]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Hoist computation of TBFLAG_A32.VFPEN
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
b8a9e8f1
FB
31#define EXCP_UDEF 1 /* undefined instruction */
32#define EXCP_SWI 2 /* software interrupt */
33#define EXCP_PREFETCH_ABORT 3
34#define EXCP_DATA_ABORT 4
b5ff1b31
FB
35#define EXCP_IRQ 5
36#define EXCP_FIQ 6
06c949e6 37#define EXCP_BKPT 7
9ee6e8bb 38#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 39#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 40#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 41#define EXCP_HYP_TRAP 12
e0d6e6a5 42#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
43#define EXCP_VIRQ 14
44#define EXCP_VFIQ 15
19a6e31c 45#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 46#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 47#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 48#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 49#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
50#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
53
54#define ARMV7M_EXCP_RESET 1
55#define ARMV7M_EXCP_NMI 2
56#define ARMV7M_EXCP_HARD 3
57#define ARMV7M_EXCP_MEM 4
58#define ARMV7M_EXCP_BUS 5
59#define ARMV7M_EXCP_USAGE 6
1e577cc7 60#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
acf94941
PM
66/* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
74 */
4a16724f
PM
75enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
79};
acf94941 80
403946c0
RH
81/* ARM-specific interrupt pending bits. */
82#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
83#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 85
e4fe830b
PM
86/* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
91 */
92#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 94#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
95#else
96#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
98#endif
99
136e67e9 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
101#define ARM_CPU_IRQ 0
102#define ARM_CPU_FIQ 1
136e67e9
EI
103#define ARM_CPU_VIRQ 2
104#define ARM_CPU_VFIQ 3
403946c0 105
aaa1f954
EI
106/* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
109 */
110#define TARGET_INSN_START_EXTRA_WORDS 2
111
112/* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
116 */
117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 119
b7bcbe95
FB
120/* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
126 */
b7bcbe95 127
200bf5b7
AB
128/**
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
134 */
135typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139} DynamicGDBXMLInfo;
140
55d284af
PM
141/* CPU state for each instance of a generic timer (in cp15 c14) */
142typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 144 uint64_t ctl; /* Timer Control register */
55d284af
PM
145} ARMGenericTimer;
146
147#define GTIMER_PHYS 0
148#define GTIMER_VIRT 1
b0e66d95 149#define GTIMER_HYP 2
b4d3978c
PM
150#define GTIMER_SEC 3
151#define NUM_GTIMERS 4
55d284af 152
11f136ee
FA
153typedef struct {
154 uint64_t raw_tcr;
155 uint32_t mask;
156 uint32_t base_mask;
157} TCR;
158
c39c2b90
RH
159/* Define a maximum sized vector register.
160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161 * For 64-bit, this is a 2048-bit SVE register.
162 *
163 * Note that the mapping between S, D, and Q views of the register bank
164 * differs between AArch64 and AArch32.
165 * In AArch32:
166 * Qn = regs[n].d[1]:regs[n].d[0]
167 * Dn = regs[n / 2].d[n & 1]
168 * Sn = regs[n / 4].d[n % 4 / 2],
169 * bits 31..0 for even n, and bits 63..32 for odd n
170 * (and regs[16] to regs[31] are inaccessible)
171 * In AArch64:
172 * Zn = regs[n].d[*]
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n].d[0]
175 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 176 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
177 *
178 * This corresponds to the architecturally defined mapping between
179 * the two execution states, and means we do not need to explicitly
180 * map these registers when changing states.
181 *
182 * Align the data for use with TCG host vector operations.
183 */
184
185#ifdef TARGET_AARCH64
186# define ARM_MAX_VQ 16
187#else
188# define ARM_MAX_VQ 1
189#endif
190
191typedef struct ARMVectorReg {
192 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
193} ARMVectorReg;
194
3c7d3086 195#ifdef TARGET_AARCH64
991ad91b 196/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 197typedef struct ARMPredicateReg {
46417784 198 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 199} ARMPredicateReg;
991ad91b
RH
200
201/* In AArch32 mode, PAC keys do not exist at all. */
202typedef struct ARMPACKey {
203 uint64_t lo, hi;
204} ARMPACKey;
3c7d3086
RH
205#endif
206
c39c2b90 207
2c0262af 208typedef struct CPUARMState {
b5ff1b31 209 /* Regs for current mode. */
2c0262af 210 uint32_t regs[16];
3926cc84
AG
211
212 /* 32/64 switch only happens when taking and returning from
213 * exceptions so the overlap semantics are taken care of then
214 * instead of having a complicated union.
215 */
216 /* Regs for A64 mode. */
217 uint64_t xregs[32];
218 uint64_t pc;
d356312f
PM
219 /* PSTATE isn't an architectural register for ARMv8. However, it is
220 * convenient for us to assemble the underlying state into a 32 bit format
221 * identical to the architectural format used for the SPSR. (This is also
222 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
223 * 'pstate' register are.) Of the PSTATE bits:
224 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
225 * semantics as for AArch32, as described in the comments on each field)
226 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 227 * DAIF (exception masks) are kept in env->daif
f6e52eaa 228 * BTYPE is kept in env->btype
d356312f 229 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
230 */
231 uint32_t pstate;
232 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
233
fdd1b228
RH
234 /* Cached TBFLAGS state. See below for which bits are included. */
235 uint32_t hflags;
236
b90372ad 237 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 238 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
239 the whole CPSR. */
240 uint32_t uncached_cpsr;
241 uint32_t spsr;
242
243 /* Banked registers. */
28c9457d 244 uint64_t banked_spsr[8];
0b7d409d
FA
245 uint32_t banked_r13[8];
246 uint32_t banked_r14[8];
3b46e624 247
b5ff1b31
FB
248 /* These hold r8-r12. */
249 uint32_t usr_regs[5];
250 uint32_t fiq_regs[5];
3b46e624 251
2c0262af
FB
252 /* cpsr flag cache for faster execution */
253 uint32_t CF; /* 0 or 1 */
254 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
255 uint32_t NF; /* N is bit 31. All other bits are undefined. */
256 uint32_t ZF; /* Z set if zero. */
99c475ab 257 uint32_t QF; /* 0 or 1 */
9ee6e8bb 258 uint32_t GE; /* cpsr[19:16] */
b26eefb6 259 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 261 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 262 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 263
1b174238 264 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 265 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 266
b5ff1b31
FB
267 /* System control coprocessor (cp15) */
268 struct {
40f137e1 269 uint32_t c0_cpuid;
b85a1fd6
FA
270 union { /* Cache size selection */
271 struct {
272 uint64_t _unused_csselr0;
273 uint64_t csselr_ns;
274 uint64_t _unused_csselr1;
275 uint64_t csselr_s;
276 };
277 uint64_t csselr_el[4];
278 };
137feaa9
FA
279 union { /* System control register. */
280 struct {
281 uint64_t _unused_sctlr;
282 uint64_t sctlr_ns;
283 uint64_t hsctlr;
284 uint64_t sctlr_s;
285 };
286 uint64_t sctlr_el[4];
287 };
7ebd5f2e 288 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 289 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 290 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 291 uint64_t sder; /* Secure debug enable register. */
77022576 292 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
293 union { /* MMU translation table base 0. */
294 struct {
295 uint64_t _unused_ttbr0_0;
296 uint64_t ttbr0_ns;
297 uint64_t _unused_ttbr0_1;
298 uint64_t ttbr0_s;
299 };
300 uint64_t ttbr0_el[4];
301 };
302 union { /* MMU translation table base 1. */
303 struct {
304 uint64_t _unused_ttbr1_0;
305 uint64_t ttbr1_ns;
306 uint64_t _unused_ttbr1_1;
307 uint64_t ttbr1_s;
308 };
309 uint64_t ttbr1_el[4];
310 };
b698e9cf 311 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
312 /* MMU translation table base control. */
313 TCR tcr_el[4];
68e9c2fe 314 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
315 uint32_t c2_data; /* MPU data cacheable bits. */
316 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
317 union { /* MMU domain access control register
318 * MPU write buffer control.
319 */
320 struct {
321 uint64_t dacr_ns;
322 uint64_t dacr_s;
323 };
324 struct {
325 uint64_t dacr32_el2;
326 };
327 };
7e09797c
PM
328 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
329 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 330 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 331 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
332 union { /* Fault status registers. */
333 struct {
334 uint64_t ifsr_ns;
335 uint64_t ifsr_s;
336 };
337 struct {
338 uint64_t ifsr32_el2;
339 };
340 };
4a7e2d73
FA
341 union {
342 struct {
343 uint64_t _unused_dfsr;
344 uint64_t dfsr_ns;
345 uint64_t hsr;
346 uint64_t dfsr_s;
347 };
348 uint64_t esr_el[4];
349 };
ce819861 350 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
351 union { /* Fault address registers. */
352 struct {
353 uint64_t _unused_far0;
354#ifdef HOST_WORDS_BIGENDIAN
355 uint32_t ifar_ns;
356 uint32_t dfar_ns;
357 uint32_t ifar_s;
358 uint32_t dfar_s;
359#else
360 uint32_t dfar_ns;
361 uint32_t ifar_ns;
362 uint32_t dfar_s;
363 uint32_t ifar_s;
364#endif
365 uint64_t _unused_far3;
366 };
367 uint64_t far_el[4];
368 };
59e05530 369 uint64_t hpfar_el2;
2a5a9abd 370 uint64_t hstr_el2;
01c097f7
FA
371 union { /* Translation result. */
372 struct {
373 uint64_t _unused_par_0;
374 uint64_t par_ns;
375 uint64_t _unused_par_1;
376 uint64_t par_s;
377 };
378 uint64_t par_el[4];
379 };
6cb0b013 380
b5ff1b31
FB
381 uint32_t c9_insn; /* Cache lockdown registers. */
382 uint32_t c9_data;
8521466b
AF
383 uint64_t c9_pmcr; /* performance monitor control register */
384 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
385 uint64_t c9_pmovsr; /* perf monitor overflow status */
386 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 387 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 388 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
389 union { /* Memory attribute redirection */
390 struct {
391#ifdef HOST_WORDS_BIGENDIAN
392 uint64_t _unused_mair_0;
393 uint32_t mair1_ns;
394 uint32_t mair0_ns;
395 uint64_t _unused_mair_1;
396 uint32_t mair1_s;
397 uint32_t mair0_s;
398#else
399 uint64_t _unused_mair_0;
400 uint32_t mair0_ns;
401 uint32_t mair1_ns;
402 uint64_t _unused_mair_1;
403 uint32_t mair0_s;
404 uint32_t mair1_s;
405#endif
406 };
407 uint64_t mair_el[4];
408 };
fb6c91ba
GB
409 union { /* vector base address register */
410 struct {
411 uint64_t _unused_vbar;
412 uint64_t vbar_ns;
413 uint64_t hvbar;
414 uint64_t vbar_s;
415 };
416 uint64_t vbar_el[4];
417 };
e89e51a1 418 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
419 struct { /* FCSE PID. */
420 uint32_t fcseidr_ns;
421 uint32_t fcseidr_s;
422 };
423 union { /* Context ID. */
424 struct {
425 uint64_t _unused_contextidr_0;
426 uint64_t contextidr_ns;
427 uint64_t _unused_contextidr_1;
428 uint64_t contextidr_s;
429 };
430 uint64_t contextidr_el[4];
431 };
432 union { /* User RW Thread register. */
433 struct {
434 uint64_t tpidrurw_ns;
435 uint64_t tpidrprw_ns;
436 uint64_t htpidr;
437 uint64_t _tpidr_el3;
438 };
439 uint64_t tpidr_el[4];
440 };
441 /* The secure banks of these registers don't map anywhere */
442 uint64_t tpidrurw_s;
443 uint64_t tpidrprw_s;
444 uint64_t tpidruro_s;
445
446 union { /* User RO Thread register. */
447 uint64_t tpidruro_ns;
448 uint64_t tpidrro_el[1];
449 };
a7adc4b7
PM
450 uint64_t c14_cntfrq; /* Counter Frequency register */
451 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 452 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 453 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 454 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 455 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
456 uint32_t c15_ticonfig; /* TI925T configuration byte. */
457 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
458 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
459 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
460 uint32_t c15_config_base_address; /* SCU base address. */
461 uint32_t c15_diagnostic; /* diagnostic register */
462 uint32_t c15_power_diagnostic;
463 uint32_t c15_power_control; /* power control */
0b45451e
PM
464 uint64_t dbgbvr[16]; /* breakpoint value registers */
465 uint64_t dbgbcr[16]; /* breakpoint control registers */
466 uint64_t dbgwvr[16]; /* watchpoint value registers */
467 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 468 uint64_t mdscr_el1;
1424ca8d 469 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 470 uint64_t mdcr_el2;
5513c3ab 471 uint64_t mdcr_el3;
5d05b9d4
AL
472 /* Stores the architectural value of the counter *the last time it was
473 * updated* by pmccntr_op_start. Accesses should always be surrounded
474 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
475 * architecturally-correct value is being read/set.
7c2cb42b 476 */
c92c0687 477 uint64_t c15_ccnt;
5d05b9d4
AL
478 /* Stores the delta between the architectural value and the underlying
479 * cycle count during normal operation. It is used to update c15_ccnt
480 * to be the correct architectural value before accesses. During
481 * accesses, c15_ccnt_delta contains the underlying count being used
482 * for the access, after which it reverts to the delta value in
483 * pmccntr_op_finish.
484 */
485 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
486 uint64_t c14_pmevcntr[31];
487 uint64_t c14_pmevcntr_delta[31];
488 uint64_t c14_pmevtyper[31];
8521466b 489 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 490 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 491 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 492 } cp15;
40f137e1 493
9ee6e8bb 494 struct {
fb602cb7
PM
495 /* M profile has up to 4 stack pointers:
496 * a Main Stack Pointer and a Process Stack Pointer for each
497 * of the Secure and Non-Secure states. (If the CPU doesn't support
498 * the security extension then it has only two SPs.)
499 * In QEMU we always store the currently active SP in regs[13],
500 * and the non-active SP for the current security state in
501 * v7m.other_sp. The stack pointers for the inactive security state
502 * are stored in other_ss_msp and other_ss_psp.
503 * switch_v7m_security_state() is responsible for rearranging them
504 * when we change security state.
505 */
9ee6e8bb 506 uint32_t other_sp;
fb602cb7
PM
507 uint32_t other_ss_msp;
508 uint32_t other_ss_psp;
4a16724f
PM
509 uint32_t vecbase[M_REG_NUM_BANKS];
510 uint32_t basepri[M_REG_NUM_BANKS];
511 uint32_t control[M_REG_NUM_BANKS];
512 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
513 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
514 uint32_t hfsr; /* HardFault Status */
515 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 516 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 517 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 518 uint32_t bfar; /* BusFault Address */
bed079da 519 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 520 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 521 int exception;
4a16724f
PM
522 uint32_t primask[M_REG_NUM_BANKS];
523 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 524 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 525 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 526 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 527 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
528 uint32_t msplim[M_REG_NUM_BANKS];
529 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
530 uint32_t fpcar[M_REG_NUM_BANKS];
531 uint32_t fpccr[M_REG_NUM_BANKS];
532 uint32_t fpdscr[M_REG_NUM_BANKS];
533 uint32_t cpacr[M_REG_NUM_BANKS];
534 uint32_t nsacr;
9ee6e8bb
PB
535 } v7m;
536
abf1172f
PM
537 /* Information associated with an exception about to be taken:
538 * code which raises an exception must set cs->exception_index and
539 * the relevant parts of this structure; the cpu_do_interrupt function
540 * will then set the guest-visible registers as part of the exception
541 * entry process.
542 */
543 struct {
544 uint32_t syndrome; /* AArch64 format syndrome register */
545 uint32_t fsr; /* AArch32 format fault status register info */
546 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 547 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
548 /* If we implement EL2 we will also need to store information
549 * about the intermediate physical address for stage 2 faults.
550 */
551 } exception;
552
202ccb6b
DG
553 /* Information associated with an SError */
554 struct {
555 uint8_t pending;
556 uint8_t has_esr;
557 uint64_t esr;
558 } serror;
559
ed89f078
PM
560 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
561 uint32_t irq_line_state;
562
fe1479c3
PB
563 /* Thumb-2 EE state. */
564 uint32_t teecr;
565 uint32_t teehbr;
566
b7bcbe95
FB
567 /* VFP coprocessor state. */
568 struct {
c39c2b90 569 ARMVectorReg zregs[32];
b7bcbe95 570
3c7d3086
RH
571#ifdef TARGET_AARCH64
572 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 573#define FFR_PRED_NUM 16
3c7d3086 574 ARMPredicateReg pregs[17];
516e246a
RH
575 /* Scratch space for aa64 sve predicate temporary. */
576 ARMPredicateReg preg_tmp;
3c7d3086
RH
577#endif
578
b7bcbe95 579 /* We store these fpcsr fields separately for convenience. */
a4d58462 580 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
581 int vec_len;
582 int vec_stride;
583
a4d58462
RH
584 uint32_t xregs[16];
585
516e246a 586 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 587 uint32_t scratch[8];
3b46e624 588
d81ce0ef
AB
589 /* There are a number of distinct float control structures:
590 *
591 * fp_status: is the "normal" fp status.
592 * fp_status_fp16: used for half-precision calculations
593 * standard_fp_status : the ARM "Standard FPSCR Value"
594 *
595 * Half-precision operations are governed by a separate
596 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
597 * status structure to control this.
598 *
599 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
600 * round-to-nearest and is used by any operations (generally
601 * Neon) which the architecture defines as controlled by the
602 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
603 *
604 * To avoid having to transfer exception bits around, we simply
605 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 606 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
607 * only thing which needs to read the exception flags being
608 * an explicit FPSCR read.
609 */
53cd6637 610 float_status fp_status;
d81ce0ef 611 float_status fp_status_f16;
3a492f3a 612 float_status standard_fp_status;
5be5e8ed
RH
613
614 /* ZCR_EL[1-3] */
615 uint64_t zcr_el[4];
b7bcbe95 616 } vfp;
03d05e2d
PM
617 uint64_t exclusive_addr;
618 uint64_t exclusive_val;
619 uint64_t exclusive_high;
b7bcbe95 620
18c9b560
AZ
621 /* iwMMXt coprocessor state. */
622 struct {
623 uint64_t regs[16];
624 uint64_t val;
625
626 uint32_t cregs[16];
627 } iwmmxt;
628
991ad91b 629#ifdef TARGET_AARCH64
108b3ba8
RH
630 struct {
631 ARMPACKey apia;
632 ARMPACKey apib;
633 ARMPACKey apda;
634 ARMPACKey apdb;
635 ARMPACKey apga;
636 } keys;
991ad91b
RH
637#endif
638
ce4defa0
PB
639#if defined(CONFIG_USER_ONLY)
640 /* For usermode syscall translation. */
641 int eabi;
642#endif
643
46747d15 644 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
645 struct CPUWatchpoint *cpu_watchpoint[16];
646
1f5c00cf
AB
647 /* Fields up to this point are cleared by a CPU reset */
648 struct {} end_reset_fields;
649
e8b5fae5 650 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 651
581be094 652 /* Internal CPU feature flags. */
918f5dca 653 uint64_t features;
581be094 654
6cb0b013
PC
655 /* PMSAv7 MPU */
656 struct {
657 uint32_t *drbar;
658 uint32_t *drsr;
659 uint32_t *dracr;
4a16724f 660 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
661 } pmsav7;
662
0e1a46bb
PM
663 /* PMSAv8 MPU */
664 struct {
665 /* The PMSAv8 implementation also shares some PMSAv7 config
666 * and state:
667 * pmsav7.rnr (region number register)
668 * pmsav7_dregion (number of configured regions)
669 */
4a16724f
PM
670 uint32_t *rbar[M_REG_NUM_BANKS];
671 uint32_t *rlar[M_REG_NUM_BANKS];
672 uint32_t mair0[M_REG_NUM_BANKS];
673 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
674 } pmsav8;
675
9901c576
PM
676 /* v8M SAU */
677 struct {
678 uint32_t *rbar;
679 uint32_t *rlar;
680 uint32_t rnr;
681 uint32_t ctrl;
682 } sau;
683
983fe826 684 void *nvic;
462a8bc6 685 const struct arm_boot_info *boot_info;
d3a3e529
VK
686 /* Store GICv3CPUState to access from this struct */
687 void *gicv3state;
2c0262af
FB
688} CPUARMState;
689
bd7d00fc 690/**
08267487 691 * ARMELChangeHookFn:
bd7d00fc
PM
692 * type of a function which can be registered via arm_register_el_change_hook()
693 * to get callbacks when the CPU changes its exception level or mode.
694 */
08267487
AL
695typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
696typedef struct ARMELChangeHook ARMELChangeHook;
697struct ARMELChangeHook {
698 ARMELChangeHookFn *hook;
699 void *opaque;
700 QLIST_ENTRY(ARMELChangeHook) node;
701};
062ba099
AB
702
703/* These values map onto the return values for
704 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
705typedef enum ARMPSCIState {
d5affb0d
AJ
706 PSCI_ON = 0,
707 PSCI_OFF = 1,
062ba099
AB
708 PSCI_ON_PENDING = 2
709} ARMPSCIState;
710
962fcbf2
RH
711typedef struct ARMISARegisters ARMISARegisters;
712
74e75564
PB
713/**
714 * ARMCPU:
715 * @env: #CPUARMState
716 *
717 * An ARM CPU core.
718 */
719struct ARMCPU {
720 /*< private >*/
721 CPUState parent_obj;
722 /*< public >*/
723
5b146dc7 724 CPUNegativeOffsetState neg;
74e75564
PB
725 CPUARMState env;
726
727 /* Coprocessor information */
728 GHashTable *cp_regs;
729 /* For marshalling (mostly coprocessor) register state between the
730 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
731 * we use these arrays.
732 */
733 /* List of register indexes managed via these arrays; (full KVM style
734 * 64 bit indexes, not CPRegInfo 32 bit indexes)
735 */
736 uint64_t *cpreg_indexes;
737 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
738 uint64_t *cpreg_values;
739 /* Length of the indexes, values, reset_values arrays */
740 int32_t cpreg_array_len;
741 /* These are used only for migration: incoming data arrives in
742 * these fields and is sanity checked in post_load before copying
743 * to the working data structures above.
744 */
745 uint64_t *cpreg_vmstate_indexes;
746 uint64_t *cpreg_vmstate_values;
747 int32_t cpreg_vmstate_array_len;
748
200bf5b7
AB
749 DynamicGDBXMLInfo dyn_xml;
750
74e75564
PB
751 /* Timers used by the generic (architected) timer */
752 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
753 /*
754 * Timer used by the PMU. Its state is restored after migration by
755 * pmu_op_finish() - it does not need other handling during migration
756 */
757 QEMUTimer *pmu_timer;
74e75564
PB
758 /* GPIO outputs for generic timer */
759 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
760 /* GPIO output for GICv3 maintenance interrupt signal */
761 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
762 /* GPIO output for the PMU interrupt */
763 qemu_irq pmu_interrupt;
74e75564
PB
764
765 /* MemoryRegion to use for secure physical accesses */
766 MemoryRegion *secure_memory;
767
181962fd
PM
768 /* For v8M, pointer to the IDAU interface provided by board/SoC */
769 Object *idau;
770
74e75564
PB
771 /* 'compatible' string for this CPU for Linux device trees */
772 const char *dtb_compatible;
773
774 /* PSCI version for this CPU
775 * Bits[31:16] = Major Version
776 * Bits[15:0] = Minor Version
777 */
778 uint32_t psci_version;
779
780 /* Should CPU start in PSCI powered-off state? */
781 bool start_powered_off;
062ba099
AB
782
783 /* Current power state, access guarded by BQL */
784 ARMPSCIState power_state;
785
c25bd18a
PM
786 /* CPU has virtualization extension */
787 bool has_el2;
74e75564
PB
788 /* CPU has security extension */
789 bool has_el3;
5c0a3819
SZ
790 /* CPU has PMU (Performance Monitor Unit) */
791 bool has_pmu;
97a28b0e
PM
792 /* CPU has VFP */
793 bool has_vfp;
794 /* CPU has Neon */
795 bool has_neon;
ea90db0a
PM
796 /* CPU has M-profile DSP extension */
797 bool has_dsp;
74e75564
PB
798
799 /* CPU has memory protection unit */
800 bool has_mpu;
801 /* PMSAv7 MPU number of supported regions */
802 uint32_t pmsav7_dregion;
9901c576
PM
803 /* v8M SAU number of supported regions */
804 uint32_t sau_sregion;
74e75564
PB
805
806 /* PSCI conduit used to invoke PSCI methods
807 * 0 - disabled, 1 - smc, 2 - hvc
808 */
809 uint32_t psci_conduit;
810
38e2a77c
PM
811 /* For v8M, initial value of the Secure VTOR */
812 uint32_t init_svtor;
813
74e75564
PB
814 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
815 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
816 */
817 uint32_t kvm_target;
818
819 /* KVM init features for this CPU */
820 uint32_t kvm_init_features[7];
821
822 /* Uniprocessor system with MP extensions */
823 bool mp_is_up;
824
c4487d76
PM
825 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
826 * and the probe failed (so we need to report the error in realize)
827 */
828 bool host_cpu_probe_failed;
829
f9a69711
AF
830 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
831 * register.
832 */
833 int32_t core_count;
834
74e75564
PB
835 /* The instance init functions for implementation-specific subclasses
836 * set these fields to specify the implementation-dependent values of
837 * various constant registers and reset values of non-constant
838 * registers.
839 * Some of these might become QOM properties eventually.
840 * Field names match the official register names as defined in the
841 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
842 * is used for reset values of non-constant registers; no reset_
843 * prefix means a constant register.
47576b94
RH
844 * Some of these registers are split out into a substructure that
845 * is shared with the translators to control the ISA.
74e75564 846 */
47576b94
RH
847 struct ARMISARegisters {
848 uint32_t id_isar0;
849 uint32_t id_isar1;
850 uint32_t id_isar2;
851 uint32_t id_isar3;
852 uint32_t id_isar4;
853 uint32_t id_isar5;
854 uint32_t id_isar6;
855 uint32_t mvfr0;
856 uint32_t mvfr1;
857 uint32_t mvfr2;
858 uint64_t id_aa64isar0;
859 uint64_t id_aa64isar1;
860 uint64_t id_aa64pfr0;
861 uint64_t id_aa64pfr1;
3dc91ddb
PM
862 uint64_t id_aa64mmfr0;
863 uint64_t id_aa64mmfr1;
47576b94 864 } isar;
74e75564
PB
865 uint32_t midr;
866 uint32_t revidr;
867 uint32_t reset_fpsid;
74e75564
PB
868 uint32_t ctr;
869 uint32_t reset_sctlr;
870 uint32_t id_pfr0;
871 uint32_t id_pfr1;
872 uint32_t id_dfr0;
cad86737
AL
873 uint64_t pmceid0;
874 uint64_t pmceid1;
74e75564
PB
875 uint32_t id_afr0;
876 uint32_t id_mmfr0;
877 uint32_t id_mmfr1;
878 uint32_t id_mmfr2;
879 uint32_t id_mmfr3;
880 uint32_t id_mmfr4;
74e75564
PB
881 uint64_t id_aa64dfr0;
882 uint64_t id_aa64dfr1;
883 uint64_t id_aa64afr0;
884 uint64_t id_aa64afr1;
74e75564
PB
885 uint32_t dbgdidr;
886 uint32_t clidr;
887 uint64_t mp_affinity; /* MP ID without feature bits */
888 /* The elements of this array are the CCSIDR values for each cache,
889 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
890 */
891 uint32_t ccsidr[16];
892 uint64_t reset_cbar;
893 uint32_t reset_auxcr;
894 bool reset_hivecs;
895 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
896 uint32_t dcz_blocksize;
897 uint64_t rvbar;
bd7d00fc 898
e45868a3
PM
899 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
900 int gic_num_lrs; /* number of list registers */
901 int gic_vpribits; /* number of virtual priority bits */
902 int gic_vprebits; /* number of virtual preemption bits */
903
3a062d57
JB
904 /* Whether the cfgend input is high (i.e. this CPU should reset into
905 * big-endian mode). This setting isn't used directly: instead it modifies
906 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
907 * architecture version.
908 */
909 bool cfgend;
910
b5c53d1b 911 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 912 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
913
914 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
915
916 /* Used to synchronize KVM and QEMU in-kernel device levels */
917 uint8_t device_irq_level;
adf92eab
RH
918
919 /* Used to set the maximum vector length the cpu will support. */
920 uint32_t sve_max_vq;
74e75564
PB
921};
922
51e5ef45
MAL
923void arm_cpu_post_init(Object *obj);
924
46de5913
IM
925uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
926
74e75564 927#ifndef CONFIG_USER_ONLY
8a9358cc 928extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
929#endif
930
931void arm_cpu_do_interrupt(CPUState *cpu);
932void arm_v7m_cpu_do_interrupt(CPUState *cpu);
933bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
934
74e75564
PB
935hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
936 MemTxAttrs *attrs);
937
938int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
939int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
940
200bf5b7
AB
941/* Dynamically generates for gdb stub an XML description of the sysregs from
942 * the cp_regs hashtable. Returns the registered sysregs number.
943 */
944int arm_gen_dynamic_xml(CPUState *cpu);
945
946/* Returns the dynamically generated XML for the gdb stub.
947 * Returns a pointer to the XML contents for the specified XML file or NULL
948 * if the XML name doesn't match the predefined one.
949 */
950const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
951
74e75564
PB
952int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
953 int cpuid, void *opaque);
954int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
955 int cpuid, void *opaque);
956
957#ifdef TARGET_AARCH64
958int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
959int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 960void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
961void aarch64_sve_change_el(CPUARMState *env, int old_el,
962 int new_el, bool el0_a64);
0ab5953b
RH
963#else
964static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
965static inline void aarch64_sve_change_el(CPUARMState *env, int o,
966 int n, bool a)
967{ }
74e75564 968#endif
778c3a06 969
91f78c58
PMD
970#if !defined(CONFIG_TCG)
971static inline target_ulong do_arm_semihosting(CPUARMState *env)
972{
973 g_assert_not_reached();
974}
975#else
faacc041 976target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 977#endif
ce02049d
GB
978void aarch64_sync_32_to_64(CPUARMState *env);
979void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 980
ced31551
RH
981int fp_exception_el(CPUARMState *env, int cur_el);
982int sve_exception_el(CPUARMState *env, int cur_el);
983uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
984
3926cc84
AG
985static inline bool is_a64(CPUARMState *env)
986{
987 return env->aarch64;
988}
989
2c0262af
FB
990/* you can call this signal handler from your SIGBUS and SIGSEGV
991 signal handlers to inform the virtual CPU of exceptions. non zero
992 is returned if the signal was handled by the virtual CPU. */
5fafdf24 993int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
994 void *puc);
995
5d05b9d4
AL
996/**
997 * pmu_op_start/finish
ec7b4ce4
AF
998 * @env: CPUARMState
999 *
5d05b9d4
AL
1000 * Convert all PMU counters between their delta form (the typical mode when
1001 * they are enabled) and the guest-visible values. These two calls must
1002 * surround any action which might affect the counters.
ec7b4ce4 1003 */
5d05b9d4
AL
1004void pmu_op_start(CPUARMState *env);
1005void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1006
4e7beb0c
AL
1007/*
1008 * Called when a PMU counter is due to overflow
1009 */
1010void arm_pmu_timer_cb(void *opaque);
1011
033614c4
AL
1012/**
1013 * Functions to register as EL change hooks for PMU mode filtering
1014 */
1015void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1016void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1017
57a4a11b 1018/*
bf8d0969
AL
1019 * pmu_init
1020 * @cpu: ARMCPU
57a4a11b 1021 *
bf8d0969
AL
1022 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1023 * for the current configuration
57a4a11b 1024 */
bf8d0969 1025void pmu_init(ARMCPU *cpu);
57a4a11b 1026
76e3e1bc
PM
1027/* SCTLR bit meanings. Several bits have been reused in newer
1028 * versions of the architecture; in that case we define constants
1029 * for both old and new bit meanings. Code which tests against those
1030 * bits should probably check or otherwise arrange that the CPU
1031 * is the architectural version it expects.
1032 */
1033#define SCTLR_M (1U << 0)
1034#define SCTLR_A (1U << 1)
1035#define SCTLR_C (1U << 2)
1036#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1037#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1038#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1039#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1040#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1041#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1042#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1043#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1044#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1045#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1046#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1047#define SCTLR_ITD (1U << 7) /* v8 onward */
1048#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1049#define SCTLR_SED (1U << 8) /* v8 onward */
1050#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1051#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1052#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1053#define SCTLR_SW (1U << 10) /* v7 */
1054#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1055#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1056#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1057#define SCTLR_I (1U << 12)
b2af69d0
RH
1058#define SCTLR_V (1U << 13) /* AArch32 only */
1059#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1060#define SCTLR_RR (1U << 14) /* up to v7 */
1061#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1062#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1063#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1064#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1065#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1066#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1067#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1068#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1069#define SCTLR_nTWE (1U << 18) /* v8 onward */
1070#define SCTLR_WXN (1U << 19)
1071#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1072#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1073#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1074#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1075#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1076#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1077#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1078#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1079#define SCTLR_VE (1U << 24) /* up to v7 */
1080#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1081#define SCTLR_EE (1U << 25)
1082#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1083#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1084#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1085#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1086#define SCTLR_TRE (1U << 28) /* AArch32 only */
1087#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1088#define SCTLR_AFE (1U << 29) /* AArch32 only */
1089#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1090#define SCTLR_TE (1U << 30) /* AArch32 only */
1091#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1092#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1093#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1094#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1095#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1096#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1097#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1098#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1099#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1100#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1101
c6f19164
GB
1102#define CPTR_TCPAC (1U << 31)
1103#define CPTR_TTA (1U << 20)
1104#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1105#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1106#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1107
187f678d
PM
1108#define MDCR_EPMAD (1U << 21)
1109#define MDCR_EDAD (1U << 20)
033614c4
AL
1110#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1111#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1112#define MDCR_SDD (1U << 16)
a8d64e73 1113#define MDCR_SPD (3U << 14)
187f678d
PM
1114#define MDCR_TDRA (1U << 11)
1115#define MDCR_TDOSA (1U << 10)
1116#define MDCR_TDA (1U << 9)
1117#define MDCR_TDE (1U << 8)
1118#define MDCR_HPME (1U << 7)
1119#define MDCR_TPM (1U << 6)
1120#define MDCR_TPMCR (1U << 5)
033614c4 1121#define MDCR_HPMN (0x1fU)
187f678d 1122
a8d64e73
PM
1123/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1124#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1125
78dbbbe4
PM
1126#define CPSR_M (0x1fU)
1127#define CPSR_T (1U << 5)
1128#define CPSR_F (1U << 6)
1129#define CPSR_I (1U << 7)
1130#define CPSR_A (1U << 8)
1131#define CPSR_E (1U << 9)
1132#define CPSR_IT_2_7 (0xfc00U)
1133#define CPSR_GE (0xfU << 16)
4051e12c
PM
1134#define CPSR_IL (1U << 20)
1135/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1136 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1137 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1138 * where it is live state but not accessible to the AArch32 code.
1139 */
1140#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1141#define CPSR_J (1U << 24)
1142#define CPSR_IT_0_1 (3U << 25)
1143#define CPSR_Q (1U << 27)
1144#define CPSR_V (1U << 28)
1145#define CPSR_C (1U << 29)
1146#define CPSR_Z (1U << 30)
1147#define CPSR_N (1U << 31)
9ee6e8bb 1148#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1149#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1150
1151#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1152#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1153 | CPSR_NZCV)
9ee6e8bb
PB
1154/* Bits writable in user mode. */
1155#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1156/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1157#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1158/* Mask of bits which may be set by exception return copying them from SPSR */
1159#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1160
987ab45e
PM
1161/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1162#define XPSR_EXCP 0x1ffU
1163#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1164#define XPSR_IT_2_7 CPSR_IT_2_7
1165#define XPSR_GE CPSR_GE
1166#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1167#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1168#define XPSR_IT_0_1 CPSR_IT_0_1
1169#define XPSR_Q CPSR_Q
1170#define XPSR_V CPSR_V
1171#define XPSR_C CPSR_C
1172#define XPSR_Z CPSR_Z
1173#define XPSR_N CPSR_N
1174#define XPSR_NZCV CPSR_NZCV
1175#define XPSR_IT CPSR_IT
1176
e389be16
FA
1177#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1178#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1179#define TTBCR_PD0 (1U << 4)
1180#define TTBCR_PD1 (1U << 5)
1181#define TTBCR_EPD0 (1U << 7)
1182#define TTBCR_IRGN0 (3U << 8)
1183#define TTBCR_ORGN0 (3U << 10)
1184#define TTBCR_SH0 (3U << 12)
1185#define TTBCR_T1SZ (3U << 16)
1186#define TTBCR_A1 (1U << 22)
1187#define TTBCR_EPD1 (1U << 23)
1188#define TTBCR_IRGN1 (3U << 24)
1189#define TTBCR_ORGN1 (3U << 26)
1190#define TTBCR_SH1 (1U << 28)
1191#define TTBCR_EAE (1U << 31)
1192
d356312f
PM
1193/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1194 * Only these are valid when in AArch64 mode; in
1195 * AArch32 mode SPSRs are basically CPSR-format.
1196 */
f502cfc2 1197#define PSTATE_SP (1U)
d356312f
PM
1198#define PSTATE_M (0xFU)
1199#define PSTATE_nRW (1U << 4)
1200#define PSTATE_F (1U << 6)
1201#define PSTATE_I (1U << 7)
1202#define PSTATE_A (1U << 8)
1203#define PSTATE_D (1U << 9)
f6e52eaa 1204#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1205#define PSTATE_IL (1U << 20)
1206#define PSTATE_SS (1U << 21)
1207#define PSTATE_V (1U << 28)
1208#define PSTATE_C (1U << 29)
1209#define PSTATE_Z (1U << 30)
1210#define PSTATE_N (1U << 31)
1211#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1212#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1213#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1214/* Mode values for AArch64 */
1215#define PSTATE_MODE_EL3h 13
1216#define PSTATE_MODE_EL3t 12
1217#define PSTATE_MODE_EL2h 9
1218#define PSTATE_MODE_EL2t 8
1219#define PSTATE_MODE_EL1h 5
1220#define PSTATE_MODE_EL1t 4
1221#define PSTATE_MODE_EL0t 0
1222
de2db7ec
PM
1223/* Write a new value to v7m.exception, thus transitioning into or out
1224 * of Handler mode; this may result in a change of active stack pointer.
1225 */
1226void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1227
9e729b57
EI
1228/* Map EL and handler into a PSTATE_MODE. */
1229static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1230{
1231 return (el << 2) | handler;
1232}
1233
d356312f
PM
1234/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1235 * interprocessing, so we don't attempt to sync with the cpsr state used by
1236 * the 32 bit decoder.
1237 */
1238static inline uint32_t pstate_read(CPUARMState *env)
1239{
1240 int ZF;
1241
1242 ZF = (env->ZF == 0);
1243 return (env->NF & 0x80000000) | (ZF << 30)
1244 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1245 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1246}
1247
1248static inline void pstate_write(CPUARMState *env, uint32_t val)
1249{
1250 env->ZF = (~val) & PSTATE_Z;
1251 env->NF = val;
1252 env->CF = (val >> 29) & 1;
1253 env->VF = (val << 3) & 0x80000000;
4cc35614 1254 env->daif = val & PSTATE_DAIF;
f6e52eaa 1255 env->btype = (val >> 10) & 3;
d356312f
PM
1256 env->pstate = val & ~CACHED_PSTATE_BITS;
1257}
1258
b5ff1b31 1259/* Return the current CPSR value. */
2f4a40e5 1260uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1261
1262typedef enum CPSRWriteType {
1263 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1264 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1265 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1266 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1267} CPSRWriteType;
1268
1269/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1270void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1271 CPSRWriteType write_type);
9ee6e8bb
PB
1272
1273/* Return the current xPSR value. */
1274static inline uint32_t xpsr_read(CPUARMState *env)
1275{
1276 int ZF;
6fbe23d5
PB
1277 ZF = (env->ZF == 0);
1278 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1279 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1280 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1281 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1282 | (env->GE << 16)
9ee6e8bb 1283 | env->v7m.exception;
b5ff1b31
FB
1284}
1285
9ee6e8bb
PB
1286/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1287static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1288{
987ab45e
PM
1289 if (mask & XPSR_NZCV) {
1290 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1291 env->NF = val;
9ee6e8bb
PB
1292 env->CF = (val >> 29) & 1;
1293 env->VF = (val << 3) & 0x80000000;
1294 }
987ab45e
PM
1295 if (mask & XPSR_Q) {
1296 env->QF = ((val & XPSR_Q) != 0);
1297 }
f1e2598c
PM
1298 if (mask & XPSR_GE) {
1299 env->GE = (val & XPSR_GE) >> 16;
1300 }
987ab45e
PM
1301 if (mask & XPSR_T) {
1302 env->thumb = ((val & XPSR_T) != 0);
1303 }
1304 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1305 env->condexec_bits &= ~3;
1306 env->condexec_bits |= (val >> 25) & 3;
1307 }
987ab45e 1308 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1309 env->condexec_bits &= 3;
1310 env->condexec_bits |= (val >> 8) & 0xfc;
1311 }
987ab45e 1312 if (mask & XPSR_EXCP) {
de2db7ec
PM
1313 /* Note that this only happens on exception exit */
1314 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1315 }
1316}
1317
f149e3e8
EI
1318#define HCR_VM (1ULL << 0)
1319#define HCR_SWIO (1ULL << 1)
1320#define HCR_PTW (1ULL << 2)
1321#define HCR_FMO (1ULL << 3)
1322#define HCR_IMO (1ULL << 4)
1323#define HCR_AMO (1ULL << 5)
1324#define HCR_VF (1ULL << 6)
1325#define HCR_VI (1ULL << 7)
1326#define HCR_VSE (1ULL << 8)
1327#define HCR_FB (1ULL << 9)
1328#define HCR_BSU_MASK (3ULL << 10)
1329#define HCR_DC (1ULL << 12)
1330#define HCR_TWI (1ULL << 13)
1331#define HCR_TWE (1ULL << 14)
1332#define HCR_TID0 (1ULL << 15)
1333#define HCR_TID1 (1ULL << 16)
1334#define HCR_TID2 (1ULL << 17)
1335#define HCR_TID3 (1ULL << 18)
1336#define HCR_TSC (1ULL << 19)
1337#define HCR_TIDCP (1ULL << 20)
1338#define HCR_TACR (1ULL << 21)
1339#define HCR_TSW (1ULL << 22)
099bf53b 1340#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1341#define HCR_TPU (1ULL << 24)
1342#define HCR_TTLB (1ULL << 25)
1343#define HCR_TVM (1ULL << 26)
1344#define HCR_TGE (1ULL << 27)
1345#define HCR_TDZ (1ULL << 28)
1346#define HCR_HCD (1ULL << 29)
1347#define HCR_TRVM (1ULL << 30)
1348#define HCR_RW (1ULL << 31)
1349#define HCR_CD (1ULL << 32)
1350#define HCR_ID (1ULL << 33)
ac656b16 1351#define HCR_E2H (1ULL << 34)
099bf53b
RH
1352#define HCR_TLOR (1ULL << 35)
1353#define HCR_TERR (1ULL << 36)
1354#define HCR_TEA (1ULL << 37)
1355#define HCR_MIOCNCE (1ULL << 38)
1356#define HCR_APK (1ULL << 40)
1357#define HCR_API (1ULL << 41)
1358#define HCR_NV (1ULL << 42)
1359#define HCR_NV1 (1ULL << 43)
1360#define HCR_AT (1ULL << 44)
1361#define HCR_NV2 (1ULL << 45)
1362#define HCR_FWB (1ULL << 46)
1363#define HCR_FIEN (1ULL << 47)
1364#define HCR_TID4 (1ULL << 49)
1365#define HCR_TICAB (1ULL << 50)
1366#define HCR_TOCU (1ULL << 52)
1367#define HCR_TTLBIS (1ULL << 54)
1368#define HCR_TTLBOS (1ULL << 55)
1369#define HCR_ATA (1ULL << 56)
1370#define HCR_DCT (1ULL << 57)
1371
ac656b16
PM
1372/*
1373 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1374 * HCR_MASK and then clear it again if the feature bit is not set in
1375 * hcr_write().
1376 */
f149e3e8
EI
1377#define HCR_MASK ((1ULL << 34) - 1)
1378
64e0e2de
EI
1379#define SCR_NS (1U << 0)
1380#define SCR_IRQ (1U << 1)
1381#define SCR_FIQ (1U << 2)
1382#define SCR_EA (1U << 3)
1383#define SCR_FW (1U << 4)
1384#define SCR_AW (1U << 5)
1385#define SCR_NET (1U << 6)
1386#define SCR_SMD (1U << 7)
1387#define SCR_HCE (1U << 8)
1388#define SCR_SIF (1U << 9)
1389#define SCR_RW (1U << 10)
1390#define SCR_ST (1U << 11)
1391#define SCR_TWI (1U << 12)
1392#define SCR_TWE (1U << 13)
99f8f86d
RH
1393#define SCR_TLOR (1U << 14)
1394#define SCR_TERR (1U << 15)
1395#define SCR_APK (1U << 16)
1396#define SCR_API (1U << 17)
1397#define SCR_EEL2 (1U << 18)
1398#define SCR_EASE (1U << 19)
1399#define SCR_NMEA (1U << 20)
1400#define SCR_FIEN (1U << 21)
1401#define SCR_ENSCXT (1U << 25)
1402#define SCR_ATA (1U << 26)
64e0e2de 1403
01653295
PM
1404/* Return the current FPSCR value. */
1405uint32_t vfp_get_fpscr(CPUARMState *env);
1406void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1407
d81ce0ef
AB
1408/* FPCR, Floating Point Control Register
1409 * FPSR, Floating Poiht Status Register
1410 *
1411 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1412 * FPCR and FPSR. However since they still use non-overlapping bits
1413 * we store the underlying state in fpscr and just mask on read/write.
1414 */
1415#define FPSR_MASK 0xf800009f
0b62159b 1416#define FPCR_MASK 0x07ff9f00
d81ce0ef 1417
a15945d9
PM
1418#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1419#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1420#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1421#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1422#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1423#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1424#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1425#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1426#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1427#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1428
f903fa22
PM
1429static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1430{
1431 return vfp_get_fpscr(env) & FPSR_MASK;
1432}
1433
1434static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1435{
1436 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1437 vfp_set_fpscr(env, new_fpscr);
1438}
1439
1440static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1441{
1442 return vfp_get_fpscr(env) & FPCR_MASK;
1443}
1444
1445static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1446{
1447 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1448 vfp_set_fpscr(env, new_fpscr);
1449}
1450
b5ff1b31
FB
1451enum arm_cpu_mode {
1452 ARM_CPU_MODE_USR = 0x10,
1453 ARM_CPU_MODE_FIQ = 0x11,
1454 ARM_CPU_MODE_IRQ = 0x12,
1455 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1456 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1457 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1458 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1459 ARM_CPU_MODE_UND = 0x1b,
1460 ARM_CPU_MODE_SYS = 0x1f
1461};
1462
40f137e1
PB
1463/* VFP system registers. */
1464#define ARM_VFP_FPSID 0
1465#define ARM_VFP_FPSCR 1
a50c0f51 1466#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1467#define ARM_VFP_MVFR1 6
1468#define ARM_VFP_MVFR0 7
40f137e1
PB
1469#define ARM_VFP_FPEXC 8
1470#define ARM_VFP_FPINST 9
1471#define ARM_VFP_FPINST2 10
1472
18c9b560 1473/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1474#define ARM_IWMMXT_wCID 0
1475#define ARM_IWMMXT_wCon 1
1476#define ARM_IWMMXT_wCSSF 2
1477#define ARM_IWMMXT_wCASF 3
1478#define ARM_IWMMXT_wCGR0 8
1479#define ARM_IWMMXT_wCGR1 9
1480#define ARM_IWMMXT_wCGR2 10
1481#define ARM_IWMMXT_wCGR3 11
18c9b560 1482
2c4da50d
PM
1483/* V7M CCR bits */
1484FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1485FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1486FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1487FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1488FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1489FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1490FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1491FIELD(V7M_CCR, DC, 16, 1)
1492FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1493FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1494
24ac0fb1
PM
1495/* V7M SCR bits */
1496FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1497FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1498FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1499FIELD(V7M_SCR, SEVONPEND, 4, 1)
1500
3b2e9344
PM
1501/* V7M AIRCR bits */
1502FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1503FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1504FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1505FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1506FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1507FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1508FIELD(V7M_AIRCR, PRIS, 14, 1)
1509FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1510FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1511
2c4da50d
PM
1512/* V7M CFSR bits for MMFSR */
1513FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1514FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1515FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1516FIELD(V7M_CFSR, MSTKERR, 4, 1)
1517FIELD(V7M_CFSR, MLSPERR, 5, 1)
1518FIELD(V7M_CFSR, MMARVALID, 7, 1)
1519
1520/* V7M CFSR bits for BFSR */
1521FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1522FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1523FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1524FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1525FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1526FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1527FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1528
1529/* V7M CFSR bits for UFSR */
1530FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1531FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1532FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1533FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1534FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1535FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1536FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1537
334e8dad
PM
1538/* V7M CFSR bit masks covering all of the subregister bits */
1539FIELD(V7M_CFSR, MMFSR, 0, 8)
1540FIELD(V7M_CFSR, BFSR, 8, 8)
1541FIELD(V7M_CFSR, UFSR, 16, 16)
1542
2c4da50d
PM
1543/* V7M HFSR bits */
1544FIELD(V7M_HFSR, VECTTBL, 1, 1)
1545FIELD(V7M_HFSR, FORCED, 30, 1)
1546FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1547
1548/* V7M DFSR bits */
1549FIELD(V7M_DFSR, HALTED, 0, 1)
1550FIELD(V7M_DFSR, BKPT, 1, 1)
1551FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1552FIELD(V7M_DFSR, VCATCH, 3, 1)
1553FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1554
bed079da
PM
1555/* V7M SFSR bits */
1556FIELD(V7M_SFSR, INVEP, 0, 1)
1557FIELD(V7M_SFSR, INVIS, 1, 1)
1558FIELD(V7M_SFSR, INVER, 2, 1)
1559FIELD(V7M_SFSR, AUVIOL, 3, 1)
1560FIELD(V7M_SFSR, INVTRAN, 4, 1)
1561FIELD(V7M_SFSR, LSPERR, 5, 1)
1562FIELD(V7M_SFSR, SFARVALID, 6, 1)
1563FIELD(V7M_SFSR, LSERR, 7, 1)
1564
29c483a5
MD
1565/* v7M MPU_CTRL bits */
1566FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1567FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1568FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1569
43bbce7f
PM
1570/* v7M CLIDR bits */
1571FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1572FIELD(V7M_CLIDR, LOUIS, 21, 3)
1573FIELD(V7M_CLIDR, LOC, 24, 3)
1574FIELD(V7M_CLIDR, LOUU, 27, 3)
1575FIELD(V7M_CLIDR, ICB, 30, 2)
1576
1577FIELD(V7M_CSSELR, IND, 0, 1)
1578FIELD(V7M_CSSELR, LEVEL, 1, 3)
1579/* We use the combination of InD and Level to index into cpu->ccsidr[];
1580 * define a mask for this and check that it doesn't permit running off
1581 * the end of the array.
1582 */
1583FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1584
1585/* v7M FPCCR bits */
1586FIELD(V7M_FPCCR, LSPACT, 0, 1)
1587FIELD(V7M_FPCCR, USER, 1, 1)
1588FIELD(V7M_FPCCR, S, 2, 1)
1589FIELD(V7M_FPCCR, THREAD, 3, 1)
1590FIELD(V7M_FPCCR, HFRDY, 4, 1)
1591FIELD(V7M_FPCCR, MMRDY, 5, 1)
1592FIELD(V7M_FPCCR, BFRDY, 6, 1)
1593FIELD(V7M_FPCCR, SFRDY, 7, 1)
1594FIELD(V7M_FPCCR, MONRDY, 8, 1)
1595FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1596FIELD(V7M_FPCCR, UFRDY, 10, 1)
1597FIELD(V7M_FPCCR, RES0, 11, 15)
1598FIELD(V7M_FPCCR, TS, 26, 1)
1599FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1600FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1601FIELD(V7M_FPCCR, LSPENS, 29, 1)
1602FIELD(V7M_FPCCR, LSPEN, 30, 1)
1603FIELD(V7M_FPCCR, ASPEN, 31, 1)
1604/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1605#define R_V7M_FPCCR_BANKED_MASK \
1606 (R_V7M_FPCCR_LSPACT_MASK | \
1607 R_V7M_FPCCR_USER_MASK | \
1608 R_V7M_FPCCR_THREAD_MASK | \
1609 R_V7M_FPCCR_MMRDY_MASK | \
1610 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1611 R_V7M_FPCCR_UFRDY_MASK | \
1612 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1613
a62e62af
RH
1614/*
1615 * System register ID fields.
1616 */
2bd5f41c
AB
1617FIELD(MIDR_EL1, REVISION, 0, 4)
1618FIELD(MIDR_EL1, PARTNUM, 4, 12)
1619FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1620FIELD(MIDR_EL1, VARIANT, 20, 4)
1621FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1622
a62e62af
RH
1623FIELD(ID_ISAR0, SWAP, 0, 4)
1624FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1625FIELD(ID_ISAR0, BITFIELD, 8, 4)
1626FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1627FIELD(ID_ISAR0, COPROC, 16, 4)
1628FIELD(ID_ISAR0, DEBUG, 20, 4)
1629FIELD(ID_ISAR0, DIVIDE, 24, 4)
1630
1631FIELD(ID_ISAR1, ENDIAN, 0, 4)
1632FIELD(ID_ISAR1, EXCEPT, 4, 4)
1633FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1634FIELD(ID_ISAR1, EXTEND, 12, 4)
1635FIELD(ID_ISAR1, IFTHEN, 16, 4)
1636FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1637FIELD(ID_ISAR1, INTERWORK, 24, 4)
1638FIELD(ID_ISAR1, JAZELLE, 28, 4)
1639
1640FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1641FIELD(ID_ISAR2, MEMHINT, 4, 4)
1642FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1643FIELD(ID_ISAR2, MULT, 12, 4)
1644FIELD(ID_ISAR2, MULTS, 16, 4)
1645FIELD(ID_ISAR2, MULTU, 20, 4)
1646FIELD(ID_ISAR2, PSR_AR, 24, 4)
1647FIELD(ID_ISAR2, REVERSAL, 28, 4)
1648
1649FIELD(ID_ISAR3, SATURATE, 0, 4)
1650FIELD(ID_ISAR3, SIMD, 4, 4)
1651FIELD(ID_ISAR3, SVC, 8, 4)
1652FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1653FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1654FIELD(ID_ISAR3, T32COPY, 20, 4)
1655FIELD(ID_ISAR3, TRUENOP, 24, 4)
1656FIELD(ID_ISAR3, T32EE, 28, 4)
1657
1658FIELD(ID_ISAR4, UNPRIV, 0, 4)
1659FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1660FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1661FIELD(ID_ISAR4, SMC, 12, 4)
1662FIELD(ID_ISAR4, BARRIER, 16, 4)
1663FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1664FIELD(ID_ISAR4, PSR_M, 24, 4)
1665FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1666
1667FIELD(ID_ISAR5, SEVL, 0, 4)
1668FIELD(ID_ISAR5, AES, 4, 4)
1669FIELD(ID_ISAR5, SHA1, 8, 4)
1670FIELD(ID_ISAR5, SHA2, 12, 4)
1671FIELD(ID_ISAR5, CRC32, 16, 4)
1672FIELD(ID_ISAR5, RDM, 24, 4)
1673FIELD(ID_ISAR5, VCMA, 28, 4)
1674
1675FIELD(ID_ISAR6, JSCVT, 0, 4)
1676FIELD(ID_ISAR6, DP, 4, 4)
1677FIELD(ID_ISAR6, FHM, 8, 4)
1678FIELD(ID_ISAR6, SB, 12, 4)
1679FIELD(ID_ISAR6, SPECRES, 16, 4)
1680
ab638a32
RH
1681FIELD(ID_MMFR4, SPECSEI, 0, 4)
1682FIELD(ID_MMFR4, AC2, 4, 4)
1683FIELD(ID_MMFR4, XNX, 8, 4)
1684FIELD(ID_MMFR4, CNP, 12, 4)
1685FIELD(ID_MMFR4, HPDS, 16, 4)
1686FIELD(ID_MMFR4, LSM, 20, 4)
1687FIELD(ID_MMFR4, CCIDX, 24, 4)
1688FIELD(ID_MMFR4, EVT, 28, 4)
1689
a62e62af
RH
1690FIELD(ID_AA64ISAR0, AES, 4, 4)
1691FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1692FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1693FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1694FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1695FIELD(ID_AA64ISAR0, RDM, 28, 4)
1696FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1697FIELD(ID_AA64ISAR0, SM3, 36, 4)
1698FIELD(ID_AA64ISAR0, SM4, 40, 4)
1699FIELD(ID_AA64ISAR0, DP, 44, 4)
1700FIELD(ID_AA64ISAR0, FHM, 48, 4)
1701FIELD(ID_AA64ISAR0, TS, 52, 4)
1702FIELD(ID_AA64ISAR0, TLB, 56, 4)
1703FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1704
1705FIELD(ID_AA64ISAR1, DPB, 0, 4)
1706FIELD(ID_AA64ISAR1, APA, 4, 4)
1707FIELD(ID_AA64ISAR1, API, 8, 4)
1708FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1709FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1710FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1711FIELD(ID_AA64ISAR1, GPA, 24, 4)
1712FIELD(ID_AA64ISAR1, GPI, 28, 4)
1713FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1714FIELD(ID_AA64ISAR1, SB, 36, 4)
1715FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1716
cd208a1c
RH
1717FIELD(ID_AA64PFR0, EL0, 0, 4)
1718FIELD(ID_AA64PFR0, EL1, 4, 4)
1719FIELD(ID_AA64PFR0, EL2, 8, 4)
1720FIELD(ID_AA64PFR0, EL3, 12, 4)
1721FIELD(ID_AA64PFR0, FP, 16, 4)
1722FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1723FIELD(ID_AA64PFR0, GIC, 24, 4)
1724FIELD(ID_AA64PFR0, RAS, 28, 4)
1725FIELD(ID_AA64PFR0, SVE, 32, 4)
1726
be53b6f4
RH
1727FIELD(ID_AA64PFR1, BT, 0, 4)
1728FIELD(ID_AA64PFR1, SBSS, 4, 4)
1729FIELD(ID_AA64PFR1, MTE, 8, 4)
1730FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1731
3dc91ddb
PM
1732FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1733FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1734FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1735FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1736FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1737FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1738FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1739FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1740FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1741FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1742FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1743FIELD(ID_AA64MMFR0, EXS, 44, 4)
1744
1745FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1746FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1747FIELD(ID_AA64MMFR1, VH, 8, 4)
1748FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1749FIELD(ID_AA64MMFR1, LO, 16, 4)
1750FIELD(ID_AA64MMFR1, PAN, 20, 4)
1751FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1752FIELD(ID_AA64MMFR1, XNX, 28, 4)
1753
beceb99c
AL
1754FIELD(ID_DFR0, COPDBG, 0, 4)
1755FIELD(ID_DFR0, COPSDBG, 4, 4)
1756FIELD(ID_DFR0, MMAPDBG, 8, 4)
1757FIELD(ID_DFR0, COPTRC, 12, 4)
1758FIELD(ID_DFR0, MMAPTRC, 16, 4)
1759FIELD(ID_DFR0, MPROFDBG, 20, 4)
1760FIELD(ID_DFR0, PERFMON, 24, 4)
1761FIELD(ID_DFR0, TRACEFILT, 28, 4)
1762
602f6e42
PM
1763FIELD(MVFR0, SIMDREG, 0, 4)
1764FIELD(MVFR0, FPSP, 4, 4)
1765FIELD(MVFR0, FPDP, 8, 4)
1766FIELD(MVFR0, FPTRAP, 12, 4)
1767FIELD(MVFR0, FPDIVIDE, 16, 4)
1768FIELD(MVFR0, FPSQRT, 20, 4)
1769FIELD(MVFR0, FPSHVEC, 24, 4)
1770FIELD(MVFR0, FPROUND, 28, 4)
1771
1772FIELD(MVFR1, FPFTZ, 0, 4)
1773FIELD(MVFR1, FPDNAN, 4, 4)
1774FIELD(MVFR1, SIMDLS, 8, 4)
1775FIELD(MVFR1, SIMDINT, 12, 4)
1776FIELD(MVFR1, SIMDSP, 16, 4)
1777FIELD(MVFR1, SIMDHP, 20, 4)
1778FIELD(MVFR1, FPHP, 24, 4)
1779FIELD(MVFR1, SIMDFMAC, 28, 4)
1780
1781FIELD(MVFR2, SIMDMISC, 0, 4)
1782FIELD(MVFR2, FPMISC, 4, 4)
1783
43bbce7f
PM
1784QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1785
ce854d7c
BC
1786/* If adding a feature bit which corresponds to a Linux ELF
1787 * HWCAP bit, remember to update the feature-bit-to-hwcap
1788 * mapping in linux-user/elfload.c:get_elf_hwcap().
1789 */
40f137e1
PB
1790enum arm_features {
1791 ARM_FEATURE_VFP,
c1713132
AZ
1792 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1793 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1794 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1795 ARM_FEATURE_V6,
1796 ARM_FEATURE_V6K,
1797 ARM_FEATURE_V7,
1798 ARM_FEATURE_THUMB2,
452a0955 1799 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1800 ARM_FEATURE_VFP3,
1801 ARM_FEATURE_NEON,
9ee6e8bb 1802 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1803 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1804 ARM_FEATURE_THUMB2EE,
be5e7a76 1805 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1806 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1807 ARM_FEATURE_V4T,
1808 ARM_FEATURE_V5,
5bc95aa2 1809 ARM_FEATURE_STRONGARM,
906879a9 1810 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1811 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1812 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1813 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1814 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1815 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1816 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1817 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1818 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1819 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1820 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1821 ARM_FEATURE_V8,
3926cc84 1822 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1823 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1824 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1825 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1826 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1827 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1828 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1829 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1830 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1831 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1832 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1833};
1834
1835static inline int arm_feature(CPUARMState *env, int feature)
1836{
918f5dca 1837 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1838}
1839
19e0fefa
FA
1840#if !defined(CONFIG_USER_ONLY)
1841/* Return true if exception levels below EL3 are in secure state,
1842 * or would be following an exception return to that level.
1843 * Unlike arm_is_secure() (which is always a question about the
1844 * _current_ state of the CPU) this doesn't care about the current
1845 * EL or mode.
1846 */
1847static inline bool arm_is_secure_below_el3(CPUARMState *env)
1848{
1849 if (arm_feature(env, ARM_FEATURE_EL3)) {
1850 return !(env->cp15.scr_el3 & SCR_NS);
1851 } else {
6b7f0b61 1852 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1853 * defined, in which case QEMU defaults to non-secure.
1854 */
1855 return false;
1856 }
1857}
1858
71205876
PM
1859/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1860static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1861{
1862 if (arm_feature(env, ARM_FEATURE_EL3)) {
1863 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1864 /* CPU currently in AArch64 state and EL3 */
1865 return true;
1866 } else if (!is_a64(env) &&
1867 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1868 /* CPU currently in AArch32 state and monitor mode */
1869 return true;
1870 }
1871 }
71205876
PM
1872 return false;
1873}
1874
1875/* Return true if the processor is in secure state */
1876static inline bool arm_is_secure(CPUARMState *env)
1877{
1878 if (arm_is_el3_or_mon(env)) {
1879 return true;
1880 }
19e0fefa
FA
1881 return arm_is_secure_below_el3(env);
1882}
1883
1884#else
1885static inline bool arm_is_secure_below_el3(CPUARMState *env)
1886{
1887 return false;
1888}
1889
1890static inline bool arm_is_secure(CPUARMState *env)
1891{
1892 return false;
1893}
1894#endif
1895
f7778444
RH
1896/**
1897 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1898 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1899 * "for all purposes other than a direct read or write access of HCR_EL2."
1900 * Not included here is HCR_RW.
1901 */
1902uint64_t arm_hcr_el2_eff(CPUARMState *env);
1903
1f79ee32
PM
1904/* Return true if the specified exception level is running in AArch64 state. */
1905static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1906{
446c81ab
PM
1907 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1908 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1909 */
446c81ab
PM
1910 assert(el >= 1 && el <= 3);
1911 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1912
446c81ab
PM
1913 /* The highest exception level is always at the maximum supported
1914 * register width, and then lower levels have a register width controlled
1915 * by bits in the SCR or HCR registers.
1f79ee32 1916 */
446c81ab
PM
1917 if (el == 3) {
1918 return aa64;
1919 }
1920
1921 if (arm_feature(env, ARM_FEATURE_EL3)) {
1922 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1923 }
1924
1925 if (el == 2) {
1926 return aa64;
1927 }
1928
1929 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1930 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1931 }
1932
1933 return aa64;
1f79ee32
PM
1934}
1935
3f342b9e
SF
1936/* Function for determing whether guest cp register reads and writes should
1937 * access the secure or non-secure bank of a cp register. When EL3 is
1938 * operating in AArch32 state, the NS-bit determines whether the secure
1939 * instance of a cp register should be used. When EL3 is AArch64 (or if
1940 * it doesn't exist at all) then there is no register banking, and all
1941 * accesses are to the non-secure version.
1942 */
1943static inline bool access_secure_reg(CPUARMState *env)
1944{
1945 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1946 !arm_el_is_aa64(env, 3) &&
1947 !(env->cp15.scr_el3 & SCR_NS));
1948
1949 return ret;
1950}
1951
ea30a4b8
FA
1952/* Macros for accessing a specified CP register bank */
1953#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1954 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1955
1956#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1957 do { \
1958 if (_secure) { \
1959 (_env)->cp15._regname##_s = (_val); \
1960 } else { \
1961 (_env)->cp15._regname##_ns = (_val); \
1962 } \
1963 } while (0)
1964
1965/* Macros for automatically accessing a specific CP register bank depending on
1966 * the current secure state of the system. These macros are not intended for
1967 * supporting instruction translation reads/writes as these are dependent
1968 * solely on the SCR.NS bit and not the mode.
1969 */
1970#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1971 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1972 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1973
1974#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1975 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1976 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1977 (_val))
1978
0442428a 1979void arm_cpu_list(void);
012a906b
GB
1980uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1981 uint32_t cur_el, bool secure);
40f137e1 1982
9ee6e8bb 1983/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1984#ifndef CONFIG_USER_ONLY
1985bool armv7m_nvic_can_take_pending_exception(void *opaque);
1986#else
1987static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1988{
1989 return true;
1990}
1991#endif
2fb50a33
PM
1992/**
1993 * armv7m_nvic_set_pending: mark the specified exception as pending
1994 * @opaque: the NVIC
1995 * @irq: the exception number to mark pending
1996 * @secure: false for non-banked exceptions or for the nonsecure
1997 * version of a banked exception, true for the secure version of a banked
1998 * exception.
1999 *
2000 * Marks the specified exception as pending. Note that we will assert()
2001 * if @secure is true and @irq does not specify one of the fixed set
2002 * of architecturally banked exceptions.
2003 */
2004void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2005/**
2006 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2007 * @opaque: the NVIC
2008 * @irq: the exception number to mark pending
2009 * @secure: false for non-banked exceptions or for the nonsecure
2010 * version of a banked exception, true for the secure version of a banked
2011 * exception.
2012 *
2013 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2014 * exceptions (exceptions generated in the course of trying to take
2015 * a different exception).
2016 */
2017void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2018/**
2019 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2020 * @opaque: the NVIC
2021 * @irq: the exception number to mark pending
2022 * @secure: false for non-banked exceptions or for the nonsecure
2023 * version of a banked exception, true for the secure version of a banked
2024 * exception.
2025 *
2026 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2027 * generated in the course of lazy stacking of FP registers.
2028 */
2029void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2030/**
2031 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2032 * exception, and whether it targets Secure state
2033 * @opaque: the NVIC
2034 * @pirq: set to pending exception number
2035 * @ptargets_secure: set to whether pending exception targets Secure
2036 *
2037 * This function writes the number of the highest priority pending
2038 * exception (the one which would be made active by
2039 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2040 * to true if the current highest priority pending exception should
2041 * be taken to Secure state, false for NS.
2042 */
2043void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2044 bool *ptargets_secure);
5cb18069
PM
2045/**
2046 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2047 * @opaque: the NVIC
2048 *
2049 * Move the current highest priority pending exception from the pending
2050 * state to the active state, and update v7m.exception to indicate that
2051 * it is the exception currently being handled.
5cb18069 2052 */
6c948518 2053void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2054/**
2055 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2056 * @opaque: the NVIC
2057 * @irq: the exception number to complete
5cb18069 2058 * @secure: true if this exception was secure
aa488fe3
PM
2059 *
2060 * Returns: -1 if the irq was not active
2061 * 1 if completing this irq brought us back to base (no active irqs)
2062 * 0 if there is still an irq active after this one was completed
2063 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2064 */
5cb18069 2065int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2066/**
2067 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2068 * @opaque: the NVIC
2069 * @irq: the exception number to mark pending
2070 * @secure: false for non-banked exceptions or for the nonsecure
2071 * version of a banked exception, true for the secure version of a banked
2072 * exception.
2073 *
2074 * Return whether an exception is "ready", i.e. whether the exception is
2075 * enabled and is configured at a priority which would allow it to
2076 * interrupt the current execution priority. This controls whether the
2077 * RDY bit for it in the FPCCR is set.
2078 */
2079bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2080/**
2081 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2082 * @opaque: the NVIC
2083 *
2084 * Returns: the raw execution priority as defined by the v8M architecture.
2085 * This is the execution priority minus the effects of AIRCR.PRIS,
2086 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2087 * (v8M ARM ARM I_PKLD.)
2088 */
2089int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2090/**
2091 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2092 * priority is negative for the specified security state.
2093 * @opaque: the NVIC
2094 * @secure: the security state to test
2095 * This corresponds to the pseudocode IsReqExecPriNeg().
2096 */
2097#ifndef CONFIG_USER_ONLY
2098bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2099#else
2100static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2101{
2102 return false;
2103}
2104#endif
9ee6e8bb 2105
4b6a83fb
PM
2106/* Interface for defining coprocessor registers.
2107 * Registers are defined in tables of arm_cp_reginfo structs
2108 * which are passed to define_arm_cp_regs().
2109 */
2110
2111/* When looking up a coprocessor register we look for it
2112 * via an integer which encodes all of:
2113 * coprocessor number
2114 * Crn, Crm, opc1, opc2 fields
2115 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2116 * or via MRRC/MCRR?)
51a79b03 2117 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2118 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2119 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2120 * For AArch64, there is no 32/64 bit size distinction;
2121 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2122 * and 4 bit CRn and CRm. The encoding patterns are chosen
2123 * to be easy to convert to and from the KVM encodings, and also
2124 * so that the hashtable can contain both AArch32 and AArch64
2125 * registers (to allow for interprocessing where we might run
2126 * 32 bit code on a 64 bit core).
4b6a83fb 2127 */
f5a0a5a5
PM
2128/* This bit is private to our hashtable cpreg; in KVM register
2129 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2130 * in the upper bits of the 64 bit ID.
2131 */
2132#define CP_REG_AA64_SHIFT 28
2133#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2134
51a79b03
PM
2135/* To enable banking of coprocessor registers depending on ns-bit we
2136 * add a bit to distinguish between secure and non-secure cpregs in the
2137 * hashtable.
2138 */
2139#define CP_REG_NS_SHIFT 29
2140#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2141
2142#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2143 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2144 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2145
f5a0a5a5
PM
2146#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2147 (CP_REG_AA64_MASK | \
2148 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2149 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2150 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2151 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2152 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2153 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2154
721fae12
PM
2155/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2156 * version used as a key for the coprocessor register hashtable
2157 */
2158static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2159{
2160 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2161 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2162 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2163 } else {
2164 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2165 cpregid |= (1 << 15);
2166 }
2167
2168 /* KVM is always non-secure so add the NS flag on AArch32 register
2169 * entries.
2170 */
2171 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2172 }
2173 return cpregid;
2174}
2175
2176/* Convert a truncated 32 bit hashtable key into the full
2177 * 64 bit KVM register ID.
2178 */
2179static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2180{
f5a0a5a5
PM
2181 uint64_t kvmid;
2182
2183 if (cpregid & CP_REG_AA64_MASK) {
2184 kvmid = cpregid & ~CP_REG_AA64_MASK;
2185 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2186 } else {
f5a0a5a5
PM
2187 kvmid = cpregid & ~(1 << 15);
2188 if (cpregid & (1 << 15)) {
2189 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2190 } else {
2191 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2192 }
721fae12
PM
2193 }
2194 return kvmid;
2195}
2196
4b6a83fb 2197/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2198 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2199 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2200 * TCG can assume the value to be constant (ie load at translate time)
2201 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2202 * indicates that the TB should not be ended after a write to this register
2203 * (the default is that the TB ends after cp writes). OVERRIDE permits
2204 * a register definition to override a previous definition for the
2205 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2206 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2207 * ALIAS indicates that this register is an alias view of some underlying
2208 * state which is also visible via another register, and that the other
b061a82b
SF
2209 * register is handling migration and reset; registers marked ALIAS will not be
2210 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2211 * NO_RAW indicates that this register has no underlying state and does not
2212 * support raw access for state saving/loading; it will not be used for either
2213 * migration or KVM state synchronization. (Typically this is for "registers"
2214 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2215 * IO indicates that this register does I/O and therefore its accesses
2216 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2217 * registers which implement clocks or timers require this.
37ff584c
PM
2218 * RAISES_EXC is for when the read or write hook might raise an exception;
2219 * the generated code will synchronize the CPU state before calling the hook
2220 * so that it is safe for the hook to call raise_exception().
4b6a83fb 2221 */
fe03d45f
RH
2222#define ARM_CP_SPECIAL 0x0001
2223#define ARM_CP_CONST 0x0002
2224#define ARM_CP_64BIT 0x0004
2225#define ARM_CP_SUPPRESS_TB_END 0x0008
2226#define ARM_CP_OVERRIDE 0x0010
2227#define ARM_CP_ALIAS 0x0020
2228#define ARM_CP_IO 0x0040
2229#define ARM_CP_NO_RAW 0x0080
2230#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2231#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2232#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2233#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2234#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2235#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2236#define ARM_CP_FPU 0x1000
490aa7f1 2237#define ARM_CP_SVE 0x2000
1f163787 2238#define ARM_CP_NO_GDB 0x4000
37ff584c 2239#define ARM_CP_RAISES_EXC 0x8000
4b6a83fb 2240/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2241#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2242/* Mask of only the flag bits in a type field */
37ff584c 2243#define ARM_CP_FLAG_MASK 0xf0ff
4b6a83fb 2244
f5a0a5a5
PM
2245/* Valid values for ARMCPRegInfo state field, indicating which of
2246 * the AArch32 and AArch64 execution states this register is visible in.
2247 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2248 * If the reginfo is declared to be visible in both states then a second
2249 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2250 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2251 * Note that we rely on the values of these enums as we iterate through
2252 * the various states in some places.
2253 */
2254enum {
2255 ARM_CP_STATE_AA32 = 0,
2256 ARM_CP_STATE_AA64 = 1,
2257 ARM_CP_STATE_BOTH = 2,
2258};
2259
c3e30260
FA
2260/* ARM CP register secure state flags. These flags identify security state
2261 * attributes for a given CP register entry.
2262 * The existence of both or neither secure and non-secure flags indicates that
2263 * the register has both a secure and non-secure hash entry. A single one of
2264 * these flags causes the register to only be hashed for the specified
2265 * security state.
2266 * Although definitions may have any combination of the S/NS bits, each
2267 * registered entry will only have one to identify whether the entry is secure
2268 * or non-secure.
2269 */
2270enum {
2271 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2272 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2273};
2274
4b6a83fb
PM
2275/* Return true if cptype is a valid type field. This is used to try to
2276 * catch errors where the sentinel has been accidentally left off the end
2277 * of a list of registers.
2278 */
2279static inline bool cptype_valid(int cptype)
2280{
2281 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2282 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2283 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2284}
2285
2286/* Access rights:
2287 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2288 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2289 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2290 * (ie any of the privileged modes in Secure state, or Monitor mode).
2291 * If a register is accessible in one privilege level it's always accessible
2292 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2293 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2294 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2295 * terminology a little and call this PL3.
f5a0a5a5
PM
2296 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2297 * with the ELx exception levels.
4b6a83fb
PM
2298 *
2299 * If access permissions for a register are more complex than can be
2300 * described with these bits, then use a laxer set of restrictions, and
2301 * do the more restrictive/complex check inside a helper function.
2302 */
2303#define PL3_R 0x80
2304#define PL3_W 0x40
2305#define PL2_R (0x20 | PL3_R)
2306#define PL2_W (0x10 | PL3_W)
2307#define PL1_R (0x08 | PL2_R)
2308#define PL1_W (0x04 | PL2_W)
2309#define PL0_R (0x02 | PL1_R)
2310#define PL0_W (0x01 | PL1_W)
2311
b5bd7440
AB
2312/*
2313 * For user-mode some registers are accessible to EL0 via a kernel
2314 * trap-and-emulate ABI. In this case we define the read permissions
2315 * as actually being PL0_R. However some bits of any given register
2316 * may still be masked.
2317 */
2318#ifdef CONFIG_USER_ONLY
2319#define PL0U_R PL0_R
2320#else
2321#define PL0U_R PL1_R
2322#endif
2323
4b6a83fb
PM
2324#define PL3_RW (PL3_R | PL3_W)
2325#define PL2_RW (PL2_R | PL2_W)
2326#define PL1_RW (PL1_R | PL1_W)
2327#define PL0_RW (PL0_R | PL0_W)
2328
75502672
PM
2329/* Return the highest implemented Exception Level */
2330static inline int arm_highest_el(CPUARMState *env)
2331{
2332 if (arm_feature(env, ARM_FEATURE_EL3)) {
2333 return 3;
2334 }
2335 if (arm_feature(env, ARM_FEATURE_EL2)) {
2336 return 2;
2337 }
2338 return 1;
2339}
2340
15b3f556
PM
2341/* Return true if a v7M CPU is in Handler mode */
2342static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2343{
2344 return env->v7m.exception != 0;
2345}
2346
dcbff19b
GB
2347/* Return the current Exception Level (as per ARMv8; note that this differs
2348 * from the ARMv7 Privilege Level).
2349 */
2350static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2351{
6d54ed3c 2352 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2353 return arm_v7m_is_handler_mode(env) ||
2354 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2355 }
2356
592125f8 2357 if (is_a64(env)) {
f5a0a5a5
PM
2358 return extract32(env->pstate, 2, 2);
2359 }
2360
592125f8
FA
2361 switch (env->uncached_cpsr & 0x1f) {
2362 case ARM_CPU_MODE_USR:
4b6a83fb 2363 return 0;
592125f8
FA
2364 case ARM_CPU_MODE_HYP:
2365 return 2;
2366 case ARM_CPU_MODE_MON:
2367 return 3;
2368 default:
2369 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2370 /* If EL3 is 32-bit then all secure privileged modes run in
2371 * EL3
2372 */
2373 return 3;
2374 }
2375
2376 return 1;
4b6a83fb 2377 }
4b6a83fb
PM
2378}
2379
2380typedef struct ARMCPRegInfo ARMCPRegInfo;
2381
f59df3f2
PM
2382typedef enum CPAccessResult {
2383 /* Access is permitted */
2384 CP_ACCESS_OK = 0,
2385 /* Access fails due to a configurable trap or enable which would
2386 * result in a categorized exception syndrome giving information about
2387 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2388 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2389 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2390 */
2391 CP_ACCESS_TRAP = 1,
2392 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2393 * Note that this is not a catch-all case -- the set of cases which may
2394 * result in this failure is specifically defined by the architecture.
2395 */
2396 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2397 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2398 CP_ACCESS_TRAP_EL2 = 3,
2399 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2400 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2401 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2402 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2403 /* Access fails and results in an exception syndrome for an FP access,
2404 * trapped directly to EL2 or EL3
2405 */
2406 CP_ACCESS_TRAP_FP_EL2 = 7,
2407 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2408} CPAccessResult;
2409
c4241c7d
PM
2410/* Access functions for coprocessor registers. These cannot fail and
2411 * may not raise exceptions.
2412 */
2413typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2414typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2415 uint64_t value);
f59df3f2 2416/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2417typedef CPAccessResult CPAccessFn(CPUARMState *env,
2418 const ARMCPRegInfo *opaque,
2419 bool isread);
4b6a83fb
PM
2420/* Hook function for register reset */
2421typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2422
2423#define CP_ANY 0xff
2424
2425/* Definition of an ARM coprocessor register */
2426struct ARMCPRegInfo {
2427 /* Name of register (useful mainly for debugging, need not be unique) */
2428 const char *name;
2429 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2430 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2431 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2432 * will be decoded to this register. The register read and write
2433 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2434 * used by the program, so it is possible to register a wildcard and
2435 * then behave differently on read/write if necessary.
2436 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2437 * must both be zero.
f5a0a5a5
PM
2438 * For AArch64-visible registers, opc0 is also used.
2439 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2440 * way to distinguish (for KVM's benefit) guest-visible system registers
2441 * from demuxed ones provided to preserve the "no side effects on
2442 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2443 * visible (to match KVM's encoding); cp==0 will be converted to
2444 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2445 */
2446 uint8_t cp;
2447 uint8_t crn;
2448 uint8_t crm;
f5a0a5a5 2449 uint8_t opc0;
4b6a83fb
PM
2450 uint8_t opc1;
2451 uint8_t opc2;
f5a0a5a5
PM
2452 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2453 int state;
4b6a83fb
PM
2454 /* Register type: ARM_CP_* bits/values */
2455 int type;
2456 /* Access rights: PL*_[RW] */
2457 int access;
c3e30260
FA
2458 /* Security state: ARM_CP_SECSTATE_* bits/values */
2459 int secure;
4b6a83fb
PM
2460 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2461 * this register was defined: can be used to hand data through to the
2462 * register read/write functions, since they are passed the ARMCPRegInfo*.
2463 */
2464 void *opaque;
2465 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2466 * fieldoffset is non-zero, the reset value of the register.
2467 */
2468 uint64_t resetvalue;
c3e30260
FA
2469 /* Offset of the field in CPUARMState for this register.
2470 *
2471 * This is not needed if either:
4b6a83fb
PM
2472 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2473 * 2. both readfn and writefn are specified
2474 */
2475 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2476
2477 /* Offsets of the secure and non-secure fields in CPUARMState for the
2478 * register if it is banked. These fields are only used during the static
2479 * registration of a register. During hashing the bank associated
2480 * with a given security state is copied to fieldoffset which is used from
2481 * there on out.
2482 *
2483 * It is expected that register definitions use either fieldoffset or
2484 * bank_fieldoffsets in the definition but not both. It is also expected
2485 * that both bank offsets are set when defining a banked register. This
2486 * use indicates that a register is banked.
2487 */
2488 ptrdiff_t bank_fieldoffsets[2];
2489
f59df3f2
PM
2490 /* Function for making any access checks for this register in addition to
2491 * those specified by the 'access' permissions bits. If NULL, no extra
2492 * checks required. The access check is performed at runtime, not at
2493 * translate time.
2494 */
2495 CPAccessFn *accessfn;
4b6a83fb
PM
2496 /* Function for handling reads of this register. If NULL, then reads
2497 * will be done by loading from the offset into CPUARMState specified
2498 * by fieldoffset.
2499 */
2500 CPReadFn *readfn;
2501 /* Function for handling writes of this register. If NULL, then writes
2502 * will be done by writing to the offset into CPUARMState specified
2503 * by fieldoffset.
2504 */
2505 CPWriteFn *writefn;
7023ec7e
PM
2506 /* Function for doing a "raw" read; used when we need to copy
2507 * coprocessor state to the kernel for KVM or out for
2508 * migration. This only needs to be provided if there is also a
c4241c7d 2509 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2510 */
2511 CPReadFn *raw_readfn;
2512 /* Function for doing a "raw" write; used when we need to copy KVM
2513 * kernel coprocessor state into userspace, or for inbound
2514 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2515 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2516 * or similar behaviour.
7023ec7e
PM
2517 */
2518 CPWriteFn *raw_writefn;
4b6a83fb
PM
2519 /* Function for resetting the register. If NULL, then reset will be done
2520 * by writing resetvalue to the field specified in fieldoffset. If
2521 * fieldoffset is 0 then no reset will be done.
2522 */
2523 CPResetFn *resetfn;
2524};
2525
2526/* Macros which are lvalues for the field in CPUARMState for the
2527 * ARMCPRegInfo *ri.
2528 */
2529#define CPREG_FIELD32(env, ri) \
2530 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2531#define CPREG_FIELD64(env, ri) \
2532 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2533
2534#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2535
2536void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2537 const ARMCPRegInfo *regs, void *opaque);
2538void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2539 const ARMCPRegInfo *regs, void *opaque);
2540static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2541{
2542 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2543}
2544static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2545{
2546 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2547}
60322b39 2548const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2549
6c5c0fec
AB
2550/*
2551 * Definition of an ARM co-processor register as viewed from
2552 * userspace. This is used for presenting sanitised versions of
2553 * registers to userspace when emulating the Linux AArch64 CPU
2554 * ID/feature ABI (advertised as HWCAP_CPUID).
2555 */
2556typedef struct ARMCPRegUserSpaceInfo {
2557 /* Name of register */
2558 const char *name;
2559
d040242e
AB
2560 /* Is the name actually a glob pattern */
2561 bool is_glob;
2562
6c5c0fec
AB
2563 /* Only some bits are exported to user space */
2564 uint64_t exported_bits;
2565
2566 /* Fixed bits are applied after the mask */
2567 uint64_t fixed_bits;
2568} ARMCPRegUserSpaceInfo;
2569
2570#define REGUSERINFO_SENTINEL { .name = NULL }
2571
2572void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2573
4b6a83fb 2574/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2575void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2576 uint64_t value);
4b6a83fb 2577/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2578uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2579
f5a0a5a5
PM
2580/* CPResetFn that does nothing, for use if no reset is required even
2581 * if fieldoffset is non zero.
2582 */
2583void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2584
67ed771d
PM
2585/* Return true if this reginfo struct's field in the cpu state struct
2586 * is 64 bits wide.
2587 */
2588static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2589{
2590 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2591}
2592
dcbff19b 2593static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2594 const ARMCPRegInfo *ri, int isread)
2595{
dcbff19b 2596 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2597}
2598
49a66191
PM
2599/* Raw read of a coprocessor register (as needed for migration, etc) */
2600uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2601
721fae12
PM
2602/**
2603 * write_list_to_cpustate
2604 * @cpu: ARMCPU
2605 *
2606 * For each register listed in the ARMCPU cpreg_indexes list, write
2607 * its value from the cpreg_values list into the ARMCPUState structure.
2608 * This updates TCG's working data structures from KVM data or
2609 * from incoming migration state.
2610 *
2611 * Returns: true if all register values were updated correctly,
2612 * false if some register was unknown or could not be written.
2613 * Note that we do not stop early on failure -- we will attempt
2614 * writing all registers in the list.
2615 */
2616bool write_list_to_cpustate(ARMCPU *cpu);
2617
2618/**
2619 * write_cpustate_to_list:
2620 * @cpu: ARMCPU
b698e4ee 2621 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2622 *
2623 * For each register listed in the ARMCPU cpreg_indexes list, write
2624 * its value from the ARMCPUState structure into the cpreg_values list.
2625 * This is used to copy info from TCG's working data structures into
2626 * KVM or for outbound migration.
2627 *
b698e4ee
PM
2628 * @kvm_sync is true if we are doing this in order to sync the
2629 * register state back to KVM. In this case we will only update
2630 * values in the list if the previous list->cpustate sync actually
2631 * successfully wrote the CPU state. Otherwise we will keep the value
2632 * that is in the list.
2633 *
721fae12
PM
2634 * Returns: true if all register values were read correctly,
2635 * false if some register was unknown or could not be read.
2636 * Note that we do not stop early on failure -- we will attempt
2637 * reading all registers in the list.
2638 */
b698e4ee 2639bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2640
9ee6e8bb
PB
2641#define ARM_CPUID_TI915T 0x54029152
2642#define ARM_CPUID_TI925T 0x54029252
40f137e1 2643
012a906b
GB
2644static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2645 unsigned int target_el)
043b7f8d
EI
2646{
2647 CPUARMState *env = cs->env_ptr;
dcbff19b 2648 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2649 bool secure = arm_is_secure(env);
57e3a0c7
GB
2650 bool pstate_unmasked;
2651 int8_t unmasked = 0;
f7778444 2652 uint64_t hcr_el2;
57e3a0c7
GB
2653
2654 /* Don't take exceptions if they target a lower EL.
2655 * This check should catch any exceptions that would not be taken but left
2656 * pending.
2657 */
dfafd090
EI
2658 if (cur_el > target_el) {
2659 return false;
2660 }
043b7f8d 2661
f7778444
RH
2662 hcr_el2 = arm_hcr_el2_eff(env);
2663
043b7f8d
EI
2664 switch (excp_idx) {
2665 case EXCP_FIQ:
57e3a0c7
GB
2666 pstate_unmasked = !(env->daif & PSTATE_F);
2667 break;
2668
043b7f8d 2669 case EXCP_IRQ:
57e3a0c7
GB
2670 pstate_unmasked = !(env->daif & PSTATE_I);
2671 break;
2672
136e67e9 2673 case EXCP_VFIQ:
f7778444 2674 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2675 /* VFIQs are only taken when hypervized and non-secure. */
2676 return false;
2677 }
2678 return !(env->daif & PSTATE_F);
2679 case EXCP_VIRQ:
f7778444 2680 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2681 /* VIRQs are only taken when hypervized and non-secure. */
2682 return false;
2683 }
b5c633c5 2684 return !(env->daif & PSTATE_I);
043b7f8d
EI
2685 default:
2686 g_assert_not_reached();
2687 }
57e3a0c7
GB
2688
2689 /* Use the target EL, current execution state and SCR/HCR settings to
2690 * determine whether the corresponding CPSR bit is used to mask the
2691 * interrupt.
2692 */
2693 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2694 /* Exceptions targeting a higher EL may not be maskable */
2695 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2696 /* 64-bit masking rules are simple: exceptions to EL3
2697 * can't be masked, and exceptions to EL2 can only be
2698 * masked from Secure state. The HCR and SCR settings
2699 * don't affect the masking logic, only the interrupt routing.
2700 */
2701 if (target_el == 3 || !secure) {
2702 unmasked = 1;
2703 }
2704 } else {
2705 /* The old 32-bit-only environment has a more complicated
2706 * masking setup. HCR and SCR bits not only affect interrupt
2707 * routing but also change the behaviour of masking.
2708 */
2709 bool hcr, scr;
2710
2711 switch (excp_idx) {
2712 case EXCP_FIQ:
2713 /* If FIQs are routed to EL3 or EL2 then there are cases where
2714 * we override the CPSR.F in determining if the exception is
2715 * masked or not. If neither of these are set then we fall back
2716 * to the CPSR.F setting otherwise we further assess the state
2717 * below.
2718 */
f7778444 2719 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2720 scr = (env->cp15.scr_el3 & SCR_FIQ);
2721
2722 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2723 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2724 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2725 * when non-secure but only when FIQs are only routed to EL3.
2726 */
2727 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2728 break;
2729 case EXCP_IRQ:
2730 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2731 * we may override the CPSR.I masking when in non-secure state.
2732 * The SCR.IRQ setting has already been taken into consideration
2733 * when setting the target EL, so it does not have a further
2734 * affect here.
2735 */
f7778444 2736 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2737 scr = false;
2738 break;
2739 default:
2740 g_assert_not_reached();
2741 }
2742
2743 if ((scr || hcr) && !secure) {
2744 unmasked = 1;
2745 }
57e3a0c7
GB
2746 }
2747 }
2748
2749 /* The PSTATE bits only mask the interrupt if we have not overriden the
2750 * ability above.
2751 */
2752 return unmasked || pstate_unmasked;
043b7f8d
EI
2753}
2754
ba1ba5cc
IM
2755#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2756#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2757#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2758
9467d44c 2759#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2760#define cpu_list arm_cpu_list
9467d44c 2761
c1e37810
PM
2762/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2763 *
2764 * If EL3 is 64-bit:
2765 * + NonSecure EL1 & 0 stage 1
2766 * + NonSecure EL1 & 0 stage 2
2767 * + NonSecure EL2
2768 * + Secure EL1 & EL0
2769 * + Secure EL3
2770 * If EL3 is 32-bit:
2771 * + NonSecure PL1 & 0 stage 1
2772 * + NonSecure PL1 & 0 stage 2
2773 * + NonSecure PL2
2774 * + Secure PL0 & PL1
2775 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2776 *
2777 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2778 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2779 * may differ in access permissions even if the VA->PA map is the same
2780 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2781 * translation, which means that we have one mmu_idx that deals with two
2782 * concatenated translation regimes [this sort of combined s1+2 TLB is
2783 * architecturally permitted]
2784 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2785 * handling via the TLB. The only way to do a stage 1 translation without
2786 * the immediate stage 2 translation is via the ATS or AT system insns,
2787 * which can be slow-pathed and always do a page table walk.
2788 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2789 * translation regimes, because they map reasonably well to each other
2790 * and they can't both be active at the same time.
2791 * This gives us the following list of mmu_idx values:
2792 *
2793 * NS EL0 (aka NS PL0) stage 1+2
2794 * NS EL1 (aka NS PL1) stage 1+2
2795 * NS EL2 (aka NS PL2)
2796 * S EL3 (aka S PL1)
2797 * S EL0 (aka S PL0)
2798 * S EL1 (not used if EL3 is 32 bit)
2799 * NS EL0+1 stage 2
2800 *
2801 * (The last of these is an mmu_idx because we want to be able to use the TLB
2802 * for the accesses done as part of a stage 1 page table walk, rather than
2803 * having to walk the stage 2 page table over and over.)
2804 *
3bef7012
PM
2805 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2806 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2807 * NS EL2 if we ever model a Cortex-R52).
2808 *
2809 * M profile CPUs are rather different as they do not have a true MMU.
2810 * They have the following different MMU indexes:
2811 * User
2812 * Privileged
62593718
PM
2813 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2814 * Privileged, execution priority negative (ditto)
66787c78
PM
2815 * If the CPU supports the v8M Security Extension then there are also:
2816 * Secure User
2817 * Secure Privileged
62593718
PM
2818 * Secure User, execution priority negative
2819 * Secure Privileged, execution priority negative
3bef7012 2820 *
8bd5c820
PM
2821 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2822 * are not quite the same -- different CPU types (most notably M profile
2823 * vs A/R profile) would like to use MMU indexes with different semantics,
2824 * but since we don't ever need to use all of those in a single CPU we
2825 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2826 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2827 * the same for any particular CPU.
2828 * Variables of type ARMMUIdx are always full values, and the core
2829 * index values are in variables of type 'int'.
2830 *
c1e37810
PM
2831 * Our enumeration includes at the end some entries which are not "true"
2832 * mmu_idx values in that they don't have corresponding TLBs and are only
2833 * valid for doing slow path page table walks.
2834 *
2835 * The constant names here are patterned after the general style of the names
2836 * of the AT/ATS operations.
2837 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2838 * For M profile we arrange them to have a bit for priv, a bit for negpri
2839 * and a bit for secure.
c1e37810 2840 */
e7b921c2 2841#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2842#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2843#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2844
62593718
PM
2845/* meanings of the bits for M profile mmu idx values */
2846#define ARM_MMU_IDX_M_PRIV 0x1
2847#define ARM_MMU_IDX_M_NEGPRI 0x2
2848#define ARM_MMU_IDX_M_S 0x4
2849
8bd5c820
PM
2850#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2851#define ARM_MMU_IDX_COREIDX_MASK 0x7
2852
c1e37810 2853typedef enum ARMMMUIdx {
8bd5c820
PM
2854 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2855 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2856 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2857 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2858 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2859 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2860 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2861 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2862 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2863 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2864 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2865 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2866 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2867 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2868 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2869 /* Indexes below here don't have TLBs and are used only for AT system
2870 * instructions or for the first stage of an S12 page table walk.
2871 */
8bd5c820
PM
2872 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2873 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2874} ARMMMUIdx;
2875
8bd5c820
PM
2876/* Bit macros for the core-mmu-index values for each index,
2877 * for use when calling tlb_flush_by_mmuidx() and friends.
2878 */
2879typedef enum ARMMMUIdxBit {
2880 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2881 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2882 ARMMMUIdxBit_S1E2 = 1 << 2,
2883 ARMMMUIdxBit_S1E3 = 1 << 3,
2884 ARMMMUIdxBit_S1SE0 = 1 << 4,
2885 ARMMMUIdxBit_S1SE1 = 1 << 5,
2886 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2887 ARMMMUIdxBit_MUser = 1 << 0,
2888 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2889 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2890 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2891 ARMMMUIdxBit_MSUser = 1 << 4,
2892 ARMMMUIdxBit_MSPriv = 1 << 5,
2893 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2894 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2895} ARMMMUIdxBit;
2896
f79fbf39 2897#define MMU_USER_IDX 0
c1e37810 2898
8bd5c820
PM
2899static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2900{
2901 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2902}
2903
2904static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2905{
e7b921c2
PM
2906 if (arm_feature(env, ARM_FEATURE_M)) {
2907 return mmu_idx | ARM_MMU_IDX_M;
2908 } else {
2909 return mmu_idx | ARM_MMU_IDX_A;
2910 }
8bd5c820
PM
2911}
2912
c1e37810
PM
2913/* Return the exception level we're running at if this is our mmu_idx */
2914static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2915{
8bd5c820
PM
2916 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2917 case ARM_MMU_IDX_A:
2918 return mmu_idx & 3;
e7b921c2 2919 case ARM_MMU_IDX_M:
62593718 2920 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2921 default:
2922 g_assert_not_reached();
2923 }
c1e37810
PM
2924}
2925
fa6252a9
PM
2926/*
2927 * Return the MMU index for a v7M CPU with all relevant information
2928 * manually specified.
2929 */
2930ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2931 bool secstate, bool priv, bool negpri);
2932
ec8e3340 2933/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2934 * privilege state.
ec8e3340 2935 */
65e4655c
RH
2936ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2937 bool secstate, bool priv);
b81ac0eb 2938
ec8e3340 2939/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2940ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2941
50494a27
RH
2942/**
2943 * cpu_mmu_index:
2944 * @env: The cpu environment
2945 * @ifetch: True for code access, false for data access.
2946 *
2947 * Return the core mmu index for the current translation regime.
2948 * This function is used by generic TCG code paths.
2949 */
65e4655c 2950int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2951
9e273ef2
PM
2952/* Indexes used when registering address spaces with cpu_address_space_init */
2953typedef enum ARMASIdx {
2954 ARMASIdx_NS = 0,
2955 ARMASIdx_S = 1,
2956} ARMASIdx;
2957
533e93f1 2958/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2959static inline int arm_debug_target_el(CPUARMState *env)
2960{
81669b8b
SF
2961 bool secure = arm_is_secure(env);
2962 bool route_to_el2 = false;
2963
2964 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2965 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2966 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2967 }
2968
2969 if (route_to_el2) {
2970 return 2;
2971 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2972 !arm_el_is_aa64(env, 3) && secure) {
2973 return 3;
2974 } else {
2975 return 1;
2976 }
3a298203
PM
2977}
2978
43bbce7f
PM
2979static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2980{
2981 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2982 * CSSELR is RAZ/WI.
2983 */
2984 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2985}
2986
22af9025 2987/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2988static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2989{
22af9025
AB
2990 int cur_el = arm_current_el(env);
2991 int debug_el;
2992
2993 if (cur_el == 3) {
2994 return false;
533e93f1
PM
2995 }
2996
22af9025
AB
2997 /* MDCR_EL3.SDD disables debug events from Secure state */
2998 if (arm_is_secure_below_el3(env)
2999 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3000 return false;
3a298203 3001 }
22af9025
AB
3002
3003 /*
3004 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3005 * while not masking the (D)ebug bit in DAIF.
3006 */
3007 debug_el = arm_debug_target_el(env);
3008
3009 if (cur_el == debug_el) {
3010 return extract32(env->cp15.mdscr_el1, 13, 1)
3011 && !(env->daif & PSTATE_D);
3012 }
3013
3014 /* Otherwise the debug target needs to be a higher EL */
3015 return debug_el > cur_el;
3a298203
PM
3016}
3017
3018static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3019{
533e93f1
PM
3020 int el = arm_current_el(env);
3021
3022 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3023 return aa64_generate_debug_exceptions(env);
3024 }
533e93f1
PM
3025
3026 if (arm_is_secure(env)) {
3027 int spd;
3028
3029 if (el == 0 && (env->cp15.sder & 1)) {
3030 /* SDER.SUIDEN means debug exceptions from Secure EL0
3031 * are always enabled. Otherwise they are controlled by
3032 * SDCR.SPD like those from other Secure ELs.
3033 */
3034 return true;
3035 }
3036
3037 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3038 switch (spd) {
3039 case 1:
3040 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3041 case 0:
3042 /* For 0b00 we return true if external secure invasive debug
3043 * is enabled. On real hardware this is controlled by external
3044 * signals to the core. QEMU always permits debug, and behaves
3045 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3046 */
3047 return true;
3048 case 2:
3049 return false;
3050 case 3:
3051 return true;
3052 }
3053 }
3054
3055 return el != 2;
3a298203
PM
3056}
3057
3058/* Return true if debugging exceptions are currently enabled.
3059 * This corresponds to what in ARM ARM pseudocode would be
3060 * if UsingAArch32() then
3061 * return AArch32.GenerateDebugExceptions()
3062 * else
3063 * return AArch64.GenerateDebugExceptions()
3064 * We choose to push the if() down into this function for clarity,
3065 * since the pseudocode has it at all callsites except for the one in
3066 * CheckSoftwareStep(), where it is elided because both branches would
3067 * always return the same value.
3a298203
PM
3068 */
3069static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3070{
3071 if (env->aarch64) {
3072 return aa64_generate_debug_exceptions(env);
3073 } else {
3074 return aa32_generate_debug_exceptions(env);
3075 }
3076}
3077
3078/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3079 * implicitly means this always returns false in pre-v8 CPUs.)
3080 */
3081static inline bool arm_singlestep_active(CPUARMState *env)
3082{
3083 return extract32(env->cp15.mdscr_el1, 0, 1)
3084 && arm_el_is_aa64(env, arm_debug_target_el(env))
3085 && arm_generate_debug_exceptions(env);
3086}
3087
f9fd40eb
PB
3088static inline bool arm_sctlr_b(CPUARMState *env)
3089{
3090 return
3091 /* We need not implement SCTLR.ITD in user-mode emulation, so
3092 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3093 * This lets people run BE32 binaries with "-cpu any".
3094 */
3095#ifndef CONFIG_USER_ONLY
3096 !arm_feature(env, ARM_FEATURE_V7) &&
3097#endif
3098 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3099}
3100
64e40755
RH
3101static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3102{
3103 if (el == 0) {
3104 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3105 return env->cp15.sctlr_el[1];
3106 } else {
3107 return env->cp15.sctlr_el[el];
3108 }
3109}
3110
8061a649
RH
3111static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3112 bool sctlr_b)
3113{
3114#ifdef CONFIG_USER_ONLY
3115 /*
3116 * In system mode, BE32 is modelled in line with the
3117 * architecture (as word-invariant big-endianness), where loads
3118 * and stores are done little endian but from addresses which
3119 * are adjusted by XORing with the appropriate constant. So the
3120 * endianness to use for the raw data access is not affected by
3121 * SCTLR.B.
3122 * In user mode, however, we model BE32 as byte-invariant
3123 * big-endianness (because user-only code cannot tell the
3124 * difference), and so we need to use a data access endianness
3125 * that depends on SCTLR.B.
3126 */
3127 if (sctlr_b) {
3128 return true;
3129 }
3130#endif
3131 /* In 32bit endianness is determined by looking at CPSR's E bit */
3132 return env->uncached_cpsr & CPSR_E;
3133}
3134
3135static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3136{
3137 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3138}
64e40755 3139
ed50ff78
PC
3140/* Return true if the processor is in big-endian mode. */
3141static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3142{
ed50ff78 3143 if (!is_a64(env)) {
8061a649 3144 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3145 } else {
3146 int cur_el = arm_current_el(env);
3147 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3148 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3149 }
ed50ff78
PC
3150}
3151
4f7c64b3 3152typedef CPUARMState CPUArchState;
2161a612 3153typedef ARMCPU ArchCPU;
4f7c64b3 3154
022c62cb 3155#include "exec/cpu-all.h"
622ed360 3156
fdd1b228
RH
3157/*
3158 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3159 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3160 * We put flags which are shared between 32 and 64 bit mode at the top
3161 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228
RH
3162 *
3163 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3164 */
aad821ac
RH
3165FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3166FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3167FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
fdd1b228 3168FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) /* Not cached. */
9dbbc748 3169/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3170FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3171FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
8bd587c1
PM
3172/*
3173 * For A-profile only, target EL for debug exceptions.
3174 * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
3175 */
3176FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)
3926cc84
AG
3177
3178/* Bit usage when in AArch32 state: */
fdd1b228
RH
3179FIELD(TBFLAG_A32, THUMB, 0, 1) /* Not cached. */
3180FIELD(TBFLAG_A32, VECLEN, 1, 3) /* Not cached. */
3181FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) /* Not cached. */
ea7ac69d
PM
3182/*
3183 * We store the bottom two bits of the CPAR as TB flags and handle
3184 * checks on the other bits at runtime. This shares the same bits as
3185 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3186 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d
PM
3187 */
3188FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
7fbb535f
PM
3189/*
3190 * Indicates whether cp register reads and writes by guest code should access
3191 * the secure or nonsecure bank of banked registers; note that this is not
3192 * the same thing as the current security state of the processor!
3193 */
3194FIELD(TBFLAG_A32, NS, 6, 1)
0a54d68e 3195FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
fdd1b228 3196FIELD(TBFLAG_A32, CONDEXEC, 8, 8) /* Not cached. */
aad821ac 3197FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
e33cf0f8 3198/* For M profile only, set if FPCCR.LSPACT is set */
fdd1b228 3199FIELD(TBFLAG_A32, LSPACT, 18, 1) /* Not cached. */
6000531e 3200/* For M profile only, set if we must create a new FP context */
fdd1b228 3201FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */
6d60c67a 3202/* For M profile only, set if FPCCR.S does not match current security state */
fdd1b228 3203FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */
064c379c 3204/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3205FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3206/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3207FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3208
86fb3fa4 3209/* Bit usage when in AArch64 state */
476a4692 3210FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3211FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3212FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3213FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3214FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3215FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3216FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3217
f9fd40eb
PB
3218static inline bool bswap_code(bool sctlr_b)
3219{
3220#ifdef CONFIG_USER_ONLY
3221 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3222 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3223 * would also end up as a mixed-endian mode with BE code, LE data.
3224 */
3225 return
3226#ifdef TARGET_WORDS_BIGENDIAN
3227 1 ^
3228#endif
3229 sctlr_b;
3230#else
e334bd31
PB
3231 /* All code access in ARM is little endian, and there are no loaders
3232 * doing swaps that need to be reversed
f9fd40eb
PB
3233 */
3234 return 0;
3235#endif
3236}
3237
c3ae85fc
PB
3238#ifdef CONFIG_USER_ONLY
3239static inline bool arm_cpu_bswap_data(CPUARMState *env)
3240{
3241 return
3242#ifdef TARGET_WORDS_BIGENDIAN
3243 1 ^
3244#endif
3245 arm_cpu_data_is_big_endian(env);
3246}
3247#endif
3248
a9e01311
RH
3249void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3250 target_ulong *cs_base, uint32_t *flags);
6b917547 3251
98128601
RH
3252enum {
3253 QEMU_PSCI_CONDUIT_DISABLED = 0,
3254 QEMU_PSCI_CONDUIT_SMC = 1,
3255 QEMU_PSCI_CONDUIT_HVC = 2,
3256};
3257
017518c1
PM
3258#ifndef CONFIG_USER_ONLY
3259/* Return the address space index to use for a memory access */
3260static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3261{
3262 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3263}
5ce4ff65
PM
3264
3265/* Return the AddressSpace to use for a memory access
3266 * (which depends on whether the access is S or NS, and whether
3267 * the board gave us a separate AddressSpace for S accesses).
3268 */
3269static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3270{
3271 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3272}
017518c1
PM
3273#endif
3274
bd7d00fc 3275/**
b5c53d1b
AL
3276 * arm_register_pre_el_change_hook:
3277 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3278 * CPU changes exception level or mode. The hook function will be
3279 * passed a pointer to the ARMCPU and the opaque data pointer passed
3280 * to this function when the hook was registered.
b5c53d1b
AL
3281 *
3282 * Note that if a pre-change hook is called, any registered post-change hooks
3283 * are guaranteed to subsequently be called.
bd7d00fc 3284 */
b5c53d1b 3285void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3286 void *opaque);
b5c53d1b
AL
3287/**
3288 * arm_register_el_change_hook:
3289 * Register a hook function which will be called immediately after this
3290 * CPU changes exception level or mode. The hook function will be
3291 * passed a pointer to the ARMCPU and the opaque data pointer passed
3292 * to this function when the hook was registered.
3293 *
3294 * Note that any registered hooks registered here are guaranteed to be called
3295 * if pre-change hooks have been.
3296 */
3297void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3298 *opaque);
bd7d00fc 3299
9a2b5256
RH
3300/**
3301 * aa32_vfp_dreg:
3302 * Return a pointer to the Dn register within env in 32-bit mode.
3303 */
3304static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3305{
c39c2b90 3306 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3307}
3308
3309/**
3310 * aa32_vfp_qreg:
3311 * Return a pointer to the Qn register within env in 32-bit mode.
3312 */
3313static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3314{
c39c2b90 3315 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3316}
3317
3318/**
3319 * aa64_vfp_qreg:
3320 * Return a pointer to the Qn register within env in 64-bit mode.
3321 */
3322static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3323{
c39c2b90 3324 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3325}
3326
028e2a7b
RH
3327/* Shared between translate-sve.c and sve_helper.c. */
3328extern const uint64_t pred_esz_masks[4];
3329
962fcbf2
RH
3330/*
3331 * 32-bit feature tests via id registers.
3332 */
7e0cf8b4
RH
3333static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3334{
3335 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3336}
3337
3338static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3339{
3340 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3341}
3342
09cbd501
RH
3343static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3344{
3345 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3346}
3347
962fcbf2
RH
3348static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3349{
3350 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3351}
3352
3353static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3354{
3355 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3356}
3357
3358static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3359{
3360 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3361}
3362
3363static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3364{
3365 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3366}
3367
3368static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3369{
3370 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3371}
3372
3373static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3374{
3375 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3376}
3377
3378static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3379{
3380 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3381}
3382
6c1f6f27
RH
3383static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3384{
3385 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3386}
3387
962fcbf2
RH
3388static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3389{
3390 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3391}
3392
87732318
RH
3393static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3394{
3395 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3396}
3397
9888bd1e
RH
3398static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3399{
3400 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3401}
3402
cb570bd3
RH
3403static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3404{
3405 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3406}
3407
5763190f
RH
3408static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3409{
3410 /*
3411 * This is a placeholder for use by VCMA until the rest of
3412 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3413 * At which point we can properly set and check MVFR1.FPHP.
3414 */
3415 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3416}
3417
b3ff4b87
PM
3418static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3419{
3420 /* Return true if D16-D31 are implemented */
3421 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3422}
3423
266bd25c
PM
3424static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3425{
3426 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3427}
3428
1120827f
PM
3429static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3430{
3431 /* Return true if CPU supports double precision floating point */
3432 return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3433}
3434
602f6e42
PM
3435/*
3436 * We always set the FP and SIMD FP16 fields to indicate identical
3437 * levels of support (assuming SIMD is implemented at all), so
3438 * we only need one set of accessors.
3439 */
3440static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3441{
3442 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3443}
3444
3445static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3446{
3447 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3448}
3449
c0c760af
PM
3450static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3451{
3452 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3453}
3454
3455static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3456{
3457 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3458}
3459
3460static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3461{
3462 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3463}
3464
3465static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3466{
3467 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3468}
3469
962fcbf2
RH
3470/*
3471 * 64-bit feature tests via id registers.
3472 */
3473static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3474{
3475 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3476}
3477
3478static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3479{
3480 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3481}
3482
3483static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3484{
3485 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3486}
3487
3488static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3489{
3490 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3491}
3492
3493static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3494{
3495 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3496}
3497
3498static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3499{
3500 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3501}
3502
3503static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3504{
3505 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3506}
3507
3508static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3509{
3510 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3511}
3512
3513static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3514{
3515 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3516}
3517
3518static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3519{
3520 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3521}
3522
3523static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3524{
3525 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3526}
3527
3528static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3529{
3530 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3531}
3532
0caa5af8
RH
3533static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3534{
3535 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3536}
3537
b89d9c98
RH
3538static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3539{
3540 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3541}
3542
5ef84f11
RH
3543static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3544{
3545 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3546}
3547
de390645
RH
3548static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3549{
3550 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3551}
3552
6c1f6f27
RH
3553static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3554{
3555 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3556}
3557
962fcbf2
RH
3558static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3559{
3560 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3561}
3562
991ad91b
RH
3563static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3564{
3565 /*
3566 * Note that while QEMU will only implement the architected algorithm
3567 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3568 * defined algorithms, and thus API+GPI, and this predicate controls
3569 * migration of the 128-bit keys.
3570 */
3571 return (id->id_aa64isar1 &
3572 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3573 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3574 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3575 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3576}
3577
9888bd1e
RH
3578static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3579{
3580 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3581}
3582
cb570bd3
RH
3583static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3584{
3585 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3586}
3587
6bea2563
RH
3588static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3589{
3590 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3591}
3592
5763190f
RH
3593static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3594{
3595 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3596 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3597}
3598
0f8d06f1
RH
3599static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3600{
3601 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3602}
3603
cd208a1c
RH
3604static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3605{
3606 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3607}
3608
2d7137c1
RH
3609static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3610{
3611 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3612}
3613
be53b6f4
RH
3614static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3615{
3616 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3617}
3618
962fcbf2
RH
3619/*
3620 * Forward to the above feature tests given an ARMCPU pointer.
3621 */
3622#define cpu_isar_feature(name, cpu) \
3623 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3624
2c0262af 3625#endif