]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Handle SVE vector length changes in system mode
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
2c4a7cc5 59/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
60
61#define ARMV7M_EXCP_RESET 1
62#define ARMV7M_EXCP_NMI 2
63#define ARMV7M_EXCP_HARD 3
64#define ARMV7M_EXCP_MEM 4
65#define ARMV7M_EXCP_BUS 5
66#define ARMV7M_EXCP_USAGE 6
1e577cc7 67#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
68#define ARMV7M_EXCP_SVC 11
69#define ARMV7M_EXCP_DEBUG 12
70#define ARMV7M_EXCP_PENDSV 14
71#define ARMV7M_EXCP_SYSTICK 15
2c0262af 72
acf94941
PM
73/* For M profile, some registers are banked secure vs non-secure;
74 * these are represented as a 2-element array where the first element
75 * is the non-secure copy and the second is the secure copy.
76 * When the CPU does not have implement the security extension then
77 * only the first element is used.
78 * This means that the copy for the current security state can be
79 * accessed via env->registerfield[env->v7m.secure] (whether the security
80 * extension is implemented or not).
81 */
4a16724f
PM
82enum {
83 M_REG_NS = 0,
84 M_REG_S = 1,
85 M_REG_NUM_BANKS = 2,
86};
acf94941 87
403946c0
RH
88/* ARM-specific interrupt pending bits. */
89#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
90#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
91#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 92
e4fe830b
PM
93/* The usual mapping for an AArch64 system register to its AArch32
94 * counterpart is for the 32 bit world to have access to the lower
95 * half only (with writes leaving the upper half untouched). It's
96 * therefore useful to be able to pass TCG the offset of the least
97 * significant half of a uint64_t struct member.
98 */
99#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 100#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 101#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
102#else
103#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 104#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
105#endif
106
136e67e9 107/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
108#define ARM_CPU_IRQ 0
109#define ARM_CPU_FIQ 1
136e67e9
EI
110#define ARM_CPU_VIRQ 2
111#define ARM_CPU_VFIQ 3
403946c0 112
62593718 113#define NB_MMU_MODES 8
aaa1f954
EI
114/* ARM-specific extra insn start words:
115 * 1: Conditional execution bits
116 * 2: Partial exception syndrome for data aborts
117 */
118#define TARGET_INSN_START_EXTRA_WORDS 2
119
120/* The 2nd extra word holding syndrome info for data aborts does not use
121 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
122 * help the sleb128 encoder do a better job.
123 * When restoring the CPU state, we shift it back up.
124 */
125#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
126#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 127
b7bcbe95
FB
128/* We currently assume float and double are IEEE single and double
129 precision respectively.
130 Doing runtime conversions is tricky because VFP registers may contain
131 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
132 s<2n> maps to the least significant half of d<n>
133 s<2n+1> maps to the most significant half of d<n>
134 */
b7bcbe95 135
200bf5b7
AB
136/**
137 * DynamicGDBXMLInfo:
138 * @desc: Contains the XML descriptions.
139 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
140 * @cpregs_keys: Array that contains the corresponding Key of
141 * a given cpreg with the same order of the cpreg in the XML description.
142 */
143typedef struct DynamicGDBXMLInfo {
144 char *desc;
145 int num_cpregs;
146 uint32_t *cpregs_keys;
147} DynamicGDBXMLInfo;
148
55d284af
PM
149/* CPU state for each instance of a generic timer (in cp15 c14) */
150typedef struct ARMGenericTimer {
151 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 152 uint64_t ctl; /* Timer Control register */
55d284af
PM
153} ARMGenericTimer;
154
155#define GTIMER_PHYS 0
156#define GTIMER_VIRT 1
b0e66d95 157#define GTIMER_HYP 2
b4d3978c
PM
158#define GTIMER_SEC 3
159#define NUM_GTIMERS 4
55d284af 160
11f136ee
FA
161typedef struct {
162 uint64_t raw_tcr;
163 uint32_t mask;
164 uint32_t base_mask;
165} TCR;
166
c39c2b90
RH
167/* Define a maximum sized vector register.
168 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
169 * For 64-bit, this is a 2048-bit SVE register.
170 *
171 * Note that the mapping between S, D, and Q views of the register bank
172 * differs between AArch64 and AArch32.
173 * In AArch32:
174 * Qn = regs[n].d[1]:regs[n].d[0]
175 * Dn = regs[n / 2].d[n & 1]
176 * Sn = regs[n / 4].d[n % 4 / 2],
177 * bits 31..0 for even n, and bits 63..32 for odd n
178 * (and regs[16] to regs[31] are inaccessible)
179 * In AArch64:
180 * Zn = regs[n].d[*]
181 * Qn = regs[n].d[1]:regs[n].d[0]
182 * Dn = regs[n].d[0]
183 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 184 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
185 *
186 * This corresponds to the architecturally defined mapping between
187 * the two execution states, and means we do not need to explicitly
188 * map these registers when changing states.
189 *
190 * Align the data for use with TCG host vector operations.
191 */
192
193#ifdef TARGET_AARCH64
194# define ARM_MAX_VQ 16
195#else
196# define ARM_MAX_VQ 1
197#endif
198
199typedef struct ARMVectorReg {
200 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
201} ARMVectorReg;
202
3c7d3086
RH
203/* In AArch32 mode, predicate registers do not exist at all. */
204#ifdef TARGET_AARCH64
205typedef struct ARMPredicateReg {
206 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
207} ARMPredicateReg;
208#endif
209
c39c2b90 210
2c0262af 211typedef struct CPUARMState {
b5ff1b31 212 /* Regs for current mode. */
2c0262af 213 uint32_t regs[16];
3926cc84
AG
214
215 /* 32/64 switch only happens when taking and returning from
216 * exceptions so the overlap semantics are taken care of then
217 * instead of having a complicated union.
218 */
219 /* Regs for A64 mode. */
220 uint64_t xregs[32];
221 uint64_t pc;
d356312f
PM
222 /* PSTATE isn't an architectural register for ARMv8. However, it is
223 * convenient for us to assemble the underlying state into a 32 bit format
224 * identical to the architectural format used for the SPSR. (This is also
225 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
226 * 'pstate' register are.) Of the PSTATE bits:
227 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
228 * semantics as for AArch32, as described in the comments on each field)
229 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 230 * DAIF (exception masks) are kept in env->daif
d356312f 231 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
232 */
233 uint32_t pstate;
234 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
235
b90372ad 236 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 237 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
238 the whole CPSR. */
239 uint32_t uncached_cpsr;
240 uint32_t spsr;
241
242 /* Banked registers. */
28c9457d 243 uint64_t banked_spsr[8];
0b7d409d
FA
244 uint32_t banked_r13[8];
245 uint32_t banked_r14[8];
3b46e624 246
b5ff1b31
FB
247 /* These hold r8-r12. */
248 uint32_t usr_regs[5];
249 uint32_t fiq_regs[5];
3b46e624 250
2c0262af
FB
251 /* cpsr flag cache for faster execution */
252 uint32_t CF; /* 0 or 1 */
253 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
254 uint32_t NF; /* N is bit 31. All other bits are undefined. */
255 uint32_t ZF; /* Z set if zero. */
99c475ab 256 uint32_t QF; /* 0 or 1 */
9ee6e8bb 257 uint32_t GE; /* cpsr[19:16] */
b26eefb6 258 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 259 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 260 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 261
1b174238 262 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 263 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 264
b5ff1b31
FB
265 /* System control coprocessor (cp15) */
266 struct {
40f137e1 267 uint32_t c0_cpuid;
b85a1fd6
FA
268 union { /* Cache size selection */
269 struct {
270 uint64_t _unused_csselr0;
271 uint64_t csselr_ns;
272 uint64_t _unused_csselr1;
273 uint64_t csselr_s;
274 };
275 uint64_t csselr_el[4];
276 };
137feaa9
FA
277 union { /* System control register. */
278 struct {
279 uint64_t _unused_sctlr;
280 uint64_t sctlr_ns;
281 uint64_t hsctlr;
282 uint64_t sctlr_s;
283 };
284 uint64_t sctlr_el[4];
285 };
7ebd5f2e 286 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 287 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 288 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 289 uint64_t sder; /* Secure debug enable register. */
77022576 290 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
291 union { /* MMU translation table base 0. */
292 struct {
293 uint64_t _unused_ttbr0_0;
294 uint64_t ttbr0_ns;
295 uint64_t _unused_ttbr0_1;
296 uint64_t ttbr0_s;
297 };
298 uint64_t ttbr0_el[4];
299 };
300 union { /* MMU translation table base 1. */
301 struct {
302 uint64_t _unused_ttbr1_0;
303 uint64_t ttbr1_ns;
304 uint64_t _unused_ttbr1_1;
305 uint64_t ttbr1_s;
306 };
307 uint64_t ttbr1_el[4];
308 };
b698e9cf 309 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
310 /* MMU translation table base control. */
311 TCR tcr_el[4];
68e9c2fe 312 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
313 uint32_t c2_data; /* MPU data cacheable bits. */
314 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
315 union { /* MMU domain access control register
316 * MPU write buffer control.
317 */
318 struct {
319 uint64_t dacr_ns;
320 uint64_t dacr_s;
321 };
322 struct {
323 uint64_t dacr32_el2;
324 };
325 };
7e09797c
PM
326 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
327 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 328 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 329 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
330 union { /* Fault status registers. */
331 struct {
332 uint64_t ifsr_ns;
333 uint64_t ifsr_s;
334 };
335 struct {
336 uint64_t ifsr32_el2;
337 };
338 };
4a7e2d73
FA
339 union {
340 struct {
341 uint64_t _unused_dfsr;
342 uint64_t dfsr_ns;
343 uint64_t hsr;
344 uint64_t dfsr_s;
345 };
346 uint64_t esr_el[4];
347 };
ce819861 348 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
349 union { /* Fault address registers. */
350 struct {
351 uint64_t _unused_far0;
352#ifdef HOST_WORDS_BIGENDIAN
353 uint32_t ifar_ns;
354 uint32_t dfar_ns;
355 uint32_t ifar_s;
356 uint32_t dfar_s;
357#else
358 uint32_t dfar_ns;
359 uint32_t ifar_ns;
360 uint32_t dfar_s;
361 uint32_t ifar_s;
362#endif
363 uint64_t _unused_far3;
364 };
365 uint64_t far_el[4];
366 };
59e05530 367 uint64_t hpfar_el2;
2a5a9abd 368 uint64_t hstr_el2;
01c097f7
FA
369 union { /* Translation result. */
370 struct {
371 uint64_t _unused_par_0;
372 uint64_t par_ns;
373 uint64_t _unused_par_1;
374 uint64_t par_s;
375 };
376 uint64_t par_el[4];
377 };
6cb0b013 378
b5ff1b31
FB
379 uint32_t c9_insn; /* Cache lockdown registers. */
380 uint32_t c9_data;
8521466b
AF
381 uint64_t c9_pmcr; /* performance monitor control register */
382 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
383 uint64_t c9_pmovsr; /* perf monitor overflow status */
384 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 385 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 386 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
387 union { /* Memory attribute redirection */
388 struct {
389#ifdef HOST_WORDS_BIGENDIAN
390 uint64_t _unused_mair_0;
391 uint32_t mair1_ns;
392 uint32_t mair0_ns;
393 uint64_t _unused_mair_1;
394 uint32_t mair1_s;
395 uint32_t mair0_s;
396#else
397 uint64_t _unused_mair_0;
398 uint32_t mair0_ns;
399 uint32_t mair1_ns;
400 uint64_t _unused_mair_1;
401 uint32_t mair0_s;
402 uint32_t mair1_s;
403#endif
404 };
405 uint64_t mair_el[4];
406 };
fb6c91ba
GB
407 union { /* vector base address register */
408 struct {
409 uint64_t _unused_vbar;
410 uint64_t vbar_ns;
411 uint64_t hvbar;
412 uint64_t vbar_s;
413 };
414 uint64_t vbar_el[4];
415 };
e89e51a1 416 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
417 struct { /* FCSE PID. */
418 uint32_t fcseidr_ns;
419 uint32_t fcseidr_s;
420 };
421 union { /* Context ID. */
422 struct {
423 uint64_t _unused_contextidr_0;
424 uint64_t contextidr_ns;
425 uint64_t _unused_contextidr_1;
426 uint64_t contextidr_s;
427 };
428 uint64_t contextidr_el[4];
429 };
430 union { /* User RW Thread register. */
431 struct {
432 uint64_t tpidrurw_ns;
433 uint64_t tpidrprw_ns;
434 uint64_t htpidr;
435 uint64_t _tpidr_el3;
436 };
437 uint64_t tpidr_el[4];
438 };
439 /* The secure banks of these registers don't map anywhere */
440 uint64_t tpidrurw_s;
441 uint64_t tpidrprw_s;
442 uint64_t tpidruro_s;
443
444 union { /* User RO Thread register. */
445 uint64_t tpidruro_ns;
446 uint64_t tpidrro_el[1];
447 };
a7adc4b7
PM
448 uint64_t c14_cntfrq; /* Counter Frequency register */
449 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 450 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 451 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 452 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 453 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
454 uint32_t c15_ticonfig; /* TI925T configuration byte. */
455 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
456 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
457 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
458 uint32_t c15_config_base_address; /* SCU base address. */
459 uint32_t c15_diagnostic; /* diagnostic register */
460 uint32_t c15_power_diagnostic;
461 uint32_t c15_power_control; /* power control */
0b45451e
PM
462 uint64_t dbgbvr[16]; /* breakpoint value registers */
463 uint64_t dbgbcr[16]; /* breakpoint control registers */
464 uint64_t dbgwvr[16]; /* watchpoint value registers */
465 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 466 uint64_t mdscr_el1;
1424ca8d 467 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 468 uint64_t mdcr_el2;
5513c3ab 469 uint64_t mdcr_el3;
7c2cb42b
AF
470 /* If the counter is enabled, this stores the last time the counter
471 * was reset. Otherwise it stores the counter value
472 */
c92c0687 473 uint64_t c15_ccnt;
8521466b 474 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 475 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 476 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 477 } cp15;
40f137e1 478
9ee6e8bb 479 struct {
fb602cb7
PM
480 /* M profile has up to 4 stack pointers:
481 * a Main Stack Pointer and a Process Stack Pointer for each
482 * of the Secure and Non-Secure states. (If the CPU doesn't support
483 * the security extension then it has only two SPs.)
484 * In QEMU we always store the currently active SP in regs[13],
485 * and the non-active SP for the current security state in
486 * v7m.other_sp. The stack pointers for the inactive security state
487 * are stored in other_ss_msp and other_ss_psp.
488 * switch_v7m_security_state() is responsible for rearranging them
489 * when we change security state.
490 */
9ee6e8bb 491 uint32_t other_sp;
fb602cb7
PM
492 uint32_t other_ss_msp;
493 uint32_t other_ss_psp;
4a16724f
PM
494 uint32_t vecbase[M_REG_NUM_BANKS];
495 uint32_t basepri[M_REG_NUM_BANKS];
496 uint32_t control[M_REG_NUM_BANKS];
497 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
498 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
499 uint32_t hfsr; /* HardFault Status */
500 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 501 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 502 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 503 uint32_t bfar; /* BusFault Address */
bed079da 504 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 505 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 506 int exception;
4a16724f
PM
507 uint32_t primask[M_REG_NUM_BANKS];
508 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 509 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 510 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 511 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 512 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
513 uint32_t msplim[M_REG_NUM_BANKS];
514 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
515 } v7m;
516
abf1172f
PM
517 /* Information associated with an exception about to be taken:
518 * code which raises an exception must set cs->exception_index and
519 * the relevant parts of this structure; the cpu_do_interrupt function
520 * will then set the guest-visible registers as part of the exception
521 * entry process.
522 */
523 struct {
524 uint32_t syndrome; /* AArch64 format syndrome register */
525 uint32_t fsr; /* AArch32 format fault status register info */
526 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 527 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
528 /* If we implement EL2 we will also need to store information
529 * about the intermediate physical address for stage 2 faults.
530 */
531 } exception;
532
fe1479c3
PB
533 /* Thumb-2 EE state. */
534 uint32_t teecr;
535 uint32_t teehbr;
536
b7bcbe95
FB
537 /* VFP coprocessor state. */
538 struct {
c39c2b90 539 ARMVectorReg zregs[32];
b7bcbe95 540
3c7d3086
RH
541#ifdef TARGET_AARCH64
542 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 543#define FFR_PRED_NUM 16
3c7d3086 544 ARMPredicateReg pregs[17];
516e246a
RH
545 /* Scratch space for aa64 sve predicate temporary. */
546 ARMPredicateReg preg_tmp;
3c7d3086
RH
547#endif
548
40f137e1 549 uint32_t xregs[16];
b7bcbe95
FB
550 /* We store these fpcsr fields separately for convenience. */
551 int vec_len;
552 int vec_stride;
553
516e246a 554 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 555 uint32_t scratch[8];
3b46e624 556
d81ce0ef
AB
557 /* There are a number of distinct float control structures:
558 *
559 * fp_status: is the "normal" fp status.
560 * fp_status_fp16: used for half-precision calculations
561 * standard_fp_status : the ARM "Standard FPSCR Value"
562 *
563 * Half-precision operations are governed by a separate
564 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
565 * status structure to control this.
566 *
567 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
568 * round-to-nearest and is used by any operations (generally
569 * Neon) which the architecture defines as controlled by the
570 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
571 *
572 * To avoid having to transfer exception bits around, we simply
573 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 574 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
575 * only thing which needs to read the exception flags being
576 * an explicit FPSCR read.
577 */
53cd6637 578 float_status fp_status;
d81ce0ef 579 float_status fp_status_f16;
3a492f3a 580 float_status standard_fp_status;
5be5e8ed
RH
581
582 /* ZCR_EL[1-3] */
583 uint64_t zcr_el[4];
b7bcbe95 584 } vfp;
03d05e2d
PM
585 uint64_t exclusive_addr;
586 uint64_t exclusive_val;
587 uint64_t exclusive_high;
b7bcbe95 588
18c9b560
AZ
589 /* iwMMXt coprocessor state. */
590 struct {
591 uint64_t regs[16];
592 uint64_t val;
593
594 uint32_t cregs[16];
595 } iwmmxt;
596
ce4defa0
PB
597#if defined(CONFIG_USER_ONLY)
598 /* For usermode syscall translation. */
599 int eabi;
600#endif
601
46747d15 602 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
603 struct CPUWatchpoint *cpu_watchpoint[16];
604
1f5c00cf
AB
605 /* Fields up to this point are cleared by a CPU reset */
606 struct {} end_reset_fields;
607
a316d335
FB
608 CPU_COMMON
609
1f5c00cf 610 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 611
581be094 612 /* Internal CPU feature flags. */
918f5dca 613 uint64_t features;
581be094 614
6cb0b013
PC
615 /* PMSAv7 MPU */
616 struct {
617 uint32_t *drbar;
618 uint32_t *drsr;
619 uint32_t *dracr;
4a16724f 620 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
621 } pmsav7;
622
0e1a46bb
PM
623 /* PMSAv8 MPU */
624 struct {
625 /* The PMSAv8 implementation also shares some PMSAv7 config
626 * and state:
627 * pmsav7.rnr (region number register)
628 * pmsav7_dregion (number of configured regions)
629 */
4a16724f
PM
630 uint32_t *rbar[M_REG_NUM_BANKS];
631 uint32_t *rlar[M_REG_NUM_BANKS];
632 uint32_t mair0[M_REG_NUM_BANKS];
633 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
634 } pmsav8;
635
9901c576
PM
636 /* v8M SAU */
637 struct {
638 uint32_t *rbar;
639 uint32_t *rlar;
640 uint32_t rnr;
641 uint32_t ctrl;
642 } sau;
643
983fe826 644 void *nvic;
462a8bc6 645 const struct arm_boot_info *boot_info;
d3a3e529
VK
646 /* Store GICv3CPUState to access from this struct */
647 void *gicv3state;
2c0262af
FB
648} CPUARMState;
649
bd7d00fc 650/**
08267487 651 * ARMELChangeHookFn:
bd7d00fc
PM
652 * type of a function which can be registered via arm_register_el_change_hook()
653 * to get callbacks when the CPU changes its exception level or mode.
654 */
08267487
AL
655typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
656typedef struct ARMELChangeHook ARMELChangeHook;
657struct ARMELChangeHook {
658 ARMELChangeHookFn *hook;
659 void *opaque;
660 QLIST_ENTRY(ARMELChangeHook) node;
661};
062ba099
AB
662
663/* These values map onto the return values for
664 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
665typedef enum ARMPSCIState {
d5affb0d
AJ
666 PSCI_ON = 0,
667 PSCI_OFF = 1,
062ba099
AB
668 PSCI_ON_PENDING = 2
669} ARMPSCIState;
670
74e75564
PB
671/**
672 * ARMCPU:
673 * @env: #CPUARMState
674 *
675 * An ARM CPU core.
676 */
677struct ARMCPU {
678 /*< private >*/
679 CPUState parent_obj;
680 /*< public >*/
681
682 CPUARMState env;
683
684 /* Coprocessor information */
685 GHashTable *cp_regs;
686 /* For marshalling (mostly coprocessor) register state between the
687 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
688 * we use these arrays.
689 */
690 /* List of register indexes managed via these arrays; (full KVM style
691 * 64 bit indexes, not CPRegInfo 32 bit indexes)
692 */
693 uint64_t *cpreg_indexes;
694 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
695 uint64_t *cpreg_values;
696 /* Length of the indexes, values, reset_values arrays */
697 int32_t cpreg_array_len;
698 /* These are used only for migration: incoming data arrives in
699 * these fields and is sanity checked in post_load before copying
700 * to the working data structures above.
701 */
702 uint64_t *cpreg_vmstate_indexes;
703 uint64_t *cpreg_vmstate_values;
704 int32_t cpreg_vmstate_array_len;
705
200bf5b7
AB
706 DynamicGDBXMLInfo dyn_xml;
707
74e75564
PB
708 /* Timers used by the generic (architected) timer */
709 QEMUTimer *gt_timer[NUM_GTIMERS];
710 /* GPIO outputs for generic timer */
711 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
712 /* GPIO output for GICv3 maintenance interrupt signal */
713 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
714 /* GPIO output for the PMU interrupt */
715 qemu_irq pmu_interrupt;
74e75564
PB
716
717 /* MemoryRegion to use for secure physical accesses */
718 MemoryRegion *secure_memory;
719
181962fd
PM
720 /* For v8M, pointer to the IDAU interface provided by board/SoC */
721 Object *idau;
722
74e75564
PB
723 /* 'compatible' string for this CPU for Linux device trees */
724 const char *dtb_compatible;
725
726 /* PSCI version for this CPU
727 * Bits[31:16] = Major Version
728 * Bits[15:0] = Minor Version
729 */
730 uint32_t psci_version;
731
732 /* Should CPU start in PSCI powered-off state? */
733 bool start_powered_off;
062ba099
AB
734
735 /* Current power state, access guarded by BQL */
736 ARMPSCIState power_state;
737
c25bd18a
PM
738 /* CPU has virtualization extension */
739 bool has_el2;
74e75564
PB
740 /* CPU has security extension */
741 bool has_el3;
5c0a3819
SZ
742 /* CPU has PMU (Performance Monitor Unit) */
743 bool has_pmu;
74e75564
PB
744
745 /* CPU has memory protection unit */
746 bool has_mpu;
747 /* PMSAv7 MPU number of supported regions */
748 uint32_t pmsav7_dregion;
9901c576
PM
749 /* v8M SAU number of supported regions */
750 uint32_t sau_sregion;
74e75564
PB
751
752 /* PSCI conduit used to invoke PSCI methods
753 * 0 - disabled, 1 - smc, 2 - hvc
754 */
755 uint32_t psci_conduit;
756
38e2a77c
PM
757 /* For v8M, initial value of the Secure VTOR */
758 uint32_t init_svtor;
759
74e75564
PB
760 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
761 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
762 */
763 uint32_t kvm_target;
764
765 /* KVM init features for this CPU */
766 uint32_t kvm_init_features[7];
767
768 /* Uniprocessor system with MP extensions */
769 bool mp_is_up;
770
c4487d76
PM
771 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
772 * and the probe failed (so we need to report the error in realize)
773 */
774 bool host_cpu_probe_failed;
775
f9a69711
AF
776 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
777 * register.
778 */
779 int32_t core_count;
780
74e75564
PB
781 /* The instance init functions for implementation-specific subclasses
782 * set these fields to specify the implementation-dependent values of
783 * various constant registers and reset values of non-constant
784 * registers.
785 * Some of these might become QOM properties eventually.
786 * Field names match the official register names as defined in the
787 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
788 * is used for reset values of non-constant registers; no reset_
789 * prefix means a constant register.
790 */
791 uint32_t midr;
792 uint32_t revidr;
793 uint32_t reset_fpsid;
794 uint32_t mvfr0;
795 uint32_t mvfr1;
796 uint32_t mvfr2;
797 uint32_t ctr;
798 uint32_t reset_sctlr;
799 uint32_t id_pfr0;
800 uint32_t id_pfr1;
801 uint32_t id_dfr0;
802 uint32_t pmceid0;
803 uint32_t pmceid1;
804 uint32_t id_afr0;
805 uint32_t id_mmfr0;
806 uint32_t id_mmfr1;
807 uint32_t id_mmfr2;
808 uint32_t id_mmfr3;
809 uint32_t id_mmfr4;
810 uint32_t id_isar0;
811 uint32_t id_isar1;
812 uint32_t id_isar2;
813 uint32_t id_isar3;
814 uint32_t id_isar4;
815 uint32_t id_isar5;
802abf40 816 uint32_t id_isar6;
74e75564
PB
817 uint64_t id_aa64pfr0;
818 uint64_t id_aa64pfr1;
819 uint64_t id_aa64dfr0;
820 uint64_t id_aa64dfr1;
821 uint64_t id_aa64afr0;
822 uint64_t id_aa64afr1;
823 uint64_t id_aa64isar0;
824 uint64_t id_aa64isar1;
825 uint64_t id_aa64mmfr0;
826 uint64_t id_aa64mmfr1;
827 uint32_t dbgdidr;
828 uint32_t clidr;
829 uint64_t mp_affinity; /* MP ID without feature bits */
830 /* The elements of this array are the CCSIDR values for each cache,
831 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
832 */
833 uint32_t ccsidr[16];
834 uint64_t reset_cbar;
835 uint32_t reset_auxcr;
836 bool reset_hivecs;
837 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
838 uint32_t dcz_blocksize;
839 uint64_t rvbar;
bd7d00fc 840
e45868a3
PM
841 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
842 int gic_num_lrs; /* number of list registers */
843 int gic_vpribits; /* number of virtual priority bits */
844 int gic_vprebits; /* number of virtual preemption bits */
845
3a062d57
JB
846 /* Whether the cfgend input is high (i.e. this CPU should reset into
847 * big-endian mode). This setting isn't used directly: instead it modifies
848 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
849 * architecture version.
850 */
851 bool cfgend;
852
b5c53d1b 853 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 854 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
855
856 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
857
858 /* Used to synchronize KVM and QEMU in-kernel device levels */
859 uint8_t device_irq_level;
adf92eab
RH
860
861 /* Used to set the maximum vector length the cpu will support. */
862 uint32_t sve_max_vq;
74e75564
PB
863};
864
865static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
866{
867 return container_of(env, ARMCPU, env);
868}
869
46de5913
IM
870uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
871
74e75564
PB
872#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
873
874#define ENV_OFFSET offsetof(ARMCPU, env)
875
876#ifndef CONFIG_USER_ONLY
877extern const struct VMStateDescription vmstate_arm_cpu;
878#endif
879
880void arm_cpu_do_interrupt(CPUState *cpu);
881void arm_v7m_cpu_do_interrupt(CPUState *cpu);
882bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
883
884void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
885 int flags);
886
887hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
888 MemTxAttrs *attrs);
889
890int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
891int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
892
200bf5b7
AB
893/* Dynamically generates for gdb stub an XML description of the sysregs from
894 * the cp_regs hashtable. Returns the registered sysregs number.
895 */
896int arm_gen_dynamic_xml(CPUState *cpu);
897
898/* Returns the dynamically generated XML for the gdb stub.
899 * Returns a pointer to the XML contents for the specified XML file or NULL
900 * if the XML name doesn't match the predefined one.
901 */
902const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
903
74e75564
PB
904int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
905 int cpuid, void *opaque);
906int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
907 int cpuid, void *opaque);
908
909#ifdef TARGET_AARCH64
910int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
911int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 912void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
0ab5953b
RH
913void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el);
914#else
915static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
916static inline void aarch64_sve_change_el(CPUARMState *env, int o, int n) { }
74e75564 917#endif
778c3a06 918
faacc041 919target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
920void aarch64_sync_32_to_64(CPUARMState *env);
921void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 922
3926cc84
AG
923static inline bool is_a64(CPUARMState *env)
924{
925 return env->aarch64;
926}
927
2c0262af
FB
928/* you can call this signal handler from your SIGBUS and SIGSEGV
929 signal handlers to inform the virtual CPU of exceptions. non zero
930 is returned if the signal was handled by the virtual CPU. */
5fafdf24 931int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
932 void *puc);
933
ec7b4ce4
AF
934/**
935 * pmccntr_sync
936 * @env: CPUARMState
937 *
938 * Synchronises the counter in the PMCCNTR. This must always be called twice,
939 * once before any action that might affect the timer and again afterwards.
940 * The function is used to swap the state of the register if required.
941 * This only happens when not in user mode (!CONFIG_USER_ONLY)
942 */
943void pmccntr_sync(CPUARMState *env);
944
76e3e1bc
PM
945/* SCTLR bit meanings. Several bits have been reused in newer
946 * versions of the architecture; in that case we define constants
947 * for both old and new bit meanings. Code which tests against those
948 * bits should probably check or otherwise arrange that the CPU
949 * is the architectural version it expects.
950 */
951#define SCTLR_M (1U << 0)
952#define SCTLR_A (1U << 1)
953#define SCTLR_C (1U << 2)
954#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
955#define SCTLR_SA (1U << 3)
956#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
957#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
958#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
959#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
960#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
961#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
962#define SCTLR_ITD (1U << 7) /* v8 onward */
963#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
964#define SCTLR_SED (1U << 8) /* v8 onward */
965#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
966#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
967#define SCTLR_F (1U << 10) /* up to v6 */
968#define SCTLR_SW (1U << 10) /* v7 onward */
969#define SCTLR_Z (1U << 11)
970#define SCTLR_I (1U << 12)
971#define SCTLR_V (1U << 13)
972#define SCTLR_RR (1U << 14) /* up to v7 */
973#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
974#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
975#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
976#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
977#define SCTLR_nTWI (1U << 16) /* v8 onward */
978#define SCTLR_HA (1U << 17)
f6bda88f 979#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
980#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
981#define SCTLR_nTWE (1U << 18) /* v8 onward */
982#define SCTLR_WXN (1U << 19)
983#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
984#define SCTLR_UWXN (1U << 20) /* v7 onward */
985#define SCTLR_FI (1U << 21)
986#define SCTLR_U (1U << 22)
987#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
988#define SCTLR_VE (1U << 24) /* up to v7 */
989#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
990#define SCTLR_EE (1U << 25)
991#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
992#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
993#define SCTLR_NMFI (1U << 27)
994#define SCTLR_TRE (1U << 28)
995#define SCTLR_AFE (1U << 29)
996#define SCTLR_TE (1U << 30)
997
c6f19164
GB
998#define CPTR_TCPAC (1U << 31)
999#define CPTR_TTA (1U << 20)
1000#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1001#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1002#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1003
187f678d
PM
1004#define MDCR_EPMAD (1U << 21)
1005#define MDCR_EDAD (1U << 20)
1006#define MDCR_SPME (1U << 17)
1007#define MDCR_SDD (1U << 16)
a8d64e73 1008#define MDCR_SPD (3U << 14)
187f678d
PM
1009#define MDCR_TDRA (1U << 11)
1010#define MDCR_TDOSA (1U << 10)
1011#define MDCR_TDA (1U << 9)
1012#define MDCR_TDE (1U << 8)
1013#define MDCR_HPME (1U << 7)
1014#define MDCR_TPM (1U << 6)
1015#define MDCR_TPMCR (1U << 5)
1016
a8d64e73
PM
1017/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1018#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1019
78dbbbe4
PM
1020#define CPSR_M (0x1fU)
1021#define CPSR_T (1U << 5)
1022#define CPSR_F (1U << 6)
1023#define CPSR_I (1U << 7)
1024#define CPSR_A (1U << 8)
1025#define CPSR_E (1U << 9)
1026#define CPSR_IT_2_7 (0xfc00U)
1027#define CPSR_GE (0xfU << 16)
4051e12c
PM
1028#define CPSR_IL (1U << 20)
1029/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1030 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1031 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1032 * where it is live state but not accessible to the AArch32 code.
1033 */
1034#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1035#define CPSR_J (1U << 24)
1036#define CPSR_IT_0_1 (3U << 25)
1037#define CPSR_Q (1U << 27)
1038#define CPSR_V (1U << 28)
1039#define CPSR_C (1U << 29)
1040#define CPSR_Z (1U << 30)
1041#define CPSR_N (1U << 31)
9ee6e8bb 1042#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1043#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1044
1045#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1046#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1047 | CPSR_NZCV)
9ee6e8bb
PB
1048/* Bits writable in user mode. */
1049#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1050/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1051#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1052/* Mask of bits which may be set by exception return copying them from SPSR */
1053#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1054
987ab45e
PM
1055/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1056#define XPSR_EXCP 0x1ffU
1057#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1058#define XPSR_IT_2_7 CPSR_IT_2_7
1059#define XPSR_GE CPSR_GE
1060#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1061#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1062#define XPSR_IT_0_1 CPSR_IT_0_1
1063#define XPSR_Q CPSR_Q
1064#define XPSR_V CPSR_V
1065#define XPSR_C CPSR_C
1066#define XPSR_Z CPSR_Z
1067#define XPSR_N CPSR_N
1068#define XPSR_NZCV CPSR_NZCV
1069#define XPSR_IT CPSR_IT
1070
e389be16
FA
1071#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1072#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1073#define TTBCR_PD0 (1U << 4)
1074#define TTBCR_PD1 (1U << 5)
1075#define TTBCR_EPD0 (1U << 7)
1076#define TTBCR_IRGN0 (3U << 8)
1077#define TTBCR_ORGN0 (3U << 10)
1078#define TTBCR_SH0 (3U << 12)
1079#define TTBCR_T1SZ (3U << 16)
1080#define TTBCR_A1 (1U << 22)
1081#define TTBCR_EPD1 (1U << 23)
1082#define TTBCR_IRGN1 (3U << 24)
1083#define TTBCR_ORGN1 (3U << 26)
1084#define TTBCR_SH1 (1U << 28)
1085#define TTBCR_EAE (1U << 31)
1086
d356312f
PM
1087/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1088 * Only these are valid when in AArch64 mode; in
1089 * AArch32 mode SPSRs are basically CPSR-format.
1090 */
f502cfc2 1091#define PSTATE_SP (1U)
d356312f
PM
1092#define PSTATE_M (0xFU)
1093#define PSTATE_nRW (1U << 4)
1094#define PSTATE_F (1U << 6)
1095#define PSTATE_I (1U << 7)
1096#define PSTATE_A (1U << 8)
1097#define PSTATE_D (1U << 9)
1098#define PSTATE_IL (1U << 20)
1099#define PSTATE_SS (1U << 21)
1100#define PSTATE_V (1U << 28)
1101#define PSTATE_C (1U << 29)
1102#define PSTATE_Z (1U << 30)
1103#define PSTATE_N (1U << 31)
1104#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
1105#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1106#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
1107/* Mode values for AArch64 */
1108#define PSTATE_MODE_EL3h 13
1109#define PSTATE_MODE_EL3t 12
1110#define PSTATE_MODE_EL2h 9
1111#define PSTATE_MODE_EL2t 8
1112#define PSTATE_MODE_EL1h 5
1113#define PSTATE_MODE_EL1t 4
1114#define PSTATE_MODE_EL0t 0
1115
de2db7ec
PM
1116/* Write a new value to v7m.exception, thus transitioning into or out
1117 * of Handler mode; this may result in a change of active stack pointer.
1118 */
1119void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1120
9e729b57
EI
1121/* Map EL and handler into a PSTATE_MODE. */
1122static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1123{
1124 return (el << 2) | handler;
1125}
1126
d356312f
PM
1127/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1128 * interprocessing, so we don't attempt to sync with the cpsr state used by
1129 * the 32 bit decoder.
1130 */
1131static inline uint32_t pstate_read(CPUARMState *env)
1132{
1133 int ZF;
1134
1135 ZF = (env->ZF == 0);
1136 return (env->NF & 0x80000000) | (ZF << 30)
1137 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1138 | env->pstate | env->daif;
d356312f
PM
1139}
1140
1141static inline void pstate_write(CPUARMState *env, uint32_t val)
1142{
1143 env->ZF = (~val) & PSTATE_Z;
1144 env->NF = val;
1145 env->CF = (val >> 29) & 1;
1146 env->VF = (val << 3) & 0x80000000;
4cc35614 1147 env->daif = val & PSTATE_DAIF;
d356312f
PM
1148 env->pstate = val & ~CACHED_PSTATE_BITS;
1149}
1150
b5ff1b31 1151/* Return the current CPSR value. */
2f4a40e5 1152uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1153
1154typedef enum CPSRWriteType {
1155 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1156 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1157 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1158 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1159} CPSRWriteType;
1160
1161/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1162void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1163 CPSRWriteType write_type);
9ee6e8bb
PB
1164
1165/* Return the current xPSR value. */
1166static inline uint32_t xpsr_read(CPUARMState *env)
1167{
1168 int ZF;
6fbe23d5
PB
1169 ZF = (env->ZF == 0);
1170 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1171 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1172 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1173 | ((env->condexec_bits & 0xfc) << 8)
1174 | env->v7m.exception;
b5ff1b31
FB
1175}
1176
9ee6e8bb
PB
1177/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1178static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1179{
987ab45e
PM
1180 if (mask & XPSR_NZCV) {
1181 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1182 env->NF = val;
9ee6e8bb
PB
1183 env->CF = (val >> 29) & 1;
1184 env->VF = (val << 3) & 0x80000000;
1185 }
987ab45e
PM
1186 if (mask & XPSR_Q) {
1187 env->QF = ((val & XPSR_Q) != 0);
1188 }
1189 if (mask & XPSR_T) {
1190 env->thumb = ((val & XPSR_T) != 0);
1191 }
1192 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1193 env->condexec_bits &= ~3;
1194 env->condexec_bits |= (val >> 25) & 3;
1195 }
987ab45e 1196 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1197 env->condexec_bits &= 3;
1198 env->condexec_bits |= (val >> 8) & 0xfc;
1199 }
987ab45e 1200 if (mask & XPSR_EXCP) {
de2db7ec
PM
1201 /* Note that this only happens on exception exit */
1202 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1203 }
1204}
1205
f149e3e8
EI
1206#define HCR_VM (1ULL << 0)
1207#define HCR_SWIO (1ULL << 1)
1208#define HCR_PTW (1ULL << 2)
1209#define HCR_FMO (1ULL << 3)
1210#define HCR_IMO (1ULL << 4)
1211#define HCR_AMO (1ULL << 5)
1212#define HCR_VF (1ULL << 6)
1213#define HCR_VI (1ULL << 7)
1214#define HCR_VSE (1ULL << 8)
1215#define HCR_FB (1ULL << 9)
1216#define HCR_BSU_MASK (3ULL << 10)
1217#define HCR_DC (1ULL << 12)
1218#define HCR_TWI (1ULL << 13)
1219#define HCR_TWE (1ULL << 14)
1220#define HCR_TID0 (1ULL << 15)
1221#define HCR_TID1 (1ULL << 16)
1222#define HCR_TID2 (1ULL << 17)
1223#define HCR_TID3 (1ULL << 18)
1224#define HCR_TSC (1ULL << 19)
1225#define HCR_TIDCP (1ULL << 20)
1226#define HCR_TACR (1ULL << 21)
1227#define HCR_TSW (1ULL << 22)
1228#define HCR_TPC (1ULL << 23)
1229#define HCR_TPU (1ULL << 24)
1230#define HCR_TTLB (1ULL << 25)
1231#define HCR_TVM (1ULL << 26)
1232#define HCR_TGE (1ULL << 27)
1233#define HCR_TDZ (1ULL << 28)
1234#define HCR_HCD (1ULL << 29)
1235#define HCR_TRVM (1ULL << 30)
1236#define HCR_RW (1ULL << 31)
1237#define HCR_CD (1ULL << 32)
1238#define HCR_ID (1ULL << 33)
ac656b16
PM
1239#define HCR_E2H (1ULL << 34)
1240/*
1241 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1242 * HCR_MASK and then clear it again if the feature bit is not set in
1243 * hcr_write().
1244 */
f149e3e8
EI
1245#define HCR_MASK ((1ULL << 34) - 1)
1246
64e0e2de
EI
1247#define SCR_NS (1U << 0)
1248#define SCR_IRQ (1U << 1)
1249#define SCR_FIQ (1U << 2)
1250#define SCR_EA (1U << 3)
1251#define SCR_FW (1U << 4)
1252#define SCR_AW (1U << 5)
1253#define SCR_NET (1U << 6)
1254#define SCR_SMD (1U << 7)
1255#define SCR_HCE (1U << 8)
1256#define SCR_SIF (1U << 9)
1257#define SCR_RW (1U << 10)
1258#define SCR_ST (1U << 11)
1259#define SCR_TWI (1U << 12)
1260#define SCR_TWE (1U << 13)
1261#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1262#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1263
01653295
PM
1264/* Return the current FPSCR value. */
1265uint32_t vfp_get_fpscr(CPUARMState *env);
1266void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1267
d81ce0ef
AB
1268/* FPCR, Floating Point Control Register
1269 * FPSR, Floating Poiht Status Register
1270 *
1271 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1272 * FPCR and FPSR. However since they still use non-overlapping bits
1273 * we store the underlying state in fpscr and just mask on read/write.
1274 */
1275#define FPSR_MASK 0xf800009f
0b62159b 1276#define FPCR_MASK 0x07ff9f00
d81ce0ef
AB
1277
1278#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1279#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1280#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1281
f903fa22
PM
1282static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1283{
1284 return vfp_get_fpscr(env) & FPSR_MASK;
1285}
1286
1287static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1288{
1289 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1290 vfp_set_fpscr(env, new_fpscr);
1291}
1292
1293static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1294{
1295 return vfp_get_fpscr(env) & FPCR_MASK;
1296}
1297
1298static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1299{
1300 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1301 vfp_set_fpscr(env, new_fpscr);
1302}
1303
b5ff1b31
FB
1304enum arm_cpu_mode {
1305 ARM_CPU_MODE_USR = 0x10,
1306 ARM_CPU_MODE_FIQ = 0x11,
1307 ARM_CPU_MODE_IRQ = 0x12,
1308 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1309 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1310 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1311 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1312 ARM_CPU_MODE_UND = 0x1b,
1313 ARM_CPU_MODE_SYS = 0x1f
1314};
1315
40f137e1
PB
1316/* VFP system registers. */
1317#define ARM_VFP_FPSID 0
1318#define ARM_VFP_FPSCR 1
a50c0f51 1319#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1320#define ARM_VFP_MVFR1 6
1321#define ARM_VFP_MVFR0 7
40f137e1
PB
1322#define ARM_VFP_FPEXC 8
1323#define ARM_VFP_FPINST 9
1324#define ARM_VFP_FPINST2 10
1325
18c9b560 1326/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1327#define ARM_IWMMXT_wCID 0
1328#define ARM_IWMMXT_wCon 1
1329#define ARM_IWMMXT_wCSSF 2
1330#define ARM_IWMMXT_wCASF 3
1331#define ARM_IWMMXT_wCGR0 8
1332#define ARM_IWMMXT_wCGR1 9
1333#define ARM_IWMMXT_wCGR2 10
1334#define ARM_IWMMXT_wCGR3 11
18c9b560 1335
2c4da50d
PM
1336/* V7M CCR bits */
1337FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1338FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1339FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1340FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1341FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1342FIELD(V7M_CCR, STKALIGN, 9, 1)
1343FIELD(V7M_CCR, DC, 16, 1)
1344FIELD(V7M_CCR, IC, 17, 1)
1345
24ac0fb1
PM
1346/* V7M SCR bits */
1347FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1348FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1349FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1350FIELD(V7M_SCR, SEVONPEND, 4, 1)
1351
3b2e9344
PM
1352/* V7M AIRCR bits */
1353FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1354FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1355FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1356FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1357FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1358FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1359FIELD(V7M_AIRCR, PRIS, 14, 1)
1360FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1361FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1362
2c4da50d
PM
1363/* V7M CFSR bits for MMFSR */
1364FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1365FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1366FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1367FIELD(V7M_CFSR, MSTKERR, 4, 1)
1368FIELD(V7M_CFSR, MLSPERR, 5, 1)
1369FIELD(V7M_CFSR, MMARVALID, 7, 1)
1370
1371/* V7M CFSR bits for BFSR */
1372FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1373FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1374FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1375FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1376FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1377FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1378FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1379
1380/* V7M CFSR bits for UFSR */
1381FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1382FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1383FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1384FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1385FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1386FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1387
334e8dad
PM
1388/* V7M CFSR bit masks covering all of the subregister bits */
1389FIELD(V7M_CFSR, MMFSR, 0, 8)
1390FIELD(V7M_CFSR, BFSR, 8, 8)
1391FIELD(V7M_CFSR, UFSR, 16, 16)
1392
2c4da50d
PM
1393/* V7M HFSR bits */
1394FIELD(V7M_HFSR, VECTTBL, 1, 1)
1395FIELD(V7M_HFSR, FORCED, 30, 1)
1396FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1397
1398/* V7M DFSR bits */
1399FIELD(V7M_DFSR, HALTED, 0, 1)
1400FIELD(V7M_DFSR, BKPT, 1, 1)
1401FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1402FIELD(V7M_DFSR, VCATCH, 3, 1)
1403FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1404
bed079da
PM
1405/* V7M SFSR bits */
1406FIELD(V7M_SFSR, INVEP, 0, 1)
1407FIELD(V7M_SFSR, INVIS, 1, 1)
1408FIELD(V7M_SFSR, INVER, 2, 1)
1409FIELD(V7M_SFSR, AUVIOL, 3, 1)
1410FIELD(V7M_SFSR, INVTRAN, 4, 1)
1411FIELD(V7M_SFSR, LSPERR, 5, 1)
1412FIELD(V7M_SFSR, SFARVALID, 6, 1)
1413FIELD(V7M_SFSR, LSERR, 7, 1)
1414
29c483a5
MD
1415/* v7M MPU_CTRL bits */
1416FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1417FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1418FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1419
43bbce7f
PM
1420/* v7M CLIDR bits */
1421FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1422FIELD(V7M_CLIDR, LOUIS, 21, 3)
1423FIELD(V7M_CLIDR, LOC, 24, 3)
1424FIELD(V7M_CLIDR, LOUU, 27, 3)
1425FIELD(V7M_CLIDR, ICB, 30, 2)
1426
1427FIELD(V7M_CSSELR, IND, 0, 1)
1428FIELD(V7M_CSSELR, LEVEL, 1, 3)
1429/* We use the combination of InD and Level to index into cpu->ccsidr[];
1430 * define a mask for this and check that it doesn't permit running off
1431 * the end of the array.
1432 */
1433FIELD(V7M_CSSELR, INDEX, 0, 4)
1434
1435QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1436
ce854d7c
BC
1437/* If adding a feature bit which corresponds to a Linux ELF
1438 * HWCAP bit, remember to update the feature-bit-to-hwcap
1439 * mapping in linux-user/elfload.c:get_elf_hwcap().
1440 */
40f137e1
PB
1441enum arm_features {
1442 ARM_FEATURE_VFP,
c1713132
AZ
1443 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1444 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1445 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1446 ARM_FEATURE_V6,
1447 ARM_FEATURE_V6K,
1448 ARM_FEATURE_V7,
1449 ARM_FEATURE_THUMB2,
452a0955 1450 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1451 ARM_FEATURE_VFP3,
60011498 1452 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1453 ARM_FEATURE_NEON,
47789990 1454 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 1455 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1456 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1457 ARM_FEATURE_THUMB2EE,
be5e7a76 1458 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1459 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1460 ARM_FEATURE_V4T,
1461 ARM_FEATURE_V5,
5bc95aa2 1462 ARM_FEATURE_STRONGARM,
906879a9 1463 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 1464 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 1465 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1466 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1467 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1468 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1469 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1470 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1471 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1472 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1473 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1474 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1475 ARM_FEATURE_V8,
3926cc84 1476 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 1477 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 1478 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1479 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1480 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1481 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1482 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
1483 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1484 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 1485 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 1486 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1487 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1488 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1489 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
c99a55d3 1490 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
0d0a16c6 1491 ARM_FEATURE_SVE, /* has Scalable Vector Extension */
90b827d1 1492 ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
cd270ade 1493 ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
80d6f4c6 1494 ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
b6577bcd 1495 ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
68412d2e 1496 ARM_FEATURE_V8_ATOMICS, /* ARMv8.1-Atomics feature */
1dc81c15 1497 ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
26c470a7 1498 ARM_FEATURE_V8_DOTPROD, /* implements v8.2 simd dot product */
6ad4d618 1499 ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
0438f037 1500 ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions. */
cc2ae7c9 1501 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1502};
1503
1504static inline int arm_feature(CPUARMState *env, int feature)
1505{
918f5dca 1506 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1507}
1508
19e0fefa
FA
1509#if !defined(CONFIG_USER_ONLY)
1510/* Return true if exception levels below EL3 are in secure state,
1511 * or would be following an exception return to that level.
1512 * Unlike arm_is_secure() (which is always a question about the
1513 * _current_ state of the CPU) this doesn't care about the current
1514 * EL or mode.
1515 */
1516static inline bool arm_is_secure_below_el3(CPUARMState *env)
1517{
1518 if (arm_feature(env, ARM_FEATURE_EL3)) {
1519 return !(env->cp15.scr_el3 & SCR_NS);
1520 } else {
6b7f0b61 1521 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1522 * defined, in which case QEMU defaults to non-secure.
1523 */
1524 return false;
1525 }
1526}
1527
71205876
PM
1528/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1529static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1530{
1531 if (arm_feature(env, ARM_FEATURE_EL3)) {
1532 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1533 /* CPU currently in AArch64 state and EL3 */
1534 return true;
1535 } else if (!is_a64(env) &&
1536 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1537 /* CPU currently in AArch32 state and monitor mode */
1538 return true;
1539 }
1540 }
71205876
PM
1541 return false;
1542}
1543
1544/* Return true if the processor is in secure state */
1545static inline bool arm_is_secure(CPUARMState *env)
1546{
1547 if (arm_is_el3_or_mon(env)) {
1548 return true;
1549 }
19e0fefa
FA
1550 return arm_is_secure_below_el3(env);
1551}
1552
1553#else
1554static inline bool arm_is_secure_below_el3(CPUARMState *env)
1555{
1556 return false;
1557}
1558
1559static inline bool arm_is_secure(CPUARMState *env)
1560{
1561 return false;
1562}
1563#endif
1564
1f79ee32
PM
1565/* Return true if the specified exception level is running in AArch64 state. */
1566static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1567{
446c81ab
PM
1568 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1569 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1570 */
446c81ab
PM
1571 assert(el >= 1 && el <= 3);
1572 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1573
446c81ab
PM
1574 /* The highest exception level is always at the maximum supported
1575 * register width, and then lower levels have a register width controlled
1576 * by bits in the SCR or HCR registers.
1f79ee32 1577 */
446c81ab
PM
1578 if (el == 3) {
1579 return aa64;
1580 }
1581
1582 if (arm_feature(env, ARM_FEATURE_EL3)) {
1583 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1584 }
1585
1586 if (el == 2) {
1587 return aa64;
1588 }
1589
1590 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1591 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1592 }
1593
1594 return aa64;
1f79ee32
PM
1595}
1596
3f342b9e
SF
1597/* Function for determing whether guest cp register reads and writes should
1598 * access the secure or non-secure bank of a cp register. When EL3 is
1599 * operating in AArch32 state, the NS-bit determines whether the secure
1600 * instance of a cp register should be used. When EL3 is AArch64 (or if
1601 * it doesn't exist at all) then there is no register banking, and all
1602 * accesses are to the non-secure version.
1603 */
1604static inline bool access_secure_reg(CPUARMState *env)
1605{
1606 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1607 !arm_el_is_aa64(env, 3) &&
1608 !(env->cp15.scr_el3 & SCR_NS));
1609
1610 return ret;
1611}
1612
ea30a4b8
FA
1613/* Macros for accessing a specified CP register bank */
1614#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1615 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1616
1617#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1618 do { \
1619 if (_secure) { \
1620 (_env)->cp15._regname##_s = (_val); \
1621 } else { \
1622 (_env)->cp15._regname##_ns = (_val); \
1623 } \
1624 } while (0)
1625
1626/* Macros for automatically accessing a specific CP register bank depending on
1627 * the current secure state of the system. These macros are not intended for
1628 * supporting instruction translation reads/writes as these are dependent
1629 * solely on the SCR.NS bit and not the mode.
1630 */
1631#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1632 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1633 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1634
1635#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1636 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1637 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1638 (_val))
1639
9a78eead 1640void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1641uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1642 uint32_t cur_el, bool secure);
40f137e1 1643
9ee6e8bb 1644/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1645#ifndef CONFIG_USER_ONLY
1646bool armv7m_nvic_can_take_pending_exception(void *opaque);
1647#else
1648static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1649{
1650 return true;
1651}
1652#endif
2fb50a33
PM
1653/**
1654 * armv7m_nvic_set_pending: mark the specified exception as pending
1655 * @opaque: the NVIC
1656 * @irq: the exception number to mark pending
1657 * @secure: false for non-banked exceptions or for the nonsecure
1658 * version of a banked exception, true for the secure version of a banked
1659 * exception.
1660 *
1661 * Marks the specified exception as pending. Note that we will assert()
1662 * if @secure is true and @irq does not specify one of the fixed set
1663 * of architecturally banked exceptions.
1664 */
1665void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1666/**
1667 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1668 * @opaque: the NVIC
1669 * @irq: the exception number to mark pending
1670 * @secure: false for non-banked exceptions or for the nonsecure
1671 * version of a banked exception, true for the secure version of a banked
1672 * exception.
1673 *
1674 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1675 * exceptions (exceptions generated in the course of trying to take
1676 * a different exception).
1677 */
1678void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1679/**
1680 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1681 * exception, and whether it targets Secure state
1682 * @opaque: the NVIC
1683 * @pirq: set to pending exception number
1684 * @ptargets_secure: set to whether pending exception targets Secure
1685 *
1686 * This function writes the number of the highest priority pending
1687 * exception (the one which would be made active by
1688 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1689 * to true if the current highest priority pending exception should
1690 * be taken to Secure state, false for NS.
1691 */
1692void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1693 bool *ptargets_secure);
5cb18069
PM
1694/**
1695 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1696 * @opaque: the NVIC
1697 *
1698 * Move the current highest priority pending exception from the pending
1699 * state to the active state, and update v7m.exception to indicate that
1700 * it is the exception currently being handled.
5cb18069 1701 */
6c948518 1702void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1703/**
1704 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1705 * @opaque: the NVIC
1706 * @irq: the exception number to complete
5cb18069 1707 * @secure: true if this exception was secure
aa488fe3
PM
1708 *
1709 * Returns: -1 if the irq was not active
1710 * 1 if completing this irq brought us back to base (no active irqs)
1711 * 0 if there is still an irq active after this one was completed
1712 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1713 */
5cb18069 1714int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1715/**
1716 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1717 * @opaque: the NVIC
1718 *
1719 * Returns: the raw execution priority as defined by the v8M architecture.
1720 * This is the execution priority minus the effects of AIRCR.PRIS,
1721 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1722 * (v8M ARM ARM I_PKLD.)
1723 */
1724int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
1725/**
1726 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1727 * priority is negative for the specified security state.
1728 * @opaque: the NVIC
1729 * @secure: the security state to test
1730 * This corresponds to the pseudocode IsReqExecPriNeg().
1731 */
1732#ifndef CONFIG_USER_ONLY
1733bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1734#else
1735static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1736{
1737 return false;
1738}
1739#endif
9ee6e8bb 1740
4b6a83fb
PM
1741/* Interface for defining coprocessor registers.
1742 * Registers are defined in tables of arm_cp_reginfo structs
1743 * which are passed to define_arm_cp_regs().
1744 */
1745
1746/* When looking up a coprocessor register we look for it
1747 * via an integer which encodes all of:
1748 * coprocessor number
1749 * Crn, Crm, opc1, opc2 fields
1750 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1751 * or via MRRC/MCRR?)
51a79b03 1752 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1753 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1754 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1755 * For AArch64, there is no 32/64 bit size distinction;
1756 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1757 * and 4 bit CRn and CRm. The encoding patterns are chosen
1758 * to be easy to convert to and from the KVM encodings, and also
1759 * so that the hashtable can contain both AArch32 and AArch64
1760 * registers (to allow for interprocessing where we might run
1761 * 32 bit code on a 64 bit core).
4b6a83fb 1762 */
f5a0a5a5
PM
1763/* This bit is private to our hashtable cpreg; in KVM register
1764 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1765 * in the upper bits of the 64 bit ID.
1766 */
1767#define CP_REG_AA64_SHIFT 28
1768#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1769
51a79b03
PM
1770/* To enable banking of coprocessor registers depending on ns-bit we
1771 * add a bit to distinguish between secure and non-secure cpregs in the
1772 * hashtable.
1773 */
1774#define CP_REG_NS_SHIFT 29
1775#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1776
1777#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1778 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1779 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1780
f5a0a5a5
PM
1781#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1782 (CP_REG_AA64_MASK | \
1783 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1784 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1785 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1786 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1787 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1788 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1789
721fae12
PM
1790/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1791 * version used as a key for the coprocessor register hashtable
1792 */
1793static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1794{
1795 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1796 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1797 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1798 } else {
1799 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1800 cpregid |= (1 << 15);
1801 }
1802
1803 /* KVM is always non-secure so add the NS flag on AArch32 register
1804 * entries.
1805 */
1806 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1807 }
1808 return cpregid;
1809}
1810
1811/* Convert a truncated 32 bit hashtable key into the full
1812 * 64 bit KVM register ID.
1813 */
1814static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1815{
f5a0a5a5
PM
1816 uint64_t kvmid;
1817
1818 if (cpregid & CP_REG_AA64_MASK) {
1819 kvmid = cpregid & ~CP_REG_AA64_MASK;
1820 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1821 } else {
f5a0a5a5
PM
1822 kvmid = cpregid & ~(1 << 15);
1823 if (cpregid & (1 << 15)) {
1824 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1825 } else {
1826 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1827 }
721fae12
PM
1828 }
1829 return kvmid;
1830}
1831
4b6a83fb 1832/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 1833 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
1834 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1835 * TCG can assume the value to be constant (ie load at translate time)
1836 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1837 * indicates that the TB should not be ended after a write to this register
1838 * (the default is that the TB ends after cp writes). OVERRIDE permits
1839 * a register definition to override a previous definition for the
1840 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1841 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1842 * ALIAS indicates that this register is an alias view of some underlying
1843 * state which is also visible via another register, and that the other
b061a82b
SF
1844 * register is handling migration and reset; registers marked ALIAS will not be
1845 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1846 * NO_RAW indicates that this register has no underlying state and does not
1847 * support raw access for state saving/loading; it will not be used for either
1848 * migration or KVM state synchronization. (Typically this is for "registers"
1849 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1850 * IO indicates that this register does I/O and therefore its accesses
1851 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1852 * registers which implement clocks or timers require this.
4b6a83fb 1853 */
fe03d45f
RH
1854#define ARM_CP_SPECIAL 0x0001
1855#define ARM_CP_CONST 0x0002
1856#define ARM_CP_64BIT 0x0004
1857#define ARM_CP_SUPPRESS_TB_END 0x0008
1858#define ARM_CP_OVERRIDE 0x0010
1859#define ARM_CP_ALIAS 0x0020
1860#define ARM_CP_IO 0x0040
1861#define ARM_CP_NO_RAW 0x0080
1862#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1863#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1864#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1865#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1866#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1867#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1868#define ARM_CP_FPU 0x1000
490aa7f1 1869#define ARM_CP_SVE 0x2000
1f163787 1870#define ARM_CP_NO_GDB 0x4000
4b6a83fb 1871/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 1872#define ARM_CP_SENTINEL 0xffff
4b6a83fb 1873/* Mask of only the flag bits in a type field */
1f163787 1874#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 1875
f5a0a5a5
PM
1876/* Valid values for ARMCPRegInfo state field, indicating which of
1877 * the AArch32 and AArch64 execution states this register is visible in.
1878 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1879 * If the reginfo is declared to be visible in both states then a second
1880 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1881 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1882 * Note that we rely on the values of these enums as we iterate through
1883 * the various states in some places.
1884 */
1885enum {
1886 ARM_CP_STATE_AA32 = 0,
1887 ARM_CP_STATE_AA64 = 1,
1888 ARM_CP_STATE_BOTH = 2,
1889};
1890
c3e30260
FA
1891/* ARM CP register secure state flags. These flags identify security state
1892 * attributes for a given CP register entry.
1893 * The existence of both or neither secure and non-secure flags indicates that
1894 * the register has both a secure and non-secure hash entry. A single one of
1895 * these flags causes the register to only be hashed for the specified
1896 * security state.
1897 * Although definitions may have any combination of the S/NS bits, each
1898 * registered entry will only have one to identify whether the entry is secure
1899 * or non-secure.
1900 */
1901enum {
1902 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1903 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1904};
1905
4b6a83fb
PM
1906/* Return true if cptype is a valid type field. This is used to try to
1907 * catch errors where the sentinel has been accidentally left off the end
1908 * of a list of registers.
1909 */
1910static inline bool cptype_valid(int cptype)
1911{
1912 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1913 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 1914 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
1915}
1916
1917/* Access rights:
1918 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1919 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1920 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1921 * (ie any of the privileged modes in Secure state, or Monitor mode).
1922 * If a register is accessible in one privilege level it's always accessible
1923 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1924 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1925 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1926 * terminology a little and call this PL3.
f5a0a5a5
PM
1927 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1928 * with the ELx exception levels.
4b6a83fb
PM
1929 *
1930 * If access permissions for a register are more complex than can be
1931 * described with these bits, then use a laxer set of restrictions, and
1932 * do the more restrictive/complex check inside a helper function.
1933 */
1934#define PL3_R 0x80
1935#define PL3_W 0x40
1936#define PL2_R (0x20 | PL3_R)
1937#define PL2_W (0x10 | PL3_W)
1938#define PL1_R (0x08 | PL2_R)
1939#define PL1_W (0x04 | PL2_W)
1940#define PL0_R (0x02 | PL1_R)
1941#define PL0_W (0x01 | PL1_W)
1942
1943#define PL3_RW (PL3_R | PL3_W)
1944#define PL2_RW (PL2_R | PL2_W)
1945#define PL1_RW (PL1_R | PL1_W)
1946#define PL0_RW (PL0_R | PL0_W)
1947
75502672
PM
1948/* Return the highest implemented Exception Level */
1949static inline int arm_highest_el(CPUARMState *env)
1950{
1951 if (arm_feature(env, ARM_FEATURE_EL3)) {
1952 return 3;
1953 }
1954 if (arm_feature(env, ARM_FEATURE_EL2)) {
1955 return 2;
1956 }
1957 return 1;
1958}
1959
15b3f556
PM
1960/* Return true if a v7M CPU is in Handler mode */
1961static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1962{
1963 return env->v7m.exception != 0;
1964}
1965
dcbff19b
GB
1966/* Return the current Exception Level (as per ARMv8; note that this differs
1967 * from the ARMv7 Privilege Level).
1968 */
1969static inline int arm_current_el(CPUARMState *env)
4b6a83fb 1970{
6d54ed3c 1971 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
1972 return arm_v7m_is_handler_mode(env) ||
1973 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
1974 }
1975
592125f8 1976 if (is_a64(env)) {
f5a0a5a5
PM
1977 return extract32(env->pstate, 2, 2);
1978 }
1979
592125f8
FA
1980 switch (env->uncached_cpsr & 0x1f) {
1981 case ARM_CPU_MODE_USR:
4b6a83fb 1982 return 0;
592125f8
FA
1983 case ARM_CPU_MODE_HYP:
1984 return 2;
1985 case ARM_CPU_MODE_MON:
1986 return 3;
1987 default:
1988 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1989 /* If EL3 is 32-bit then all secure privileged modes run in
1990 * EL3
1991 */
1992 return 3;
1993 }
1994
1995 return 1;
4b6a83fb 1996 }
4b6a83fb
PM
1997}
1998
1999typedef struct ARMCPRegInfo ARMCPRegInfo;
2000
f59df3f2
PM
2001typedef enum CPAccessResult {
2002 /* Access is permitted */
2003 CP_ACCESS_OK = 0,
2004 /* Access fails due to a configurable trap or enable which would
2005 * result in a categorized exception syndrome giving information about
2006 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2007 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2008 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2009 */
2010 CP_ACCESS_TRAP = 1,
2011 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2012 * Note that this is not a catch-all case -- the set of cases which may
2013 * result in this failure is specifically defined by the architecture.
2014 */
2015 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2016 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2017 CP_ACCESS_TRAP_EL2 = 3,
2018 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2019 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2020 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2021 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2022 /* Access fails and results in an exception syndrome for an FP access,
2023 * trapped directly to EL2 or EL3
2024 */
2025 CP_ACCESS_TRAP_FP_EL2 = 7,
2026 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2027} CPAccessResult;
2028
c4241c7d
PM
2029/* Access functions for coprocessor registers. These cannot fail and
2030 * may not raise exceptions.
2031 */
2032typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2033typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2034 uint64_t value);
f59df3f2 2035/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2036typedef CPAccessResult CPAccessFn(CPUARMState *env,
2037 const ARMCPRegInfo *opaque,
2038 bool isread);
4b6a83fb
PM
2039/* Hook function for register reset */
2040typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2041
2042#define CP_ANY 0xff
2043
2044/* Definition of an ARM coprocessor register */
2045struct ARMCPRegInfo {
2046 /* Name of register (useful mainly for debugging, need not be unique) */
2047 const char *name;
2048 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2049 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2050 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2051 * will be decoded to this register. The register read and write
2052 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2053 * used by the program, so it is possible to register a wildcard and
2054 * then behave differently on read/write if necessary.
2055 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2056 * must both be zero.
f5a0a5a5
PM
2057 * For AArch64-visible registers, opc0 is also used.
2058 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2059 * way to distinguish (for KVM's benefit) guest-visible system registers
2060 * from demuxed ones provided to preserve the "no side effects on
2061 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2062 * visible (to match KVM's encoding); cp==0 will be converted to
2063 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2064 */
2065 uint8_t cp;
2066 uint8_t crn;
2067 uint8_t crm;
f5a0a5a5 2068 uint8_t opc0;
4b6a83fb
PM
2069 uint8_t opc1;
2070 uint8_t opc2;
f5a0a5a5
PM
2071 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2072 int state;
4b6a83fb
PM
2073 /* Register type: ARM_CP_* bits/values */
2074 int type;
2075 /* Access rights: PL*_[RW] */
2076 int access;
c3e30260
FA
2077 /* Security state: ARM_CP_SECSTATE_* bits/values */
2078 int secure;
4b6a83fb
PM
2079 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2080 * this register was defined: can be used to hand data through to the
2081 * register read/write functions, since they are passed the ARMCPRegInfo*.
2082 */
2083 void *opaque;
2084 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2085 * fieldoffset is non-zero, the reset value of the register.
2086 */
2087 uint64_t resetvalue;
c3e30260
FA
2088 /* Offset of the field in CPUARMState for this register.
2089 *
2090 * This is not needed if either:
4b6a83fb
PM
2091 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2092 * 2. both readfn and writefn are specified
2093 */
2094 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2095
2096 /* Offsets of the secure and non-secure fields in CPUARMState for the
2097 * register if it is banked. These fields are only used during the static
2098 * registration of a register. During hashing the bank associated
2099 * with a given security state is copied to fieldoffset which is used from
2100 * there on out.
2101 *
2102 * It is expected that register definitions use either fieldoffset or
2103 * bank_fieldoffsets in the definition but not both. It is also expected
2104 * that both bank offsets are set when defining a banked register. This
2105 * use indicates that a register is banked.
2106 */
2107 ptrdiff_t bank_fieldoffsets[2];
2108
f59df3f2
PM
2109 /* Function for making any access checks for this register in addition to
2110 * those specified by the 'access' permissions bits. If NULL, no extra
2111 * checks required. The access check is performed at runtime, not at
2112 * translate time.
2113 */
2114 CPAccessFn *accessfn;
4b6a83fb
PM
2115 /* Function for handling reads of this register. If NULL, then reads
2116 * will be done by loading from the offset into CPUARMState specified
2117 * by fieldoffset.
2118 */
2119 CPReadFn *readfn;
2120 /* Function for handling writes of this register. If NULL, then writes
2121 * will be done by writing to the offset into CPUARMState specified
2122 * by fieldoffset.
2123 */
2124 CPWriteFn *writefn;
7023ec7e
PM
2125 /* Function for doing a "raw" read; used when we need to copy
2126 * coprocessor state to the kernel for KVM or out for
2127 * migration. This only needs to be provided if there is also a
c4241c7d 2128 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2129 */
2130 CPReadFn *raw_readfn;
2131 /* Function for doing a "raw" write; used when we need to copy KVM
2132 * kernel coprocessor state into userspace, or for inbound
2133 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2134 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2135 * or similar behaviour.
7023ec7e
PM
2136 */
2137 CPWriteFn *raw_writefn;
4b6a83fb
PM
2138 /* Function for resetting the register. If NULL, then reset will be done
2139 * by writing resetvalue to the field specified in fieldoffset. If
2140 * fieldoffset is 0 then no reset will be done.
2141 */
2142 CPResetFn *resetfn;
2143};
2144
2145/* Macros which are lvalues for the field in CPUARMState for the
2146 * ARMCPRegInfo *ri.
2147 */
2148#define CPREG_FIELD32(env, ri) \
2149 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2150#define CPREG_FIELD64(env, ri) \
2151 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2152
2153#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2154
2155void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2156 const ARMCPRegInfo *regs, void *opaque);
2157void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2158 const ARMCPRegInfo *regs, void *opaque);
2159static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2160{
2161 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2162}
2163static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2164{
2165 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2166}
60322b39 2167const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2168
2169/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2170void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2171 uint64_t value);
4b6a83fb 2172/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2173uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2174
f5a0a5a5
PM
2175/* CPResetFn that does nothing, for use if no reset is required even
2176 * if fieldoffset is non zero.
2177 */
2178void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2179
67ed771d
PM
2180/* Return true if this reginfo struct's field in the cpu state struct
2181 * is 64 bits wide.
2182 */
2183static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2184{
2185 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2186}
2187
dcbff19b 2188static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2189 const ARMCPRegInfo *ri, int isread)
2190{
dcbff19b 2191 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2192}
2193
49a66191
PM
2194/* Raw read of a coprocessor register (as needed for migration, etc) */
2195uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2196
721fae12
PM
2197/**
2198 * write_list_to_cpustate
2199 * @cpu: ARMCPU
2200 *
2201 * For each register listed in the ARMCPU cpreg_indexes list, write
2202 * its value from the cpreg_values list into the ARMCPUState structure.
2203 * This updates TCG's working data structures from KVM data or
2204 * from incoming migration state.
2205 *
2206 * Returns: true if all register values were updated correctly,
2207 * false if some register was unknown or could not be written.
2208 * Note that we do not stop early on failure -- we will attempt
2209 * writing all registers in the list.
2210 */
2211bool write_list_to_cpustate(ARMCPU *cpu);
2212
2213/**
2214 * write_cpustate_to_list:
2215 * @cpu: ARMCPU
2216 *
2217 * For each register listed in the ARMCPU cpreg_indexes list, write
2218 * its value from the ARMCPUState structure into the cpreg_values list.
2219 * This is used to copy info from TCG's working data structures into
2220 * KVM or for outbound migration.
2221 *
2222 * Returns: true if all register values were read correctly,
2223 * false if some register was unknown or could not be read.
2224 * Note that we do not stop early on failure -- we will attempt
2225 * reading all registers in the list.
2226 */
2227bool write_cpustate_to_list(ARMCPU *cpu);
2228
9ee6e8bb
PB
2229#define ARM_CPUID_TI915T 0x54029152
2230#define ARM_CPUID_TI925T 0x54029252
40f137e1 2231
b5ff1b31 2232#if defined(CONFIG_USER_ONLY)
2c0262af 2233#define TARGET_PAGE_BITS 12
b5ff1b31 2234#else
e97da98f
PM
2235/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2236 * have to support 1K tiny pages.
2237 */
2238#define TARGET_PAGE_BITS_VARY
2239#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2240#endif
9467d44c 2241
3926cc84
AG
2242#if defined(TARGET_AARCH64)
2243# define TARGET_PHYS_ADDR_SPACE_BITS 48
2244# define TARGET_VIRT_ADDR_SPACE_BITS 64
2245#else
2246# define TARGET_PHYS_ADDR_SPACE_BITS 40
2247# define TARGET_VIRT_ADDR_SPACE_BITS 32
2248#endif
52705890 2249
ac656b16
PM
2250/**
2251 * arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
2252 * Depending on the values of HCR_EL2.E2H and TGE, this may be
2253 * "behaves as 1 for all purposes other than direct read/write" or
2254 * "behaves as 0 for all purposes other than direct read/write"
2255 */
2256static inline bool arm_hcr_el2_imo(CPUARMState *env)
2257{
2258 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2259 case HCR_TGE:
2260 return true;
2261 case HCR_TGE | HCR_E2H:
2262 return false;
2263 default:
2264 return env->cp15.hcr_el2 & HCR_IMO;
2265 }
2266}
2267
2268/**
2269 * arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
2270 */
2271static inline bool arm_hcr_el2_fmo(CPUARMState *env)
2272{
2273 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2274 case HCR_TGE:
2275 return true;
2276 case HCR_TGE | HCR_E2H:
2277 return false;
2278 default:
2279 return env->cp15.hcr_el2 & HCR_FMO;
2280 }
2281}
2282
2283/**
2284 * arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
2285 */
2286static inline bool arm_hcr_el2_amo(CPUARMState *env)
2287{
2288 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2289 case HCR_TGE:
2290 return true;
2291 case HCR_TGE | HCR_E2H:
2292 return false;
2293 default:
2294 return env->cp15.hcr_el2 & HCR_AMO;
2295 }
2296}
2297
012a906b
GB
2298static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2299 unsigned int target_el)
043b7f8d
EI
2300{
2301 CPUARMState *env = cs->env_ptr;
dcbff19b 2302 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2303 bool secure = arm_is_secure(env);
57e3a0c7
GB
2304 bool pstate_unmasked;
2305 int8_t unmasked = 0;
2306
2307 /* Don't take exceptions if they target a lower EL.
2308 * This check should catch any exceptions that would not be taken but left
2309 * pending.
2310 */
dfafd090
EI
2311 if (cur_el > target_el) {
2312 return false;
2313 }
043b7f8d
EI
2314
2315 switch (excp_idx) {
2316 case EXCP_FIQ:
57e3a0c7
GB
2317 pstate_unmasked = !(env->daif & PSTATE_F);
2318 break;
2319
043b7f8d 2320 case EXCP_IRQ:
57e3a0c7
GB
2321 pstate_unmasked = !(env->daif & PSTATE_I);
2322 break;
2323
136e67e9 2324 case EXCP_VFIQ:
ac656b16 2325 if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2326 /* VFIQs are only taken when hypervized and non-secure. */
2327 return false;
2328 }
2329 return !(env->daif & PSTATE_F);
2330 case EXCP_VIRQ:
ac656b16 2331 if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2332 /* VIRQs are only taken when hypervized and non-secure. */
2333 return false;
2334 }
b5c633c5 2335 return !(env->daif & PSTATE_I);
043b7f8d
EI
2336 default:
2337 g_assert_not_reached();
2338 }
57e3a0c7
GB
2339
2340 /* Use the target EL, current execution state and SCR/HCR settings to
2341 * determine whether the corresponding CPSR bit is used to mask the
2342 * interrupt.
2343 */
2344 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2345 /* Exceptions targeting a higher EL may not be maskable */
2346 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2347 /* 64-bit masking rules are simple: exceptions to EL3
2348 * can't be masked, and exceptions to EL2 can only be
2349 * masked from Secure state. The HCR and SCR settings
2350 * don't affect the masking logic, only the interrupt routing.
2351 */
2352 if (target_el == 3 || !secure) {
2353 unmasked = 1;
2354 }
2355 } else {
2356 /* The old 32-bit-only environment has a more complicated
2357 * masking setup. HCR and SCR bits not only affect interrupt
2358 * routing but also change the behaviour of masking.
2359 */
2360 bool hcr, scr;
2361
2362 switch (excp_idx) {
2363 case EXCP_FIQ:
2364 /* If FIQs are routed to EL3 or EL2 then there are cases where
2365 * we override the CPSR.F in determining if the exception is
2366 * masked or not. If neither of these are set then we fall back
2367 * to the CPSR.F setting otherwise we further assess the state
2368 * below.
2369 */
ac656b16 2370 hcr = arm_hcr_el2_fmo(env);
7cd6de3b
PM
2371 scr = (env->cp15.scr_el3 & SCR_FIQ);
2372
2373 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2374 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2375 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2376 * when non-secure but only when FIQs are only routed to EL3.
2377 */
2378 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2379 break;
2380 case EXCP_IRQ:
2381 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2382 * we may override the CPSR.I masking when in non-secure state.
2383 * The SCR.IRQ setting has already been taken into consideration
2384 * when setting the target EL, so it does not have a further
2385 * affect here.
2386 */
ac656b16 2387 hcr = arm_hcr_el2_imo(env);
7cd6de3b
PM
2388 scr = false;
2389 break;
2390 default:
2391 g_assert_not_reached();
2392 }
2393
2394 if ((scr || hcr) && !secure) {
2395 unmasked = 1;
2396 }
57e3a0c7
GB
2397 }
2398 }
2399
2400 /* The PSTATE bits only mask the interrupt if we have not overriden the
2401 * ability above.
2402 */
2403 return unmasked || pstate_unmasked;
043b7f8d
EI
2404}
2405
ba1ba5cc
IM
2406#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2407#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2408#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2409
9467d44c 2410#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2411#define cpu_list arm_cpu_list
9467d44c 2412
c1e37810
PM
2413/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2414 *
2415 * If EL3 is 64-bit:
2416 * + NonSecure EL1 & 0 stage 1
2417 * + NonSecure EL1 & 0 stage 2
2418 * + NonSecure EL2
2419 * + Secure EL1 & EL0
2420 * + Secure EL3
2421 * If EL3 is 32-bit:
2422 * + NonSecure PL1 & 0 stage 1
2423 * + NonSecure PL1 & 0 stage 2
2424 * + NonSecure PL2
2425 * + Secure PL0 & PL1
2426 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2427 *
2428 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2429 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2430 * may differ in access permissions even if the VA->PA map is the same
2431 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2432 * translation, which means that we have one mmu_idx that deals with two
2433 * concatenated translation regimes [this sort of combined s1+2 TLB is
2434 * architecturally permitted]
2435 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2436 * handling via the TLB. The only way to do a stage 1 translation without
2437 * the immediate stage 2 translation is via the ATS or AT system insns,
2438 * which can be slow-pathed and always do a page table walk.
2439 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2440 * translation regimes, because they map reasonably well to each other
2441 * and they can't both be active at the same time.
2442 * This gives us the following list of mmu_idx values:
2443 *
2444 * NS EL0 (aka NS PL0) stage 1+2
2445 * NS EL1 (aka NS PL1) stage 1+2
2446 * NS EL2 (aka NS PL2)
2447 * S EL3 (aka S PL1)
2448 * S EL0 (aka S PL0)
2449 * S EL1 (not used if EL3 is 32 bit)
2450 * NS EL0+1 stage 2
2451 *
2452 * (The last of these is an mmu_idx because we want to be able to use the TLB
2453 * for the accesses done as part of a stage 1 page table walk, rather than
2454 * having to walk the stage 2 page table over and over.)
2455 *
3bef7012
PM
2456 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2457 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2458 * NS EL2 if we ever model a Cortex-R52).
2459 *
2460 * M profile CPUs are rather different as they do not have a true MMU.
2461 * They have the following different MMU indexes:
2462 * User
2463 * Privileged
62593718
PM
2464 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2465 * Privileged, execution priority negative (ditto)
66787c78
PM
2466 * If the CPU supports the v8M Security Extension then there are also:
2467 * Secure User
2468 * Secure Privileged
62593718
PM
2469 * Secure User, execution priority negative
2470 * Secure Privileged, execution priority negative
3bef7012 2471 *
8bd5c820
PM
2472 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2473 * are not quite the same -- different CPU types (most notably M profile
2474 * vs A/R profile) would like to use MMU indexes with different semantics,
2475 * but since we don't ever need to use all of those in a single CPU we
2476 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2477 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2478 * the same for any particular CPU.
2479 * Variables of type ARMMUIdx are always full values, and the core
2480 * index values are in variables of type 'int'.
2481 *
c1e37810
PM
2482 * Our enumeration includes at the end some entries which are not "true"
2483 * mmu_idx values in that they don't have corresponding TLBs and are only
2484 * valid for doing slow path page table walks.
2485 *
2486 * The constant names here are patterned after the general style of the names
2487 * of the AT/ATS operations.
2488 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2489 * For M profile we arrange them to have a bit for priv, a bit for negpri
2490 * and a bit for secure.
c1e37810 2491 */
e7b921c2 2492#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2493#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2494#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2495
62593718
PM
2496/* meanings of the bits for M profile mmu idx values */
2497#define ARM_MMU_IDX_M_PRIV 0x1
2498#define ARM_MMU_IDX_M_NEGPRI 0x2
2499#define ARM_MMU_IDX_M_S 0x4
2500
8bd5c820
PM
2501#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2502#define ARM_MMU_IDX_COREIDX_MASK 0x7
2503
c1e37810 2504typedef enum ARMMMUIdx {
8bd5c820
PM
2505 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2506 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2507 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2508 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2509 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2510 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2511 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2512 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2513 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2514 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2515 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2516 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2517 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2518 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2519 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2520 /* Indexes below here don't have TLBs and are used only for AT system
2521 * instructions or for the first stage of an S12 page table walk.
2522 */
8bd5c820
PM
2523 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2524 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2525} ARMMMUIdx;
2526
8bd5c820
PM
2527/* Bit macros for the core-mmu-index values for each index,
2528 * for use when calling tlb_flush_by_mmuidx() and friends.
2529 */
2530typedef enum ARMMMUIdxBit {
2531 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2532 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2533 ARMMMUIdxBit_S1E2 = 1 << 2,
2534 ARMMMUIdxBit_S1E3 = 1 << 3,
2535 ARMMMUIdxBit_S1SE0 = 1 << 4,
2536 ARMMMUIdxBit_S1SE1 = 1 << 5,
2537 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2538 ARMMMUIdxBit_MUser = 1 << 0,
2539 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2540 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2541 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2542 ARMMMUIdxBit_MSUser = 1 << 4,
2543 ARMMMUIdxBit_MSPriv = 1 << 5,
2544 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2545 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2546} ARMMMUIdxBit;
2547
f79fbf39 2548#define MMU_USER_IDX 0
c1e37810 2549
8bd5c820
PM
2550static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2551{
2552 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2553}
2554
2555static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2556{
e7b921c2
PM
2557 if (arm_feature(env, ARM_FEATURE_M)) {
2558 return mmu_idx | ARM_MMU_IDX_M;
2559 } else {
2560 return mmu_idx | ARM_MMU_IDX_A;
2561 }
8bd5c820
PM
2562}
2563
c1e37810
PM
2564/* Return the exception level we're running at if this is our mmu_idx */
2565static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2566{
8bd5c820
PM
2567 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2568 case ARM_MMU_IDX_A:
2569 return mmu_idx & 3;
e7b921c2 2570 case ARM_MMU_IDX_M:
62593718 2571 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2572 default:
2573 g_assert_not_reached();
2574 }
c1e37810
PM
2575}
2576
ec8e3340
PM
2577/* Return the MMU index for a v7M CPU in the specified security and
2578 * privilege state
2579 */
2580static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2581 bool secstate,
2582 bool priv)
b81ac0eb 2583{
62593718 2584 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
b81ac0eb 2585
ec8e3340 2586 if (priv) {
62593718 2587 mmu_idx |= ARM_MMU_IDX_M_PRIV;
b81ac0eb
PM
2588 }
2589
2590 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
62593718
PM
2591 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2592 }
2593
2594 if (secstate) {
2595 mmu_idx |= ARM_MMU_IDX_M_S;
b81ac0eb
PM
2596 }
2597
2598 return mmu_idx;
2599}
2600
ec8e3340
PM
2601/* Return the MMU index for a v7M CPU in the specified security state */
2602static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2603 bool secstate)
2604{
2605 bool priv = arm_current_el(env) != 0;
2606
2607 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2608}
2609
c1e37810 2610/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 2611static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
2612{
2613 int el = arm_current_el(env);
2614
e7b921c2 2615 if (arm_feature(env, ARM_FEATURE_M)) {
b81ac0eb 2616 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
3bef7012 2617
e7b921c2
PM
2618 return arm_to_core_mmu_idx(mmu_idx);
2619 }
2620
c1e37810 2621 if (el < 2 && arm_is_secure_below_el3(env)) {
8bd5c820 2622 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
c1e37810
PM
2623 }
2624 return el;
6ebbf390
JM
2625}
2626
9e273ef2
PM
2627/* Indexes used when registering address spaces with cpu_address_space_init */
2628typedef enum ARMASIdx {
2629 ARMASIdx_NS = 0,
2630 ARMASIdx_S = 1,
2631} ARMASIdx;
2632
533e93f1 2633/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2634static inline int arm_debug_target_el(CPUARMState *env)
2635{
81669b8b
SF
2636 bool secure = arm_is_secure(env);
2637 bool route_to_el2 = false;
2638
2639 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2640 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2641 env->cp15.mdcr_el2 & (1 << 8);
2642 }
2643
2644 if (route_to_el2) {
2645 return 2;
2646 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2647 !arm_el_is_aa64(env, 3) && secure) {
2648 return 3;
2649 } else {
2650 return 1;
2651 }
3a298203
PM
2652}
2653
43bbce7f
PM
2654static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2655{
2656 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2657 * CSSELR is RAZ/WI.
2658 */
2659 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2660}
2661
3a298203
PM
2662static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2663{
533e93f1
PM
2664 if (arm_is_secure(env)) {
2665 /* MDCR_EL3.SDD disables debug events from Secure state */
2666 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2667 || arm_current_el(env) == 3) {
2668 return false;
2669 }
2670 }
2671
dcbff19b 2672 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
2673 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2674 || (env->daif & PSTATE_D)) {
2675 return false;
2676 }
2677 }
2678 return true;
2679}
2680
2681static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2682{
533e93f1
PM
2683 int el = arm_current_el(env);
2684
2685 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2686 return aa64_generate_debug_exceptions(env);
2687 }
533e93f1
PM
2688
2689 if (arm_is_secure(env)) {
2690 int spd;
2691
2692 if (el == 0 && (env->cp15.sder & 1)) {
2693 /* SDER.SUIDEN means debug exceptions from Secure EL0
2694 * are always enabled. Otherwise they are controlled by
2695 * SDCR.SPD like those from other Secure ELs.
2696 */
2697 return true;
2698 }
2699
2700 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2701 switch (spd) {
2702 case 1:
2703 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2704 case 0:
2705 /* For 0b00 we return true if external secure invasive debug
2706 * is enabled. On real hardware this is controlled by external
2707 * signals to the core. QEMU always permits debug, and behaves
2708 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2709 */
2710 return true;
2711 case 2:
2712 return false;
2713 case 3:
2714 return true;
2715 }
2716 }
2717
2718 return el != 2;
3a298203
PM
2719}
2720
2721/* Return true if debugging exceptions are currently enabled.
2722 * This corresponds to what in ARM ARM pseudocode would be
2723 * if UsingAArch32() then
2724 * return AArch32.GenerateDebugExceptions()
2725 * else
2726 * return AArch64.GenerateDebugExceptions()
2727 * We choose to push the if() down into this function for clarity,
2728 * since the pseudocode has it at all callsites except for the one in
2729 * CheckSoftwareStep(), where it is elided because both branches would
2730 * always return the same value.
2731 *
2732 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2733 * don't yet implement those exception levels or their associated trap bits.
2734 */
2735static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2736{
2737 if (env->aarch64) {
2738 return aa64_generate_debug_exceptions(env);
2739 } else {
2740 return aa32_generate_debug_exceptions(env);
2741 }
2742}
2743
2744/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2745 * implicitly means this always returns false in pre-v8 CPUs.)
2746 */
2747static inline bool arm_singlestep_active(CPUARMState *env)
2748{
2749 return extract32(env->cp15.mdscr_el1, 0, 1)
2750 && arm_el_is_aa64(env, arm_debug_target_el(env))
2751 && arm_generate_debug_exceptions(env);
2752}
2753
f9fd40eb
PB
2754static inline bool arm_sctlr_b(CPUARMState *env)
2755{
2756 return
2757 /* We need not implement SCTLR.ITD in user-mode emulation, so
2758 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2759 * This lets people run BE32 binaries with "-cpu any".
2760 */
2761#ifndef CONFIG_USER_ONLY
2762 !arm_feature(env, ARM_FEATURE_V7) &&
2763#endif
2764 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2765}
2766
ed50ff78
PC
2767/* Return true if the processor is in big-endian mode. */
2768static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2769{
2770 int cur_el;
2771
2772 /* In 32bit endianness is determined by looking at CPSR's E bit */
2773 if (!is_a64(env)) {
b2e62d9a
PC
2774 return
2775#ifdef CONFIG_USER_ONLY
2776 /* In system mode, BE32 is modelled in line with the
2777 * architecture (as word-invariant big-endianness), where loads
2778 * and stores are done little endian but from addresses which
2779 * are adjusted by XORing with the appropriate constant. So the
2780 * endianness to use for the raw data access is not affected by
2781 * SCTLR.B.
2782 * In user mode, however, we model BE32 as byte-invariant
2783 * big-endianness (because user-only code cannot tell the
2784 * difference), and so we need to use a data access endianness
2785 * that depends on SCTLR.B.
2786 */
2787 arm_sctlr_b(env) ||
2788#endif
2789 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2790 }
2791
2792 cur_el = arm_current_el(env);
2793
2794 if (cur_el == 0) {
2795 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2796 }
2797
2798 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2799}
2800
022c62cb 2801#include "exec/cpu-all.h"
622ed360 2802
3926cc84
AG
2803/* Bit usage in the TB flags field: bit 31 indicates whether we are
2804 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2805 * We put flags which are shared between 32 and 64 bit mode at the top
2806 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
2807 */
2808#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2809#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2810#define ARM_TBFLAG_MMUIDX_SHIFT 28
2811#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2812#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2813#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2814#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2815#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2816/* Target EL if we take a floating-point-disabled exception */
2817#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2818#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
2819
2820/* Bit usage when in AArch32 state: */
a1705768
PM
2821#define ARM_TBFLAG_THUMB_SHIFT 0
2822#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2823#define ARM_TBFLAG_VECLEN_SHIFT 1
2824#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2825#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2826#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2827#define ARM_TBFLAG_VFPEN_SHIFT 7
2828#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2829#define ARM_TBFLAG_CONDEXEC_SHIFT 8
2830#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2831#define ARM_TBFLAG_SCTLR_B_SHIFT 16
2832#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2833/* We store the bottom two bits of the CPAR as TB flags and handle
2834 * checks on the other bits at runtime
2835 */
647f767b 2836#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 2837#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2838/* Indicates whether cp register reads and writes by guest code should access
2839 * the secure or nonsecure bank of banked registers; note that this is not
2840 * the same thing as the current security state of the processor!
2841 */
647f767b 2842#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 2843#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2844#define ARM_TBFLAG_BE_DATA_SHIFT 20
2845#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2846/* For M profile only, Handler (ie not Thread) mode */
2847#define ARM_TBFLAG_HANDLER_SHIFT 21
2848#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
3926cc84 2849
86fb3fa4
TH
2850/* Bit usage when in AArch64 state */
2851#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2852#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2853#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2854#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
2855#define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2856#define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2857#define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2858#define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768
PM
2859
2860/* some convenience accessor macros */
3926cc84
AG
2861#define ARM_TBFLAG_AARCH64_STATE(F) \
2862 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2863#define ARM_TBFLAG_MMUIDX(F) \
2864 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2865#define ARM_TBFLAG_SS_ACTIVE(F) \
2866 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2867#define ARM_TBFLAG_PSTATE_SS(F) \
2868 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2869#define ARM_TBFLAG_FPEXC_EL(F) \
2870 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
2871#define ARM_TBFLAG_THUMB(F) \
2872 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2873#define ARM_TBFLAG_VECLEN(F) \
2874 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2875#define ARM_TBFLAG_VECSTRIDE(F) \
2876 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2877#define ARM_TBFLAG_VFPEN(F) \
2878 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2879#define ARM_TBFLAG_CONDEXEC(F) \
2880 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2881#define ARM_TBFLAG_SCTLR_B(F) \
2882 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2883#define ARM_TBFLAG_XSCALE_CPAR(F) \
2884 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2885#define ARM_TBFLAG_NS(F) \
2886 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2887#define ARM_TBFLAG_BE_DATA(F) \
2888 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2889#define ARM_TBFLAG_HANDLER(F) \
2890 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
86fb3fa4
TH
2891#define ARM_TBFLAG_TBI0(F) \
2892 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2893#define ARM_TBFLAG_TBI1(F) \
2894 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
2895#define ARM_TBFLAG_SVEEXC_EL(F) \
2896 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2897#define ARM_TBFLAG_ZCR_LEN(F) \
2898 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768 2899
f9fd40eb
PB
2900static inline bool bswap_code(bool sctlr_b)
2901{
2902#ifdef CONFIG_USER_ONLY
2903 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2904 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2905 * would also end up as a mixed-endian mode with BE code, LE data.
2906 */
2907 return
2908#ifdef TARGET_WORDS_BIGENDIAN
2909 1 ^
2910#endif
2911 sctlr_b;
2912#else
e334bd31
PB
2913 /* All code access in ARM is little endian, and there are no loaders
2914 * doing swaps that need to be reversed
f9fd40eb
PB
2915 */
2916 return 0;
2917#endif
2918}
2919
c3ae85fc
PB
2920#ifdef CONFIG_USER_ONLY
2921static inline bool arm_cpu_bswap_data(CPUARMState *env)
2922{
2923 return
2924#ifdef TARGET_WORDS_BIGENDIAN
2925 1 ^
2926#endif
2927 arm_cpu_data_is_big_endian(env);
2928}
2929#endif
2930
86fb3fa4
TH
2931#ifndef CONFIG_USER_ONLY
2932/**
2933 * arm_regime_tbi0:
2934 * @env: CPUARMState
2935 * @mmu_idx: MMU index indicating required translation regime
2936 *
2937 * Extracts the TBI0 value from the appropriate TCR for the current EL
2938 *
2939 * Returns: the TBI0 value.
2940 */
2941uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2942
2943/**
2944 * arm_regime_tbi1:
2945 * @env: CPUARMState
2946 * @mmu_idx: MMU index indicating required translation regime
2947 *
2948 * Extracts the TBI1 value from the appropriate TCR for the current EL
2949 *
2950 * Returns: the TBI1 value.
2951 */
2952uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2953#else
2954/* We can't handle tagged addresses properly in user-only mode */
2955static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2956{
2957 return 0;
2958}
2959
2960static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2961{
2962 return 0;
2963}
2964#endif
2965
a9e01311
RH
2966void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2967 target_ulong *cs_base, uint32_t *flags);
6b917547 2968
98128601
RH
2969enum {
2970 QEMU_PSCI_CONDUIT_DISABLED = 0,
2971 QEMU_PSCI_CONDUIT_SMC = 1,
2972 QEMU_PSCI_CONDUIT_HVC = 2,
2973};
2974
017518c1
PM
2975#ifndef CONFIG_USER_ONLY
2976/* Return the address space index to use for a memory access */
2977static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2978{
2979 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2980}
5ce4ff65
PM
2981
2982/* Return the AddressSpace to use for a memory access
2983 * (which depends on whether the access is S or NS, and whether
2984 * the board gave us a separate AddressSpace for S accesses).
2985 */
2986static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2987{
2988 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2989}
017518c1
PM
2990#endif
2991
bd7d00fc 2992/**
b5c53d1b
AL
2993 * arm_register_pre_el_change_hook:
2994 * Register a hook function which will be called immediately before this
bd7d00fc
PM
2995 * CPU changes exception level or mode. The hook function will be
2996 * passed a pointer to the ARMCPU and the opaque data pointer passed
2997 * to this function when the hook was registered.
b5c53d1b
AL
2998 *
2999 * Note that if a pre-change hook is called, any registered post-change hooks
3000 * are guaranteed to subsequently be called.
bd7d00fc 3001 */
b5c53d1b 3002void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3003 void *opaque);
b5c53d1b
AL
3004/**
3005 * arm_register_el_change_hook:
3006 * Register a hook function which will be called immediately after this
3007 * CPU changes exception level or mode. The hook function will be
3008 * passed a pointer to the ARMCPU and the opaque data pointer passed
3009 * to this function when the hook was registered.
3010 *
3011 * Note that any registered hooks registered here are guaranteed to be called
3012 * if pre-change hooks have been.
3013 */
3014void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3015 *opaque);
bd7d00fc 3016
9a2b5256
RH
3017/**
3018 * aa32_vfp_dreg:
3019 * Return a pointer to the Dn register within env in 32-bit mode.
3020 */
3021static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3022{
c39c2b90 3023 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3024}
3025
3026/**
3027 * aa32_vfp_qreg:
3028 * Return a pointer to the Qn register within env in 32-bit mode.
3029 */
3030static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3031{
c39c2b90 3032 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3033}
3034
3035/**
3036 * aa64_vfp_qreg:
3037 * Return a pointer to the Qn register within env in 64-bit mode.
3038 */
3039static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3040{
c39c2b90 3041 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3042}
3043
028e2a7b
RH
3044/* Shared between translate-sve.c and sve_helper.c. */
3045extern const uint64_t pred_esz_masks[4];
3046
2c0262af 3047#endif