]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
arm: add MPU support to M profile CPUs
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
6b4c305c 42#include "fpu/softfloat.h"
53cd6637 43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 53#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 54#define EXCP_HYP_TRAP 12
e0d6e6a5 55#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
56#define EXCP_VIRQ 14
57#define EXCP_VFIQ 15
19a6e31c 58#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 59#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 60#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
2c4a7cc5 61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
62
63#define ARMV7M_EXCP_RESET 1
64#define ARMV7M_EXCP_NMI 2
65#define ARMV7M_EXCP_HARD 3
66#define ARMV7M_EXCP_MEM 4
67#define ARMV7M_EXCP_BUS 5
68#define ARMV7M_EXCP_USAGE 6
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
403946c0
RH
74/* ARM-specific interrupt pending bits. */
75#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
76#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
77#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 78
e4fe830b
PM
79/* The usual mapping for an AArch64 system register to its AArch32
80 * counterpart is for the 32 bit world to have access to the lower
81 * half only (with writes leaving the upper half untouched). It's
82 * therefore useful to be able to pass TCG the offset of the least
83 * significant half of a uint64_t struct member.
84 */
85#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 86#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 87#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
88#else
89#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 90#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
91#endif
92
136e67e9 93/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
94#define ARM_CPU_IRQ 0
95#define ARM_CPU_FIQ 1
136e67e9
EI
96#define ARM_CPU_VIRQ 2
97#define ARM_CPU_VFIQ 3
403946c0 98
c1e37810 99#define NB_MMU_MODES 7
aaa1f954
EI
100/* ARM-specific extra insn start words:
101 * 1: Conditional execution bits
102 * 2: Partial exception syndrome for data aborts
103 */
104#define TARGET_INSN_START_EXTRA_WORDS 2
105
106/* The 2nd extra word holding syndrome info for data aborts does not use
107 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
108 * help the sleb128 encoder do a better job.
109 * When restoring the CPU state, we shift it back up.
110 */
111#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
112#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 113
b7bcbe95
FB
114/* We currently assume float and double are IEEE single and double
115 precision respectively.
116 Doing runtime conversions is tricky because VFP registers may contain
117 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
118 s<2n> maps to the least significant half of d<n>
119 s<2n+1> maps to the most significant half of d<n>
120 */
b7bcbe95 121
55d284af
PM
122/* CPU state for each instance of a generic timer (in cp15 c14) */
123typedef struct ARMGenericTimer {
124 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 125 uint64_t ctl; /* Timer Control register */
55d284af
PM
126} ARMGenericTimer;
127
128#define GTIMER_PHYS 0
129#define GTIMER_VIRT 1
b0e66d95 130#define GTIMER_HYP 2
b4d3978c
PM
131#define GTIMER_SEC 3
132#define NUM_GTIMERS 4
55d284af 133
11f136ee
FA
134typedef struct {
135 uint64_t raw_tcr;
136 uint32_t mask;
137 uint32_t base_mask;
138} TCR;
139
2c0262af 140typedef struct CPUARMState {
b5ff1b31 141 /* Regs for current mode. */
2c0262af 142 uint32_t regs[16];
3926cc84
AG
143
144 /* 32/64 switch only happens when taking and returning from
145 * exceptions so the overlap semantics are taken care of then
146 * instead of having a complicated union.
147 */
148 /* Regs for A64 mode. */
149 uint64_t xregs[32];
150 uint64_t pc;
d356312f
PM
151 /* PSTATE isn't an architectural register for ARMv8. However, it is
152 * convenient for us to assemble the underlying state into a 32 bit format
153 * identical to the architectural format used for the SPSR. (This is also
154 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
155 * 'pstate' register are.) Of the PSTATE bits:
156 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
157 * semantics as for AArch32, as described in the comments on each field)
158 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 159 * DAIF (exception masks) are kept in env->daif
d356312f 160 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
161 */
162 uint32_t pstate;
163 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
164
b90372ad 165 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 166 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
167 the whole CPSR. */
168 uint32_t uncached_cpsr;
169 uint32_t spsr;
170
171 /* Banked registers. */
28c9457d 172 uint64_t banked_spsr[8];
0b7d409d
FA
173 uint32_t banked_r13[8];
174 uint32_t banked_r14[8];
3b46e624 175
b5ff1b31
FB
176 /* These hold r8-r12. */
177 uint32_t usr_regs[5];
178 uint32_t fiq_regs[5];
3b46e624 179
2c0262af
FB
180 /* cpsr flag cache for faster execution */
181 uint32_t CF; /* 0 or 1 */
182 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
183 uint32_t NF; /* N is bit 31. All other bits are undefined. */
184 uint32_t ZF; /* Z set if zero. */
99c475ab 185 uint32_t QF; /* 0 or 1 */
9ee6e8bb 186 uint32_t GE; /* cpsr[19:16] */
b26eefb6 187 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 188 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 189 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 190
1b174238 191 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 192 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 193
b5ff1b31
FB
194 /* System control coprocessor (cp15) */
195 struct {
40f137e1 196 uint32_t c0_cpuid;
b85a1fd6
FA
197 union { /* Cache size selection */
198 struct {
199 uint64_t _unused_csselr0;
200 uint64_t csselr_ns;
201 uint64_t _unused_csselr1;
202 uint64_t csselr_s;
203 };
204 uint64_t csselr_el[4];
205 };
137feaa9
FA
206 union { /* System control register. */
207 struct {
208 uint64_t _unused_sctlr;
209 uint64_t sctlr_ns;
210 uint64_t hsctlr;
211 uint64_t sctlr_s;
212 };
213 uint64_t sctlr_el[4];
214 };
7ebd5f2e 215 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 216 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 217 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 218 uint64_t sder; /* Secure debug enable register. */
77022576 219 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
220 union { /* MMU translation table base 0. */
221 struct {
222 uint64_t _unused_ttbr0_0;
223 uint64_t ttbr0_ns;
224 uint64_t _unused_ttbr0_1;
225 uint64_t ttbr0_s;
226 };
227 uint64_t ttbr0_el[4];
228 };
229 union { /* MMU translation table base 1. */
230 struct {
231 uint64_t _unused_ttbr1_0;
232 uint64_t ttbr1_ns;
233 uint64_t _unused_ttbr1_1;
234 uint64_t ttbr1_s;
235 };
236 uint64_t ttbr1_el[4];
237 };
b698e9cf 238 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
239 /* MMU translation table base control. */
240 TCR tcr_el[4];
68e9c2fe 241 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
242 uint32_t c2_data; /* MPU data cacheable bits. */
243 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
244 union { /* MMU domain access control register
245 * MPU write buffer control.
246 */
247 struct {
248 uint64_t dacr_ns;
249 uint64_t dacr_s;
250 };
251 struct {
252 uint64_t dacr32_el2;
253 };
254 };
7e09797c
PM
255 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
256 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 257 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 258 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
259 union { /* Fault status registers. */
260 struct {
261 uint64_t ifsr_ns;
262 uint64_t ifsr_s;
263 };
264 struct {
265 uint64_t ifsr32_el2;
266 };
267 };
4a7e2d73
FA
268 union {
269 struct {
270 uint64_t _unused_dfsr;
271 uint64_t dfsr_ns;
272 uint64_t hsr;
273 uint64_t dfsr_s;
274 };
275 uint64_t esr_el[4];
276 };
ce819861 277 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
278 union { /* Fault address registers. */
279 struct {
280 uint64_t _unused_far0;
281#ifdef HOST_WORDS_BIGENDIAN
282 uint32_t ifar_ns;
283 uint32_t dfar_ns;
284 uint32_t ifar_s;
285 uint32_t dfar_s;
286#else
287 uint32_t dfar_ns;
288 uint32_t ifar_ns;
289 uint32_t dfar_s;
290 uint32_t ifar_s;
291#endif
292 uint64_t _unused_far3;
293 };
294 uint64_t far_el[4];
295 };
59e05530 296 uint64_t hpfar_el2;
2a5a9abd 297 uint64_t hstr_el2;
01c097f7
FA
298 union { /* Translation result. */
299 struct {
300 uint64_t _unused_par_0;
301 uint64_t par_ns;
302 uint64_t _unused_par_1;
303 uint64_t par_s;
304 };
305 uint64_t par_el[4];
306 };
6cb0b013
PC
307
308 uint32_t c6_rgnr;
309
b5ff1b31
FB
310 uint32_t c9_insn; /* Cache lockdown registers. */
311 uint32_t c9_data;
8521466b
AF
312 uint64_t c9_pmcr; /* performance monitor control register */
313 uint64_t c9_pmcnten; /* perf monitor counter enables */
74594c9d 314 uint32_t c9_pmovsr; /* perf monitor overflow status */
74594c9d 315 uint32_t c9_pmuserenr; /* perf monitor user enable */
6b040780 316 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 317 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
318 union { /* Memory attribute redirection */
319 struct {
320#ifdef HOST_WORDS_BIGENDIAN
321 uint64_t _unused_mair_0;
322 uint32_t mair1_ns;
323 uint32_t mair0_ns;
324 uint64_t _unused_mair_1;
325 uint32_t mair1_s;
326 uint32_t mair0_s;
327#else
328 uint64_t _unused_mair_0;
329 uint32_t mair0_ns;
330 uint32_t mair1_ns;
331 uint64_t _unused_mair_1;
332 uint32_t mair0_s;
333 uint32_t mair1_s;
334#endif
335 };
336 uint64_t mair_el[4];
337 };
fb6c91ba
GB
338 union { /* vector base address register */
339 struct {
340 uint64_t _unused_vbar;
341 uint64_t vbar_ns;
342 uint64_t hvbar;
343 uint64_t vbar_s;
344 };
345 uint64_t vbar_el[4];
346 };
e89e51a1 347 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
348 struct { /* FCSE PID. */
349 uint32_t fcseidr_ns;
350 uint32_t fcseidr_s;
351 };
352 union { /* Context ID. */
353 struct {
354 uint64_t _unused_contextidr_0;
355 uint64_t contextidr_ns;
356 uint64_t _unused_contextidr_1;
357 uint64_t contextidr_s;
358 };
359 uint64_t contextidr_el[4];
360 };
361 union { /* User RW Thread register. */
362 struct {
363 uint64_t tpidrurw_ns;
364 uint64_t tpidrprw_ns;
365 uint64_t htpidr;
366 uint64_t _tpidr_el3;
367 };
368 uint64_t tpidr_el[4];
369 };
370 /* The secure banks of these registers don't map anywhere */
371 uint64_t tpidrurw_s;
372 uint64_t tpidrprw_s;
373 uint64_t tpidruro_s;
374
375 union { /* User RO Thread register. */
376 uint64_t tpidruro_ns;
377 uint64_t tpidrro_el[1];
378 };
a7adc4b7
PM
379 uint64_t c14_cntfrq; /* Counter Frequency register */
380 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 381 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 382 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 383 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 384 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
385 uint32_t c15_ticonfig; /* TI925T configuration byte. */
386 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
387 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
388 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
389 uint32_t c15_config_base_address; /* SCU base address. */
390 uint32_t c15_diagnostic; /* diagnostic register */
391 uint32_t c15_power_diagnostic;
392 uint32_t c15_power_control; /* power control */
0b45451e
PM
393 uint64_t dbgbvr[16]; /* breakpoint value registers */
394 uint64_t dbgbcr[16]; /* breakpoint control registers */
395 uint64_t dbgwvr[16]; /* watchpoint value registers */
396 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 397 uint64_t mdscr_el1;
1424ca8d 398 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 399 uint64_t mdcr_el2;
5513c3ab 400 uint64_t mdcr_el3;
7c2cb42b
AF
401 /* If the counter is enabled, this stores the last time the counter
402 * was reset. Otherwise it stores the counter value
403 */
c92c0687 404 uint64_t c15_ccnt;
8521466b 405 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 406 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 407 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 408 } cp15;
40f137e1 409
9ee6e8bb
PB
410 struct {
411 uint32_t other_sp;
412 uint32_t vecbase;
413 uint32_t basepri;
414 uint32_t control;
2c4da50d
PM
415 uint32_t ccr; /* Configuration and Control */
416 uint32_t cfsr; /* Configurable Fault Status */
417 uint32_t hfsr; /* HardFault Status */
418 uint32_t dfsr; /* Debug Fault Status Register */
419 uint32_t mmfar; /* MemManage Fault Address */
420 uint32_t bfar; /* BusFault Address */
29c483a5 421 unsigned mpu_ctrl; /* MPU_CTRL (some bits kept in sctlr_el[1]) */
9ee6e8bb 422 int exception;
9ee6e8bb
PB
423 } v7m;
424
abf1172f
PM
425 /* Information associated with an exception about to be taken:
426 * code which raises an exception must set cs->exception_index and
427 * the relevant parts of this structure; the cpu_do_interrupt function
428 * will then set the guest-visible registers as part of the exception
429 * entry process.
430 */
431 struct {
432 uint32_t syndrome; /* AArch64 format syndrome register */
433 uint32_t fsr; /* AArch32 format fault status register info */
434 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 435 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
436 /* If we implement EL2 we will also need to store information
437 * about the intermediate physical address for stage 2 faults.
438 */
439 } exception;
440
fe1479c3
PB
441 /* Thumb-2 EE state. */
442 uint32_t teecr;
443 uint32_t teehbr;
444
b7bcbe95
FB
445 /* VFP coprocessor state. */
446 struct {
3926cc84
AG
447 /* VFP/Neon register state. Note that the mapping between S, D and Q
448 * views of the register bank differs between AArch64 and AArch32:
449 * In AArch32:
450 * Qn = regs[2n+1]:regs[2n]
451 * Dn = regs[n]
452 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
453 * (and regs[32] to regs[63] are inaccessible)
454 * In AArch64:
455 * Qn = regs[2n+1]:regs[2n]
456 * Dn = regs[2n]
457 * Sn = regs[2n] bits 31..0
458 * This corresponds to the architecturally defined mapping between
459 * the two execution states, and means we do not need to explicitly
460 * map these registers when changing states.
461 */
462 float64 regs[64];
b7bcbe95 463
40f137e1 464 uint32_t xregs[16];
b7bcbe95
FB
465 /* We store these fpcsr fields separately for convenience. */
466 int vec_len;
467 int vec_stride;
468
9ee6e8bb
PB
469 /* scratch space when Tn are not sufficient. */
470 uint32_t scratch[8];
3b46e624 471
3a492f3a
PM
472 /* fp_status is the "normal" fp status. standard_fp_status retains
473 * values corresponding to the ARM "Standard FPSCR Value", ie
474 * default-NaN, flush-to-zero, round-to-nearest and is used by
475 * any operations (generally Neon) which the architecture defines
476 * as controlled by the standard FPSCR value rather than the FPSCR.
477 *
478 * To avoid having to transfer exception bits around, we simply
479 * say that the FPSCR cumulative exception flags are the logical
480 * OR of the flags in the two fp statuses. This relies on the
481 * only thing which needs to read the exception flags being
482 * an explicit FPSCR read.
483 */
53cd6637 484 float_status fp_status;
3a492f3a 485 float_status standard_fp_status;
b7bcbe95 486 } vfp;
03d05e2d
PM
487 uint64_t exclusive_addr;
488 uint64_t exclusive_val;
489 uint64_t exclusive_high;
b7bcbe95 490
18c9b560
AZ
491 /* iwMMXt coprocessor state. */
492 struct {
493 uint64_t regs[16];
494 uint64_t val;
495
496 uint32_t cregs[16];
497 } iwmmxt;
498
ce4defa0
PB
499#if defined(CONFIG_USER_ONLY)
500 /* For usermode syscall translation. */
501 int eabi;
502#endif
503
46747d15 504 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
505 struct CPUWatchpoint *cpu_watchpoint[16];
506
1f5c00cf
AB
507 /* Fields up to this point are cleared by a CPU reset */
508 struct {} end_reset_fields;
509
a316d335
FB
510 CPU_COMMON
511
1f5c00cf 512 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 513
581be094 514 /* Internal CPU feature flags. */
918f5dca 515 uint64_t features;
581be094 516
6cb0b013
PC
517 /* PMSAv7 MPU */
518 struct {
519 uint32_t *drbar;
520 uint32_t *drsr;
521 uint32_t *dracr;
522 } pmsav7;
523
983fe826 524 void *nvic;
462a8bc6 525 const struct arm_boot_info *boot_info;
d3a3e529
VK
526 /* Store GICv3CPUState to access from this struct */
527 void *gicv3state;
2c0262af
FB
528} CPUARMState;
529
bd7d00fc
PM
530/**
531 * ARMELChangeHook:
532 * type of a function which can be registered via arm_register_el_change_hook()
533 * to get callbacks when the CPU changes its exception level or mode.
534 */
535typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
536
062ba099
AB
537
538/* These values map onto the return values for
539 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
540typedef enum ARMPSCIState {
d5affb0d
AJ
541 PSCI_ON = 0,
542 PSCI_OFF = 1,
062ba099
AB
543 PSCI_ON_PENDING = 2
544} ARMPSCIState;
545
74e75564
PB
546/**
547 * ARMCPU:
548 * @env: #CPUARMState
549 *
550 * An ARM CPU core.
551 */
552struct ARMCPU {
553 /*< private >*/
554 CPUState parent_obj;
555 /*< public >*/
556
557 CPUARMState env;
558
559 /* Coprocessor information */
560 GHashTable *cp_regs;
561 /* For marshalling (mostly coprocessor) register state between the
562 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
563 * we use these arrays.
564 */
565 /* List of register indexes managed via these arrays; (full KVM style
566 * 64 bit indexes, not CPRegInfo 32 bit indexes)
567 */
568 uint64_t *cpreg_indexes;
569 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
570 uint64_t *cpreg_values;
571 /* Length of the indexes, values, reset_values arrays */
572 int32_t cpreg_array_len;
573 /* These are used only for migration: incoming data arrives in
574 * these fields and is sanity checked in post_load before copying
575 * to the working data structures above.
576 */
577 uint64_t *cpreg_vmstate_indexes;
578 uint64_t *cpreg_vmstate_values;
579 int32_t cpreg_vmstate_array_len;
580
581 /* Timers used by the generic (architected) timer */
582 QEMUTimer *gt_timer[NUM_GTIMERS];
583 /* GPIO outputs for generic timer */
584 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
585 /* GPIO output for GICv3 maintenance interrupt signal */
586 qemu_irq gicv3_maintenance_interrupt;
74e75564
PB
587
588 /* MemoryRegion to use for secure physical accesses */
589 MemoryRegion *secure_memory;
590
591 /* 'compatible' string for this CPU for Linux device trees */
592 const char *dtb_compatible;
593
594 /* PSCI version for this CPU
595 * Bits[31:16] = Major Version
596 * Bits[15:0] = Minor Version
597 */
598 uint32_t psci_version;
599
600 /* Should CPU start in PSCI powered-off state? */
601 bool start_powered_off;
062ba099
AB
602
603 /* Current power state, access guarded by BQL */
604 ARMPSCIState power_state;
605
c25bd18a
PM
606 /* CPU has virtualization extension */
607 bool has_el2;
74e75564
PB
608 /* CPU has security extension */
609 bool has_el3;
5c0a3819
SZ
610 /* CPU has PMU (Performance Monitor Unit) */
611 bool has_pmu;
74e75564
PB
612
613 /* CPU has memory protection unit */
614 bool has_mpu;
615 /* PMSAv7 MPU number of supported regions */
616 uint32_t pmsav7_dregion;
617
618 /* PSCI conduit used to invoke PSCI methods
619 * 0 - disabled, 1 - smc, 2 - hvc
620 */
621 uint32_t psci_conduit;
622
623 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
624 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
625 */
626 uint32_t kvm_target;
627
628 /* KVM init features for this CPU */
629 uint32_t kvm_init_features[7];
630
631 /* Uniprocessor system with MP extensions */
632 bool mp_is_up;
633
634 /* The instance init functions for implementation-specific subclasses
635 * set these fields to specify the implementation-dependent values of
636 * various constant registers and reset values of non-constant
637 * registers.
638 * Some of these might become QOM properties eventually.
639 * Field names match the official register names as defined in the
640 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
641 * is used for reset values of non-constant registers; no reset_
642 * prefix means a constant register.
643 */
644 uint32_t midr;
645 uint32_t revidr;
646 uint32_t reset_fpsid;
647 uint32_t mvfr0;
648 uint32_t mvfr1;
649 uint32_t mvfr2;
650 uint32_t ctr;
651 uint32_t reset_sctlr;
652 uint32_t id_pfr0;
653 uint32_t id_pfr1;
654 uint32_t id_dfr0;
655 uint32_t pmceid0;
656 uint32_t pmceid1;
657 uint32_t id_afr0;
658 uint32_t id_mmfr0;
659 uint32_t id_mmfr1;
660 uint32_t id_mmfr2;
661 uint32_t id_mmfr3;
662 uint32_t id_mmfr4;
663 uint32_t id_isar0;
664 uint32_t id_isar1;
665 uint32_t id_isar2;
666 uint32_t id_isar3;
667 uint32_t id_isar4;
668 uint32_t id_isar5;
669 uint64_t id_aa64pfr0;
670 uint64_t id_aa64pfr1;
671 uint64_t id_aa64dfr0;
672 uint64_t id_aa64dfr1;
673 uint64_t id_aa64afr0;
674 uint64_t id_aa64afr1;
675 uint64_t id_aa64isar0;
676 uint64_t id_aa64isar1;
677 uint64_t id_aa64mmfr0;
678 uint64_t id_aa64mmfr1;
679 uint32_t dbgdidr;
680 uint32_t clidr;
681 uint64_t mp_affinity; /* MP ID without feature bits */
682 /* The elements of this array are the CCSIDR values for each cache,
683 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
684 */
685 uint32_t ccsidr[16];
686 uint64_t reset_cbar;
687 uint32_t reset_auxcr;
688 bool reset_hivecs;
689 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
690 uint32_t dcz_blocksize;
691 uint64_t rvbar;
bd7d00fc 692
e45868a3
PM
693 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
694 int gic_num_lrs; /* number of list registers */
695 int gic_vpribits; /* number of virtual priority bits */
696 int gic_vprebits; /* number of virtual preemption bits */
697
3a062d57
JB
698 /* Whether the cfgend input is high (i.e. this CPU should reset into
699 * big-endian mode). This setting isn't used directly: instead it modifies
700 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
701 * architecture version.
702 */
703 bool cfgend;
704
bd7d00fc
PM
705 ARMELChangeHook *el_change_hook;
706 void *el_change_hook_opaque;
74e75564
PB
707};
708
709static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
710{
711 return container_of(env, ARMCPU, env);
712}
713
46de5913
IM
714uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
715
74e75564
PB
716#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
717
718#define ENV_OFFSET offsetof(ARMCPU, env)
719
720#ifndef CONFIG_USER_ONLY
721extern const struct VMStateDescription vmstate_arm_cpu;
722#endif
723
724void arm_cpu_do_interrupt(CPUState *cpu);
725void arm_v7m_cpu_do_interrupt(CPUState *cpu);
726bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
727
728void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
729 int flags);
730
731hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
732 MemTxAttrs *attrs);
733
734int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
735int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
736
737int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
738 int cpuid, void *opaque);
739int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
740 int cpuid, void *opaque);
741
742#ifdef TARGET_AARCH64
743int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
744int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
745#endif
778c3a06
AF
746
747ARMCPU *cpu_arm_init(const char *cpu_model);
faacc041 748target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
749void aarch64_sync_32_to_64(CPUARMState *env);
750void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 751
3926cc84
AG
752static inline bool is_a64(CPUARMState *env)
753{
754 return env->aarch64;
755}
756
2c0262af
FB
757/* you can call this signal handler from your SIGBUS and SIGSEGV
758 signal handlers to inform the virtual CPU of exceptions. non zero
759 is returned if the signal was handled by the virtual CPU. */
5fafdf24 760int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
761 void *puc);
762
ec7b4ce4
AF
763/**
764 * pmccntr_sync
765 * @env: CPUARMState
766 *
767 * Synchronises the counter in the PMCCNTR. This must always be called twice,
768 * once before any action that might affect the timer and again afterwards.
769 * The function is used to swap the state of the register if required.
770 * This only happens when not in user mode (!CONFIG_USER_ONLY)
771 */
772void pmccntr_sync(CPUARMState *env);
773
76e3e1bc
PM
774/* SCTLR bit meanings. Several bits have been reused in newer
775 * versions of the architecture; in that case we define constants
776 * for both old and new bit meanings. Code which tests against those
777 * bits should probably check or otherwise arrange that the CPU
778 * is the architectural version it expects.
779 */
780#define SCTLR_M (1U << 0)
781#define SCTLR_A (1U << 1)
782#define SCTLR_C (1U << 2)
783#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
784#define SCTLR_SA (1U << 3)
785#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
786#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
787#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
788#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
789#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
790#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
791#define SCTLR_ITD (1U << 7) /* v8 onward */
792#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
793#define SCTLR_SED (1U << 8) /* v8 onward */
794#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
795#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
796#define SCTLR_F (1U << 10) /* up to v6 */
797#define SCTLR_SW (1U << 10) /* v7 onward */
798#define SCTLR_Z (1U << 11)
799#define SCTLR_I (1U << 12)
800#define SCTLR_V (1U << 13)
801#define SCTLR_RR (1U << 14) /* up to v7 */
802#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
803#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
804#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
805#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
806#define SCTLR_nTWI (1U << 16) /* v8 onward */
807#define SCTLR_HA (1U << 17)
f6bda88f 808#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
809#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
810#define SCTLR_nTWE (1U << 18) /* v8 onward */
811#define SCTLR_WXN (1U << 19)
812#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
813#define SCTLR_UWXN (1U << 20) /* v7 onward */
814#define SCTLR_FI (1U << 21)
815#define SCTLR_U (1U << 22)
816#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
817#define SCTLR_VE (1U << 24) /* up to v7 */
818#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
819#define SCTLR_EE (1U << 25)
820#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
821#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
822#define SCTLR_NMFI (1U << 27)
823#define SCTLR_TRE (1U << 28)
824#define SCTLR_AFE (1U << 29)
825#define SCTLR_TE (1U << 30)
826
c6f19164
GB
827#define CPTR_TCPAC (1U << 31)
828#define CPTR_TTA (1U << 20)
829#define CPTR_TFP (1U << 10)
830
187f678d
PM
831#define MDCR_EPMAD (1U << 21)
832#define MDCR_EDAD (1U << 20)
833#define MDCR_SPME (1U << 17)
834#define MDCR_SDD (1U << 16)
a8d64e73 835#define MDCR_SPD (3U << 14)
187f678d
PM
836#define MDCR_TDRA (1U << 11)
837#define MDCR_TDOSA (1U << 10)
838#define MDCR_TDA (1U << 9)
839#define MDCR_TDE (1U << 8)
840#define MDCR_HPME (1U << 7)
841#define MDCR_TPM (1U << 6)
842#define MDCR_TPMCR (1U << 5)
843
a8d64e73
PM
844/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
845#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
846
78dbbbe4
PM
847#define CPSR_M (0x1fU)
848#define CPSR_T (1U << 5)
849#define CPSR_F (1U << 6)
850#define CPSR_I (1U << 7)
851#define CPSR_A (1U << 8)
852#define CPSR_E (1U << 9)
853#define CPSR_IT_2_7 (0xfc00U)
854#define CPSR_GE (0xfU << 16)
4051e12c
PM
855#define CPSR_IL (1U << 20)
856/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
857 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
858 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
859 * where it is live state but not accessible to the AArch32 code.
860 */
861#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
862#define CPSR_J (1U << 24)
863#define CPSR_IT_0_1 (3U << 25)
864#define CPSR_Q (1U << 27)
865#define CPSR_V (1U << 28)
866#define CPSR_C (1U << 29)
867#define CPSR_Z (1U << 30)
868#define CPSR_N (1U << 31)
9ee6e8bb 869#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 870#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
871
872#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
873#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
874 | CPSR_NZCV)
9ee6e8bb
PB
875/* Bits writable in user mode. */
876#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
877/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
878#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
879/* Mask of bits which may be set by exception return copying them from SPSR */
880#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 881
e389be16
FA
882#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
883#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
884#define TTBCR_PD0 (1U << 4)
885#define TTBCR_PD1 (1U << 5)
886#define TTBCR_EPD0 (1U << 7)
887#define TTBCR_IRGN0 (3U << 8)
888#define TTBCR_ORGN0 (3U << 10)
889#define TTBCR_SH0 (3U << 12)
890#define TTBCR_T1SZ (3U << 16)
891#define TTBCR_A1 (1U << 22)
892#define TTBCR_EPD1 (1U << 23)
893#define TTBCR_IRGN1 (3U << 24)
894#define TTBCR_ORGN1 (3U << 26)
895#define TTBCR_SH1 (1U << 28)
896#define TTBCR_EAE (1U << 31)
897
d356312f
PM
898/* Bit definitions for ARMv8 SPSR (PSTATE) format.
899 * Only these are valid when in AArch64 mode; in
900 * AArch32 mode SPSRs are basically CPSR-format.
901 */
f502cfc2 902#define PSTATE_SP (1U)
d356312f
PM
903#define PSTATE_M (0xFU)
904#define PSTATE_nRW (1U << 4)
905#define PSTATE_F (1U << 6)
906#define PSTATE_I (1U << 7)
907#define PSTATE_A (1U << 8)
908#define PSTATE_D (1U << 9)
909#define PSTATE_IL (1U << 20)
910#define PSTATE_SS (1U << 21)
911#define PSTATE_V (1U << 28)
912#define PSTATE_C (1U << 29)
913#define PSTATE_Z (1U << 30)
914#define PSTATE_N (1U << 31)
915#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
916#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
917#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
918/* Mode values for AArch64 */
919#define PSTATE_MODE_EL3h 13
920#define PSTATE_MODE_EL3t 12
921#define PSTATE_MODE_EL2h 9
922#define PSTATE_MODE_EL2t 8
923#define PSTATE_MODE_EL1h 5
924#define PSTATE_MODE_EL1t 4
925#define PSTATE_MODE_EL0t 0
926
9e729b57
EI
927/* Map EL and handler into a PSTATE_MODE. */
928static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
929{
930 return (el << 2) | handler;
931}
932
d356312f
PM
933/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
934 * interprocessing, so we don't attempt to sync with the cpsr state used by
935 * the 32 bit decoder.
936 */
937static inline uint32_t pstate_read(CPUARMState *env)
938{
939 int ZF;
940
941 ZF = (env->ZF == 0);
942 return (env->NF & 0x80000000) | (ZF << 30)
943 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 944 | env->pstate | env->daif;
d356312f
PM
945}
946
947static inline void pstate_write(CPUARMState *env, uint32_t val)
948{
949 env->ZF = (~val) & PSTATE_Z;
950 env->NF = val;
951 env->CF = (val >> 29) & 1;
952 env->VF = (val << 3) & 0x80000000;
4cc35614 953 env->daif = val & PSTATE_DAIF;
d356312f
PM
954 env->pstate = val & ~CACHED_PSTATE_BITS;
955}
956
b5ff1b31 957/* Return the current CPSR value. */
2f4a40e5 958uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
959
960typedef enum CPSRWriteType {
961 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
962 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
963 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
964 CPSRWriteByGDBStub = 3, /* from the GDB stub */
965} CPSRWriteType;
966
967/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
968void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
969 CPSRWriteType write_type);
9ee6e8bb
PB
970
971/* Return the current xPSR value. */
972static inline uint32_t xpsr_read(CPUARMState *env)
973{
974 int ZF;
6fbe23d5
PB
975 ZF = (env->ZF == 0);
976 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
977 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
978 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
979 | ((env->condexec_bits & 0xfc) << 8)
980 | env->v7m.exception;
b5ff1b31
FB
981}
982
9ee6e8bb
PB
983/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
984static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
985{
9ee6e8bb 986 if (mask & CPSR_NZCV) {
6fbe23d5
PB
987 env->ZF = (~val) & CPSR_Z;
988 env->NF = val;
9ee6e8bb
PB
989 env->CF = (val >> 29) & 1;
990 env->VF = (val << 3) & 0x80000000;
991 }
992 if (mask & CPSR_Q)
993 env->QF = ((val & CPSR_Q) != 0);
994 if (mask & (1 << 24))
995 env->thumb = ((val & (1 << 24)) != 0);
996 if (mask & CPSR_IT_0_1) {
997 env->condexec_bits &= ~3;
998 env->condexec_bits |= (val >> 25) & 3;
999 }
1000 if (mask & CPSR_IT_2_7) {
1001 env->condexec_bits &= 3;
1002 env->condexec_bits |= (val >> 8) & 0xfc;
1003 }
1004 if (mask & 0x1ff) {
1005 env->v7m.exception = val & 0x1ff;
1006 }
1007}
1008
f149e3e8
EI
1009#define HCR_VM (1ULL << 0)
1010#define HCR_SWIO (1ULL << 1)
1011#define HCR_PTW (1ULL << 2)
1012#define HCR_FMO (1ULL << 3)
1013#define HCR_IMO (1ULL << 4)
1014#define HCR_AMO (1ULL << 5)
1015#define HCR_VF (1ULL << 6)
1016#define HCR_VI (1ULL << 7)
1017#define HCR_VSE (1ULL << 8)
1018#define HCR_FB (1ULL << 9)
1019#define HCR_BSU_MASK (3ULL << 10)
1020#define HCR_DC (1ULL << 12)
1021#define HCR_TWI (1ULL << 13)
1022#define HCR_TWE (1ULL << 14)
1023#define HCR_TID0 (1ULL << 15)
1024#define HCR_TID1 (1ULL << 16)
1025#define HCR_TID2 (1ULL << 17)
1026#define HCR_TID3 (1ULL << 18)
1027#define HCR_TSC (1ULL << 19)
1028#define HCR_TIDCP (1ULL << 20)
1029#define HCR_TACR (1ULL << 21)
1030#define HCR_TSW (1ULL << 22)
1031#define HCR_TPC (1ULL << 23)
1032#define HCR_TPU (1ULL << 24)
1033#define HCR_TTLB (1ULL << 25)
1034#define HCR_TVM (1ULL << 26)
1035#define HCR_TGE (1ULL << 27)
1036#define HCR_TDZ (1ULL << 28)
1037#define HCR_HCD (1ULL << 29)
1038#define HCR_TRVM (1ULL << 30)
1039#define HCR_RW (1ULL << 31)
1040#define HCR_CD (1ULL << 32)
1041#define HCR_ID (1ULL << 33)
1042#define HCR_MASK ((1ULL << 34) - 1)
1043
64e0e2de
EI
1044#define SCR_NS (1U << 0)
1045#define SCR_IRQ (1U << 1)
1046#define SCR_FIQ (1U << 2)
1047#define SCR_EA (1U << 3)
1048#define SCR_FW (1U << 4)
1049#define SCR_AW (1U << 5)
1050#define SCR_NET (1U << 6)
1051#define SCR_SMD (1U << 7)
1052#define SCR_HCE (1U << 8)
1053#define SCR_SIF (1U << 9)
1054#define SCR_RW (1U << 10)
1055#define SCR_ST (1U << 11)
1056#define SCR_TWI (1U << 12)
1057#define SCR_TWE (1U << 13)
1058#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1059#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1060
01653295
PM
1061/* Return the current FPSCR value. */
1062uint32_t vfp_get_fpscr(CPUARMState *env);
1063void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1064
f903fa22
PM
1065/* For A64 the FPSCR is split into two logically distinct registers,
1066 * FPCR and FPSR. However since they still use non-overlapping bits
1067 * we store the underlying state in fpscr and just mask on read/write.
1068 */
1069#define FPSR_MASK 0xf800009f
1070#define FPCR_MASK 0x07f79f00
1071static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1072{
1073 return vfp_get_fpscr(env) & FPSR_MASK;
1074}
1075
1076static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1077{
1078 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1079 vfp_set_fpscr(env, new_fpscr);
1080}
1081
1082static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1083{
1084 return vfp_get_fpscr(env) & FPCR_MASK;
1085}
1086
1087static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1088{
1089 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1090 vfp_set_fpscr(env, new_fpscr);
1091}
1092
b5ff1b31
FB
1093enum arm_cpu_mode {
1094 ARM_CPU_MODE_USR = 0x10,
1095 ARM_CPU_MODE_FIQ = 0x11,
1096 ARM_CPU_MODE_IRQ = 0x12,
1097 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1098 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1099 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1100 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1101 ARM_CPU_MODE_UND = 0x1b,
1102 ARM_CPU_MODE_SYS = 0x1f
1103};
1104
40f137e1
PB
1105/* VFP system registers. */
1106#define ARM_VFP_FPSID 0
1107#define ARM_VFP_FPSCR 1
a50c0f51 1108#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1109#define ARM_VFP_MVFR1 6
1110#define ARM_VFP_MVFR0 7
40f137e1
PB
1111#define ARM_VFP_FPEXC 8
1112#define ARM_VFP_FPINST 9
1113#define ARM_VFP_FPINST2 10
1114
18c9b560
AZ
1115/* iwMMXt coprocessor control registers. */
1116#define ARM_IWMMXT_wCID 0
1117#define ARM_IWMMXT_wCon 1
1118#define ARM_IWMMXT_wCSSF 2
1119#define ARM_IWMMXT_wCASF 3
1120#define ARM_IWMMXT_wCGR0 8
1121#define ARM_IWMMXT_wCGR1 9
1122#define ARM_IWMMXT_wCGR2 10
1123#define ARM_IWMMXT_wCGR3 11
1124
2c4da50d
PM
1125/* V7M CCR bits */
1126FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1127FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1128FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1129FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1130FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1131FIELD(V7M_CCR, STKALIGN, 9, 1)
1132FIELD(V7M_CCR, DC, 16, 1)
1133FIELD(V7M_CCR, IC, 17, 1)
1134
1135/* V7M CFSR bits for MMFSR */
1136FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1137FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1138FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1139FIELD(V7M_CFSR, MSTKERR, 4, 1)
1140FIELD(V7M_CFSR, MLSPERR, 5, 1)
1141FIELD(V7M_CFSR, MMARVALID, 7, 1)
1142
1143/* V7M CFSR bits for BFSR */
1144FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1145FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1146FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1147FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1148FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1149FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1150FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1151
1152/* V7M CFSR bits for UFSR */
1153FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1154FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1155FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1156FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1157FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1158FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1159
1160/* V7M HFSR bits */
1161FIELD(V7M_HFSR, VECTTBL, 1, 1)
1162FIELD(V7M_HFSR, FORCED, 30, 1)
1163FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1164
1165/* V7M DFSR bits */
1166FIELD(V7M_DFSR, HALTED, 0, 1)
1167FIELD(V7M_DFSR, BKPT, 1, 1)
1168FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1169FIELD(V7M_DFSR, VCATCH, 3, 1)
1170FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1171
29c483a5
MD
1172/* v7M MPU_CTRL bits */
1173FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1174FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1175FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1176
ce854d7c
BC
1177/* If adding a feature bit which corresponds to a Linux ELF
1178 * HWCAP bit, remember to update the feature-bit-to-hwcap
1179 * mapping in linux-user/elfload.c:get_elf_hwcap().
1180 */
40f137e1
PB
1181enum arm_features {
1182 ARM_FEATURE_VFP,
c1713132
AZ
1183 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1184 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1185 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1186 ARM_FEATURE_V6,
1187 ARM_FEATURE_V6K,
1188 ARM_FEATURE_V7,
1189 ARM_FEATURE_THUMB2,
452a0955 1190 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1191 ARM_FEATURE_VFP3,
60011498 1192 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1193 ARM_FEATURE_NEON,
47789990 1194 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 1195 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1196 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1197 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
1198 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1199 ARM_FEATURE_V4T,
1200 ARM_FEATURE_V5,
5bc95aa2 1201 ARM_FEATURE_STRONGARM,
906879a9 1202 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 1203 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 1204 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1205 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1206 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1207 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1208 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1209 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1210 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1211 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1212 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1213 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1214 ARM_FEATURE_V8,
3926cc84 1215 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 1216 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 1217 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1218 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1219 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1220 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1221 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
1222 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1223 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 1224 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 1225 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1226 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1227 ARM_FEATURE_VBAR, /* has cp15 VBAR */
40f137e1
PB
1228};
1229
1230static inline int arm_feature(CPUARMState *env, int feature)
1231{
918f5dca 1232 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1233}
1234
19e0fefa
FA
1235#if !defined(CONFIG_USER_ONLY)
1236/* Return true if exception levels below EL3 are in secure state,
1237 * or would be following an exception return to that level.
1238 * Unlike arm_is_secure() (which is always a question about the
1239 * _current_ state of the CPU) this doesn't care about the current
1240 * EL or mode.
1241 */
1242static inline bool arm_is_secure_below_el3(CPUARMState *env)
1243{
1244 if (arm_feature(env, ARM_FEATURE_EL3)) {
1245 return !(env->cp15.scr_el3 & SCR_NS);
1246 } else {
6b7f0b61 1247 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1248 * defined, in which case QEMU defaults to non-secure.
1249 */
1250 return false;
1251 }
1252}
1253
71205876
PM
1254/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1255static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1256{
1257 if (arm_feature(env, ARM_FEATURE_EL3)) {
1258 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1259 /* CPU currently in AArch64 state and EL3 */
1260 return true;
1261 } else if (!is_a64(env) &&
1262 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1263 /* CPU currently in AArch32 state and monitor mode */
1264 return true;
1265 }
1266 }
71205876
PM
1267 return false;
1268}
1269
1270/* Return true if the processor is in secure state */
1271static inline bool arm_is_secure(CPUARMState *env)
1272{
1273 if (arm_is_el3_or_mon(env)) {
1274 return true;
1275 }
19e0fefa
FA
1276 return arm_is_secure_below_el3(env);
1277}
1278
1279#else
1280static inline bool arm_is_secure_below_el3(CPUARMState *env)
1281{
1282 return false;
1283}
1284
1285static inline bool arm_is_secure(CPUARMState *env)
1286{
1287 return false;
1288}
1289#endif
1290
1f79ee32
PM
1291/* Return true if the specified exception level is running in AArch64 state. */
1292static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1293{
446c81ab
PM
1294 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1295 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1296 */
446c81ab
PM
1297 assert(el >= 1 && el <= 3);
1298 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1299
446c81ab
PM
1300 /* The highest exception level is always at the maximum supported
1301 * register width, and then lower levels have a register width controlled
1302 * by bits in the SCR or HCR registers.
1f79ee32 1303 */
446c81ab
PM
1304 if (el == 3) {
1305 return aa64;
1306 }
1307
1308 if (arm_feature(env, ARM_FEATURE_EL3)) {
1309 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1310 }
1311
1312 if (el == 2) {
1313 return aa64;
1314 }
1315
1316 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1317 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1318 }
1319
1320 return aa64;
1f79ee32
PM
1321}
1322
3f342b9e
SF
1323/* Function for determing whether guest cp register reads and writes should
1324 * access the secure or non-secure bank of a cp register. When EL3 is
1325 * operating in AArch32 state, the NS-bit determines whether the secure
1326 * instance of a cp register should be used. When EL3 is AArch64 (or if
1327 * it doesn't exist at all) then there is no register banking, and all
1328 * accesses are to the non-secure version.
1329 */
1330static inline bool access_secure_reg(CPUARMState *env)
1331{
1332 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1333 !arm_el_is_aa64(env, 3) &&
1334 !(env->cp15.scr_el3 & SCR_NS));
1335
1336 return ret;
1337}
1338
ea30a4b8
FA
1339/* Macros for accessing a specified CP register bank */
1340#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1341 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1342
1343#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1344 do { \
1345 if (_secure) { \
1346 (_env)->cp15._regname##_s = (_val); \
1347 } else { \
1348 (_env)->cp15._regname##_ns = (_val); \
1349 } \
1350 } while (0)
1351
1352/* Macros for automatically accessing a specific CP register bank depending on
1353 * the current secure state of the system. These macros are not intended for
1354 * supporting instruction translation reads/writes as these are dependent
1355 * solely on the SCR.NS bit and not the mode.
1356 */
1357#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1358 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1359 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1360
1361#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1362 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1363 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1364 (_val))
1365
9a78eead 1366void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1367uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1368 uint32_t cur_el, bool secure);
40f137e1 1369
9ee6e8bb 1370/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1371#ifndef CONFIG_USER_ONLY
1372bool armv7m_nvic_can_take_pending_exception(void *opaque);
1373#else
1374static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1375{
1376 return true;
1377}
1378#endif
9ee6e8bb 1379void armv7m_nvic_set_pending(void *opaque, int irq);
a5d82355 1380void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1381/**
1382 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1383 * @opaque: the NVIC
1384 * @irq: the exception number to complete
1385 *
1386 * Returns: -1 if the irq was not active
1387 * 1 if completing this irq brought us back to base (no active irqs)
1388 * 0 if there is still an irq active after this one was completed
1389 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1390 */
1391int armv7m_nvic_complete_irq(void *opaque, int irq);
9ee6e8bb 1392
4b6a83fb
PM
1393/* Interface for defining coprocessor registers.
1394 * Registers are defined in tables of arm_cp_reginfo structs
1395 * which are passed to define_arm_cp_regs().
1396 */
1397
1398/* When looking up a coprocessor register we look for it
1399 * via an integer which encodes all of:
1400 * coprocessor number
1401 * Crn, Crm, opc1, opc2 fields
1402 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1403 * or via MRRC/MCRR?)
51a79b03 1404 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1405 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1406 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1407 * For AArch64, there is no 32/64 bit size distinction;
1408 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1409 * and 4 bit CRn and CRm. The encoding patterns are chosen
1410 * to be easy to convert to and from the KVM encodings, and also
1411 * so that the hashtable can contain both AArch32 and AArch64
1412 * registers (to allow for interprocessing where we might run
1413 * 32 bit code on a 64 bit core).
4b6a83fb 1414 */
f5a0a5a5
PM
1415/* This bit is private to our hashtable cpreg; in KVM register
1416 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1417 * in the upper bits of the 64 bit ID.
1418 */
1419#define CP_REG_AA64_SHIFT 28
1420#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1421
51a79b03
PM
1422/* To enable banking of coprocessor registers depending on ns-bit we
1423 * add a bit to distinguish between secure and non-secure cpregs in the
1424 * hashtable.
1425 */
1426#define CP_REG_NS_SHIFT 29
1427#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1428
1429#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1430 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1431 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1432
f5a0a5a5
PM
1433#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1434 (CP_REG_AA64_MASK | \
1435 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1436 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1437 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1438 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1439 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1440 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1441
721fae12
PM
1442/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1443 * version used as a key for the coprocessor register hashtable
1444 */
1445static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1446{
1447 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1448 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1449 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1450 } else {
1451 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1452 cpregid |= (1 << 15);
1453 }
1454
1455 /* KVM is always non-secure so add the NS flag on AArch32 register
1456 * entries.
1457 */
1458 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1459 }
1460 return cpregid;
1461}
1462
1463/* Convert a truncated 32 bit hashtable key into the full
1464 * 64 bit KVM register ID.
1465 */
1466static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1467{
f5a0a5a5
PM
1468 uint64_t kvmid;
1469
1470 if (cpregid & CP_REG_AA64_MASK) {
1471 kvmid = cpregid & ~CP_REG_AA64_MASK;
1472 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1473 } else {
f5a0a5a5
PM
1474 kvmid = cpregid & ~(1 << 15);
1475 if (cpregid & (1 << 15)) {
1476 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1477 } else {
1478 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1479 }
721fae12
PM
1480 }
1481 return kvmid;
1482}
1483
4b6a83fb
PM
1484/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1485 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1486 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1487 * TCG can assume the value to be constant (ie load at translate time)
1488 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1489 * indicates that the TB should not be ended after a write to this register
1490 * (the default is that the TB ends after cp writes). OVERRIDE permits
1491 * a register definition to override a previous definition for the
1492 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1493 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1494 * ALIAS indicates that this register is an alias view of some underlying
1495 * state which is also visible via another register, and that the other
b061a82b
SF
1496 * register is handling migration and reset; registers marked ALIAS will not be
1497 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1498 * NO_RAW indicates that this register has no underlying state and does not
1499 * support raw access for state saving/loading; it will not be used for either
1500 * migration or KVM state synchronization. (Typically this is for "registers"
1501 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1502 * IO indicates that this register does I/O and therefore its accesses
1503 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1504 * registers which implement clocks or timers require this.
4b6a83fb
PM
1505 */
1506#define ARM_CP_SPECIAL 1
1507#define ARM_CP_CONST 2
1508#define ARM_CP_64BIT 4
1509#define ARM_CP_SUPPRESS_TB_END 8
1510#define ARM_CP_OVERRIDE 16
7a0e58fa 1511#define ARM_CP_ALIAS 32
2452731c 1512#define ARM_CP_IO 64
7a0e58fa 1513#define ARM_CP_NO_RAW 128
4b6a83fb
PM
1514#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1515#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 1516#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98 1517#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
aca3f40b
PM
1518#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1519#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
4b6a83fb
PM
1520/* Used only as a terminator for ARMCPRegInfo lists */
1521#define ARM_CP_SENTINEL 0xffff
1522/* Mask of only the flag bits in a type field */
7a0e58fa 1523#define ARM_CP_FLAG_MASK 0xff
4b6a83fb 1524
f5a0a5a5
PM
1525/* Valid values for ARMCPRegInfo state field, indicating which of
1526 * the AArch32 and AArch64 execution states this register is visible in.
1527 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1528 * If the reginfo is declared to be visible in both states then a second
1529 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1530 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1531 * Note that we rely on the values of these enums as we iterate through
1532 * the various states in some places.
1533 */
1534enum {
1535 ARM_CP_STATE_AA32 = 0,
1536 ARM_CP_STATE_AA64 = 1,
1537 ARM_CP_STATE_BOTH = 2,
1538};
1539
c3e30260
FA
1540/* ARM CP register secure state flags. These flags identify security state
1541 * attributes for a given CP register entry.
1542 * The existence of both or neither secure and non-secure flags indicates that
1543 * the register has both a secure and non-secure hash entry. A single one of
1544 * these flags causes the register to only be hashed for the specified
1545 * security state.
1546 * Although definitions may have any combination of the S/NS bits, each
1547 * registered entry will only have one to identify whether the entry is secure
1548 * or non-secure.
1549 */
1550enum {
1551 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1552 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1553};
1554
4b6a83fb
PM
1555/* Return true if cptype is a valid type field. This is used to try to
1556 * catch errors where the sentinel has been accidentally left off the end
1557 * of a list of registers.
1558 */
1559static inline bool cptype_valid(int cptype)
1560{
1561 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1562 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 1563 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
1564}
1565
1566/* Access rights:
1567 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1568 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1569 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1570 * (ie any of the privileged modes in Secure state, or Monitor mode).
1571 * If a register is accessible in one privilege level it's always accessible
1572 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1573 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1574 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1575 * terminology a little and call this PL3.
f5a0a5a5
PM
1576 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1577 * with the ELx exception levels.
4b6a83fb
PM
1578 *
1579 * If access permissions for a register are more complex than can be
1580 * described with these bits, then use a laxer set of restrictions, and
1581 * do the more restrictive/complex check inside a helper function.
1582 */
1583#define PL3_R 0x80
1584#define PL3_W 0x40
1585#define PL2_R (0x20 | PL3_R)
1586#define PL2_W (0x10 | PL3_W)
1587#define PL1_R (0x08 | PL2_R)
1588#define PL1_W (0x04 | PL2_W)
1589#define PL0_R (0x02 | PL1_R)
1590#define PL0_W (0x01 | PL1_W)
1591
1592#define PL3_RW (PL3_R | PL3_W)
1593#define PL2_RW (PL2_R | PL2_W)
1594#define PL1_RW (PL1_R | PL1_W)
1595#define PL0_RW (PL0_R | PL0_W)
1596
75502672
PM
1597/* Return the highest implemented Exception Level */
1598static inline int arm_highest_el(CPUARMState *env)
1599{
1600 if (arm_feature(env, ARM_FEATURE_EL3)) {
1601 return 3;
1602 }
1603 if (arm_feature(env, ARM_FEATURE_EL2)) {
1604 return 2;
1605 }
1606 return 1;
1607}
1608
dcbff19b
GB
1609/* Return the current Exception Level (as per ARMv8; note that this differs
1610 * from the ARMv7 Privilege Level).
1611 */
1612static inline int arm_current_el(CPUARMState *env)
4b6a83fb 1613{
6d54ed3c
PM
1614 if (arm_feature(env, ARM_FEATURE_M)) {
1615 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1616 }
1617
592125f8 1618 if (is_a64(env)) {
f5a0a5a5
PM
1619 return extract32(env->pstate, 2, 2);
1620 }
1621
592125f8
FA
1622 switch (env->uncached_cpsr & 0x1f) {
1623 case ARM_CPU_MODE_USR:
4b6a83fb 1624 return 0;
592125f8
FA
1625 case ARM_CPU_MODE_HYP:
1626 return 2;
1627 case ARM_CPU_MODE_MON:
1628 return 3;
1629 default:
1630 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1631 /* If EL3 is 32-bit then all secure privileged modes run in
1632 * EL3
1633 */
1634 return 3;
1635 }
1636
1637 return 1;
4b6a83fb 1638 }
4b6a83fb
PM
1639}
1640
1641typedef struct ARMCPRegInfo ARMCPRegInfo;
1642
f59df3f2
PM
1643typedef enum CPAccessResult {
1644 /* Access is permitted */
1645 CP_ACCESS_OK = 0,
1646 /* Access fails due to a configurable trap or enable which would
1647 * result in a categorized exception syndrome giving information about
1648 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
1649 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1650 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
1651 */
1652 CP_ACCESS_TRAP = 1,
1653 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1654 * Note that this is not a catch-all case -- the set of cases which may
1655 * result in this failure is specifically defined by the architecture.
1656 */
1657 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
1658 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1659 CP_ACCESS_TRAP_EL2 = 3,
1660 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
1661 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1662 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1663 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
1664 /* Access fails and results in an exception syndrome for an FP access,
1665 * trapped directly to EL2 or EL3
1666 */
1667 CP_ACCESS_TRAP_FP_EL2 = 7,
1668 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
1669} CPAccessResult;
1670
c4241c7d
PM
1671/* Access functions for coprocessor registers. These cannot fail and
1672 * may not raise exceptions.
1673 */
1674typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1675typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1676 uint64_t value);
f59df3f2 1677/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
1678typedef CPAccessResult CPAccessFn(CPUARMState *env,
1679 const ARMCPRegInfo *opaque,
1680 bool isread);
4b6a83fb
PM
1681/* Hook function for register reset */
1682typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1683
1684#define CP_ANY 0xff
1685
1686/* Definition of an ARM coprocessor register */
1687struct ARMCPRegInfo {
1688 /* Name of register (useful mainly for debugging, need not be unique) */
1689 const char *name;
1690 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1691 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1692 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1693 * will be decoded to this register. The register read and write
1694 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1695 * used by the program, so it is possible to register a wildcard and
1696 * then behave differently on read/write if necessary.
1697 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1698 * must both be zero.
f5a0a5a5
PM
1699 * For AArch64-visible registers, opc0 is also used.
1700 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1701 * way to distinguish (for KVM's benefit) guest-visible system registers
1702 * from demuxed ones provided to preserve the "no side effects on
1703 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1704 * visible (to match KVM's encoding); cp==0 will be converted to
1705 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
1706 */
1707 uint8_t cp;
1708 uint8_t crn;
1709 uint8_t crm;
f5a0a5a5 1710 uint8_t opc0;
4b6a83fb
PM
1711 uint8_t opc1;
1712 uint8_t opc2;
f5a0a5a5
PM
1713 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1714 int state;
4b6a83fb
PM
1715 /* Register type: ARM_CP_* bits/values */
1716 int type;
1717 /* Access rights: PL*_[RW] */
1718 int access;
c3e30260
FA
1719 /* Security state: ARM_CP_SECSTATE_* bits/values */
1720 int secure;
4b6a83fb
PM
1721 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1722 * this register was defined: can be used to hand data through to the
1723 * register read/write functions, since they are passed the ARMCPRegInfo*.
1724 */
1725 void *opaque;
1726 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1727 * fieldoffset is non-zero, the reset value of the register.
1728 */
1729 uint64_t resetvalue;
c3e30260
FA
1730 /* Offset of the field in CPUARMState for this register.
1731 *
1732 * This is not needed if either:
4b6a83fb
PM
1733 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1734 * 2. both readfn and writefn are specified
1735 */
1736 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
1737
1738 /* Offsets of the secure and non-secure fields in CPUARMState for the
1739 * register if it is banked. These fields are only used during the static
1740 * registration of a register. During hashing the bank associated
1741 * with a given security state is copied to fieldoffset which is used from
1742 * there on out.
1743 *
1744 * It is expected that register definitions use either fieldoffset or
1745 * bank_fieldoffsets in the definition but not both. It is also expected
1746 * that both bank offsets are set when defining a banked register. This
1747 * use indicates that a register is banked.
1748 */
1749 ptrdiff_t bank_fieldoffsets[2];
1750
f59df3f2
PM
1751 /* Function for making any access checks for this register in addition to
1752 * those specified by the 'access' permissions bits. If NULL, no extra
1753 * checks required. The access check is performed at runtime, not at
1754 * translate time.
1755 */
1756 CPAccessFn *accessfn;
4b6a83fb
PM
1757 /* Function for handling reads of this register. If NULL, then reads
1758 * will be done by loading from the offset into CPUARMState specified
1759 * by fieldoffset.
1760 */
1761 CPReadFn *readfn;
1762 /* Function for handling writes of this register. If NULL, then writes
1763 * will be done by writing to the offset into CPUARMState specified
1764 * by fieldoffset.
1765 */
1766 CPWriteFn *writefn;
7023ec7e
PM
1767 /* Function for doing a "raw" read; used when we need to copy
1768 * coprocessor state to the kernel for KVM or out for
1769 * migration. This only needs to be provided if there is also a
c4241c7d 1770 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
1771 */
1772 CPReadFn *raw_readfn;
1773 /* Function for doing a "raw" write; used when we need to copy KVM
1774 * kernel coprocessor state into userspace, or for inbound
1775 * migration. This only needs to be provided if there is also a
c4241c7d
PM
1776 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1777 * or similar behaviour.
7023ec7e
PM
1778 */
1779 CPWriteFn *raw_writefn;
4b6a83fb
PM
1780 /* Function for resetting the register. If NULL, then reset will be done
1781 * by writing resetvalue to the field specified in fieldoffset. If
1782 * fieldoffset is 0 then no reset will be done.
1783 */
1784 CPResetFn *resetfn;
1785};
1786
1787/* Macros which are lvalues for the field in CPUARMState for the
1788 * ARMCPRegInfo *ri.
1789 */
1790#define CPREG_FIELD32(env, ri) \
1791 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1792#define CPREG_FIELD64(env, ri) \
1793 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1794
1795#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1796
1797void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1798 const ARMCPRegInfo *regs, void *opaque);
1799void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1800 const ARMCPRegInfo *regs, void *opaque);
1801static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1802{
1803 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1804}
1805static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1806{
1807 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1808}
60322b39 1809const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
1810
1811/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
1812void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1813 uint64_t value);
4b6a83fb 1814/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 1815uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 1816
f5a0a5a5
PM
1817/* CPResetFn that does nothing, for use if no reset is required even
1818 * if fieldoffset is non zero.
1819 */
1820void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1821
67ed771d
PM
1822/* Return true if this reginfo struct's field in the cpu state struct
1823 * is 64 bits wide.
1824 */
1825static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1826{
1827 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1828}
1829
dcbff19b 1830static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
1831 const ARMCPRegInfo *ri, int isread)
1832{
dcbff19b 1833 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
1834}
1835
49a66191
PM
1836/* Raw read of a coprocessor register (as needed for migration, etc) */
1837uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1838
721fae12
PM
1839/**
1840 * write_list_to_cpustate
1841 * @cpu: ARMCPU
1842 *
1843 * For each register listed in the ARMCPU cpreg_indexes list, write
1844 * its value from the cpreg_values list into the ARMCPUState structure.
1845 * This updates TCG's working data structures from KVM data or
1846 * from incoming migration state.
1847 *
1848 * Returns: true if all register values were updated correctly,
1849 * false if some register was unknown or could not be written.
1850 * Note that we do not stop early on failure -- we will attempt
1851 * writing all registers in the list.
1852 */
1853bool write_list_to_cpustate(ARMCPU *cpu);
1854
1855/**
1856 * write_cpustate_to_list:
1857 * @cpu: ARMCPU
1858 *
1859 * For each register listed in the ARMCPU cpreg_indexes list, write
1860 * its value from the ARMCPUState structure into the cpreg_values list.
1861 * This is used to copy info from TCG's working data structures into
1862 * KVM or for outbound migration.
1863 *
1864 * Returns: true if all register values were read correctly,
1865 * false if some register was unknown or could not be read.
1866 * Note that we do not stop early on failure -- we will attempt
1867 * reading all registers in the list.
1868 */
1869bool write_cpustate_to_list(ARMCPU *cpu);
1870
9ee6e8bb
PB
1871#define ARM_CPUID_TI915T 0x54029152
1872#define ARM_CPUID_TI925T 0x54029252
40f137e1 1873
b5ff1b31 1874#if defined(CONFIG_USER_ONLY)
2c0262af 1875#define TARGET_PAGE_BITS 12
b5ff1b31 1876#else
e97da98f
PM
1877/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1878 * have to support 1K tiny pages.
1879 */
1880#define TARGET_PAGE_BITS_VARY
1881#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 1882#endif
9467d44c 1883
3926cc84
AG
1884#if defined(TARGET_AARCH64)
1885# define TARGET_PHYS_ADDR_SPACE_BITS 48
1886# define TARGET_VIRT_ADDR_SPACE_BITS 64
1887#else
1888# define TARGET_PHYS_ADDR_SPACE_BITS 40
1889# define TARGET_VIRT_ADDR_SPACE_BITS 32
1890#endif
52705890 1891
012a906b
GB
1892static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1893 unsigned int target_el)
043b7f8d
EI
1894{
1895 CPUARMState *env = cs->env_ptr;
dcbff19b 1896 unsigned int cur_el = arm_current_el(env);
57e3a0c7 1897 bool secure = arm_is_secure(env);
57e3a0c7
GB
1898 bool pstate_unmasked;
1899 int8_t unmasked = 0;
1900
1901 /* Don't take exceptions if they target a lower EL.
1902 * This check should catch any exceptions that would not be taken but left
1903 * pending.
1904 */
dfafd090
EI
1905 if (cur_el > target_el) {
1906 return false;
1907 }
043b7f8d
EI
1908
1909 switch (excp_idx) {
1910 case EXCP_FIQ:
57e3a0c7
GB
1911 pstate_unmasked = !(env->daif & PSTATE_F);
1912 break;
1913
043b7f8d 1914 case EXCP_IRQ:
57e3a0c7
GB
1915 pstate_unmasked = !(env->daif & PSTATE_I);
1916 break;
1917
136e67e9 1918 case EXCP_VFIQ:
9fae24f5 1919 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
136e67e9
EI
1920 /* VFIQs are only taken when hypervized and non-secure. */
1921 return false;
1922 }
1923 return !(env->daif & PSTATE_F);
1924 case EXCP_VIRQ:
9fae24f5 1925 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
136e67e9
EI
1926 /* VIRQs are only taken when hypervized and non-secure. */
1927 return false;
1928 }
b5c633c5 1929 return !(env->daif & PSTATE_I);
043b7f8d
EI
1930 default:
1931 g_assert_not_reached();
1932 }
57e3a0c7
GB
1933
1934 /* Use the target EL, current execution state and SCR/HCR settings to
1935 * determine whether the corresponding CPSR bit is used to mask the
1936 * interrupt.
1937 */
1938 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
1939 /* Exceptions targeting a higher EL may not be maskable */
1940 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1941 /* 64-bit masking rules are simple: exceptions to EL3
1942 * can't be masked, and exceptions to EL2 can only be
1943 * masked from Secure state. The HCR and SCR settings
1944 * don't affect the masking logic, only the interrupt routing.
1945 */
1946 if (target_el == 3 || !secure) {
1947 unmasked = 1;
1948 }
1949 } else {
1950 /* The old 32-bit-only environment has a more complicated
1951 * masking setup. HCR and SCR bits not only affect interrupt
1952 * routing but also change the behaviour of masking.
1953 */
1954 bool hcr, scr;
1955
1956 switch (excp_idx) {
1957 case EXCP_FIQ:
1958 /* If FIQs are routed to EL3 or EL2 then there are cases where
1959 * we override the CPSR.F in determining if the exception is
1960 * masked or not. If neither of these are set then we fall back
1961 * to the CPSR.F setting otherwise we further assess the state
1962 * below.
1963 */
1964 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1965 scr = (env->cp15.scr_el3 & SCR_FIQ);
1966
1967 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1968 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1969 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1970 * when non-secure but only when FIQs are only routed to EL3.
1971 */
1972 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1973 break;
1974 case EXCP_IRQ:
1975 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1976 * we may override the CPSR.I masking when in non-secure state.
1977 * The SCR.IRQ setting has already been taken into consideration
1978 * when setting the target EL, so it does not have a further
1979 * affect here.
1980 */
1981 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1982 scr = false;
1983 break;
1984 default:
1985 g_assert_not_reached();
1986 }
1987
1988 if ((scr || hcr) && !secure) {
1989 unmasked = 1;
1990 }
57e3a0c7
GB
1991 }
1992 }
1993
1994 /* The PSTATE bits only mask the interrupt if we have not overriden the
1995 * ability above.
1996 */
1997 return unmasked || pstate_unmasked;
043b7f8d
EI
1998}
1999
2994fd96 2000#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
ad37ad5b 2001
9467d44c 2002#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2003#define cpu_list arm_cpu_list
9467d44c 2004
c1e37810
PM
2005/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2006 *
2007 * If EL3 is 64-bit:
2008 * + NonSecure EL1 & 0 stage 1
2009 * + NonSecure EL1 & 0 stage 2
2010 * + NonSecure EL2
2011 * + Secure EL1 & EL0
2012 * + Secure EL3
2013 * If EL3 is 32-bit:
2014 * + NonSecure PL1 & 0 stage 1
2015 * + NonSecure PL1 & 0 stage 2
2016 * + NonSecure PL2
2017 * + Secure PL0 & PL1
2018 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2019 *
2020 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2021 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2022 * may differ in access permissions even if the VA->PA map is the same
2023 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2024 * translation, which means that we have one mmu_idx that deals with two
2025 * concatenated translation regimes [this sort of combined s1+2 TLB is
2026 * architecturally permitted]
2027 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2028 * handling via the TLB. The only way to do a stage 1 translation without
2029 * the immediate stage 2 translation is via the ATS or AT system insns,
2030 * which can be slow-pathed and always do a page table walk.
2031 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2032 * translation regimes, because they map reasonably well to each other
2033 * and they can't both be active at the same time.
2034 * This gives us the following list of mmu_idx values:
2035 *
2036 * NS EL0 (aka NS PL0) stage 1+2
2037 * NS EL1 (aka NS PL1) stage 1+2
2038 * NS EL2 (aka NS PL2)
2039 * S EL3 (aka S PL1)
2040 * S EL0 (aka S PL0)
2041 * S EL1 (not used if EL3 is 32 bit)
2042 * NS EL0+1 stage 2
2043 *
2044 * (The last of these is an mmu_idx because we want to be able to use the TLB
2045 * for the accesses done as part of a stage 1 page table walk, rather than
2046 * having to walk the stage 2 page table over and over.)
2047 *
8bd5c820
PM
2048 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2049 * are not quite the same -- different CPU types (most notably M profile
2050 * vs A/R profile) would like to use MMU indexes with different semantics,
2051 * but since we don't ever need to use all of those in a single CPU we
2052 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2053 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2054 * the same for any particular CPU.
2055 * Variables of type ARMMUIdx are always full values, and the core
2056 * index values are in variables of type 'int'.
2057 *
c1e37810
PM
2058 * Our enumeration includes at the end some entries which are not "true"
2059 * mmu_idx values in that they don't have corresponding TLBs and are only
2060 * valid for doing slow path page table walks.
2061 *
2062 * The constant names here are patterned after the general style of the names
2063 * of the AT/ATS operations.
2064 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2065 */
e7b921c2 2066#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2067#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2068#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820
PM
2069
2070#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2071#define ARM_MMU_IDX_COREIDX_MASK 0x7
2072
c1e37810 2073typedef enum ARMMMUIdx {
8bd5c820
PM
2074 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2075 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2076 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2077 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2078 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2079 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2080 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2081 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2082 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
c1e37810
PM
2083 /* Indexes below here don't have TLBs and are used only for AT system
2084 * instructions or for the first stage of an S12 page table walk.
2085 */
8bd5c820
PM
2086 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2087 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2088} ARMMMUIdx;
2089
8bd5c820
PM
2090/* Bit macros for the core-mmu-index values for each index,
2091 * for use when calling tlb_flush_by_mmuidx() and friends.
2092 */
2093typedef enum ARMMMUIdxBit {
2094 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2095 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2096 ARMMMUIdxBit_S1E2 = 1 << 2,
2097 ARMMMUIdxBit_S1E3 = 1 << 3,
2098 ARMMMUIdxBit_S1SE0 = 1 << 4,
2099 ARMMMUIdxBit_S1SE1 = 1 << 5,
2100 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2101 ARMMMUIdxBit_MUser = 1 << 0,
2102 ARMMMUIdxBit_MPriv = 1 << 1,
8bd5c820
PM
2103} ARMMMUIdxBit;
2104
f79fbf39 2105#define MMU_USER_IDX 0
c1e37810 2106
8bd5c820
PM
2107static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2108{
2109 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2110}
2111
2112static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2113{
e7b921c2
PM
2114 if (arm_feature(env, ARM_FEATURE_M)) {
2115 return mmu_idx | ARM_MMU_IDX_M;
2116 } else {
2117 return mmu_idx | ARM_MMU_IDX_A;
2118 }
8bd5c820
PM
2119}
2120
c1e37810
PM
2121/* Return the exception level we're running at if this is our mmu_idx */
2122static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2123{
8bd5c820
PM
2124 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2125 case ARM_MMU_IDX_A:
2126 return mmu_idx & 3;
e7b921c2
PM
2127 case ARM_MMU_IDX_M:
2128 return mmu_idx & 1;
8bd5c820
PM
2129 default:
2130 g_assert_not_reached();
2131 }
c1e37810
PM
2132}
2133
2134/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 2135static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
2136{
2137 int el = arm_current_el(env);
2138
e7b921c2
PM
2139 if (arm_feature(env, ARM_FEATURE_M)) {
2140 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2141
2142 return arm_to_core_mmu_idx(mmu_idx);
2143 }
2144
c1e37810 2145 if (el < 2 && arm_is_secure_below_el3(env)) {
8bd5c820 2146 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
c1e37810
PM
2147 }
2148 return el;
6ebbf390
JM
2149}
2150
9e273ef2
PM
2151/* Indexes used when registering address spaces with cpu_address_space_init */
2152typedef enum ARMASIdx {
2153 ARMASIdx_NS = 0,
2154 ARMASIdx_S = 1,
2155} ARMASIdx;
2156
533e93f1 2157/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2158static inline int arm_debug_target_el(CPUARMState *env)
2159{
81669b8b
SF
2160 bool secure = arm_is_secure(env);
2161 bool route_to_el2 = false;
2162
2163 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2164 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2165 env->cp15.mdcr_el2 & (1 << 8);
2166 }
2167
2168 if (route_to_el2) {
2169 return 2;
2170 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2171 !arm_el_is_aa64(env, 3) && secure) {
2172 return 3;
2173 } else {
2174 return 1;
2175 }
3a298203
PM
2176}
2177
2178static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2179{
533e93f1
PM
2180 if (arm_is_secure(env)) {
2181 /* MDCR_EL3.SDD disables debug events from Secure state */
2182 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2183 || arm_current_el(env) == 3) {
2184 return false;
2185 }
2186 }
2187
dcbff19b 2188 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
2189 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2190 || (env->daif & PSTATE_D)) {
2191 return false;
2192 }
2193 }
2194 return true;
2195}
2196
2197static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2198{
533e93f1
PM
2199 int el = arm_current_el(env);
2200
2201 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2202 return aa64_generate_debug_exceptions(env);
2203 }
533e93f1
PM
2204
2205 if (arm_is_secure(env)) {
2206 int spd;
2207
2208 if (el == 0 && (env->cp15.sder & 1)) {
2209 /* SDER.SUIDEN means debug exceptions from Secure EL0
2210 * are always enabled. Otherwise they are controlled by
2211 * SDCR.SPD like those from other Secure ELs.
2212 */
2213 return true;
2214 }
2215
2216 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2217 switch (spd) {
2218 case 1:
2219 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2220 case 0:
2221 /* For 0b00 we return true if external secure invasive debug
2222 * is enabled. On real hardware this is controlled by external
2223 * signals to the core. QEMU always permits debug, and behaves
2224 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2225 */
2226 return true;
2227 case 2:
2228 return false;
2229 case 3:
2230 return true;
2231 }
2232 }
2233
2234 return el != 2;
3a298203
PM
2235}
2236
2237/* Return true if debugging exceptions are currently enabled.
2238 * This corresponds to what in ARM ARM pseudocode would be
2239 * if UsingAArch32() then
2240 * return AArch32.GenerateDebugExceptions()
2241 * else
2242 * return AArch64.GenerateDebugExceptions()
2243 * We choose to push the if() down into this function for clarity,
2244 * since the pseudocode has it at all callsites except for the one in
2245 * CheckSoftwareStep(), where it is elided because both branches would
2246 * always return the same value.
2247 *
2248 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2249 * don't yet implement those exception levels or their associated trap bits.
2250 */
2251static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2252{
2253 if (env->aarch64) {
2254 return aa64_generate_debug_exceptions(env);
2255 } else {
2256 return aa32_generate_debug_exceptions(env);
2257 }
2258}
2259
2260/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2261 * implicitly means this always returns false in pre-v8 CPUs.)
2262 */
2263static inline bool arm_singlestep_active(CPUARMState *env)
2264{
2265 return extract32(env->cp15.mdscr_el1, 0, 1)
2266 && arm_el_is_aa64(env, arm_debug_target_el(env))
2267 && arm_generate_debug_exceptions(env);
2268}
2269
f9fd40eb
PB
2270static inline bool arm_sctlr_b(CPUARMState *env)
2271{
2272 return
2273 /* We need not implement SCTLR.ITD in user-mode emulation, so
2274 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2275 * This lets people run BE32 binaries with "-cpu any".
2276 */
2277#ifndef CONFIG_USER_ONLY
2278 !arm_feature(env, ARM_FEATURE_V7) &&
2279#endif
2280 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2281}
2282
ed50ff78
PC
2283/* Return true if the processor is in big-endian mode. */
2284static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2285{
2286 int cur_el;
2287
2288 /* In 32bit endianness is determined by looking at CPSR's E bit */
2289 if (!is_a64(env)) {
b2e62d9a
PC
2290 return
2291#ifdef CONFIG_USER_ONLY
2292 /* In system mode, BE32 is modelled in line with the
2293 * architecture (as word-invariant big-endianness), where loads
2294 * and stores are done little endian but from addresses which
2295 * are adjusted by XORing with the appropriate constant. So the
2296 * endianness to use for the raw data access is not affected by
2297 * SCTLR.B.
2298 * In user mode, however, we model BE32 as byte-invariant
2299 * big-endianness (because user-only code cannot tell the
2300 * difference), and so we need to use a data access endianness
2301 * that depends on SCTLR.B.
2302 */
2303 arm_sctlr_b(env) ||
2304#endif
2305 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2306 }
2307
2308 cur_el = arm_current_el(env);
2309
2310 if (cur_el == 0) {
2311 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2312 }
2313
2314 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2315}
2316
022c62cb 2317#include "exec/cpu-all.h"
622ed360 2318
3926cc84
AG
2319/* Bit usage in the TB flags field: bit 31 indicates whether we are
2320 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2321 * We put flags which are shared between 32 and 64 bit mode at the top
2322 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
2323 */
2324#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2325#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2326#define ARM_TBFLAG_MMUIDX_SHIFT 28
2327#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2328#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2329#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2330#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2331#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2332/* Target EL if we take a floating-point-disabled exception */
2333#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2334#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
2335
2336/* Bit usage when in AArch32 state: */
a1705768
PM
2337#define ARM_TBFLAG_THUMB_SHIFT 0
2338#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2339#define ARM_TBFLAG_VECLEN_SHIFT 1
2340#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2341#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2342#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2343#define ARM_TBFLAG_VFPEN_SHIFT 7
2344#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2345#define ARM_TBFLAG_CONDEXEC_SHIFT 8
2346#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2347#define ARM_TBFLAG_SCTLR_B_SHIFT 16
2348#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2349/* We store the bottom two bits of the CPAR as TB flags and handle
2350 * checks on the other bits at runtime
2351 */
647f767b 2352#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 2353#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2354/* Indicates whether cp register reads and writes by guest code should access
2355 * the secure or nonsecure bank of banked registers; note that this is not
2356 * the same thing as the current security state of the processor!
2357 */
647f767b 2358#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 2359#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2360#define ARM_TBFLAG_BE_DATA_SHIFT 20
2361#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2362/* For M profile only, Handler (ie not Thread) mode */
2363#define ARM_TBFLAG_HANDLER_SHIFT 21
2364#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
3926cc84 2365
86fb3fa4
TH
2366/* Bit usage when in AArch64 state */
2367#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2368#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2369#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2370#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
a1705768
PM
2371
2372/* some convenience accessor macros */
3926cc84
AG
2373#define ARM_TBFLAG_AARCH64_STATE(F) \
2374 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2375#define ARM_TBFLAG_MMUIDX(F) \
2376 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2377#define ARM_TBFLAG_SS_ACTIVE(F) \
2378 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2379#define ARM_TBFLAG_PSTATE_SS(F) \
2380 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2381#define ARM_TBFLAG_FPEXC_EL(F) \
2382 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
2383#define ARM_TBFLAG_THUMB(F) \
2384 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2385#define ARM_TBFLAG_VECLEN(F) \
2386 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2387#define ARM_TBFLAG_VECSTRIDE(F) \
2388 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2389#define ARM_TBFLAG_VFPEN(F) \
2390 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2391#define ARM_TBFLAG_CONDEXEC(F) \
2392 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2393#define ARM_TBFLAG_SCTLR_B(F) \
2394 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2395#define ARM_TBFLAG_XSCALE_CPAR(F) \
2396 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2397#define ARM_TBFLAG_NS(F) \
2398 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2399#define ARM_TBFLAG_BE_DATA(F) \
2400 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2401#define ARM_TBFLAG_HANDLER(F) \
2402 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
86fb3fa4
TH
2403#define ARM_TBFLAG_TBI0(F) \
2404 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2405#define ARM_TBFLAG_TBI1(F) \
2406 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
a1705768 2407
f9fd40eb
PB
2408static inline bool bswap_code(bool sctlr_b)
2409{
2410#ifdef CONFIG_USER_ONLY
2411 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2412 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2413 * would also end up as a mixed-endian mode with BE code, LE data.
2414 */
2415 return
2416#ifdef TARGET_WORDS_BIGENDIAN
2417 1 ^
2418#endif
2419 sctlr_b;
2420#else
e334bd31
PB
2421 /* All code access in ARM is little endian, and there are no loaders
2422 * doing swaps that need to be reversed
f9fd40eb
PB
2423 */
2424 return 0;
2425#endif
2426}
2427
9dbbc748
GB
2428/* Return the exception level to which FP-disabled exceptions should
2429 * be taken, or 0 if FP is enabled.
2430 */
2431static inline int fp_exception_el(CPUARMState *env)
6b917547 2432{
ed1f13d6 2433 int fpen;
9dbbc748 2434 int cur_el = arm_current_el(env);
ed1f13d6 2435
9dbbc748
GB
2436 /* CPACR and the CPTR registers don't exist before v6, so FP is
2437 * always accessible
2438 */
2439 if (!arm_feature(env, ARM_FEATURE_V6)) {
2440 return 0;
2441 }
2442
2443 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2444 * 0, 2 : trap EL0 and EL1/PL1 accesses
2445 * 1 : trap only EL0 accesses
2446 * 3 : trap no accesses
2447 */
2448 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2449 switch (fpen) {
2450 case 0:
2451 case 2:
2452 if (cur_el == 0 || cur_el == 1) {
2453 /* Trap to PL1, which might be EL1 or EL3 */
2454 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2455 return 3;
2456 }
2457 return 1;
2458 }
2459 if (cur_el == 3 && !is_a64(env)) {
2460 /* Secure PL1 running at EL3 */
2461 return 3;
2462 }
2463 break;
2464 case 1:
2465 if (cur_el == 0) {
2466 return 1;
2467 }
2468 break;
2469 case 3:
2470 break;
2471 }
2472
2473 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2474 * check because zero bits in the registers mean "don't trap".
2475 */
2476
2477 /* CPTR_EL2 : present in v7VE or v8 */
2478 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2479 && !arm_is_secure_below_el3(env)) {
2480 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2481 return 2;
2482 }
2483
2484 /* CPTR_EL3 : present in v8 */
2485 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2486 /* Trap all FP ops to EL3 */
2487 return 3;
ed1f13d6 2488 }
8c6afa6a 2489
9dbbc748
GB
2490 return 0;
2491}
2492
c3ae85fc
PB
2493#ifdef CONFIG_USER_ONLY
2494static inline bool arm_cpu_bswap_data(CPUARMState *env)
2495{
2496 return
2497#ifdef TARGET_WORDS_BIGENDIAN
2498 1 ^
2499#endif
2500 arm_cpu_data_is_big_endian(env);
2501}
2502#endif
2503
86fb3fa4
TH
2504#ifndef CONFIG_USER_ONLY
2505/**
2506 * arm_regime_tbi0:
2507 * @env: CPUARMState
2508 * @mmu_idx: MMU index indicating required translation regime
2509 *
2510 * Extracts the TBI0 value from the appropriate TCR for the current EL
2511 *
2512 * Returns: the TBI0 value.
2513 */
2514uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2515
2516/**
2517 * arm_regime_tbi1:
2518 * @env: CPUARMState
2519 * @mmu_idx: MMU index indicating required translation regime
2520 *
2521 * Extracts the TBI1 value from the appropriate TCR for the current EL
2522 *
2523 * Returns: the TBI1 value.
2524 */
2525uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2526#else
2527/* We can't handle tagged addresses properly in user-only mode */
2528static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2529{
2530 return 0;
2531}
2532
2533static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2534{
2535 return 0;
2536}
2537#endif
2538
9dbbc748 2539static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
89fee74a 2540 target_ulong *cs_base, uint32_t *flags)
9dbbc748 2541{
8bd5c820 2542 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
3926cc84
AG
2543 if (is_a64(env)) {
2544 *pc = env->pc;
c1e37810 2545 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
86fb3fa4
TH
2546 /* Get control bits for tagged addresses */
2547 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2548 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
05ed9a99 2549 } else {
3926cc84
AG
2550 *pc = env->regs[15];
2551 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2552 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2553 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2554 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb 2555 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
3f342b9e
SF
2556 if (!(access_secure_reg(env))) {
2557 *flags |= ARM_TBFLAG_NS_MASK;
2558 }
2c7ffc41
PM
2559 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2560 || arm_el_is_aa64(env, 1)) {
3926cc84
AG
2561 *flags |= ARM_TBFLAG_VFPEN_MASK;
2562 }
c0f4af17
PM
2563 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2564 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
a1705768 2565 }
3926cc84 2566
8bd5c820 2567 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
86fb3fa4 2568
3cf6a0fc
PM
2569 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2570 * states defined in the ARM ARM for software singlestep:
2571 * SS_ACTIVE PSTATE.SS State
2572 * 0 x Inactive (the TB flag for SS is always 0)
2573 * 1 0 Active-pending
2574 * 1 1 Active-not-pending
2575 */
2576 if (arm_singlestep_active(env)) {
2577 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2578 if (is_a64(env)) {
2579 if (env->pstate & PSTATE_SS) {
2580 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2581 }
2582 } else {
2583 if (env->uncached_cpsr & PSTATE_SS) {
2584 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2585 }
2586 }
2587 }
91cca2cd
PC
2588 if (arm_cpu_data_is_big_endian(env)) {
2589 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2590 }
9dbbc748 2591 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
c1e37810 2592
064c379c
PM
2593 if (env->v7m.exception != 0) {
2594 *flags |= ARM_TBFLAG_HANDLER_MASK;
2595 }
2596
3926cc84 2597 *cs_base = 0;
6b917547
AL
2598}
2599
98128601
RH
2600enum {
2601 QEMU_PSCI_CONDUIT_DISABLED = 0,
2602 QEMU_PSCI_CONDUIT_SMC = 1,
2603 QEMU_PSCI_CONDUIT_HVC = 2,
2604};
2605
017518c1
PM
2606#ifndef CONFIG_USER_ONLY
2607/* Return the address space index to use for a memory access */
2608static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2609{
2610 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2611}
5ce4ff65
PM
2612
2613/* Return the AddressSpace to use for a memory access
2614 * (which depends on whether the access is S or NS, and whether
2615 * the board gave us a separate AddressSpace for S accesses).
2616 */
2617static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2618{
2619 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2620}
017518c1
PM
2621#endif
2622
bd7d00fc
PM
2623/**
2624 * arm_register_el_change_hook:
2625 * Register a hook function which will be called back whenever this
2626 * CPU changes exception level or mode. The hook function will be
2627 * passed a pointer to the ARMCPU and the opaque data pointer passed
2628 * to this function when the hook was registered.
2629 *
2630 * Note that we currently only support registering a single hook function,
2631 * and will assert if this function is called twice.
2632 * This facility is intended for the use of the GICv3 emulation.
2633 */
2634void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2635 void *opaque);
2636
2637/**
2638 * arm_get_el_change_hook_opaque:
2639 * Return the opaque data that will be used by the el_change_hook
2640 * for this CPU.
2641 */
2642static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2643{
2644 return cpu->el_change_hook_opaque;
2645}
2646
2c0262af 2647#endif