]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target: Simplify how the TARGET_cpu_list() print
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086 204#ifdef TARGET_AARCH64
991ad91b 205/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
991ad91b
RH
209
210/* In AArch32 mode, PAC keys do not exist at all. */
211typedef struct ARMPACKey {
212 uint64_t lo, hi;
213} ARMPACKey;
3c7d3086
RH
214#endif
215
c39c2b90 216
2c0262af 217typedef struct CPUARMState {
b5ff1b31 218 /* Regs for current mode. */
2c0262af 219 uint32_t regs[16];
3926cc84
AG
220
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
224 */
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
d356312f
PM
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 236 * DAIF (exception masks) are kept in env->daif
f6e52eaa 237 * BTYPE is kept in env->btype
d356312f 238 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
239 */
240 uint32_t pstate;
241 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242
b90372ad 243 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 244 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
245 the whole CPSR. */
246 uint32_t uncached_cpsr;
247 uint32_t spsr;
248
249 /* Banked registers. */
28c9457d 250 uint64_t banked_spsr[8];
0b7d409d
FA
251 uint32_t banked_r13[8];
252 uint32_t banked_r14[8];
3b46e624 253
b5ff1b31
FB
254 /* These hold r8-r12. */
255 uint32_t usr_regs[5];
256 uint32_t fiq_regs[5];
3b46e624 257
2c0262af
FB
258 /* cpsr flag cache for faster execution */
259 uint32_t CF; /* 0 or 1 */
260 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
261 uint32_t NF; /* N is bit 31. All other bits are undefined. */
262 uint32_t ZF; /* Z set if zero. */
99c475ab 263 uint32_t QF; /* 0 or 1 */
9ee6e8bb 264 uint32_t GE; /* cpsr[19:16] */
b26eefb6 265 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 266 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 267 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 268 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 269
1b174238 270 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 271 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 272
b5ff1b31
FB
273 /* System control coprocessor (cp15) */
274 struct {
40f137e1 275 uint32_t c0_cpuid;
b85a1fd6
FA
276 union { /* Cache size selection */
277 struct {
278 uint64_t _unused_csselr0;
279 uint64_t csselr_ns;
280 uint64_t _unused_csselr1;
281 uint64_t csselr_s;
282 };
283 uint64_t csselr_el[4];
284 };
137feaa9
FA
285 union { /* System control register. */
286 struct {
287 uint64_t _unused_sctlr;
288 uint64_t sctlr_ns;
289 uint64_t hsctlr;
290 uint64_t sctlr_s;
291 };
292 uint64_t sctlr_el[4];
293 };
7ebd5f2e 294 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 295 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 296 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 297 uint64_t sder; /* Secure debug enable register. */
77022576 298 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
299 union { /* MMU translation table base 0. */
300 struct {
301 uint64_t _unused_ttbr0_0;
302 uint64_t ttbr0_ns;
303 uint64_t _unused_ttbr0_1;
304 uint64_t ttbr0_s;
305 };
306 uint64_t ttbr0_el[4];
307 };
308 union { /* MMU translation table base 1. */
309 struct {
310 uint64_t _unused_ttbr1_0;
311 uint64_t ttbr1_ns;
312 uint64_t _unused_ttbr1_1;
313 uint64_t ttbr1_s;
314 };
315 uint64_t ttbr1_el[4];
316 };
b698e9cf 317 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
318 /* MMU translation table base control. */
319 TCR tcr_el[4];
68e9c2fe 320 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
321 uint32_t c2_data; /* MPU data cacheable bits. */
322 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
323 union { /* MMU domain access control register
324 * MPU write buffer control.
325 */
326 struct {
327 uint64_t dacr_ns;
328 uint64_t dacr_s;
329 };
330 struct {
331 uint64_t dacr32_el2;
332 };
333 };
7e09797c
PM
334 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
335 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 336 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 337 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
338 union { /* Fault status registers. */
339 struct {
340 uint64_t ifsr_ns;
341 uint64_t ifsr_s;
342 };
343 struct {
344 uint64_t ifsr32_el2;
345 };
346 };
4a7e2d73
FA
347 union {
348 struct {
349 uint64_t _unused_dfsr;
350 uint64_t dfsr_ns;
351 uint64_t hsr;
352 uint64_t dfsr_s;
353 };
354 uint64_t esr_el[4];
355 };
ce819861 356 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
357 union { /* Fault address registers. */
358 struct {
359 uint64_t _unused_far0;
360#ifdef HOST_WORDS_BIGENDIAN
361 uint32_t ifar_ns;
362 uint32_t dfar_ns;
363 uint32_t ifar_s;
364 uint32_t dfar_s;
365#else
366 uint32_t dfar_ns;
367 uint32_t ifar_ns;
368 uint32_t dfar_s;
369 uint32_t ifar_s;
370#endif
371 uint64_t _unused_far3;
372 };
373 uint64_t far_el[4];
374 };
59e05530 375 uint64_t hpfar_el2;
2a5a9abd 376 uint64_t hstr_el2;
01c097f7
FA
377 union { /* Translation result. */
378 struct {
379 uint64_t _unused_par_0;
380 uint64_t par_ns;
381 uint64_t _unused_par_1;
382 uint64_t par_s;
383 };
384 uint64_t par_el[4];
385 };
6cb0b013 386
b5ff1b31
FB
387 uint32_t c9_insn; /* Cache lockdown registers. */
388 uint32_t c9_data;
8521466b
AF
389 uint64_t c9_pmcr; /* performance monitor control register */
390 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
391 uint64_t c9_pmovsr; /* perf monitor overflow status */
392 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 393 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 394 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
395 union { /* Memory attribute redirection */
396 struct {
397#ifdef HOST_WORDS_BIGENDIAN
398 uint64_t _unused_mair_0;
399 uint32_t mair1_ns;
400 uint32_t mair0_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair1_s;
403 uint32_t mair0_s;
404#else
405 uint64_t _unused_mair_0;
406 uint32_t mair0_ns;
407 uint32_t mair1_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair0_s;
410 uint32_t mair1_s;
411#endif
412 };
413 uint64_t mair_el[4];
414 };
fb6c91ba
GB
415 union { /* vector base address register */
416 struct {
417 uint64_t _unused_vbar;
418 uint64_t vbar_ns;
419 uint64_t hvbar;
420 uint64_t vbar_s;
421 };
422 uint64_t vbar_el[4];
423 };
e89e51a1 424 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
425 struct { /* FCSE PID. */
426 uint32_t fcseidr_ns;
427 uint32_t fcseidr_s;
428 };
429 union { /* Context ID. */
430 struct {
431 uint64_t _unused_contextidr_0;
432 uint64_t contextidr_ns;
433 uint64_t _unused_contextidr_1;
434 uint64_t contextidr_s;
435 };
436 uint64_t contextidr_el[4];
437 };
438 union { /* User RW Thread register. */
439 struct {
440 uint64_t tpidrurw_ns;
441 uint64_t tpidrprw_ns;
442 uint64_t htpidr;
443 uint64_t _tpidr_el3;
444 };
445 uint64_t tpidr_el[4];
446 };
447 /* The secure banks of these registers don't map anywhere */
448 uint64_t tpidrurw_s;
449 uint64_t tpidrprw_s;
450 uint64_t tpidruro_s;
451
452 union { /* User RO Thread register. */
453 uint64_t tpidruro_ns;
454 uint64_t tpidrro_el[1];
455 };
a7adc4b7
PM
456 uint64_t c14_cntfrq; /* Counter Frequency register */
457 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 458 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 459 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 460 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 461 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
462 uint32_t c15_ticonfig; /* TI925T configuration byte. */
463 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
464 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
465 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
466 uint32_t c15_config_base_address; /* SCU base address. */
467 uint32_t c15_diagnostic; /* diagnostic register */
468 uint32_t c15_power_diagnostic;
469 uint32_t c15_power_control; /* power control */
0b45451e
PM
470 uint64_t dbgbvr[16]; /* breakpoint value registers */
471 uint64_t dbgbcr[16]; /* breakpoint control registers */
472 uint64_t dbgwvr[16]; /* watchpoint value registers */
473 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 474 uint64_t mdscr_el1;
1424ca8d 475 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 476 uint64_t mdcr_el2;
5513c3ab 477 uint64_t mdcr_el3;
5d05b9d4
AL
478 /* Stores the architectural value of the counter *the last time it was
479 * updated* by pmccntr_op_start. Accesses should always be surrounded
480 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
481 * architecturally-correct value is being read/set.
7c2cb42b 482 */
c92c0687 483 uint64_t c15_ccnt;
5d05b9d4
AL
484 /* Stores the delta between the architectural value and the underlying
485 * cycle count during normal operation. It is used to update c15_ccnt
486 * to be the correct architectural value before accesses. During
487 * accesses, c15_ccnt_delta contains the underlying count being used
488 * for the access, after which it reverts to the delta value in
489 * pmccntr_op_finish.
490 */
491 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
492 uint64_t c14_pmevcntr[31];
493 uint64_t c14_pmevcntr_delta[31];
494 uint64_t c14_pmevtyper[31];
8521466b 495 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 496 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 497 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 498 } cp15;
40f137e1 499
9ee6e8bb 500 struct {
fb602cb7
PM
501 /* M profile has up to 4 stack pointers:
502 * a Main Stack Pointer and a Process Stack Pointer for each
503 * of the Secure and Non-Secure states. (If the CPU doesn't support
504 * the security extension then it has only two SPs.)
505 * In QEMU we always store the currently active SP in regs[13],
506 * and the non-active SP for the current security state in
507 * v7m.other_sp. The stack pointers for the inactive security state
508 * are stored in other_ss_msp and other_ss_psp.
509 * switch_v7m_security_state() is responsible for rearranging them
510 * when we change security state.
511 */
9ee6e8bb 512 uint32_t other_sp;
fb602cb7
PM
513 uint32_t other_ss_msp;
514 uint32_t other_ss_psp;
4a16724f
PM
515 uint32_t vecbase[M_REG_NUM_BANKS];
516 uint32_t basepri[M_REG_NUM_BANKS];
517 uint32_t control[M_REG_NUM_BANKS];
518 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
519 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
520 uint32_t hfsr; /* HardFault Status */
521 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 522 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 523 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 524 uint32_t bfar; /* BusFault Address */
bed079da 525 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 526 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 527 int exception;
4a16724f
PM
528 uint32_t primask[M_REG_NUM_BANKS];
529 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 530 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 531 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 532 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 533 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
534 uint32_t msplim[M_REG_NUM_BANKS];
535 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
536 } v7m;
537
abf1172f
PM
538 /* Information associated with an exception about to be taken:
539 * code which raises an exception must set cs->exception_index and
540 * the relevant parts of this structure; the cpu_do_interrupt function
541 * will then set the guest-visible registers as part of the exception
542 * entry process.
543 */
544 struct {
545 uint32_t syndrome; /* AArch64 format syndrome register */
546 uint32_t fsr; /* AArch32 format fault status register info */
547 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 548 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
549 /* If we implement EL2 we will also need to store information
550 * about the intermediate physical address for stage 2 faults.
551 */
552 } exception;
553
202ccb6b
DG
554 /* Information associated with an SError */
555 struct {
556 uint8_t pending;
557 uint8_t has_esr;
558 uint64_t esr;
559 } serror;
560
ed89f078
PM
561 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
562 uint32_t irq_line_state;
563
fe1479c3
PB
564 /* Thumb-2 EE state. */
565 uint32_t teecr;
566 uint32_t teehbr;
567
b7bcbe95
FB
568 /* VFP coprocessor state. */
569 struct {
c39c2b90 570 ARMVectorReg zregs[32];
b7bcbe95 571
3c7d3086
RH
572#ifdef TARGET_AARCH64
573 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 574#define FFR_PRED_NUM 16
3c7d3086 575 ARMPredicateReg pregs[17];
516e246a
RH
576 /* Scratch space for aa64 sve predicate temporary. */
577 ARMPredicateReg preg_tmp;
3c7d3086
RH
578#endif
579
b7bcbe95 580 /* We store these fpcsr fields separately for convenience. */
a4d58462 581 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
582 int vec_len;
583 int vec_stride;
584
a4d58462
RH
585 uint32_t xregs[16];
586
516e246a 587 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 588 uint32_t scratch[8];
3b46e624 589
d81ce0ef
AB
590 /* There are a number of distinct float control structures:
591 *
592 * fp_status: is the "normal" fp status.
593 * fp_status_fp16: used for half-precision calculations
594 * standard_fp_status : the ARM "Standard FPSCR Value"
595 *
596 * Half-precision operations are governed by a separate
597 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
598 * status structure to control this.
599 *
600 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
601 * round-to-nearest and is used by any operations (generally
602 * Neon) which the architecture defines as controlled by the
603 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
604 *
605 * To avoid having to transfer exception bits around, we simply
606 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 607 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
608 * only thing which needs to read the exception flags being
609 * an explicit FPSCR read.
610 */
53cd6637 611 float_status fp_status;
d81ce0ef 612 float_status fp_status_f16;
3a492f3a 613 float_status standard_fp_status;
5be5e8ed
RH
614
615 /* ZCR_EL[1-3] */
616 uint64_t zcr_el[4];
b7bcbe95 617 } vfp;
03d05e2d
PM
618 uint64_t exclusive_addr;
619 uint64_t exclusive_val;
620 uint64_t exclusive_high;
b7bcbe95 621
18c9b560
AZ
622 /* iwMMXt coprocessor state. */
623 struct {
624 uint64_t regs[16];
625 uint64_t val;
626
627 uint32_t cregs[16];
628 } iwmmxt;
629
991ad91b
RH
630#ifdef TARGET_AARCH64
631 ARMPACKey apia_key;
632 ARMPACKey apib_key;
633 ARMPACKey apda_key;
634 ARMPACKey apdb_key;
635 ARMPACKey apga_key;
636#endif
637
ce4defa0
PB
638#if defined(CONFIG_USER_ONLY)
639 /* For usermode syscall translation. */
640 int eabi;
641#endif
642
46747d15 643 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
644 struct CPUWatchpoint *cpu_watchpoint[16];
645
1f5c00cf
AB
646 /* Fields up to this point are cleared by a CPU reset */
647 struct {} end_reset_fields;
648
a316d335
FB
649 CPU_COMMON
650
1f5c00cf 651 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 652
581be094 653 /* Internal CPU feature flags. */
918f5dca 654 uint64_t features;
581be094 655
6cb0b013
PC
656 /* PMSAv7 MPU */
657 struct {
658 uint32_t *drbar;
659 uint32_t *drsr;
660 uint32_t *dracr;
4a16724f 661 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
662 } pmsav7;
663
0e1a46bb
PM
664 /* PMSAv8 MPU */
665 struct {
666 /* The PMSAv8 implementation also shares some PMSAv7 config
667 * and state:
668 * pmsav7.rnr (region number register)
669 * pmsav7_dregion (number of configured regions)
670 */
4a16724f
PM
671 uint32_t *rbar[M_REG_NUM_BANKS];
672 uint32_t *rlar[M_REG_NUM_BANKS];
673 uint32_t mair0[M_REG_NUM_BANKS];
674 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
675 } pmsav8;
676
9901c576
PM
677 /* v8M SAU */
678 struct {
679 uint32_t *rbar;
680 uint32_t *rlar;
681 uint32_t rnr;
682 uint32_t ctrl;
683 } sau;
684
983fe826 685 void *nvic;
462a8bc6 686 const struct arm_boot_info *boot_info;
d3a3e529
VK
687 /* Store GICv3CPUState to access from this struct */
688 void *gicv3state;
2c0262af
FB
689} CPUARMState;
690
bd7d00fc 691/**
08267487 692 * ARMELChangeHookFn:
bd7d00fc
PM
693 * type of a function which can be registered via arm_register_el_change_hook()
694 * to get callbacks when the CPU changes its exception level or mode.
695 */
08267487
AL
696typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
697typedef struct ARMELChangeHook ARMELChangeHook;
698struct ARMELChangeHook {
699 ARMELChangeHookFn *hook;
700 void *opaque;
701 QLIST_ENTRY(ARMELChangeHook) node;
702};
062ba099
AB
703
704/* These values map onto the return values for
705 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
706typedef enum ARMPSCIState {
d5affb0d
AJ
707 PSCI_ON = 0,
708 PSCI_OFF = 1,
062ba099
AB
709 PSCI_ON_PENDING = 2
710} ARMPSCIState;
711
962fcbf2
RH
712typedef struct ARMISARegisters ARMISARegisters;
713
74e75564
PB
714/**
715 * ARMCPU:
716 * @env: #CPUARMState
717 *
718 * An ARM CPU core.
719 */
720struct ARMCPU {
721 /*< private >*/
722 CPUState parent_obj;
723 /*< public >*/
724
725 CPUARMState env;
726
727 /* Coprocessor information */
728 GHashTable *cp_regs;
729 /* For marshalling (mostly coprocessor) register state between the
730 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
731 * we use these arrays.
732 */
733 /* List of register indexes managed via these arrays; (full KVM style
734 * 64 bit indexes, not CPRegInfo 32 bit indexes)
735 */
736 uint64_t *cpreg_indexes;
737 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
738 uint64_t *cpreg_values;
739 /* Length of the indexes, values, reset_values arrays */
740 int32_t cpreg_array_len;
741 /* These are used only for migration: incoming data arrives in
742 * these fields and is sanity checked in post_load before copying
743 * to the working data structures above.
744 */
745 uint64_t *cpreg_vmstate_indexes;
746 uint64_t *cpreg_vmstate_values;
747 int32_t cpreg_vmstate_array_len;
748
200bf5b7
AB
749 DynamicGDBXMLInfo dyn_xml;
750
74e75564
PB
751 /* Timers used by the generic (architected) timer */
752 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
753 /*
754 * Timer used by the PMU. Its state is restored after migration by
755 * pmu_op_finish() - it does not need other handling during migration
756 */
757 QEMUTimer *pmu_timer;
74e75564
PB
758 /* GPIO outputs for generic timer */
759 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
760 /* GPIO output for GICv3 maintenance interrupt signal */
761 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
762 /* GPIO output for the PMU interrupt */
763 qemu_irq pmu_interrupt;
74e75564
PB
764
765 /* MemoryRegion to use for secure physical accesses */
766 MemoryRegion *secure_memory;
767
181962fd
PM
768 /* For v8M, pointer to the IDAU interface provided by board/SoC */
769 Object *idau;
770
74e75564
PB
771 /* 'compatible' string for this CPU for Linux device trees */
772 const char *dtb_compatible;
773
774 /* PSCI version for this CPU
775 * Bits[31:16] = Major Version
776 * Bits[15:0] = Minor Version
777 */
778 uint32_t psci_version;
779
780 /* Should CPU start in PSCI powered-off state? */
781 bool start_powered_off;
062ba099
AB
782
783 /* Current power state, access guarded by BQL */
784 ARMPSCIState power_state;
785
c25bd18a
PM
786 /* CPU has virtualization extension */
787 bool has_el2;
74e75564
PB
788 /* CPU has security extension */
789 bool has_el3;
5c0a3819
SZ
790 /* CPU has PMU (Performance Monitor Unit) */
791 bool has_pmu;
74e75564
PB
792
793 /* CPU has memory protection unit */
794 bool has_mpu;
795 /* PMSAv7 MPU number of supported regions */
796 uint32_t pmsav7_dregion;
9901c576
PM
797 /* v8M SAU number of supported regions */
798 uint32_t sau_sregion;
74e75564
PB
799
800 /* PSCI conduit used to invoke PSCI methods
801 * 0 - disabled, 1 - smc, 2 - hvc
802 */
803 uint32_t psci_conduit;
804
38e2a77c
PM
805 /* For v8M, initial value of the Secure VTOR */
806 uint32_t init_svtor;
807
74e75564
PB
808 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
809 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
810 */
811 uint32_t kvm_target;
812
813 /* KVM init features for this CPU */
814 uint32_t kvm_init_features[7];
815
816 /* Uniprocessor system with MP extensions */
817 bool mp_is_up;
818
c4487d76
PM
819 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
820 * and the probe failed (so we need to report the error in realize)
821 */
822 bool host_cpu_probe_failed;
823
f9a69711
AF
824 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
825 * register.
826 */
827 int32_t core_count;
828
74e75564
PB
829 /* The instance init functions for implementation-specific subclasses
830 * set these fields to specify the implementation-dependent values of
831 * various constant registers and reset values of non-constant
832 * registers.
833 * Some of these might become QOM properties eventually.
834 * Field names match the official register names as defined in the
835 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
836 * is used for reset values of non-constant registers; no reset_
837 * prefix means a constant register.
47576b94
RH
838 * Some of these registers are split out into a substructure that
839 * is shared with the translators to control the ISA.
74e75564 840 */
47576b94
RH
841 struct ARMISARegisters {
842 uint32_t id_isar0;
843 uint32_t id_isar1;
844 uint32_t id_isar2;
845 uint32_t id_isar3;
846 uint32_t id_isar4;
847 uint32_t id_isar5;
848 uint32_t id_isar6;
849 uint32_t mvfr0;
850 uint32_t mvfr1;
851 uint32_t mvfr2;
852 uint64_t id_aa64isar0;
853 uint64_t id_aa64isar1;
854 uint64_t id_aa64pfr0;
855 uint64_t id_aa64pfr1;
3dc91ddb
PM
856 uint64_t id_aa64mmfr0;
857 uint64_t id_aa64mmfr1;
47576b94 858 } isar;
74e75564
PB
859 uint32_t midr;
860 uint32_t revidr;
861 uint32_t reset_fpsid;
74e75564
PB
862 uint32_t ctr;
863 uint32_t reset_sctlr;
864 uint32_t id_pfr0;
865 uint32_t id_pfr1;
866 uint32_t id_dfr0;
cad86737
AL
867 uint64_t pmceid0;
868 uint64_t pmceid1;
74e75564
PB
869 uint32_t id_afr0;
870 uint32_t id_mmfr0;
871 uint32_t id_mmfr1;
872 uint32_t id_mmfr2;
873 uint32_t id_mmfr3;
874 uint32_t id_mmfr4;
74e75564
PB
875 uint64_t id_aa64dfr0;
876 uint64_t id_aa64dfr1;
877 uint64_t id_aa64afr0;
878 uint64_t id_aa64afr1;
74e75564
PB
879 uint32_t dbgdidr;
880 uint32_t clidr;
881 uint64_t mp_affinity; /* MP ID without feature bits */
882 /* The elements of this array are the CCSIDR values for each cache,
883 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
884 */
885 uint32_t ccsidr[16];
886 uint64_t reset_cbar;
887 uint32_t reset_auxcr;
888 bool reset_hivecs;
889 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
890 uint32_t dcz_blocksize;
891 uint64_t rvbar;
bd7d00fc 892
e45868a3
PM
893 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
894 int gic_num_lrs; /* number of list registers */
895 int gic_vpribits; /* number of virtual priority bits */
896 int gic_vprebits; /* number of virtual preemption bits */
897
3a062d57
JB
898 /* Whether the cfgend input is high (i.e. this CPU should reset into
899 * big-endian mode). This setting isn't used directly: instead it modifies
900 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
901 * architecture version.
902 */
903 bool cfgend;
904
b5c53d1b 905 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 906 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
907
908 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
909
910 /* Used to synchronize KVM and QEMU in-kernel device levels */
911 uint8_t device_irq_level;
adf92eab
RH
912
913 /* Used to set the maximum vector length the cpu will support. */
914 uint32_t sve_max_vq;
74e75564
PB
915};
916
917static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
918{
919 return container_of(env, ARMCPU, env);
920}
921
51e5ef45
MAL
922void arm_cpu_post_init(Object *obj);
923
46de5913
IM
924uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
925
74e75564
PB
926#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
927
928#define ENV_OFFSET offsetof(ARMCPU, env)
929
930#ifndef CONFIG_USER_ONLY
931extern const struct VMStateDescription vmstate_arm_cpu;
932#endif
933
934void arm_cpu_do_interrupt(CPUState *cpu);
935void arm_v7m_cpu_do_interrupt(CPUState *cpu);
936bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
937
938void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
939 int flags);
940
941hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
942 MemTxAttrs *attrs);
943
944int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
945int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
946
200bf5b7
AB
947/* Dynamically generates for gdb stub an XML description of the sysregs from
948 * the cp_regs hashtable. Returns the registered sysregs number.
949 */
950int arm_gen_dynamic_xml(CPUState *cpu);
951
952/* Returns the dynamically generated XML for the gdb stub.
953 * Returns a pointer to the XML contents for the specified XML file or NULL
954 * if the XML name doesn't match the predefined one.
955 */
956const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
957
74e75564
PB
958int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
959 int cpuid, void *opaque);
960int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
961 int cpuid, void *opaque);
962
963#ifdef TARGET_AARCH64
964int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
965int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 966void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
967void aarch64_sve_change_el(CPUARMState *env, int old_el,
968 int new_el, bool el0_a64);
0ab5953b
RH
969#else
970static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
971static inline void aarch64_sve_change_el(CPUARMState *env, int o,
972 int n, bool a)
973{ }
74e75564 974#endif
778c3a06 975
faacc041 976target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
977void aarch64_sync_32_to_64(CPUARMState *env);
978void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 979
ced31551
RH
980int fp_exception_el(CPUARMState *env, int cur_el);
981int sve_exception_el(CPUARMState *env, int cur_el);
982uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
983
3926cc84
AG
984static inline bool is_a64(CPUARMState *env)
985{
986 return env->aarch64;
987}
988
2c0262af
FB
989/* you can call this signal handler from your SIGBUS and SIGSEGV
990 signal handlers to inform the virtual CPU of exceptions. non zero
991 is returned if the signal was handled by the virtual CPU. */
5fafdf24 992int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
993 void *puc);
994
5d05b9d4
AL
995/**
996 * pmu_op_start/finish
ec7b4ce4
AF
997 * @env: CPUARMState
998 *
5d05b9d4
AL
999 * Convert all PMU counters between their delta form (the typical mode when
1000 * they are enabled) and the guest-visible values. These two calls must
1001 * surround any action which might affect the counters.
ec7b4ce4 1002 */
5d05b9d4
AL
1003void pmu_op_start(CPUARMState *env);
1004void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1005
4e7beb0c
AL
1006/*
1007 * Called when a PMU counter is due to overflow
1008 */
1009void arm_pmu_timer_cb(void *opaque);
1010
033614c4
AL
1011/**
1012 * Functions to register as EL change hooks for PMU mode filtering
1013 */
1014void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1015void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1016
57a4a11b 1017/*
bf8d0969
AL
1018 * pmu_init
1019 * @cpu: ARMCPU
57a4a11b 1020 *
bf8d0969
AL
1021 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1022 * for the current configuration
57a4a11b 1023 */
bf8d0969 1024void pmu_init(ARMCPU *cpu);
57a4a11b 1025
76e3e1bc
PM
1026/* SCTLR bit meanings. Several bits have been reused in newer
1027 * versions of the architecture; in that case we define constants
1028 * for both old and new bit meanings. Code which tests against those
1029 * bits should probably check or otherwise arrange that the CPU
1030 * is the architectural version it expects.
1031 */
1032#define SCTLR_M (1U << 0)
1033#define SCTLR_A (1U << 1)
1034#define SCTLR_C (1U << 2)
1035#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1036#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1037#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1038#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1039#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1040#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1041#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1042#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1043#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1044#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1045#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1046#define SCTLR_ITD (1U << 7) /* v8 onward */
1047#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1048#define SCTLR_SED (1U << 8) /* v8 onward */
1049#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1050#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1051#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1052#define SCTLR_SW (1U << 10) /* v7 */
1053#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1054#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1055#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1056#define SCTLR_I (1U << 12)
b2af69d0
RH
1057#define SCTLR_V (1U << 13) /* AArch32 only */
1058#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1059#define SCTLR_RR (1U << 14) /* up to v7 */
1060#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1061#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1062#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1063#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1064#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1065#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1066#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1067#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1068#define SCTLR_nTWE (1U << 18) /* v8 onward */
1069#define SCTLR_WXN (1U << 19)
1070#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1071#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1072#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1073#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1074#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1075#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1076#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1077#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1078#define SCTLR_VE (1U << 24) /* up to v7 */
1079#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1080#define SCTLR_EE (1U << 25)
1081#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1082#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1083#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1084#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1085#define SCTLR_TRE (1U << 28) /* AArch32 only */
1086#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1087#define SCTLR_AFE (1U << 29) /* AArch32 only */
1088#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1089#define SCTLR_TE (1U << 30) /* AArch32 only */
1090#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1091#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1092#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1093#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1094#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1095#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1096#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1097#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1098#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1099#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1100
c6f19164
GB
1101#define CPTR_TCPAC (1U << 31)
1102#define CPTR_TTA (1U << 20)
1103#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1104#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1105#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1106
187f678d
PM
1107#define MDCR_EPMAD (1U << 21)
1108#define MDCR_EDAD (1U << 20)
033614c4
AL
1109#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1110#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1111#define MDCR_SDD (1U << 16)
a8d64e73 1112#define MDCR_SPD (3U << 14)
187f678d
PM
1113#define MDCR_TDRA (1U << 11)
1114#define MDCR_TDOSA (1U << 10)
1115#define MDCR_TDA (1U << 9)
1116#define MDCR_TDE (1U << 8)
1117#define MDCR_HPME (1U << 7)
1118#define MDCR_TPM (1U << 6)
1119#define MDCR_TPMCR (1U << 5)
033614c4 1120#define MDCR_HPMN (0x1fU)
187f678d 1121
a8d64e73
PM
1122/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1123#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1124
78dbbbe4
PM
1125#define CPSR_M (0x1fU)
1126#define CPSR_T (1U << 5)
1127#define CPSR_F (1U << 6)
1128#define CPSR_I (1U << 7)
1129#define CPSR_A (1U << 8)
1130#define CPSR_E (1U << 9)
1131#define CPSR_IT_2_7 (0xfc00U)
1132#define CPSR_GE (0xfU << 16)
4051e12c
PM
1133#define CPSR_IL (1U << 20)
1134/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1135 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1136 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1137 * where it is live state but not accessible to the AArch32 code.
1138 */
1139#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1140#define CPSR_J (1U << 24)
1141#define CPSR_IT_0_1 (3U << 25)
1142#define CPSR_Q (1U << 27)
1143#define CPSR_V (1U << 28)
1144#define CPSR_C (1U << 29)
1145#define CPSR_Z (1U << 30)
1146#define CPSR_N (1U << 31)
9ee6e8bb 1147#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1148#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1149
1150#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1151#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1152 | CPSR_NZCV)
9ee6e8bb
PB
1153/* Bits writable in user mode. */
1154#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1155/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1156#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1157/* Mask of bits which may be set by exception return copying them from SPSR */
1158#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1159
987ab45e
PM
1160/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1161#define XPSR_EXCP 0x1ffU
1162#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1163#define XPSR_IT_2_7 CPSR_IT_2_7
1164#define XPSR_GE CPSR_GE
1165#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1166#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1167#define XPSR_IT_0_1 CPSR_IT_0_1
1168#define XPSR_Q CPSR_Q
1169#define XPSR_V CPSR_V
1170#define XPSR_C CPSR_C
1171#define XPSR_Z CPSR_Z
1172#define XPSR_N CPSR_N
1173#define XPSR_NZCV CPSR_NZCV
1174#define XPSR_IT CPSR_IT
1175
e389be16
FA
1176#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1177#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1178#define TTBCR_PD0 (1U << 4)
1179#define TTBCR_PD1 (1U << 5)
1180#define TTBCR_EPD0 (1U << 7)
1181#define TTBCR_IRGN0 (3U << 8)
1182#define TTBCR_ORGN0 (3U << 10)
1183#define TTBCR_SH0 (3U << 12)
1184#define TTBCR_T1SZ (3U << 16)
1185#define TTBCR_A1 (1U << 22)
1186#define TTBCR_EPD1 (1U << 23)
1187#define TTBCR_IRGN1 (3U << 24)
1188#define TTBCR_ORGN1 (3U << 26)
1189#define TTBCR_SH1 (1U << 28)
1190#define TTBCR_EAE (1U << 31)
1191
d356312f
PM
1192/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1193 * Only these are valid when in AArch64 mode; in
1194 * AArch32 mode SPSRs are basically CPSR-format.
1195 */
f502cfc2 1196#define PSTATE_SP (1U)
d356312f
PM
1197#define PSTATE_M (0xFU)
1198#define PSTATE_nRW (1U << 4)
1199#define PSTATE_F (1U << 6)
1200#define PSTATE_I (1U << 7)
1201#define PSTATE_A (1U << 8)
1202#define PSTATE_D (1U << 9)
f6e52eaa 1203#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1204#define PSTATE_IL (1U << 20)
1205#define PSTATE_SS (1U << 21)
1206#define PSTATE_V (1U << 28)
1207#define PSTATE_C (1U << 29)
1208#define PSTATE_Z (1U << 30)
1209#define PSTATE_N (1U << 31)
1210#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1211#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1212#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1213/* Mode values for AArch64 */
1214#define PSTATE_MODE_EL3h 13
1215#define PSTATE_MODE_EL3t 12
1216#define PSTATE_MODE_EL2h 9
1217#define PSTATE_MODE_EL2t 8
1218#define PSTATE_MODE_EL1h 5
1219#define PSTATE_MODE_EL1t 4
1220#define PSTATE_MODE_EL0t 0
1221
de2db7ec
PM
1222/* Write a new value to v7m.exception, thus transitioning into or out
1223 * of Handler mode; this may result in a change of active stack pointer.
1224 */
1225void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1226
9e729b57
EI
1227/* Map EL and handler into a PSTATE_MODE. */
1228static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1229{
1230 return (el << 2) | handler;
1231}
1232
d356312f
PM
1233/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1234 * interprocessing, so we don't attempt to sync with the cpsr state used by
1235 * the 32 bit decoder.
1236 */
1237static inline uint32_t pstate_read(CPUARMState *env)
1238{
1239 int ZF;
1240
1241 ZF = (env->ZF == 0);
1242 return (env->NF & 0x80000000) | (ZF << 30)
1243 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1244 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1245}
1246
1247static inline void pstate_write(CPUARMState *env, uint32_t val)
1248{
1249 env->ZF = (~val) & PSTATE_Z;
1250 env->NF = val;
1251 env->CF = (val >> 29) & 1;
1252 env->VF = (val << 3) & 0x80000000;
4cc35614 1253 env->daif = val & PSTATE_DAIF;
f6e52eaa 1254 env->btype = (val >> 10) & 3;
d356312f
PM
1255 env->pstate = val & ~CACHED_PSTATE_BITS;
1256}
1257
b5ff1b31 1258/* Return the current CPSR value. */
2f4a40e5 1259uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1260
1261typedef enum CPSRWriteType {
1262 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1263 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1264 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1265 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1266} CPSRWriteType;
1267
1268/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1269void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1270 CPSRWriteType write_type);
9ee6e8bb
PB
1271
1272/* Return the current xPSR value. */
1273static inline uint32_t xpsr_read(CPUARMState *env)
1274{
1275 int ZF;
6fbe23d5
PB
1276 ZF = (env->ZF == 0);
1277 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1278 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1279 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1280 | ((env->condexec_bits & 0xfc) << 8)
1281 | env->v7m.exception;
b5ff1b31
FB
1282}
1283
9ee6e8bb
PB
1284/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1285static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1286{
987ab45e
PM
1287 if (mask & XPSR_NZCV) {
1288 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1289 env->NF = val;
9ee6e8bb
PB
1290 env->CF = (val >> 29) & 1;
1291 env->VF = (val << 3) & 0x80000000;
1292 }
987ab45e
PM
1293 if (mask & XPSR_Q) {
1294 env->QF = ((val & XPSR_Q) != 0);
1295 }
1296 if (mask & XPSR_T) {
1297 env->thumb = ((val & XPSR_T) != 0);
1298 }
1299 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1300 env->condexec_bits &= ~3;
1301 env->condexec_bits |= (val >> 25) & 3;
1302 }
987ab45e 1303 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1304 env->condexec_bits &= 3;
1305 env->condexec_bits |= (val >> 8) & 0xfc;
1306 }
987ab45e 1307 if (mask & XPSR_EXCP) {
de2db7ec
PM
1308 /* Note that this only happens on exception exit */
1309 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1310 }
1311}
1312
f149e3e8
EI
1313#define HCR_VM (1ULL << 0)
1314#define HCR_SWIO (1ULL << 1)
1315#define HCR_PTW (1ULL << 2)
1316#define HCR_FMO (1ULL << 3)
1317#define HCR_IMO (1ULL << 4)
1318#define HCR_AMO (1ULL << 5)
1319#define HCR_VF (1ULL << 6)
1320#define HCR_VI (1ULL << 7)
1321#define HCR_VSE (1ULL << 8)
1322#define HCR_FB (1ULL << 9)
1323#define HCR_BSU_MASK (3ULL << 10)
1324#define HCR_DC (1ULL << 12)
1325#define HCR_TWI (1ULL << 13)
1326#define HCR_TWE (1ULL << 14)
1327#define HCR_TID0 (1ULL << 15)
1328#define HCR_TID1 (1ULL << 16)
1329#define HCR_TID2 (1ULL << 17)
1330#define HCR_TID3 (1ULL << 18)
1331#define HCR_TSC (1ULL << 19)
1332#define HCR_TIDCP (1ULL << 20)
1333#define HCR_TACR (1ULL << 21)
1334#define HCR_TSW (1ULL << 22)
099bf53b 1335#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1336#define HCR_TPU (1ULL << 24)
1337#define HCR_TTLB (1ULL << 25)
1338#define HCR_TVM (1ULL << 26)
1339#define HCR_TGE (1ULL << 27)
1340#define HCR_TDZ (1ULL << 28)
1341#define HCR_HCD (1ULL << 29)
1342#define HCR_TRVM (1ULL << 30)
1343#define HCR_RW (1ULL << 31)
1344#define HCR_CD (1ULL << 32)
1345#define HCR_ID (1ULL << 33)
ac656b16 1346#define HCR_E2H (1ULL << 34)
099bf53b
RH
1347#define HCR_TLOR (1ULL << 35)
1348#define HCR_TERR (1ULL << 36)
1349#define HCR_TEA (1ULL << 37)
1350#define HCR_MIOCNCE (1ULL << 38)
1351#define HCR_APK (1ULL << 40)
1352#define HCR_API (1ULL << 41)
1353#define HCR_NV (1ULL << 42)
1354#define HCR_NV1 (1ULL << 43)
1355#define HCR_AT (1ULL << 44)
1356#define HCR_NV2 (1ULL << 45)
1357#define HCR_FWB (1ULL << 46)
1358#define HCR_FIEN (1ULL << 47)
1359#define HCR_TID4 (1ULL << 49)
1360#define HCR_TICAB (1ULL << 50)
1361#define HCR_TOCU (1ULL << 52)
1362#define HCR_TTLBIS (1ULL << 54)
1363#define HCR_TTLBOS (1ULL << 55)
1364#define HCR_ATA (1ULL << 56)
1365#define HCR_DCT (1ULL << 57)
1366
ac656b16
PM
1367/*
1368 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1369 * HCR_MASK and then clear it again if the feature bit is not set in
1370 * hcr_write().
1371 */
f149e3e8
EI
1372#define HCR_MASK ((1ULL << 34) - 1)
1373
64e0e2de
EI
1374#define SCR_NS (1U << 0)
1375#define SCR_IRQ (1U << 1)
1376#define SCR_FIQ (1U << 2)
1377#define SCR_EA (1U << 3)
1378#define SCR_FW (1U << 4)
1379#define SCR_AW (1U << 5)
1380#define SCR_NET (1U << 6)
1381#define SCR_SMD (1U << 7)
1382#define SCR_HCE (1U << 8)
1383#define SCR_SIF (1U << 9)
1384#define SCR_RW (1U << 10)
1385#define SCR_ST (1U << 11)
1386#define SCR_TWI (1U << 12)
1387#define SCR_TWE (1U << 13)
99f8f86d
RH
1388#define SCR_TLOR (1U << 14)
1389#define SCR_TERR (1U << 15)
1390#define SCR_APK (1U << 16)
1391#define SCR_API (1U << 17)
1392#define SCR_EEL2 (1U << 18)
1393#define SCR_EASE (1U << 19)
1394#define SCR_NMEA (1U << 20)
1395#define SCR_FIEN (1U << 21)
1396#define SCR_ENSCXT (1U << 25)
1397#define SCR_ATA (1U << 26)
64e0e2de 1398
01653295
PM
1399/* Return the current FPSCR value. */
1400uint32_t vfp_get_fpscr(CPUARMState *env);
1401void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1402
d81ce0ef
AB
1403/* FPCR, Floating Point Control Register
1404 * FPSR, Floating Poiht Status Register
1405 *
1406 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1407 * FPCR and FPSR. However since they still use non-overlapping bits
1408 * we store the underlying state in fpscr and just mask on read/write.
1409 */
1410#define FPSR_MASK 0xf800009f
0b62159b 1411#define FPCR_MASK 0x07ff9f00
d81ce0ef 1412
a15945d9
PM
1413#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1414#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1415#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1416#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1417#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1418#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1419#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1420#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1421#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1422#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1423
f903fa22
PM
1424static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1425{
1426 return vfp_get_fpscr(env) & FPSR_MASK;
1427}
1428
1429static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1430{
1431 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1432 vfp_set_fpscr(env, new_fpscr);
1433}
1434
1435static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1436{
1437 return vfp_get_fpscr(env) & FPCR_MASK;
1438}
1439
1440static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1441{
1442 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1443 vfp_set_fpscr(env, new_fpscr);
1444}
1445
b5ff1b31
FB
1446enum arm_cpu_mode {
1447 ARM_CPU_MODE_USR = 0x10,
1448 ARM_CPU_MODE_FIQ = 0x11,
1449 ARM_CPU_MODE_IRQ = 0x12,
1450 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1451 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1452 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1453 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1454 ARM_CPU_MODE_UND = 0x1b,
1455 ARM_CPU_MODE_SYS = 0x1f
1456};
1457
40f137e1
PB
1458/* VFP system registers. */
1459#define ARM_VFP_FPSID 0
1460#define ARM_VFP_FPSCR 1
a50c0f51 1461#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1462#define ARM_VFP_MVFR1 6
1463#define ARM_VFP_MVFR0 7
40f137e1
PB
1464#define ARM_VFP_FPEXC 8
1465#define ARM_VFP_FPINST 9
1466#define ARM_VFP_FPINST2 10
1467
18c9b560 1468/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1469#define ARM_IWMMXT_wCID 0
1470#define ARM_IWMMXT_wCon 1
1471#define ARM_IWMMXT_wCSSF 2
1472#define ARM_IWMMXT_wCASF 3
1473#define ARM_IWMMXT_wCGR0 8
1474#define ARM_IWMMXT_wCGR1 9
1475#define ARM_IWMMXT_wCGR2 10
1476#define ARM_IWMMXT_wCGR3 11
18c9b560 1477
2c4da50d
PM
1478/* V7M CCR bits */
1479FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1480FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1481FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1482FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1483FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1484FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1485FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1486FIELD(V7M_CCR, DC, 16, 1)
1487FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1488FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1489
24ac0fb1
PM
1490/* V7M SCR bits */
1491FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1492FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1493FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1494FIELD(V7M_SCR, SEVONPEND, 4, 1)
1495
3b2e9344
PM
1496/* V7M AIRCR bits */
1497FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1498FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1499FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1500FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1501FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1502FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1503FIELD(V7M_AIRCR, PRIS, 14, 1)
1504FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1505FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1506
2c4da50d
PM
1507/* V7M CFSR bits for MMFSR */
1508FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1509FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1510FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1511FIELD(V7M_CFSR, MSTKERR, 4, 1)
1512FIELD(V7M_CFSR, MLSPERR, 5, 1)
1513FIELD(V7M_CFSR, MMARVALID, 7, 1)
1514
1515/* V7M CFSR bits for BFSR */
1516FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1517FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1518FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1519FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1520FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1521FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1522FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1523
1524/* V7M CFSR bits for UFSR */
1525FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1526FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1527FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1528FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1529FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1530FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1531FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1532
334e8dad
PM
1533/* V7M CFSR bit masks covering all of the subregister bits */
1534FIELD(V7M_CFSR, MMFSR, 0, 8)
1535FIELD(V7M_CFSR, BFSR, 8, 8)
1536FIELD(V7M_CFSR, UFSR, 16, 16)
1537
2c4da50d
PM
1538/* V7M HFSR bits */
1539FIELD(V7M_HFSR, VECTTBL, 1, 1)
1540FIELD(V7M_HFSR, FORCED, 30, 1)
1541FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1542
1543/* V7M DFSR bits */
1544FIELD(V7M_DFSR, HALTED, 0, 1)
1545FIELD(V7M_DFSR, BKPT, 1, 1)
1546FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1547FIELD(V7M_DFSR, VCATCH, 3, 1)
1548FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1549
bed079da
PM
1550/* V7M SFSR bits */
1551FIELD(V7M_SFSR, INVEP, 0, 1)
1552FIELD(V7M_SFSR, INVIS, 1, 1)
1553FIELD(V7M_SFSR, INVER, 2, 1)
1554FIELD(V7M_SFSR, AUVIOL, 3, 1)
1555FIELD(V7M_SFSR, INVTRAN, 4, 1)
1556FIELD(V7M_SFSR, LSPERR, 5, 1)
1557FIELD(V7M_SFSR, SFARVALID, 6, 1)
1558FIELD(V7M_SFSR, LSERR, 7, 1)
1559
29c483a5
MD
1560/* v7M MPU_CTRL bits */
1561FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1562FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1563FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1564
43bbce7f
PM
1565/* v7M CLIDR bits */
1566FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1567FIELD(V7M_CLIDR, LOUIS, 21, 3)
1568FIELD(V7M_CLIDR, LOC, 24, 3)
1569FIELD(V7M_CLIDR, LOUU, 27, 3)
1570FIELD(V7M_CLIDR, ICB, 30, 2)
1571
1572FIELD(V7M_CSSELR, IND, 0, 1)
1573FIELD(V7M_CSSELR, LEVEL, 1, 3)
1574/* We use the combination of InD and Level to index into cpu->ccsidr[];
1575 * define a mask for this and check that it doesn't permit running off
1576 * the end of the array.
1577 */
1578FIELD(V7M_CSSELR, INDEX, 0, 4)
1579
a62e62af
RH
1580/*
1581 * System register ID fields.
1582 */
1583FIELD(ID_ISAR0, SWAP, 0, 4)
1584FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1585FIELD(ID_ISAR0, BITFIELD, 8, 4)
1586FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1587FIELD(ID_ISAR0, COPROC, 16, 4)
1588FIELD(ID_ISAR0, DEBUG, 20, 4)
1589FIELD(ID_ISAR0, DIVIDE, 24, 4)
1590
1591FIELD(ID_ISAR1, ENDIAN, 0, 4)
1592FIELD(ID_ISAR1, EXCEPT, 4, 4)
1593FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1594FIELD(ID_ISAR1, EXTEND, 12, 4)
1595FIELD(ID_ISAR1, IFTHEN, 16, 4)
1596FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1597FIELD(ID_ISAR1, INTERWORK, 24, 4)
1598FIELD(ID_ISAR1, JAZELLE, 28, 4)
1599
1600FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1601FIELD(ID_ISAR2, MEMHINT, 4, 4)
1602FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1603FIELD(ID_ISAR2, MULT, 12, 4)
1604FIELD(ID_ISAR2, MULTS, 16, 4)
1605FIELD(ID_ISAR2, MULTU, 20, 4)
1606FIELD(ID_ISAR2, PSR_AR, 24, 4)
1607FIELD(ID_ISAR2, REVERSAL, 28, 4)
1608
1609FIELD(ID_ISAR3, SATURATE, 0, 4)
1610FIELD(ID_ISAR3, SIMD, 4, 4)
1611FIELD(ID_ISAR3, SVC, 8, 4)
1612FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1613FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1614FIELD(ID_ISAR3, T32COPY, 20, 4)
1615FIELD(ID_ISAR3, TRUENOP, 24, 4)
1616FIELD(ID_ISAR3, T32EE, 28, 4)
1617
1618FIELD(ID_ISAR4, UNPRIV, 0, 4)
1619FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1620FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1621FIELD(ID_ISAR4, SMC, 12, 4)
1622FIELD(ID_ISAR4, BARRIER, 16, 4)
1623FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1624FIELD(ID_ISAR4, PSR_M, 24, 4)
1625FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1626
1627FIELD(ID_ISAR5, SEVL, 0, 4)
1628FIELD(ID_ISAR5, AES, 4, 4)
1629FIELD(ID_ISAR5, SHA1, 8, 4)
1630FIELD(ID_ISAR5, SHA2, 12, 4)
1631FIELD(ID_ISAR5, CRC32, 16, 4)
1632FIELD(ID_ISAR5, RDM, 24, 4)
1633FIELD(ID_ISAR5, VCMA, 28, 4)
1634
1635FIELD(ID_ISAR6, JSCVT, 0, 4)
1636FIELD(ID_ISAR6, DP, 4, 4)
1637FIELD(ID_ISAR6, FHM, 8, 4)
1638FIELD(ID_ISAR6, SB, 12, 4)
1639FIELD(ID_ISAR6, SPECRES, 16, 4)
1640
ab638a32
RH
1641FIELD(ID_MMFR4, SPECSEI, 0, 4)
1642FIELD(ID_MMFR4, AC2, 4, 4)
1643FIELD(ID_MMFR4, XNX, 8, 4)
1644FIELD(ID_MMFR4, CNP, 12, 4)
1645FIELD(ID_MMFR4, HPDS, 16, 4)
1646FIELD(ID_MMFR4, LSM, 20, 4)
1647FIELD(ID_MMFR4, CCIDX, 24, 4)
1648FIELD(ID_MMFR4, EVT, 28, 4)
1649
a62e62af
RH
1650FIELD(ID_AA64ISAR0, AES, 4, 4)
1651FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1652FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1653FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1654FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1655FIELD(ID_AA64ISAR0, RDM, 28, 4)
1656FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1657FIELD(ID_AA64ISAR0, SM3, 36, 4)
1658FIELD(ID_AA64ISAR0, SM4, 40, 4)
1659FIELD(ID_AA64ISAR0, DP, 44, 4)
1660FIELD(ID_AA64ISAR0, FHM, 48, 4)
1661FIELD(ID_AA64ISAR0, TS, 52, 4)
1662FIELD(ID_AA64ISAR0, TLB, 56, 4)
1663FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1664
1665FIELD(ID_AA64ISAR1, DPB, 0, 4)
1666FIELD(ID_AA64ISAR1, APA, 4, 4)
1667FIELD(ID_AA64ISAR1, API, 8, 4)
1668FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1669FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1670FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1671FIELD(ID_AA64ISAR1, GPA, 24, 4)
1672FIELD(ID_AA64ISAR1, GPI, 28, 4)
1673FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1674FIELD(ID_AA64ISAR1, SB, 36, 4)
1675FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1676
cd208a1c
RH
1677FIELD(ID_AA64PFR0, EL0, 0, 4)
1678FIELD(ID_AA64PFR0, EL1, 4, 4)
1679FIELD(ID_AA64PFR0, EL2, 8, 4)
1680FIELD(ID_AA64PFR0, EL3, 12, 4)
1681FIELD(ID_AA64PFR0, FP, 16, 4)
1682FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1683FIELD(ID_AA64PFR0, GIC, 24, 4)
1684FIELD(ID_AA64PFR0, RAS, 28, 4)
1685FIELD(ID_AA64PFR0, SVE, 32, 4)
1686
be53b6f4
RH
1687FIELD(ID_AA64PFR1, BT, 0, 4)
1688FIELD(ID_AA64PFR1, SBSS, 4, 4)
1689FIELD(ID_AA64PFR1, MTE, 8, 4)
1690FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1691
3dc91ddb
PM
1692FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1693FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1694FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1695FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1696FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1697FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1698FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1699FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1700FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1701FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1702FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1703FIELD(ID_AA64MMFR0, EXS, 44, 4)
1704
1705FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1706FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1707FIELD(ID_AA64MMFR1, VH, 8, 4)
1708FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1709FIELD(ID_AA64MMFR1, LO, 16, 4)
1710FIELD(ID_AA64MMFR1, PAN, 20, 4)
1711FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1712FIELD(ID_AA64MMFR1, XNX, 28, 4)
1713
beceb99c
AL
1714FIELD(ID_DFR0, COPDBG, 0, 4)
1715FIELD(ID_DFR0, COPSDBG, 4, 4)
1716FIELD(ID_DFR0, MMAPDBG, 8, 4)
1717FIELD(ID_DFR0, COPTRC, 12, 4)
1718FIELD(ID_DFR0, MMAPTRC, 16, 4)
1719FIELD(ID_DFR0, MPROFDBG, 20, 4)
1720FIELD(ID_DFR0, PERFMON, 24, 4)
1721FIELD(ID_DFR0, TRACEFILT, 28, 4)
1722
602f6e42
PM
1723FIELD(MVFR0, SIMDREG, 0, 4)
1724FIELD(MVFR0, FPSP, 4, 4)
1725FIELD(MVFR0, FPDP, 8, 4)
1726FIELD(MVFR0, FPTRAP, 12, 4)
1727FIELD(MVFR0, FPDIVIDE, 16, 4)
1728FIELD(MVFR0, FPSQRT, 20, 4)
1729FIELD(MVFR0, FPSHVEC, 24, 4)
1730FIELD(MVFR0, FPROUND, 28, 4)
1731
1732FIELD(MVFR1, FPFTZ, 0, 4)
1733FIELD(MVFR1, FPDNAN, 4, 4)
1734FIELD(MVFR1, SIMDLS, 8, 4)
1735FIELD(MVFR1, SIMDINT, 12, 4)
1736FIELD(MVFR1, SIMDSP, 16, 4)
1737FIELD(MVFR1, SIMDHP, 20, 4)
1738FIELD(MVFR1, FPHP, 24, 4)
1739FIELD(MVFR1, SIMDFMAC, 28, 4)
1740
1741FIELD(MVFR2, SIMDMISC, 0, 4)
1742FIELD(MVFR2, FPMISC, 4, 4)
1743
43bbce7f
PM
1744QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1745
ce854d7c
BC
1746/* If adding a feature bit which corresponds to a Linux ELF
1747 * HWCAP bit, remember to update the feature-bit-to-hwcap
1748 * mapping in linux-user/elfload.c:get_elf_hwcap().
1749 */
40f137e1
PB
1750enum arm_features {
1751 ARM_FEATURE_VFP,
c1713132
AZ
1752 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1753 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1754 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1755 ARM_FEATURE_V6,
1756 ARM_FEATURE_V6K,
1757 ARM_FEATURE_V7,
1758 ARM_FEATURE_THUMB2,
452a0955 1759 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1760 ARM_FEATURE_VFP3,
1761 ARM_FEATURE_NEON,
9ee6e8bb 1762 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1763 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1764 ARM_FEATURE_THUMB2EE,
be5e7a76 1765 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1766 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1767 ARM_FEATURE_V4T,
1768 ARM_FEATURE_V5,
5bc95aa2 1769 ARM_FEATURE_STRONGARM,
906879a9 1770 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1771 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1772 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1773 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1774 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1775 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1776 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1777 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1778 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1779 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1780 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1781 ARM_FEATURE_V8,
3926cc84 1782 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1783 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1784 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1785 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1786 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1787 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1788 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1789 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1790 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1791 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1792 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1793};
1794
1795static inline int arm_feature(CPUARMState *env, int feature)
1796{
918f5dca 1797 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1798}
1799
19e0fefa
FA
1800#if !defined(CONFIG_USER_ONLY)
1801/* Return true if exception levels below EL3 are in secure state,
1802 * or would be following an exception return to that level.
1803 * Unlike arm_is_secure() (which is always a question about the
1804 * _current_ state of the CPU) this doesn't care about the current
1805 * EL or mode.
1806 */
1807static inline bool arm_is_secure_below_el3(CPUARMState *env)
1808{
1809 if (arm_feature(env, ARM_FEATURE_EL3)) {
1810 return !(env->cp15.scr_el3 & SCR_NS);
1811 } else {
6b7f0b61 1812 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1813 * defined, in which case QEMU defaults to non-secure.
1814 */
1815 return false;
1816 }
1817}
1818
71205876
PM
1819/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1820static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1821{
1822 if (arm_feature(env, ARM_FEATURE_EL3)) {
1823 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1824 /* CPU currently in AArch64 state and EL3 */
1825 return true;
1826 } else if (!is_a64(env) &&
1827 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1828 /* CPU currently in AArch32 state and monitor mode */
1829 return true;
1830 }
1831 }
71205876
PM
1832 return false;
1833}
1834
1835/* Return true if the processor is in secure state */
1836static inline bool arm_is_secure(CPUARMState *env)
1837{
1838 if (arm_is_el3_or_mon(env)) {
1839 return true;
1840 }
19e0fefa
FA
1841 return arm_is_secure_below_el3(env);
1842}
1843
1844#else
1845static inline bool arm_is_secure_below_el3(CPUARMState *env)
1846{
1847 return false;
1848}
1849
1850static inline bool arm_is_secure(CPUARMState *env)
1851{
1852 return false;
1853}
1854#endif
1855
f7778444
RH
1856/**
1857 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1858 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1859 * "for all purposes other than a direct read or write access of HCR_EL2."
1860 * Not included here is HCR_RW.
1861 */
1862uint64_t arm_hcr_el2_eff(CPUARMState *env);
1863
1f79ee32
PM
1864/* Return true if the specified exception level is running in AArch64 state. */
1865static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1866{
446c81ab
PM
1867 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1868 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1869 */
446c81ab
PM
1870 assert(el >= 1 && el <= 3);
1871 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1872
446c81ab
PM
1873 /* The highest exception level is always at the maximum supported
1874 * register width, and then lower levels have a register width controlled
1875 * by bits in the SCR or HCR registers.
1f79ee32 1876 */
446c81ab
PM
1877 if (el == 3) {
1878 return aa64;
1879 }
1880
1881 if (arm_feature(env, ARM_FEATURE_EL3)) {
1882 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1883 }
1884
1885 if (el == 2) {
1886 return aa64;
1887 }
1888
1889 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1890 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1891 }
1892
1893 return aa64;
1f79ee32
PM
1894}
1895
3f342b9e
SF
1896/* Function for determing whether guest cp register reads and writes should
1897 * access the secure or non-secure bank of a cp register. When EL3 is
1898 * operating in AArch32 state, the NS-bit determines whether the secure
1899 * instance of a cp register should be used. When EL3 is AArch64 (or if
1900 * it doesn't exist at all) then there is no register banking, and all
1901 * accesses are to the non-secure version.
1902 */
1903static inline bool access_secure_reg(CPUARMState *env)
1904{
1905 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1906 !arm_el_is_aa64(env, 3) &&
1907 !(env->cp15.scr_el3 & SCR_NS));
1908
1909 return ret;
1910}
1911
ea30a4b8
FA
1912/* Macros for accessing a specified CP register bank */
1913#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1914 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1915
1916#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1917 do { \
1918 if (_secure) { \
1919 (_env)->cp15._regname##_s = (_val); \
1920 } else { \
1921 (_env)->cp15._regname##_ns = (_val); \
1922 } \
1923 } while (0)
1924
1925/* Macros for automatically accessing a specific CP register bank depending on
1926 * the current secure state of the system. These macros are not intended for
1927 * supporting instruction translation reads/writes as these are dependent
1928 * solely on the SCR.NS bit and not the mode.
1929 */
1930#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1931 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1932 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1933
1934#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1935 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1936 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1937 (_val))
1938
0442428a 1939void arm_cpu_list(void);
012a906b
GB
1940uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1941 uint32_t cur_el, bool secure);
40f137e1 1942
9ee6e8bb 1943/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1944#ifndef CONFIG_USER_ONLY
1945bool armv7m_nvic_can_take_pending_exception(void *opaque);
1946#else
1947static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1948{
1949 return true;
1950}
1951#endif
2fb50a33
PM
1952/**
1953 * armv7m_nvic_set_pending: mark the specified exception as pending
1954 * @opaque: the NVIC
1955 * @irq: the exception number to mark pending
1956 * @secure: false for non-banked exceptions or for the nonsecure
1957 * version of a banked exception, true for the secure version of a banked
1958 * exception.
1959 *
1960 * Marks the specified exception as pending. Note that we will assert()
1961 * if @secure is true and @irq does not specify one of the fixed set
1962 * of architecturally banked exceptions.
1963 */
1964void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1965/**
1966 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1967 * @opaque: the NVIC
1968 * @irq: the exception number to mark pending
1969 * @secure: false for non-banked exceptions or for the nonsecure
1970 * version of a banked exception, true for the secure version of a banked
1971 * exception.
1972 *
1973 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1974 * exceptions (exceptions generated in the course of trying to take
1975 * a different exception).
1976 */
1977void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1978/**
1979 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1980 * exception, and whether it targets Secure state
1981 * @opaque: the NVIC
1982 * @pirq: set to pending exception number
1983 * @ptargets_secure: set to whether pending exception targets Secure
1984 *
1985 * This function writes the number of the highest priority pending
1986 * exception (the one which would be made active by
1987 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1988 * to true if the current highest priority pending exception should
1989 * be taken to Secure state, false for NS.
1990 */
1991void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1992 bool *ptargets_secure);
5cb18069
PM
1993/**
1994 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1995 * @opaque: the NVIC
1996 *
1997 * Move the current highest priority pending exception from the pending
1998 * state to the active state, and update v7m.exception to indicate that
1999 * it is the exception currently being handled.
5cb18069 2000 */
6c948518 2001void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2002/**
2003 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2004 * @opaque: the NVIC
2005 * @irq: the exception number to complete
5cb18069 2006 * @secure: true if this exception was secure
aa488fe3
PM
2007 *
2008 * Returns: -1 if the irq was not active
2009 * 1 if completing this irq brought us back to base (no active irqs)
2010 * 0 if there is still an irq active after this one was completed
2011 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2012 */
5cb18069 2013int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
2014/**
2015 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2016 * @opaque: the NVIC
2017 *
2018 * Returns: the raw execution priority as defined by the v8M architecture.
2019 * This is the execution priority minus the effects of AIRCR.PRIS,
2020 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2021 * (v8M ARM ARM I_PKLD.)
2022 */
2023int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2024/**
2025 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2026 * priority is negative for the specified security state.
2027 * @opaque: the NVIC
2028 * @secure: the security state to test
2029 * This corresponds to the pseudocode IsReqExecPriNeg().
2030 */
2031#ifndef CONFIG_USER_ONLY
2032bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2033#else
2034static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2035{
2036 return false;
2037}
2038#endif
9ee6e8bb 2039
4b6a83fb
PM
2040/* Interface for defining coprocessor registers.
2041 * Registers are defined in tables of arm_cp_reginfo structs
2042 * which are passed to define_arm_cp_regs().
2043 */
2044
2045/* When looking up a coprocessor register we look for it
2046 * via an integer which encodes all of:
2047 * coprocessor number
2048 * Crn, Crm, opc1, opc2 fields
2049 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2050 * or via MRRC/MCRR?)
51a79b03 2051 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2052 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2053 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2054 * For AArch64, there is no 32/64 bit size distinction;
2055 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2056 * and 4 bit CRn and CRm. The encoding patterns are chosen
2057 * to be easy to convert to and from the KVM encodings, and also
2058 * so that the hashtable can contain both AArch32 and AArch64
2059 * registers (to allow for interprocessing where we might run
2060 * 32 bit code on a 64 bit core).
4b6a83fb 2061 */
f5a0a5a5
PM
2062/* This bit is private to our hashtable cpreg; in KVM register
2063 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2064 * in the upper bits of the 64 bit ID.
2065 */
2066#define CP_REG_AA64_SHIFT 28
2067#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2068
51a79b03
PM
2069/* To enable banking of coprocessor registers depending on ns-bit we
2070 * add a bit to distinguish between secure and non-secure cpregs in the
2071 * hashtable.
2072 */
2073#define CP_REG_NS_SHIFT 29
2074#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2075
2076#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2077 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2078 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2079
f5a0a5a5
PM
2080#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2081 (CP_REG_AA64_MASK | \
2082 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2083 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2084 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2085 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2086 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2087 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2088
721fae12
PM
2089/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2090 * version used as a key for the coprocessor register hashtable
2091 */
2092static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2093{
2094 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2095 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2096 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2097 } else {
2098 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2099 cpregid |= (1 << 15);
2100 }
2101
2102 /* KVM is always non-secure so add the NS flag on AArch32 register
2103 * entries.
2104 */
2105 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2106 }
2107 return cpregid;
2108}
2109
2110/* Convert a truncated 32 bit hashtable key into the full
2111 * 64 bit KVM register ID.
2112 */
2113static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2114{
f5a0a5a5
PM
2115 uint64_t kvmid;
2116
2117 if (cpregid & CP_REG_AA64_MASK) {
2118 kvmid = cpregid & ~CP_REG_AA64_MASK;
2119 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2120 } else {
f5a0a5a5
PM
2121 kvmid = cpregid & ~(1 << 15);
2122 if (cpregid & (1 << 15)) {
2123 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2124 } else {
2125 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2126 }
721fae12
PM
2127 }
2128 return kvmid;
2129}
2130
4b6a83fb 2131/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2132 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2133 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2134 * TCG can assume the value to be constant (ie load at translate time)
2135 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2136 * indicates that the TB should not be ended after a write to this register
2137 * (the default is that the TB ends after cp writes). OVERRIDE permits
2138 * a register definition to override a previous definition for the
2139 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2140 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2141 * ALIAS indicates that this register is an alias view of some underlying
2142 * state which is also visible via another register, and that the other
b061a82b
SF
2143 * register is handling migration and reset; registers marked ALIAS will not be
2144 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2145 * NO_RAW indicates that this register has no underlying state and does not
2146 * support raw access for state saving/loading; it will not be used for either
2147 * migration or KVM state synchronization. (Typically this is for "registers"
2148 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2149 * IO indicates that this register does I/O and therefore its accesses
2150 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2151 * registers which implement clocks or timers require this.
4b6a83fb 2152 */
fe03d45f
RH
2153#define ARM_CP_SPECIAL 0x0001
2154#define ARM_CP_CONST 0x0002
2155#define ARM_CP_64BIT 0x0004
2156#define ARM_CP_SUPPRESS_TB_END 0x0008
2157#define ARM_CP_OVERRIDE 0x0010
2158#define ARM_CP_ALIAS 0x0020
2159#define ARM_CP_IO 0x0040
2160#define ARM_CP_NO_RAW 0x0080
2161#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2162#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2163#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2164#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2165#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2166#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2167#define ARM_CP_FPU 0x1000
490aa7f1 2168#define ARM_CP_SVE 0x2000
1f163787 2169#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2170/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2171#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2172/* Mask of only the flag bits in a type field */
1f163787 2173#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2174
f5a0a5a5
PM
2175/* Valid values for ARMCPRegInfo state field, indicating which of
2176 * the AArch32 and AArch64 execution states this register is visible in.
2177 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2178 * If the reginfo is declared to be visible in both states then a second
2179 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2180 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2181 * Note that we rely on the values of these enums as we iterate through
2182 * the various states in some places.
2183 */
2184enum {
2185 ARM_CP_STATE_AA32 = 0,
2186 ARM_CP_STATE_AA64 = 1,
2187 ARM_CP_STATE_BOTH = 2,
2188};
2189
c3e30260
FA
2190/* ARM CP register secure state flags. These flags identify security state
2191 * attributes for a given CP register entry.
2192 * The existence of both or neither secure and non-secure flags indicates that
2193 * the register has both a secure and non-secure hash entry. A single one of
2194 * these flags causes the register to only be hashed for the specified
2195 * security state.
2196 * Although definitions may have any combination of the S/NS bits, each
2197 * registered entry will only have one to identify whether the entry is secure
2198 * or non-secure.
2199 */
2200enum {
2201 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2202 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2203};
2204
4b6a83fb
PM
2205/* Return true if cptype is a valid type field. This is used to try to
2206 * catch errors where the sentinel has been accidentally left off the end
2207 * of a list of registers.
2208 */
2209static inline bool cptype_valid(int cptype)
2210{
2211 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2212 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2213 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2214}
2215
2216/* Access rights:
2217 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2218 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2219 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2220 * (ie any of the privileged modes in Secure state, or Monitor mode).
2221 * If a register is accessible in one privilege level it's always accessible
2222 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2223 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2224 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2225 * terminology a little and call this PL3.
f5a0a5a5
PM
2226 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2227 * with the ELx exception levels.
4b6a83fb
PM
2228 *
2229 * If access permissions for a register are more complex than can be
2230 * described with these bits, then use a laxer set of restrictions, and
2231 * do the more restrictive/complex check inside a helper function.
2232 */
2233#define PL3_R 0x80
2234#define PL3_W 0x40
2235#define PL2_R (0x20 | PL3_R)
2236#define PL2_W (0x10 | PL3_W)
2237#define PL1_R (0x08 | PL2_R)
2238#define PL1_W (0x04 | PL2_W)
2239#define PL0_R (0x02 | PL1_R)
2240#define PL0_W (0x01 | PL1_W)
2241
b5bd7440
AB
2242/*
2243 * For user-mode some registers are accessible to EL0 via a kernel
2244 * trap-and-emulate ABI. In this case we define the read permissions
2245 * as actually being PL0_R. However some bits of any given register
2246 * may still be masked.
2247 */
2248#ifdef CONFIG_USER_ONLY
2249#define PL0U_R PL0_R
2250#else
2251#define PL0U_R PL1_R
2252#endif
2253
4b6a83fb
PM
2254#define PL3_RW (PL3_R | PL3_W)
2255#define PL2_RW (PL2_R | PL2_W)
2256#define PL1_RW (PL1_R | PL1_W)
2257#define PL0_RW (PL0_R | PL0_W)
2258
75502672
PM
2259/* Return the highest implemented Exception Level */
2260static inline int arm_highest_el(CPUARMState *env)
2261{
2262 if (arm_feature(env, ARM_FEATURE_EL3)) {
2263 return 3;
2264 }
2265 if (arm_feature(env, ARM_FEATURE_EL2)) {
2266 return 2;
2267 }
2268 return 1;
2269}
2270
15b3f556
PM
2271/* Return true if a v7M CPU is in Handler mode */
2272static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2273{
2274 return env->v7m.exception != 0;
2275}
2276
dcbff19b
GB
2277/* Return the current Exception Level (as per ARMv8; note that this differs
2278 * from the ARMv7 Privilege Level).
2279 */
2280static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2281{
6d54ed3c 2282 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2283 return arm_v7m_is_handler_mode(env) ||
2284 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2285 }
2286
592125f8 2287 if (is_a64(env)) {
f5a0a5a5
PM
2288 return extract32(env->pstate, 2, 2);
2289 }
2290
592125f8
FA
2291 switch (env->uncached_cpsr & 0x1f) {
2292 case ARM_CPU_MODE_USR:
4b6a83fb 2293 return 0;
592125f8
FA
2294 case ARM_CPU_MODE_HYP:
2295 return 2;
2296 case ARM_CPU_MODE_MON:
2297 return 3;
2298 default:
2299 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2300 /* If EL3 is 32-bit then all secure privileged modes run in
2301 * EL3
2302 */
2303 return 3;
2304 }
2305
2306 return 1;
4b6a83fb 2307 }
4b6a83fb
PM
2308}
2309
2310typedef struct ARMCPRegInfo ARMCPRegInfo;
2311
f59df3f2
PM
2312typedef enum CPAccessResult {
2313 /* Access is permitted */
2314 CP_ACCESS_OK = 0,
2315 /* Access fails due to a configurable trap or enable which would
2316 * result in a categorized exception syndrome giving information about
2317 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2318 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2319 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2320 */
2321 CP_ACCESS_TRAP = 1,
2322 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2323 * Note that this is not a catch-all case -- the set of cases which may
2324 * result in this failure is specifically defined by the architecture.
2325 */
2326 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2327 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2328 CP_ACCESS_TRAP_EL2 = 3,
2329 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2330 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2331 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2332 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2333 /* Access fails and results in an exception syndrome for an FP access,
2334 * trapped directly to EL2 or EL3
2335 */
2336 CP_ACCESS_TRAP_FP_EL2 = 7,
2337 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2338} CPAccessResult;
2339
c4241c7d
PM
2340/* Access functions for coprocessor registers. These cannot fail and
2341 * may not raise exceptions.
2342 */
2343typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2344typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2345 uint64_t value);
f59df3f2 2346/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2347typedef CPAccessResult CPAccessFn(CPUARMState *env,
2348 const ARMCPRegInfo *opaque,
2349 bool isread);
4b6a83fb
PM
2350/* Hook function for register reset */
2351typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2352
2353#define CP_ANY 0xff
2354
2355/* Definition of an ARM coprocessor register */
2356struct ARMCPRegInfo {
2357 /* Name of register (useful mainly for debugging, need not be unique) */
2358 const char *name;
2359 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2360 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2361 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2362 * will be decoded to this register. The register read and write
2363 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2364 * used by the program, so it is possible to register a wildcard and
2365 * then behave differently on read/write if necessary.
2366 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2367 * must both be zero.
f5a0a5a5
PM
2368 * For AArch64-visible registers, opc0 is also used.
2369 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2370 * way to distinguish (for KVM's benefit) guest-visible system registers
2371 * from demuxed ones provided to preserve the "no side effects on
2372 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2373 * visible (to match KVM's encoding); cp==0 will be converted to
2374 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2375 */
2376 uint8_t cp;
2377 uint8_t crn;
2378 uint8_t crm;
f5a0a5a5 2379 uint8_t opc0;
4b6a83fb
PM
2380 uint8_t opc1;
2381 uint8_t opc2;
f5a0a5a5
PM
2382 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2383 int state;
4b6a83fb
PM
2384 /* Register type: ARM_CP_* bits/values */
2385 int type;
2386 /* Access rights: PL*_[RW] */
2387 int access;
c3e30260
FA
2388 /* Security state: ARM_CP_SECSTATE_* bits/values */
2389 int secure;
4b6a83fb
PM
2390 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2391 * this register was defined: can be used to hand data through to the
2392 * register read/write functions, since they are passed the ARMCPRegInfo*.
2393 */
2394 void *opaque;
2395 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2396 * fieldoffset is non-zero, the reset value of the register.
2397 */
2398 uint64_t resetvalue;
c3e30260
FA
2399 /* Offset of the field in CPUARMState for this register.
2400 *
2401 * This is not needed if either:
4b6a83fb
PM
2402 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2403 * 2. both readfn and writefn are specified
2404 */
2405 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2406
2407 /* Offsets of the secure and non-secure fields in CPUARMState for the
2408 * register if it is banked. These fields are only used during the static
2409 * registration of a register. During hashing the bank associated
2410 * with a given security state is copied to fieldoffset which is used from
2411 * there on out.
2412 *
2413 * It is expected that register definitions use either fieldoffset or
2414 * bank_fieldoffsets in the definition but not both. It is also expected
2415 * that both bank offsets are set when defining a banked register. This
2416 * use indicates that a register is banked.
2417 */
2418 ptrdiff_t bank_fieldoffsets[2];
2419
f59df3f2
PM
2420 /* Function for making any access checks for this register in addition to
2421 * those specified by the 'access' permissions bits. If NULL, no extra
2422 * checks required. The access check is performed at runtime, not at
2423 * translate time.
2424 */
2425 CPAccessFn *accessfn;
4b6a83fb
PM
2426 /* Function for handling reads of this register. If NULL, then reads
2427 * will be done by loading from the offset into CPUARMState specified
2428 * by fieldoffset.
2429 */
2430 CPReadFn *readfn;
2431 /* Function for handling writes of this register. If NULL, then writes
2432 * will be done by writing to the offset into CPUARMState specified
2433 * by fieldoffset.
2434 */
2435 CPWriteFn *writefn;
7023ec7e
PM
2436 /* Function for doing a "raw" read; used when we need to copy
2437 * coprocessor state to the kernel for KVM or out for
2438 * migration. This only needs to be provided if there is also a
c4241c7d 2439 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2440 */
2441 CPReadFn *raw_readfn;
2442 /* Function for doing a "raw" write; used when we need to copy KVM
2443 * kernel coprocessor state into userspace, or for inbound
2444 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2445 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2446 * or similar behaviour.
7023ec7e
PM
2447 */
2448 CPWriteFn *raw_writefn;
4b6a83fb
PM
2449 /* Function for resetting the register. If NULL, then reset will be done
2450 * by writing resetvalue to the field specified in fieldoffset. If
2451 * fieldoffset is 0 then no reset will be done.
2452 */
2453 CPResetFn *resetfn;
2454};
2455
2456/* Macros which are lvalues for the field in CPUARMState for the
2457 * ARMCPRegInfo *ri.
2458 */
2459#define CPREG_FIELD32(env, ri) \
2460 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2461#define CPREG_FIELD64(env, ri) \
2462 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2463
2464#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2465
2466void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2467 const ARMCPRegInfo *regs, void *opaque);
2468void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2469 const ARMCPRegInfo *regs, void *opaque);
2470static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2471{
2472 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2473}
2474static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2475{
2476 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2477}
60322b39 2478const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2479
6c5c0fec
AB
2480/*
2481 * Definition of an ARM co-processor register as viewed from
2482 * userspace. This is used for presenting sanitised versions of
2483 * registers to userspace when emulating the Linux AArch64 CPU
2484 * ID/feature ABI (advertised as HWCAP_CPUID).
2485 */
2486typedef struct ARMCPRegUserSpaceInfo {
2487 /* Name of register */
2488 const char *name;
2489
d040242e
AB
2490 /* Is the name actually a glob pattern */
2491 bool is_glob;
2492
6c5c0fec
AB
2493 /* Only some bits are exported to user space */
2494 uint64_t exported_bits;
2495
2496 /* Fixed bits are applied after the mask */
2497 uint64_t fixed_bits;
2498} ARMCPRegUserSpaceInfo;
2499
2500#define REGUSERINFO_SENTINEL { .name = NULL }
2501
2502void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2503
4b6a83fb 2504/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2505void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2506 uint64_t value);
4b6a83fb 2507/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2508uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2509
f5a0a5a5
PM
2510/* CPResetFn that does nothing, for use if no reset is required even
2511 * if fieldoffset is non zero.
2512 */
2513void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2514
67ed771d
PM
2515/* Return true if this reginfo struct's field in the cpu state struct
2516 * is 64 bits wide.
2517 */
2518static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2519{
2520 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2521}
2522
dcbff19b 2523static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2524 const ARMCPRegInfo *ri, int isread)
2525{
dcbff19b 2526 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2527}
2528
49a66191
PM
2529/* Raw read of a coprocessor register (as needed for migration, etc) */
2530uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2531
721fae12
PM
2532/**
2533 * write_list_to_cpustate
2534 * @cpu: ARMCPU
2535 *
2536 * For each register listed in the ARMCPU cpreg_indexes list, write
2537 * its value from the cpreg_values list into the ARMCPUState structure.
2538 * This updates TCG's working data structures from KVM data or
2539 * from incoming migration state.
2540 *
2541 * Returns: true if all register values were updated correctly,
2542 * false if some register was unknown or could not be written.
2543 * Note that we do not stop early on failure -- we will attempt
2544 * writing all registers in the list.
2545 */
2546bool write_list_to_cpustate(ARMCPU *cpu);
2547
2548/**
2549 * write_cpustate_to_list:
2550 * @cpu: ARMCPU
2551 *
2552 * For each register listed in the ARMCPU cpreg_indexes list, write
2553 * its value from the ARMCPUState structure into the cpreg_values list.
2554 * This is used to copy info from TCG's working data structures into
2555 * KVM or for outbound migration.
2556 *
2557 * Returns: true if all register values were read correctly,
2558 * false if some register was unknown or could not be read.
2559 * Note that we do not stop early on failure -- we will attempt
2560 * reading all registers in the list.
2561 */
942f99c8 2562bool write_cpustate_to_list(ARMCPU *cpu);
721fae12 2563
9ee6e8bb
PB
2564#define ARM_CPUID_TI915T 0x54029152
2565#define ARM_CPUID_TI925T 0x54029252
40f137e1 2566
b5ff1b31 2567#if defined(CONFIG_USER_ONLY)
2c0262af 2568#define TARGET_PAGE_BITS 12
b5ff1b31 2569#else
e97da98f
PM
2570/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2571 * have to support 1K tiny pages.
2572 */
2573#define TARGET_PAGE_BITS_VARY
2574#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2575#endif
9467d44c 2576
3926cc84
AG
2577#if defined(TARGET_AARCH64)
2578# define TARGET_PHYS_ADDR_SPACE_BITS 48
f6768aa1 2579# define TARGET_VIRT_ADDR_SPACE_BITS 48
3926cc84
AG
2580#else
2581# define TARGET_PHYS_ADDR_SPACE_BITS 40
2582# define TARGET_VIRT_ADDR_SPACE_BITS 32
2583#endif
52705890 2584
012a906b
GB
2585static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2586 unsigned int target_el)
043b7f8d
EI
2587{
2588 CPUARMState *env = cs->env_ptr;
dcbff19b 2589 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2590 bool secure = arm_is_secure(env);
57e3a0c7
GB
2591 bool pstate_unmasked;
2592 int8_t unmasked = 0;
f7778444 2593 uint64_t hcr_el2;
57e3a0c7
GB
2594
2595 /* Don't take exceptions if they target a lower EL.
2596 * This check should catch any exceptions that would not be taken but left
2597 * pending.
2598 */
dfafd090
EI
2599 if (cur_el > target_el) {
2600 return false;
2601 }
043b7f8d 2602
f7778444
RH
2603 hcr_el2 = arm_hcr_el2_eff(env);
2604
043b7f8d
EI
2605 switch (excp_idx) {
2606 case EXCP_FIQ:
57e3a0c7
GB
2607 pstate_unmasked = !(env->daif & PSTATE_F);
2608 break;
2609
043b7f8d 2610 case EXCP_IRQ:
57e3a0c7
GB
2611 pstate_unmasked = !(env->daif & PSTATE_I);
2612 break;
2613
136e67e9 2614 case EXCP_VFIQ:
f7778444 2615 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2616 /* VFIQs are only taken when hypervized and non-secure. */
2617 return false;
2618 }
2619 return !(env->daif & PSTATE_F);
2620 case EXCP_VIRQ:
f7778444 2621 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2622 /* VIRQs are only taken when hypervized and non-secure. */
2623 return false;
2624 }
b5c633c5 2625 return !(env->daif & PSTATE_I);
043b7f8d
EI
2626 default:
2627 g_assert_not_reached();
2628 }
57e3a0c7
GB
2629
2630 /* Use the target EL, current execution state and SCR/HCR settings to
2631 * determine whether the corresponding CPSR bit is used to mask the
2632 * interrupt.
2633 */
2634 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2635 /* Exceptions targeting a higher EL may not be maskable */
2636 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2637 /* 64-bit masking rules are simple: exceptions to EL3
2638 * can't be masked, and exceptions to EL2 can only be
2639 * masked from Secure state. The HCR and SCR settings
2640 * don't affect the masking logic, only the interrupt routing.
2641 */
2642 if (target_el == 3 || !secure) {
2643 unmasked = 1;
2644 }
2645 } else {
2646 /* The old 32-bit-only environment has a more complicated
2647 * masking setup. HCR and SCR bits not only affect interrupt
2648 * routing but also change the behaviour of masking.
2649 */
2650 bool hcr, scr;
2651
2652 switch (excp_idx) {
2653 case EXCP_FIQ:
2654 /* If FIQs are routed to EL3 or EL2 then there are cases where
2655 * we override the CPSR.F in determining if the exception is
2656 * masked or not. If neither of these are set then we fall back
2657 * to the CPSR.F setting otherwise we further assess the state
2658 * below.
2659 */
f7778444 2660 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2661 scr = (env->cp15.scr_el3 & SCR_FIQ);
2662
2663 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2664 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2665 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2666 * when non-secure but only when FIQs are only routed to EL3.
2667 */
2668 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2669 break;
2670 case EXCP_IRQ:
2671 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2672 * we may override the CPSR.I masking when in non-secure state.
2673 * The SCR.IRQ setting has already been taken into consideration
2674 * when setting the target EL, so it does not have a further
2675 * affect here.
2676 */
f7778444 2677 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2678 scr = false;
2679 break;
2680 default:
2681 g_assert_not_reached();
2682 }
2683
2684 if ((scr || hcr) && !secure) {
2685 unmasked = 1;
2686 }
57e3a0c7
GB
2687 }
2688 }
2689
2690 /* The PSTATE bits only mask the interrupt if we have not overriden the
2691 * ability above.
2692 */
2693 return unmasked || pstate_unmasked;
043b7f8d
EI
2694}
2695
ba1ba5cc
IM
2696#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2697#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2698#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2699
9467d44c 2700#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2701#define cpu_list arm_cpu_list
9467d44c 2702
c1e37810
PM
2703/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2704 *
2705 * If EL3 is 64-bit:
2706 * + NonSecure EL1 & 0 stage 1
2707 * + NonSecure EL1 & 0 stage 2
2708 * + NonSecure EL2
2709 * + Secure EL1 & EL0
2710 * + Secure EL3
2711 * If EL3 is 32-bit:
2712 * + NonSecure PL1 & 0 stage 1
2713 * + NonSecure PL1 & 0 stage 2
2714 * + NonSecure PL2
2715 * + Secure PL0 & PL1
2716 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2717 *
2718 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2719 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2720 * may differ in access permissions even if the VA->PA map is the same
2721 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2722 * translation, which means that we have one mmu_idx that deals with two
2723 * concatenated translation regimes [this sort of combined s1+2 TLB is
2724 * architecturally permitted]
2725 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2726 * handling via the TLB. The only way to do a stage 1 translation without
2727 * the immediate stage 2 translation is via the ATS or AT system insns,
2728 * which can be slow-pathed and always do a page table walk.
2729 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2730 * translation regimes, because they map reasonably well to each other
2731 * and they can't both be active at the same time.
2732 * This gives us the following list of mmu_idx values:
2733 *
2734 * NS EL0 (aka NS PL0) stage 1+2
2735 * NS EL1 (aka NS PL1) stage 1+2
2736 * NS EL2 (aka NS PL2)
2737 * S EL3 (aka S PL1)
2738 * S EL0 (aka S PL0)
2739 * S EL1 (not used if EL3 is 32 bit)
2740 * NS EL0+1 stage 2
2741 *
2742 * (The last of these is an mmu_idx because we want to be able to use the TLB
2743 * for the accesses done as part of a stage 1 page table walk, rather than
2744 * having to walk the stage 2 page table over and over.)
2745 *
3bef7012
PM
2746 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2747 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2748 * NS EL2 if we ever model a Cortex-R52).
2749 *
2750 * M profile CPUs are rather different as they do not have a true MMU.
2751 * They have the following different MMU indexes:
2752 * User
2753 * Privileged
62593718
PM
2754 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2755 * Privileged, execution priority negative (ditto)
66787c78
PM
2756 * If the CPU supports the v8M Security Extension then there are also:
2757 * Secure User
2758 * Secure Privileged
62593718
PM
2759 * Secure User, execution priority negative
2760 * Secure Privileged, execution priority negative
3bef7012 2761 *
8bd5c820
PM
2762 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2763 * are not quite the same -- different CPU types (most notably M profile
2764 * vs A/R profile) would like to use MMU indexes with different semantics,
2765 * but since we don't ever need to use all of those in a single CPU we
2766 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2767 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2768 * the same for any particular CPU.
2769 * Variables of type ARMMUIdx are always full values, and the core
2770 * index values are in variables of type 'int'.
2771 *
c1e37810
PM
2772 * Our enumeration includes at the end some entries which are not "true"
2773 * mmu_idx values in that they don't have corresponding TLBs and are only
2774 * valid for doing slow path page table walks.
2775 *
2776 * The constant names here are patterned after the general style of the names
2777 * of the AT/ATS operations.
2778 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2779 * For M profile we arrange them to have a bit for priv, a bit for negpri
2780 * and a bit for secure.
c1e37810 2781 */
e7b921c2 2782#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2783#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2784#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2785
62593718
PM
2786/* meanings of the bits for M profile mmu idx values */
2787#define ARM_MMU_IDX_M_PRIV 0x1
2788#define ARM_MMU_IDX_M_NEGPRI 0x2
2789#define ARM_MMU_IDX_M_S 0x4
2790
8bd5c820
PM
2791#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2792#define ARM_MMU_IDX_COREIDX_MASK 0x7
2793
c1e37810 2794typedef enum ARMMMUIdx {
8bd5c820
PM
2795 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2796 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2797 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2798 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2799 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2800 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2801 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2802 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2803 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2804 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2805 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2806 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2807 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2808 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2809 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2810 /* Indexes below here don't have TLBs and are used only for AT system
2811 * instructions or for the first stage of an S12 page table walk.
2812 */
8bd5c820
PM
2813 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2814 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2815} ARMMMUIdx;
2816
8bd5c820
PM
2817/* Bit macros for the core-mmu-index values for each index,
2818 * for use when calling tlb_flush_by_mmuidx() and friends.
2819 */
2820typedef enum ARMMMUIdxBit {
2821 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2822 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2823 ARMMMUIdxBit_S1E2 = 1 << 2,
2824 ARMMMUIdxBit_S1E3 = 1 << 3,
2825 ARMMMUIdxBit_S1SE0 = 1 << 4,
2826 ARMMMUIdxBit_S1SE1 = 1 << 5,
2827 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2828 ARMMMUIdxBit_MUser = 1 << 0,
2829 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2830 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2831 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2832 ARMMMUIdxBit_MSUser = 1 << 4,
2833 ARMMMUIdxBit_MSPriv = 1 << 5,
2834 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2835 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2836} ARMMMUIdxBit;
2837
f79fbf39 2838#define MMU_USER_IDX 0
c1e37810 2839
8bd5c820
PM
2840static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2841{
2842 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2843}
2844
2845static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2846{
e7b921c2
PM
2847 if (arm_feature(env, ARM_FEATURE_M)) {
2848 return mmu_idx | ARM_MMU_IDX_M;
2849 } else {
2850 return mmu_idx | ARM_MMU_IDX_A;
2851 }
8bd5c820
PM
2852}
2853
c1e37810
PM
2854/* Return the exception level we're running at if this is our mmu_idx */
2855static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2856{
8bd5c820
PM
2857 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2858 case ARM_MMU_IDX_A:
2859 return mmu_idx & 3;
e7b921c2 2860 case ARM_MMU_IDX_M:
62593718 2861 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2862 default:
2863 g_assert_not_reached();
2864 }
c1e37810
PM
2865}
2866
ec8e3340 2867/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2868 * privilege state.
ec8e3340 2869 */
65e4655c
RH
2870ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2871 bool secstate, bool priv);
b81ac0eb 2872
ec8e3340 2873/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2874ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2875
50494a27
RH
2876/**
2877 * cpu_mmu_index:
2878 * @env: The cpu environment
2879 * @ifetch: True for code access, false for data access.
2880 *
2881 * Return the core mmu index for the current translation regime.
2882 * This function is used by generic TCG code paths.
2883 */
65e4655c 2884int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2885
9e273ef2
PM
2886/* Indexes used when registering address spaces with cpu_address_space_init */
2887typedef enum ARMASIdx {
2888 ARMASIdx_NS = 0,
2889 ARMASIdx_S = 1,
2890} ARMASIdx;
2891
533e93f1 2892/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2893static inline int arm_debug_target_el(CPUARMState *env)
2894{
81669b8b
SF
2895 bool secure = arm_is_secure(env);
2896 bool route_to_el2 = false;
2897
2898 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2899 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2900 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2901 }
2902
2903 if (route_to_el2) {
2904 return 2;
2905 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2906 !arm_el_is_aa64(env, 3) && secure) {
2907 return 3;
2908 } else {
2909 return 1;
2910 }
3a298203
PM
2911}
2912
43bbce7f
PM
2913static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2914{
2915 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2916 * CSSELR is RAZ/WI.
2917 */
2918 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2919}
2920
22af9025 2921/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2922static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2923{
22af9025
AB
2924 int cur_el = arm_current_el(env);
2925 int debug_el;
2926
2927 if (cur_el == 3) {
2928 return false;
533e93f1
PM
2929 }
2930
22af9025
AB
2931 /* MDCR_EL3.SDD disables debug events from Secure state */
2932 if (arm_is_secure_below_el3(env)
2933 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2934 return false;
3a298203 2935 }
22af9025
AB
2936
2937 /*
2938 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2939 * while not masking the (D)ebug bit in DAIF.
2940 */
2941 debug_el = arm_debug_target_el(env);
2942
2943 if (cur_el == debug_el) {
2944 return extract32(env->cp15.mdscr_el1, 13, 1)
2945 && !(env->daif & PSTATE_D);
2946 }
2947
2948 /* Otherwise the debug target needs to be a higher EL */
2949 return debug_el > cur_el;
3a298203
PM
2950}
2951
2952static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2953{
533e93f1
PM
2954 int el = arm_current_el(env);
2955
2956 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2957 return aa64_generate_debug_exceptions(env);
2958 }
533e93f1
PM
2959
2960 if (arm_is_secure(env)) {
2961 int spd;
2962
2963 if (el == 0 && (env->cp15.sder & 1)) {
2964 /* SDER.SUIDEN means debug exceptions from Secure EL0
2965 * are always enabled. Otherwise they are controlled by
2966 * SDCR.SPD like those from other Secure ELs.
2967 */
2968 return true;
2969 }
2970
2971 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2972 switch (spd) {
2973 case 1:
2974 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2975 case 0:
2976 /* For 0b00 we return true if external secure invasive debug
2977 * is enabled. On real hardware this is controlled by external
2978 * signals to the core. QEMU always permits debug, and behaves
2979 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2980 */
2981 return true;
2982 case 2:
2983 return false;
2984 case 3:
2985 return true;
2986 }
2987 }
2988
2989 return el != 2;
3a298203
PM
2990}
2991
2992/* Return true if debugging exceptions are currently enabled.
2993 * This corresponds to what in ARM ARM pseudocode would be
2994 * if UsingAArch32() then
2995 * return AArch32.GenerateDebugExceptions()
2996 * else
2997 * return AArch64.GenerateDebugExceptions()
2998 * We choose to push the if() down into this function for clarity,
2999 * since the pseudocode has it at all callsites except for the one in
3000 * CheckSoftwareStep(), where it is elided because both branches would
3001 * always return the same value.
3a298203
PM
3002 */
3003static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3004{
3005 if (env->aarch64) {
3006 return aa64_generate_debug_exceptions(env);
3007 } else {
3008 return aa32_generate_debug_exceptions(env);
3009 }
3010}
3011
3012/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3013 * implicitly means this always returns false in pre-v8 CPUs.)
3014 */
3015static inline bool arm_singlestep_active(CPUARMState *env)
3016{
3017 return extract32(env->cp15.mdscr_el1, 0, 1)
3018 && arm_el_is_aa64(env, arm_debug_target_el(env))
3019 && arm_generate_debug_exceptions(env);
3020}
3021
f9fd40eb
PB
3022static inline bool arm_sctlr_b(CPUARMState *env)
3023{
3024 return
3025 /* We need not implement SCTLR.ITD in user-mode emulation, so
3026 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3027 * This lets people run BE32 binaries with "-cpu any".
3028 */
3029#ifndef CONFIG_USER_ONLY
3030 !arm_feature(env, ARM_FEATURE_V7) &&
3031#endif
3032 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3033}
3034
64e40755
RH
3035static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3036{
3037 if (el == 0) {
3038 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3039 return env->cp15.sctlr_el[1];
3040 } else {
3041 return env->cp15.sctlr_el[el];
3042 }
3043}
3044
3045
ed50ff78
PC
3046/* Return true if the processor is in big-endian mode. */
3047static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3048{
ed50ff78
PC
3049 /* In 32bit endianness is determined by looking at CPSR's E bit */
3050 if (!is_a64(env)) {
b2e62d9a
PC
3051 return
3052#ifdef CONFIG_USER_ONLY
3053 /* In system mode, BE32 is modelled in line with the
3054 * architecture (as word-invariant big-endianness), where loads
3055 * and stores are done little endian but from addresses which
3056 * are adjusted by XORing with the appropriate constant. So the
3057 * endianness to use for the raw data access is not affected by
3058 * SCTLR.B.
3059 * In user mode, however, we model BE32 as byte-invariant
3060 * big-endianness (because user-only code cannot tell the
3061 * difference), and so we need to use a data access endianness
3062 * that depends on SCTLR.B.
3063 */
3064 arm_sctlr_b(env) ||
3065#endif
3066 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
64e40755
RH
3067 } else {
3068 int cur_el = arm_current_el(env);
3069 uint64_t sctlr = arm_sctlr(env, cur_el);
ed50ff78 3070
64e40755 3071 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
ed50ff78 3072 }
ed50ff78
PC
3073}
3074
022c62cb 3075#include "exec/cpu-all.h"
622ed360 3076
3926cc84
AG
3077/* Bit usage in the TB flags field: bit 31 indicates whether we are
3078 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3079 * We put flags which are shared between 32 and 64 bit mode at the top
3080 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3081 */
aad821ac
RH
3082FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3083FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3084FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3085FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3086/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3087FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3088FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3089
3090/* Bit usage when in AArch32 state: */
aad821ac
RH
3091FIELD(TBFLAG_A32, THUMB, 0, 1)
3092FIELD(TBFLAG_A32, VECLEN, 1, 3)
3093FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3094FIELD(TBFLAG_A32, VFPEN, 7, 1)
3095FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3096FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
c0f4af17
PM
3097/* We store the bottom two bits of the CPAR as TB flags and handle
3098 * checks on the other bits at runtime
3099 */
aad821ac 3100FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3f342b9e
SF
3101/* Indicates whether cp register reads and writes by guest code should access
3102 * the secure or nonsecure bank of banked registers; note that this is not
3103 * the same thing as the current security state of the processor!
3104 */
aad821ac 3105FIELD(TBFLAG_A32, NS, 19, 1)
064c379c 3106/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3107FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3108/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3109FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3110
86fb3fa4 3111/* Bit usage when in AArch64 state */
476a4692 3112FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3113FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3114FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3115FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a
RH
3116FIELD(TBFLAG_A64, BT, 9, 1)
3117FIELD(TBFLAG_A64, BTYPE, 10, 2)
4a9ee99d 3118FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3119
f9fd40eb
PB
3120static inline bool bswap_code(bool sctlr_b)
3121{
3122#ifdef CONFIG_USER_ONLY
3123 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3124 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3125 * would also end up as a mixed-endian mode with BE code, LE data.
3126 */
3127 return
3128#ifdef TARGET_WORDS_BIGENDIAN
3129 1 ^
3130#endif
3131 sctlr_b;
3132#else
e334bd31
PB
3133 /* All code access in ARM is little endian, and there are no loaders
3134 * doing swaps that need to be reversed
f9fd40eb
PB
3135 */
3136 return 0;
3137#endif
3138}
3139
c3ae85fc
PB
3140#ifdef CONFIG_USER_ONLY
3141static inline bool arm_cpu_bswap_data(CPUARMState *env)
3142{
3143 return
3144#ifdef TARGET_WORDS_BIGENDIAN
3145 1 ^
3146#endif
3147 arm_cpu_data_is_big_endian(env);
3148}
3149#endif
3150
a9e01311
RH
3151void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3152 target_ulong *cs_base, uint32_t *flags);
6b917547 3153
98128601
RH
3154enum {
3155 QEMU_PSCI_CONDUIT_DISABLED = 0,
3156 QEMU_PSCI_CONDUIT_SMC = 1,
3157 QEMU_PSCI_CONDUIT_HVC = 2,
3158};
3159
017518c1
PM
3160#ifndef CONFIG_USER_ONLY
3161/* Return the address space index to use for a memory access */
3162static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3163{
3164 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3165}
5ce4ff65
PM
3166
3167/* Return the AddressSpace to use for a memory access
3168 * (which depends on whether the access is S or NS, and whether
3169 * the board gave us a separate AddressSpace for S accesses).
3170 */
3171static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3172{
3173 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3174}
017518c1
PM
3175#endif
3176
bd7d00fc 3177/**
b5c53d1b
AL
3178 * arm_register_pre_el_change_hook:
3179 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3180 * CPU changes exception level or mode. The hook function will be
3181 * passed a pointer to the ARMCPU and the opaque data pointer passed
3182 * to this function when the hook was registered.
b5c53d1b
AL
3183 *
3184 * Note that if a pre-change hook is called, any registered post-change hooks
3185 * are guaranteed to subsequently be called.
bd7d00fc 3186 */
b5c53d1b 3187void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3188 void *opaque);
b5c53d1b
AL
3189/**
3190 * arm_register_el_change_hook:
3191 * Register a hook function which will be called immediately after this
3192 * CPU changes exception level or mode. The hook function will be
3193 * passed a pointer to the ARMCPU and the opaque data pointer passed
3194 * to this function when the hook was registered.
3195 *
3196 * Note that any registered hooks registered here are guaranteed to be called
3197 * if pre-change hooks have been.
3198 */
3199void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3200 *opaque);
bd7d00fc 3201
9a2b5256
RH
3202/**
3203 * aa32_vfp_dreg:
3204 * Return a pointer to the Dn register within env in 32-bit mode.
3205 */
3206static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3207{
c39c2b90 3208 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3209}
3210
3211/**
3212 * aa32_vfp_qreg:
3213 * Return a pointer to the Qn register within env in 32-bit mode.
3214 */
3215static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3216{
c39c2b90 3217 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3218}
3219
3220/**
3221 * aa64_vfp_qreg:
3222 * Return a pointer to the Qn register within env in 64-bit mode.
3223 */
3224static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3225{
c39c2b90 3226 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3227}
3228
028e2a7b
RH
3229/* Shared between translate-sve.c and sve_helper.c. */
3230extern const uint64_t pred_esz_masks[4];
3231
962fcbf2
RH
3232/*
3233 * 32-bit feature tests via id registers.
3234 */
7e0cf8b4
RH
3235static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3236{
3237 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3238}
3239
3240static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3241{
3242 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3243}
3244
09cbd501
RH
3245static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3246{
3247 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3248}
3249
962fcbf2
RH
3250static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3251{
3252 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3253}
3254
3255static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3256{
3257 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3258}
3259
3260static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3261{
3262 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3263}
3264
3265static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3266{
3267 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3268}
3269
3270static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3271{
3272 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3273}
3274
3275static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3276{
3277 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3278}
3279
3280static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3281{
3282 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3283}
3284
6c1f6f27
RH
3285static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3286{
3287 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3288}
3289
962fcbf2
RH
3290static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3291{
3292 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3293}
3294
87732318
RH
3295static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3296{
3297 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3298}
3299
9888bd1e
RH
3300static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3301{
3302 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3303}
3304
cb570bd3
RH
3305static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3306{
3307 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3308}
3309
5763190f
RH
3310static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3311{
3312 /*
3313 * This is a placeholder for use by VCMA until the rest of
3314 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3315 * At which point we can properly set and check MVFR1.FPHP.
3316 */
3317 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3318}
3319
602f6e42
PM
3320/*
3321 * We always set the FP and SIMD FP16 fields to indicate identical
3322 * levels of support (assuming SIMD is implemented at all), so
3323 * we only need one set of accessors.
3324 */
3325static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3326{
3327 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3328}
3329
3330static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3331{
3332 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3333}
3334
c0c760af
PM
3335static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3336{
3337 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3338}
3339
3340static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3341{
3342 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3343}
3344
3345static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3346{
3347 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3348}
3349
3350static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3351{
3352 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3353}
3354
962fcbf2
RH
3355/*
3356 * 64-bit feature tests via id registers.
3357 */
3358static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3359{
3360 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3361}
3362
3363static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3364{
3365 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3366}
3367
3368static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3369{
3370 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3371}
3372
3373static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3374{
3375 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3376}
3377
3378static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3379{
3380 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3381}
3382
3383static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3384{
3385 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3386}
3387
3388static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3389{
3390 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3391}
3392
3393static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3394{
3395 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3396}
3397
3398static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3399{
3400 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3401}
3402
3403static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3404{
3405 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3406}
3407
3408static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3409{
3410 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3411}
3412
3413static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3414{
3415 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3416}
3417
0caa5af8
RH
3418static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3419{
3420 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3421}
3422
b89d9c98
RH
3423static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3424{
3425 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3426}
3427
5ef84f11
RH
3428static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3429{
3430 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3431}
3432
6c1f6f27
RH
3433static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3434{
3435 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3436}
3437
962fcbf2
RH
3438static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3439{
3440 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3441}
3442
991ad91b
RH
3443static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3444{
3445 /*
3446 * Note that while QEMU will only implement the architected algorithm
3447 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3448 * defined algorithms, and thus API+GPI, and this predicate controls
3449 * migration of the 128-bit keys.
3450 */
3451 return (id->id_aa64isar1 &
3452 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3453 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3454 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3455 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3456}
3457
9888bd1e
RH
3458static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3459{
3460 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3461}
3462
cb570bd3
RH
3463static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3464{
3465 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3466}
3467
6bea2563
RH
3468static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3469{
3470 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3471}
3472
5763190f
RH
3473static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3474{
3475 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3476 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3477}
3478
0f8d06f1
RH
3479static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3480{
3481 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3482}
3483
cd208a1c
RH
3484static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3485{
3486 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3487}
3488
2d7137c1
RH
3489static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3490{
3491 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3492}
3493
be53b6f4
RH
3494static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3495{
3496 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3497}
3498
962fcbf2
RH
3499/*
3500 * Forward to the above feature tests given an ARMCPU pointer.
3501 */
3502#define cpu_isar_feature(name, cpu) \
3503 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3504
2c0262af 3505#endif