]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
2c4a7cc5 59/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
60
61#define ARMV7M_EXCP_RESET 1
62#define ARMV7M_EXCP_NMI 2
63#define ARMV7M_EXCP_HARD 3
64#define ARMV7M_EXCP_MEM 4
65#define ARMV7M_EXCP_BUS 5
66#define ARMV7M_EXCP_USAGE 6
1e577cc7 67#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
68#define ARMV7M_EXCP_SVC 11
69#define ARMV7M_EXCP_DEBUG 12
70#define ARMV7M_EXCP_PENDSV 14
71#define ARMV7M_EXCP_SYSTICK 15
2c0262af 72
acf94941
PM
73/* For M profile, some registers are banked secure vs non-secure;
74 * these are represented as a 2-element array where the first element
75 * is the non-secure copy and the second is the secure copy.
76 * When the CPU does not have implement the security extension then
77 * only the first element is used.
78 * This means that the copy for the current security state can be
79 * accessed via env->registerfield[env->v7m.secure] (whether the security
80 * extension is implemented or not).
81 */
4a16724f
PM
82enum {
83 M_REG_NS = 0,
84 M_REG_S = 1,
85 M_REG_NUM_BANKS = 2,
86};
acf94941 87
403946c0
RH
88/* ARM-specific interrupt pending bits. */
89#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
90#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
91#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 92
e4fe830b
PM
93/* The usual mapping for an AArch64 system register to its AArch32
94 * counterpart is for the 32 bit world to have access to the lower
95 * half only (with writes leaving the upper half untouched). It's
96 * therefore useful to be able to pass TCG the offset of the least
97 * significant half of a uint64_t struct member.
98 */
e03b5686 99#if HOST_BIG_ENDIAN
5cd8a118 100#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 101#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
102#else
103#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 104#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
105#endif
106
136e67e9 107/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
108#define ARM_CPU_IRQ 0
109#define ARM_CPU_FIQ 1
136e67e9
EI
110#define ARM_CPU_VIRQ 2
111#define ARM_CPU_VFIQ 3
403946c0 112
aaa1f954
EI
113/* ARM-specific extra insn start words:
114 * 1: Conditional execution bits
115 * 2: Partial exception syndrome for data aborts
116 */
117#define TARGET_INSN_START_EXTRA_WORDS 2
118
119/* The 2nd extra word holding syndrome info for data aborts does not use
120 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
121 * help the sleb128 encoder do a better job.
122 * When restoring the CPU state, we shift it back up.
123 */
124#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
125#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 126
b7bcbe95
FB
127/* We currently assume float and double are IEEE single and double
128 precision respectively.
129 Doing runtime conversions is tricky because VFP registers may contain
130 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
131 s<2n> maps to the least significant half of d<n>
132 s<2n+1> maps to the most significant half of d<n>
133 */
b7bcbe95 134
200bf5b7
AB
135/**
136 * DynamicGDBXMLInfo:
137 * @desc: Contains the XML descriptions.
448d4d14
AB
138 * @num: Number of the registers in this XML seen by GDB.
139 * @data: A union with data specific to the set of registers
140 * @cpregs_keys: Array that contains the corresponding Key of
141 * a given cpreg with the same order of the cpreg
142 * in the XML description.
200bf5b7
AB
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
448d4d14
AB
146 int num;
147 union {
148 struct {
149 uint32_t *keys;
150 } cpregs;
151 } data;
200bf5b7
AB
152} DynamicGDBXMLInfo;
153
55d284af
PM
154/* CPU state for each instance of a generic timer (in cp15 c14) */
155typedef struct ARMGenericTimer {
156 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 157 uint64_t ctl; /* Timer Control register */
55d284af
PM
158} ARMGenericTimer;
159
8c94b071
RH
160#define GTIMER_PHYS 0
161#define GTIMER_VIRT 1
162#define GTIMER_HYP 2
163#define GTIMER_SEC 3
164#define GTIMER_HYPVIRT 4
165#define NUM_GTIMERS 5
55d284af 166
11f136ee
FA
167typedef struct {
168 uint64_t raw_tcr;
169 uint32_t mask;
170 uint32_t base_mask;
171} TCR;
172
e9152ee9
RDC
173#define VTCR_NSW (1u << 29)
174#define VTCR_NSA (1u << 30)
175#define VSTCR_SW VTCR_NSW
176#define VSTCR_SA VTCR_NSA
177
c39c2b90
RH
178/* Define a maximum sized vector register.
179 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
180 * For 64-bit, this is a 2048-bit SVE register.
181 *
182 * Note that the mapping between S, D, and Q views of the register bank
183 * differs between AArch64 and AArch32.
184 * In AArch32:
185 * Qn = regs[n].d[1]:regs[n].d[0]
186 * Dn = regs[n / 2].d[n & 1]
187 * Sn = regs[n / 4].d[n % 4 / 2],
188 * bits 31..0 for even n, and bits 63..32 for odd n
189 * (and regs[16] to regs[31] are inaccessible)
190 * In AArch64:
191 * Zn = regs[n].d[*]
192 * Qn = regs[n].d[1]:regs[n].d[0]
193 * Dn = regs[n].d[0]
194 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 195 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
196 *
197 * This corresponds to the architecturally defined mapping between
198 * the two execution states, and means we do not need to explicitly
199 * map these registers when changing states.
200 *
201 * Align the data for use with TCG host vector operations.
202 */
203
204#ifdef TARGET_AARCH64
205# define ARM_MAX_VQ 16
0df9142d 206void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
eb94284d 207void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
69b2265d 208void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
209#else
210# define ARM_MAX_VQ 1
0df9142d 211static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
eb94284d 212static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
69b2265d 213static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
214#endif
215
216typedef struct ARMVectorReg {
217 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
218} ARMVectorReg;
219
3c7d3086 220#ifdef TARGET_AARCH64
991ad91b 221/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 222typedef struct ARMPredicateReg {
46417784 223 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 224} ARMPredicateReg;
991ad91b
RH
225
226/* In AArch32 mode, PAC keys do not exist at all. */
227typedef struct ARMPACKey {
228 uint64_t lo, hi;
229} ARMPACKey;
3c7d3086
RH
230#endif
231
3902bfc6
RH
232/* See the commentary above the TBFLAG field definitions. */
233typedef struct CPUARMTBFlags {
234 uint32_t flags;
a378206a 235 target_ulong flags2;
3902bfc6 236} CPUARMTBFlags;
c39c2b90 237
1ea4a06a 238typedef struct CPUArchState {
b5ff1b31 239 /* Regs for current mode. */
2c0262af 240 uint32_t regs[16];
3926cc84
AG
241
242 /* 32/64 switch only happens when taking and returning from
243 * exceptions so the overlap semantics are taken care of then
244 * instead of having a complicated union.
245 */
246 /* Regs for A64 mode. */
247 uint64_t xregs[32];
248 uint64_t pc;
d356312f
PM
249 /* PSTATE isn't an architectural register for ARMv8. However, it is
250 * convenient for us to assemble the underlying state into a 32 bit format
251 * identical to the architectural format used for the SPSR. (This is also
252 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
253 * 'pstate' register are.) Of the PSTATE bits:
254 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
255 * semantics as for AArch32, as described in the comments on each field)
256 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 257 * DAIF (exception masks) are kept in env->daif
f6e52eaa 258 * BTYPE is kept in env->btype
d356312f 259 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
260 */
261 uint32_t pstate;
262 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
263
fdd1b228 264 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 265 CPUARMTBFlags hflags;
fdd1b228 266
b90372ad 267 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 268 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
269 the whole CPSR. */
270 uint32_t uncached_cpsr;
271 uint32_t spsr;
272
273 /* Banked registers. */
28c9457d 274 uint64_t banked_spsr[8];
0b7d409d
FA
275 uint32_t banked_r13[8];
276 uint32_t banked_r14[8];
3b46e624 277
b5ff1b31
FB
278 /* These hold r8-r12. */
279 uint32_t usr_regs[5];
280 uint32_t fiq_regs[5];
3b46e624 281
2c0262af
FB
282 /* cpsr flag cache for faster execution */
283 uint32_t CF; /* 0 or 1 */
284 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
285 uint32_t NF; /* N is bit 31. All other bits are undefined. */
286 uint32_t ZF; /* Z set if zero. */
99c475ab 287 uint32_t QF; /* 0 or 1 */
9ee6e8bb 288 uint32_t GE; /* cpsr[19:16] */
b26eefb6 289 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 290 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 291 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 292 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 293
1b174238 294 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 295 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 296
b5ff1b31
FB
297 /* System control coprocessor (cp15) */
298 struct {
40f137e1 299 uint32_t c0_cpuid;
b85a1fd6
FA
300 union { /* Cache size selection */
301 struct {
302 uint64_t _unused_csselr0;
303 uint64_t csselr_ns;
304 uint64_t _unused_csselr1;
305 uint64_t csselr_s;
306 };
307 uint64_t csselr_el[4];
308 };
137feaa9
FA
309 union { /* System control register. */
310 struct {
311 uint64_t _unused_sctlr;
312 uint64_t sctlr_ns;
313 uint64_t hsctlr;
314 uint64_t sctlr_s;
315 };
316 uint64_t sctlr_el[4];
317 };
7ebd5f2e 318 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 319 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 320 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 321 uint64_t sder; /* Secure debug enable register. */
77022576 322 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
323 union { /* MMU translation table base 0. */
324 struct {
325 uint64_t _unused_ttbr0_0;
326 uint64_t ttbr0_ns;
327 uint64_t _unused_ttbr0_1;
328 uint64_t ttbr0_s;
329 };
330 uint64_t ttbr0_el[4];
331 };
332 union { /* MMU translation table base 1. */
333 struct {
334 uint64_t _unused_ttbr1_0;
335 uint64_t ttbr1_ns;
336 uint64_t _unused_ttbr1_1;
337 uint64_t ttbr1_s;
338 };
339 uint64_t ttbr1_el[4];
340 };
b698e9cf 341 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 342 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee
FA
343 /* MMU translation table base control. */
344 TCR tcr_el[4];
68e9c2fe 345 TCR vtcr_el2; /* Virtualization Translation Control. */
e9152ee9 346 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
347 uint32_t c2_data; /* MPU data cacheable bits. */
348 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
349 union { /* MMU domain access control register
350 * MPU write buffer control.
351 */
352 struct {
353 uint64_t dacr_ns;
354 uint64_t dacr_s;
355 };
356 struct {
357 uint64_t dacr32_el2;
358 };
359 };
7e09797c
PM
360 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
361 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 362 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 363 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
364 union { /* Fault status registers. */
365 struct {
366 uint64_t ifsr_ns;
367 uint64_t ifsr_s;
368 };
369 struct {
370 uint64_t ifsr32_el2;
371 };
372 };
4a7e2d73
FA
373 union {
374 struct {
375 uint64_t _unused_dfsr;
376 uint64_t dfsr_ns;
377 uint64_t hsr;
378 uint64_t dfsr_s;
379 };
380 uint64_t esr_el[4];
381 };
ce819861 382 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
383 union { /* Fault address registers. */
384 struct {
385 uint64_t _unused_far0;
e03b5686 386#if HOST_BIG_ENDIAN
b848ce2b
FA
387 uint32_t ifar_ns;
388 uint32_t dfar_ns;
389 uint32_t ifar_s;
390 uint32_t dfar_s;
391#else
392 uint32_t dfar_ns;
393 uint32_t ifar_ns;
394 uint32_t dfar_s;
395 uint32_t ifar_s;
396#endif
397 uint64_t _unused_far3;
398 };
399 uint64_t far_el[4];
400 };
59e05530 401 uint64_t hpfar_el2;
2a5a9abd 402 uint64_t hstr_el2;
01c097f7
FA
403 union { /* Translation result. */
404 struct {
405 uint64_t _unused_par_0;
406 uint64_t par_ns;
407 uint64_t _unused_par_1;
408 uint64_t par_s;
409 };
410 uint64_t par_el[4];
411 };
6cb0b013 412
b5ff1b31
FB
413 uint32_t c9_insn; /* Cache lockdown registers. */
414 uint32_t c9_data;
8521466b
AF
415 uint64_t c9_pmcr; /* performance monitor control register */
416 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
417 uint64_t c9_pmovsr; /* perf monitor overflow status */
418 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 419 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 420 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
421 union { /* Memory attribute redirection */
422 struct {
e03b5686 423#if HOST_BIG_ENDIAN
be693c87
GB
424 uint64_t _unused_mair_0;
425 uint32_t mair1_ns;
426 uint32_t mair0_ns;
427 uint64_t _unused_mair_1;
428 uint32_t mair1_s;
429 uint32_t mair0_s;
430#else
431 uint64_t _unused_mair_0;
432 uint32_t mair0_ns;
433 uint32_t mair1_ns;
434 uint64_t _unused_mair_1;
435 uint32_t mair0_s;
436 uint32_t mair1_s;
437#endif
438 };
439 uint64_t mair_el[4];
440 };
fb6c91ba
GB
441 union { /* vector base address register */
442 struct {
443 uint64_t _unused_vbar;
444 uint64_t vbar_ns;
445 uint64_t hvbar;
446 uint64_t vbar_s;
447 };
448 uint64_t vbar_el[4];
449 };
e89e51a1 450 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 451 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
452 struct { /* FCSE PID. */
453 uint32_t fcseidr_ns;
454 uint32_t fcseidr_s;
455 };
456 union { /* Context ID. */
457 struct {
458 uint64_t _unused_contextidr_0;
459 uint64_t contextidr_ns;
460 uint64_t _unused_contextidr_1;
461 uint64_t contextidr_s;
462 };
463 uint64_t contextidr_el[4];
464 };
465 union { /* User RW Thread register. */
466 struct {
467 uint64_t tpidrurw_ns;
468 uint64_t tpidrprw_ns;
469 uint64_t htpidr;
470 uint64_t _tpidr_el3;
471 };
472 uint64_t tpidr_el[4];
473 };
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
a7adc4b7
PM
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 485 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 487 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
0b45451e
PM
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 501 uint64_t mdscr_el1;
1424ca8d 502 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 503 uint64_t mdcr_el2;
5513c3ab 504 uint64_t mdcr_el3;
5d05b9d4
AL
505 /* Stores the architectural value of the counter *the last time it was
506 * updated* by pmccntr_op_start. Accesses should always be surrounded
507 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
508 * architecturally-correct value is being read/set.
7c2cb42b 509 */
c92c0687 510 uint64_t c15_ccnt;
5d05b9d4
AL
511 /* Stores the delta between the architectural value and the underlying
512 * cycle count during normal operation. It is used to update c15_ccnt
513 * to be the correct architectural value before accesses. During
514 * accesses, c15_ccnt_delta contains the underlying count being used
515 * for the access, after which it reverts to the delta value in
516 * pmccntr_op_finish.
517 */
518 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
519 uint64_t c14_pmevcntr[31];
520 uint64_t c14_pmevcntr_delta[31];
521 uint64_t c14_pmevtyper[31];
8521466b 522 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 523 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 524 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
525 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
526 uint64_t gcr_el1;
527 uint64_t rgsr_el1;
b5ff1b31 528 } cp15;
40f137e1 529
9ee6e8bb 530 struct {
fb602cb7
PM
531 /* M profile has up to 4 stack pointers:
532 * a Main Stack Pointer and a Process Stack Pointer for each
533 * of the Secure and Non-Secure states. (If the CPU doesn't support
534 * the security extension then it has only two SPs.)
535 * In QEMU we always store the currently active SP in regs[13],
536 * and the non-active SP for the current security state in
537 * v7m.other_sp. The stack pointers for the inactive security state
538 * are stored in other_ss_msp and other_ss_psp.
539 * switch_v7m_security_state() is responsible for rearranging them
540 * when we change security state.
541 */
9ee6e8bb 542 uint32_t other_sp;
fb602cb7
PM
543 uint32_t other_ss_msp;
544 uint32_t other_ss_psp;
4a16724f
PM
545 uint32_t vecbase[M_REG_NUM_BANKS];
546 uint32_t basepri[M_REG_NUM_BANKS];
547 uint32_t control[M_REG_NUM_BANKS];
548 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
549 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
550 uint32_t hfsr; /* HardFault Status */
551 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 552 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 553 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 554 uint32_t bfar; /* BusFault Address */
bed079da 555 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 556 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 557 int exception;
4a16724f
PM
558 uint32_t primask[M_REG_NUM_BANKS];
559 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 560 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 561 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 562 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 563 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
564 uint32_t msplim[M_REG_NUM_BANKS];
565 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
566 uint32_t fpcar[M_REG_NUM_BANKS];
567 uint32_t fpccr[M_REG_NUM_BANKS];
568 uint32_t fpdscr[M_REG_NUM_BANKS];
569 uint32_t cpacr[M_REG_NUM_BANKS];
570 uint32_t nsacr;
b26b5629 571 uint32_t ltpsize;
7c3d47da 572 uint32_t vpr;
9ee6e8bb
PB
573 } v7m;
574
abf1172f
PM
575 /* Information associated with an exception about to be taken:
576 * code which raises an exception must set cs->exception_index and
577 * the relevant parts of this structure; the cpu_do_interrupt function
578 * will then set the guest-visible registers as part of the exception
579 * entry process.
580 */
581 struct {
582 uint32_t syndrome; /* AArch64 format syndrome register */
583 uint32_t fsr; /* AArch32 format fault status register info */
584 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 585 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
586 /* If we implement EL2 we will also need to store information
587 * about the intermediate physical address for stage 2 faults.
588 */
589 } exception;
590
202ccb6b
DG
591 /* Information associated with an SError */
592 struct {
593 uint8_t pending;
594 uint8_t has_esr;
595 uint64_t esr;
596 } serror;
597
1711bfa5
BM
598 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
599
ed89f078
PM
600 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
601 uint32_t irq_line_state;
602
fe1479c3
PB
603 /* Thumb-2 EE state. */
604 uint32_t teecr;
605 uint32_t teehbr;
606
b7bcbe95
FB
607 /* VFP coprocessor state. */
608 struct {
c39c2b90 609 ARMVectorReg zregs[32];
b7bcbe95 610
3c7d3086
RH
611#ifdef TARGET_AARCH64
612 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 613#define FFR_PRED_NUM 16
3c7d3086 614 ARMPredicateReg pregs[17];
516e246a
RH
615 /* Scratch space for aa64 sve predicate temporary. */
616 ARMPredicateReg preg_tmp;
3c7d3086
RH
617#endif
618
b7bcbe95 619 /* We store these fpcsr fields separately for convenience. */
a4d58462 620 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
621 int vec_len;
622 int vec_stride;
623
a4d58462
RH
624 uint32_t xregs[16];
625
516e246a 626 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 627 uint32_t scratch[8];
3b46e624 628
d81ce0ef
AB
629 /* There are a number of distinct float control structures:
630 *
631 * fp_status: is the "normal" fp status.
632 * fp_status_fp16: used for half-precision calculations
633 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
634 * standard_fp_status_fp16 : used for half-precision
635 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
636 *
637 * Half-precision operations are governed by a separate
638 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
639 * status structure to control this.
640 *
641 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
642 * round-to-nearest and is used by any operations (generally
643 * Neon) which the architecture defines as controlled by the
644 * standard FPSCR value rather than the FPSCR.
3a492f3a 645 *
aaae563b
PM
646 * The "standard FPSCR but for fp16 ops" is needed because
647 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
648 * using a fixed value for it.
649 *
3a492f3a
PM
650 * To avoid having to transfer exception bits around, we simply
651 * say that the FPSCR cumulative exception flags are the logical
aaae563b 652 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
653 * only thing which needs to read the exception flags being
654 * an explicit FPSCR read.
655 */
53cd6637 656 float_status fp_status;
d81ce0ef 657 float_status fp_status_f16;
3a492f3a 658 float_status standard_fp_status;
aaae563b 659 float_status standard_fp_status_f16;
5be5e8ed
RH
660
661 /* ZCR_EL[1-3] */
662 uint64_t zcr_el[4];
b7bcbe95 663 } vfp;
03d05e2d
PM
664 uint64_t exclusive_addr;
665 uint64_t exclusive_val;
666 uint64_t exclusive_high;
b7bcbe95 667
18c9b560
AZ
668 /* iwMMXt coprocessor state. */
669 struct {
670 uint64_t regs[16];
671 uint64_t val;
672
673 uint32_t cregs[16];
674 } iwmmxt;
675
991ad91b 676#ifdef TARGET_AARCH64
108b3ba8
RH
677 struct {
678 ARMPACKey apia;
679 ARMPACKey apib;
680 ARMPACKey apda;
681 ARMPACKey apdb;
682 ARMPACKey apga;
683 } keys;
991ad91b
RH
684#endif
685
ce4defa0
PB
686#if defined(CONFIG_USER_ONLY)
687 /* For usermode syscall translation. */
688 int eabi;
689#endif
690
46747d15 691 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
692 struct CPUWatchpoint *cpu_watchpoint[16];
693
1f5c00cf
AB
694 /* Fields up to this point are cleared by a CPU reset */
695 struct {} end_reset_fields;
696
e8b5fae5 697 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 698
581be094 699 /* Internal CPU feature flags. */
918f5dca 700 uint64_t features;
581be094 701
6cb0b013
PC
702 /* PMSAv7 MPU */
703 struct {
704 uint32_t *drbar;
705 uint32_t *drsr;
706 uint32_t *dracr;
4a16724f 707 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
708 } pmsav7;
709
0e1a46bb
PM
710 /* PMSAv8 MPU */
711 struct {
712 /* The PMSAv8 implementation also shares some PMSAv7 config
713 * and state:
714 * pmsav7.rnr (region number register)
715 * pmsav7_dregion (number of configured regions)
716 */
4a16724f
PM
717 uint32_t *rbar[M_REG_NUM_BANKS];
718 uint32_t *rlar[M_REG_NUM_BANKS];
719 uint32_t mair0[M_REG_NUM_BANKS];
720 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
721 } pmsav8;
722
9901c576
PM
723 /* v8M SAU */
724 struct {
725 uint32_t *rbar;
726 uint32_t *rlar;
727 uint32_t rnr;
728 uint32_t ctrl;
729 } sau;
730
983fe826 731 void *nvic;
462a8bc6 732 const struct arm_boot_info *boot_info;
d3a3e529
VK
733 /* Store GICv3CPUState to access from this struct */
734 void *gicv3state;
0e0c030c
RH
735
736#ifdef TARGET_TAGGED_ADDRESSES
737 /* Linux syscall tagged address support */
738 bool tagged_addr_enable;
739#endif
2c0262af
FB
740} CPUARMState;
741
5fda9504
TH
742static inline void set_feature(CPUARMState *env, int feature)
743{
744 env->features |= 1ULL << feature;
745}
746
747static inline void unset_feature(CPUARMState *env, int feature)
748{
749 env->features &= ~(1ULL << feature);
750}
751
bd7d00fc 752/**
08267487 753 * ARMELChangeHookFn:
bd7d00fc
PM
754 * type of a function which can be registered via arm_register_el_change_hook()
755 * to get callbacks when the CPU changes its exception level or mode.
756 */
08267487
AL
757typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
758typedef struct ARMELChangeHook ARMELChangeHook;
759struct ARMELChangeHook {
760 ARMELChangeHookFn *hook;
761 void *opaque;
762 QLIST_ENTRY(ARMELChangeHook) node;
763};
062ba099
AB
764
765/* These values map onto the return values for
766 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
767typedef enum ARMPSCIState {
d5affb0d
AJ
768 PSCI_ON = 0,
769 PSCI_OFF = 1,
062ba099
AB
770 PSCI_ON_PENDING = 2
771} ARMPSCIState;
772
962fcbf2
RH
773typedef struct ARMISARegisters ARMISARegisters;
774
74e75564
PB
775/**
776 * ARMCPU:
777 * @env: #CPUARMState
778 *
779 * An ARM CPU core.
780 */
b36e239e 781struct ArchCPU {
74e75564
PB
782 /*< private >*/
783 CPUState parent_obj;
784 /*< public >*/
785
5b146dc7 786 CPUNegativeOffsetState neg;
74e75564
PB
787 CPUARMState env;
788
789 /* Coprocessor information */
790 GHashTable *cp_regs;
791 /* For marshalling (mostly coprocessor) register state between the
792 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
793 * we use these arrays.
794 */
795 /* List of register indexes managed via these arrays; (full KVM style
796 * 64 bit indexes, not CPRegInfo 32 bit indexes)
797 */
798 uint64_t *cpreg_indexes;
799 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
800 uint64_t *cpreg_values;
801 /* Length of the indexes, values, reset_values arrays */
802 int32_t cpreg_array_len;
803 /* These are used only for migration: incoming data arrives in
804 * these fields and is sanity checked in post_load before copying
805 * to the working data structures above.
806 */
807 uint64_t *cpreg_vmstate_indexes;
808 uint64_t *cpreg_vmstate_values;
809 int32_t cpreg_vmstate_array_len;
810
448d4d14 811 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 812 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 813
74e75564
PB
814 /* Timers used by the generic (architected) timer */
815 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
816 /*
817 * Timer used by the PMU. Its state is restored after migration by
818 * pmu_op_finish() - it does not need other handling during migration
819 */
820 QEMUTimer *pmu_timer;
74e75564
PB
821 /* GPIO outputs for generic timer */
822 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
823 /* GPIO output for GICv3 maintenance interrupt signal */
824 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
825 /* GPIO output for the PMU interrupt */
826 qemu_irq pmu_interrupt;
74e75564
PB
827
828 /* MemoryRegion to use for secure physical accesses */
829 MemoryRegion *secure_memory;
830
8bce44a2
RH
831 /* MemoryRegion to use for allocation tag accesses */
832 MemoryRegion *tag_memory;
833 MemoryRegion *secure_tag_memory;
834
181962fd
PM
835 /* For v8M, pointer to the IDAU interface provided by board/SoC */
836 Object *idau;
837
74e75564
PB
838 /* 'compatible' string for this CPU for Linux device trees */
839 const char *dtb_compatible;
840
841 /* PSCI version for this CPU
842 * Bits[31:16] = Major Version
843 * Bits[15:0] = Minor Version
844 */
845 uint32_t psci_version;
846
062ba099
AB
847 /* Current power state, access guarded by BQL */
848 ARMPSCIState power_state;
849
c25bd18a
PM
850 /* CPU has virtualization extension */
851 bool has_el2;
74e75564
PB
852 /* CPU has security extension */
853 bool has_el3;
5c0a3819
SZ
854 /* CPU has PMU (Performance Monitor Unit) */
855 bool has_pmu;
97a28b0e
PM
856 /* CPU has VFP */
857 bool has_vfp;
858 /* CPU has Neon */
859 bool has_neon;
ea90db0a
PM
860 /* CPU has M-profile DSP extension */
861 bool has_dsp;
74e75564
PB
862
863 /* CPU has memory protection unit */
864 bool has_mpu;
865 /* PMSAv7 MPU number of supported regions */
866 uint32_t pmsav7_dregion;
9901c576
PM
867 /* v8M SAU number of supported regions */
868 uint32_t sau_sregion;
74e75564
PB
869
870 /* PSCI conduit used to invoke PSCI methods
871 * 0 - disabled, 1 - smc, 2 - hvc
872 */
873 uint32_t psci_conduit;
874
38e2a77c
PM
875 /* For v8M, initial value of the Secure VTOR */
876 uint32_t init_svtor;
7cda2149
PM
877 /* For v8M, initial value of the Non-secure VTOR */
878 uint32_t init_nsvtor;
38e2a77c 879
74e75564
PB
880 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
881 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
882 */
883 uint32_t kvm_target;
884
885 /* KVM init features for this CPU */
886 uint32_t kvm_init_features[7];
887
e5ac4200
AJ
888 /* KVM CPU state */
889
890 /* KVM virtual time adjustment */
891 bool kvm_adjvtime;
892 bool kvm_vtime_dirty;
893 uint64_t kvm_vtime;
894
68970d1e
AJ
895 /* KVM steal time */
896 OnOffAuto kvm_steal_time;
897
74e75564
PB
898 /* Uniprocessor system with MP extensions */
899 bool mp_is_up;
900
c4487d76
PM
901 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
902 * and the probe failed (so we need to report the error in realize)
903 */
904 bool host_cpu_probe_failed;
905
f9a69711
AF
906 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
907 * register.
908 */
909 int32_t core_count;
910
74e75564
PB
911 /* The instance init functions for implementation-specific subclasses
912 * set these fields to specify the implementation-dependent values of
913 * various constant registers and reset values of non-constant
914 * registers.
915 * Some of these might become QOM properties eventually.
916 * Field names match the official register names as defined in the
917 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
918 * is used for reset values of non-constant registers; no reset_
919 * prefix means a constant register.
47576b94
RH
920 * Some of these registers are split out into a substructure that
921 * is shared with the translators to control the ISA.
1548a7b2
PM
922 *
923 * Note that if you add an ID register to the ARMISARegisters struct
924 * you need to also update the 32-bit and 64-bit versions of the
925 * kvm_arm_get_host_cpu_features() function to correctly populate the
926 * field by reading the value from the KVM vCPU.
74e75564 927 */
47576b94
RH
928 struct ARMISARegisters {
929 uint32_t id_isar0;
930 uint32_t id_isar1;
931 uint32_t id_isar2;
932 uint32_t id_isar3;
933 uint32_t id_isar4;
934 uint32_t id_isar5;
935 uint32_t id_isar6;
10054016
PM
936 uint32_t id_mmfr0;
937 uint32_t id_mmfr1;
938 uint32_t id_mmfr2;
939 uint32_t id_mmfr3;
940 uint32_t id_mmfr4;
8a130a7b
PM
941 uint32_t id_pfr0;
942 uint32_t id_pfr1;
1d51bc96 943 uint32_t id_pfr2;
47576b94
RH
944 uint32_t mvfr0;
945 uint32_t mvfr1;
946 uint32_t mvfr2;
a6179538 947 uint32_t id_dfr0;
4426d361 948 uint32_t dbgdidr;
47576b94
RH
949 uint64_t id_aa64isar0;
950 uint64_t id_aa64isar1;
951 uint64_t id_aa64pfr0;
952 uint64_t id_aa64pfr1;
3dc91ddb
PM
953 uint64_t id_aa64mmfr0;
954 uint64_t id_aa64mmfr1;
64761e10 955 uint64_t id_aa64mmfr2;
2a609df8
PM
956 uint64_t id_aa64dfr0;
957 uint64_t id_aa64dfr1;
2dc10fa2 958 uint64_t id_aa64zfr0;
47576b94 959 } isar;
e544f800 960 uint64_t midr;
74e75564
PB
961 uint32_t revidr;
962 uint32_t reset_fpsid;
a5fd319a 963 uint64_t ctr;
74e75564 964 uint32_t reset_sctlr;
cad86737
AL
965 uint64_t pmceid0;
966 uint64_t pmceid1;
74e75564 967 uint32_t id_afr0;
74e75564
PB
968 uint64_t id_aa64afr0;
969 uint64_t id_aa64afr1;
f6450bcb 970 uint64_t clidr;
74e75564
PB
971 uint64_t mp_affinity; /* MP ID without feature bits */
972 /* The elements of this array are the CCSIDR values for each cache,
973 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
974 */
957e6155 975 uint64_t ccsidr[16];
74e75564
PB
976 uint64_t reset_cbar;
977 uint32_t reset_auxcr;
978 bool reset_hivecs;
eb94284d
RH
979
980 /*
981 * Intermediate values used during property parsing.
69b2265d 982 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
983 */
984 bool prop_pauth;
985 bool prop_pauth_impdef;
69b2265d 986 bool prop_lpa2;
eb94284d 987
74e75564
PB
988 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
989 uint32_t dcz_blocksize;
4a7319b7 990 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 991
e45868a3
PM
992 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
993 int gic_num_lrs; /* number of list registers */
994 int gic_vpribits; /* number of virtual priority bits */
995 int gic_vprebits; /* number of virtual preemption bits */
996
3a062d57
JB
997 /* Whether the cfgend input is high (i.e. this CPU should reset into
998 * big-endian mode). This setting isn't used directly: instead it modifies
999 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1000 * architecture version.
1001 */
1002 bool cfgend;
1003
b5c53d1b 1004 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1005 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1006
1007 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1008
1009 /* Used to synchronize KVM and QEMU in-kernel device levels */
1010 uint8_t device_irq_level;
adf92eab
RH
1011
1012 /* Used to set the maximum vector length the cpu will support. */
1013 uint32_t sve_max_vq;
0df9142d 1014
b3d52804
RH
1015#ifdef CONFIG_USER_ONLY
1016 /* Used to set the default vector length at process start. */
1017 uint32_t sve_default_vq;
1018#endif
1019
0df9142d
AJ
1020 /*
1021 * In sve_vq_map each set bit is a supported vector length of
1022 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1023 * length in quadwords.
1024 *
1025 * While processing properties during initialization, corresponding
1026 * sve_vq_init bits are set for bits in sve_vq_map that have been
1027 * set by properties.
5401b1e0
AJ
1028 *
1029 * Bits set in sve_vq_supported represent valid vector lengths for
1030 * the CPU type.
0df9142d
AJ
1031 */
1032 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1033 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
5401b1e0 1034 DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
7def8754
AJ
1035
1036 /* Generic timer counter frequency, in Hz */
1037 uint64_t gt_cntfrq_hz;
74e75564
PB
1038};
1039
7def8754
AJ
1040unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1041
51e5ef45
MAL
1042void arm_cpu_post_init(Object *obj);
1043
46de5913
IM
1044uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1045
74e75564 1046#ifndef CONFIG_USER_ONLY
8a9358cc 1047extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1048
1049void arm_cpu_do_interrupt(CPUState *cpu);
1050void arm_v7m_cpu_do_interrupt(CPUState *cpu);
083afd18 1051#endif /* !CONFIG_USER_ONLY */
74e75564 1052
74e75564
PB
1053hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1054 MemTxAttrs *attrs);
1055
a010bdbe 1056int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1057int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1058
d12379c5
AB
1059/*
1060 * Helpers to dynamically generates XML descriptions of the sysregs
1061 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1062 */
32d6e32a 1063int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1064int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1065
1066/* Returns the dynamically generated XML for the gdb stub.
1067 * Returns a pointer to the XML contents for the specified XML file or NULL
1068 * if the XML name doesn't match the predefined one.
1069 */
1070const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1071
74e75564
PB
1072int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1073 int cpuid, void *opaque);
1074int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1075 int cpuid, void *opaque);
1076
1077#ifdef TARGET_AARCH64
a010bdbe 1078int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1079int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1080void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1081void aarch64_sve_change_el(CPUARMState *env, int old_el,
1082 int new_el, bool el0_a64);
87014c6b 1083void aarch64_add_sve_properties(Object *obj);
95ea96e8 1084void aarch64_add_pauth_properties(Object *obj);
538baab2
AJ
1085
1086/*
1087 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1088 * The byte at offset i from the start of the in-memory representation contains
1089 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1090 * lowest offsets are stored in the lowest memory addresses, then that nearly
1091 * matches QEMU's representation, which is to use an array of host-endian
1092 * uint64_t's, where the lower offsets are at the lower indices. To complete
1093 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1094 */
1095static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1096{
e03b5686 1097#if HOST_BIG_ENDIAN
538baab2
AJ
1098 int i;
1099
1100 for (i = 0; i < nr; ++i) {
1101 dst[i] = bswap64(src[i]);
1102 }
1103
1104 return dst;
1105#else
1106 return src;
1107#endif
1108}
1109
0ab5953b
RH
1110#else
1111static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1112static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1113 int n, bool a)
1114{ }
87014c6b 1115static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1116#endif
778c3a06 1117
ce02049d
GB
1118void aarch64_sync_32_to_64(CPUARMState *env);
1119void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1120
ced31551
RH
1121int fp_exception_el(CPUARMState *env, int cur_el);
1122int sve_exception_el(CPUARMState *env, int cur_el);
1123uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1124
3926cc84
AG
1125static inline bool is_a64(CPUARMState *env)
1126{
1127 return env->aarch64;
1128}
1129
5d05b9d4
AL
1130/**
1131 * pmu_op_start/finish
ec7b4ce4
AF
1132 * @env: CPUARMState
1133 *
5d05b9d4
AL
1134 * Convert all PMU counters between their delta form (the typical mode when
1135 * they are enabled) and the guest-visible values. These two calls must
1136 * surround any action which might affect the counters.
ec7b4ce4 1137 */
5d05b9d4
AL
1138void pmu_op_start(CPUARMState *env);
1139void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1140
4e7beb0c
AL
1141/*
1142 * Called when a PMU counter is due to overflow
1143 */
1144void arm_pmu_timer_cb(void *opaque);
1145
033614c4
AL
1146/**
1147 * Functions to register as EL change hooks for PMU mode filtering
1148 */
1149void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1150void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1151
57a4a11b 1152/*
bf8d0969
AL
1153 * pmu_init
1154 * @cpu: ARMCPU
57a4a11b 1155 *
bf8d0969
AL
1156 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1157 * for the current configuration
57a4a11b 1158 */
bf8d0969 1159void pmu_init(ARMCPU *cpu);
57a4a11b 1160
76e3e1bc
PM
1161/* SCTLR bit meanings. Several bits have been reused in newer
1162 * versions of the architecture; in that case we define constants
1163 * for both old and new bit meanings. Code which tests against those
1164 * bits should probably check or otherwise arrange that the CPU
1165 * is the architectural version it expects.
1166 */
1167#define SCTLR_M (1U << 0)
1168#define SCTLR_A (1U << 1)
1169#define SCTLR_C (1U << 2)
1170#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1171#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1172#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1173#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1174#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1175#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1176#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1177#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1178#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1179#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1180#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1181#define SCTLR_ITD (1U << 7) /* v8 onward */
1182#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1183#define SCTLR_SED (1U << 8) /* v8 onward */
1184#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1185#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1186#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1187#define SCTLR_SW (1U << 10) /* v7 */
1188#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1189#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1190#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1191#define SCTLR_I (1U << 12)
b2af69d0
RH
1192#define SCTLR_V (1U << 13) /* AArch32 only */
1193#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1194#define SCTLR_RR (1U << 14) /* up to v7 */
1195#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1196#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1197#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1198#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1199#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1200#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1201#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1202#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1203#define SCTLR_nTWE (1U << 18) /* v8 onward */
1204#define SCTLR_WXN (1U << 19)
1205#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1206#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1207#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1208#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1209#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1210#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1211#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1212#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1213#define SCTLR_VE (1U << 24) /* up to v7 */
1214#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1215#define SCTLR_EE (1U << 25)
1216#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1217#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1218#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1219#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1220#define SCTLR_TRE (1U << 28) /* AArch32 only */
1221#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1222#define SCTLR_AFE (1U << 29) /* AArch32 only */
1223#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1224#define SCTLR_TE (1U << 30) /* AArch32 only */
1225#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1226#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1227#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1228#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1229#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1230#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1231#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1232#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1233#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1234#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1235#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
76e3e1bc 1236
c6f19164
GB
1237#define CPTR_TCPAC (1U << 31)
1238#define CPTR_TTA (1U << 20)
1239#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1240#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1241#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1242
187f678d
PM
1243#define MDCR_EPMAD (1U << 21)
1244#define MDCR_EDAD (1U << 20)
033614c4
AL
1245#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1246#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1247#define MDCR_SDD (1U << 16)
a8d64e73 1248#define MDCR_SPD (3U << 14)
187f678d
PM
1249#define MDCR_TDRA (1U << 11)
1250#define MDCR_TDOSA (1U << 10)
1251#define MDCR_TDA (1U << 9)
1252#define MDCR_TDE (1U << 8)
1253#define MDCR_HPME (1U << 7)
1254#define MDCR_TPM (1U << 6)
1255#define MDCR_TPMCR (1U << 5)
033614c4 1256#define MDCR_HPMN (0x1fU)
187f678d 1257
a8d64e73
PM
1258/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1259#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1260
78dbbbe4
PM
1261#define CPSR_M (0x1fU)
1262#define CPSR_T (1U << 5)
1263#define CPSR_F (1U << 6)
1264#define CPSR_I (1U << 7)
1265#define CPSR_A (1U << 8)
1266#define CPSR_E (1U << 9)
1267#define CPSR_IT_2_7 (0xfc00U)
1268#define CPSR_GE (0xfU << 16)
4051e12c 1269#define CPSR_IL (1U << 20)
dc8b1853 1270#define CPSR_DIT (1U << 21)
220f508f 1271#define CPSR_PAN (1U << 22)
f2f68a78 1272#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1273#define CPSR_J (1U << 24)
1274#define CPSR_IT_0_1 (3U << 25)
1275#define CPSR_Q (1U << 27)
1276#define CPSR_V (1U << 28)
1277#define CPSR_C (1U << 29)
1278#define CPSR_Z (1U << 30)
1279#define CPSR_N (1U << 31)
9ee6e8bb 1280#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1281#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1282
1283#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1284#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1285 | CPSR_NZCV)
9ee6e8bb 1286/* Bits writable in user mode. */
268b1b3d 1287#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1288/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1289#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1290
987ab45e
PM
1291/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1292#define XPSR_EXCP 0x1ffU
1293#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1294#define XPSR_IT_2_7 CPSR_IT_2_7
1295#define XPSR_GE CPSR_GE
1296#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1297#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1298#define XPSR_IT_0_1 CPSR_IT_0_1
1299#define XPSR_Q CPSR_Q
1300#define XPSR_V CPSR_V
1301#define XPSR_C CPSR_C
1302#define XPSR_Z CPSR_Z
1303#define XPSR_N CPSR_N
1304#define XPSR_NZCV CPSR_NZCV
1305#define XPSR_IT CPSR_IT
1306
e389be16
FA
1307#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1308#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1309#define TTBCR_PD0 (1U << 4)
1310#define TTBCR_PD1 (1U << 5)
1311#define TTBCR_EPD0 (1U << 7)
1312#define TTBCR_IRGN0 (3U << 8)
1313#define TTBCR_ORGN0 (3U << 10)
1314#define TTBCR_SH0 (3U << 12)
1315#define TTBCR_T1SZ (3U << 16)
1316#define TTBCR_A1 (1U << 22)
1317#define TTBCR_EPD1 (1U << 23)
1318#define TTBCR_IRGN1 (3U << 24)
1319#define TTBCR_ORGN1 (3U << 26)
1320#define TTBCR_SH1 (1U << 28)
1321#define TTBCR_EAE (1U << 31)
1322
d356312f
PM
1323/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1324 * Only these are valid when in AArch64 mode; in
1325 * AArch32 mode SPSRs are basically CPSR-format.
1326 */
f502cfc2 1327#define PSTATE_SP (1U)
d356312f
PM
1328#define PSTATE_M (0xFU)
1329#define PSTATE_nRW (1U << 4)
1330#define PSTATE_F (1U << 6)
1331#define PSTATE_I (1U << 7)
1332#define PSTATE_A (1U << 8)
1333#define PSTATE_D (1U << 9)
f6e52eaa 1334#define PSTATE_BTYPE (3U << 10)
f2f68a78 1335#define PSTATE_SSBS (1U << 12)
d356312f
PM
1336#define PSTATE_IL (1U << 20)
1337#define PSTATE_SS (1U << 21)
220f508f 1338#define PSTATE_PAN (1U << 22)
9eeb7a1c 1339#define PSTATE_UAO (1U << 23)
dc8b1853 1340#define PSTATE_DIT (1U << 24)
4b779ceb 1341#define PSTATE_TCO (1U << 25)
d356312f
PM
1342#define PSTATE_V (1U << 28)
1343#define PSTATE_C (1U << 29)
1344#define PSTATE_Z (1U << 30)
1345#define PSTATE_N (1U << 31)
1346#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1347#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1348#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1349/* Mode values for AArch64 */
1350#define PSTATE_MODE_EL3h 13
1351#define PSTATE_MODE_EL3t 12
1352#define PSTATE_MODE_EL2h 9
1353#define PSTATE_MODE_EL2t 8
1354#define PSTATE_MODE_EL1h 5
1355#define PSTATE_MODE_EL1t 4
1356#define PSTATE_MODE_EL0t 0
1357
de2db7ec
PM
1358/* Write a new value to v7m.exception, thus transitioning into or out
1359 * of Handler mode; this may result in a change of active stack pointer.
1360 */
1361void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1362
9e729b57
EI
1363/* Map EL and handler into a PSTATE_MODE. */
1364static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1365{
1366 return (el << 2) | handler;
1367}
1368
d356312f
PM
1369/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1370 * interprocessing, so we don't attempt to sync with the cpsr state used by
1371 * the 32 bit decoder.
1372 */
1373static inline uint32_t pstate_read(CPUARMState *env)
1374{
1375 int ZF;
1376
1377 ZF = (env->ZF == 0);
1378 return (env->NF & 0x80000000) | (ZF << 30)
1379 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1380 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1381}
1382
1383static inline void pstate_write(CPUARMState *env, uint32_t val)
1384{
1385 env->ZF = (~val) & PSTATE_Z;
1386 env->NF = val;
1387 env->CF = (val >> 29) & 1;
1388 env->VF = (val << 3) & 0x80000000;
4cc35614 1389 env->daif = val & PSTATE_DAIF;
f6e52eaa 1390 env->btype = (val >> 10) & 3;
d356312f
PM
1391 env->pstate = val & ~CACHED_PSTATE_BITS;
1392}
1393
b5ff1b31 1394/* Return the current CPSR value. */
2f4a40e5 1395uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1396
1397typedef enum CPSRWriteType {
1398 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1399 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1400 CPSRWriteRaw = 2,
1401 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1402 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1403} CPSRWriteType;
1404
e784807c
PM
1405/*
1406 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1407 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1408 * correspond to TB flags bits cached in the hflags, unless @write_type
1409 * is CPSRWriteRaw.
1410 */
50866ba5
PM
1411void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1412 CPSRWriteType write_type);
9ee6e8bb
PB
1413
1414/* Return the current xPSR value. */
1415static inline uint32_t xpsr_read(CPUARMState *env)
1416{
1417 int ZF;
6fbe23d5
PB
1418 ZF = (env->ZF == 0);
1419 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1420 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1421 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1422 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1423 | (env->GE << 16)
9ee6e8bb 1424 | env->v7m.exception;
b5ff1b31
FB
1425}
1426
9ee6e8bb
PB
1427/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1428static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1429{
987ab45e
PM
1430 if (mask & XPSR_NZCV) {
1431 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1432 env->NF = val;
9ee6e8bb
PB
1433 env->CF = (val >> 29) & 1;
1434 env->VF = (val << 3) & 0x80000000;
1435 }
987ab45e
PM
1436 if (mask & XPSR_Q) {
1437 env->QF = ((val & XPSR_Q) != 0);
1438 }
f1e2598c
PM
1439 if (mask & XPSR_GE) {
1440 env->GE = (val & XPSR_GE) >> 16;
1441 }
04c9c81b 1442#ifndef CONFIG_USER_ONLY
987ab45e
PM
1443 if (mask & XPSR_T) {
1444 env->thumb = ((val & XPSR_T) != 0);
1445 }
1446 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1447 env->condexec_bits &= ~3;
1448 env->condexec_bits |= (val >> 25) & 3;
1449 }
987ab45e 1450 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1451 env->condexec_bits &= 3;
1452 env->condexec_bits |= (val >> 8) & 0xfc;
1453 }
987ab45e 1454 if (mask & XPSR_EXCP) {
de2db7ec
PM
1455 /* Note that this only happens on exception exit */
1456 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1457 }
04c9c81b 1458#endif
9ee6e8bb
PB
1459}
1460
f149e3e8
EI
1461#define HCR_VM (1ULL << 0)
1462#define HCR_SWIO (1ULL << 1)
1463#define HCR_PTW (1ULL << 2)
1464#define HCR_FMO (1ULL << 3)
1465#define HCR_IMO (1ULL << 4)
1466#define HCR_AMO (1ULL << 5)
1467#define HCR_VF (1ULL << 6)
1468#define HCR_VI (1ULL << 7)
1469#define HCR_VSE (1ULL << 8)
1470#define HCR_FB (1ULL << 9)
1471#define HCR_BSU_MASK (3ULL << 10)
1472#define HCR_DC (1ULL << 12)
1473#define HCR_TWI (1ULL << 13)
1474#define HCR_TWE (1ULL << 14)
1475#define HCR_TID0 (1ULL << 15)
1476#define HCR_TID1 (1ULL << 16)
1477#define HCR_TID2 (1ULL << 17)
1478#define HCR_TID3 (1ULL << 18)
1479#define HCR_TSC (1ULL << 19)
1480#define HCR_TIDCP (1ULL << 20)
1481#define HCR_TACR (1ULL << 21)
1482#define HCR_TSW (1ULL << 22)
099bf53b 1483#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1484#define HCR_TPU (1ULL << 24)
1485#define HCR_TTLB (1ULL << 25)
1486#define HCR_TVM (1ULL << 26)
1487#define HCR_TGE (1ULL << 27)
1488#define HCR_TDZ (1ULL << 28)
1489#define HCR_HCD (1ULL << 29)
1490#define HCR_TRVM (1ULL << 30)
1491#define HCR_RW (1ULL << 31)
1492#define HCR_CD (1ULL << 32)
1493#define HCR_ID (1ULL << 33)
ac656b16 1494#define HCR_E2H (1ULL << 34)
099bf53b
RH
1495#define HCR_TLOR (1ULL << 35)
1496#define HCR_TERR (1ULL << 36)
1497#define HCR_TEA (1ULL << 37)
1498#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1499/* RES0 bit 39 */
099bf53b
RH
1500#define HCR_APK (1ULL << 40)
1501#define HCR_API (1ULL << 41)
1502#define HCR_NV (1ULL << 42)
1503#define HCR_NV1 (1ULL << 43)
1504#define HCR_AT (1ULL << 44)
1505#define HCR_NV2 (1ULL << 45)
1506#define HCR_FWB (1ULL << 46)
1507#define HCR_FIEN (1ULL << 47)
e0a38bb3 1508/* RES0 bit 48 */
099bf53b
RH
1509#define HCR_TID4 (1ULL << 49)
1510#define HCR_TICAB (1ULL << 50)
e0a38bb3 1511#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1512#define HCR_TOCU (1ULL << 52)
e0a38bb3 1513#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1514#define HCR_TTLBIS (1ULL << 54)
1515#define HCR_TTLBOS (1ULL << 55)
1516#define HCR_ATA (1ULL << 56)
1517#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1518#define HCR_TID5 (1ULL << 58)
1519#define HCR_TWEDEN (1ULL << 59)
1520#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1521
9861248f
RDC
1522#define HPFAR_NS (1ULL << 63)
1523
64e0e2de
EI
1524#define SCR_NS (1U << 0)
1525#define SCR_IRQ (1U << 1)
1526#define SCR_FIQ (1U << 2)
1527#define SCR_EA (1U << 3)
1528#define SCR_FW (1U << 4)
1529#define SCR_AW (1U << 5)
1530#define SCR_NET (1U << 6)
1531#define SCR_SMD (1U << 7)
1532#define SCR_HCE (1U << 8)
1533#define SCR_SIF (1U << 9)
1534#define SCR_RW (1U << 10)
1535#define SCR_ST (1U << 11)
1536#define SCR_TWI (1U << 12)
1537#define SCR_TWE (1U << 13)
99f8f86d
RH
1538#define SCR_TLOR (1U << 14)
1539#define SCR_TERR (1U << 15)
1540#define SCR_APK (1U << 16)
1541#define SCR_API (1U << 17)
1542#define SCR_EEL2 (1U << 18)
1543#define SCR_EASE (1U << 19)
1544#define SCR_NMEA (1U << 20)
1545#define SCR_FIEN (1U << 21)
1546#define SCR_ENSCXT (1U << 25)
1547#define SCR_ATA (1U << 26)
64e0e2de 1548
cc7613bf 1549#define HSTR_TTEE (1 << 16)
8e228c9e 1550#define HSTR_TJDBX (1 << 17)
cc7613bf 1551
01653295
PM
1552/* Return the current FPSCR value. */
1553uint32_t vfp_get_fpscr(CPUARMState *env);
1554void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1555
d81ce0ef
AB
1556/* FPCR, Floating Point Control Register
1557 * FPSR, Floating Poiht Status Register
1558 *
1559 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1560 * FPCR and FPSR. However since they still use non-overlapping bits
1561 * we store the underlying state in fpscr and just mask on read/write.
1562 */
1563#define FPSR_MASK 0xf800009f
0b62159b 1564#define FPCR_MASK 0x07ff9f00
d81ce0ef 1565
a15945d9
PM
1566#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1567#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1568#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1569#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1570#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1571#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1572#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1573#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1574#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1575#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1576#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1577#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1578#define FPCR_V (1 << 28) /* FP overflow flag */
1579#define FPCR_C (1 << 29) /* FP carry flag */
1580#define FPCR_Z (1 << 30) /* FP zero flag */
1581#define FPCR_N (1 << 31) /* FP negative flag */
1582
99c7834f
PM
1583#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1584#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1585#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1586
9542c30b
PM
1587#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1588#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1589
f903fa22
PM
1590static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1591{
1592 return vfp_get_fpscr(env) & FPSR_MASK;
1593}
1594
1595static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1596{
1597 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1598 vfp_set_fpscr(env, new_fpscr);
1599}
1600
1601static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1602{
1603 return vfp_get_fpscr(env) & FPCR_MASK;
1604}
1605
1606static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1607{
1608 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1609 vfp_set_fpscr(env, new_fpscr);
1610}
1611
b5ff1b31
FB
1612enum arm_cpu_mode {
1613 ARM_CPU_MODE_USR = 0x10,
1614 ARM_CPU_MODE_FIQ = 0x11,
1615 ARM_CPU_MODE_IRQ = 0x12,
1616 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1617 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1618 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1619 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1620 ARM_CPU_MODE_UND = 0x1b,
1621 ARM_CPU_MODE_SYS = 0x1f
1622};
1623
40f137e1
PB
1624/* VFP system registers. */
1625#define ARM_VFP_FPSID 0
1626#define ARM_VFP_FPSCR 1
a50c0f51 1627#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1628#define ARM_VFP_MVFR1 6
1629#define ARM_VFP_MVFR0 7
40f137e1
PB
1630#define ARM_VFP_FPEXC 8
1631#define ARM_VFP_FPINST 9
1632#define ARM_VFP_FPINST2 10
9542c30b
PM
1633/* These ones are M-profile only */
1634#define ARM_VFP_FPSCR_NZCVQC 2
1635#define ARM_VFP_VPR 12
1636#define ARM_VFP_P0 13
1637#define ARM_VFP_FPCXT_NS 14
1638#define ARM_VFP_FPCXT_S 15
40f137e1 1639
32a290b8
PM
1640/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1641#define QEMU_VFP_FPSCR_NZCV 0xffff
1642
18c9b560 1643/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1644#define ARM_IWMMXT_wCID 0
1645#define ARM_IWMMXT_wCon 1
1646#define ARM_IWMMXT_wCSSF 2
1647#define ARM_IWMMXT_wCASF 3
1648#define ARM_IWMMXT_wCGR0 8
1649#define ARM_IWMMXT_wCGR1 9
1650#define ARM_IWMMXT_wCGR2 10
1651#define ARM_IWMMXT_wCGR3 11
18c9b560 1652
2c4da50d
PM
1653/* V7M CCR bits */
1654FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1655FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1656FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1657FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1658FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1659FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1660FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1661FIELD(V7M_CCR, DC, 16, 1)
1662FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1663FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1664FIELD(V7M_CCR, LOB, 19, 1)
1665FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1666
24ac0fb1
PM
1667/* V7M SCR bits */
1668FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1669FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1670FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1671FIELD(V7M_SCR, SEVONPEND, 4, 1)
1672
3b2e9344
PM
1673/* V7M AIRCR bits */
1674FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1675FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1676FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1677FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1678FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1679FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1680FIELD(V7M_AIRCR, PRIS, 14, 1)
1681FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1682FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1683
2c4da50d
PM
1684/* V7M CFSR bits for MMFSR */
1685FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1686FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1687FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1688FIELD(V7M_CFSR, MSTKERR, 4, 1)
1689FIELD(V7M_CFSR, MLSPERR, 5, 1)
1690FIELD(V7M_CFSR, MMARVALID, 7, 1)
1691
1692/* V7M CFSR bits for BFSR */
1693FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1694FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1695FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1696FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1697FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1698FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1699FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1700
1701/* V7M CFSR bits for UFSR */
1702FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1703FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1704FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1705FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1706FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1707FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1708FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1709
334e8dad
PM
1710/* V7M CFSR bit masks covering all of the subregister bits */
1711FIELD(V7M_CFSR, MMFSR, 0, 8)
1712FIELD(V7M_CFSR, BFSR, 8, 8)
1713FIELD(V7M_CFSR, UFSR, 16, 16)
1714
2c4da50d
PM
1715/* V7M HFSR bits */
1716FIELD(V7M_HFSR, VECTTBL, 1, 1)
1717FIELD(V7M_HFSR, FORCED, 30, 1)
1718FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1719
1720/* V7M DFSR bits */
1721FIELD(V7M_DFSR, HALTED, 0, 1)
1722FIELD(V7M_DFSR, BKPT, 1, 1)
1723FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1724FIELD(V7M_DFSR, VCATCH, 3, 1)
1725FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1726
bed079da
PM
1727/* V7M SFSR bits */
1728FIELD(V7M_SFSR, INVEP, 0, 1)
1729FIELD(V7M_SFSR, INVIS, 1, 1)
1730FIELD(V7M_SFSR, INVER, 2, 1)
1731FIELD(V7M_SFSR, AUVIOL, 3, 1)
1732FIELD(V7M_SFSR, INVTRAN, 4, 1)
1733FIELD(V7M_SFSR, LSPERR, 5, 1)
1734FIELD(V7M_SFSR, SFARVALID, 6, 1)
1735FIELD(V7M_SFSR, LSERR, 7, 1)
1736
29c483a5
MD
1737/* v7M MPU_CTRL bits */
1738FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1739FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1740FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1741
43bbce7f
PM
1742/* v7M CLIDR bits */
1743FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1744FIELD(V7M_CLIDR, LOUIS, 21, 3)
1745FIELD(V7M_CLIDR, LOC, 24, 3)
1746FIELD(V7M_CLIDR, LOUU, 27, 3)
1747FIELD(V7M_CLIDR, ICB, 30, 2)
1748
1749FIELD(V7M_CSSELR, IND, 0, 1)
1750FIELD(V7M_CSSELR, LEVEL, 1, 3)
1751/* We use the combination of InD and Level to index into cpu->ccsidr[];
1752 * define a mask for this and check that it doesn't permit running off
1753 * the end of the array.
1754 */
1755FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1756
1757/* v7M FPCCR bits */
1758FIELD(V7M_FPCCR, LSPACT, 0, 1)
1759FIELD(V7M_FPCCR, USER, 1, 1)
1760FIELD(V7M_FPCCR, S, 2, 1)
1761FIELD(V7M_FPCCR, THREAD, 3, 1)
1762FIELD(V7M_FPCCR, HFRDY, 4, 1)
1763FIELD(V7M_FPCCR, MMRDY, 5, 1)
1764FIELD(V7M_FPCCR, BFRDY, 6, 1)
1765FIELD(V7M_FPCCR, SFRDY, 7, 1)
1766FIELD(V7M_FPCCR, MONRDY, 8, 1)
1767FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1768FIELD(V7M_FPCCR, UFRDY, 10, 1)
1769FIELD(V7M_FPCCR, RES0, 11, 15)
1770FIELD(V7M_FPCCR, TS, 26, 1)
1771FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1772FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1773FIELD(V7M_FPCCR, LSPENS, 29, 1)
1774FIELD(V7M_FPCCR, LSPEN, 30, 1)
1775FIELD(V7M_FPCCR, ASPEN, 31, 1)
1776/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1777#define R_V7M_FPCCR_BANKED_MASK \
1778 (R_V7M_FPCCR_LSPACT_MASK | \
1779 R_V7M_FPCCR_USER_MASK | \
1780 R_V7M_FPCCR_THREAD_MASK | \
1781 R_V7M_FPCCR_MMRDY_MASK | \
1782 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1783 R_V7M_FPCCR_UFRDY_MASK | \
1784 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1785
7c3d47da
PM
1786/* v7M VPR bits */
1787FIELD(V7M_VPR, P0, 0, 16)
1788FIELD(V7M_VPR, MASK01, 16, 4)
1789FIELD(V7M_VPR, MASK23, 20, 4)
1790
a62e62af
RH
1791/*
1792 * System register ID fields.
1793 */
2a14526a
LL
1794FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1795FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1796FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1797FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1798FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1799FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1800FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1801FIELD(CLIDR_EL1, LOUIS, 21, 3)
1802FIELD(CLIDR_EL1, LOC, 24, 3)
1803FIELD(CLIDR_EL1, LOUU, 27, 3)
1804FIELD(CLIDR_EL1, ICB, 30, 3)
1805
1806/* When FEAT_CCIDX is implemented */
1807FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1808FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1809FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1810
1811/* When FEAT_CCIDX is not implemented */
1812FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1813FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1814FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1815
1816FIELD(CTR_EL0, IMINLINE, 0, 4)
1817FIELD(CTR_EL0, L1IP, 14, 2)
1818FIELD(CTR_EL0, DMINLINE, 16, 4)
1819FIELD(CTR_EL0, ERG, 20, 4)
1820FIELD(CTR_EL0, CWG, 24, 4)
1821FIELD(CTR_EL0, IDC, 28, 1)
1822FIELD(CTR_EL0, DIC, 29, 1)
1823FIELD(CTR_EL0, TMINLINE, 32, 6)
1824
2bd5f41c
AB
1825FIELD(MIDR_EL1, REVISION, 0, 4)
1826FIELD(MIDR_EL1, PARTNUM, 4, 12)
1827FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1828FIELD(MIDR_EL1, VARIANT, 20, 4)
1829FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1830
a62e62af
RH
1831FIELD(ID_ISAR0, SWAP, 0, 4)
1832FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1833FIELD(ID_ISAR0, BITFIELD, 8, 4)
1834FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1835FIELD(ID_ISAR0, COPROC, 16, 4)
1836FIELD(ID_ISAR0, DEBUG, 20, 4)
1837FIELD(ID_ISAR0, DIVIDE, 24, 4)
1838
1839FIELD(ID_ISAR1, ENDIAN, 0, 4)
1840FIELD(ID_ISAR1, EXCEPT, 4, 4)
1841FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1842FIELD(ID_ISAR1, EXTEND, 12, 4)
1843FIELD(ID_ISAR1, IFTHEN, 16, 4)
1844FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1845FIELD(ID_ISAR1, INTERWORK, 24, 4)
1846FIELD(ID_ISAR1, JAZELLE, 28, 4)
1847
1848FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1849FIELD(ID_ISAR2, MEMHINT, 4, 4)
1850FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1851FIELD(ID_ISAR2, MULT, 12, 4)
1852FIELD(ID_ISAR2, MULTS, 16, 4)
1853FIELD(ID_ISAR2, MULTU, 20, 4)
1854FIELD(ID_ISAR2, PSR_AR, 24, 4)
1855FIELD(ID_ISAR2, REVERSAL, 28, 4)
1856
1857FIELD(ID_ISAR3, SATURATE, 0, 4)
1858FIELD(ID_ISAR3, SIMD, 4, 4)
1859FIELD(ID_ISAR3, SVC, 8, 4)
1860FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1861FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1862FIELD(ID_ISAR3, T32COPY, 20, 4)
1863FIELD(ID_ISAR3, TRUENOP, 24, 4)
1864FIELD(ID_ISAR3, T32EE, 28, 4)
1865
1866FIELD(ID_ISAR4, UNPRIV, 0, 4)
1867FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1868FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1869FIELD(ID_ISAR4, SMC, 12, 4)
1870FIELD(ID_ISAR4, BARRIER, 16, 4)
1871FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1872FIELD(ID_ISAR4, PSR_M, 24, 4)
1873FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1874
1875FIELD(ID_ISAR5, SEVL, 0, 4)
1876FIELD(ID_ISAR5, AES, 4, 4)
1877FIELD(ID_ISAR5, SHA1, 8, 4)
1878FIELD(ID_ISAR5, SHA2, 12, 4)
1879FIELD(ID_ISAR5, CRC32, 16, 4)
1880FIELD(ID_ISAR5, RDM, 24, 4)
1881FIELD(ID_ISAR5, VCMA, 28, 4)
1882
1883FIELD(ID_ISAR6, JSCVT, 0, 4)
1884FIELD(ID_ISAR6, DP, 4, 4)
1885FIELD(ID_ISAR6, FHM, 8, 4)
1886FIELD(ID_ISAR6, SB, 12, 4)
1887FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
1888FIELD(ID_ISAR6, BF16, 20, 4)
1889FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 1890
0ae0326b
PM
1891FIELD(ID_MMFR0, VMSA, 0, 4)
1892FIELD(ID_MMFR0, PMSA, 4, 4)
1893FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1894FIELD(ID_MMFR0, SHARELVL, 12, 4)
1895FIELD(ID_MMFR0, TCM, 16, 4)
1896FIELD(ID_MMFR0, AUXREG, 20, 4)
1897FIELD(ID_MMFR0, FCSE, 24, 4)
1898FIELD(ID_MMFR0, INNERSHR, 28, 4)
1899
bd78b6be
LL
1900FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1901FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1902FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1903FIELD(ID_MMFR1, L1UNISW, 12, 4)
1904FIELD(ID_MMFR1, L1HVD, 16, 4)
1905FIELD(ID_MMFR1, L1UNI, 20, 4)
1906FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1907FIELD(ID_MMFR1, BPRED, 28, 4)
1908
1909FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1910FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1911FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1912FIELD(ID_MMFR2, HVDTLB, 12, 4)
1913FIELD(ID_MMFR2, UNITLB, 16, 4)
1914FIELD(ID_MMFR2, MEMBARR, 20, 4)
1915FIELD(ID_MMFR2, WFISTALL, 24, 4)
1916FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1917
3d6ad6bb
RH
1918FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1919FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1920FIELD(ID_MMFR3, BPMAINT, 8, 4)
1921FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1922FIELD(ID_MMFR3, PAN, 16, 4)
1923FIELD(ID_MMFR3, COHWALK, 20, 4)
1924FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1925FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1926
ab638a32
RH
1927FIELD(ID_MMFR4, SPECSEI, 0, 4)
1928FIELD(ID_MMFR4, AC2, 4, 4)
1929FIELD(ID_MMFR4, XNX, 8, 4)
1930FIELD(ID_MMFR4, CNP, 12, 4)
1931FIELD(ID_MMFR4, HPDS, 16, 4)
1932FIELD(ID_MMFR4, LSM, 20, 4)
1933FIELD(ID_MMFR4, CCIDX, 24, 4)
1934FIELD(ID_MMFR4, EVT, 28, 4)
1935
bd78b6be
LL
1936FIELD(ID_MMFR5, ETS, 0, 4)
1937
46f4976f
PM
1938FIELD(ID_PFR0, STATE0, 0, 4)
1939FIELD(ID_PFR0, STATE1, 4, 4)
1940FIELD(ID_PFR0, STATE2, 8, 4)
1941FIELD(ID_PFR0, STATE3, 12, 4)
1942FIELD(ID_PFR0, CSV2, 16, 4)
1943FIELD(ID_PFR0, AMU, 20, 4)
1944FIELD(ID_PFR0, DIT, 24, 4)
1945FIELD(ID_PFR0, RAS, 28, 4)
1946
dfc523a8
PM
1947FIELD(ID_PFR1, PROGMOD, 0, 4)
1948FIELD(ID_PFR1, SECURITY, 4, 4)
1949FIELD(ID_PFR1, MPROGMOD, 8, 4)
1950FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1951FIELD(ID_PFR1, GENTIMER, 16, 4)
1952FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1953FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1954FIELD(ID_PFR1, GIC, 28, 4)
1955
bd78b6be
LL
1956FIELD(ID_PFR2, CSV3, 0, 4)
1957FIELD(ID_PFR2, SSBS, 4, 4)
1958FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1959
a62e62af
RH
1960FIELD(ID_AA64ISAR0, AES, 4, 4)
1961FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1962FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1963FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1964FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1965FIELD(ID_AA64ISAR0, RDM, 28, 4)
1966FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1967FIELD(ID_AA64ISAR0, SM3, 36, 4)
1968FIELD(ID_AA64ISAR0, SM4, 40, 4)
1969FIELD(ID_AA64ISAR0, DP, 44, 4)
1970FIELD(ID_AA64ISAR0, FHM, 48, 4)
1971FIELD(ID_AA64ISAR0, TS, 52, 4)
1972FIELD(ID_AA64ISAR0, TLB, 56, 4)
1973FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1974
1975FIELD(ID_AA64ISAR1, DPB, 0, 4)
1976FIELD(ID_AA64ISAR1, APA, 4, 4)
1977FIELD(ID_AA64ISAR1, API, 8, 4)
1978FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1979FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1980FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1981FIELD(ID_AA64ISAR1, GPA, 24, 4)
1982FIELD(ID_AA64ISAR1, GPI, 28, 4)
1983FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1984FIELD(ID_AA64ISAR1, SB, 36, 4)
1985FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
1986FIELD(ID_AA64ISAR1, BF16, 44, 4)
1987FIELD(ID_AA64ISAR1, DGH, 48, 4)
1988FIELD(ID_AA64ISAR1, I8MM, 52, 4)
a62e62af 1989
cd208a1c
RH
1990FIELD(ID_AA64PFR0, EL0, 0, 4)
1991FIELD(ID_AA64PFR0, EL1, 4, 4)
1992FIELD(ID_AA64PFR0, EL2, 8, 4)
1993FIELD(ID_AA64PFR0, EL3, 12, 4)
1994FIELD(ID_AA64PFR0, FP, 16, 4)
1995FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1996FIELD(ID_AA64PFR0, GIC, 24, 4)
1997FIELD(ID_AA64PFR0, RAS, 28, 4)
1998FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
1999FIELD(ID_AA64PFR0, SEL2, 36, 4)
2000FIELD(ID_AA64PFR0, MPAM, 40, 4)
2001FIELD(ID_AA64PFR0, AMU, 44, 4)
2002FIELD(ID_AA64PFR0, DIT, 48, 4)
2003FIELD(ID_AA64PFR0, CSV2, 56, 4)
2004FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2005
be53b6f4 2006FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2007FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2008FIELD(ID_AA64PFR1, MTE, 8, 4)
2009FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2010FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
be53b6f4 2011
3dc91ddb
PM
2012FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2013FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2014FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2015FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2016FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2017FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2018FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2019FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2020FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2021FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2022FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2023FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2024FIELD(ID_AA64MMFR0, FGT, 56, 4)
2025FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2026
2027FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2028FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2029FIELD(ID_AA64MMFR1, VH, 8, 4)
2030FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2031FIELD(ID_AA64MMFR1, LO, 16, 4)
2032FIELD(ID_AA64MMFR1, PAN, 20, 4)
2033FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2034FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2035FIELD(ID_AA64MMFR1, TWED, 32, 4)
2036FIELD(ID_AA64MMFR1, ETS, 36, 4)
3dc91ddb 2037
64761e10
RH
2038FIELD(ID_AA64MMFR2, CNP, 0, 4)
2039FIELD(ID_AA64MMFR2, UAO, 4, 4)
2040FIELD(ID_AA64MMFR2, LSM, 8, 4)
2041FIELD(ID_AA64MMFR2, IESB, 12, 4)
2042FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2043FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2044FIELD(ID_AA64MMFR2, NV, 24, 4)
2045FIELD(ID_AA64MMFR2, ST, 28, 4)
2046FIELD(ID_AA64MMFR2, AT, 32, 4)
2047FIELD(ID_AA64MMFR2, IDS, 36, 4)
2048FIELD(ID_AA64MMFR2, FWB, 40, 4)
2049FIELD(ID_AA64MMFR2, TTL, 48, 4)
2050FIELD(ID_AA64MMFR2, BBM, 52, 4)
2051FIELD(ID_AA64MMFR2, EVT, 56, 4)
2052FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2053
ceb2744b
PM
2054FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2055FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2056FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2057FIELD(ID_AA64DFR0, BRPS, 12, 4)
2058FIELD(ID_AA64DFR0, WRPS, 20, 4)
2059FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2060FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2061FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2062FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
00a92832 2063FIELD(ID_AA64DFR0, MTPMU, 48, 4)
ceb2744b 2064
2dc10fa2
RH
2065FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2066FIELD(ID_AA64ZFR0, AES, 4, 4)
2067FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2068FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2069FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2070FIELD(ID_AA64ZFR0, SM4, 40, 4)
2071FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2072FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2073FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2074
beceb99c
AL
2075FIELD(ID_DFR0, COPDBG, 0, 4)
2076FIELD(ID_DFR0, COPSDBG, 4, 4)
2077FIELD(ID_DFR0, MMAPDBG, 8, 4)
2078FIELD(ID_DFR0, COPTRC, 12, 4)
2079FIELD(ID_DFR0, MMAPTRC, 16, 4)
2080FIELD(ID_DFR0, MPROFDBG, 20, 4)
2081FIELD(ID_DFR0, PERFMON, 24, 4)
2082FIELD(ID_DFR0, TRACEFILT, 28, 4)
2083
bd78b6be
LL
2084FIELD(ID_DFR1, MTPMU, 0, 4)
2085
88ce6c6e
PM
2086FIELD(DBGDIDR, SE_IMP, 12, 1)
2087FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2088FIELD(DBGDIDR, VERSION, 16, 4)
2089FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2090FIELD(DBGDIDR, BRPS, 24, 4)
2091FIELD(DBGDIDR, WRPS, 28, 4)
2092
602f6e42
PM
2093FIELD(MVFR0, SIMDREG, 0, 4)
2094FIELD(MVFR0, FPSP, 4, 4)
2095FIELD(MVFR0, FPDP, 8, 4)
2096FIELD(MVFR0, FPTRAP, 12, 4)
2097FIELD(MVFR0, FPDIVIDE, 16, 4)
2098FIELD(MVFR0, FPSQRT, 20, 4)
2099FIELD(MVFR0, FPSHVEC, 24, 4)
2100FIELD(MVFR0, FPROUND, 28, 4)
2101
2102FIELD(MVFR1, FPFTZ, 0, 4)
2103FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2104FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2105FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2106FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2107FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2108FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2109FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2110FIELD(MVFR1, FPHP, 24, 4)
2111FIELD(MVFR1, SIMDFMAC, 28, 4)
2112
2113FIELD(MVFR2, SIMDMISC, 0, 4)
2114FIELD(MVFR2, FPMISC, 4, 4)
2115
43bbce7f
PM
2116QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2117
ce854d7c
BC
2118/* If adding a feature bit which corresponds to a Linux ELF
2119 * HWCAP bit, remember to update the feature-bit-to-hwcap
2120 * mapping in linux-user/elfload.c:get_elf_hwcap().
2121 */
40f137e1 2122enum arm_features {
c1713132
AZ
2123 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2124 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2125 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2126 ARM_FEATURE_V6,
2127 ARM_FEATURE_V6K,
2128 ARM_FEATURE_V7,
2129 ARM_FEATURE_THUMB2,
452a0955 2130 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2131 ARM_FEATURE_NEON,
9ee6e8bb 2132 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2133 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2134 ARM_FEATURE_THUMB2EE,
be5e7a76 2135 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2136 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2137 ARM_FEATURE_V4T,
2138 ARM_FEATURE_V5,
5bc95aa2 2139 ARM_FEATURE_STRONGARM,
906879a9 2140 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2141 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2142 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2143 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2144 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2145 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2146 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2147 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2148 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2149 ARM_FEATURE_V8,
3926cc84 2150 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2151 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2152 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2153 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2154 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2155 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2156 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2157 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2158 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2159 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2160 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2161};
2162
2163static inline int arm_feature(CPUARMState *env, int feature)
2164{
918f5dca 2165 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2166}
2167
0df9142d
AJ
2168void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2169
19e0fefa
FA
2170#if !defined(CONFIG_USER_ONLY)
2171/* Return true if exception levels below EL3 are in secure state,
2172 * or would be following an exception return to that level.
2173 * Unlike arm_is_secure() (which is always a question about the
2174 * _current_ state of the CPU) this doesn't care about the current
2175 * EL or mode.
2176 */
2177static inline bool arm_is_secure_below_el3(CPUARMState *env)
2178{
2179 if (arm_feature(env, ARM_FEATURE_EL3)) {
2180 return !(env->cp15.scr_el3 & SCR_NS);
2181 } else {
6b7f0b61 2182 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2183 * defined, in which case QEMU defaults to non-secure.
2184 */
2185 return false;
2186 }
2187}
2188
71205876
PM
2189/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2190static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2191{
2192 if (arm_feature(env, ARM_FEATURE_EL3)) {
2193 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2194 /* CPU currently in AArch64 state and EL3 */
2195 return true;
2196 } else if (!is_a64(env) &&
2197 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2198 /* CPU currently in AArch32 state and monitor mode */
2199 return true;
2200 }
2201 }
71205876
PM
2202 return false;
2203}
2204
2205/* Return true if the processor is in secure state */
2206static inline bool arm_is_secure(CPUARMState *env)
2207{
2208 if (arm_is_el3_or_mon(env)) {
2209 return true;
2210 }
19e0fefa
FA
2211 return arm_is_secure_below_el3(env);
2212}
2213
f3ee5160
RDC
2214/*
2215 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2216 * This corresponds to the pseudocode EL2Enabled()
2217 */
2218static inline bool arm_is_el2_enabled(CPUARMState *env)
2219{
2220 if (arm_feature(env, ARM_FEATURE_EL2)) {
926c1b97
RDC
2221 if (arm_is_secure_below_el3(env)) {
2222 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2223 }
2224 return true;
f3ee5160
RDC
2225 }
2226 return false;
2227}
2228
19e0fefa
FA
2229#else
2230static inline bool arm_is_secure_below_el3(CPUARMState *env)
2231{
2232 return false;
2233}
2234
2235static inline bool arm_is_secure(CPUARMState *env)
2236{
2237 return false;
2238}
f3ee5160
RDC
2239
2240static inline bool arm_is_el2_enabled(CPUARMState *env)
2241{
2242 return false;
2243}
19e0fefa
FA
2244#endif
2245
f7778444
RH
2246/**
2247 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2248 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2249 * "for all purposes other than a direct read or write access of HCR_EL2."
2250 * Not included here is HCR_RW.
2251 */
2252uint64_t arm_hcr_el2_eff(CPUARMState *env);
2253
1f79ee32
PM
2254/* Return true if the specified exception level is running in AArch64 state. */
2255static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2256{
446c81ab
PM
2257 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2258 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2259 */
446c81ab
PM
2260 assert(el >= 1 && el <= 3);
2261 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2262
446c81ab
PM
2263 /* The highest exception level is always at the maximum supported
2264 * register width, and then lower levels have a register width controlled
2265 * by bits in the SCR or HCR registers.
1f79ee32 2266 */
446c81ab
PM
2267 if (el == 3) {
2268 return aa64;
2269 }
2270
926c1b97
RDC
2271 if (arm_feature(env, ARM_FEATURE_EL3) &&
2272 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2273 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2274 }
2275
2276 if (el == 2) {
2277 return aa64;
2278 }
2279
e6ef0169 2280 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2281 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2282 }
2283
2284 return aa64;
1f79ee32
PM
2285}
2286
3f342b9e
SF
2287/* Function for determing whether guest cp register reads and writes should
2288 * access the secure or non-secure bank of a cp register. When EL3 is
2289 * operating in AArch32 state, the NS-bit determines whether the secure
2290 * instance of a cp register should be used. When EL3 is AArch64 (or if
2291 * it doesn't exist at all) then there is no register banking, and all
2292 * accesses are to the non-secure version.
2293 */
2294static inline bool access_secure_reg(CPUARMState *env)
2295{
2296 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2297 !arm_el_is_aa64(env, 3) &&
2298 !(env->cp15.scr_el3 & SCR_NS));
2299
2300 return ret;
2301}
2302
ea30a4b8
FA
2303/* Macros for accessing a specified CP register bank */
2304#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2305 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2306
2307#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2308 do { \
2309 if (_secure) { \
2310 (_env)->cp15._regname##_s = (_val); \
2311 } else { \
2312 (_env)->cp15._regname##_ns = (_val); \
2313 } \
2314 } while (0)
2315
2316/* Macros for automatically accessing a specific CP register bank depending on
2317 * the current secure state of the system. These macros are not intended for
2318 * supporting instruction translation reads/writes as these are dependent
2319 * solely on the SCR.NS bit and not the mode.
2320 */
2321#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2322 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2323 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2324
2325#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2326 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2327 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2328 (_val))
2329
0442428a 2330void arm_cpu_list(void);
012a906b
GB
2331uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2332 uint32_t cur_el, bool secure);
40f137e1 2333
9ee6e8bb 2334/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2335#ifndef CONFIG_USER_ONLY
2336bool armv7m_nvic_can_take_pending_exception(void *opaque);
2337#else
2338static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2339{
2340 return true;
2341}
2342#endif
2fb50a33
PM
2343/**
2344 * armv7m_nvic_set_pending: mark the specified exception as pending
2345 * @opaque: the NVIC
2346 * @irq: the exception number to mark pending
2347 * @secure: false for non-banked exceptions or for the nonsecure
2348 * version of a banked exception, true for the secure version of a banked
2349 * exception.
2350 *
2351 * Marks the specified exception as pending. Note that we will assert()
2352 * if @secure is true and @irq does not specify one of the fixed set
2353 * of architecturally banked exceptions.
2354 */
2355void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2356/**
2357 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2358 * @opaque: the NVIC
2359 * @irq: the exception number to mark pending
2360 * @secure: false for non-banked exceptions or for the nonsecure
2361 * version of a banked exception, true for the secure version of a banked
2362 * exception.
2363 *
2364 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2365 * exceptions (exceptions generated in the course of trying to take
2366 * a different exception).
2367 */
2368void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2369/**
2370 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2371 * @opaque: the NVIC
2372 * @irq: the exception number to mark pending
2373 * @secure: false for non-banked exceptions or for the nonsecure
2374 * version of a banked exception, true for the secure version of a banked
2375 * exception.
2376 *
2377 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2378 * generated in the course of lazy stacking of FP registers.
2379 */
2380void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2381/**
2382 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2383 * exception, and whether it targets Secure state
2384 * @opaque: the NVIC
2385 * @pirq: set to pending exception number
2386 * @ptargets_secure: set to whether pending exception targets Secure
2387 *
2388 * This function writes the number of the highest priority pending
2389 * exception (the one which would be made active by
2390 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2391 * to true if the current highest priority pending exception should
2392 * be taken to Secure state, false for NS.
2393 */
2394void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2395 bool *ptargets_secure);
5cb18069
PM
2396/**
2397 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2398 * @opaque: the NVIC
2399 *
2400 * Move the current highest priority pending exception from the pending
2401 * state to the active state, and update v7m.exception to indicate that
2402 * it is the exception currently being handled.
5cb18069 2403 */
6c948518 2404void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2405/**
2406 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2407 * @opaque: the NVIC
2408 * @irq: the exception number to complete
5cb18069 2409 * @secure: true if this exception was secure
aa488fe3
PM
2410 *
2411 * Returns: -1 if the irq was not active
2412 * 1 if completing this irq brought us back to base (no active irqs)
2413 * 0 if there is still an irq active after this one was completed
2414 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2415 */
5cb18069 2416int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2417/**
2418 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2419 * @opaque: the NVIC
2420 * @irq: the exception number to mark pending
2421 * @secure: false for non-banked exceptions or for the nonsecure
2422 * version of a banked exception, true for the secure version of a banked
2423 * exception.
2424 *
2425 * Return whether an exception is "ready", i.e. whether the exception is
2426 * enabled and is configured at a priority which would allow it to
2427 * interrupt the current execution priority. This controls whether the
2428 * RDY bit for it in the FPCCR is set.
2429 */
2430bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2431/**
2432 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2433 * @opaque: the NVIC
2434 *
2435 * Returns: the raw execution priority as defined by the v8M architecture.
2436 * This is the execution priority minus the effects of AIRCR.PRIS,
2437 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2438 * (v8M ARM ARM I_PKLD.)
2439 */
2440int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2441/**
2442 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2443 * priority is negative for the specified security state.
2444 * @opaque: the NVIC
2445 * @secure: the security state to test
2446 * This corresponds to the pseudocode IsReqExecPriNeg().
2447 */
2448#ifndef CONFIG_USER_ONLY
2449bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2450#else
2451static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2452{
2453 return false;
2454}
2455#endif
9ee6e8bb 2456
4b6a83fb
PM
2457/* Interface for defining coprocessor registers.
2458 * Registers are defined in tables of arm_cp_reginfo structs
2459 * which are passed to define_arm_cp_regs().
2460 */
2461
2462/* When looking up a coprocessor register we look for it
2463 * via an integer which encodes all of:
2464 * coprocessor number
2465 * Crn, Crm, opc1, opc2 fields
2466 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2467 * or via MRRC/MCRR?)
51a79b03 2468 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2469 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2470 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2471 * For AArch64, there is no 32/64 bit size distinction;
2472 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2473 * and 4 bit CRn and CRm. The encoding patterns are chosen
2474 * to be easy to convert to and from the KVM encodings, and also
2475 * so that the hashtable can contain both AArch32 and AArch64
2476 * registers (to allow for interprocessing where we might run
2477 * 32 bit code on a 64 bit core).
4b6a83fb 2478 */
f5a0a5a5
PM
2479/* This bit is private to our hashtable cpreg; in KVM register
2480 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2481 * in the upper bits of the 64 bit ID.
2482 */
2483#define CP_REG_AA64_SHIFT 28
2484#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2485
51a79b03
PM
2486/* To enable banking of coprocessor registers depending on ns-bit we
2487 * add a bit to distinguish between secure and non-secure cpregs in the
2488 * hashtable.
2489 */
2490#define CP_REG_NS_SHIFT 29
2491#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2492
2493#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2494 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2495 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2496
f5a0a5a5
PM
2497#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2498 (CP_REG_AA64_MASK | \
2499 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2500 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2501 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2502 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2503 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2504 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2505
721fae12
PM
2506/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2507 * version used as a key for the coprocessor register hashtable
2508 */
2509static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2510{
2511 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2512 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2513 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2514 } else {
2515 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2516 cpregid |= (1 << 15);
2517 }
2518
2519 /* KVM is always non-secure so add the NS flag on AArch32 register
2520 * entries.
2521 */
2522 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2523 }
2524 return cpregid;
2525}
2526
2527/* Convert a truncated 32 bit hashtable key into the full
2528 * 64 bit KVM register ID.
2529 */
2530static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2531{
f5a0a5a5
PM
2532 uint64_t kvmid;
2533
2534 if (cpregid & CP_REG_AA64_MASK) {
2535 kvmid = cpregid & ~CP_REG_AA64_MASK;
2536 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2537 } else {
f5a0a5a5
PM
2538 kvmid = cpregid & ~(1 << 15);
2539 if (cpregid & (1 << 15)) {
2540 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2541 } else {
2542 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2543 }
721fae12
PM
2544 }
2545 return kvmid;
2546}
2547
4b6a83fb 2548/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2549 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2550 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2551 * TCG can assume the value to be constant (ie load at translate time)
2552 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2553 * indicates that the TB should not be ended after a write to this register
2554 * (the default is that the TB ends after cp writes). OVERRIDE permits
2555 * a register definition to override a previous definition for the
2556 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2557 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2558 * ALIAS indicates that this register is an alias view of some underlying
2559 * state which is also visible via another register, and that the other
b061a82b
SF
2560 * register is handling migration and reset; registers marked ALIAS will not be
2561 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2562 * NO_RAW indicates that this register has no underlying state and does not
2563 * support raw access for state saving/loading; it will not be used for either
2564 * migration or KVM state synchronization. (Typically this is for "registers"
2565 * which are actually used as instructions for cache maintenance and so on.)
2452731c 2566 * IO indicates that this register does I/O and therefore its accesses
55c812b7 2567 * need to be marked with gen_io_start() and also end the TB. In particular,
2452731c 2568 * registers which implement clocks or timers require this.
37ff584c
PM
2569 * RAISES_EXC is for when the read or write hook might raise an exception;
2570 * the generated code will synchronize the CPU state before calling the hook
2571 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2572 * NEWEL is for writes to registers that might change the exception
2573 * level - typically on older ARM chips. For those cases we need to
2574 * re-read the new el when recomputing the translation flags.
4b6a83fb 2575 */
fe03d45f
RH
2576#define ARM_CP_SPECIAL 0x0001
2577#define ARM_CP_CONST 0x0002
2578#define ARM_CP_64BIT 0x0004
2579#define ARM_CP_SUPPRESS_TB_END 0x0008
2580#define ARM_CP_OVERRIDE 0x0010
2581#define ARM_CP_ALIAS 0x0020
2582#define ARM_CP_IO 0x0040
2583#define ARM_CP_NO_RAW 0x0080
2584#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2585#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2586#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2587#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2588#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
eb821168
RH
2589#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
2590#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
2591#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
fe03d45f 2592#define ARM_CP_FPU 0x1000
490aa7f1 2593#define ARM_CP_SVE 0x2000
1f163787 2594#define ARM_CP_NO_GDB 0x4000
37ff584c 2595#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2596#define ARM_CP_NEWEL 0x10000
4b6a83fb 2597/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2598#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2599/* Mask of only the flag bits in a type field */
f80741d1 2600#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2601
f5a0a5a5
PM
2602/* Valid values for ARMCPRegInfo state field, indicating which of
2603 * the AArch32 and AArch64 execution states this register is visible in.
2604 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2605 * If the reginfo is declared to be visible in both states then a second
2606 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2607 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2608 * Note that we rely on the values of these enums as we iterate through
2609 * the various states in some places.
2610 */
2611enum {
2612 ARM_CP_STATE_AA32 = 0,
2613 ARM_CP_STATE_AA64 = 1,
2614 ARM_CP_STATE_BOTH = 2,
2615};
2616
c3e30260
FA
2617/* ARM CP register secure state flags. These flags identify security state
2618 * attributes for a given CP register entry.
2619 * The existence of both or neither secure and non-secure flags indicates that
2620 * the register has both a secure and non-secure hash entry. A single one of
2621 * these flags causes the register to only be hashed for the specified
2622 * security state.
2623 * Although definitions may have any combination of the S/NS bits, each
2624 * registered entry will only have one to identify whether the entry is secure
2625 * or non-secure.
2626 */
2627enum {
2628 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2629 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2630};
2631
4b6a83fb
PM
2632/* Return true if cptype is a valid type field. This is used to try to
2633 * catch errors where the sentinel has been accidentally left off the end
2634 * of a list of registers.
2635 */
2636static inline bool cptype_valid(int cptype)
2637{
2638 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2639 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2640 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2641}
2642
2643/* Access rights:
2644 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2645 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2646 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2647 * (ie any of the privileged modes in Secure state, or Monitor mode).
2648 * If a register is accessible in one privilege level it's always accessible
2649 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2650 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2651 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2652 * terminology a little and call this PL3.
f5a0a5a5
PM
2653 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2654 * with the ELx exception levels.
4b6a83fb
PM
2655 *
2656 * If access permissions for a register are more complex than can be
2657 * described with these bits, then use a laxer set of restrictions, and
2658 * do the more restrictive/complex check inside a helper function.
2659 */
2660#define PL3_R 0x80
2661#define PL3_W 0x40
2662#define PL2_R (0x20 | PL3_R)
2663#define PL2_W (0x10 | PL3_W)
2664#define PL1_R (0x08 | PL2_R)
2665#define PL1_W (0x04 | PL2_W)
2666#define PL0_R (0x02 | PL1_R)
2667#define PL0_W (0x01 | PL1_W)
2668
b5bd7440
AB
2669/*
2670 * For user-mode some registers are accessible to EL0 via a kernel
2671 * trap-and-emulate ABI. In this case we define the read permissions
2672 * as actually being PL0_R. However some bits of any given register
2673 * may still be masked.
2674 */
2675#ifdef CONFIG_USER_ONLY
2676#define PL0U_R PL0_R
2677#else
2678#define PL0U_R PL1_R
2679#endif
2680
4b6a83fb
PM
2681#define PL3_RW (PL3_R | PL3_W)
2682#define PL2_RW (PL2_R | PL2_W)
2683#define PL1_RW (PL1_R | PL1_W)
2684#define PL0_RW (PL0_R | PL0_W)
2685
75502672
PM
2686/* Return the highest implemented Exception Level */
2687static inline int arm_highest_el(CPUARMState *env)
2688{
2689 if (arm_feature(env, ARM_FEATURE_EL3)) {
2690 return 3;
2691 }
2692 if (arm_feature(env, ARM_FEATURE_EL2)) {
2693 return 2;
2694 }
2695 return 1;
2696}
2697
15b3f556
PM
2698/* Return true if a v7M CPU is in Handler mode */
2699static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2700{
2701 return env->v7m.exception != 0;
2702}
2703
dcbff19b
GB
2704/* Return the current Exception Level (as per ARMv8; note that this differs
2705 * from the ARMv7 Privilege Level).
2706 */
2707static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2708{
6d54ed3c 2709 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2710 return arm_v7m_is_handler_mode(env) ||
2711 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2712 }
2713
592125f8 2714 if (is_a64(env)) {
f5a0a5a5
PM
2715 return extract32(env->pstate, 2, 2);
2716 }
2717
592125f8
FA
2718 switch (env->uncached_cpsr & 0x1f) {
2719 case ARM_CPU_MODE_USR:
4b6a83fb 2720 return 0;
592125f8
FA
2721 case ARM_CPU_MODE_HYP:
2722 return 2;
2723 case ARM_CPU_MODE_MON:
2724 return 3;
2725 default:
2726 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2727 /* If EL3 is 32-bit then all secure privileged modes run in
2728 * EL3
2729 */
2730 return 3;
2731 }
2732
2733 return 1;
4b6a83fb 2734 }
4b6a83fb
PM
2735}
2736
2737typedef struct ARMCPRegInfo ARMCPRegInfo;
2738
f59df3f2
PM
2739typedef enum CPAccessResult {
2740 /* Access is permitted */
2741 CP_ACCESS_OK = 0,
2742 /* Access fails due to a configurable trap or enable which would
2743 * result in a categorized exception syndrome giving information about
2744 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2745 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2746 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2747 */
2748 CP_ACCESS_TRAP = 1,
2749 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2750 * Note that this is not a catch-all case -- the set of cases which may
2751 * result in this failure is specifically defined by the architecture.
2752 */
2753 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2754 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2755 CP_ACCESS_TRAP_EL2 = 3,
2756 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2757 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2758 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2759 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2760 /* Access fails and results in an exception syndrome for an FP access,
2761 * trapped directly to EL2 or EL3
2762 */
2763 CP_ACCESS_TRAP_FP_EL2 = 7,
2764 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2765} CPAccessResult;
2766
c4241c7d
PM
2767/* Access functions for coprocessor registers. These cannot fail and
2768 * may not raise exceptions.
2769 */
2770typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2771typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2772 uint64_t value);
f59df3f2 2773/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2774typedef CPAccessResult CPAccessFn(CPUARMState *env,
2775 const ARMCPRegInfo *opaque,
2776 bool isread);
4b6a83fb
PM
2777/* Hook function for register reset */
2778typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2779
2780#define CP_ANY 0xff
2781
2782/* Definition of an ARM coprocessor register */
2783struct ARMCPRegInfo {
2784 /* Name of register (useful mainly for debugging, need not be unique) */
2785 const char *name;
2786 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2787 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2788 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2789 * will be decoded to this register. The register read and write
2790 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2791 * used by the program, so it is possible to register a wildcard and
2792 * then behave differently on read/write if necessary.
2793 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2794 * must both be zero.
f5a0a5a5
PM
2795 * For AArch64-visible registers, opc0 is also used.
2796 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2797 * way to distinguish (for KVM's benefit) guest-visible system registers
2798 * from demuxed ones provided to preserve the "no side effects on
2799 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2800 * visible (to match KVM's encoding); cp==0 will be converted to
2801 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2802 */
2803 uint8_t cp;
2804 uint8_t crn;
2805 uint8_t crm;
f5a0a5a5 2806 uint8_t opc0;
4b6a83fb
PM
2807 uint8_t opc1;
2808 uint8_t opc2;
f5a0a5a5
PM
2809 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2810 int state;
4b6a83fb
PM
2811 /* Register type: ARM_CP_* bits/values */
2812 int type;
2813 /* Access rights: PL*_[RW] */
2814 int access;
c3e30260
FA
2815 /* Security state: ARM_CP_SECSTATE_* bits/values */
2816 int secure;
4b6a83fb
PM
2817 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2818 * this register was defined: can be used to hand data through to the
2819 * register read/write functions, since they are passed the ARMCPRegInfo*.
2820 */
2821 void *opaque;
2822 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2823 * fieldoffset is non-zero, the reset value of the register.
2824 */
2825 uint64_t resetvalue;
c3e30260
FA
2826 /* Offset of the field in CPUARMState for this register.
2827 *
2828 * This is not needed if either:
4b6a83fb
PM
2829 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2830 * 2. both readfn and writefn are specified
2831 */
2832 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2833
2834 /* Offsets of the secure and non-secure fields in CPUARMState for the
2835 * register if it is banked. These fields are only used during the static
2836 * registration of a register. During hashing the bank associated
2837 * with a given security state is copied to fieldoffset which is used from
2838 * there on out.
2839 *
2840 * It is expected that register definitions use either fieldoffset or
2841 * bank_fieldoffsets in the definition but not both. It is also expected
2842 * that both bank offsets are set when defining a banked register. This
2843 * use indicates that a register is banked.
2844 */
2845 ptrdiff_t bank_fieldoffsets[2];
2846
f59df3f2
PM
2847 /* Function for making any access checks for this register in addition to
2848 * those specified by the 'access' permissions bits. If NULL, no extra
2849 * checks required. The access check is performed at runtime, not at
2850 * translate time.
2851 */
2852 CPAccessFn *accessfn;
4b6a83fb
PM
2853 /* Function for handling reads of this register. If NULL, then reads
2854 * will be done by loading from the offset into CPUARMState specified
2855 * by fieldoffset.
2856 */
2857 CPReadFn *readfn;
2858 /* Function for handling writes of this register. If NULL, then writes
2859 * will be done by writing to the offset into CPUARMState specified
2860 * by fieldoffset.
2861 */
2862 CPWriteFn *writefn;
7023ec7e
PM
2863 /* Function for doing a "raw" read; used when we need to copy
2864 * coprocessor state to the kernel for KVM or out for
2865 * migration. This only needs to be provided if there is also a
c4241c7d 2866 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2867 */
2868 CPReadFn *raw_readfn;
2869 /* Function for doing a "raw" write; used when we need to copy KVM
2870 * kernel coprocessor state into userspace, or for inbound
2871 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2872 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2873 * or similar behaviour.
7023ec7e
PM
2874 */
2875 CPWriteFn *raw_writefn;
4b6a83fb
PM
2876 /* Function for resetting the register. If NULL, then reset will be done
2877 * by writing resetvalue to the field specified in fieldoffset. If
2878 * fieldoffset is 0 then no reset will be done.
2879 */
2880 CPResetFn *resetfn;
e2cce18f
RH
2881
2882 /*
2883 * "Original" writefn and readfn.
2884 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2885 * accessor functions of various EL1/EL0 to perform the runtime
2886 * check for which sysreg should actually be modified, and then
2887 * forwards the operation. Before overwriting the accessors,
2888 * the original function is copied here, so that accesses that
2889 * really do go to the EL1/EL0 version proceed normally.
2890 * (The corresponding EL2 register is linked via opaque.)
2891 */
2892 CPReadFn *orig_readfn;
2893 CPWriteFn *orig_writefn;
4b6a83fb
PM
2894};
2895
2896/* Macros which are lvalues for the field in CPUARMState for the
2897 * ARMCPRegInfo *ri.
2898 */
2899#define CPREG_FIELD32(env, ri) \
2900 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2901#define CPREG_FIELD64(env, ri) \
2902 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2903
2904#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2905
2906void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2907 const ARMCPRegInfo *regs, void *opaque);
2908void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2909 const ARMCPRegInfo *regs, void *opaque);
2910static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2911{
2912 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2913}
2914static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2915{
2916 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2917}
60322b39 2918const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2919
6c5c0fec
AB
2920/*
2921 * Definition of an ARM co-processor register as viewed from
2922 * userspace. This is used for presenting sanitised versions of
2923 * registers to userspace when emulating the Linux AArch64 CPU
2924 * ID/feature ABI (advertised as HWCAP_CPUID).
2925 */
2926typedef struct ARMCPRegUserSpaceInfo {
2927 /* Name of register */
2928 const char *name;
2929
d040242e
AB
2930 /* Is the name actually a glob pattern */
2931 bool is_glob;
2932
6c5c0fec
AB
2933 /* Only some bits are exported to user space */
2934 uint64_t exported_bits;
2935
2936 /* Fixed bits are applied after the mask */
2937 uint64_t fixed_bits;
2938} ARMCPRegUserSpaceInfo;
2939
2940#define REGUSERINFO_SENTINEL { .name = NULL }
2941
2942void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2943
4b6a83fb 2944/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2945void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2946 uint64_t value);
4b6a83fb 2947/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2948uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2949
f5a0a5a5
PM
2950/* CPResetFn that does nothing, for use if no reset is required even
2951 * if fieldoffset is non zero.
2952 */
2953void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2954
67ed771d
PM
2955/* Return true if this reginfo struct's field in the cpu state struct
2956 * is 64 bits wide.
2957 */
2958static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2959{
2960 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2961}
2962
dcbff19b 2963static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2964 const ARMCPRegInfo *ri, int isread)
2965{
dcbff19b 2966 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2967}
2968
49a66191
PM
2969/* Raw read of a coprocessor register (as needed for migration, etc) */
2970uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2971
721fae12
PM
2972/**
2973 * write_list_to_cpustate
2974 * @cpu: ARMCPU
2975 *
2976 * For each register listed in the ARMCPU cpreg_indexes list, write
2977 * its value from the cpreg_values list into the ARMCPUState structure.
2978 * This updates TCG's working data structures from KVM data or
2979 * from incoming migration state.
2980 *
2981 * Returns: true if all register values were updated correctly,
2982 * false if some register was unknown or could not be written.
2983 * Note that we do not stop early on failure -- we will attempt
2984 * writing all registers in the list.
2985 */
2986bool write_list_to_cpustate(ARMCPU *cpu);
2987
2988/**
2989 * write_cpustate_to_list:
2990 * @cpu: ARMCPU
b698e4ee 2991 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2992 *
2993 * For each register listed in the ARMCPU cpreg_indexes list, write
2994 * its value from the ARMCPUState structure into the cpreg_values list.
2995 * This is used to copy info from TCG's working data structures into
2996 * KVM or for outbound migration.
2997 *
b698e4ee
PM
2998 * @kvm_sync is true if we are doing this in order to sync the
2999 * register state back to KVM. In this case we will only update
3000 * values in the list if the previous list->cpustate sync actually
3001 * successfully wrote the CPU state. Otherwise we will keep the value
3002 * that is in the list.
3003 *
721fae12
PM
3004 * Returns: true if all register values were read correctly,
3005 * false if some register was unknown or could not be read.
3006 * Note that we do not stop early on failure -- we will attempt
3007 * reading all registers in the list.
3008 */
b698e4ee 3009bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 3010
9ee6e8bb
PB
3011#define ARM_CPUID_TI915T 0x54029152
3012#define ARM_CPUID_TI925T 0x54029252
40f137e1 3013
ba1ba5cc
IM
3014#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
3015#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 3016#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 3017
585df85e
PM
3018#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
3019
c732abe2 3020#define cpu_list arm_cpu_list
9467d44c 3021
c1e37810
PM
3022/* ARM has the following "translation regimes" (as the ARM ARM calls them):
3023 *
3024 * If EL3 is 64-bit:
3025 * + NonSecure EL1 & 0 stage 1
3026 * + NonSecure EL1 & 0 stage 2
3027 * + NonSecure EL2
b9f6033c
RH
3028 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
3029 * + Secure EL1 & 0
c1e37810
PM
3030 * + Secure EL3
3031 * If EL3 is 32-bit:
3032 * + NonSecure PL1 & 0 stage 1
3033 * + NonSecure PL1 & 0 stage 2
3034 * + NonSecure PL2
b9f6033c
RH
3035 * + Secure PL0
3036 * + Secure PL1
c1e37810
PM
3037 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3038 *
3039 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
3040 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3041 * because they may differ in access permissions even if the VA->PA map is
3042 * the same
c1e37810
PM
3043 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3044 * translation, which means that we have one mmu_idx that deals with two
3045 * concatenated translation regimes [this sort of combined s1+2 TLB is
3046 * architecturally permitted]
3047 * 3. we don't need to allocate an mmu_idx to translations that we won't be
3048 * handling via the TLB. The only way to do a stage 1 translation without
3049 * the immediate stage 2 translation is via the ATS or AT system insns,
3050 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
3051 * The only use of stage 2 translations is either as part of an s1+2
3052 * lookup or when loading the descriptors during a stage 1 page table walk,
3053 * and in both those cases we don't use the TLB.
c1e37810
PM
3054 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3055 * translation regimes, because they map reasonably well to each other
3056 * and they can't both be active at the same time.
b9f6033c
RH
3057 * 5. we want to be able to use the TLB for accesses done as part of a
3058 * stage1 page table walk, rather than having to walk the stage2 page
3059 * table over and over.
452ef8cb
RH
3060 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3061 * Never (PAN) bit within PSTATE.
c1e37810 3062 *
b9f6033c
RH
3063 * This gives us the following list of cases:
3064 *
3065 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3066 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 3067 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 3068 * NS EL0 EL2&0
bf05340c 3069 * NS EL2 EL2&0
452ef8cb 3070 * NS EL2 EL2&0 +PAN
c1e37810 3071 * NS EL2 (aka NS PL2)
b9f6033c
RH
3072 * S EL0 EL1&0 (aka S PL0)
3073 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 3074 * S EL1 EL1&0 +PAN
c1e37810 3075 * S EL3 (aka S PL1)
c1e37810 3076 *
bf05340c 3077 * for a total of 11 different mmu_idx.
c1e37810 3078 *
3bef7012
PM
3079 * R profile CPUs have an MPU, but can use the same set of MMU indexes
3080 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3081 * NS EL2 if we ever model a Cortex-R52).
3082 *
3083 * M profile CPUs are rather different as they do not have a true MMU.
3084 * They have the following different MMU indexes:
3085 * User
3086 * Privileged
62593718
PM
3087 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3088 * Privileged, execution priority negative (ditto)
66787c78
PM
3089 * If the CPU supports the v8M Security Extension then there are also:
3090 * Secure User
3091 * Secure Privileged
62593718
PM
3092 * Secure User, execution priority negative
3093 * Secure Privileged, execution priority negative
3bef7012 3094 *
8bd5c820
PM
3095 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3096 * are not quite the same -- different CPU types (most notably M profile
3097 * vs A/R profile) would like to use MMU indexes with different semantics,
3098 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
3099 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3100 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
3101 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3102 * the same for any particular CPU.
3103 * Variables of type ARMMUIdx are always full values, and the core
3104 * index values are in variables of type 'int'.
3105 *
c1e37810
PM
3106 * Our enumeration includes at the end some entries which are not "true"
3107 * mmu_idx values in that they don't have corresponding TLBs and are only
3108 * valid for doing slow path page table walks.
3109 *
3110 * The constant names here are patterned after the general style of the names
3111 * of the AT/ATS operations.
3112 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
3113 * For M profile we arrange them to have a bit for priv, a bit for negpri
3114 * and a bit for secure.
c1e37810 3115 */
b9f6033c
RH
3116#define ARM_MMU_IDX_A 0x10 /* A profile */
3117#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
3118#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 3119
b6ad6062
RDC
3120/* Meanings of the bits for A profile mmu idx values */
3121#define ARM_MMU_IDX_A_NS 0x8
3122
b9f6033c
RH
3123/* Meanings of the bits for M profile mmu idx values */
3124#define ARM_MMU_IDX_M_PRIV 0x1
62593718 3125#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 3126#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 3127
b9f6033c
RH
3128#define ARM_MMU_IDX_TYPE_MASK \
3129 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3130#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 3131
c1e37810 3132typedef enum ARMMMUIdx {
b9f6033c
RH
3133 /*
3134 * A-profile.
3135 */
b6ad6062
RDC
3136 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
3137 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
3138 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
3139 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
3140 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
3141 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
3142 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
3143 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
3144
3145 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3146 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3147 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3148 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3149 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3150 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3151 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
b9f6033c 3152
b9f6033c
RH
3153 /*
3154 * These are not allocated TLBs and are used only for AT system
3155 * instructions or for the first stage of an S12 page table walk.
3156 */
3157 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3158 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 3159 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b1a10c86
RDC
3160 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3161 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3162 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
3163 /*
3164 * Not allocated a TLB: used only for second stage of an S12 page
3165 * table walk, or for descriptor loads during first stage of an S1
3166 * page table walk. Note that if we ever want to have a TLB for this
3167 * then various TLB flush insns which currently are no-ops or flush
3168 * only stage 1 MMU indexes will need to change to flush stage 2.
3169 */
b1a10c86
RDC
3170 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
3171 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
3172
3173 /*
3174 * M-profile.
3175 */
25568316
RH
3176 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3177 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3178 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3179 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3180 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3181 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3182 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3183 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
3184} ARMMMUIdx;
3185
5f09a6df
RH
3186/*
3187 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
3188 * for use when calling tlb_flush_by_mmuidx() and friends.
3189 */
5f09a6df
RH
3190#define TO_CORE_BIT(NAME) \
3191 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3192
8bd5c820 3193typedef enum ARMMMUIdxBit {
5f09a6df 3194 TO_CORE_BIT(E10_0),
b9f6033c 3195 TO_CORE_BIT(E20_0),
5f09a6df 3196 TO_CORE_BIT(E10_1),
452ef8cb 3197 TO_CORE_BIT(E10_1_PAN),
5f09a6df 3198 TO_CORE_BIT(E2),
b9f6033c 3199 TO_CORE_BIT(E20_2),
452ef8cb 3200 TO_CORE_BIT(E20_2_PAN),
5f09a6df 3201 TO_CORE_BIT(SE10_0),
b6ad6062 3202 TO_CORE_BIT(SE20_0),
5f09a6df 3203 TO_CORE_BIT(SE10_1),
b6ad6062 3204 TO_CORE_BIT(SE20_2),
452ef8cb 3205 TO_CORE_BIT(SE10_1_PAN),
b6ad6062
RDC
3206 TO_CORE_BIT(SE20_2_PAN),
3207 TO_CORE_BIT(SE2),
5f09a6df 3208 TO_CORE_BIT(SE3),
5f09a6df
RH
3209
3210 TO_CORE_BIT(MUser),
3211 TO_CORE_BIT(MPriv),
3212 TO_CORE_BIT(MUserNegPri),
3213 TO_CORE_BIT(MPrivNegPri),
3214 TO_CORE_BIT(MSUser),
3215 TO_CORE_BIT(MSPriv),
3216 TO_CORE_BIT(MSUserNegPri),
3217 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3218} ARMMMUIdxBit;
3219
5f09a6df
RH
3220#undef TO_CORE_BIT
3221
f79fbf39 3222#define MMU_USER_IDX 0
c1e37810 3223
9e273ef2
PM
3224/* Indexes used when registering address spaces with cpu_address_space_init */
3225typedef enum ARMASIdx {
3226 ARMASIdx_NS = 0,
3227 ARMASIdx_S = 1,
8bce44a2
RH
3228 ARMASIdx_TagNS = 2,
3229 ARMASIdx_TagS = 3,
9e273ef2
PM
3230} ARMASIdx;
3231
533e93f1 3232/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
3233static inline int arm_debug_target_el(CPUARMState *env)
3234{
81669b8b
SF
3235 bool secure = arm_is_secure(env);
3236 bool route_to_el2 = false;
3237
e6ef0169 3238 if (arm_is_el2_enabled(env)) {
81669b8b 3239 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 3240 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
3241 }
3242
3243 if (route_to_el2) {
3244 return 2;
3245 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3246 !arm_el_is_aa64(env, 3) && secure) {
3247 return 3;
3248 } else {
3249 return 1;
3250 }
3a298203
PM
3251}
3252
43bbce7f
PM
3253static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3254{
3255 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3256 * CSSELR is RAZ/WI.
3257 */
3258 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3259}
3260
22af9025 3261/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
3262static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3263{
22af9025
AB
3264 int cur_el = arm_current_el(env);
3265 int debug_el;
3266
3267 if (cur_el == 3) {
3268 return false;
533e93f1
PM
3269 }
3270
22af9025
AB
3271 /* MDCR_EL3.SDD disables debug events from Secure state */
3272 if (arm_is_secure_below_el3(env)
3273 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3274 return false;
3a298203 3275 }
22af9025
AB
3276
3277 /*
3278 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3279 * while not masking the (D)ebug bit in DAIF.
3280 */
3281 debug_el = arm_debug_target_el(env);
3282
3283 if (cur_el == debug_el) {
3284 return extract32(env->cp15.mdscr_el1, 13, 1)
3285 && !(env->daif & PSTATE_D);
3286 }
3287
3288 /* Otherwise the debug target needs to be a higher EL */
3289 return debug_el > cur_el;
3a298203
PM
3290}
3291
3292static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3293{
533e93f1
PM
3294 int el = arm_current_el(env);
3295
3296 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3297 return aa64_generate_debug_exceptions(env);
3298 }
533e93f1
PM
3299
3300 if (arm_is_secure(env)) {
3301 int spd;
3302
3303 if (el == 0 && (env->cp15.sder & 1)) {
3304 /* SDER.SUIDEN means debug exceptions from Secure EL0
3305 * are always enabled. Otherwise they are controlled by
3306 * SDCR.SPD like those from other Secure ELs.
3307 */
3308 return true;
3309 }
3310
3311 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3312 switch (spd) {
3313 case 1:
3314 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3315 case 0:
3316 /* For 0b00 we return true if external secure invasive debug
3317 * is enabled. On real hardware this is controlled by external
3318 * signals to the core. QEMU always permits debug, and behaves
3319 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3320 */
3321 return true;
3322 case 2:
3323 return false;
3324 case 3:
3325 return true;
3326 }
3327 }
3328
3329 return el != 2;
3a298203
PM
3330}
3331
3332/* Return true if debugging exceptions are currently enabled.
3333 * This corresponds to what in ARM ARM pseudocode would be
3334 * if UsingAArch32() then
3335 * return AArch32.GenerateDebugExceptions()
3336 * else
3337 * return AArch64.GenerateDebugExceptions()
3338 * We choose to push the if() down into this function for clarity,
3339 * since the pseudocode has it at all callsites except for the one in
3340 * CheckSoftwareStep(), where it is elided because both branches would
3341 * always return the same value.
3a298203
PM
3342 */
3343static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3344{
3345 if (env->aarch64) {
3346 return aa64_generate_debug_exceptions(env);
3347 } else {
3348 return aa32_generate_debug_exceptions(env);
3349 }
3350}
3351
3352/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3353 * implicitly means this always returns false in pre-v8 CPUs.)
3354 */
3355static inline bool arm_singlestep_active(CPUARMState *env)
3356{
3357 return extract32(env->cp15.mdscr_el1, 0, 1)
3358 && arm_el_is_aa64(env, arm_debug_target_el(env))
3359 && arm_generate_debug_exceptions(env);
3360}
3361
f9fd40eb
PB
3362static inline bool arm_sctlr_b(CPUARMState *env)
3363{
3364 return
3365 /* We need not implement SCTLR.ITD in user-mode emulation, so
3366 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3367 * This lets people run BE32 binaries with "-cpu any".
3368 */
3369#ifndef CONFIG_USER_ONLY
3370 !arm_feature(env, ARM_FEATURE_V7) &&
3371#endif
3372 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3373}
3374
aaec1432 3375uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3376
8061a649
RH
3377static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3378 bool sctlr_b)
3379{
3380#ifdef CONFIG_USER_ONLY
3381 /*
3382 * In system mode, BE32 is modelled in line with the
3383 * architecture (as word-invariant big-endianness), where loads
3384 * and stores are done little endian but from addresses which
3385 * are adjusted by XORing with the appropriate constant. So the
3386 * endianness to use for the raw data access is not affected by
3387 * SCTLR.B.
3388 * In user mode, however, we model BE32 as byte-invariant
3389 * big-endianness (because user-only code cannot tell the
3390 * difference), and so we need to use a data access endianness
3391 * that depends on SCTLR.B.
3392 */
3393 if (sctlr_b) {
3394 return true;
3395 }
3396#endif
3397 /* In 32bit endianness is determined by looking at CPSR's E bit */
3398 return env->uncached_cpsr & CPSR_E;
3399}
3400
3401static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3402{
3403 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3404}
64e40755 3405
ed50ff78
PC
3406/* Return true if the processor is in big-endian mode. */
3407static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3408{
ed50ff78 3409 if (!is_a64(env)) {
8061a649 3410 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3411 } else {
3412 int cur_el = arm_current_el(env);
3413 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3414 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3415 }
ed50ff78
PC
3416}
3417
022c62cb 3418#include "exec/cpu-all.h"
622ed360 3419
fdd1b228 3420/*
a378206a
RH
3421 * We have more than 32-bits worth of state per TB, so we split the data
3422 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3423 * We collect these two parts in CPUARMTBFlags where they are named
3424 * flags and flags2 respectively.
fdd1b228 3425 *
a378206a
RH
3426 * The flags that are shared between all execution modes, TBFLAG_ANY,
3427 * are stored in flags. The flags that are specific to a given mode
3428 * are stores in flags2. Since cs_base is sized on the configured
3429 * address size, flags2 always has 64-bits for A64, and a minimum of
3430 * 32-bits for A32 and M32.
3431 *
3432 * The bits for 32-bit A-profile and M-profile partially overlap:
3433 *
5896f392
RH
3434 * 31 23 11 10 0
3435 * +-------------+----------+----------------+
3436 * | | | TBFLAG_A32 |
3437 * | TBFLAG_AM32 | +-----+----------+
3438 * | | |TBFLAG_M32|
3439 * +-------------+----------------+----------+
26702213 3440 * 31 23 6 5 0
79cabf1f 3441 *
fdd1b228 3442 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3443 */
eee81d41
RH
3444FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3445FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3446FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3447FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3448FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3449/* Target EL if we take a floating-point-disabled exception */
eee81d41 3450FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
79cabf1f 3451/* For A-profile only, target EL for debug exceptions. */
eee81d41 3452FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
4479ec30
RH
3453/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3454FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
520d1621 3455FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
79cabf1f 3456
8bd587c1 3457/*
79cabf1f 3458 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3459 */
5896f392
RH
3460FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3461FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3462
79cabf1f
RH
3463/*
3464 * Bit usage when in AArch32 state, for A-profile only.
3465 */
5896f392
RH
3466FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3467FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3468/*
3469 * We store the bottom two bits of the CPAR as TB flags and handle
3470 * checks on the other bits at runtime. This shares the same bits as
3471 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3472 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3473 */
5896f392
RH
3474FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3475FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3476FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3477FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3478/*
3479 * Indicates whether cp register reads and writes by guest code should access
3480 * the secure or nonsecure bank of banked registers; note that this is not
3481 * the same thing as the current security state of the processor!
3482 */
5896f392 3483FIELD(TBFLAG_A32, NS, 10, 1)
79cabf1f
RH
3484
3485/*
3486 * Bit usage when in AArch32 state, for M-profile only.
3487 */
3488/* Handler (ie not Thread) mode */
5896f392 3489FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3490/* Whether we should generate stack-limit checks */
5896f392 3491FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3492/* Set if FPCCR.LSPACT is set */
5896f392 3493FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3494/* Set if we must create a new FP context */
5896f392 3495FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3496/* Set if FPCCR.S does not match current security state */
5896f392 3497FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3498/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3499FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
79cabf1f
RH
3500
3501/*
3502 * Bit usage when in AArch64 state
3503 */
476a4692 3504FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3505FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3506FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3507FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3508FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3509FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3510FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3511FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3512FIELD(TBFLAG_A64, ATA, 15, 1)
3513FIELD(TBFLAG_A64, TCMA, 16, 2)
3514FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3515FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
a1705768 3516
a729a46b
RH
3517/*
3518 * Helpers for using the above.
3519 */
3520#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3521 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3522#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3523 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3524#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3525 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3526#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3527 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3528#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3529 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3530
3902bfc6 3531#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3532#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3533#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3534#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3535#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3536
fb901c90
RH
3537/**
3538 * cpu_mmu_index:
3539 * @env: The cpu environment
3540 * @ifetch: True for code access, false for data access.
3541 *
3542 * Return the core mmu index for the current translation regime.
3543 * This function is used by generic TCG code paths.
3544 */
3545static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3546{
a729a46b 3547 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3548}
3549
f9fd40eb
PB
3550static inline bool bswap_code(bool sctlr_b)
3551{
3552#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3553 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3554 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3555 * would also end up as a mixed-endian mode with BE code, LE data.
3556 */
3557 return
ee3eb3a7 3558#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3559 1 ^
3560#endif
3561 sctlr_b;
3562#else
e334bd31
PB
3563 /* All code access in ARM is little endian, and there are no loaders
3564 * doing swaps that need to be reversed
f9fd40eb
PB
3565 */
3566 return 0;
3567#endif
3568}
3569
c3ae85fc
PB
3570#ifdef CONFIG_USER_ONLY
3571static inline bool arm_cpu_bswap_data(CPUARMState *env)
3572{
3573 return
ee3eb3a7 3574#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3575 1 ^
3576#endif
3577 arm_cpu_data_is_big_endian(env);
3578}
3579#endif
3580
a9e01311
RH
3581void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3582 target_ulong *cs_base, uint32_t *flags);
6b917547 3583
98128601
RH
3584enum {
3585 QEMU_PSCI_CONDUIT_DISABLED = 0,
3586 QEMU_PSCI_CONDUIT_SMC = 1,
3587 QEMU_PSCI_CONDUIT_HVC = 2,
3588};
3589
017518c1
PM
3590#ifndef CONFIG_USER_ONLY
3591/* Return the address space index to use for a memory access */
3592static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3593{
3594 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3595}
5ce4ff65
PM
3596
3597/* Return the AddressSpace to use for a memory access
3598 * (which depends on whether the access is S or NS, and whether
3599 * the board gave us a separate AddressSpace for S accesses).
3600 */
3601static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3602{
3603 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3604}
017518c1
PM
3605#endif
3606
bd7d00fc 3607/**
b5c53d1b
AL
3608 * arm_register_pre_el_change_hook:
3609 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3610 * CPU changes exception level or mode. The hook function will be
3611 * passed a pointer to the ARMCPU and the opaque data pointer passed
3612 * to this function when the hook was registered.
b5c53d1b
AL
3613 *
3614 * Note that if a pre-change hook is called, any registered post-change hooks
3615 * are guaranteed to subsequently be called.
bd7d00fc 3616 */
b5c53d1b 3617void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3618 void *opaque);
b5c53d1b
AL
3619/**
3620 * arm_register_el_change_hook:
3621 * Register a hook function which will be called immediately after this
3622 * CPU changes exception level or mode. The hook function will be
3623 * passed a pointer to the ARMCPU and the opaque data pointer passed
3624 * to this function when the hook was registered.
3625 *
3626 * Note that any registered hooks registered here are guaranteed to be called
3627 * if pre-change hooks have been.
3628 */
3629void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3630 *opaque);
bd7d00fc 3631
3d74e2e9
RH
3632/**
3633 * arm_rebuild_hflags:
3634 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3635 */
3636void arm_rebuild_hflags(CPUARMState *env);
3637
9a2b5256
RH
3638/**
3639 * aa32_vfp_dreg:
3640 * Return a pointer to the Dn register within env in 32-bit mode.
3641 */
3642static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3643{
c39c2b90 3644 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3645}
3646
3647/**
3648 * aa32_vfp_qreg:
3649 * Return a pointer to the Qn register within env in 32-bit mode.
3650 */
3651static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3652{
c39c2b90 3653 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3654}
3655
3656/**
3657 * aa64_vfp_qreg:
3658 * Return a pointer to the Qn register within env in 64-bit mode.
3659 */
3660static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3661{
c39c2b90 3662 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3663}
3664
028e2a7b
RH
3665/* Shared between translate-sve.c and sve_helper.c. */
3666extern const uint64_t pred_esz_masks[4];
3667
149d3b31
RH
3668/* Helper for the macros below, validating the argument type. */
3669static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3670{
3671 return x;
3672}
3673
3674/*
3675 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3676 * Using these should be a bit more self-documenting than using the
3677 * generic target bits directly.
3678 */
3679#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3680#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3681
be5d6f48
RH
3682/*
3683 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3684 */
3685#define PAGE_BTI PAGE_TARGET_1
d109b46d 3686#define PAGE_MTE PAGE_TARGET_2
be5d6f48 3687
0e0c030c
RH
3688#ifdef TARGET_TAGGED_ADDRESSES
3689/**
3690 * cpu_untagged_addr:
3691 * @cs: CPU context
3692 * @x: tagged address
3693 *
3694 * Remove any address tag from @x. This is explicitly related to the
3695 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3696 *
3697 * There should be a better place to put this, but we need this in
3698 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3699 */
3700static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3701{
3702 ARMCPU *cpu = ARM_CPU(cs);
3703 if (cpu->env.tagged_addr_enable) {
3704 /*
3705 * TBI is enabled for userspace but not kernelspace addresses.
3706 * Only clear the tag if bit 55 is clear.
3707 */
3708 x &= sextract64(x, 0, 56);
3709 }
3710 return x;
3711}
3712#endif
3713
873b73c0
PM
3714/*
3715 * Naming convention for isar_feature functions:
3716 * Functions which test 32-bit ID registers should have _aa32_ in
3717 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3718 * _aa64_ in their name. These must only be used in code where we
3719 * know for certain that the CPU has AArch32 or AArch64 respectively
3720 * or where the correct answer for a CPU which doesn't implement that
3721 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3722 * system registers that are specific to that CPU state, for "should
3723 * we let this system register bit be set" tests where the 32-bit
3724 * flavour of the register doesn't have the bit, and so on).
3725 * Functions which simply ask "does this feature exist at all" have
3726 * _any_ in their name, and always return the logical OR of the _aa64_
3727 * and the _aa32_ function.
873b73c0
PM
3728 */
3729
962fcbf2
RH
3730/*
3731 * 32-bit feature tests via id registers.
3732 */
873b73c0 3733static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3734{
3735 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3736}
3737
873b73c0 3738static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3739{
3740 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3741}
05903f03
PM
3742
3743static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3744{
3745 /* (M-profile) low-overhead loops and branch future */
3746 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3747}
7e0cf8b4 3748
873b73c0 3749static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3750{
3751 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3752}
3753
962fcbf2
RH
3754static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3755{
3756 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3757}
3758
3759static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3760{
3761 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3762}
3763
3764static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3765{
3766 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3767}
3768
3769static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3770{
3771 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3772}
3773
3774static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3775{
3776 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3777}
3778
3779static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3780{
3781 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3782}
3783
3784static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3785{
3786 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3787}
3788
6c1f6f27
RH
3789static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3790{
3791 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3792}
3793
962fcbf2
RH
3794static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3795{
3796 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3797}
3798
87732318
RH
3799static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3800{
3801 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3802}
3803
9888bd1e
RH
3804static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3805{
3806 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3807}
3808
cb570bd3
RH
3809static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3810{
3811 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3812}
3813
c0b9e8a4
RH
3814static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3815{
3816 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3817}
3818
51879c67
RH
3819static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3820{
3821 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3822}
3823
46f4976f
PM
3824static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3825{
3826 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3827}
3828
dfc523a8
PM
3829static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3830{
3831 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3832}
3833
83ff3d6a
PM
3834static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3835{
3836 /*
3837 * Return true if M-profile state handling insns
3838 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3839 */
3840 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3841}
3842
5763190f
RH
3843static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3844{
dfc523a8
PM
3845 /* Sadly this is encoded differently for A-profile and M-profile */
3846 if (isar_feature_aa32_mprofile(id)) {
3847 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3848 } else {
3849 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3850 }
5763190f
RH
3851}
3852
7df6a1ff
PM
3853static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3854{
3855 /*
3856 * Return true if MVE is supported (either integer or floating point).
3857 * We must check for M-profile as the MVFR1 field means something
3858 * else for A-profile.
3859 */
3860 return isar_feature_aa32_mprofile(id) &&
3861 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3862}
3863
3864static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3865{
3866 /*
3867 * Return true if MVE is supported (either integer or floating point).
3868 * We must check for M-profile as the MVFR1 field means something
3869 * else for A-profile.
3870 */
3871 return isar_feature_aa32_mprofile(id) &&
3872 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3873}
3874
7fbc6a40
RH
3875static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3876{
3877 /*
3878 * Return true if either VFP or SIMD is implemented.
3879 * In this case, a minimum of VFP w/ D0-D15.
3880 */
3881 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3882}
3883
0e13ba78 3884static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3885{
3886 /* Return true if D16-D31 are implemented */
b3a816f6 3887 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3888}
3889
266bd25c
PM
3890static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3891{
b3a816f6 3892 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3893}
3894
f67957e1
RH
3895static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3896{
3897 /* Return true if CPU supports single precision floating point, VFPv2 */
3898 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3899}
3900
3901static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3902{
3903 /* Return true if CPU supports single precision floating point, VFPv3 */
3904 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3905}
3906
c4ff8735 3907static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3908{
c4ff8735 3909 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3910 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3911}
3912
f67957e1
RH
3913static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3914{
3915 /* Return true if CPU supports double precision floating point, VFPv3 */
3916 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3917}
3918
7d63183f
RH
3919static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3920{
3921 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3922}
3923
602f6e42
PM
3924/*
3925 * We always set the FP and SIMD FP16 fields to indicate identical
3926 * levels of support (assuming SIMD is implemented at all), so
3927 * we only need one set of accessors.
3928 */
3929static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3930{
b3a816f6 3931 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3932}
3933
3934static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3935{
b3a816f6 3936 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3937}
3938
c52881bb
RH
3939/*
3940 * Note that this ID register field covers both VFP and Neon FMAC,
3941 * so should usually be tested in combination with some other
3942 * check that confirms the presence of whichever of VFP or Neon is
3943 * relevant, to avoid accidentally enabling a Neon feature on
3944 * a VFP-no-Neon core or vice-versa.
3945 */
3946static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3947{
3948 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3949}
3950
c0c760af
PM
3951static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3952{
b3a816f6 3953 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3954}
3955
3956static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3957{
b3a816f6 3958 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3959}
3960
3961static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3962{
b3a816f6 3963 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3964}
3965
3966static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3967{
b3a816f6 3968 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3969}
3970
0ae0326b
PM
3971static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3972{
3973 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3974}
3975
3d6ad6bb
RH
3976static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3977{
10054016 3978 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3979}
3980
3981static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3982{
10054016 3983 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3984}
3985
a6179538
PM
3986static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3987{
3988 /* 0xf means "non-standard IMPDEF PMU" */
3989 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3990 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3991}
3992
15dd1ebd
PM
3993static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3994{
3995 /* 0xf means "non-standard IMPDEF PMU" */
3996 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3997 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3998}
3999
4036b7d1
PM
4000static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
4001{
4002 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
4003}
4004
f6287c24
PM
4005static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
4006{
4007 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
4008}
4009
957e6155
PM
4010static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
4011{
4012 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
4013}
4014
ce3125be
PM
4015static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
4016{
4017 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
4018}
4019
dc8b1853
RC
4020static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4021{
4022 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4023}
4024
f2f68a78
RC
4025static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4026{
4027 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4028}
4029
962fcbf2
RH
4030/*
4031 * 64-bit feature tests via id registers.
4032 */
4033static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4034{
4035 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4036}
4037
4038static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4039{
4040 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4041}
4042
4043static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4044{
4045 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4046}
4047
4048static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4049{
4050 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4051}
4052
4053static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4054{
4055 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4056}
4057
4058static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4059{
4060 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4061}
4062
4063static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4064{
4065 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4066}
4067
4068static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4069{
4070 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4071}
4072
4073static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4074{
4075 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4076}
4077
4078static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4079{
4080 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4081}
4082
4083static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4084{
4085 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4086}
4087
4088static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4089{
4090 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4091}
4092
0caa5af8
RH
4093static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4094{
4095 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4096}
4097
b89d9c98
RH
4098static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4099{
4100 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4101}
4102
5ef84f11
RH
4103static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4104{
4105 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4106}
4107
de390645
RH
4108static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4109{
4110 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4111}
4112
6c1f6f27
RH
4113static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4114{
4115 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4116}
4117
962fcbf2
RH
4118static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4119{
4120 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4121}
4122
991ad91b
RH
4123static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4124{
4125 /*
283fc52a
RH
4126 * Return true if any form of pauth is enabled, as this
4127 * predicate controls migration of the 128-bit keys.
991ad91b
RH
4128 */
4129 return (id->id_aa64isar1 &
4130 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4131 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4132 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4133 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4134}
4135
283fc52a
RH
4136static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4137{
4138 /*
4139 * Return true if pauth is enabled with the architected QARMA algorithm.
4140 * QEMU will always set APA+GPA to the same value.
4141 */
4142 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4143}
4144
84940ed8
RC
4145static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4146{
4147 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4148}
4149
7113d618
RC
4150static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4151{
4152 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4153}
4154
9888bd1e
RH
4155static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4156{
4157 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4158}
4159
cb570bd3
RH
4160static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4161{
4162 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4163}
4164
6bea2563
RH
4165static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4166{
4167 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4168}
4169
0d57b499
BM
4170static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4171{
4172 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4173}
4174
4175static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4176{
4177 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4178}
4179
c0b9e8a4
RH
4180static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4181{
4182 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4183}
4184
7d63183f
RH
4185static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4186{
4187 /* We always set the AdvSIMD and FP fields identically. */
4188 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4189}
4190
5763190f
RH
4191static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4192{
4193 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
4194 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4195}
4196
0f8d06f1
RH
4197static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4198{
4199 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4200}
4201
10d0ef3e
MN
4202static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4203{
4204 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4205}
4206
cd208a1c
RH
4207static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4208{
4209 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4210}
4211
5ca192df
RDC
4212static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4213{
4214 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4215}
4216
8fc2ea21
RH
4217static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4218{
4219 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4220}
4221
2d7137c1
RH
4222static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4223{
4224 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4225}
4226
3d6ad6bb
RH
4227static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4228{
4229 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4230}
4231
4232static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4233{
4234 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4235}
4236
9eeb7a1c
RH
4237static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4238{
4239 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4240}
4241
c36c65ea
RDC
4242static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4243{
4244 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4245}
4246
be53b6f4
RH
4247static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4248{
4249 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4250}
4251
c7fd0baa
RH
4252static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4253{
4254 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4255}
4256
4257static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4258{
4259 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4260}
4261
2a609df8
PM
4262static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4263{
4264 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4265 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4266}
4267
15dd1ebd
PM
4268static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4269{
54117b90
PM
4270 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4271 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4272}
4273
2677cf9f
PM
4274static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4275{
4276 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4277}
4278
a1229109
PM
4279static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4280{
4281 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4282}
4283
f7da051f
RH
4284static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4285{
4286 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4287}
4288
ef56c242
RH
4289static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4290{
4291 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4292}
4293
4294static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4295{
4296 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4297 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4298}
4299
4300static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4301{
4302 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4303}
4304
4305static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4306{
4307 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4308 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4309}
4310
957e6155
PM
4311static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4312{
4313 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4314}
4315
0af312b6
RH
4316static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4317{
4318 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4319}
4320
ce3125be
PM
4321static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4322{
4323 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4324}
4325
dc8b1853
RC
4326static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4327{
4328 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4329}
4330
f2f68a78
RC
4331static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4332{
4333 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4334}
4335
2dc10fa2
RH
4336static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4337{
4338 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4339}
4340
e3a56131
RH
4341static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4342{
4343 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4344}
4345
4346static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4347{
4348 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4349}
4350
cb9c33b8
RH
4351static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4352{
4353 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4354}
4355
c0b9e8a4
RH
4356static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4357{
4358 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4359}
4360
3358eb3f
RH
4361static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4362{
4363 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4364}
4365
3cc7a88e
RH
4366static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4367{
4368 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4369}
4370
2867039a
RH
4371static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4372{
4373 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4374}
4375
4f26756b
SL
4376static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4377{
4378 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4379}
4380
4381static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4382{
4383 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4384}
4385
6e61f839
PM
4386/*
4387 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4388 */
4389static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4390{
4391 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4392}
4393
22e57073
PM
4394static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4395{
4396 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4397}
4398
2a609df8
PM
4399static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4400{
4401 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4402}
4403
15dd1ebd
PM
4404static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4405{
4406 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4407}
4408
957e6155
PM
4409static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4410{
4411 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4412}
4413
ce3125be
PM
4414static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4415{
4416 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4417}
4418
962fcbf2
RH
4419/*
4420 * Forward to the above feature tests given an ARMCPU pointer.
4421 */
4422#define cpu_isar_feature(name, cpu) \
4423 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4424
2c0262af 4425#endif