USER_ONLY
3075 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3076 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3077 * would also end up as a mixed-endian mode with BE code, LE data.
3078 */
3079 return
3080#ifdef TARGET_WORDS_BIGENDIAN
3081 1 ^
3082#endif
3083 sctlr_b;
3084#else
e334bd31
PB
3085 /* All code access in ARM is little endian, and there are no loaders
3086 * doing swaps that need to be reversed
f9fd40eb
PB
3087 */
3088 return 0;
3089#endif
3090}
3091
c3ae85fc
PB
3092#ifdef CONFIG_USER_ONLY
3093static inline bool arm_cpu_bswap_data(CPUARMState *env)
3094{
3095 return
3096#ifdef TARGET_WORDS_BIGENDIAN
3097 1 ^
3098#endif
3099 arm_cpu_data_is_big_endian(env);
3100}
3101#endif
3102
86fb3fa4
TH
3103#ifndef CONFIG_USER_ONLY
3104/**
3105 * arm_regime_tbi0:
3106 * @env: CPUARMState
3107 * @mmu_idx: MMU index indicating required translation regime
3108 *
3109 * Extracts the TBI0 value from the appropriate TCR for the current EL
3110 *
3111 * Returns: the TBI0 value.
3112 */
3113uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
3114
3115/**
3116 * arm_regime_tbi1:
3117 * @env: CPUARMState
3118 * @mmu_idx: MMU index indicating required translation regime
3119 *
3120 * Extracts the TBI1 value from the appropriate TCR for the current EL
3121 *
3122 * Returns: the TBI1 value.
3123 */
3124uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
3125#else
3126/* We can't handle tagged addresses properly in user-only mode */
3127static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
3128{
3129 return 0;
3130}
3131
3132static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
3133{
3134 return 0;
3135}
3136#endif
3137
a9e01311
RH
3138void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3139 target_ulong *cs_base, uint32_t *flags);
6b917547 3140
98128601
RH
3141enum {
3142 QEMU_PSCI_CONDUIT_DISABLED = 0,
3143 QEMU_PSCI_CONDUIT_SMC = 1,
3144 QEMU_PSCI_CONDUIT_HVC = 2,
3145};
3146
017518c1
PM
3147#ifndef CONFIG_USER_ONLY
3148/* Return the address space index to use for a memory access */
3149static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3150{
3151 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3152}
5ce4ff65
PM
3153
3154/* Return the AddressSpace to use for a memory access
3155 * (which depends on whether the access is S or NS, and whether
3156 * the board gave us a separate AddressSpace for S accesses).
3157 */
3158static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3159{
3160 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3161}
017518c1
PM
3162#endif
3163
bd7d00fc 3164/**
b5c53d1b
AL
3165 * arm_register_pre_el_change_hook:
3166 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3167 * CPU changes exception level or mode. The hook function will be
3168 * passed a pointer to the ARMCPU and the opaque data pointer passed
3169 * to this function when the hook was registered.
b5c53d1b
AL
3170 *
3171 * Note that if a pre-change hook is called, any registered post-change hooks
3172 * are guaranteed to subsequently be called.
bd7d00fc 3173 */
b5c53d1b 3174void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3175 void *opaque);
b5c53d1b
AL
3176/**
3177 * arm_register_el_change_hook:
3178 * Register a hook function which will be called immediately after this
3179 * CPU changes exception level or mode. The hook function will be
3180 * passed a pointer to the ARMCPU and the opaque data pointer passed
3181 * to this function when the hook was registered.
3182 *
3183 * Note that any registered hooks registered here are guaranteed to be called
3184 * if pre-change hooks have been.
3185 */
3186void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3187 *opaque);
bd7d00fc 3188
9a2b5256
RH
3189/**
3190 * aa32_vfp_dreg:
3191 * Return a pointer to the Dn register within env in 32-bit mode.
3192 */
3193static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3194{
c39c2b90 3195 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3196}
3197
3198/**
3199 * aa32_vfp_qreg:
3200 * Return a pointer to the Qn register within env in 32-bit mode.
3201 */
3202static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3203{
c39c2b90 3204 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3205}
3206
3207/**
3208 * aa64_vfp_qreg:
3209 * Return a pointer to the Qn register within env in 64-bit mode.
3210 */
3211static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3212{
c39c2b90 3213 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3214}
3215
028e2a7b
RH
3216/* Shared between translate-sve.c and sve_helper.c. */
3217extern const uint64_t pred_esz_masks[4];
3218
962fcbf2
RH
3219/*
3220 * 32-bit feature tests via id registers.
3221 */
7e0cf8b4
RH
3222static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3223{
3224 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3225}
3226
3227static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3228{
3229 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3230}
3231
09cbd501
RH
3232static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3233{
3234 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3235}
3236
962fcbf2
RH
3237static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3238{
3239 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3240}
3241
3242static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3243{
3244 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3245}
3246
3247static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3248{
3249 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3250}
3251
3252static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3253{
3254 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3255}
3256
3257static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3258{
3259 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3260}
3261
3262static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3263{
3264 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3265}
3266
3267static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3268{
3269 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3270}
3271
3272static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3273{
3274 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3275}
3276
5763190f
RH
3277static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3278{
3279 /*
3280 * This is a placeholder for use by VCMA until the rest of
3281 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3282 * At which point we can properly set and check MVFR1.FPHP.
3283 */
3284 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3285}
3286
962fcbf2
RH
3287/*
3288 * 64-bit feature tests via id registers.
3289 */
3290static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3291{
3292 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3293}
3294
3295static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3296{
3297 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3298}
3299
3300static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3301{
3302 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3303}
3304
3305static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3306{
3307 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3308}
3309
3310static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3311{
3312 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3313}
3314
3315static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3316{
3317 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3318}
3319
3320static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3321{
3322 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3323}
3324
3325static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3326{
3327 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3328}
3329
3330static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3331{
3332 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3333}
3334
3335static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3336{
3337 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3338}
3339
3340static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3341{
3342 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3343}
3344
3345static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3346{
3347 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3348}
3349
3350static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3351{
3352 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3353}
3354
5763190f
RH
3355static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3356{
3357 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3358 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3359}
3360
0f8d06f1
RH
3361static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3362{
3363 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3364}
3365
cd208a1c
RH
3366static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3367{
3368 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3369}
3370
962fcbf2
RH
3371/*
3372 * Forward to the above feature tests given an ARMCPU pointer.
3373 */
3374#define cpu_isar_feature(name, cpu) \
3375 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3376
2c0262af 3377#endif