]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Tidy ARMMMUIdx m-profile definitions
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
b8a9e8f1
FB
31#define EXCP_UDEF 1 /* undefined instruction */
32#define EXCP_SWI 2 /* software interrupt */
33#define EXCP_PREFETCH_ABORT 3
34#define EXCP_DATA_ABORT 4
b5ff1b31
FB
35#define EXCP_IRQ 5
36#define EXCP_FIQ 6
06c949e6 37#define EXCP_BKPT 7
9ee6e8bb 38#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 39#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 40#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 41#define EXCP_HYP_TRAP 12
e0d6e6a5 42#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
43#define EXCP_VIRQ 14
44#define EXCP_VFIQ 15
19a6e31c 45#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 46#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 47#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 48#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 49#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
50#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
53
54#define ARMV7M_EXCP_RESET 1
55#define ARMV7M_EXCP_NMI 2
56#define ARMV7M_EXCP_HARD 3
57#define ARMV7M_EXCP_MEM 4
58#define ARMV7M_EXCP_BUS 5
59#define ARMV7M_EXCP_USAGE 6
1e577cc7 60#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
acf94941
PM
66/* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
74 */
4a16724f
PM
75enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
79};
acf94941 80
403946c0
RH
81/* ARM-specific interrupt pending bits. */
82#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
83#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 85
e4fe830b
PM
86/* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
91 */
92#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 94#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
95#else
96#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
98#endif
99
136e67e9 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
101#define ARM_CPU_IRQ 0
102#define ARM_CPU_FIQ 1
136e67e9
EI
103#define ARM_CPU_VIRQ 2
104#define ARM_CPU_VFIQ 3
403946c0 105
aaa1f954
EI
106/* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
109 */
110#define TARGET_INSN_START_EXTRA_WORDS 2
111
112/* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
116 */
117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 119
b7bcbe95
FB
120/* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
126 */
b7bcbe95 127
200bf5b7
AB
128/**
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
134 */
135typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139} DynamicGDBXMLInfo;
140
55d284af
PM
141/* CPU state for each instance of a generic timer (in cp15 c14) */
142typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 144 uint64_t ctl; /* Timer Control register */
55d284af
PM
145} ARMGenericTimer;
146
147#define GTIMER_PHYS 0
148#define GTIMER_VIRT 1
b0e66d95 149#define GTIMER_HYP 2
b4d3978c
PM
150#define GTIMER_SEC 3
151#define NUM_GTIMERS 4
55d284af 152
11f136ee
FA
153typedef struct {
154 uint64_t raw_tcr;
155 uint32_t mask;
156 uint32_t base_mask;
157} TCR;
158
c39c2b90
RH
159/* Define a maximum sized vector register.
160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161 * For 64-bit, this is a 2048-bit SVE register.
162 *
163 * Note that the mapping between S, D, and Q views of the register bank
164 * differs between AArch64 and AArch32.
165 * In AArch32:
166 * Qn = regs[n].d[1]:regs[n].d[0]
167 * Dn = regs[n / 2].d[n & 1]
168 * Sn = regs[n / 4].d[n % 4 / 2],
169 * bits 31..0 for even n, and bits 63..32 for odd n
170 * (and regs[16] to regs[31] are inaccessible)
171 * In AArch64:
172 * Zn = regs[n].d[*]
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n].d[0]
175 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 176 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
177 *
178 * This corresponds to the architecturally defined mapping between
179 * the two execution states, and means we do not need to explicitly
180 * map these registers when changing states.
181 *
182 * Align the data for use with TCG host vector operations.
183 */
184
185#ifdef TARGET_AARCH64
186# define ARM_MAX_VQ 16
0df9142d 187void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
188#else
189# define ARM_MAX_VQ 1
0df9142d 190static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
191#endif
192
193typedef struct ARMVectorReg {
194 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
195} ARMVectorReg;
196
3c7d3086 197#ifdef TARGET_AARCH64
991ad91b 198/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 199typedef struct ARMPredicateReg {
46417784 200 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 201} ARMPredicateReg;
991ad91b
RH
202
203/* In AArch32 mode, PAC keys do not exist at all. */
204typedef struct ARMPACKey {
205 uint64_t lo, hi;
206} ARMPACKey;
3c7d3086
RH
207#endif
208
c39c2b90 209
2c0262af 210typedef struct CPUARMState {
b5ff1b31 211 /* Regs for current mode. */
2c0262af 212 uint32_t regs[16];
3926cc84
AG
213
214 /* 32/64 switch only happens when taking and returning from
215 * exceptions so the overlap semantics are taken care of then
216 * instead of having a complicated union.
217 */
218 /* Regs for A64 mode. */
219 uint64_t xregs[32];
220 uint64_t pc;
d356312f
PM
221 /* PSTATE isn't an architectural register for ARMv8. However, it is
222 * convenient for us to assemble the underlying state into a 32 bit format
223 * identical to the architectural format used for the SPSR. (This is also
224 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
225 * 'pstate' register are.) Of the PSTATE bits:
226 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
227 * semantics as for AArch32, as described in the comments on each field)
228 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 229 * DAIF (exception masks) are kept in env->daif
f6e52eaa 230 * BTYPE is kept in env->btype
d356312f 231 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
232 */
233 uint32_t pstate;
234 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
235
fdd1b228
RH
236 /* Cached TBFLAGS state. See below for which bits are included. */
237 uint32_t hflags;
238
b90372ad 239 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 240 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
241 the whole CPSR. */
242 uint32_t uncached_cpsr;
243 uint32_t spsr;
244
245 /* Banked registers. */
28c9457d 246 uint64_t banked_spsr[8];
0b7d409d
FA
247 uint32_t banked_r13[8];
248 uint32_t banked_r14[8];
3b46e624 249
b5ff1b31
FB
250 /* These hold r8-r12. */
251 uint32_t usr_regs[5];
252 uint32_t fiq_regs[5];
3b46e624 253
2c0262af
FB
254 /* cpsr flag cache for faster execution */
255 uint32_t CF; /* 0 or 1 */
256 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
257 uint32_t NF; /* N is bit 31. All other bits are undefined. */
258 uint32_t ZF; /* Z set if zero. */
99c475ab 259 uint32_t QF; /* 0 or 1 */
9ee6e8bb 260 uint32_t GE; /* cpsr[19:16] */
b26eefb6 261 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 262 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 263 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 264 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 265
1b174238 266 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 267 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 268
b5ff1b31
FB
269 /* System control coprocessor (cp15) */
270 struct {
40f137e1 271 uint32_t c0_cpuid;
b85a1fd6
FA
272 union { /* Cache size selection */
273 struct {
274 uint64_t _unused_csselr0;
275 uint64_t csselr_ns;
276 uint64_t _unused_csselr1;
277 uint64_t csselr_s;
278 };
279 uint64_t csselr_el[4];
280 };
137feaa9
FA
281 union { /* System control register. */
282 struct {
283 uint64_t _unused_sctlr;
284 uint64_t sctlr_ns;
285 uint64_t hsctlr;
286 uint64_t sctlr_s;
287 };
288 uint64_t sctlr_el[4];
289 };
7ebd5f2e 290 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 291 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 292 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 293 uint64_t sder; /* Secure debug enable register. */
77022576 294 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
295 union { /* MMU translation table base 0. */
296 struct {
297 uint64_t _unused_ttbr0_0;
298 uint64_t ttbr0_ns;
299 uint64_t _unused_ttbr0_1;
300 uint64_t ttbr0_s;
301 };
302 uint64_t ttbr0_el[4];
303 };
304 union { /* MMU translation table base 1. */
305 struct {
306 uint64_t _unused_ttbr1_0;
307 uint64_t ttbr1_ns;
308 uint64_t _unused_ttbr1_1;
309 uint64_t ttbr1_s;
310 };
311 uint64_t ttbr1_el[4];
312 };
b698e9cf 313 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
314 /* MMU translation table base control. */
315 TCR tcr_el[4];
68e9c2fe 316 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
317 uint32_t c2_data; /* MPU data cacheable bits. */
318 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
319 union { /* MMU domain access control register
320 * MPU write buffer control.
321 */
322 struct {
323 uint64_t dacr_ns;
324 uint64_t dacr_s;
325 };
326 struct {
327 uint64_t dacr32_el2;
328 };
329 };
7e09797c
PM
330 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 332 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 333 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
334 union { /* Fault status registers. */
335 struct {
336 uint64_t ifsr_ns;
337 uint64_t ifsr_s;
338 };
339 struct {
340 uint64_t ifsr32_el2;
341 };
342 };
4a7e2d73
FA
343 union {
344 struct {
345 uint64_t _unused_dfsr;
346 uint64_t dfsr_ns;
347 uint64_t hsr;
348 uint64_t dfsr_s;
349 };
350 uint64_t esr_el[4];
351 };
ce819861 352 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
353 union { /* Fault address registers. */
354 struct {
355 uint64_t _unused_far0;
356#ifdef HOST_WORDS_BIGENDIAN
357 uint32_t ifar_ns;
358 uint32_t dfar_ns;
359 uint32_t ifar_s;
360 uint32_t dfar_s;
361#else
362 uint32_t dfar_ns;
363 uint32_t ifar_ns;
364 uint32_t dfar_s;
365 uint32_t ifar_s;
366#endif
367 uint64_t _unused_far3;
368 };
369 uint64_t far_el[4];
370 };
59e05530 371 uint64_t hpfar_el2;
2a5a9abd 372 uint64_t hstr_el2;
01c097f7
FA
373 union { /* Translation result. */
374 struct {
375 uint64_t _unused_par_0;
376 uint64_t par_ns;
377 uint64_t _unused_par_1;
378 uint64_t par_s;
379 };
380 uint64_t par_el[4];
381 };
6cb0b013 382
b5ff1b31
FB
383 uint32_t c9_insn; /* Cache lockdown registers. */
384 uint32_t c9_data;
8521466b
AF
385 uint64_t c9_pmcr; /* performance monitor control register */
386 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
387 uint64_t c9_pmovsr; /* perf monitor overflow status */
388 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 389 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 390 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
391 union { /* Memory attribute redirection */
392 struct {
393#ifdef HOST_WORDS_BIGENDIAN
394 uint64_t _unused_mair_0;
395 uint32_t mair1_ns;
396 uint32_t mair0_ns;
397 uint64_t _unused_mair_1;
398 uint32_t mair1_s;
399 uint32_t mair0_s;
400#else
401 uint64_t _unused_mair_0;
402 uint32_t mair0_ns;
403 uint32_t mair1_ns;
404 uint64_t _unused_mair_1;
405 uint32_t mair0_s;
406 uint32_t mair1_s;
407#endif
408 };
409 uint64_t mair_el[4];
410 };
fb6c91ba
GB
411 union { /* vector base address register */
412 struct {
413 uint64_t _unused_vbar;
414 uint64_t vbar_ns;
415 uint64_t hvbar;
416 uint64_t vbar_s;
417 };
418 uint64_t vbar_el[4];
419 };
e89e51a1 420 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
421 struct { /* FCSE PID. */
422 uint32_t fcseidr_ns;
423 uint32_t fcseidr_s;
424 };
425 union { /* Context ID. */
426 struct {
427 uint64_t _unused_contextidr_0;
428 uint64_t contextidr_ns;
429 uint64_t _unused_contextidr_1;
430 uint64_t contextidr_s;
431 };
432 uint64_t contextidr_el[4];
433 };
434 union { /* User RW Thread register. */
435 struct {
436 uint64_t tpidrurw_ns;
437 uint64_t tpidrprw_ns;
438 uint64_t htpidr;
439 uint64_t _tpidr_el3;
440 };
441 uint64_t tpidr_el[4];
442 };
443 /* The secure banks of these registers don't map anywhere */
444 uint64_t tpidrurw_s;
445 uint64_t tpidrprw_s;
446 uint64_t tpidruro_s;
447
448 union { /* User RO Thread register. */
449 uint64_t tpidruro_ns;
450 uint64_t tpidrro_el[1];
451 };
a7adc4b7
PM
452 uint64_t c14_cntfrq; /* Counter Frequency register */
453 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 454 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 455 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 456 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 457 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
458 uint32_t c15_ticonfig; /* TI925T configuration byte. */
459 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
460 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
461 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
462 uint32_t c15_config_base_address; /* SCU base address. */
463 uint32_t c15_diagnostic; /* diagnostic register */
464 uint32_t c15_power_diagnostic;
465 uint32_t c15_power_control; /* power control */
0b45451e
PM
466 uint64_t dbgbvr[16]; /* breakpoint value registers */
467 uint64_t dbgbcr[16]; /* breakpoint control registers */
468 uint64_t dbgwvr[16]; /* watchpoint value registers */
469 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 470 uint64_t mdscr_el1;
1424ca8d 471 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 472 uint64_t mdcr_el2;
5513c3ab 473 uint64_t mdcr_el3;
5d05b9d4
AL
474 /* Stores the architectural value of the counter *the last time it was
475 * updated* by pmccntr_op_start. Accesses should always be surrounded
476 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
477 * architecturally-correct value is being read/set.
7c2cb42b 478 */
c92c0687 479 uint64_t c15_ccnt;
5d05b9d4
AL
480 /* Stores the delta between the architectural value and the underlying
481 * cycle count during normal operation. It is used to update c15_ccnt
482 * to be the correct architectural value before accesses. During
483 * accesses, c15_ccnt_delta contains the underlying count being used
484 * for the access, after which it reverts to the delta value in
485 * pmccntr_op_finish.
486 */
487 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
488 uint64_t c14_pmevcntr[31];
489 uint64_t c14_pmevcntr_delta[31];
490 uint64_t c14_pmevtyper[31];
8521466b 491 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 492 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 493 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 494 } cp15;
40f137e1 495
9ee6e8bb 496 struct {
fb602cb7
PM
497 /* M profile has up to 4 stack pointers:
498 * a Main Stack Pointer and a Process Stack Pointer for each
499 * of the Secure and Non-Secure states. (If the CPU doesn't support
500 * the security extension then it has only two SPs.)
501 * In QEMU we always store the currently active SP in regs[13],
502 * and the non-active SP for the current security state in
503 * v7m.other_sp. The stack pointers for the inactive security state
504 * are stored in other_ss_msp and other_ss_psp.
505 * switch_v7m_security_state() is responsible for rearranging them
506 * when we change security state.
507 */
9ee6e8bb 508 uint32_t other_sp;
fb602cb7
PM
509 uint32_t other_ss_msp;
510 uint32_t other_ss_psp;
4a16724f
PM
511 uint32_t vecbase[M_REG_NUM_BANKS];
512 uint32_t basepri[M_REG_NUM_BANKS];
513 uint32_t control[M_REG_NUM_BANKS];
514 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
515 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
516 uint32_t hfsr; /* HardFault Status */
517 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 518 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 519 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 520 uint32_t bfar; /* BusFault Address */
bed079da 521 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 522 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 523 int exception;
4a16724f
PM
524 uint32_t primask[M_REG_NUM_BANKS];
525 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 526 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 527 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 528 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 529 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
530 uint32_t msplim[M_REG_NUM_BANKS];
531 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
532 uint32_t fpcar[M_REG_NUM_BANKS];
533 uint32_t fpccr[M_REG_NUM_BANKS];
534 uint32_t fpdscr[M_REG_NUM_BANKS];
535 uint32_t cpacr[M_REG_NUM_BANKS];
536 uint32_t nsacr;
9ee6e8bb
PB
537 } v7m;
538
abf1172f
PM
539 /* Information associated with an exception about to be taken:
540 * code which raises an exception must set cs->exception_index and
541 * the relevant parts of this structure; the cpu_do_interrupt function
542 * will then set the guest-visible registers as part of the exception
543 * entry process.
544 */
545 struct {
546 uint32_t syndrome; /* AArch64 format syndrome register */
547 uint32_t fsr; /* AArch32 format fault status register info */
548 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 549 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
550 /* If we implement EL2 we will also need to store information
551 * about the intermediate physical address for stage 2 faults.
552 */
553 } exception;
554
202ccb6b
DG
555 /* Information associated with an SError */
556 struct {
557 uint8_t pending;
558 uint8_t has_esr;
559 uint64_t esr;
560 } serror;
561
ed89f078
PM
562 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
563 uint32_t irq_line_state;
564
fe1479c3
PB
565 /* Thumb-2 EE state. */
566 uint32_t teecr;
567 uint32_t teehbr;
568
b7bcbe95
FB
569 /* VFP coprocessor state. */
570 struct {
c39c2b90 571 ARMVectorReg zregs[32];
b7bcbe95 572
3c7d3086
RH
573#ifdef TARGET_AARCH64
574 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 575#define FFR_PRED_NUM 16
3c7d3086 576 ARMPredicateReg pregs[17];
516e246a
RH
577 /* Scratch space for aa64 sve predicate temporary. */
578 ARMPredicateReg preg_tmp;
3c7d3086
RH
579#endif
580
b7bcbe95 581 /* We store these fpcsr fields separately for convenience. */
a4d58462 582 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
583 int vec_len;
584 int vec_stride;
585
a4d58462
RH
586 uint32_t xregs[16];
587
516e246a 588 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 589 uint32_t scratch[8];
3b46e624 590
d81ce0ef
AB
591 /* There are a number of distinct float control structures:
592 *
593 * fp_status: is the "normal" fp status.
594 * fp_status_fp16: used for half-precision calculations
595 * standard_fp_status : the ARM "Standard FPSCR Value"
596 *
597 * Half-precision operations are governed by a separate
598 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
599 * status structure to control this.
600 *
601 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
602 * round-to-nearest and is used by any operations (generally
603 * Neon) which the architecture defines as controlled by the
604 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
605 *
606 * To avoid having to transfer exception bits around, we simply
607 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 608 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
609 * only thing which needs to read the exception flags being
610 * an explicit FPSCR read.
611 */
53cd6637 612 float_status fp_status;
d81ce0ef 613 float_status fp_status_f16;
3a492f3a 614 float_status standard_fp_status;
5be5e8ed
RH
615
616 /* ZCR_EL[1-3] */
617 uint64_t zcr_el[4];
b7bcbe95 618 } vfp;
03d05e2d
PM
619 uint64_t exclusive_addr;
620 uint64_t exclusive_val;
621 uint64_t exclusive_high;
b7bcbe95 622
18c9b560
AZ
623 /* iwMMXt coprocessor state. */
624 struct {
625 uint64_t regs[16];
626 uint64_t val;
627
628 uint32_t cregs[16];
629 } iwmmxt;
630
991ad91b 631#ifdef TARGET_AARCH64
108b3ba8
RH
632 struct {
633 ARMPACKey apia;
634 ARMPACKey apib;
635 ARMPACKey apda;
636 ARMPACKey apdb;
637 ARMPACKey apga;
638 } keys;
991ad91b
RH
639#endif
640
ce4defa0
PB
641#if defined(CONFIG_USER_ONLY)
642 /* For usermode syscall translation. */
643 int eabi;
644#endif
645
46747d15 646 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
647 struct CPUWatchpoint *cpu_watchpoint[16];
648
1f5c00cf
AB
649 /* Fields up to this point are cleared by a CPU reset */
650 struct {} end_reset_fields;
651
e8b5fae5 652 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 653
581be094 654 /* Internal CPU feature flags. */
918f5dca 655 uint64_t features;
581be094 656
6cb0b013
PC
657 /* PMSAv7 MPU */
658 struct {
659 uint32_t *drbar;
660 uint32_t *drsr;
661 uint32_t *dracr;
4a16724f 662 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
663 } pmsav7;
664
0e1a46bb
PM
665 /* PMSAv8 MPU */
666 struct {
667 /* The PMSAv8 implementation also shares some PMSAv7 config
668 * and state:
669 * pmsav7.rnr (region number register)
670 * pmsav7_dregion (number of configured regions)
671 */
4a16724f
PM
672 uint32_t *rbar[M_REG_NUM_BANKS];
673 uint32_t *rlar[M_REG_NUM_BANKS];
674 uint32_t mair0[M_REG_NUM_BANKS];
675 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
676 } pmsav8;
677
9901c576
PM
678 /* v8M SAU */
679 struct {
680 uint32_t *rbar;
681 uint32_t *rlar;
682 uint32_t rnr;
683 uint32_t ctrl;
684 } sau;
685
983fe826 686 void *nvic;
462a8bc6 687 const struct arm_boot_info *boot_info;
d3a3e529
VK
688 /* Store GICv3CPUState to access from this struct */
689 void *gicv3state;
2c0262af
FB
690} CPUARMState;
691
bd7d00fc 692/**
08267487 693 * ARMELChangeHookFn:
bd7d00fc
PM
694 * type of a function which can be registered via arm_register_el_change_hook()
695 * to get callbacks when the CPU changes its exception level or mode.
696 */
08267487
AL
697typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
698typedef struct ARMELChangeHook ARMELChangeHook;
699struct ARMELChangeHook {
700 ARMELChangeHookFn *hook;
701 void *opaque;
702 QLIST_ENTRY(ARMELChangeHook) node;
703};
062ba099
AB
704
705/* These values map onto the return values for
706 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
707typedef enum ARMPSCIState {
d5affb0d
AJ
708 PSCI_ON = 0,
709 PSCI_OFF = 1,
062ba099
AB
710 PSCI_ON_PENDING = 2
711} ARMPSCIState;
712
962fcbf2
RH
713typedef struct ARMISARegisters ARMISARegisters;
714
74e75564
PB
715/**
716 * ARMCPU:
717 * @env: #CPUARMState
718 *
719 * An ARM CPU core.
720 */
721struct ARMCPU {
722 /*< private >*/
723 CPUState parent_obj;
724 /*< public >*/
725
5b146dc7 726 CPUNegativeOffsetState neg;
74e75564
PB
727 CPUARMState env;
728
729 /* Coprocessor information */
730 GHashTable *cp_regs;
731 /* For marshalling (mostly coprocessor) register state between the
732 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
733 * we use these arrays.
734 */
735 /* List of register indexes managed via these arrays; (full KVM style
736 * 64 bit indexes, not CPRegInfo 32 bit indexes)
737 */
738 uint64_t *cpreg_indexes;
739 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
740 uint64_t *cpreg_values;
741 /* Length of the indexes, values, reset_values arrays */
742 int32_t cpreg_array_len;
743 /* These are used only for migration: incoming data arrives in
744 * these fields and is sanity checked in post_load before copying
745 * to the working data structures above.
746 */
747 uint64_t *cpreg_vmstate_indexes;
748 uint64_t *cpreg_vmstate_values;
749 int32_t cpreg_vmstate_array_len;
750
200bf5b7
AB
751 DynamicGDBXMLInfo dyn_xml;
752
74e75564
PB
753 /* Timers used by the generic (architected) timer */
754 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
755 /*
756 * Timer used by the PMU. Its state is restored after migration by
757 * pmu_op_finish() - it does not need other handling during migration
758 */
759 QEMUTimer *pmu_timer;
74e75564
PB
760 /* GPIO outputs for generic timer */
761 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
762 /* GPIO output for GICv3 maintenance interrupt signal */
763 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
764 /* GPIO output for the PMU interrupt */
765 qemu_irq pmu_interrupt;
74e75564
PB
766
767 /* MemoryRegion to use for secure physical accesses */
768 MemoryRegion *secure_memory;
769
181962fd
PM
770 /* For v8M, pointer to the IDAU interface provided by board/SoC */
771 Object *idau;
772
74e75564
PB
773 /* 'compatible' string for this CPU for Linux device trees */
774 const char *dtb_compatible;
775
776 /* PSCI version for this CPU
777 * Bits[31:16] = Major Version
778 * Bits[15:0] = Minor Version
779 */
780 uint32_t psci_version;
781
782 /* Should CPU start in PSCI powered-off state? */
783 bool start_powered_off;
062ba099
AB
784
785 /* Current power state, access guarded by BQL */
786 ARMPSCIState power_state;
787
c25bd18a
PM
788 /* CPU has virtualization extension */
789 bool has_el2;
74e75564
PB
790 /* CPU has security extension */
791 bool has_el3;
5c0a3819
SZ
792 /* CPU has PMU (Performance Monitor Unit) */
793 bool has_pmu;
97a28b0e
PM
794 /* CPU has VFP */
795 bool has_vfp;
796 /* CPU has Neon */
797 bool has_neon;
ea90db0a
PM
798 /* CPU has M-profile DSP extension */
799 bool has_dsp;
74e75564
PB
800
801 /* CPU has memory protection unit */
802 bool has_mpu;
803 /* PMSAv7 MPU number of supported regions */
804 uint32_t pmsav7_dregion;
9901c576
PM
805 /* v8M SAU number of supported regions */
806 uint32_t sau_sregion;
74e75564
PB
807
808 /* PSCI conduit used to invoke PSCI methods
809 * 0 - disabled, 1 - smc, 2 - hvc
810 */
811 uint32_t psci_conduit;
812
38e2a77c
PM
813 /* For v8M, initial value of the Secure VTOR */
814 uint32_t init_svtor;
815
74e75564
PB
816 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
817 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
818 */
819 uint32_t kvm_target;
820
821 /* KVM init features for this CPU */
822 uint32_t kvm_init_features[7];
823
e5ac4200
AJ
824 /* KVM CPU state */
825
826 /* KVM virtual time adjustment */
827 bool kvm_adjvtime;
828 bool kvm_vtime_dirty;
829 uint64_t kvm_vtime;
830
74e75564
PB
831 /* Uniprocessor system with MP extensions */
832 bool mp_is_up;
833
c4487d76
PM
834 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
835 * and the probe failed (so we need to report the error in realize)
836 */
837 bool host_cpu_probe_failed;
838
f9a69711
AF
839 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
840 * register.
841 */
842 int32_t core_count;
843
74e75564
PB
844 /* The instance init functions for implementation-specific subclasses
845 * set these fields to specify the implementation-dependent values of
846 * various constant registers and reset values of non-constant
847 * registers.
848 * Some of these might become QOM properties eventually.
849 * Field names match the official register names as defined in the
850 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
851 * is used for reset values of non-constant registers; no reset_
852 * prefix means a constant register.
47576b94
RH
853 * Some of these registers are split out into a substructure that
854 * is shared with the translators to control the ISA.
74e75564 855 */
47576b94
RH
856 struct ARMISARegisters {
857 uint32_t id_isar0;
858 uint32_t id_isar1;
859 uint32_t id_isar2;
860 uint32_t id_isar3;
861 uint32_t id_isar4;
862 uint32_t id_isar5;
863 uint32_t id_isar6;
864 uint32_t mvfr0;
865 uint32_t mvfr1;
866 uint32_t mvfr2;
867 uint64_t id_aa64isar0;
868 uint64_t id_aa64isar1;
869 uint64_t id_aa64pfr0;
870 uint64_t id_aa64pfr1;
3dc91ddb
PM
871 uint64_t id_aa64mmfr0;
872 uint64_t id_aa64mmfr1;
47576b94 873 } isar;
74e75564
PB
874 uint32_t midr;
875 uint32_t revidr;
876 uint32_t reset_fpsid;
74e75564
PB
877 uint32_t ctr;
878 uint32_t reset_sctlr;
879 uint32_t id_pfr0;
880 uint32_t id_pfr1;
881 uint32_t id_dfr0;
cad86737
AL
882 uint64_t pmceid0;
883 uint64_t pmceid1;
74e75564
PB
884 uint32_t id_afr0;
885 uint32_t id_mmfr0;
886 uint32_t id_mmfr1;
887 uint32_t id_mmfr2;
888 uint32_t id_mmfr3;
889 uint32_t id_mmfr4;
74e75564
PB
890 uint64_t id_aa64dfr0;
891 uint64_t id_aa64dfr1;
892 uint64_t id_aa64afr0;
893 uint64_t id_aa64afr1;
74e75564
PB
894 uint32_t dbgdidr;
895 uint32_t clidr;
896 uint64_t mp_affinity; /* MP ID without feature bits */
897 /* The elements of this array are the CCSIDR values for each cache,
898 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
899 */
900 uint32_t ccsidr[16];
901 uint64_t reset_cbar;
902 uint32_t reset_auxcr;
903 bool reset_hivecs;
904 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
905 uint32_t dcz_blocksize;
906 uint64_t rvbar;
bd7d00fc 907
e45868a3
PM
908 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
909 int gic_num_lrs; /* number of list registers */
910 int gic_vpribits; /* number of virtual priority bits */
911 int gic_vprebits; /* number of virtual preemption bits */
912
3a062d57
JB
913 /* Whether the cfgend input is high (i.e. this CPU should reset into
914 * big-endian mode). This setting isn't used directly: instead it modifies
915 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
916 * architecture version.
917 */
918 bool cfgend;
919
b5c53d1b 920 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 921 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
922
923 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
924
925 /* Used to synchronize KVM and QEMU in-kernel device levels */
926 uint8_t device_irq_level;
adf92eab
RH
927
928 /* Used to set the maximum vector length the cpu will support. */
929 uint32_t sve_max_vq;
0df9142d
AJ
930
931 /*
932 * In sve_vq_map each set bit is a supported vector length of
933 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
934 * length in quadwords.
935 *
936 * While processing properties during initialization, corresponding
937 * sve_vq_init bits are set for bits in sve_vq_map that have been
938 * set by properties.
939 */
940 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
941 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
942
943 /* Generic timer counter frequency, in Hz */
944 uint64_t gt_cntfrq_hz;
74e75564
PB
945};
946
7def8754
AJ
947unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
948
51e5ef45
MAL
949void arm_cpu_post_init(Object *obj);
950
46de5913
IM
951uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
952
74e75564 953#ifndef CONFIG_USER_ONLY
8a9358cc 954extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
955#endif
956
957void arm_cpu_do_interrupt(CPUState *cpu);
958void arm_v7m_cpu_do_interrupt(CPUState *cpu);
959bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
960
74e75564
PB
961hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
962 MemTxAttrs *attrs);
963
964int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
965int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
966
200bf5b7
AB
967/* Dynamically generates for gdb stub an XML description of the sysregs from
968 * the cp_regs hashtable. Returns the registered sysregs number.
969 */
970int arm_gen_dynamic_xml(CPUState *cpu);
971
972/* Returns the dynamically generated XML for the gdb stub.
973 * Returns a pointer to the XML contents for the specified XML file or NULL
974 * if the XML name doesn't match the predefined one.
975 */
976const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
977
74e75564
PB
978int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
979 int cpuid, void *opaque);
980int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
981 int cpuid, void *opaque);
982
983#ifdef TARGET_AARCH64
984int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
985int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 986void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
987void aarch64_sve_change_el(CPUARMState *env, int old_el,
988 int new_el, bool el0_a64);
87014c6b 989void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
990
991/*
992 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
993 * The byte at offset i from the start of the in-memory representation contains
994 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
995 * lowest offsets are stored in the lowest memory addresses, then that nearly
996 * matches QEMU's representation, which is to use an array of host-endian
997 * uint64_t's, where the lower offsets are at the lower indices. To complete
998 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
999 */
1000static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1001{
1002#ifdef HOST_WORDS_BIGENDIAN
1003 int i;
1004
1005 for (i = 0; i < nr; ++i) {
1006 dst[i] = bswap64(src[i]);
1007 }
1008
1009 return dst;
1010#else
1011 return src;
1012#endif
1013}
1014
0ab5953b
RH
1015#else
1016static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1017static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1018 int n, bool a)
1019{ }
87014c6b 1020static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1021#endif
778c3a06 1022
91f78c58
PMD
1023#if !defined(CONFIG_TCG)
1024static inline target_ulong do_arm_semihosting(CPUARMState *env)
1025{
1026 g_assert_not_reached();
1027}
1028#else
faacc041 1029target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 1030#endif
ce02049d
GB
1031void aarch64_sync_32_to_64(CPUARMState *env);
1032void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1033
ced31551
RH
1034int fp_exception_el(CPUARMState *env, int cur_el);
1035int sve_exception_el(CPUARMState *env, int cur_el);
1036uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1037
3926cc84
AG
1038static inline bool is_a64(CPUARMState *env)
1039{
1040 return env->aarch64;
1041}
1042
2c0262af
FB
1043/* you can call this signal handler from your SIGBUS and SIGSEGV
1044 signal handlers to inform the virtual CPU of exceptions. non zero
1045 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1046int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1047 void *puc);
1048
5d05b9d4
AL
1049/**
1050 * pmu_op_start/finish
ec7b4ce4
AF
1051 * @env: CPUARMState
1052 *
5d05b9d4
AL
1053 * Convert all PMU counters between their delta form (the typical mode when
1054 * they are enabled) and the guest-visible values. These two calls must
1055 * surround any action which might affect the counters.
ec7b4ce4 1056 */
5d05b9d4
AL
1057void pmu_op_start(CPUARMState *env);
1058void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1059
4e7beb0c
AL
1060/*
1061 * Called when a PMU counter is due to overflow
1062 */
1063void arm_pmu_timer_cb(void *opaque);
1064
033614c4
AL
1065/**
1066 * Functions to register as EL change hooks for PMU mode filtering
1067 */
1068void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1069void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1070
57a4a11b 1071/*
bf8d0969
AL
1072 * pmu_init
1073 * @cpu: ARMCPU
57a4a11b 1074 *
bf8d0969
AL
1075 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1076 * for the current configuration
57a4a11b 1077 */
bf8d0969 1078void pmu_init(ARMCPU *cpu);
57a4a11b 1079
76e3e1bc
PM
1080/* SCTLR bit meanings. Several bits have been reused in newer
1081 * versions of the architecture; in that case we define constants
1082 * for both old and new bit meanings. Code which tests against those
1083 * bits should probably check or otherwise arrange that the CPU
1084 * is the architectural version it expects.
1085 */
1086#define SCTLR_M (1U << 0)
1087#define SCTLR_A (1U << 1)
1088#define SCTLR_C (1U << 2)
1089#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1090#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1091#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1092#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1093#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1094#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1095#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1096#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1097#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1098#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1099#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1100#define SCTLR_ITD (1U << 7) /* v8 onward */
1101#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1102#define SCTLR_SED (1U << 8) /* v8 onward */
1103#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1104#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1105#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1106#define SCTLR_SW (1U << 10) /* v7 */
1107#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1108#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1109#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1110#define SCTLR_I (1U << 12)
b2af69d0
RH
1111#define SCTLR_V (1U << 13) /* AArch32 only */
1112#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1113#define SCTLR_RR (1U << 14) /* up to v7 */
1114#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1115#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1116#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1117#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1118#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1119#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1120#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1121#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1122#define SCTLR_nTWE (1U << 18) /* v8 onward */
1123#define SCTLR_WXN (1U << 19)
1124#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1125#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1126#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1127#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1128#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1129#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1130#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1131#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1132#define SCTLR_VE (1U << 24) /* up to v7 */
1133#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1134#define SCTLR_EE (1U << 25)
1135#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1136#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1137#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1138#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1139#define SCTLR_TRE (1U << 28) /* AArch32 only */
1140#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1141#define SCTLR_AFE (1U << 29) /* AArch32 only */
1142#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1143#define SCTLR_TE (1U << 30) /* AArch32 only */
1144#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1145#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1146#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1147#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1148#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1149#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1150#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1151#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1152#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1153#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1154
c6f19164
GB
1155#define CPTR_TCPAC (1U << 31)
1156#define CPTR_TTA (1U << 20)
1157#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1158#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1159#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1160
187f678d
PM
1161#define MDCR_EPMAD (1U << 21)
1162#define MDCR_EDAD (1U << 20)
033614c4
AL
1163#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1164#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1165#define MDCR_SDD (1U << 16)
a8d64e73 1166#define MDCR_SPD (3U << 14)
187f678d
PM
1167#define MDCR_TDRA (1U << 11)
1168#define MDCR_TDOSA (1U << 10)
1169#define MDCR_TDA (1U << 9)
1170#define MDCR_TDE (1U << 8)
1171#define MDCR_HPME (1U << 7)
1172#define MDCR_TPM (1U << 6)
1173#define MDCR_TPMCR (1U << 5)
033614c4 1174#define MDCR_HPMN (0x1fU)
187f678d 1175
a8d64e73
PM
1176/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1177#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1178
78dbbbe4
PM
1179#define CPSR_M (0x1fU)
1180#define CPSR_T (1U << 5)
1181#define CPSR_F (1U << 6)
1182#define CPSR_I (1U << 7)
1183#define CPSR_A (1U << 8)
1184#define CPSR_E (1U << 9)
1185#define CPSR_IT_2_7 (0xfc00U)
1186#define CPSR_GE (0xfU << 16)
4051e12c
PM
1187#define CPSR_IL (1U << 20)
1188/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1189 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1190 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1191 * where it is live state but not accessible to the AArch32 code.
1192 */
1193#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1194#define CPSR_J (1U << 24)
1195#define CPSR_IT_0_1 (3U << 25)
1196#define CPSR_Q (1U << 27)
1197#define CPSR_V (1U << 28)
1198#define CPSR_C (1U << 29)
1199#define CPSR_Z (1U << 30)
1200#define CPSR_N (1U << 31)
9ee6e8bb 1201#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1202#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1203
1204#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1205#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1206 | CPSR_NZCV)
9ee6e8bb
PB
1207/* Bits writable in user mode. */
1208#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1209/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1210#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1211/* Mask of bits which may be set by exception return copying them from SPSR */
1212#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1213
987ab45e
PM
1214/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1215#define XPSR_EXCP 0x1ffU
1216#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1217#define XPSR_IT_2_7 CPSR_IT_2_7
1218#define XPSR_GE CPSR_GE
1219#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1220#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1221#define XPSR_IT_0_1 CPSR_IT_0_1
1222#define XPSR_Q CPSR_Q
1223#define XPSR_V CPSR_V
1224#define XPSR_C CPSR_C
1225#define XPSR_Z CPSR_Z
1226#define XPSR_N CPSR_N
1227#define XPSR_NZCV CPSR_NZCV
1228#define XPSR_IT CPSR_IT
1229
e389be16
FA
1230#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1231#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1232#define TTBCR_PD0 (1U << 4)
1233#define TTBCR_PD1 (1U << 5)
1234#define TTBCR_EPD0 (1U << 7)
1235#define TTBCR_IRGN0 (3U << 8)
1236#define TTBCR_ORGN0 (3U << 10)
1237#define TTBCR_SH0 (3U << 12)
1238#define TTBCR_T1SZ (3U << 16)
1239#define TTBCR_A1 (1U << 22)
1240#define TTBCR_EPD1 (1U << 23)
1241#define TTBCR_IRGN1 (3U << 24)
1242#define TTBCR_ORGN1 (3U << 26)
1243#define TTBCR_SH1 (1U << 28)
1244#define TTBCR_EAE (1U << 31)
1245
d356312f
PM
1246/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1247 * Only these are valid when in AArch64 mode; in
1248 * AArch32 mode SPSRs are basically CPSR-format.
1249 */
f502cfc2 1250#define PSTATE_SP (1U)
d356312f
PM
1251#define PSTATE_M (0xFU)
1252#define PSTATE_nRW (1U << 4)
1253#define PSTATE_F (1U << 6)
1254#define PSTATE_I (1U << 7)
1255#define PSTATE_A (1U << 8)
1256#define PSTATE_D (1U << 9)
f6e52eaa 1257#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1258#define PSTATE_IL (1U << 20)
1259#define PSTATE_SS (1U << 21)
1260#define PSTATE_V (1U << 28)
1261#define PSTATE_C (1U << 29)
1262#define PSTATE_Z (1U << 30)
1263#define PSTATE_N (1U << 31)
1264#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1265#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1266#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1267/* Mode values for AArch64 */
1268#define PSTATE_MODE_EL3h 13
1269#define PSTATE_MODE_EL3t 12
1270#define PSTATE_MODE_EL2h 9
1271#define PSTATE_MODE_EL2t 8
1272#define PSTATE_MODE_EL1h 5
1273#define PSTATE_MODE_EL1t 4
1274#define PSTATE_MODE_EL0t 0
1275
de2db7ec
PM
1276/* Write a new value to v7m.exception, thus transitioning into or out
1277 * of Handler mode; this may result in a change of active stack pointer.
1278 */
1279void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1280
9e729b57
EI
1281/* Map EL and handler into a PSTATE_MODE. */
1282static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1283{
1284 return (el << 2) | handler;
1285}
1286
d356312f
PM
1287/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1288 * interprocessing, so we don't attempt to sync with the cpsr state used by
1289 * the 32 bit decoder.
1290 */
1291static inline uint32_t pstate_read(CPUARMState *env)
1292{
1293 int ZF;
1294
1295 ZF = (env->ZF == 0);
1296 return (env->NF & 0x80000000) | (ZF << 30)
1297 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1298 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1299}
1300
1301static inline void pstate_write(CPUARMState *env, uint32_t val)
1302{
1303 env->ZF = (~val) & PSTATE_Z;
1304 env->NF = val;
1305 env->CF = (val >> 29) & 1;
1306 env->VF = (val << 3) & 0x80000000;
4cc35614 1307 env->daif = val & PSTATE_DAIF;
f6e52eaa 1308 env->btype = (val >> 10) & 3;
d356312f
PM
1309 env->pstate = val & ~CACHED_PSTATE_BITS;
1310}
1311
b5ff1b31 1312/* Return the current CPSR value. */
2f4a40e5 1313uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1314
1315typedef enum CPSRWriteType {
1316 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1317 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1318 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1319 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1320} CPSRWriteType;
1321
1322/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1323void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1324 CPSRWriteType write_type);
9ee6e8bb
PB
1325
1326/* Return the current xPSR value. */
1327static inline uint32_t xpsr_read(CPUARMState *env)
1328{
1329 int ZF;
6fbe23d5
PB
1330 ZF = (env->ZF == 0);
1331 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1332 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1333 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1334 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1335 | (env->GE << 16)
9ee6e8bb 1336 | env->v7m.exception;
b5ff1b31
FB
1337}
1338
9ee6e8bb
PB
1339/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1340static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1341{
987ab45e
PM
1342 if (mask & XPSR_NZCV) {
1343 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1344 env->NF = val;
9ee6e8bb
PB
1345 env->CF = (val >> 29) & 1;
1346 env->VF = (val << 3) & 0x80000000;
1347 }
987ab45e
PM
1348 if (mask & XPSR_Q) {
1349 env->QF = ((val & XPSR_Q) != 0);
1350 }
f1e2598c
PM
1351 if (mask & XPSR_GE) {
1352 env->GE = (val & XPSR_GE) >> 16;
1353 }
04c9c81b 1354#ifndef CONFIG_USER_ONLY
987ab45e
PM
1355 if (mask & XPSR_T) {
1356 env->thumb = ((val & XPSR_T) != 0);
1357 }
1358 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1359 env->condexec_bits &= ~3;
1360 env->condexec_bits |= (val >> 25) & 3;
1361 }
987ab45e 1362 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1363 env->condexec_bits &= 3;
1364 env->condexec_bits |= (val >> 8) & 0xfc;
1365 }
987ab45e 1366 if (mask & XPSR_EXCP) {
de2db7ec
PM
1367 /* Note that this only happens on exception exit */
1368 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1369 }
04c9c81b 1370#endif
9ee6e8bb
PB
1371}
1372
f149e3e8
EI
1373#define HCR_VM (1ULL << 0)
1374#define HCR_SWIO (1ULL << 1)
1375#define HCR_PTW (1ULL << 2)
1376#define HCR_FMO (1ULL << 3)
1377#define HCR_IMO (1ULL << 4)
1378#define HCR_AMO (1ULL << 5)
1379#define HCR_VF (1ULL << 6)
1380#define HCR_VI (1ULL << 7)
1381#define HCR_VSE (1ULL << 8)
1382#define HCR_FB (1ULL << 9)
1383#define HCR_BSU_MASK (3ULL << 10)
1384#define HCR_DC (1ULL << 12)
1385#define HCR_TWI (1ULL << 13)
1386#define HCR_TWE (1ULL << 14)
1387#define HCR_TID0 (1ULL << 15)
1388#define HCR_TID1 (1ULL << 16)
1389#define HCR_TID2 (1ULL << 17)
1390#define HCR_TID3 (1ULL << 18)
1391#define HCR_TSC (1ULL << 19)
1392#define HCR_TIDCP (1ULL << 20)
1393#define HCR_TACR (1ULL << 21)
1394#define HCR_TSW (1ULL << 22)
099bf53b 1395#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1396#define HCR_TPU (1ULL << 24)
1397#define HCR_TTLB (1ULL << 25)
1398#define HCR_TVM (1ULL << 26)
1399#define HCR_TGE (1ULL << 27)
1400#define HCR_TDZ (1ULL << 28)
1401#define HCR_HCD (1ULL << 29)
1402#define HCR_TRVM (1ULL << 30)
1403#define HCR_RW (1ULL << 31)
1404#define HCR_CD (1ULL << 32)
1405#define HCR_ID (1ULL << 33)
ac656b16 1406#define HCR_E2H (1ULL << 34)
099bf53b
RH
1407#define HCR_TLOR (1ULL << 35)
1408#define HCR_TERR (1ULL << 36)
1409#define HCR_TEA (1ULL << 37)
1410#define HCR_MIOCNCE (1ULL << 38)
1411#define HCR_APK (1ULL << 40)
1412#define HCR_API (1ULL << 41)
1413#define HCR_NV (1ULL << 42)
1414#define HCR_NV1 (1ULL << 43)
1415#define HCR_AT (1ULL << 44)
1416#define HCR_NV2 (1ULL << 45)
1417#define HCR_FWB (1ULL << 46)
1418#define HCR_FIEN (1ULL << 47)
1419#define HCR_TID4 (1ULL << 49)
1420#define HCR_TICAB (1ULL << 50)
1421#define HCR_TOCU (1ULL << 52)
1422#define HCR_TTLBIS (1ULL << 54)
1423#define HCR_TTLBOS (1ULL << 55)
1424#define HCR_ATA (1ULL << 56)
1425#define HCR_DCT (1ULL << 57)
1426
64e0e2de
EI
1427#define SCR_NS (1U << 0)
1428#define SCR_IRQ (1U << 1)
1429#define SCR_FIQ (1U << 2)
1430#define SCR_EA (1U << 3)
1431#define SCR_FW (1U << 4)
1432#define SCR_AW (1U << 5)
1433#define SCR_NET (1U << 6)
1434#define SCR_SMD (1U << 7)
1435#define SCR_HCE (1U << 8)
1436#define SCR_SIF (1U << 9)
1437#define SCR_RW (1U << 10)
1438#define SCR_ST (1U << 11)
1439#define SCR_TWI (1U << 12)
1440#define SCR_TWE (1U << 13)
99f8f86d
RH
1441#define SCR_TLOR (1U << 14)
1442#define SCR_TERR (1U << 15)
1443#define SCR_APK (1U << 16)
1444#define SCR_API (1U << 17)
1445#define SCR_EEL2 (1U << 18)
1446#define SCR_EASE (1U << 19)
1447#define SCR_NMEA (1U << 20)
1448#define SCR_FIEN (1U << 21)
1449#define SCR_ENSCXT (1U << 25)
1450#define SCR_ATA (1U << 26)
64e0e2de 1451
01653295
PM
1452/* Return the current FPSCR value. */
1453uint32_t vfp_get_fpscr(CPUARMState *env);
1454void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1455
d81ce0ef
AB
1456/* FPCR, Floating Point Control Register
1457 * FPSR, Floating Poiht Status Register
1458 *
1459 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1460 * FPCR and FPSR. However since they still use non-overlapping bits
1461 * we store the underlying state in fpscr and just mask on read/write.
1462 */
1463#define FPSR_MASK 0xf800009f
0b62159b 1464#define FPCR_MASK 0x07ff9f00
d81ce0ef 1465
a15945d9
PM
1466#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1467#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1468#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1469#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1470#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1471#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1472#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1473#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1474#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1475#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1476
f903fa22
PM
1477static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1478{
1479 return vfp_get_fpscr(env) & FPSR_MASK;
1480}
1481
1482static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1483{
1484 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1485 vfp_set_fpscr(env, new_fpscr);
1486}
1487
1488static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1489{
1490 return vfp_get_fpscr(env) & FPCR_MASK;
1491}
1492
1493static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1494{
1495 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1496 vfp_set_fpscr(env, new_fpscr);
1497}
1498
b5ff1b31
FB
1499enum arm_cpu_mode {
1500 ARM_CPU_MODE_USR = 0x10,
1501 ARM_CPU_MODE_FIQ = 0x11,
1502 ARM_CPU_MODE_IRQ = 0x12,
1503 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1504 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1505 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1506 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1507 ARM_CPU_MODE_UND = 0x1b,
1508 ARM_CPU_MODE_SYS = 0x1f
1509};
1510
40f137e1
PB
1511/* VFP system registers. */
1512#define ARM_VFP_FPSID 0
1513#define ARM_VFP_FPSCR 1
a50c0f51 1514#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1515#define ARM_VFP_MVFR1 6
1516#define ARM_VFP_MVFR0 7
40f137e1
PB
1517#define ARM_VFP_FPEXC 8
1518#define ARM_VFP_FPINST 9
1519#define ARM_VFP_FPINST2 10
1520
18c9b560 1521/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1522#define ARM_IWMMXT_wCID 0
1523#define ARM_IWMMXT_wCon 1
1524#define ARM_IWMMXT_wCSSF 2
1525#define ARM_IWMMXT_wCASF 3
1526#define ARM_IWMMXT_wCGR0 8
1527#define ARM_IWMMXT_wCGR1 9
1528#define ARM_IWMMXT_wCGR2 10
1529#define ARM_IWMMXT_wCGR3 11
18c9b560 1530
2c4da50d
PM
1531/* V7M CCR bits */
1532FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1533FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1534FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1535FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1536FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1537FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1538FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1539FIELD(V7M_CCR, DC, 16, 1)
1540FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1541FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1542
24ac0fb1
PM
1543/* V7M SCR bits */
1544FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1545FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1546FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1547FIELD(V7M_SCR, SEVONPEND, 4, 1)
1548
3b2e9344
PM
1549/* V7M AIRCR bits */
1550FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1551FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1552FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1553FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1554FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1555FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1556FIELD(V7M_AIRCR, PRIS, 14, 1)
1557FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1558FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1559
2c4da50d
PM
1560/* V7M CFSR bits for MMFSR */
1561FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1562FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1563FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1564FIELD(V7M_CFSR, MSTKERR, 4, 1)
1565FIELD(V7M_CFSR, MLSPERR, 5, 1)
1566FIELD(V7M_CFSR, MMARVALID, 7, 1)
1567
1568/* V7M CFSR bits for BFSR */
1569FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1570FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1571FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1572FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1573FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1574FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1575FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1576
1577/* V7M CFSR bits for UFSR */
1578FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1579FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1580FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1581FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1582FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1583FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1584FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1585
334e8dad
PM
1586/* V7M CFSR bit masks covering all of the subregister bits */
1587FIELD(V7M_CFSR, MMFSR, 0, 8)
1588FIELD(V7M_CFSR, BFSR, 8, 8)
1589FIELD(V7M_CFSR, UFSR, 16, 16)
1590
2c4da50d
PM
1591/* V7M HFSR bits */
1592FIELD(V7M_HFSR, VECTTBL, 1, 1)
1593FIELD(V7M_HFSR, FORCED, 30, 1)
1594FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1595
1596/* V7M DFSR bits */
1597FIELD(V7M_DFSR, HALTED, 0, 1)
1598FIELD(V7M_DFSR, BKPT, 1, 1)
1599FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1600FIELD(V7M_DFSR, VCATCH, 3, 1)
1601FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1602
bed079da
PM
1603/* V7M SFSR bits */
1604FIELD(V7M_SFSR, INVEP, 0, 1)
1605FIELD(V7M_SFSR, INVIS, 1, 1)
1606FIELD(V7M_SFSR, INVER, 2, 1)
1607FIELD(V7M_SFSR, AUVIOL, 3, 1)
1608FIELD(V7M_SFSR, INVTRAN, 4, 1)
1609FIELD(V7M_SFSR, LSPERR, 5, 1)
1610FIELD(V7M_SFSR, SFARVALID, 6, 1)
1611FIELD(V7M_SFSR, LSERR, 7, 1)
1612
29c483a5
MD
1613/* v7M MPU_CTRL bits */
1614FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1615FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1616FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1617
43bbce7f
PM
1618/* v7M CLIDR bits */
1619FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1620FIELD(V7M_CLIDR, LOUIS, 21, 3)
1621FIELD(V7M_CLIDR, LOC, 24, 3)
1622FIELD(V7M_CLIDR, LOUU, 27, 3)
1623FIELD(V7M_CLIDR, ICB, 30, 2)
1624
1625FIELD(V7M_CSSELR, IND, 0, 1)
1626FIELD(V7M_CSSELR, LEVEL, 1, 3)
1627/* We use the combination of InD and Level to index into cpu->ccsidr[];
1628 * define a mask for this and check that it doesn't permit running off
1629 * the end of the array.
1630 */
1631FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1632
1633/* v7M FPCCR bits */
1634FIELD(V7M_FPCCR, LSPACT, 0, 1)
1635FIELD(V7M_FPCCR, USER, 1, 1)
1636FIELD(V7M_FPCCR, S, 2, 1)
1637FIELD(V7M_FPCCR, THREAD, 3, 1)
1638FIELD(V7M_FPCCR, HFRDY, 4, 1)
1639FIELD(V7M_FPCCR, MMRDY, 5, 1)
1640FIELD(V7M_FPCCR, BFRDY, 6, 1)
1641FIELD(V7M_FPCCR, SFRDY, 7, 1)
1642FIELD(V7M_FPCCR, MONRDY, 8, 1)
1643FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1644FIELD(V7M_FPCCR, UFRDY, 10, 1)
1645FIELD(V7M_FPCCR, RES0, 11, 15)
1646FIELD(V7M_FPCCR, TS, 26, 1)
1647FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1648FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1649FIELD(V7M_FPCCR, LSPENS, 29, 1)
1650FIELD(V7M_FPCCR, LSPEN, 30, 1)
1651FIELD(V7M_FPCCR, ASPEN, 31, 1)
1652/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1653#define R_V7M_FPCCR_BANKED_MASK \
1654 (R_V7M_FPCCR_LSPACT_MASK | \
1655 R_V7M_FPCCR_USER_MASK | \
1656 R_V7M_FPCCR_THREAD_MASK | \
1657 R_V7M_FPCCR_MMRDY_MASK | \
1658 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1659 R_V7M_FPCCR_UFRDY_MASK | \
1660 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1661
a62e62af
RH
1662/*
1663 * System register ID fields.
1664 */
2bd5f41c
AB
1665FIELD(MIDR_EL1, REVISION, 0, 4)
1666FIELD(MIDR_EL1, PARTNUM, 4, 12)
1667FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1668FIELD(MIDR_EL1, VARIANT, 20, 4)
1669FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1670
a62e62af
RH
1671FIELD(ID_ISAR0, SWAP, 0, 4)
1672FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1673FIELD(ID_ISAR0, BITFIELD, 8, 4)
1674FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1675FIELD(ID_ISAR0, COPROC, 16, 4)
1676FIELD(ID_ISAR0, DEBUG, 20, 4)
1677FIELD(ID_ISAR0, DIVIDE, 24, 4)
1678
1679FIELD(ID_ISAR1, ENDIAN, 0, 4)
1680FIELD(ID_ISAR1, EXCEPT, 4, 4)
1681FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1682FIELD(ID_ISAR1, EXTEND, 12, 4)
1683FIELD(ID_ISAR1, IFTHEN, 16, 4)
1684FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1685FIELD(ID_ISAR1, INTERWORK, 24, 4)
1686FIELD(ID_ISAR1, JAZELLE, 28, 4)
1687
1688FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1689FIELD(ID_ISAR2, MEMHINT, 4, 4)
1690FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1691FIELD(ID_ISAR2, MULT, 12, 4)
1692FIELD(ID_ISAR2, MULTS, 16, 4)
1693FIELD(ID_ISAR2, MULTU, 20, 4)
1694FIELD(ID_ISAR2, PSR_AR, 24, 4)
1695FIELD(ID_ISAR2, REVERSAL, 28, 4)
1696
1697FIELD(ID_ISAR3, SATURATE, 0, 4)
1698FIELD(ID_ISAR3, SIMD, 4, 4)
1699FIELD(ID_ISAR3, SVC, 8, 4)
1700FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1701FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1702FIELD(ID_ISAR3, T32COPY, 20, 4)
1703FIELD(ID_ISAR3, TRUENOP, 24, 4)
1704FIELD(ID_ISAR3, T32EE, 28, 4)
1705
1706FIELD(ID_ISAR4, UNPRIV, 0, 4)
1707FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1708FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1709FIELD(ID_ISAR4, SMC, 12, 4)
1710FIELD(ID_ISAR4, BARRIER, 16, 4)
1711FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1712FIELD(ID_ISAR4, PSR_M, 24, 4)
1713FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1714
1715FIELD(ID_ISAR5, SEVL, 0, 4)
1716FIELD(ID_ISAR5, AES, 4, 4)
1717FIELD(ID_ISAR5, SHA1, 8, 4)
1718FIELD(ID_ISAR5, SHA2, 12, 4)
1719FIELD(ID_ISAR5, CRC32, 16, 4)
1720FIELD(ID_ISAR5, RDM, 24, 4)
1721FIELD(ID_ISAR5, VCMA, 28, 4)
1722
1723FIELD(ID_ISAR6, JSCVT, 0, 4)
1724FIELD(ID_ISAR6, DP, 4, 4)
1725FIELD(ID_ISAR6, FHM, 8, 4)
1726FIELD(ID_ISAR6, SB, 12, 4)
1727FIELD(ID_ISAR6, SPECRES, 16, 4)
1728
ab638a32
RH
1729FIELD(ID_MMFR4, SPECSEI, 0, 4)
1730FIELD(ID_MMFR4, AC2, 4, 4)
1731FIELD(ID_MMFR4, XNX, 8, 4)
1732FIELD(ID_MMFR4, CNP, 12, 4)
1733FIELD(ID_MMFR4, HPDS, 16, 4)
1734FIELD(ID_MMFR4, LSM, 20, 4)
1735FIELD(ID_MMFR4, CCIDX, 24, 4)
1736FIELD(ID_MMFR4, EVT, 28, 4)
1737
a62e62af
RH
1738FIELD(ID_AA64ISAR0, AES, 4, 4)
1739FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1740FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1741FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1742FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1743FIELD(ID_AA64ISAR0, RDM, 28, 4)
1744FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1745FIELD(ID_AA64ISAR0, SM3, 36, 4)
1746FIELD(ID_AA64ISAR0, SM4, 40, 4)
1747FIELD(ID_AA64ISAR0, DP, 44, 4)
1748FIELD(ID_AA64ISAR0, FHM, 48, 4)
1749FIELD(ID_AA64ISAR0, TS, 52, 4)
1750FIELD(ID_AA64ISAR0, TLB, 56, 4)
1751FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1752
1753FIELD(ID_AA64ISAR1, DPB, 0, 4)
1754FIELD(ID_AA64ISAR1, APA, 4, 4)
1755FIELD(ID_AA64ISAR1, API, 8, 4)
1756FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1757FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1758FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1759FIELD(ID_AA64ISAR1, GPA, 24, 4)
1760FIELD(ID_AA64ISAR1, GPI, 28, 4)
1761FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1762FIELD(ID_AA64ISAR1, SB, 36, 4)
1763FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1764
cd208a1c
RH
1765FIELD(ID_AA64PFR0, EL0, 0, 4)
1766FIELD(ID_AA64PFR0, EL1, 4, 4)
1767FIELD(ID_AA64PFR0, EL2, 8, 4)
1768FIELD(ID_AA64PFR0, EL3, 12, 4)
1769FIELD(ID_AA64PFR0, FP, 16, 4)
1770FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1771FIELD(ID_AA64PFR0, GIC, 24, 4)
1772FIELD(ID_AA64PFR0, RAS, 28, 4)
1773FIELD(ID_AA64PFR0, SVE, 32, 4)
1774
be53b6f4
RH
1775FIELD(ID_AA64PFR1, BT, 0, 4)
1776FIELD(ID_AA64PFR1, SBSS, 4, 4)
1777FIELD(ID_AA64PFR1, MTE, 8, 4)
1778FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1779
3dc91ddb
PM
1780FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1781FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1782FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1783FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1784FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1785FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1786FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1787FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1788FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1789FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1790FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1791FIELD(ID_AA64MMFR0, EXS, 44, 4)
1792
1793FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1794FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1795FIELD(ID_AA64MMFR1, VH, 8, 4)
1796FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1797FIELD(ID_AA64MMFR1, LO, 16, 4)
1798FIELD(ID_AA64MMFR1, PAN, 20, 4)
1799FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1800FIELD(ID_AA64MMFR1, XNX, 28, 4)
1801
beceb99c
AL
1802FIELD(ID_DFR0, COPDBG, 0, 4)
1803FIELD(ID_DFR0, COPSDBG, 4, 4)
1804FIELD(ID_DFR0, MMAPDBG, 8, 4)
1805FIELD(ID_DFR0, COPTRC, 12, 4)
1806FIELD(ID_DFR0, MMAPTRC, 16, 4)
1807FIELD(ID_DFR0, MPROFDBG, 20, 4)
1808FIELD(ID_DFR0, PERFMON, 24, 4)
1809FIELD(ID_DFR0, TRACEFILT, 28, 4)
1810
602f6e42
PM
1811FIELD(MVFR0, SIMDREG, 0, 4)
1812FIELD(MVFR0, FPSP, 4, 4)
1813FIELD(MVFR0, FPDP, 8, 4)
1814FIELD(MVFR0, FPTRAP, 12, 4)
1815FIELD(MVFR0, FPDIVIDE, 16, 4)
1816FIELD(MVFR0, FPSQRT, 20, 4)
1817FIELD(MVFR0, FPSHVEC, 24, 4)
1818FIELD(MVFR0, FPROUND, 28, 4)
1819
1820FIELD(MVFR1, FPFTZ, 0, 4)
1821FIELD(MVFR1, FPDNAN, 4, 4)
1822FIELD(MVFR1, SIMDLS, 8, 4)
1823FIELD(MVFR1, SIMDINT, 12, 4)
1824FIELD(MVFR1, SIMDSP, 16, 4)
1825FIELD(MVFR1, SIMDHP, 20, 4)
1826FIELD(MVFR1, FPHP, 24, 4)
1827FIELD(MVFR1, SIMDFMAC, 28, 4)
1828
1829FIELD(MVFR2, SIMDMISC, 0, 4)
1830FIELD(MVFR2, FPMISC, 4, 4)
1831
43bbce7f
PM
1832QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1833
ce854d7c
BC
1834/* If adding a feature bit which corresponds to a Linux ELF
1835 * HWCAP bit, remember to update the feature-bit-to-hwcap
1836 * mapping in linux-user/elfload.c:get_elf_hwcap().
1837 */
40f137e1
PB
1838enum arm_features {
1839 ARM_FEATURE_VFP,
c1713132
AZ
1840 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1841 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1842 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1843 ARM_FEATURE_V6,
1844 ARM_FEATURE_V6K,
1845 ARM_FEATURE_V7,
1846 ARM_FEATURE_THUMB2,
452a0955 1847 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1848 ARM_FEATURE_VFP3,
1849 ARM_FEATURE_NEON,
9ee6e8bb 1850 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1851 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1852 ARM_FEATURE_THUMB2EE,
be5e7a76 1853 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1854 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1855 ARM_FEATURE_V4T,
1856 ARM_FEATURE_V5,
5bc95aa2 1857 ARM_FEATURE_STRONGARM,
906879a9 1858 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1859 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1860 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1861 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1862 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1863 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1864 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1865 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1866 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1867 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1868 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1869 ARM_FEATURE_V8,
3926cc84 1870 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1871 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1872 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1873 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1874 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1875 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1876 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1877 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1878 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1879 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1880 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1881};
1882
1883static inline int arm_feature(CPUARMState *env, int feature)
1884{
918f5dca 1885 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1886}
1887
0df9142d
AJ
1888void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1889
19e0fefa
FA
1890#if !defined(CONFIG_USER_ONLY)
1891/* Return true if exception levels below EL3 are in secure state,
1892 * or would be following an exception return to that level.
1893 * Unlike arm_is_secure() (which is always a question about the
1894 * _current_ state of the CPU) this doesn't care about the current
1895 * EL or mode.
1896 */
1897static inline bool arm_is_secure_below_el3(CPUARMState *env)
1898{
1899 if (arm_feature(env, ARM_FEATURE_EL3)) {
1900 return !(env->cp15.scr_el3 & SCR_NS);
1901 } else {
6b7f0b61 1902 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1903 * defined, in which case QEMU defaults to non-secure.
1904 */
1905 return false;
1906 }
1907}
1908
71205876
PM
1909/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1910static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1911{
1912 if (arm_feature(env, ARM_FEATURE_EL3)) {
1913 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1914 /* CPU currently in AArch64 state and EL3 */
1915 return true;
1916 } else if (!is_a64(env) &&
1917 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1918 /* CPU currently in AArch32 state and monitor mode */
1919 return true;
1920 }
1921 }
71205876
PM
1922 return false;
1923}
1924
1925/* Return true if the processor is in secure state */
1926static inline bool arm_is_secure(CPUARMState *env)
1927{
1928 if (arm_is_el3_or_mon(env)) {
1929 return true;
1930 }
19e0fefa
FA
1931 return arm_is_secure_below_el3(env);
1932}
1933
1934#else
1935static inline bool arm_is_secure_below_el3(CPUARMState *env)
1936{
1937 return false;
1938}
1939
1940static inline bool arm_is_secure(CPUARMState *env)
1941{
1942 return false;
1943}
1944#endif
1945
f7778444
RH
1946/**
1947 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1948 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1949 * "for all purposes other than a direct read or write access of HCR_EL2."
1950 * Not included here is HCR_RW.
1951 */
1952uint64_t arm_hcr_el2_eff(CPUARMState *env);
1953
1f79ee32
PM
1954/* Return true if the specified exception level is running in AArch64 state. */
1955static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1956{
446c81ab
PM
1957 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1958 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1959 */
446c81ab
PM
1960 assert(el >= 1 && el <= 3);
1961 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1962
446c81ab
PM
1963 /* The highest exception level is always at the maximum supported
1964 * register width, and then lower levels have a register width controlled
1965 * by bits in the SCR or HCR registers.
1f79ee32 1966 */
446c81ab
PM
1967 if (el == 3) {
1968 return aa64;
1969 }
1970
1971 if (arm_feature(env, ARM_FEATURE_EL3)) {
1972 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1973 }
1974
1975 if (el == 2) {
1976 return aa64;
1977 }
1978
1979 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1980 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1981 }
1982
1983 return aa64;
1f79ee32
PM
1984}
1985
3f342b9e
SF
1986/* Function for determing whether guest cp register reads and writes should
1987 * access the secure or non-secure bank of a cp register. When EL3 is
1988 * operating in AArch32 state, the NS-bit determines whether the secure
1989 * instance of a cp register should be used. When EL3 is AArch64 (or if
1990 * it doesn't exist at all) then there is no register banking, and all
1991 * accesses are to the non-secure version.
1992 */
1993static inline bool access_secure_reg(CPUARMState *env)
1994{
1995 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1996 !arm_el_is_aa64(env, 3) &&
1997 !(env->cp15.scr_el3 & SCR_NS));
1998
1999 return ret;
2000}
2001
ea30a4b8
FA
2002/* Macros for accessing a specified CP register bank */
2003#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2004 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2005
2006#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2007 do { \
2008 if (_secure) { \
2009 (_env)->cp15._regname##_s = (_val); \
2010 } else { \
2011 (_env)->cp15._regname##_ns = (_val); \
2012 } \
2013 } while (0)
2014
2015/* Macros for automatically accessing a specific CP register bank depending on
2016 * the current secure state of the system. These macros are not intended for
2017 * supporting instruction translation reads/writes as these are dependent
2018 * solely on the SCR.NS bit and not the mode.
2019 */
2020#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2021 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2022 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2023
2024#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2025 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2026 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2027 (_val))
2028
0442428a 2029void arm_cpu_list(void);
012a906b
GB
2030uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2031 uint32_t cur_el, bool secure);
40f137e1 2032
9ee6e8bb 2033/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2034#ifndef CONFIG_USER_ONLY
2035bool armv7m_nvic_can_take_pending_exception(void *opaque);
2036#else
2037static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2038{
2039 return true;
2040}
2041#endif
2fb50a33
PM
2042/**
2043 * armv7m_nvic_set_pending: mark the specified exception as pending
2044 * @opaque: the NVIC
2045 * @irq: the exception number to mark pending
2046 * @secure: false for non-banked exceptions or for the nonsecure
2047 * version of a banked exception, true for the secure version of a banked
2048 * exception.
2049 *
2050 * Marks the specified exception as pending. Note that we will assert()
2051 * if @secure is true and @irq does not specify one of the fixed set
2052 * of architecturally banked exceptions.
2053 */
2054void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2055/**
2056 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2057 * @opaque: the NVIC
2058 * @irq: the exception number to mark pending
2059 * @secure: false for non-banked exceptions or for the nonsecure
2060 * version of a banked exception, true for the secure version of a banked
2061 * exception.
2062 *
2063 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2064 * exceptions (exceptions generated in the course of trying to take
2065 * a different exception).
2066 */
2067void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2068/**
2069 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2070 * @opaque: the NVIC
2071 * @irq: the exception number to mark pending
2072 * @secure: false for non-banked exceptions or for the nonsecure
2073 * version of a banked exception, true for the secure version of a banked
2074 * exception.
2075 *
2076 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2077 * generated in the course of lazy stacking of FP registers.
2078 */
2079void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2080/**
2081 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2082 * exception, and whether it targets Secure state
2083 * @opaque: the NVIC
2084 * @pirq: set to pending exception number
2085 * @ptargets_secure: set to whether pending exception targets Secure
2086 *
2087 * This function writes the number of the highest priority pending
2088 * exception (the one which would be made active by
2089 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2090 * to true if the current highest priority pending exception should
2091 * be taken to Secure state, false for NS.
2092 */
2093void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2094 bool *ptargets_secure);
5cb18069
PM
2095/**
2096 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2097 * @opaque: the NVIC
2098 *
2099 * Move the current highest priority pending exception from the pending
2100 * state to the active state, and update v7m.exception to indicate that
2101 * it is the exception currently being handled.
5cb18069 2102 */
6c948518 2103void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2104/**
2105 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2106 * @opaque: the NVIC
2107 * @irq: the exception number to complete
5cb18069 2108 * @secure: true if this exception was secure
aa488fe3
PM
2109 *
2110 * Returns: -1 if the irq was not active
2111 * 1 if completing this irq brought us back to base (no active irqs)
2112 * 0 if there is still an irq active after this one was completed
2113 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2114 */
5cb18069 2115int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2116/**
2117 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2118 * @opaque: the NVIC
2119 * @irq: the exception number to mark pending
2120 * @secure: false for non-banked exceptions or for the nonsecure
2121 * version of a banked exception, true for the secure version of a banked
2122 * exception.
2123 *
2124 * Return whether an exception is "ready", i.e. whether the exception is
2125 * enabled and is configured at a priority which would allow it to
2126 * interrupt the current execution priority. This controls whether the
2127 * RDY bit for it in the FPCCR is set.
2128 */
2129bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2130/**
2131 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2132 * @opaque: the NVIC
2133 *
2134 * Returns: the raw execution priority as defined by the v8M architecture.
2135 * This is the execution priority minus the effects of AIRCR.PRIS,
2136 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2137 * (v8M ARM ARM I_PKLD.)
2138 */
2139int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2140/**
2141 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2142 * priority is negative for the specified security state.
2143 * @opaque: the NVIC
2144 * @secure: the security state to test
2145 * This corresponds to the pseudocode IsReqExecPriNeg().
2146 */
2147#ifndef CONFIG_USER_ONLY
2148bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2149#else
2150static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2151{
2152 return false;
2153}
2154#endif
9ee6e8bb 2155
4b6a83fb
PM
2156/* Interface for defining coprocessor registers.
2157 * Registers are defined in tables of arm_cp_reginfo structs
2158 * which are passed to define_arm_cp_regs().
2159 */
2160
2161/* When looking up a coprocessor register we look for it
2162 * via an integer which encodes all of:
2163 * coprocessor number
2164 * Crn, Crm, opc1, opc2 fields
2165 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2166 * or via MRRC/MCRR?)
51a79b03 2167 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2168 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2169 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2170 * For AArch64, there is no 32/64 bit size distinction;
2171 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2172 * and 4 bit CRn and CRm. The encoding patterns are chosen
2173 * to be easy to convert to and from the KVM encodings, and also
2174 * so that the hashtable can contain both AArch32 and AArch64
2175 * registers (to allow for interprocessing where we might run
2176 * 32 bit code on a 64 bit core).
4b6a83fb 2177 */
f5a0a5a5
PM
2178/* This bit is private to our hashtable cpreg; in KVM register
2179 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2180 * in the upper bits of the 64 bit ID.
2181 */
2182#define CP_REG_AA64_SHIFT 28
2183#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2184
51a79b03
PM
2185/* To enable banking of coprocessor registers depending on ns-bit we
2186 * add a bit to distinguish between secure and non-secure cpregs in the
2187 * hashtable.
2188 */
2189#define CP_REG_NS_SHIFT 29
2190#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2191
2192#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2193 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2194 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2195
f5a0a5a5
PM
2196#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2197 (CP_REG_AA64_MASK | \
2198 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2199 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2200 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2201 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2202 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2203 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2204
721fae12
PM
2205/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2206 * version used as a key for the coprocessor register hashtable
2207 */
2208static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2209{
2210 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2211 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2212 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2213 } else {
2214 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2215 cpregid |= (1 << 15);
2216 }
2217
2218 /* KVM is always non-secure so add the NS flag on AArch32 register
2219 * entries.
2220 */
2221 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2222 }
2223 return cpregid;
2224}
2225
2226/* Convert a truncated 32 bit hashtable key into the full
2227 * 64 bit KVM register ID.
2228 */
2229static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2230{
f5a0a5a5
PM
2231 uint64_t kvmid;
2232
2233 if (cpregid & CP_REG_AA64_MASK) {
2234 kvmid = cpregid & ~CP_REG_AA64_MASK;
2235 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2236 } else {
f5a0a5a5
PM
2237 kvmid = cpregid & ~(1 << 15);
2238 if (cpregid & (1 << 15)) {
2239 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2240 } else {
2241 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2242 }
721fae12
PM
2243 }
2244 return kvmid;
2245}
2246
4b6a83fb 2247/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2248 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2249 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2250 * TCG can assume the value to be constant (ie load at translate time)
2251 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2252 * indicates that the TB should not be ended after a write to this register
2253 * (the default is that the TB ends after cp writes). OVERRIDE permits
2254 * a register definition to override a previous definition for the
2255 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2256 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2257 * ALIAS indicates that this register is an alias view of some underlying
2258 * state which is also visible via another register, and that the other
b061a82b
SF
2259 * register is handling migration and reset; registers marked ALIAS will not be
2260 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2261 * NO_RAW indicates that this register has no underlying state and does not
2262 * support raw access for state saving/loading; it will not be used for either
2263 * migration or KVM state synchronization. (Typically this is for "registers"
2264 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2265 * IO indicates that this register does I/O and therefore its accesses
2266 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2267 * registers which implement clocks or timers require this.
37ff584c
PM
2268 * RAISES_EXC is for when the read or write hook might raise an exception;
2269 * the generated code will synchronize the CPU state before calling the hook
2270 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2271 * NEWEL is for writes to registers that might change the exception
2272 * level - typically on older ARM chips. For those cases we need to
2273 * re-read the new el when recomputing the translation flags.
4b6a83fb 2274 */
fe03d45f
RH
2275#define ARM_CP_SPECIAL 0x0001
2276#define ARM_CP_CONST 0x0002
2277#define ARM_CP_64BIT 0x0004
2278#define ARM_CP_SUPPRESS_TB_END 0x0008
2279#define ARM_CP_OVERRIDE 0x0010
2280#define ARM_CP_ALIAS 0x0020
2281#define ARM_CP_IO 0x0040
2282#define ARM_CP_NO_RAW 0x0080
2283#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2284#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2285#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2286#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2287#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2288#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2289#define ARM_CP_FPU 0x1000
490aa7f1 2290#define ARM_CP_SVE 0x2000
1f163787 2291#define ARM_CP_NO_GDB 0x4000
37ff584c 2292#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2293#define ARM_CP_NEWEL 0x10000
4b6a83fb 2294/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2295#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2296/* Mask of only the flag bits in a type field */
f80741d1 2297#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2298
f5a0a5a5
PM
2299/* Valid values for ARMCPRegInfo state field, indicating which of
2300 * the AArch32 and AArch64 execution states this register is visible in.
2301 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2302 * If the reginfo is declared to be visible in both states then a second
2303 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2304 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2305 * Note that we rely on the values of these enums as we iterate through
2306 * the various states in some places.
2307 */
2308enum {
2309 ARM_CP_STATE_AA32 = 0,
2310 ARM_CP_STATE_AA64 = 1,
2311 ARM_CP_STATE_BOTH = 2,
2312};
2313
c3e30260
FA
2314/* ARM CP register secure state flags. These flags identify security state
2315 * attributes for a given CP register entry.
2316 * The existence of both or neither secure and non-secure flags indicates that
2317 * the register has both a secure and non-secure hash entry. A single one of
2318 * these flags causes the register to only be hashed for the specified
2319 * security state.
2320 * Although definitions may have any combination of the S/NS bits, each
2321 * registered entry will only have one to identify whether the entry is secure
2322 * or non-secure.
2323 */
2324enum {
2325 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2326 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2327};
2328
4b6a83fb
PM
2329/* Return true if cptype is a valid type field. This is used to try to
2330 * catch errors where the sentinel has been accidentally left off the end
2331 * of a list of registers.
2332 */
2333static inline bool cptype_valid(int cptype)
2334{
2335 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2336 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2337 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2338}
2339
2340/* Access rights:
2341 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2342 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2343 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2344 * (ie any of the privileged modes in Secure state, or Monitor mode).
2345 * If a register is accessible in one privilege level it's always accessible
2346 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2347 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2348 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2349 * terminology a little and call this PL3.
f5a0a5a5
PM
2350 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2351 * with the ELx exception levels.
4b6a83fb
PM
2352 *
2353 * If access permissions for a register are more complex than can be
2354 * described with these bits, then use a laxer set of restrictions, and
2355 * do the more restrictive/complex check inside a helper function.
2356 */
2357#define PL3_R 0x80
2358#define PL3_W 0x40
2359#define PL2_R (0x20 | PL3_R)
2360#define PL2_W (0x10 | PL3_W)
2361#define PL1_R (0x08 | PL2_R)
2362#define PL1_W (0x04 | PL2_W)
2363#define PL0_R (0x02 | PL1_R)
2364#define PL0_W (0x01 | PL1_W)
2365
b5bd7440
AB
2366/*
2367 * For user-mode some registers are accessible to EL0 via a kernel
2368 * trap-and-emulate ABI. In this case we define the read permissions
2369 * as actually being PL0_R. However some bits of any given register
2370 * may still be masked.
2371 */
2372#ifdef CONFIG_USER_ONLY
2373#define PL0U_R PL0_R
2374#else
2375#define PL0U_R PL1_R
2376#endif
2377
4b6a83fb
PM
2378#define PL3_RW (PL3_R | PL3_W)
2379#define PL2_RW (PL2_R | PL2_W)
2380#define PL1_RW (PL1_R | PL1_W)
2381#define PL0_RW (PL0_R | PL0_W)
2382
75502672
PM
2383/* Return the highest implemented Exception Level */
2384static inline int arm_highest_el(CPUARMState *env)
2385{
2386 if (arm_feature(env, ARM_FEATURE_EL3)) {
2387 return 3;
2388 }
2389 if (arm_feature(env, ARM_FEATURE_EL2)) {
2390 return 2;
2391 }
2392 return 1;
2393}
2394
15b3f556
PM
2395/* Return true if a v7M CPU is in Handler mode */
2396static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2397{
2398 return env->v7m.exception != 0;
2399}
2400
dcbff19b
GB
2401/* Return the current Exception Level (as per ARMv8; note that this differs
2402 * from the ARMv7 Privilege Level).
2403 */
2404static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2405{
6d54ed3c 2406 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2407 return arm_v7m_is_handler_mode(env) ||
2408 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2409 }
2410
592125f8 2411 if (is_a64(env)) {
f5a0a5a5
PM
2412 return extract32(env->pstate, 2, 2);
2413 }
2414
592125f8
FA
2415 switch (env->uncached_cpsr & 0x1f) {
2416 case ARM_CPU_MODE_USR:
4b6a83fb 2417 return 0;
592125f8
FA
2418 case ARM_CPU_MODE_HYP:
2419 return 2;
2420 case ARM_CPU_MODE_MON:
2421 return 3;
2422 default:
2423 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2424 /* If EL3 is 32-bit then all secure privileged modes run in
2425 * EL3
2426 */
2427 return 3;
2428 }
2429
2430 return 1;
4b6a83fb 2431 }
4b6a83fb
PM
2432}
2433
2434typedef struct ARMCPRegInfo ARMCPRegInfo;
2435
f59df3f2
PM
2436typedef enum CPAccessResult {
2437 /* Access is permitted */
2438 CP_ACCESS_OK = 0,
2439 /* Access fails due to a configurable trap or enable which would
2440 * result in a categorized exception syndrome giving information about
2441 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2442 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2443 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2444 */
2445 CP_ACCESS_TRAP = 1,
2446 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2447 * Note that this is not a catch-all case -- the set of cases which may
2448 * result in this failure is specifically defined by the architecture.
2449 */
2450 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2451 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2452 CP_ACCESS_TRAP_EL2 = 3,
2453 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2454 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2455 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2456 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2457 /* Access fails and results in an exception syndrome for an FP access,
2458 * trapped directly to EL2 or EL3
2459 */
2460 CP_ACCESS_TRAP_FP_EL2 = 7,
2461 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2462} CPAccessResult;
2463
c4241c7d
PM
2464/* Access functions for coprocessor registers. These cannot fail and
2465 * may not raise exceptions.
2466 */
2467typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2468typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2469 uint64_t value);
f59df3f2 2470/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2471typedef CPAccessResult CPAccessFn(CPUARMState *env,
2472 const ARMCPRegInfo *opaque,
2473 bool isread);
4b6a83fb
PM
2474/* Hook function for register reset */
2475typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2476
2477#define CP_ANY 0xff
2478
2479/* Definition of an ARM coprocessor register */
2480struct ARMCPRegInfo {
2481 /* Name of register (useful mainly for debugging, need not be unique) */
2482 const char *name;
2483 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2484 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2485 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2486 * will be decoded to this register. The register read and write
2487 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2488 * used by the program, so it is possible to register a wildcard and
2489 * then behave differently on read/write if necessary.
2490 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2491 * must both be zero.
f5a0a5a5
PM
2492 * For AArch64-visible registers, opc0 is also used.
2493 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2494 * way to distinguish (for KVM's benefit) guest-visible system registers
2495 * from demuxed ones provided to preserve the "no side effects on
2496 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2497 * visible (to match KVM's encoding); cp==0 will be converted to
2498 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2499 */
2500 uint8_t cp;
2501 uint8_t crn;
2502 uint8_t crm;
f5a0a5a5 2503 uint8_t opc0;
4b6a83fb
PM
2504 uint8_t opc1;
2505 uint8_t opc2;
f5a0a5a5
PM
2506 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2507 int state;
4b6a83fb
PM
2508 /* Register type: ARM_CP_* bits/values */
2509 int type;
2510 /* Access rights: PL*_[RW] */
2511 int access;
c3e30260
FA
2512 /* Security state: ARM_CP_SECSTATE_* bits/values */
2513 int secure;
4b6a83fb
PM
2514 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2515 * this register was defined: can be used to hand data through to the
2516 * register read/write functions, since they are passed the ARMCPRegInfo*.
2517 */
2518 void *opaque;
2519 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2520 * fieldoffset is non-zero, the reset value of the register.
2521 */
2522 uint64_t resetvalue;
c3e30260
FA
2523 /* Offset of the field in CPUARMState for this register.
2524 *
2525 * This is not needed if either:
4b6a83fb
PM
2526 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2527 * 2. both readfn and writefn are specified
2528 */
2529 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2530
2531 /* Offsets of the secure and non-secure fields in CPUARMState for the
2532 * register if it is banked. These fields are only used during the static
2533 * registration of a register. During hashing the bank associated
2534 * with a given security state is copied to fieldoffset which is used from
2535 * there on out.
2536 *
2537 * It is expected that register definitions use either fieldoffset or
2538 * bank_fieldoffsets in the definition but not both. It is also expected
2539 * that both bank offsets are set when defining a banked register. This
2540 * use indicates that a register is banked.
2541 */
2542 ptrdiff_t bank_fieldoffsets[2];
2543
f59df3f2
PM
2544 /* Function for making any access checks for this register in addition to
2545 * those specified by the 'access' permissions bits. If NULL, no extra
2546 * checks required. The access check is performed at runtime, not at
2547 * translate time.
2548 */
2549 CPAccessFn *accessfn;
4b6a83fb
PM
2550 /* Function for handling reads of this register. If NULL, then reads
2551 * will be done by loading from the offset into CPUARMState specified
2552 * by fieldoffset.
2553 */
2554 CPReadFn *readfn;
2555 /* Function for handling writes of this register. If NULL, then writes
2556 * will be done by writing to the offset into CPUARMState specified
2557 * by fieldoffset.
2558 */
2559 CPWriteFn *writefn;
7023ec7e
PM
2560 /* Function for doing a "raw" read; used when we need to copy
2561 * coprocessor state to the kernel for KVM or out for
2562 * migration. This only needs to be provided if there is also a
c4241c7d 2563 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2564 */
2565 CPReadFn *raw_readfn;
2566 /* Function for doing a "raw" write; used when we need to copy KVM
2567 * kernel coprocessor state into userspace, or for inbound
2568 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2569 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2570 * or similar behaviour.
7023ec7e
PM
2571 */
2572 CPWriteFn *raw_writefn;
4b6a83fb
PM
2573 /* Function for resetting the register. If NULL, then reset will be done
2574 * by writing resetvalue to the field specified in fieldoffset. If
2575 * fieldoffset is 0 then no reset will be done.
2576 */
2577 CPResetFn *resetfn;
2578};
2579
2580/* Macros which are lvalues for the field in CPUARMState for the
2581 * ARMCPRegInfo *ri.
2582 */
2583#define CPREG_FIELD32(env, ri) \
2584 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2585#define CPREG_FIELD64(env, ri) \
2586 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2587
2588#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2589
2590void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2591 const ARMCPRegInfo *regs, void *opaque);
2592void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2593 const ARMCPRegInfo *regs, void *opaque);
2594static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2595{
2596 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2597}
2598static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2599{
2600 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2601}
60322b39 2602const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2603
6c5c0fec
AB
2604/*
2605 * Definition of an ARM co-processor register as viewed from
2606 * userspace. This is used for presenting sanitised versions of
2607 * registers to userspace when emulating the Linux AArch64 CPU
2608 * ID/feature ABI (advertised as HWCAP_CPUID).
2609 */
2610typedef struct ARMCPRegUserSpaceInfo {
2611 /* Name of register */
2612 const char *name;
2613
d040242e
AB
2614 /* Is the name actually a glob pattern */
2615 bool is_glob;
2616
6c5c0fec
AB
2617 /* Only some bits are exported to user space */
2618 uint64_t exported_bits;
2619
2620 /* Fixed bits are applied after the mask */
2621 uint64_t fixed_bits;
2622} ARMCPRegUserSpaceInfo;
2623
2624#define REGUSERINFO_SENTINEL { .name = NULL }
2625
2626void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2627
4b6a83fb 2628/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2629void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2630 uint64_t value);
4b6a83fb 2631/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2632uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2633
f5a0a5a5
PM
2634/* CPResetFn that does nothing, for use if no reset is required even
2635 * if fieldoffset is non zero.
2636 */
2637void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2638
67ed771d
PM
2639/* Return true if this reginfo struct's field in the cpu state struct
2640 * is 64 bits wide.
2641 */
2642static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2643{
2644 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2645}
2646
dcbff19b 2647static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2648 const ARMCPRegInfo *ri, int isread)
2649{
dcbff19b 2650 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2651}
2652
49a66191
PM
2653/* Raw read of a coprocessor register (as needed for migration, etc) */
2654uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2655
721fae12
PM
2656/**
2657 * write_list_to_cpustate
2658 * @cpu: ARMCPU
2659 *
2660 * For each register listed in the ARMCPU cpreg_indexes list, write
2661 * its value from the cpreg_values list into the ARMCPUState structure.
2662 * This updates TCG's working data structures from KVM data or
2663 * from incoming migration state.
2664 *
2665 * Returns: true if all register values were updated correctly,
2666 * false if some register was unknown or could not be written.
2667 * Note that we do not stop early on failure -- we will attempt
2668 * writing all registers in the list.
2669 */
2670bool write_list_to_cpustate(ARMCPU *cpu);
2671
2672/**
2673 * write_cpustate_to_list:
2674 * @cpu: ARMCPU
b698e4ee 2675 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2676 *
2677 * For each register listed in the ARMCPU cpreg_indexes list, write
2678 * its value from the ARMCPUState structure into the cpreg_values list.
2679 * This is used to copy info from TCG's working data structures into
2680 * KVM or for outbound migration.
2681 *
b698e4ee
PM
2682 * @kvm_sync is true if we are doing this in order to sync the
2683 * register state back to KVM. In this case we will only update
2684 * values in the list if the previous list->cpustate sync actually
2685 * successfully wrote the CPU state. Otherwise we will keep the value
2686 * that is in the list.
2687 *
721fae12
PM
2688 * Returns: true if all register values were read correctly,
2689 * false if some register was unknown or could not be read.
2690 * Note that we do not stop early on failure -- we will attempt
2691 * reading all registers in the list.
2692 */
b698e4ee 2693bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2694
9ee6e8bb
PB
2695#define ARM_CPUID_TI915T 0x54029152
2696#define ARM_CPUID_TI925T 0x54029252
40f137e1 2697
012a906b
GB
2698static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2699 unsigned int target_el)
043b7f8d
EI
2700{
2701 CPUARMState *env = cs->env_ptr;
dcbff19b 2702 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2703 bool secure = arm_is_secure(env);
57e3a0c7
GB
2704 bool pstate_unmasked;
2705 int8_t unmasked = 0;
f7778444 2706 uint64_t hcr_el2;
57e3a0c7
GB
2707
2708 /* Don't take exceptions if they target a lower EL.
2709 * This check should catch any exceptions that would not be taken but left
2710 * pending.
2711 */
dfafd090
EI
2712 if (cur_el > target_el) {
2713 return false;
2714 }
043b7f8d 2715
f7778444
RH
2716 hcr_el2 = arm_hcr_el2_eff(env);
2717
043b7f8d
EI
2718 switch (excp_idx) {
2719 case EXCP_FIQ:
57e3a0c7
GB
2720 pstate_unmasked = !(env->daif & PSTATE_F);
2721 break;
2722
043b7f8d 2723 case EXCP_IRQ:
57e3a0c7
GB
2724 pstate_unmasked = !(env->daif & PSTATE_I);
2725 break;
2726
136e67e9 2727 case EXCP_VFIQ:
f7778444 2728 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2729 /* VFIQs are only taken when hypervized and non-secure. */
2730 return false;
2731 }
2732 return !(env->daif & PSTATE_F);
2733 case EXCP_VIRQ:
f7778444 2734 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2735 /* VIRQs are only taken when hypervized and non-secure. */
2736 return false;
2737 }
b5c633c5 2738 return !(env->daif & PSTATE_I);
043b7f8d
EI
2739 default:
2740 g_assert_not_reached();
2741 }
57e3a0c7
GB
2742
2743 /* Use the target EL, current execution state and SCR/HCR settings to
2744 * determine whether the corresponding CPSR bit is used to mask the
2745 * interrupt.
2746 */
2747 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2748 /* Exceptions targeting a higher EL may not be maskable */
2749 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2750 /* 64-bit masking rules are simple: exceptions to EL3
2751 * can't be masked, and exceptions to EL2 can only be
2752 * masked from Secure state. The HCR and SCR settings
2753 * don't affect the masking logic, only the interrupt routing.
2754 */
2755 if (target_el == 3 || !secure) {
2756 unmasked = 1;
2757 }
2758 } else {
2759 /* The old 32-bit-only environment has a more complicated
2760 * masking setup. HCR and SCR bits not only affect interrupt
2761 * routing but also change the behaviour of masking.
2762 */
2763 bool hcr, scr;
2764
2765 switch (excp_idx) {
2766 case EXCP_FIQ:
2767 /* If FIQs are routed to EL3 or EL2 then there are cases where
2768 * we override the CPSR.F in determining if the exception is
2769 * masked or not. If neither of these are set then we fall back
2770 * to the CPSR.F setting otherwise we further assess the state
2771 * below.
2772 */
f7778444 2773 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2774 scr = (env->cp15.scr_el3 & SCR_FIQ);
2775
2776 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2777 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2778 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2779 * when non-secure but only when FIQs are only routed to EL3.
2780 */
2781 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2782 break;
2783 case EXCP_IRQ:
2784 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2785 * we may override the CPSR.I masking when in non-secure state.
2786 * The SCR.IRQ setting has already been taken into consideration
2787 * when setting the target EL, so it does not have a further
2788 * affect here.
2789 */
f7778444 2790 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2791 scr = false;
2792 break;
2793 default:
2794 g_assert_not_reached();
2795 }
2796
2797 if ((scr || hcr) && !secure) {
2798 unmasked = 1;
2799 }
57e3a0c7
GB
2800 }
2801 }
2802
2803 /* The PSTATE bits only mask the interrupt if we have not overriden the
2804 * ability above.
2805 */
2806 return unmasked || pstate_unmasked;
043b7f8d
EI
2807}
2808
ba1ba5cc
IM
2809#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2810#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2811#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2812
9467d44c 2813#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2814#define cpu_list arm_cpu_list
9467d44c 2815
c1e37810
PM
2816/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2817 *
2818 * If EL3 is 64-bit:
2819 * + NonSecure EL1 & 0 stage 1
2820 * + NonSecure EL1 & 0 stage 2
2821 * + NonSecure EL2
2822 * + Secure EL1 & EL0
2823 * + Secure EL3
2824 * If EL3 is 32-bit:
2825 * + NonSecure PL1 & 0 stage 1
2826 * + NonSecure PL1 & 0 stage 2
2827 * + NonSecure PL2
2828 * + Secure PL0 & PL1
2829 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2830 *
2831 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2832 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2833 * may differ in access permissions even if the VA->PA map is the same
2834 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2835 * translation, which means that we have one mmu_idx that deals with two
2836 * concatenated translation regimes [this sort of combined s1+2 TLB is
2837 * architecturally permitted]
2838 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2839 * handling via the TLB. The only way to do a stage 1 translation without
2840 * the immediate stage 2 translation is via the ATS or AT system insns,
2841 * which can be slow-pathed and always do a page table walk.
2842 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2843 * translation regimes, because they map reasonably well to each other
2844 * and they can't both be active at the same time.
2845 * This gives us the following list of mmu_idx values:
2846 *
2847 * NS EL0 (aka NS PL0) stage 1+2
2848 * NS EL1 (aka NS PL1) stage 1+2
2849 * NS EL2 (aka NS PL2)
2850 * S EL3 (aka S PL1)
2851 * S EL0 (aka S PL0)
2852 * S EL1 (not used if EL3 is 32 bit)
2853 * NS EL0+1 stage 2
2854 *
2855 * (The last of these is an mmu_idx because we want to be able to use the TLB
2856 * for the accesses done as part of a stage 1 page table walk, rather than
2857 * having to walk the stage 2 page table over and over.)
2858 *
3bef7012
PM
2859 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2860 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2861 * NS EL2 if we ever model a Cortex-R52).
2862 *
2863 * M profile CPUs are rather different as they do not have a true MMU.
2864 * They have the following different MMU indexes:
2865 * User
2866 * Privileged
62593718
PM
2867 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2868 * Privileged, execution priority negative (ditto)
66787c78
PM
2869 * If the CPU supports the v8M Security Extension then there are also:
2870 * Secure User
2871 * Secure Privileged
62593718
PM
2872 * Secure User, execution priority negative
2873 * Secure Privileged, execution priority negative
3bef7012 2874 *
8bd5c820
PM
2875 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2876 * are not quite the same -- different CPU types (most notably M profile
2877 * vs A/R profile) would like to use MMU indexes with different semantics,
2878 * but since we don't ever need to use all of those in a single CPU we
2879 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2880 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2881 * the same for any particular CPU.
2882 * Variables of type ARMMUIdx are always full values, and the core
2883 * index values are in variables of type 'int'.
2884 *
c1e37810
PM
2885 * Our enumeration includes at the end some entries which are not "true"
2886 * mmu_idx values in that they don't have corresponding TLBs and are only
2887 * valid for doing slow path page table walks.
2888 *
2889 * The constant names here are patterned after the general style of the names
2890 * of the AT/ATS operations.
2891 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2892 * For M profile we arrange them to have a bit for priv, a bit for negpri
2893 * and a bit for secure.
c1e37810 2894 */
e7b921c2 2895#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2896#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2897#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2898
62593718
PM
2899/* meanings of the bits for M profile mmu idx values */
2900#define ARM_MMU_IDX_M_PRIV 0x1
2901#define ARM_MMU_IDX_M_NEGPRI 0x2
2902#define ARM_MMU_IDX_M_S 0x4
2903
8bd5c820
PM
2904#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2905#define ARM_MMU_IDX_COREIDX_MASK 0x7
2906
c1e37810 2907typedef enum ARMMMUIdx {
01b98b68
RH
2908 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2909 ARMMMUIdx_E10_1 = 1 | ARM_MMU_IDX_A,
e013b741 2910 ARMMMUIdx_E2 = 2 | ARM_MMU_IDX_A,
127b2b08 2911 ARMMMUIdx_SE3 = 3 | ARM_MMU_IDX_A,
fba37aed
RH
2912 ARMMMUIdx_SE10_0 = 4 | ARM_MMU_IDX_A,
2913 ARMMMUIdx_SE10_1 = 5 | ARM_MMU_IDX_A,
97fa9350 2914 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_A,
25568316
RH
2915 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2916 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2917 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2918 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2919 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2920 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2921 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2922 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2923 /* Indexes below here don't have TLBs and are used only for AT system
2924 * instructions or for the first stage of an S12 page table walk.
2925 */
2859d7b5
RH
2926 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2927 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2928} ARMMMUIdx;
2929
5f09a6df
RH
2930/*
2931 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2932 * for use when calling tlb_flush_by_mmuidx() and friends.
2933 */
5f09a6df
RH
2934#define TO_CORE_BIT(NAME) \
2935 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2936
8bd5c820 2937typedef enum ARMMMUIdxBit {
5f09a6df
RH
2938 TO_CORE_BIT(E10_0),
2939 TO_CORE_BIT(E10_1),
2940 TO_CORE_BIT(E2),
2941 TO_CORE_BIT(SE10_0),
2942 TO_CORE_BIT(SE10_1),
2943 TO_CORE_BIT(SE3),
2944 TO_CORE_BIT(Stage2),
2945
2946 TO_CORE_BIT(MUser),
2947 TO_CORE_BIT(MPriv),
2948 TO_CORE_BIT(MUserNegPri),
2949 TO_CORE_BIT(MPrivNegPri),
2950 TO_CORE_BIT(MSUser),
2951 TO_CORE_BIT(MSPriv),
2952 TO_CORE_BIT(MSUserNegPri),
2953 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2954} ARMMMUIdxBit;
2955
5f09a6df
RH
2956#undef TO_CORE_BIT
2957
f79fbf39 2958#define MMU_USER_IDX 0
c1e37810 2959
8bd5c820
PM
2960static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2961{
2962 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2963}
2964
2965static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2966{
e7b921c2
PM
2967 if (arm_feature(env, ARM_FEATURE_M)) {
2968 return mmu_idx | ARM_MMU_IDX_M;
2969 } else {
2970 return mmu_idx | ARM_MMU_IDX_A;
2971 }
8bd5c820
PM
2972}
2973
c1e37810
PM
2974/* Return the exception level we're running at if this is our mmu_idx */
2975static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2976{
8bd5c820
PM
2977 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2978 case ARM_MMU_IDX_A:
2979 return mmu_idx & 3;
e7b921c2 2980 case ARM_MMU_IDX_M:
62593718 2981 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2982 default:
2983 g_assert_not_reached();
2984 }
c1e37810
PM
2985}
2986
fa6252a9
PM
2987/*
2988 * Return the MMU index for a v7M CPU with all relevant information
2989 * manually specified.
2990 */
2991ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2992 bool secstate, bool priv, bool negpri);
2993
ec8e3340 2994/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2995 * privilege state.
ec8e3340 2996 */
65e4655c
RH
2997ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2998 bool secstate, bool priv);
b81ac0eb 2999
ec8e3340 3000/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 3001ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 3002
50494a27
RH
3003/**
3004 * cpu_mmu_index:
3005 * @env: The cpu environment
3006 * @ifetch: True for code access, false for data access.
3007 *
3008 * Return the core mmu index for the current translation regime.
3009 * This function is used by generic TCG code paths.
3010 */
65e4655c 3011int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 3012
9e273ef2
PM
3013/* Indexes used when registering address spaces with cpu_address_space_init */
3014typedef enum ARMASIdx {
3015 ARMASIdx_NS = 0,
3016 ARMASIdx_S = 1,
3017} ARMASIdx;
3018
533e93f1 3019/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
3020static inline int arm_debug_target_el(CPUARMState *env)
3021{
81669b8b
SF
3022 bool secure = arm_is_secure(env);
3023 bool route_to_el2 = false;
3024
3025 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3026 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 3027 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
3028 }
3029
3030 if (route_to_el2) {
3031 return 2;
3032 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3033 !arm_el_is_aa64(env, 3) && secure) {
3034 return 3;
3035 } else {
3036 return 1;
3037 }
3a298203
PM
3038}
3039
43bbce7f
PM
3040static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3041{
3042 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3043 * CSSELR is RAZ/WI.
3044 */
3045 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3046}
3047
22af9025 3048/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
3049static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3050{
22af9025
AB
3051 int cur_el = arm_current_el(env);
3052 int debug_el;
3053
3054 if (cur_el == 3) {
3055 return false;
533e93f1
PM
3056 }
3057
22af9025
AB
3058 /* MDCR_EL3.SDD disables debug events from Secure state */
3059 if (arm_is_secure_below_el3(env)
3060 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3061 return false;
3a298203 3062 }
22af9025
AB
3063
3064 /*
3065 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3066 * while not masking the (D)ebug bit in DAIF.
3067 */
3068 debug_el = arm_debug_target_el(env);
3069
3070 if (cur_el == debug_el) {
3071 return extract32(env->cp15.mdscr_el1, 13, 1)
3072 && !(env->daif & PSTATE_D);
3073 }
3074
3075 /* Otherwise the debug target needs to be a higher EL */
3076 return debug_el > cur_el;
3a298203
PM
3077}
3078
3079static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3080{
533e93f1
PM
3081 int el = arm_current_el(env);
3082
3083 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3084 return aa64_generate_debug_exceptions(env);
3085 }
533e93f1
PM
3086
3087 if (arm_is_secure(env)) {
3088 int spd;
3089
3090 if (el == 0 && (env->cp15.sder & 1)) {
3091 /* SDER.SUIDEN means debug exceptions from Secure EL0
3092 * are always enabled. Otherwise they are controlled by
3093 * SDCR.SPD like those from other Secure ELs.
3094 */
3095 return true;
3096 }
3097
3098 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3099 switch (spd) {
3100 case 1:
3101 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3102 case 0:
3103 /* For 0b00 we return true if external secure invasive debug
3104 * is enabled. On real hardware this is controlled by external
3105 * signals to the core. QEMU always permits debug, and behaves
3106 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3107 */
3108 return true;
3109 case 2:
3110 return false;
3111 case 3:
3112 return true;
3113 }
3114 }
3115
3116 return el != 2;
3a298203
PM
3117}
3118
3119/* Return true if debugging exceptions are currently enabled.
3120 * This corresponds to what in ARM ARM pseudocode would be
3121 * if UsingAArch32() then
3122 * return AArch32.GenerateDebugExceptions()
3123 * else
3124 * return AArch64.GenerateDebugExceptions()
3125 * We choose to push the if() down into this function for clarity,
3126 * since the pseudocode has it at all callsites except for the one in
3127 * CheckSoftwareStep(), where it is elided because both branches would
3128 * always return the same value.
3a298203
PM
3129 */
3130static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3131{
3132 if (env->aarch64) {
3133 return aa64_generate_debug_exceptions(env);
3134 } else {
3135 return aa32_generate_debug_exceptions(env);
3136 }
3137}
3138
3139/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3140 * implicitly means this always returns false in pre-v8 CPUs.)
3141 */
3142static inline bool arm_singlestep_active(CPUARMState *env)
3143{
3144 return extract32(env->cp15.mdscr_el1, 0, 1)
3145 && arm_el_is_aa64(env, arm_debug_target_el(env))
3146 && arm_generate_debug_exceptions(env);
3147}
3148
f9fd40eb
PB
3149static inline bool arm_sctlr_b(CPUARMState *env)
3150{
3151 return
3152 /* We need not implement SCTLR.ITD in user-mode emulation, so
3153 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3154 * This lets people run BE32 binaries with "-cpu any".
3155 */
3156#ifndef CONFIG_USER_ONLY
3157 !arm_feature(env, ARM_FEATURE_V7) &&
3158#endif
3159 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3160}
3161
64e40755
RH
3162static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3163{
3164 if (el == 0) {
3165 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3166 return env->cp15.sctlr_el[1];
3167 } else {
3168 return env->cp15.sctlr_el[el];
3169 }
3170}
3171
8061a649
RH
3172static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3173 bool sctlr_b)
3174{
3175#ifdef CONFIG_USER_ONLY
3176 /*
3177 * In system mode, BE32 is modelled in line with the
3178 * architecture (as word-invariant big-endianness), where loads
3179 * and stores are done little endian but from addresses which
3180 * are adjusted by XORing with the appropriate constant. So the
3181 * endianness to use for the raw data access is not affected by
3182 * SCTLR.B.
3183 * In user mode, however, we model BE32 as byte-invariant
3184 * big-endianness (because user-only code cannot tell the
3185 * difference), and so we need to use a data access endianness
3186 * that depends on SCTLR.B.
3187 */
3188 if (sctlr_b) {
3189 return true;
3190 }
3191#endif
3192 /* In 32bit endianness is determined by looking at CPSR's E bit */
3193 return env->uncached_cpsr & CPSR_E;
3194}
3195
3196static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3197{
3198 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3199}
64e40755 3200
ed50ff78
PC
3201/* Return true if the processor is in big-endian mode. */
3202static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3203{
ed50ff78 3204 if (!is_a64(env)) {
8061a649 3205 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3206 } else {
3207 int cur_el = arm_current_el(env);
3208 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3209 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3210 }
ed50ff78
PC
3211}
3212
4f7c64b3 3213typedef CPUARMState CPUArchState;
2161a612 3214typedef ARMCPU ArchCPU;
4f7c64b3 3215
022c62cb 3216#include "exec/cpu-all.h"
622ed360 3217
fdd1b228
RH
3218/*
3219 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3220 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3221 * We put flags which are shared between 32 and 64 bit mode at the top
3222 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3223 *
506f1498 3224 * 31 20 18 14 9 0
79cabf1f
RH
3225 * +--------------+-----+-----+----------+--------------+
3226 * | | | TBFLAG_A32 | |
3227 * | | +-----+----------+ TBFLAG_AM32 |
3228 * | TBFLAG_ANY | |TBFLAG_M32| |
3229 * | | +-------------------------|
3230 * | | | TBFLAG_A64 |
3231 * +--------------+-----------+-------------------------+
506f1498 3232 * 31 20 14 0
79cabf1f 3233 *
fdd1b228 3234 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3235 */
aad821ac 3236FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3237FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3238FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3239FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3240FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3241/* Target EL if we take a floating-point-disabled exception */
506f1498 3242FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3243/* For A-profile only, target EL for debug exceptions. */
506f1498 3244FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3245
8bd587c1 3246/*
79cabf1f 3247 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3248 */
79cabf1f
RH
3249FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3250FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3251
79cabf1f
RH
3252/*
3253 * Bit usage when in AArch32 state, for A-profile only.
3254 */
3255FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3256FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3257/*
3258 * We store the bottom two bits of the CPAR as TB flags and handle
3259 * checks on the other bits at runtime. This shares the same bits as
3260 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3261 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3262 */
79cabf1f
RH
3263FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3264FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3265FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3266FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3267/*
3268 * Indicates whether cp register reads and writes by guest code should access
3269 * the secure or nonsecure bank of banked registers; note that this is not
3270 * the same thing as the current security state of the processor!
3271 */
79cabf1f
RH
3272FIELD(TBFLAG_A32, NS, 17, 1)
3273
3274/*
3275 * Bit usage when in AArch32 state, for M-profile only.
3276 */
3277/* Handler (ie not Thread) mode */
3278FIELD(TBFLAG_M32, HANDLER, 9, 1)
3279/* Whether we should generate stack-limit checks */
3280FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3281/* Set if FPCCR.LSPACT is set */
3282FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3283/* Set if we must create a new FP context */
3284FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3285/* Set if FPCCR.S does not match current security state */
3286FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3287
3288/*
3289 * Bit usage when in AArch64 state
3290 */
476a4692 3291FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3292FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3293FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3294FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3295FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3296FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3297FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3298
f9fd40eb
PB
3299static inline bool bswap_code(bool sctlr_b)
3300{
3301#ifdef CONFIG_USER_ONLY
3302 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3303 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3304 * would also end up as a mixed-endian mode with BE code, LE data.
3305 */
3306 return
3307#ifdef TARGET_WORDS_BIGENDIAN
3308 1 ^
3309#endif
3310 sctlr_b;
3311#else
e334bd31
PB
3312 /* All code access in ARM is little endian, and there are no loaders
3313 * doing swaps that need to be reversed
f9fd40eb
PB
3314 */
3315 return 0;
3316#endif
3317}
3318
c3ae85fc
PB
3319#ifdef CONFIG_USER_ONLY
3320static inline bool arm_cpu_bswap_data(CPUARMState *env)
3321{
3322 return
3323#ifdef TARGET_WORDS_BIGENDIAN
3324 1 ^
3325#endif
3326 arm_cpu_data_is_big_endian(env);
3327}
3328#endif
3329
a9e01311
RH
3330void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3331 target_ulong *cs_base, uint32_t *flags);
6b917547 3332
98128601
RH
3333enum {
3334 QEMU_PSCI_CONDUIT_DISABLED = 0,
3335 QEMU_PSCI_CONDUIT_SMC = 1,
3336 QEMU_PSCI_CONDUIT_HVC = 2,
3337};
3338
017518c1
PM
3339#ifndef CONFIG_USER_ONLY
3340/* Return the address space index to use for a memory access */
3341static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3342{
3343 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3344}
5ce4ff65
PM
3345
3346/* Return the AddressSpace to use for a memory access
3347 * (which depends on whether the access is S or NS, and whether
3348 * the board gave us a separate AddressSpace for S accesses).
3349 */
3350static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3351{
3352 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3353}
017518c1
PM
3354#endif
3355
bd7d00fc 3356/**
b5c53d1b
AL
3357 * arm_register_pre_el_change_hook:
3358 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3359 * CPU changes exception level or mode. The hook function will be
3360 * passed a pointer to the ARMCPU and the opaque data pointer passed
3361 * to this function when the hook was registered.
b5c53d1b
AL
3362 *
3363 * Note that if a pre-change hook is called, any registered post-change hooks
3364 * are guaranteed to subsequently be called.
bd7d00fc 3365 */
b5c53d1b 3366void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3367 void *opaque);
b5c53d1b
AL
3368/**
3369 * arm_register_el_change_hook:
3370 * Register a hook function which will be called immediately after this
3371 * CPU changes exception level or mode. The hook function will be
3372 * passed a pointer to the ARMCPU and the opaque data pointer passed
3373 * to this function when the hook was registered.
3374 *
3375 * Note that any registered hooks registered here are guaranteed to be called
3376 * if pre-change hooks have been.
3377 */
3378void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3379 *opaque);
bd7d00fc 3380
3d74e2e9
RH
3381/**
3382 * arm_rebuild_hflags:
3383 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3384 */
3385void arm_rebuild_hflags(CPUARMState *env);
3386
9a2b5256
RH
3387/**
3388 * aa32_vfp_dreg:
3389 * Return a pointer to the Dn register within env in 32-bit mode.
3390 */
3391static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3392{
c39c2b90 3393 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3394}
3395
3396/**
3397 * aa32_vfp_qreg:
3398 * Return a pointer to the Qn register within env in 32-bit mode.
3399 */
3400static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3401{
c39c2b90 3402 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3403}
3404
3405/**
3406 * aa64_vfp_qreg:
3407 * Return a pointer to the Qn register within env in 64-bit mode.
3408 */
3409static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3410{
c39c2b90 3411 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3412}
3413
028e2a7b
RH
3414/* Shared between translate-sve.c and sve_helper.c. */
3415extern const uint64_t pred_esz_masks[4];
3416
962fcbf2
RH
3417/*
3418 * 32-bit feature tests via id registers.
3419 */
7e0cf8b4
RH
3420static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3421{
3422 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3423}
3424
3425static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3426{
3427 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3428}
3429
09cbd501
RH
3430static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3431{
3432 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3433}
3434
962fcbf2
RH
3435static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3436{
3437 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3438}
3439
3440static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3441{
3442 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3443}
3444
3445static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3446{
3447 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3448}
3449
3450static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3451{
3452 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3453}
3454
3455static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3456{
3457 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3458}
3459
3460static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3461{
3462 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3463}
3464
3465static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3466{
3467 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3468}
3469
6c1f6f27
RH
3470static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3471{
3472 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3473}
3474
962fcbf2
RH
3475static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3476{
3477 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3478}
3479
87732318
RH
3480static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3481{
3482 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3483}
3484
9888bd1e
RH
3485static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3486{
3487 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3488}
3489
cb570bd3
RH
3490static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3491{
3492 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3493}
3494
5763190f
RH
3495static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3496{
3497 /*
3498 * This is a placeholder for use by VCMA until the rest of
3499 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3500 * At which point we can properly set and check MVFR1.FPHP.
3501 */
3502 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3503}
3504
b3ff4b87
PM
3505static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3506{
3507 /* Return true if D16-D31 are implemented */
3508 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3509}
3510
266bd25c
PM
3511static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3512{
3513 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3514}
3515
1120827f
PM
3516static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3517{
3518 /* Return true if CPU supports double precision floating point */
3519 return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3520}
3521
602f6e42
PM
3522/*
3523 * We always set the FP and SIMD FP16 fields to indicate identical
3524 * levels of support (assuming SIMD is implemented at all), so
3525 * we only need one set of accessors.
3526 */
3527static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3528{
3529 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3530}
3531
3532static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3533{
3534 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3535}
3536
c0c760af
PM
3537static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3538{
3539 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3540}
3541
3542static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3543{
3544 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3545}
3546
3547static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3548{
3549 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3550}
3551
3552static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3553{
3554 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3555}
3556
962fcbf2
RH
3557/*
3558 * 64-bit feature tests via id registers.
3559 */
3560static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3561{
3562 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3563}
3564
3565static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3566{
3567 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3568}
3569
3570static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3571{
3572 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3573}
3574
3575static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3576{
3577 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3578}
3579
3580static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3581{
3582 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3583}
3584
3585static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3586{
3587 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3588}
3589
3590static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3591{
3592 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3593}
3594
3595static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3596{
3597 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3598}
3599
3600static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3601{
3602 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3603}
3604
3605static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3606{
3607 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3608}
3609
3610static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3611{
3612 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3613}
3614
3615static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3616{
3617 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3618}
3619
0caa5af8
RH
3620static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3621{
3622 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3623}
3624
b89d9c98
RH
3625static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3626{
3627 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3628}
3629
5ef84f11
RH
3630static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3631{
3632 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3633}
3634
de390645
RH
3635static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3636{
3637 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3638}
3639
6c1f6f27
RH
3640static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3641{
3642 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3643}
3644
962fcbf2
RH
3645static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3646{
3647 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3648}
3649
991ad91b
RH
3650static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3651{
3652 /*
3653 * Note that while QEMU will only implement the architected algorithm
3654 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3655 * defined algorithms, and thus API+GPI, and this predicate controls
3656 * migration of the 128-bit keys.
3657 */
3658 return (id->id_aa64isar1 &
3659 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3660 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3661 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3662 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3663}
3664
9888bd1e
RH
3665static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3666{
3667 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3668}
3669
cb570bd3
RH
3670static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3671{
3672 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3673}
3674
6bea2563
RH
3675static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3676{
3677 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3678}
3679
0d57b499
BM
3680static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3681{
3682 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3683}
3684
3685static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3686{
3687 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3688}
3689
5763190f
RH
3690static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3691{
3692 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3693 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3694}
3695
0f8d06f1
RH
3696static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3697{
3698 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3699}
3700
cd208a1c
RH
3701static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3702{
3703 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3704}
3705
8fc2ea21
RH
3706static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3707{
3708 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3709}
3710
2d7137c1
RH
3711static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3712{
3713 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3714}
3715
be53b6f4
RH
3716static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3717{
3718 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3719}
3720
962fcbf2
RH
3721/*
3722 * Forward to the above feature tests given an ARMCPU pointer.
3723 */
3724#define cpu_isar_feature(name, cpu) \
3725 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3726
2c0262af 3727#endif