]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm/common-semi-target.h: Remove unnecessary boot.h include
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
11b76fda 60#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
2c4a7cc5 61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
62
63#define ARMV7M_EXCP_RESET 1
64#define ARMV7M_EXCP_NMI 2
65#define ARMV7M_EXCP_HARD 3
66#define ARMV7M_EXCP_MEM 4
67#define ARMV7M_EXCP_BUS 5
68#define ARMV7M_EXCP_USAGE 6
1e577cc7 69#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
70#define ARMV7M_EXCP_SVC 11
71#define ARMV7M_EXCP_DEBUG 12
72#define ARMV7M_EXCP_PENDSV 14
73#define ARMV7M_EXCP_SYSTICK 15
2c0262af 74
acf94941
PM
75/* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
4a16724f
PM
84enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88};
acf94941 89
403946c0
RH
90/* ARM-specific interrupt pending bits. */
91#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
92#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 94#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 95
e4fe830b
PM
96/* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
e03b5686 102#if HOST_BIG_ENDIAN
5cd8a118 103#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 104#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
105#else
106#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 107#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
108#endif
109
136e67e9 110/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
111#define ARM_CPU_IRQ 0
112#define ARM_CPU_FIQ 1
136e67e9
EI
113#define ARM_CPU_VIRQ 2
114#define ARM_CPU_VFIQ 3
403946c0 115
aaa1f954
EI
116/* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120#define TARGET_INSN_START_EXTRA_WORDS 2
121
122/* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 129
b7bcbe95
FB
130/* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
b7bcbe95 137
200bf5b7
AB
138/**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
448d4d14
AB
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
200bf5b7
AB
146 */
147typedef struct DynamicGDBXMLInfo {
148 char *desc;
448d4d14
AB
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
200bf5b7
AB
155} DynamicGDBXMLInfo;
156
55d284af
PM
157/* CPU state for each instance of a generic timer (in cp15 c14) */
158typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 160 uint64_t ctl; /* Timer Control register */
55d284af
PM
161} ARMGenericTimer;
162
8c94b071
RH
163#define GTIMER_PHYS 0
164#define GTIMER_VIRT 1
165#define GTIMER_HYP 2
166#define GTIMER_SEC 3
167#define GTIMER_HYPVIRT 4
168#define NUM_GTIMERS 5
55d284af 169
e9152ee9
RDC
170#define VTCR_NSW (1u << 29)
171#define VTCR_NSA (1u << 30)
172#define VSTCR_SW VTCR_NSW
173#define VSTCR_SA VTCR_NSA
174
c39c2b90
RH
175/* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 192 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201#ifdef TARGET_AARCH64
202# define ARM_MAX_VQ 16
203#else
204# define ARM_MAX_VQ 1
205#endif
206
207typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209} ARMVectorReg;
210
3c7d3086 211#ifdef TARGET_AARCH64
991ad91b 212/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 213typedef struct ARMPredicateReg {
46417784 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 215} ARMPredicateReg;
991ad91b
RH
216
217/* In AArch32 mode, PAC keys do not exist at all. */
218typedef struct ARMPACKey {
219 uint64_t lo, hi;
220} ARMPACKey;
3c7d3086
RH
221#endif
222
3902bfc6
RH
223/* See the commentary above the TBFLAG field definitions. */
224typedef struct CPUARMTBFlags {
225 uint32_t flags;
a378206a 226 target_ulong flags2;
3902bfc6 227} CPUARMTBFlags;
c39c2b90 228
f3639a64
RH
229typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
8f4e07c9
PMD
231typedef struct NVICState NVICState;
232
1ea4a06a 233typedef struct CPUArchState {
b5ff1b31 234 /* Regs for current mode. */
2c0262af 235 uint32_t regs[16];
3926cc84
AG
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
d356312f
PM
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 252 * DAIF (exception masks) are kept in env->daif
f6e52eaa 253 * BTYPE is kept in env->btype
c37e6ac9 254 * SM and ZA are kept in env->svcr
d356312f 255 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
256 */
257 uint32_t pstate;
53221552 258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 260
fdd1b228 261 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 262 CPUARMTBFlags hflags;
fdd1b228 263
b90372ad 264 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 265 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
28c9457d 271 uint64_t banked_spsr[8];
0b7d409d
FA
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
3b46e624 274
b5ff1b31
FB
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
3b46e624 278
2c0262af
FB
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
99c475ab 284 uint32_t QF; /* 0 or 1 */
9ee6e8bb 285 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 290
1b174238 291 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 293
b5ff1b31
FB
294 /* System control coprocessor (cp15) */
295 struct {
40f137e1 296 uint32_t c0_cpuid;
b85a1fd6
FA
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
137feaa9
FA
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
761c4642 315 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 316 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 319 uint64_t sder; /* Secure debug enable register. */
77022576 320 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
b698e9cf 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 341 /* MMU translation table base control. */
cb4a0a34 342 uint64_t tcr_el[4];
988cc190
PM
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
7e09797c
PM
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 360 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 362 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
4a7e2d73
FA
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
ce819861 381 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
e03b5686 385#if HOST_BIG_ENDIAN
b848ce2b
FA
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390#else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395#endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
59e05530 400 uint64_t hpfar_el2;
2a5a9abd 401 uint64_t hstr_el2;
01c097f7
FA
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
6cb0b013 411
b5ff1b31
FB
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
8521466b
AF
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 418 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 419 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
420 union { /* Memory attribute redirection */
421 struct {
e03b5686 422#if HOST_BIG_ENDIAN
be693c87
GB
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429#else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436#endif
437 };
438 uint64_t mair_el[4];
439 };
fb6c91ba
GB
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
e89e51a1 449 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
9e5ec745 473 uint64_t tpidr2_el0;
54bf36ed
FA
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
a7adc4b7
PM
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 487 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
0b45451e
PM
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 501 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 502 uint64_t mdscr_el1;
1424ca8d 503 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 504 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 505 uint64_t mdcr_el2;
5513c3ab 506 uint64_t mdcr_el3;
5d05b9d4
AL
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
7c2cb42b 511 */
c92c0687 512 uint64_t c15_ccnt;
5d05b9d4
AL
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
8521466b 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
58e93b48
RH
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
15126d9c
PM
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
b5ff1b31 550 } cp15;
40f137e1 551
9ee6e8bb 552 struct {
fb602cb7
PM
553 /* M profile has up to 4 stack pointers:
554 * a Main Stack Pointer and a Process Stack Pointer for each
555 * of the Secure and Non-Secure states. (If the CPU doesn't support
556 * the security extension then it has only two SPs.)
557 * In QEMU we always store the currently active SP in regs[13],
558 * and the non-active SP for the current security state in
559 * v7m.other_sp. The stack pointers for the inactive security state
560 * are stored in other_ss_msp and other_ss_psp.
561 * switch_v7m_security_state() is responsible for rearranging them
562 * when we change security state.
563 */
9ee6e8bb 564 uint32_t other_sp;
fb602cb7
PM
565 uint32_t other_ss_msp;
566 uint32_t other_ss_psp;
4a16724f
PM
567 uint32_t vecbase[M_REG_NUM_BANKS];
568 uint32_t basepri[M_REG_NUM_BANKS];
569 uint32_t control[M_REG_NUM_BANKS];
570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
572 uint32_t hfsr; /* HardFault Status */
573 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 574 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 576 uint32_t bfar; /* BusFault Address */
bed079da 577 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 579 int exception;
4a16724f
PM
580 uint32_t primask[M_REG_NUM_BANKS];
581 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 582 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 584 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 585 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
586 uint32_t msplim[M_REG_NUM_BANKS];
587 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
588 uint32_t fpcar[M_REG_NUM_BANKS];
589 uint32_t fpccr[M_REG_NUM_BANKS];
590 uint32_t fpdscr[M_REG_NUM_BANKS];
591 uint32_t cpacr[M_REG_NUM_BANKS];
592 uint32_t nsacr;
b26b5629 593 uint32_t ltpsize;
7c3d47da 594 uint32_t vpr;
9ee6e8bb
PB
595 } v7m;
596
abf1172f
PM
597 /* Information associated with an exception about to be taken:
598 * code which raises an exception must set cs->exception_index and
599 * the relevant parts of this structure; the cpu_do_interrupt function
600 * will then set the guest-visible registers as part of the exception
601 * entry process.
602 */
603 struct {
604 uint32_t syndrome; /* AArch64 format syndrome register */
605 uint32_t fsr; /* AArch32 format fault status register info */
606 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 607 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
608 /* If we implement EL2 we will also need to store information
609 * about the intermediate physical address for stage 2 faults.
610 */
611 } exception;
612
202ccb6b
DG
613 /* Information associated with an SError */
614 struct {
615 uint8_t pending;
616 uint8_t has_esr;
617 uint64_t esr;
618 } serror;
619
1711bfa5
BM
620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621
ed89f078
PM
622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623 uint32_t irq_line_state;
624
fe1479c3
PB
625 /* Thumb-2 EE state. */
626 uint32_t teecr;
627 uint32_t teehbr;
628
b7bcbe95
FB
629 /* VFP coprocessor state. */
630 struct {
c39c2b90 631 ARMVectorReg zregs[32];
b7bcbe95 632
3c7d3086
RH
633#ifdef TARGET_AARCH64
634 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 635#define FFR_PRED_NUM 16
3c7d3086 636 ARMPredicateReg pregs[17];
516e246a
RH
637 /* Scratch space for aa64 sve predicate temporary. */
638 ARMPredicateReg preg_tmp;
3c7d3086
RH
639#endif
640
b7bcbe95 641 /* We store these fpcsr fields separately for convenience. */
a4d58462 642 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
643 int vec_len;
644 int vec_stride;
645
a4d58462
RH
646 uint32_t xregs[16];
647
516e246a 648 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 649 uint32_t scratch[8];
3b46e624 650
d81ce0ef
AB
651 /* There are a number of distinct float control structures:
652 *
653 * fp_status: is the "normal" fp status.
654 * fp_status_fp16: used for half-precision calculations
655 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
656 * standard_fp_status_fp16 : used for half-precision
657 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
658 *
659 * Half-precision operations are governed by a separate
660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661 * status structure to control this.
662 *
663 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664 * round-to-nearest and is used by any operations (generally
665 * Neon) which the architecture defines as controlled by the
666 * standard FPSCR value rather than the FPSCR.
3a492f3a 667 *
aaae563b
PM
668 * The "standard FPSCR but for fp16 ops" is needed because
669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670 * using a fixed value for it.
671 *
3a492f3a
PM
672 * To avoid having to transfer exception bits around, we simply
673 * say that the FPSCR cumulative exception flags are the logical
aaae563b 674 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
675 * only thing which needs to read the exception flags being
676 * an explicit FPSCR read.
677 */
53cd6637 678 float_status fp_status;
d81ce0ef 679 float_status fp_status_f16;
3a492f3a 680 float_status standard_fp_status;
aaae563b 681 float_status standard_fp_status_f16;
5be5e8ed 682
de561988
RH
683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 685 } vfp;
0f08429c 686
03d05e2d
PM
687 uint64_t exclusive_addr;
688 uint64_t exclusive_val;
0f08429c
RH
689 /*
690 * Contains the 'val' for the second 64-bit register of LDXP, which comes
691 * from the higher address, not the high part of a complete 128-bit value.
692 * In some ways it might be more convenient to record the exclusive value
693 * as the low and high halves of a 128 bit data value, but the current
694 * semantics of these fields are baked into the migration format.
695 */
03d05e2d 696 uint64_t exclusive_high;
b7bcbe95 697
18c9b560
AZ
698 /* iwMMXt coprocessor state. */
699 struct {
700 uint64_t regs[16];
701 uint64_t val;
702
703 uint32_t cregs[16];
704 } iwmmxt;
705
991ad91b 706#ifdef TARGET_AARCH64
108b3ba8
RH
707 struct {
708 ARMPACKey apia;
709 ARMPACKey apib;
710 ARMPACKey apda;
711 ARMPACKey apdb;
712 ARMPACKey apga;
713 } keys;
7cb1e618
RH
714
715 uint64_t scxtnum_el[4];
dc993a01
RH
716
717 /*
718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721 * When SVL is less than the architectural maximum, the accessible
722 * storage is restricted, such that if the SVL is X bytes the guest can
723 * see only the bottom X elements of zarray[], and only the least
724 * significant X bytes of each element of the array. (In other words,
725 * the observable part is always square.)
726 *
727 * The ZA storage can also be considered as a set of square tiles of
728 * elements of different sizes. The mapping from tiles to the ZA array
729 * is architecturally defined, such that for tiles of elements of esz
730 * bytes, the Nth row (or "horizontal slice") of tile T is in
731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732 * in the ZA storage, because its rows are striped through the ZA array.
733 *
734 * Because this is so large, keep this toward the end of the reset area,
735 * to keep the offsets into the rest of the structure smaller.
736 */
737 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
738#endif
739
46747d15 740 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
741 struct CPUWatchpoint *cpu_watchpoint[16];
742
f3639a64
RH
743 /* Optional fault info across tlb lookup. */
744 ARMMMUFaultInfo *tlb_fi;
745
1f5c00cf
AB
746 /* Fields up to this point are cleared by a CPU reset */
747 struct {} end_reset_fields;
748
e8b5fae5 749 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 750
581be094 751 /* Internal CPU feature flags. */
918f5dca 752 uint64_t features;
581be094 753
6cb0b013
PC
754 /* PMSAv7 MPU */
755 struct {
756 uint32_t *drbar;
757 uint32_t *drsr;
758 uint32_t *dracr;
4a16724f 759 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
760 } pmsav7;
761
0e1a46bb
PM
762 /* PMSAv8 MPU */
763 struct {
764 /* The PMSAv8 implementation also shares some PMSAv7 config
765 * and state:
766 * pmsav7.rnr (region number register)
767 * pmsav7_dregion (number of configured regions)
768 */
4a16724f
PM
769 uint32_t *rbar[M_REG_NUM_BANKS];
770 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
771 uint32_t *hprbar;
772 uint32_t *hprlar;
4a16724f
PM
773 uint32_t mair0[M_REG_NUM_BANKS];
774 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 775 uint32_t hprselr;
0e1a46bb
PM
776 } pmsav8;
777
9901c576
PM
778 /* v8M SAU */
779 struct {
780 uint32_t *rbar;
781 uint32_t *rlar;
782 uint32_t rnr;
783 uint32_t ctrl;
784 } sau;
785
1701d70e 786#if !defined(CONFIG_USER_ONLY)
8f4e07c9 787 NVICState *nvic;
2a94a507 788 const struct arm_boot_info *boot_info;
d3a3e529
VK
789 /* Store GICv3CPUState to access from this struct */
790 void *gicv3state;
1701d70e 791#else /* CONFIG_USER_ONLY */
26f08561
PMD
792 /* For usermode syscall translation. */
793 bool eabi;
794#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
795
796#ifdef TARGET_TAGGED_ADDRESSES
797 /* Linux syscall tagged address support */
798 bool tagged_addr_enable;
799#endif
2c0262af
FB
800} CPUARMState;
801
5fda9504
TH
802static inline void set_feature(CPUARMState *env, int feature)
803{
804 env->features |= 1ULL << feature;
805}
806
807static inline void unset_feature(CPUARMState *env, int feature)
808{
809 env->features &= ~(1ULL << feature);
810}
811
bd7d00fc 812/**
08267487 813 * ARMELChangeHookFn:
bd7d00fc
PM
814 * type of a function which can be registered via arm_register_el_change_hook()
815 * to get callbacks when the CPU changes its exception level or mode.
816 */
08267487
AL
817typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818typedef struct ARMELChangeHook ARMELChangeHook;
819struct ARMELChangeHook {
820 ARMELChangeHookFn *hook;
821 void *opaque;
822 QLIST_ENTRY(ARMELChangeHook) node;
823};
062ba099
AB
824
825/* These values map onto the return values for
826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827typedef enum ARMPSCIState {
d5affb0d
AJ
828 PSCI_ON = 0,
829 PSCI_OFF = 1,
062ba099
AB
830 PSCI_ON_PENDING = 2
831} ARMPSCIState;
832
962fcbf2
RH
833typedef struct ARMISARegisters ARMISARegisters;
834
7f9e25a6
RH
835/*
836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838 *
839 * While processing properties during initialization, corresponding init bits
840 * are set for bits in sve_vq_map that have been set by properties.
841 *
842 * Bits set in supported represent valid vector lengths for the CPU type.
843 */
844typedef struct {
845 uint32_t map, init, supported;
846} ARMVQMap;
847
74e75564
PB
848/**
849 * ARMCPU:
850 * @env: #CPUARMState
851 *
852 * An ARM CPU core.
853 */
b36e239e 854struct ArchCPU {
74e75564
PB
855 /*< private >*/
856 CPUState parent_obj;
857 /*< public >*/
858
859 CPUARMState env;
860
861 /* Coprocessor information */
862 GHashTable *cp_regs;
863 /* For marshalling (mostly coprocessor) register state between the
864 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
865 * we use these arrays.
866 */
867 /* List of register indexes managed via these arrays; (full KVM style
868 * 64 bit indexes, not CPRegInfo 32 bit indexes)
869 */
870 uint64_t *cpreg_indexes;
871 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
872 uint64_t *cpreg_values;
873 /* Length of the indexes, values, reset_values arrays */
874 int32_t cpreg_array_len;
875 /* These are used only for migration: incoming data arrives in
876 * these fields and is sanity checked in post_load before copying
877 * to the working data structures above.
878 */
879 uint64_t *cpreg_vmstate_indexes;
880 uint64_t *cpreg_vmstate_values;
881 int32_t cpreg_vmstate_array_len;
882
448d4d14 883 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 884 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
885 DynamicGDBXMLInfo dyn_m_systemreg_xml;
886 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 887
74e75564
PB
888 /* Timers used by the generic (architected) timer */
889 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
890 /*
891 * Timer used by the PMU. Its state is restored after migration by
892 * pmu_op_finish() - it does not need other handling during migration
893 */
894 QEMUTimer *pmu_timer;
74e75564
PB
895 /* GPIO outputs for generic timer */
896 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
897 /* GPIO output for GICv3 maintenance interrupt signal */
898 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
899 /* GPIO output for the PMU interrupt */
900 qemu_irq pmu_interrupt;
74e75564
PB
901
902 /* MemoryRegion to use for secure physical accesses */
903 MemoryRegion *secure_memory;
904
8bce44a2
RH
905 /* MemoryRegion to use for allocation tag accesses */
906 MemoryRegion *tag_memory;
907 MemoryRegion *secure_tag_memory;
908
181962fd
PM
909 /* For v8M, pointer to the IDAU interface provided by board/SoC */
910 Object *idau;
911
74e75564
PB
912 /* 'compatible' string for this CPU for Linux device trees */
913 const char *dtb_compatible;
914
915 /* PSCI version for this CPU
916 * Bits[31:16] = Major Version
917 * Bits[15:0] = Minor Version
918 */
919 uint32_t psci_version;
920
062ba099
AB
921 /* Current power state, access guarded by BQL */
922 ARMPSCIState power_state;
923
c25bd18a
PM
924 /* CPU has virtualization extension */
925 bool has_el2;
74e75564
PB
926 /* CPU has security extension */
927 bool has_el3;
5c0a3819
SZ
928 /* CPU has PMU (Performance Monitor Unit) */
929 bool has_pmu;
97a28b0e
PM
930 /* CPU has VFP */
931 bool has_vfp;
42bea956
CLG
932 /* CPU has 32 VFP registers */
933 bool has_vfp_d32;
97a28b0e
PM
934 /* CPU has Neon */
935 bool has_neon;
ea90db0a
PM
936 /* CPU has M-profile DSP extension */
937 bool has_dsp;
74e75564
PB
938
939 /* CPU has memory protection unit */
940 bool has_mpu;
941 /* PMSAv7 MPU number of supported regions */
942 uint32_t pmsav7_dregion;
761c4642
TR
943 /* PMSAv8 MPU number of supported hyp regions */
944 uint32_t pmsav8r_hdregion;
9901c576
PM
945 /* v8M SAU number of supported regions */
946 uint32_t sau_sregion;
74e75564
PB
947
948 /* PSCI conduit used to invoke PSCI methods
949 * 0 - disabled, 1 - smc, 2 - hvc
950 */
951 uint32_t psci_conduit;
952
38e2a77c
PM
953 /* For v8M, initial value of the Secure VTOR */
954 uint32_t init_svtor;
7cda2149
PM
955 /* For v8M, initial value of the Non-secure VTOR */
956 uint32_t init_nsvtor;
38e2a77c 957
74e75564
PB
958 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
959 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
960 */
961 uint32_t kvm_target;
962
cf43b5b6 963#ifdef CONFIG_KVM
74e75564
PB
964 /* KVM init features for this CPU */
965 uint32_t kvm_init_features[7];
966
e5ac4200
AJ
967 /* KVM CPU state */
968
969 /* KVM virtual time adjustment */
970 bool kvm_adjvtime;
971 bool kvm_vtime_dirty;
972 uint64_t kvm_vtime;
973
68970d1e
AJ
974 /* KVM steal time */
975 OnOffAuto kvm_steal_time;
cf43b5b6 976#endif /* CONFIG_KVM */
68970d1e 977
74e75564
PB
978 /* Uniprocessor system with MP extensions */
979 bool mp_is_up;
980
c4487d76
PM
981 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
982 * and the probe failed (so we need to report the error in realize)
983 */
984 bool host_cpu_probe_failed;
985
f9a69711
AF
986 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
987 * register.
988 */
989 int32_t core_count;
990
74e75564
PB
991 /* The instance init functions for implementation-specific subclasses
992 * set these fields to specify the implementation-dependent values of
993 * various constant registers and reset values of non-constant
994 * registers.
995 * Some of these might become QOM properties eventually.
996 * Field names match the official register names as defined in the
997 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
998 * is used for reset values of non-constant registers; no reset_
999 * prefix means a constant register.
47576b94
RH
1000 * Some of these registers are split out into a substructure that
1001 * is shared with the translators to control the ISA.
1548a7b2
PM
1002 *
1003 * Note that if you add an ID register to the ARMISARegisters struct
1004 * you need to also update the 32-bit and 64-bit versions of the
1005 * kvm_arm_get_host_cpu_features() function to correctly populate the
1006 * field by reading the value from the KVM vCPU.
74e75564 1007 */
47576b94
RH
1008 struct ARMISARegisters {
1009 uint32_t id_isar0;
1010 uint32_t id_isar1;
1011 uint32_t id_isar2;
1012 uint32_t id_isar3;
1013 uint32_t id_isar4;
1014 uint32_t id_isar5;
1015 uint32_t id_isar6;
10054016
PM
1016 uint32_t id_mmfr0;
1017 uint32_t id_mmfr1;
1018 uint32_t id_mmfr2;
1019 uint32_t id_mmfr3;
1020 uint32_t id_mmfr4;
32957aad 1021 uint32_t id_mmfr5;
8a130a7b
PM
1022 uint32_t id_pfr0;
1023 uint32_t id_pfr1;
1d51bc96 1024 uint32_t id_pfr2;
47576b94
RH
1025 uint32_t mvfr0;
1026 uint32_t mvfr1;
1027 uint32_t mvfr2;
a6179538 1028 uint32_t id_dfr0;
d22c5649 1029 uint32_t id_dfr1;
4426d361 1030 uint32_t dbgdidr;
09754ca8
PM
1031 uint32_t dbgdevid;
1032 uint32_t dbgdevid1;
47576b94
RH
1033 uint64_t id_aa64isar0;
1034 uint64_t id_aa64isar1;
a969fe97 1035 uint64_t id_aa64isar2;
47576b94
RH
1036 uint64_t id_aa64pfr0;
1037 uint64_t id_aa64pfr1;
3dc91ddb
PM
1038 uint64_t id_aa64mmfr0;
1039 uint64_t id_aa64mmfr1;
64761e10 1040 uint64_t id_aa64mmfr2;
2a609df8
PM
1041 uint64_t id_aa64dfr0;
1042 uint64_t id_aa64dfr1;
2dc10fa2 1043 uint64_t id_aa64zfr0;
414c54d5 1044 uint64_t id_aa64smfr0;
24526bb9 1045 uint64_t reset_pmcr_el0;
47576b94 1046 } isar;
e544f800 1047 uint64_t midr;
74e75564
PB
1048 uint32_t revidr;
1049 uint32_t reset_fpsid;
a5fd319a 1050 uint64_t ctr;
74e75564 1051 uint32_t reset_sctlr;
cad86737
AL
1052 uint64_t pmceid0;
1053 uint64_t pmceid1;
74e75564 1054 uint32_t id_afr0;
74e75564
PB
1055 uint64_t id_aa64afr0;
1056 uint64_t id_aa64afr1;
f6450bcb 1057 uint64_t clidr;
74e75564
PB
1058 uint64_t mp_affinity; /* MP ID without feature bits */
1059 /* The elements of this array are the CCSIDR values for each cache,
1060 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1061 */
957e6155 1062 uint64_t ccsidr[16];
74e75564
PB
1063 uint64_t reset_cbar;
1064 uint32_t reset_auxcr;
1065 bool reset_hivecs;
ef1febe7 1066 uint8_t reset_l0gptsz;
eb94284d
RH
1067
1068 /*
1069 * Intermediate values used during property parsing.
69b2265d 1070 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1071 */
1072 bool prop_pauth;
1073 bool prop_pauth_impdef;
399e5e71 1074 bool prop_pauth_qarma3;
69b2265d 1075 bool prop_lpa2;
eb94284d 1076
74e75564 1077 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
ae4acc69 1078 uint8_t dcz_blocksize;
851ec6eb
RH
1079 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1080 uint8_t gm_blocksize;
ae4acc69 1081
4a7319b7 1082 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1083
e45868a3
PM
1084 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1085 int gic_num_lrs; /* number of list registers */
1086 int gic_vpribits; /* number of virtual priority bits */
1087 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1088 int gic_pribits; /* number of physical priority bits */
e45868a3 1089
3a062d57
JB
1090 /* Whether the cfgend input is high (i.e. this CPU should reset into
1091 * big-endian mode). This setting isn't used directly: instead it modifies
1092 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1093 * architecture version.
1094 */
1095 bool cfgend;
1096
b5c53d1b 1097 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1098 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1099
1100 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1101
1102 /* Used to synchronize KVM and QEMU in-kernel device levels */
1103 uint8_t device_irq_level;
adf92eab
RH
1104
1105 /* Used to set the maximum vector length the cpu will support. */
1106 uint32_t sve_max_vq;
0df9142d 1107
b3d52804
RH
1108#ifdef CONFIG_USER_ONLY
1109 /* Used to set the default vector length at process start. */
1110 uint32_t sve_default_vq;
e74c0976 1111 uint32_t sme_default_vq;
b3d52804
RH
1112#endif
1113
7f9e25a6 1114 ARMVQMap sve_vq;
e74c0976 1115 ARMVQMap sme_vq;
7def8754
AJ
1116
1117 /* Generic timer counter frequency, in Hz */
1118 uint64_t gt_cntfrq_hz;
74e75564
PB
1119};
1120
7def8754 1121unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
f6fc36de 1122void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
7def8754 1123
51e5ef45
MAL
1124void arm_cpu_post_init(Object *obj);
1125
46de5913
IM
1126uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1127
74e75564 1128#ifndef CONFIG_USER_ONLY
8a9358cc 1129extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1130
1131void arm_cpu_do_interrupt(CPUState *cpu);
1132void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1133
74e75564
PB
1134hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1135 MemTxAttrs *attrs);
6d2d454a 1136#endif /* !CONFIG_USER_ONLY */
74e75564 1137
a010bdbe 1138int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1139int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1140
200bf5b7
AB
1141/* Returns the dynamically generated XML for the gdb stub.
1142 * Returns a pointer to the XML contents for the specified XML file or NULL
1143 * if the XML name doesn't match the predefined one.
1144 */
1145const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1146
74e75564 1147int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1148 int cpuid, DumpState *s);
74e75564 1149int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1150 int cpuid, DumpState *s);
74e75564
PB
1151
1152#ifdef TARGET_AARCH64
a010bdbe 1153int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1154int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1155void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1156void aarch64_sve_change_el(CPUARMState *env, int old_el,
1157 int new_el, bool el0_a64);
2a8af382 1158void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1159
1160/*
1161 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1162 * The byte at offset i from the start of the in-memory representation contains
1163 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1164 * lowest offsets are stored in the lowest memory addresses, then that nearly
1165 * matches QEMU's representation, which is to use an array of host-endian
1166 * uint64_t's, where the lower offsets are at the lower indices. To complete
1167 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1168 */
1169static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1170{
e03b5686 1171#if HOST_BIG_ENDIAN
538baab2
AJ
1172 int i;
1173
1174 for (i = 0; i < nr; ++i) {
1175 dst[i] = bswap64(src[i]);
1176 }
1177
1178 return dst;
1179#else
1180 return src;
1181#endif
1182}
1183
0ab5953b
RH
1184#else
1185static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1186static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1187 int n, bool a)
1188{ }
74e75564 1189#endif
778c3a06 1190
ce02049d
GB
1191void aarch64_sync_32_to_64(CPUARMState *env);
1192void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1193
ced31551
RH
1194int fp_exception_el(CPUARMState *env, int cur_el);
1195int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1196int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1197
1198/**
6ca54aa9 1199 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1200 * @env: CPUARMState
1201 * @el: exception level
6ca54aa9 1202 * @sm: streaming mode
5ef3cc56 1203 *
6ca54aa9 1204 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1205 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1206 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1207 */
6ca54aa9
RH
1208uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1209
1210/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1211uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1212
3926cc84
AG
1213static inline bool is_a64(CPUARMState *env)
1214{
1215 return env->aarch64;
1216}
1217
5d05b9d4
AL
1218/**
1219 * pmu_op_start/finish
ec7b4ce4
AF
1220 * @env: CPUARMState
1221 *
5d05b9d4
AL
1222 * Convert all PMU counters between their delta form (the typical mode when
1223 * they are enabled) and the guest-visible values. These two calls must
1224 * surround any action which might affect the counters.
ec7b4ce4 1225 */
5d05b9d4
AL
1226void pmu_op_start(CPUARMState *env);
1227void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1228
4e7beb0c
AL
1229/*
1230 * Called when a PMU counter is due to overflow
1231 */
1232void arm_pmu_timer_cb(void *opaque);
1233
033614c4
AL
1234/**
1235 * Functions to register as EL change hooks for PMU mode filtering
1236 */
1237void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1238void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1239
57a4a11b 1240/*
bf8d0969
AL
1241 * pmu_init
1242 * @cpu: ARMCPU
57a4a11b 1243 *
bf8d0969
AL
1244 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1245 * for the current configuration
57a4a11b 1246 */
bf8d0969 1247void pmu_init(ARMCPU *cpu);
57a4a11b 1248
76e3e1bc
PM
1249/* SCTLR bit meanings. Several bits have been reused in newer
1250 * versions of the architecture; in that case we define constants
1251 * for both old and new bit meanings. Code which tests against those
1252 * bits should probably check or otherwise arrange that the CPU
1253 * is the architectural version it expects.
1254 */
1255#define SCTLR_M (1U << 0)
1256#define SCTLR_A (1U << 1)
1257#define SCTLR_C (1U << 2)
1258#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1259#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1260#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1261#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1262#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1263#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1264#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1265#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1266#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1267#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1268#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1269#define SCTLR_ITD (1U << 7) /* v8 onward */
1270#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1271#define SCTLR_SED (1U << 8) /* v8 onward */
1272#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1273#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1274#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1275#define SCTLR_SW (1U << 10) /* v7 */
1276#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1277#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1278#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1279#define SCTLR_I (1U << 12)
b2af69d0
RH
1280#define SCTLR_V (1U << 13) /* AArch32 only */
1281#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1282#define SCTLR_RR (1U << 14) /* up to v7 */
1283#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1284#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1285#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1286#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1287#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1288#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1289#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1290#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1291#define SCTLR_nTWE (1U << 18) /* v8 onward */
1292#define SCTLR_WXN (1U << 19)
1293#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1294#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1295#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1296#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1297#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1298#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1299#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1300#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1301#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1302#define SCTLR_VE (1U << 24) /* up to v7 */
1303#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1304#define SCTLR_EE (1U << 25)
1305#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1306#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1307#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1308#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1309#define SCTLR_TRE (1U << 28) /* AArch32 only */
1310#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1311#define SCTLR_AFE (1U << 29) /* AArch32 only */
1312#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1313#define SCTLR_TE (1U << 30) /* AArch32 only */
1314#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1315#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1316#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
dbc678f9 1317#define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
b2af69d0
RH
1318#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1319#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1320#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1321#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1322#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1323#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1324#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1325#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1326#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1327#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1328#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1329#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1330#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1331#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1332#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1333#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1334#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1335#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1336#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1337#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1338#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1339#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1340
fab8ad39
RH
1341/* Bit definitions for CPACR (AArch32 only) */
1342FIELD(CPACR, CP10, 20, 2)
1343FIELD(CPACR, CP11, 22, 2)
1344FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1345FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1346FIELD(CPACR, ASEDIS, 31, 1)
1347
1348/* Bit definitions for CPACR_EL1 (AArch64 only) */
1349FIELD(CPACR_EL1, ZEN, 16, 2)
1350FIELD(CPACR_EL1, FPEN, 20, 2)
1351FIELD(CPACR_EL1, SMEN, 24, 2)
1352FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1353
1354/* Bit definitions for HCPTR (AArch32 only) */
1355FIELD(HCPTR, TCP10, 10, 1)
1356FIELD(HCPTR, TCP11, 11, 1)
1357FIELD(HCPTR, TASE, 15, 1)
1358FIELD(HCPTR, TTA, 20, 1)
1359FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1360FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1361
1362/* Bit definitions for CPTR_EL2 (AArch64 only) */
1363FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1364FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1365FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1366FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1367FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1368FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1369FIELD(CPTR_EL2, TTA, 28, 1)
1370FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1371FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1372
1373/* Bit definitions for CPTR_EL3 (AArch64 only) */
1374FIELD(CPTR_EL3, EZ, 8, 1)
1375FIELD(CPTR_EL3, TFP, 10, 1)
1376FIELD(CPTR_EL3, ESM, 12, 1)
1377FIELD(CPTR_EL3, TTA, 20, 1)
1378FIELD(CPTR_EL3, TAM, 30, 1)
1379FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1380
f190bd1d
PM
1381#define MDCR_MTPME (1U << 28)
1382#define MDCR_TDCC (1U << 27)
47b385da 1383#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1384#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1385#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1386#define MDCR_EPMAD (1U << 21)
1387#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1388#define MDCR_TTRF (1U << 19)
1389#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1390#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1391#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1392#define MDCR_SDD (1U << 16)
a8d64e73 1393#define MDCR_SPD (3U << 14)
187f678d
PM
1394#define MDCR_TDRA (1U << 11)
1395#define MDCR_TDOSA (1U << 10)
1396#define MDCR_TDA (1U << 9)
1397#define MDCR_TDE (1U << 8)
1398#define MDCR_HPME (1U << 7)
1399#define MDCR_TPM (1U << 6)
1400#define MDCR_TPMCR (1U << 5)
033614c4 1401#define MDCR_HPMN (0x1fU)
187f678d 1402
a8d64e73 1403/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1404#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1405 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1406 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1407
78dbbbe4
PM
1408#define CPSR_M (0x1fU)
1409#define CPSR_T (1U << 5)
1410#define CPSR_F (1U << 6)
1411#define CPSR_I (1U << 7)
1412#define CPSR_A (1U << 8)
1413#define CPSR_E (1U << 9)
1414#define CPSR_IT_2_7 (0xfc00U)
1415#define CPSR_GE (0xfU << 16)
4051e12c 1416#define CPSR_IL (1U << 20)
dc8b1853 1417#define CPSR_DIT (1U << 21)
220f508f 1418#define CPSR_PAN (1U << 22)
f2f68a78 1419#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1420#define CPSR_J (1U << 24)
1421#define CPSR_IT_0_1 (3U << 25)
1422#define CPSR_Q (1U << 27)
1423#define CPSR_V (1U << 28)
1424#define CPSR_C (1U << 29)
1425#define CPSR_Z (1U << 30)
1426#define CPSR_N (1U << 31)
9ee6e8bb 1427#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1428#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1429
1430#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1431#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1432 | CPSR_NZCV)
9ee6e8bb 1433/* Bits writable in user mode. */
268b1b3d 1434#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1435/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1436#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1437
987ab45e
PM
1438/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1439#define XPSR_EXCP 0x1ffU
1440#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1441#define XPSR_IT_2_7 CPSR_IT_2_7
1442#define XPSR_GE CPSR_GE
1443#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1444#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1445#define XPSR_IT_0_1 CPSR_IT_0_1
1446#define XPSR_Q CPSR_Q
1447#define XPSR_V CPSR_V
1448#define XPSR_C CPSR_C
1449#define XPSR_Z CPSR_Z
1450#define XPSR_N CPSR_N
1451#define XPSR_NZCV CPSR_NZCV
1452#define XPSR_IT CPSR_IT
1453
e389be16
FA
1454#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1455#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1456#define TTBCR_PD0 (1U << 4)
1457#define TTBCR_PD1 (1U << 5)
1458#define TTBCR_EPD0 (1U << 7)
1459#define TTBCR_IRGN0 (3U << 8)
1460#define TTBCR_ORGN0 (3U << 10)
1461#define TTBCR_SH0 (3U << 12)
1462#define TTBCR_T1SZ (3U << 16)
1463#define TTBCR_A1 (1U << 22)
1464#define TTBCR_EPD1 (1U << 23)
1465#define TTBCR_IRGN1 (3U << 24)
1466#define TTBCR_ORGN1 (3U << 26)
1467#define TTBCR_SH1 (1U << 28)
1468#define TTBCR_EAE (1U << 31)
1469
f04383e7
PM
1470FIELD(VTCR, T0SZ, 0, 6)
1471FIELD(VTCR, SL0, 6, 2)
1472FIELD(VTCR, IRGN0, 8, 2)
1473FIELD(VTCR, ORGN0, 10, 2)
1474FIELD(VTCR, SH0, 12, 2)
1475FIELD(VTCR, TG0, 14, 2)
1476FIELD(VTCR, PS, 16, 3)
1477FIELD(VTCR, VS, 19, 1)
1478FIELD(VTCR, HA, 21, 1)
1479FIELD(VTCR, HD, 22, 1)
1480FIELD(VTCR, HWU59, 25, 1)
1481FIELD(VTCR, HWU60, 26, 1)
1482FIELD(VTCR, HWU61, 27, 1)
1483FIELD(VTCR, HWU62, 28, 1)
1484FIELD(VTCR, NSW, 29, 1)
1485FIELD(VTCR, NSA, 30, 1)
1486FIELD(VTCR, DS, 32, 1)
1487FIELD(VTCR, SL2, 33, 1)
1488
d356312f
PM
1489/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1490 * Only these are valid when in AArch64 mode; in
1491 * AArch32 mode SPSRs are basically CPSR-format.
1492 */
f502cfc2 1493#define PSTATE_SP (1U)
d356312f
PM
1494#define PSTATE_M (0xFU)
1495#define PSTATE_nRW (1U << 4)
1496#define PSTATE_F (1U << 6)
1497#define PSTATE_I (1U << 7)
1498#define PSTATE_A (1U << 8)
1499#define PSTATE_D (1U << 9)
f6e52eaa 1500#define PSTATE_BTYPE (3U << 10)
f2f68a78 1501#define PSTATE_SSBS (1U << 12)
d356312f
PM
1502#define PSTATE_IL (1U << 20)
1503#define PSTATE_SS (1U << 21)
220f508f 1504#define PSTATE_PAN (1U << 22)
9eeb7a1c 1505#define PSTATE_UAO (1U << 23)
dc8b1853 1506#define PSTATE_DIT (1U << 24)
4b779ceb 1507#define PSTATE_TCO (1U << 25)
d356312f
PM
1508#define PSTATE_V (1U << 28)
1509#define PSTATE_C (1U << 29)
1510#define PSTATE_Z (1U << 30)
1511#define PSTATE_N (1U << 31)
1512#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1513#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1514#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1515/* Mode values for AArch64 */
1516#define PSTATE_MODE_EL3h 13
1517#define PSTATE_MODE_EL3t 12
1518#define PSTATE_MODE_EL2h 9
1519#define PSTATE_MODE_EL2t 8
1520#define PSTATE_MODE_EL1h 5
1521#define PSTATE_MODE_EL1t 4
1522#define PSTATE_MODE_EL0t 0
1523
c37e6ac9
RH
1524/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1525FIELD(SVCR, SM, 0, 1)
1526FIELD(SVCR, ZA, 1, 1)
1527
de561988
RH
1528/* Fields for SMCR_ELx. */
1529FIELD(SMCR, LEN, 0, 4)
1530FIELD(SMCR, FA64, 31, 1)
1531
de2db7ec
PM
1532/* Write a new value to v7m.exception, thus transitioning into or out
1533 * of Handler mode; this may result in a change of active stack pointer.
1534 */
1535void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1536
9e729b57
EI
1537/* Map EL and handler into a PSTATE_MODE. */
1538static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1539{
1540 return (el << 2) | handler;
1541}
1542
d356312f
PM
1543/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1544 * interprocessing, so we don't attempt to sync with the cpsr state used by
1545 * the 32 bit decoder.
1546 */
1547static inline uint32_t pstate_read(CPUARMState *env)
1548{
1549 int ZF;
1550
1551 ZF = (env->ZF == 0);
1552 return (env->NF & 0x80000000) | (ZF << 30)
1553 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1554 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1555}
1556
1557static inline void pstate_write(CPUARMState *env, uint32_t val)
1558{
1559 env->ZF = (~val) & PSTATE_Z;
1560 env->NF = val;
1561 env->CF = (val >> 29) & 1;
1562 env->VF = (val << 3) & 0x80000000;
4cc35614 1563 env->daif = val & PSTATE_DAIF;
f6e52eaa 1564 env->btype = (val >> 10) & 3;
d356312f
PM
1565 env->pstate = val & ~CACHED_PSTATE_BITS;
1566}
1567
b5ff1b31 1568/* Return the current CPSR value. */
2f4a40e5 1569uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1570
1571typedef enum CPSRWriteType {
1572 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1573 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1574 CPSRWriteRaw = 2,
1575 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1576 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1577} CPSRWriteType;
1578
e784807c
PM
1579/*
1580 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1581 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1582 * correspond to TB flags bits cached in the hflags, unless @write_type
1583 * is CPSRWriteRaw.
1584 */
50866ba5
PM
1585void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1586 CPSRWriteType write_type);
9ee6e8bb
PB
1587
1588/* Return the current xPSR value. */
1589static inline uint32_t xpsr_read(CPUARMState *env)
1590{
1591 int ZF;
6fbe23d5
PB
1592 ZF = (env->ZF == 0);
1593 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1594 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1595 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1596 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1597 | (env->GE << 16)
9ee6e8bb 1598 | env->v7m.exception;
b5ff1b31
FB
1599}
1600
9ee6e8bb
PB
1601/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1602static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1603{
987ab45e
PM
1604 if (mask & XPSR_NZCV) {
1605 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1606 env->NF = val;
9ee6e8bb
PB
1607 env->CF = (val >> 29) & 1;
1608 env->VF = (val << 3) & 0x80000000;
1609 }
987ab45e
PM
1610 if (mask & XPSR_Q) {
1611 env->QF = ((val & XPSR_Q) != 0);
1612 }
f1e2598c
PM
1613 if (mask & XPSR_GE) {
1614 env->GE = (val & XPSR_GE) >> 16;
1615 }
04c9c81b 1616#ifndef CONFIG_USER_ONLY
987ab45e
PM
1617 if (mask & XPSR_T) {
1618 env->thumb = ((val & XPSR_T) != 0);
1619 }
1620 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1621 env->condexec_bits &= ~3;
1622 env->condexec_bits |= (val >> 25) & 3;
1623 }
987ab45e 1624 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1625 env->condexec_bits &= 3;
1626 env->condexec_bits |= (val >> 8) & 0xfc;
1627 }
987ab45e 1628 if (mask & XPSR_EXCP) {
de2db7ec
PM
1629 /* Note that this only happens on exception exit */
1630 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1631 }
04c9c81b 1632#endif
9ee6e8bb
PB
1633}
1634
f149e3e8
EI
1635#define HCR_VM (1ULL << 0)
1636#define HCR_SWIO (1ULL << 1)
1637#define HCR_PTW (1ULL << 2)
1638#define HCR_FMO (1ULL << 3)
1639#define HCR_IMO (1ULL << 4)
1640#define HCR_AMO (1ULL << 5)
1641#define HCR_VF (1ULL << 6)
1642#define HCR_VI (1ULL << 7)
1643#define HCR_VSE (1ULL << 8)
1644#define HCR_FB (1ULL << 9)
1645#define HCR_BSU_MASK (3ULL << 10)
1646#define HCR_DC (1ULL << 12)
1647#define HCR_TWI (1ULL << 13)
1648#define HCR_TWE (1ULL << 14)
1649#define HCR_TID0 (1ULL << 15)
1650#define HCR_TID1 (1ULL << 16)
1651#define HCR_TID2 (1ULL << 17)
1652#define HCR_TID3 (1ULL << 18)
1653#define HCR_TSC (1ULL << 19)
1654#define HCR_TIDCP (1ULL << 20)
1655#define HCR_TACR (1ULL << 21)
1656#define HCR_TSW (1ULL << 22)
099bf53b 1657#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1658#define HCR_TPU (1ULL << 24)
1659#define HCR_TTLB (1ULL << 25)
1660#define HCR_TVM (1ULL << 26)
1661#define HCR_TGE (1ULL << 27)
1662#define HCR_TDZ (1ULL << 28)
1663#define HCR_HCD (1ULL << 29)
1664#define HCR_TRVM (1ULL << 30)
1665#define HCR_RW (1ULL << 31)
1666#define HCR_CD (1ULL << 32)
1667#define HCR_ID (1ULL << 33)
ac656b16 1668#define HCR_E2H (1ULL << 34)
099bf53b
RH
1669#define HCR_TLOR (1ULL << 35)
1670#define HCR_TERR (1ULL << 36)
1671#define HCR_TEA (1ULL << 37)
1672#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1673#define HCR_TME (1ULL << 39)
099bf53b
RH
1674#define HCR_APK (1ULL << 40)
1675#define HCR_API (1ULL << 41)
1676#define HCR_NV (1ULL << 42)
1677#define HCR_NV1 (1ULL << 43)
1678#define HCR_AT (1ULL << 44)
1679#define HCR_NV2 (1ULL << 45)
1680#define HCR_FWB (1ULL << 46)
1681#define HCR_FIEN (1ULL << 47)
aa3cc42c 1682#define HCR_GPF (1ULL << 48)
099bf53b
RH
1683#define HCR_TID4 (1ULL << 49)
1684#define HCR_TICAB (1ULL << 50)
e0a38bb3 1685#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1686#define HCR_TOCU (1ULL << 52)
e0a38bb3 1687#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1688#define HCR_TTLBIS (1ULL << 54)
1689#define HCR_TTLBOS (1ULL << 55)
1690#define HCR_ATA (1ULL << 56)
1691#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1692#define HCR_TID5 (1ULL << 58)
1693#define HCR_TWEDEN (1ULL << 59)
1694#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1695
5814d587
RH
1696#define HCRX_ENAS0 (1ULL << 0)
1697#define HCRX_ENALS (1ULL << 1)
1698#define HCRX_ENASR (1ULL << 2)
1699#define HCRX_FNXS (1ULL << 3)
1700#define HCRX_FGTNXS (1ULL << 4)
1701#define HCRX_SMPME (1ULL << 5)
1702#define HCRX_TALLINT (1ULL << 6)
1703#define HCRX_VINMI (1ULL << 7)
1704#define HCRX_VFNMI (1ULL << 8)
1705#define HCRX_CMOW (1ULL << 9)
1706#define HCRX_MCE2 (1ULL << 10)
1707#define HCRX_MSCEN (1ULL << 11)
1708
9861248f
RDC
1709#define HPFAR_NS (1ULL << 63)
1710
06f2adcc
JF
1711#define SCR_NS (1ULL << 0)
1712#define SCR_IRQ (1ULL << 1)
1713#define SCR_FIQ (1ULL << 2)
1714#define SCR_EA (1ULL << 3)
1715#define SCR_FW (1ULL << 4)
1716#define SCR_AW (1ULL << 5)
1717#define SCR_NET (1ULL << 6)
1718#define SCR_SMD (1ULL << 7)
1719#define SCR_HCE (1ULL << 8)
1720#define SCR_SIF (1ULL << 9)
1721#define SCR_RW (1ULL << 10)
1722#define SCR_ST (1ULL << 11)
1723#define SCR_TWI (1ULL << 12)
1724#define SCR_TWE (1ULL << 13)
1725#define SCR_TLOR (1ULL << 14)
1726#define SCR_TERR (1ULL << 15)
1727#define SCR_APK (1ULL << 16)
1728#define SCR_API (1ULL << 17)
1729#define SCR_EEL2 (1ULL << 18)
1730#define SCR_EASE (1ULL << 19)
1731#define SCR_NMEA (1ULL << 20)
1732#define SCR_FIEN (1ULL << 21)
1733#define SCR_ENSCXT (1ULL << 25)
1734#define SCR_ATA (1ULL << 26)
1735#define SCR_FGTEN (1ULL << 27)
1736#define SCR_ECVEN (1ULL << 28)
1737#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1738#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1739#define SCR_TME (1ULL << 34)
1740#define SCR_AMVOFFEN (1ULL << 35)
1741#define SCR_ENAS0 (1ULL << 36)
1742#define SCR_ADEN (1ULL << 37)
1743#define SCR_HXEN (1ULL << 38)
1744#define SCR_TRNDR (1ULL << 40)
1745#define SCR_ENTP2 (1ULL << 41)
1746#define SCR_GPF (1ULL << 48)
aa3cc42c 1747#define SCR_NSE (1ULL << 62)
64e0e2de 1748
cc7613bf 1749#define HSTR_TTEE (1 << 16)
8e228c9e 1750#define HSTR_TJDBX (1 << 17)
cc7613bf 1751
f6fc36de
JPB
1752#define CNTHCTL_CNTVMASK (1 << 18)
1753#define CNTHCTL_CNTPMASK (1 << 19)
1754
01653295
PM
1755/* Return the current FPSCR value. */
1756uint32_t vfp_get_fpscr(CPUARMState *env);
1757void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1758
d81ce0ef
AB
1759/* FPCR, Floating Point Control Register
1760 * FPSR, Floating Poiht Status Register
1761 *
1762 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1763 * FPCR and FPSR. However since they still use non-overlapping bits
1764 * we store the underlying state in fpscr and just mask on read/write.
1765 */
1766#define FPSR_MASK 0xf800009f
0b62159b 1767#define FPCR_MASK 0x07ff9f00
d81ce0ef 1768
a15945d9
PM
1769#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1770#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1771#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1772#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1773#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1774#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1775#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1776#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1777#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1778#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1779#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1780#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1781#define FPCR_V (1 << 28) /* FP overflow flag */
1782#define FPCR_C (1 << 29) /* FP carry flag */
1783#define FPCR_Z (1 << 30) /* FP zero flag */
1784#define FPCR_N (1 << 31) /* FP negative flag */
1785
99c7834f
PM
1786#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1787#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1788#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1789
9542c30b
PM
1790#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1791#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1792
f903fa22
PM
1793static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1794{
1795 return vfp_get_fpscr(env) & FPSR_MASK;
1796}
1797
1798static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1799{
1800 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1801 vfp_set_fpscr(env, new_fpscr);
1802}
1803
1804static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1805{
1806 return vfp_get_fpscr(env) & FPCR_MASK;
1807}
1808
1809static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1810{
1811 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1812 vfp_set_fpscr(env, new_fpscr);
1813}
1814
b5ff1b31
FB
1815enum arm_cpu_mode {
1816 ARM_CPU_MODE_USR = 0x10,
1817 ARM_CPU_MODE_FIQ = 0x11,
1818 ARM_CPU_MODE_IRQ = 0x12,
1819 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1820 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1821 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1822 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1823 ARM_CPU_MODE_UND = 0x1b,
1824 ARM_CPU_MODE_SYS = 0x1f
1825};
1826
40f137e1
PB
1827/* VFP system registers. */
1828#define ARM_VFP_FPSID 0
1829#define ARM_VFP_FPSCR 1
a50c0f51 1830#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1831#define ARM_VFP_MVFR1 6
1832#define ARM_VFP_MVFR0 7
40f137e1
PB
1833#define ARM_VFP_FPEXC 8
1834#define ARM_VFP_FPINST 9
1835#define ARM_VFP_FPINST2 10
9542c30b
PM
1836/* These ones are M-profile only */
1837#define ARM_VFP_FPSCR_NZCVQC 2
1838#define ARM_VFP_VPR 12
1839#define ARM_VFP_P0 13
1840#define ARM_VFP_FPCXT_NS 14
1841#define ARM_VFP_FPCXT_S 15
40f137e1 1842
32a290b8
PM
1843/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1844#define QEMU_VFP_FPSCR_NZCV 0xffff
1845
18c9b560 1846/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1847#define ARM_IWMMXT_wCID 0
1848#define ARM_IWMMXT_wCon 1
1849#define ARM_IWMMXT_wCSSF 2
1850#define ARM_IWMMXT_wCASF 3
1851#define ARM_IWMMXT_wCGR0 8
1852#define ARM_IWMMXT_wCGR1 9
1853#define ARM_IWMMXT_wCGR2 10
1854#define ARM_IWMMXT_wCGR3 11
18c9b560 1855
2c4da50d
PM
1856/* V7M CCR bits */
1857FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1858FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1859FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1860FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1861FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1862FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1863FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1864FIELD(V7M_CCR, DC, 16, 1)
1865FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1866FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1867FIELD(V7M_CCR, LOB, 19, 1)
1868FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1869
24ac0fb1
PM
1870/* V7M SCR bits */
1871FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1872FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1873FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1874FIELD(V7M_SCR, SEVONPEND, 4, 1)
1875
3b2e9344
PM
1876/* V7M AIRCR bits */
1877FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1878FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1879FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1880FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1881FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1882FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1883FIELD(V7M_AIRCR, PRIS, 14, 1)
1884FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1885FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1886
2c4da50d
PM
1887/* V7M CFSR bits for MMFSR */
1888FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1889FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1890FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1891FIELD(V7M_CFSR, MSTKERR, 4, 1)
1892FIELD(V7M_CFSR, MLSPERR, 5, 1)
1893FIELD(V7M_CFSR, MMARVALID, 7, 1)
1894
1895/* V7M CFSR bits for BFSR */
1896FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1897FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1898FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1899FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1900FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1901FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1902FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1903
1904/* V7M CFSR bits for UFSR */
1905FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1906FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1907FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1908FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1909FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1910FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1911FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1912
334e8dad
PM
1913/* V7M CFSR bit masks covering all of the subregister bits */
1914FIELD(V7M_CFSR, MMFSR, 0, 8)
1915FIELD(V7M_CFSR, BFSR, 8, 8)
1916FIELD(V7M_CFSR, UFSR, 16, 16)
1917
2c4da50d
PM
1918/* V7M HFSR bits */
1919FIELD(V7M_HFSR, VECTTBL, 1, 1)
1920FIELD(V7M_HFSR, FORCED, 30, 1)
1921FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1922
1923/* V7M DFSR bits */
1924FIELD(V7M_DFSR, HALTED, 0, 1)
1925FIELD(V7M_DFSR, BKPT, 1, 1)
1926FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1927FIELD(V7M_DFSR, VCATCH, 3, 1)
1928FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1929
bed079da
PM
1930/* V7M SFSR bits */
1931FIELD(V7M_SFSR, INVEP, 0, 1)
1932FIELD(V7M_SFSR, INVIS, 1, 1)
1933FIELD(V7M_SFSR, INVER, 2, 1)
1934FIELD(V7M_SFSR, AUVIOL, 3, 1)
1935FIELD(V7M_SFSR, INVTRAN, 4, 1)
1936FIELD(V7M_SFSR, LSPERR, 5, 1)
1937FIELD(V7M_SFSR, SFARVALID, 6, 1)
1938FIELD(V7M_SFSR, LSERR, 7, 1)
1939
29c483a5
MD
1940/* v7M MPU_CTRL bits */
1941FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1942FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1943FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1944
43bbce7f
PM
1945/* v7M CLIDR bits */
1946FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1947FIELD(V7M_CLIDR, LOUIS, 21, 3)
1948FIELD(V7M_CLIDR, LOC, 24, 3)
1949FIELD(V7M_CLIDR, LOUU, 27, 3)
1950FIELD(V7M_CLIDR, ICB, 30, 2)
1951
1952FIELD(V7M_CSSELR, IND, 0, 1)
1953FIELD(V7M_CSSELR, LEVEL, 1, 3)
1954/* We use the combination of InD and Level to index into cpu->ccsidr[];
1955 * define a mask for this and check that it doesn't permit running off
1956 * the end of the array.
1957 */
1958FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1959
1960/* v7M FPCCR bits */
1961FIELD(V7M_FPCCR, LSPACT, 0, 1)
1962FIELD(V7M_FPCCR, USER, 1, 1)
1963FIELD(V7M_FPCCR, S, 2, 1)
1964FIELD(V7M_FPCCR, THREAD, 3, 1)
1965FIELD(V7M_FPCCR, HFRDY, 4, 1)
1966FIELD(V7M_FPCCR, MMRDY, 5, 1)
1967FIELD(V7M_FPCCR, BFRDY, 6, 1)
1968FIELD(V7M_FPCCR, SFRDY, 7, 1)
1969FIELD(V7M_FPCCR, MONRDY, 8, 1)
1970FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1971FIELD(V7M_FPCCR, UFRDY, 10, 1)
1972FIELD(V7M_FPCCR, RES0, 11, 15)
1973FIELD(V7M_FPCCR, TS, 26, 1)
1974FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1975FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1976FIELD(V7M_FPCCR, LSPENS, 29, 1)
1977FIELD(V7M_FPCCR, LSPEN, 30, 1)
1978FIELD(V7M_FPCCR, ASPEN, 31, 1)
1979/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1980#define R_V7M_FPCCR_BANKED_MASK \
1981 (R_V7M_FPCCR_LSPACT_MASK | \
1982 R_V7M_FPCCR_USER_MASK | \
1983 R_V7M_FPCCR_THREAD_MASK | \
1984 R_V7M_FPCCR_MMRDY_MASK | \
1985 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1986 R_V7M_FPCCR_UFRDY_MASK | \
1987 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1988
7c3d47da
PM
1989/* v7M VPR bits */
1990FIELD(V7M_VPR, P0, 0, 16)
1991FIELD(V7M_VPR, MASK01, 16, 4)
1992FIELD(V7M_VPR, MASK23, 20, 4)
1993
a62e62af
RH
1994/*
1995 * System register ID fields.
1996 */
2a14526a
LL
1997FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1998FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1999FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2000FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2001FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2002FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2003FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2004FIELD(CLIDR_EL1, LOUIS, 21, 3)
2005FIELD(CLIDR_EL1, LOC, 24, 3)
2006FIELD(CLIDR_EL1, LOUU, 27, 3)
2007FIELD(CLIDR_EL1, ICB, 30, 3)
2008
2009/* When FEAT_CCIDX is implemented */
2010FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2011FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2012FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2013
2014/* When FEAT_CCIDX is not implemented */
2015FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2016FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2017FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2018
2019FIELD(CTR_EL0, IMINLINE, 0, 4)
2020FIELD(CTR_EL0, L1IP, 14, 2)
2021FIELD(CTR_EL0, DMINLINE, 16, 4)
2022FIELD(CTR_EL0, ERG, 20, 4)
2023FIELD(CTR_EL0, CWG, 24, 4)
2024FIELD(CTR_EL0, IDC, 28, 1)
2025FIELD(CTR_EL0, DIC, 29, 1)
2026FIELD(CTR_EL0, TMINLINE, 32, 6)
2027
2bd5f41c
AB
2028FIELD(MIDR_EL1, REVISION, 0, 4)
2029FIELD(MIDR_EL1, PARTNUM, 4, 12)
2030FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2031FIELD(MIDR_EL1, VARIANT, 20, 4)
2032FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2033
a62e62af
RH
2034FIELD(ID_ISAR0, SWAP, 0, 4)
2035FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2036FIELD(ID_ISAR0, BITFIELD, 8, 4)
2037FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2038FIELD(ID_ISAR0, COPROC, 16, 4)
2039FIELD(ID_ISAR0, DEBUG, 20, 4)
2040FIELD(ID_ISAR0, DIVIDE, 24, 4)
2041
2042FIELD(ID_ISAR1, ENDIAN, 0, 4)
2043FIELD(ID_ISAR1, EXCEPT, 4, 4)
2044FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2045FIELD(ID_ISAR1, EXTEND, 12, 4)
2046FIELD(ID_ISAR1, IFTHEN, 16, 4)
2047FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2048FIELD(ID_ISAR1, INTERWORK, 24, 4)
2049FIELD(ID_ISAR1, JAZELLE, 28, 4)
2050
2051FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2052FIELD(ID_ISAR2, MEMHINT, 4, 4)
2053FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2054FIELD(ID_ISAR2, MULT, 12, 4)
2055FIELD(ID_ISAR2, MULTS, 16, 4)
2056FIELD(ID_ISAR2, MULTU, 20, 4)
2057FIELD(ID_ISAR2, PSR_AR, 24, 4)
2058FIELD(ID_ISAR2, REVERSAL, 28, 4)
2059
2060FIELD(ID_ISAR3, SATURATE, 0, 4)
2061FIELD(ID_ISAR3, SIMD, 4, 4)
2062FIELD(ID_ISAR3, SVC, 8, 4)
2063FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2064FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2065FIELD(ID_ISAR3, T32COPY, 20, 4)
2066FIELD(ID_ISAR3, TRUENOP, 24, 4)
2067FIELD(ID_ISAR3, T32EE, 28, 4)
2068
2069FIELD(ID_ISAR4, UNPRIV, 0, 4)
2070FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2071FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2072FIELD(ID_ISAR4, SMC, 12, 4)
2073FIELD(ID_ISAR4, BARRIER, 16, 4)
2074FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2075FIELD(ID_ISAR4, PSR_M, 24, 4)
2076FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2077
2078FIELD(ID_ISAR5, SEVL, 0, 4)
2079FIELD(ID_ISAR5, AES, 4, 4)
2080FIELD(ID_ISAR5, SHA1, 8, 4)
2081FIELD(ID_ISAR5, SHA2, 12, 4)
2082FIELD(ID_ISAR5, CRC32, 16, 4)
2083FIELD(ID_ISAR5, RDM, 24, 4)
2084FIELD(ID_ISAR5, VCMA, 28, 4)
2085
2086FIELD(ID_ISAR6, JSCVT, 0, 4)
2087FIELD(ID_ISAR6, DP, 4, 4)
2088FIELD(ID_ISAR6, FHM, 8, 4)
2089FIELD(ID_ISAR6, SB, 12, 4)
2090FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2091FIELD(ID_ISAR6, BF16, 20, 4)
2092FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2093
0ae0326b
PM
2094FIELD(ID_MMFR0, VMSA, 0, 4)
2095FIELD(ID_MMFR0, PMSA, 4, 4)
2096FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2097FIELD(ID_MMFR0, SHARELVL, 12, 4)
2098FIELD(ID_MMFR0, TCM, 16, 4)
2099FIELD(ID_MMFR0, AUXREG, 20, 4)
2100FIELD(ID_MMFR0, FCSE, 24, 4)
2101FIELD(ID_MMFR0, INNERSHR, 28, 4)
2102
bd78b6be
LL
2103FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2104FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2105FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2106FIELD(ID_MMFR1, L1UNISW, 12, 4)
2107FIELD(ID_MMFR1, L1HVD, 16, 4)
2108FIELD(ID_MMFR1, L1UNI, 20, 4)
2109FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2110FIELD(ID_MMFR1, BPRED, 28, 4)
2111
2112FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2113FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2114FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2115FIELD(ID_MMFR2, HVDTLB, 12, 4)
2116FIELD(ID_MMFR2, UNITLB, 16, 4)
2117FIELD(ID_MMFR2, MEMBARR, 20, 4)
2118FIELD(ID_MMFR2, WFISTALL, 24, 4)
2119FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2120
3d6ad6bb
RH
2121FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2122FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2123FIELD(ID_MMFR3, BPMAINT, 8, 4)
2124FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2125FIELD(ID_MMFR3, PAN, 16, 4)
2126FIELD(ID_MMFR3, COHWALK, 20, 4)
2127FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2128FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2129
ab638a32
RH
2130FIELD(ID_MMFR4, SPECSEI, 0, 4)
2131FIELD(ID_MMFR4, AC2, 4, 4)
2132FIELD(ID_MMFR4, XNX, 8, 4)
2133FIELD(ID_MMFR4, CNP, 12, 4)
2134FIELD(ID_MMFR4, HPDS, 16, 4)
2135FIELD(ID_MMFR4, LSM, 20, 4)
2136FIELD(ID_MMFR4, CCIDX, 24, 4)
2137FIELD(ID_MMFR4, EVT, 28, 4)
2138
bd78b6be 2139FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2140FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2141
46f4976f
PM
2142FIELD(ID_PFR0, STATE0, 0, 4)
2143FIELD(ID_PFR0, STATE1, 4, 4)
2144FIELD(ID_PFR0, STATE2, 8, 4)
2145FIELD(ID_PFR0, STATE3, 12, 4)
2146FIELD(ID_PFR0, CSV2, 16, 4)
2147FIELD(ID_PFR0, AMU, 20, 4)
2148FIELD(ID_PFR0, DIT, 24, 4)
2149FIELD(ID_PFR0, RAS, 28, 4)
2150
dfc523a8
PM
2151FIELD(ID_PFR1, PROGMOD, 0, 4)
2152FIELD(ID_PFR1, SECURITY, 4, 4)
2153FIELD(ID_PFR1, MPROGMOD, 8, 4)
2154FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2155FIELD(ID_PFR1, GENTIMER, 16, 4)
2156FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2157FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2158FIELD(ID_PFR1, GIC, 28, 4)
2159
bd78b6be
LL
2160FIELD(ID_PFR2, CSV3, 0, 4)
2161FIELD(ID_PFR2, SSBS, 4, 4)
2162FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2163
a62e62af
RH
2164FIELD(ID_AA64ISAR0, AES, 4, 4)
2165FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2166FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2167FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2168FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
4d9eb296 2169FIELD(ID_AA64ISAR0, TME, 24, 4)
a62e62af
RH
2170FIELD(ID_AA64ISAR0, RDM, 28, 4)
2171FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2172FIELD(ID_AA64ISAR0, SM3, 36, 4)
2173FIELD(ID_AA64ISAR0, SM4, 40, 4)
2174FIELD(ID_AA64ISAR0, DP, 44, 4)
2175FIELD(ID_AA64ISAR0, FHM, 48, 4)
2176FIELD(ID_AA64ISAR0, TS, 52, 4)
2177FIELD(ID_AA64ISAR0, TLB, 56, 4)
2178FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2179
2180FIELD(ID_AA64ISAR1, DPB, 0, 4)
2181FIELD(ID_AA64ISAR1, APA, 4, 4)
2182FIELD(ID_AA64ISAR1, API, 8, 4)
2183FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2184FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2185FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2186FIELD(ID_AA64ISAR1, GPA, 24, 4)
2187FIELD(ID_AA64ISAR1, GPI, 28, 4)
2188FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2189FIELD(ID_AA64ISAR1, SB, 36, 4)
2190FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2191FIELD(ID_AA64ISAR1, BF16, 44, 4)
2192FIELD(ID_AA64ISAR1, DGH, 48, 4)
2193FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2194FIELD(ID_AA64ISAR1, XS, 56, 4)
2195FIELD(ID_AA64ISAR1, LS64, 60, 4)
2196
2197FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2198FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2199FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2200FIELD(ID_AA64ISAR2, APA3, 12, 4)
2201FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2202FIELD(ID_AA64ISAR2, BC, 20, 4)
2203FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
4d9eb296
PM
2204FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2205FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2206FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2207FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2208FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2209FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2210FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
a62e62af 2211
cd208a1c
RH
2212FIELD(ID_AA64PFR0, EL0, 0, 4)
2213FIELD(ID_AA64PFR0, EL1, 4, 4)
2214FIELD(ID_AA64PFR0, EL2, 8, 4)
2215FIELD(ID_AA64PFR0, EL3, 12, 4)
2216FIELD(ID_AA64PFR0, FP, 16, 4)
2217FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2218FIELD(ID_AA64PFR0, GIC, 24, 4)
2219FIELD(ID_AA64PFR0, RAS, 28, 4)
2220FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2221FIELD(ID_AA64PFR0, SEL2, 36, 4)
2222FIELD(ID_AA64PFR0, MPAM, 40, 4)
2223FIELD(ID_AA64PFR0, AMU, 44, 4)
2224FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2225FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2226FIELD(ID_AA64PFR0, CSV2, 56, 4)
2227FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2228
be53b6f4 2229FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2230FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2231FIELD(ID_AA64PFR1, MTE, 8, 4)
2232FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2233FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2234FIELD(ID_AA64PFR1, SME, 24, 4)
2235FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2236FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2237FIELD(ID_AA64PFR1, NMI, 36, 4)
4d9eb296
PM
2238FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2239FIELD(ID_AA64PFR1, GCS, 44, 4)
2240FIELD(ID_AA64PFR1, THE, 48, 4)
2241FIELD(ID_AA64PFR1, MTEX, 52, 4)
2242FIELD(ID_AA64PFR1, DF2, 56, 4)
2243FIELD(ID_AA64PFR1, PFAR, 60, 4)
be53b6f4 2244
3dc91ddb
PM
2245FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2246FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2247FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2248FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2249FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2250FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2251FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2252FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2253FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2254FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2255FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2256FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2257FIELD(ID_AA64MMFR0, FGT, 56, 4)
2258FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2259
2260FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2261FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2262FIELD(ID_AA64MMFR1, VH, 8, 4)
2263FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2264FIELD(ID_AA64MMFR1, LO, 16, 4)
2265FIELD(ID_AA64MMFR1, PAN, 20, 4)
2266FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2267FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2268FIELD(ID_AA64MMFR1, TWED, 32, 4)
2269FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2270FIELD(ID_AA64MMFR1, HCX, 40, 4)
2271FIELD(ID_AA64MMFR1, AFP, 44, 4)
2272FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2273FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2274FIELD(ID_AA64MMFR1, CMOW, 56, 4)
4d9eb296 2275FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
3dc91ddb 2276
64761e10
RH
2277FIELD(ID_AA64MMFR2, CNP, 0, 4)
2278FIELD(ID_AA64MMFR2, UAO, 4, 4)
2279FIELD(ID_AA64MMFR2, LSM, 8, 4)
2280FIELD(ID_AA64MMFR2, IESB, 12, 4)
2281FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2282FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2283FIELD(ID_AA64MMFR2, NV, 24, 4)
2284FIELD(ID_AA64MMFR2, ST, 28, 4)
2285FIELD(ID_AA64MMFR2, AT, 32, 4)
2286FIELD(ID_AA64MMFR2, IDS, 36, 4)
2287FIELD(ID_AA64MMFR2, FWB, 40, 4)
2288FIELD(ID_AA64MMFR2, TTL, 48, 4)
2289FIELD(ID_AA64MMFR2, BBM, 52, 4)
2290FIELD(ID_AA64MMFR2, EVT, 56, 4)
2291FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2292
ceb2744b
PM
2293FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2294FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2295FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2296FIELD(ID_AA64DFR0, BRPS, 12, 4)
4d9eb296 2297FIELD(ID_AA64DFR0, PMSS, 16, 4)
ceb2744b 2298FIELD(ID_AA64DFR0, WRPS, 20, 4)
4d9eb296 2299FIELD(ID_AA64DFR0, SEBEP, 24, 4)
ceb2744b
PM
2300FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2301FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2302FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2303FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2304FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2305FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b 2306FIELD(ID_AA64DFR0, BRBE, 52, 4)
4d9eb296 2307FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
c42fb26b 2308FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2309
2dc10fa2
RH
2310FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2311FIELD(ID_AA64ZFR0, AES, 4, 4)
2312FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2313FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
4d9eb296 2314FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2dc10fa2
RH
2315FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2316FIELD(ID_AA64ZFR0, SM4, 40, 4)
2317FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2318FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2319FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2320
414c54d5 2321FIELD(ID_AA64SMFR0, F32F32, 32, 1)
4d9eb296 2322FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
414c54d5
RH
2323FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2324FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2325FIELD(ID_AA64SMFR0, I8I32, 36, 4)
4d9eb296
PM
2326FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2327FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2328FIELD(ID_AA64SMFR0, I16I32, 44, 4)
414c54d5
RH
2329FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2330FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2331FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2332FIELD(ID_AA64SMFR0, FA64, 63, 1)
2333
beceb99c
AL
2334FIELD(ID_DFR0, COPDBG, 0, 4)
2335FIELD(ID_DFR0, COPSDBG, 4, 4)
2336FIELD(ID_DFR0, MMAPDBG, 8, 4)
2337FIELD(ID_DFR0, COPTRC, 12, 4)
2338FIELD(ID_DFR0, MMAPTRC, 16, 4)
2339FIELD(ID_DFR0, MPROFDBG, 20, 4)
2340FIELD(ID_DFR0, PERFMON, 24, 4)
2341FIELD(ID_DFR0, TRACEFILT, 28, 4)
2342
bd78b6be 2343FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2344FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2345
88ce6c6e
PM
2346FIELD(DBGDIDR, SE_IMP, 12, 1)
2347FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2348FIELD(DBGDIDR, VERSION, 16, 4)
2349FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2350FIELD(DBGDIDR, BRPS, 24, 4)
2351FIELD(DBGDIDR, WRPS, 28, 4)
2352
f94a6df5
PM
2353FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2354FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2355FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2356FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2357FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2358FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2359FIELD(DBGDEVID, AUXREGS, 24, 4)
2360FIELD(DBGDEVID, CIDMASK, 28, 4)
2361
602f6e42
PM
2362FIELD(MVFR0, SIMDREG, 0, 4)
2363FIELD(MVFR0, FPSP, 4, 4)
2364FIELD(MVFR0, FPDP, 8, 4)
2365FIELD(MVFR0, FPTRAP, 12, 4)
2366FIELD(MVFR0, FPDIVIDE, 16, 4)
2367FIELD(MVFR0, FPSQRT, 20, 4)
2368FIELD(MVFR0, FPSHVEC, 24, 4)
2369FIELD(MVFR0, FPROUND, 28, 4)
2370
2371FIELD(MVFR1, FPFTZ, 0, 4)
2372FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2373FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2374FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2375FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2376FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2377FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2378FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2379FIELD(MVFR1, FPHP, 24, 4)
2380FIELD(MVFR1, SIMDFMAC, 28, 4)
2381
2382FIELD(MVFR2, SIMDMISC, 0, 4)
2383FIELD(MVFR2, FPMISC, 4, 4)
2384
ef1febe7
RH
2385FIELD(GPCCR, PPS, 0, 3)
2386FIELD(GPCCR, IRGN, 8, 2)
2387FIELD(GPCCR, ORGN, 10, 2)
2388FIELD(GPCCR, SH, 12, 2)
2389FIELD(GPCCR, PGS, 14, 2)
2390FIELD(GPCCR, GPC, 16, 1)
2391FIELD(GPCCR, GPCP, 17, 1)
2392FIELD(GPCCR, L0GPTSZ, 20, 4)
2393
2394FIELD(MFAR, FPA, 12, 40)
2395FIELD(MFAR, NSE, 62, 1)
2396FIELD(MFAR, NS, 63, 1)
2397
43bbce7f
PM
2398QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2399
ce854d7c
BC
2400/* If adding a feature bit which corresponds to a Linux ELF
2401 * HWCAP bit, remember to update the feature-bit-to-hwcap
2402 * mapping in linux-user/elfload.c:get_elf_hwcap().
2403 */
40f137e1 2404enum arm_features {
c1713132
AZ
2405 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2406 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2407 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2408 ARM_FEATURE_V6,
2409 ARM_FEATURE_V6K,
2410 ARM_FEATURE_V7,
2411 ARM_FEATURE_THUMB2,
452a0955 2412 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2413 ARM_FEATURE_NEON,
9ee6e8bb 2414 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2415 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2416 ARM_FEATURE_THUMB2EE,
be5e7a76 2417 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2418 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2419 ARM_FEATURE_V4T,
2420 ARM_FEATURE_V5,
5bc95aa2 2421 ARM_FEATURE_STRONGARM,
906879a9 2422 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2423 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2424 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2425 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2426 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2427 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2428 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2429 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2430 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2431 ARM_FEATURE_V8,
3926cc84 2432 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2433 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2434 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2435 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2436 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2437 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2438 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2439 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2440 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2441 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2442 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2443};
2444
2445static inline int arm_feature(CPUARMState *env, int feature)
2446{
918f5dca 2447 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2448}
2449
0df9142d
AJ
2450void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2451
fcc7404e 2452/*
5d28ac0c
RH
2453 * ARM v9 security states.
2454 * The ordering of the enumeration corresponds to the low 2 bits
2455 * of the GPI value, and (except for Root) the concat of NSE:NS.
2456 */
2457
2458typedef enum ARMSecuritySpace {
2459 ARMSS_Secure = 0,
2460 ARMSS_NonSecure = 1,
2461 ARMSS_Root = 2,
2462 ARMSS_Realm = 3,
2463} ARMSecuritySpace;
2464
2465/* Return true if @space is secure, in the pre-v9 sense. */
2466static inline bool arm_space_is_secure(ARMSecuritySpace space)
2467{
2468 return space == ARMSS_Secure || space == ARMSS_Root;
2469}
2470
2471/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2472static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2473{
2474 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2475}
2476
2477#if !defined(CONFIG_USER_ONLY)
2478/**
2479 * arm_security_space_below_el3:
2480 * @env: cpu context
2481 *
2482 * Return the security space of exception levels below EL3, following
2483 * an exception return to those levels. Unlike arm_security_space,
2484 * this doesn't care about the current EL.
2485 */
2486ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2487
2488/**
2489 * arm_is_secure_below_el3:
2490 * @env: cpu context
2491 *
fcc7404e 2492 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2493 * or would be following an exception return to those levels.
19e0fefa
FA
2494 */
2495static inline bool arm_is_secure_below_el3(CPUARMState *env)
2496{
5d28ac0c
RH
2497 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2498 return ss == ARMSS_Secure;
19e0fefa
FA
2499}
2500
71205876
PM
2501/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2502static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2503{
fcc7404e 2504 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2505 if (arm_feature(env, ARM_FEATURE_EL3)) {
2506 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2507 /* CPU currently in AArch64 state and EL3 */
2508 return true;
2509 } else if (!is_a64(env) &&
2510 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2511 /* CPU currently in AArch32 state and monitor mode */
2512 return true;
2513 }
2514 }
71205876
PM
2515 return false;
2516}
2517
5d28ac0c
RH
2518/**
2519 * arm_security_space:
2520 * @env: cpu context
2521 *
2522 * Return the current security space of the cpu.
2523 */
2524ARMSecuritySpace arm_security_space(CPUARMState *env);
2525
2526/**
2527 * arm_is_secure:
2528 * @env: cpu context
2529 *
2530 * Return true if the processor is in secure state.
2531 */
71205876
PM
2532static inline bool arm_is_secure(CPUARMState *env)
2533{
5d28ac0c 2534 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2535}
2536
f3ee5160
RDC
2537/*
2538 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
4477020d 2539 * This corresponds to the pseudocode EL2Enabled().
f3ee5160 2540 */
4477020d
PM
2541static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2542 ARMSecuritySpace space)
b74c0443 2543{
4477020d 2544 assert(space != ARMSS_Root);
b74c0443 2545 return arm_feature(env, ARM_FEATURE_EL2)
4477020d 2546 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
b74c0443
RH
2547}
2548
f3ee5160
RDC
2549static inline bool arm_is_el2_enabled(CPUARMState *env)
2550{
4477020d 2551 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
f3ee5160
RDC
2552}
2553
19e0fefa 2554#else
5d28ac0c
RH
2555static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2556{
2557 return ARMSS_NonSecure;
2558}
2559
19e0fefa
FA
2560static inline bool arm_is_secure_below_el3(CPUARMState *env)
2561{
2562 return false;
2563}
2564
5d28ac0c
RH
2565static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2566{
2567 return ARMSS_NonSecure;
2568}
2569
19e0fefa
FA
2570static inline bool arm_is_secure(CPUARMState *env)
2571{
2572 return false;
2573}
f3ee5160 2574
4477020d
PM
2575static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2576 ARMSecuritySpace space)
b74c0443
RH
2577{
2578 return false;
2579}
2580
f3ee5160
RDC
2581static inline bool arm_is_el2_enabled(CPUARMState *env)
2582{
2583 return false;
2584}
19e0fefa
FA
2585#endif
2586
f7778444
RH
2587/**
2588 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2589 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2590 * "for all purposes other than a direct read or write access of HCR_EL2."
2591 * Not included here is HCR_RW.
2592 */
2d12bb96 2593uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
f7778444 2594uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2595uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2596
1f79ee32
PM
2597/* Return true if the specified exception level is running in AArch64 state. */
2598static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2599{
446c81ab
PM
2600 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2601 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2602 */
446c81ab
PM
2603 assert(el >= 1 && el <= 3);
2604 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2605
446c81ab
PM
2606 /* The highest exception level is always at the maximum supported
2607 * register width, and then lower levels have a register width controlled
2608 * by bits in the SCR or HCR registers.
1f79ee32 2609 */
446c81ab
PM
2610 if (el == 3) {
2611 return aa64;
2612 }
2613
926c1b97
RDC
2614 if (arm_feature(env, ARM_FEATURE_EL3) &&
2615 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2616 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2617 }
2618
2619 if (el == 2) {
2620 return aa64;
2621 }
2622
e6ef0169 2623 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2624 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2625 }
2626
2627 return aa64;
1f79ee32
PM
2628}
2629
673d8215 2630/* Function for determining whether guest cp register reads and writes should
3f342b9e
SF
2631 * access the secure or non-secure bank of a cp register. When EL3 is
2632 * operating in AArch32 state, the NS-bit determines whether the secure
2633 * instance of a cp register should be used. When EL3 is AArch64 (or if
2634 * it doesn't exist at all) then there is no register banking, and all
2635 * accesses are to the non-secure version.
2636 */
2637static inline bool access_secure_reg(CPUARMState *env)
2638{
2639 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2640 !arm_el_is_aa64(env, 3) &&
2641 !(env->cp15.scr_el3 & SCR_NS));
2642
2643 return ret;
2644}
2645
ea30a4b8
FA
2646/* Macros for accessing a specified CP register bank */
2647#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2648 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2649
2650#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2651 do { \
2652 if (_secure) { \
2653 (_env)->cp15._regname##_s = (_val); \
2654 } else { \
2655 (_env)->cp15._regname##_ns = (_val); \
2656 } \
2657 } while (0)
2658
2659/* Macros for automatically accessing a specific CP register bank depending on
2660 * the current secure state of the system. These macros are not intended for
2661 * supporting instruction translation reads/writes as these are dependent
2662 * solely on the SCR.NS bit and not the mode.
2663 */
2664#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2665 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2666 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2667
2668#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2669 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2670 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2671 (_val))
2672
0442428a 2673void arm_cpu_list(void);
012a906b
GB
2674uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2675 uint32_t cur_el, bool secure);
40f137e1 2676
75502672
PM
2677/* Return the highest implemented Exception Level */
2678static inline int arm_highest_el(CPUARMState *env)
2679{
2680 if (arm_feature(env, ARM_FEATURE_EL3)) {
2681 return 3;
2682 }
2683 if (arm_feature(env, ARM_FEATURE_EL2)) {
2684 return 2;
2685 }
2686 return 1;
2687}
2688
15b3f556
PM
2689/* Return true if a v7M CPU is in Handler mode */
2690static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2691{
2692 return env->v7m.exception != 0;
2693}
2694
dcbff19b
GB
2695/* Return the current Exception Level (as per ARMv8; note that this differs
2696 * from the ARMv7 Privilege Level).
2697 */
2698static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2699{
6d54ed3c 2700 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2701 return arm_v7m_is_handler_mode(env) ||
2702 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2703 }
2704
592125f8 2705 if (is_a64(env)) {
f5a0a5a5
PM
2706 return extract32(env->pstate, 2, 2);
2707 }
2708
592125f8
FA
2709 switch (env->uncached_cpsr & 0x1f) {
2710 case ARM_CPU_MODE_USR:
4b6a83fb 2711 return 0;
592125f8
FA
2712 case ARM_CPU_MODE_HYP:
2713 return 2;
2714 case ARM_CPU_MODE_MON:
2715 return 3;
2716 default:
2717 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2718 /* If EL3 is 32-bit then all secure privileged modes run in
2719 * EL3
2720 */
2721 return 3;
2722 }
2723
2724 return 1;
4b6a83fb 2725 }
4b6a83fb
PM
2726}
2727
721fae12
PM
2728/**
2729 * write_list_to_cpustate
2730 * @cpu: ARMCPU
2731 *
2732 * For each register listed in the ARMCPU cpreg_indexes list, write
2733 * its value from the cpreg_values list into the ARMCPUState structure.
2734 * This updates TCG's working data structures from KVM data or
2735 * from incoming migration state.
2736 *
2737 * Returns: true if all register values were updated correctly,
2738 * false if some register was unknown or could not be written.
2739 * Note that we do not stop early on failure -- we will attempt
2740 * writing all registers in the list.
2741 */
2742bool write_list_to_cpustate(ARMCPU *cpu);
2743
2744/**
2745 * write_cpustate_to_list:
2746 * @cpu: ARMCPU
b698e4ee 2747 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2748 *
2749 * For each register listed in the ARMCPU cpreg_indexes list, write
2750 * its value from the ARMCPUState structure into the cpreg_values list.
2751 * This is used to copy info from TCG's working data structures into
2752 * KVM or for outbound migration.
2753 *
b698e4ee
PM
2754 * @kvm_sync is true if we are doing this in order to sync the
2755 * register state back to KVM. In this case we will only update
2756 * values in the list if the previous list->cpustate sync actually
2757 * successfully wrote the CPU state. Otherwise we will keep the value
2758 * that is in the list.
2759 *
721fae12
PM
2760 * Returns: true if all register values were read correctly,
2761 * false if some register was unknown or could not be read.
2762 * Note that we do not stop early on failure -- we will attempt
2763 * reading all registers in the list.
2764 */
b698e4ee 2765bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2766
9ee6e8bb
PB
2767#define ARM_CPUID_TI915T 0x54029152
2768#define ARM_CPUID_TI925T 0x54029252
40f137e1 2769
ba1ba5cc
IM
2770#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2771#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2772#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2773
585df85e
PM
2774#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2775
c732abe2 2776#define cpu_list arm_cpu_list
9467d44c 2777
c1e37810
PM
2778/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2779 *
2780 * If EL3 is 64-bit:
2781 * + NonSecure EL1 & 0 stage 1
2782 * + NonSecure EL1 & 0 stage 2
2783 * + NonSecure EL2
b9f6033c
RH
2784 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2785 * + Secure EL1 & 0
c1e37810
PM
2786 * + Secure EL3
2787 * If EL3 is 32-bit:
2788 * + NonSecure PL1 & 0 stage 1
2789 * + NonSecure PL1 & 0 stage 2
2790 * + NonSecure PL2
b9f6033c
RH
2791 * + Secure PL0
2792 * + Secure PL1
c1e37810
PM
2793 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2794 *
2795 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2796 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2797 * because they may differ in access permissions even if the VA->PA map is
2798 * the same
c1e37810
PM
2799 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2800 * translation, which means that we have one mmu_idx that deals with two
2801 * concatenated translation regimes [this sort of combined s1+2 TLB is
2802 * architecturally permitted]
2803 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2804 * handling via the TLB. The only way to do a stage 1 translation without
2805 * the immediate stage 2 translation is via the ATS or AT system insns,
2806 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2807 * The only use of stage 2 translations is either as part of an s1+2
2808 * lookup or when loading the descriptors during a stage 1 page table walk,
2809 * and in both those cases we don't use the TLB.
c1e37810
PM
2810 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2811 * translation regimes, because they map reasonably well to each other
2812 * and they can't both be active at the same time.
b9f6033c
RH
2813 * 5. we want to be able to use the TLB for accesses done as part of a
2814 * stage1 page table walk, rather than having to walk the stage2 page
2815 * table over and over.
452ef8cb
RH
2816 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2817 * Never (PAN) bit within PSTATE.
d902ae75
RH
2818 * 7. we fold together the secure and non-secure regimes for A-profile,
2819 * because there are no banked system registers for aarch64, so the
2820 * process of switching between secure and non-secure is
2821 * already heavyweight.
c1e37810 2822 *
b9f6033c
RH
2823 * This gives us the following list of cases:
2824 *
d902ae75
RH
2825 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2826 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2827 * EL1 EL1&0 stage 1+2 +PAN
2828 * EL0 EL2&0
2829 * EL2 EL2&0
2830 * EL2 EL2&0 +PAN
2831 * EL2 (aka NS PL2)
2832 * EL3 (aka S PL1)
a1ce3084 2833 * Physical (NS & S)
575a94af 2834 * Stage2 (NS & S)
c1e37810 2835 *
575a94af 2836 * for a total of 12 different mmu_idx.
c1e37810 2837 *
3bef7012 2838 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2839 * as A profile. They only need to distinguish EL0 and EL1 (and
2840 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2841 *
2842 * M profile CPUs are rather different as they do not have a true MMU.
2843 * They have the following different MMU indexes:
2844 * User
2845 * Privileged
62593718
PM
2846 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2847 * Privileged, execution priority negative (ditto)
66787c78
PM
2848 * If the CPU supports the v8M Security Extension then there are also:
2849 * Secure User
2850 * Secure Privileged
62593718
PM
2851 * Secure User, execution priority negative
2852 * Secure Privileged, execution priority negative
3bef7012 2853 *
8bd5c820
PM
2854 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2855 * are not quite the same -- different CPU types (most notably M profile
2856 * vs A/R profile) would like to use MMU indexes with different semantics,
2857 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2858 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2859 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2860 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2861 * the same for any particular CPU.
2862 * Variables of type ARMMUIdx are always full values, and the core
2863 * index values are in variables of type 'int'.
2864 *
c1e37810
PM
2865 * Our enumeration includes at the end some entries which are not "true"
2866 * mmu_idx values in that they don't have corresponding TLBs and are only
2867 * valid for doing slow path page table walks.
2868 *
2869 * The constant names here are patterned after the general style of the names
2870 * of the AT/ATS operations.
2871 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2872 * For M profile we arrange them to have a bit for priv, a bit for negpri
2873 * and a bit for secure.
c1e37810 2874 */
b9f6033c
RH
2875#define ARM_MMU_IDX_A 0x10 /* A profile */
2876#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2877#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2878
b9f6033c
RH
2879/* Meanings of the bits for M profile mmu idx values */
2880#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2881#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2882#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2883
b9f6033c
RH
2884#define ARM_MMU_IDX_TYPE_MASK \
2885 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2886#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2887
c1e37810 2888typedef enum ARMMMUIdx {
b9f6033c
RH
2889 /*
2890 * A-profile.
2891 */
d902ae75
RH
2892 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2893 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2894 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2895 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2896 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2897 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2898 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2899 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2900
575a94af
RH
2901 /*
2902 * Used for second stage of an S12 page table walk, or for descriptor
2903 * loads during first stage of an S1 page table walk. Note that both
2904 * are in use simultaneously for SecureEL2: the security state for
2905 * the S2 ptw is selected by the NS bit from the S1 ptw.
2906 */
d38fa967
RH
2907 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2908 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2909
2910 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2911 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2912 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2913 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2914 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2915
b9f6033c
RH
2916 /*
2917 * These are not allocated TLBs and are used only for AT system
2918 * instructions or for the first stage of an S12 page table walk.
2919 */
2920 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2921 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2922 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2923
2924 /*
2925 * M-profile.
2926 */
25568316
RH
2927 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2928 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2929 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2930 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2931 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2932 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2933 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2934 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2935} ARMMMUIdx;
2936
5f09a6df
RH
2937/*
2938 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2939 * for use when calling tlb_flush_by_mmuidx() and friends.
2940 */
5f09a6df
RH
2941#define TO_CORE_BIT(NAME) \
2942 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2943
8bd5c820 2944typedef enum ARMMMUIdxBit {
5f09a6df 2945 TO_CORE_BIT(E10_0),
b9f6033c 2946 TO_CORE_BIT(E20_0),
5f09a6df 2947 TO_CORE_BIT(E10_1),
452ef8cb 2948 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2949 TO_CORE_BIT(E2),
b9f6033c 2950 TO_CORE_BIT(E20_2),
452ef8cb 2951 TO_CORE_BIT(E20_2_PAN),
d902ae75 2952 TO_CORE_BIT(E3),
575a94af
RH
2953 TO_CORE_BIT(Stage2),
2954 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2955
2956 TO_CORE_BIT(MUser),
2957 TO_CORE_BIT(MPriv),
2958 TO_CORE_BIT(MUserNegPri),
2959 TO_CORE_BIT(MPrivNegPri),
2960 TO_CORE_BIT(MSUser),
2961 TO_CORE_BIT(MSPriv),
2962 TO_CORE_BIT(MSUserNegPri),
2963 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2964} ARMMMUIdxBit;
2965
5f09a6df
RH
2966#undef TO_CORE_BIT
2967
f79fbf39 2968#define MMU_USER_IDX 0
c1e37810 2969
9e273ef2
PM
2970/* Indexes used when registering address spaces with cpu_address_space_init */
2971typedef enum ARMASIdx {
2972 ARMASIdx_NS = 0,
2973 ARMASIdx_S = 1,
8bce44a2
RH
2974 ARMASIdx_TagNS = 2,
2975 ARMASIdx_TagS = 3,
9e273ef2
PM
2976} ARMASIdx;
2977
bb5cc2c8
RH
2978static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2979{
2980 /* Assert the relative order of the physical mmu indexes. */
2981 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2982 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2983 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2984 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2985
2986 return ARMMMUIdx_Phys_S + space;
2987}
2988
2989static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2990{
2991 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2992 return idx - ARMMMUIdx_Phys_S;
2993}
2994
43bbce7f
PM
2995static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2996{
2997 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2998 * CSSELR is RAZ/WI.
2999 */
3000 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3001}
3002
f9fd40eb
PB
3003static inline bool arm_sctlr_b(CPUARMState *env)
3004{
3005 return
3006 /* We need not implement SCTLR.ITD in user-mode emulation, so
3007 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3008 * This lets people run BE32 binaries with "-cpu any".
3009 */
3010#ifndef CONFIG_USER_ONLY
3011 !arm_feature(env, ARM_FEATURE_V7) &&
3012#endif
3013 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3014}
3015
aaec1432 3016uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3017
8061a649
RH
3018static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3019 bool sctlr_b)
3020{
3021#ifdef CONFIG_USER_ONLY
3022 /*
3023 * In system mode, BE32 is modelled in line with the
3024 * architecture (as word-invariant big-endianness), where loads
3025 * and stores are done little endian but from addresses which
3026 * are adjusted by XORing with the appropriate constant. So the
3027 * endianness to use for the raw data access is not affected by
3028 * SCTLR.B.
3029 * In user mode, however, we model BE32 as byte-invariant
3030 * big-endianness (because user-only code cannot tell the
3031 * difference), and so we need to use a data access endianness
3032 * that depends on SCTLR.B.
3033 */
3034 if (sctlr_b) {
3035 return true;
3036 }
3037#endif
3038 /* In 32bit endianness is determined by looking at CPSR's E bit */
3039 return env->uncached_cpsr & CPSR_E;
3040}
3041
3042static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3043{
3044 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3045}
64e40755 3046
ed50ff78
PC
3047/* Return true if the processor is in big-endian mode. */
3048static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3049{
ed50ff78 3050 if (!is_a64(env)) {
8061a649 3051 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3052 } else {
3053 int cur_el = arm_current_el(env);
3054 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3055 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3056 }
ed50ff78
PC
3057}
3058
022c62cb 3059#include "exec/cpu-all.h"
622ed360 3060
fdd1b228 3061/*
a378206a
RH
3062 * We have more than 32-bits worth of state per TB, so we split the data
3063 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3064 * We collect these two parts in CPUARMTBFlags where they are named
3065 * flags and flags2 respectively.
fdd1b228 3066 *
a378206a
RH
3067 * The flags that are shared between all execution modes, TBFLAG_ANY,
3068 * are stored in flags. The flags that are specific to a given mode
3069 * are stores in flags2. Since cs_base is sized on the configured
3070 * address size, flags2 always has 64-bits for A64, and a minimum of
3071 * 32-bits for A32 and M32.
3072 *
3073 * The bits for 32-bit A-profile and M-profile partially overlap:
3074 *
5896f392
RH
3075 * 31 23 11 10 0
3076 * +-------------+----------+----------------+
3077 * | | | TBFLAG_A32 |
3078 * | TBFLAG_AM32 | +-----+----------+
3079 * | | |TBFLAG_M32|
3080 * +-------------+----------------+----------+
26702213 3081 * 31 23 6 5 0
79cabf1f 3082 *
fdd1b228 3083 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3084 */
eee81d41
RH
3085FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3086FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3087FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3088FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3089FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3090/* Target EL if we take a floating-point-disabled exception */
eee81d41 3091FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3092/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3093FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3094FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3095FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3096FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3097
8bd587c1 3098/*
79cabf1f 3099 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3100 */
5896f392
RH
3101FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3102FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3103
79cabf1f
RH
3104/*
3105 * Bit usage when in AArch32 state, for A-profile only.
3106 */
5896f392
RH
3107FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3108FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3109/*
3110 * We store the bottom two bits of the CPAR as TB flags and handle
3111 * checks on the other bits at runtime. This shares the same bits as
3112 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3113 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3114 */
5896f392
RH
3115FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3116FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3117FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3118FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3119/*
3120 * Indicates whether cp register reads and writes by guest code should access
3121 * the secure or nonsecure bank of banked registers; note that this is not
3122 * the same thing as the current security state of the processor!
3123 */
5896f392 3124FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3125/*
3126 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3127 * This requires an SME trap from AArch32 mode when using NEON.
3128 */
3129FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3130
3131/*
3132 * Bit usage when in AArch32 state, for M-profile only.
3133 */
3134/* Handler (ie not Thread) mode */
5896f392 3135FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3136/* Whether we should generate stack-limit checks */
5896f392 3137FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3138/* Set if FPCCR.LSPACT is set */
5896f392 3139FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3140/* Set if we must create a new FP context */
5896f392 3141FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3142/* Set if FPCCR.S does not match current security state */
5896f392 3143FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3144/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3145FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3146/* Set if in secure mode */
3147FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3148
3149/*
3150 * Bit usage when in AArch64 state
3151 */
476a4692 3152FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3153FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3154/* The current vector length, either NVL or SVL. */
3155FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3156FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3157FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3158FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3159FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3160FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3161FIELD(TBFLAG_A64, ATA, 15, 1)
3162FIELD(TBFLAG_A64, TCMA, 16, 2)
3163FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3164FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3165FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3166FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3167FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3168FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3169/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3170FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
5572f755 3171FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
83f624d9 3172FIELD(TBFLAG_A64, NAA, 30, 1)
179e9a3b 3173FIELD(TBFLAG_A64, ATA0, 31, 1)
a1705768 3174
a729a46b
RH
3175/*
3176 * Helpers for using the above.
3177 */
3178#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3179 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3180#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3181 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3182#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3183 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3184#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3185 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3186#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3187 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3188
3902bfc6 3189#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3190#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3191#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3192#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3193#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3194
fb901c90
RH
3195/**
3196 * cpu_mmu_index:
3197 * @env: The cpu environment
3198 * @ifetch: True for code access, false for data access.
3199 *
3200 * Return the core mmu index for the current translation regime.
3201 * This function is used by generic TCG code paths.
3202 */
3203static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3204{
a729a46b 3205 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3206}
3207
8b599e5c
RH
3208/**
3209 * sve_vq
3210 * @env: the cpu context
3211 *
3212 * Return the VL cached within env->hflags, in units of quadwords.
3213 */
3214static inline int sve_vq(CPUARMState *env)
3215{
3216 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3217}
3218
5d7953ad
RH
3219/**
3220 * sme_vq
3221 * @env: the cpu context
3222 *
3223 * Return the SVL cached within env->hflags, in units of quadwords.
3224 */
3225static inline int sme_vq(CPUARMState *env)
3226{
3227 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3228}
3229
f9fd40eb
PB
3230static inline bool bswap_code(bool sctlr_b)
3231{
3232#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3233 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3234 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3235 * would also end up as a mixed-endian mode with BE code, LE data.
3236 */
ded625e7 3237 return TARGET_BIG_ENDIAN ^ sctlr_b;
f9fd40eb 3238#else
e334bd31
PB
3239 /* All code access in ARM is little endian, and there are no loaders
3240 * doing swaps that need to be reversed
f9fd40eb
PB
3241 */
3242 return 0;
3243#endif
3244}
3245
c3ae85fc
PB
3246#ifdef CONFIG_USER_ONLY
3247static inline bool arm_cpu_bswap_data(CPUARMState *env)
3248{
ded625e7 3249 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
c3ae85fc
PB
3250}
3251#endif
3252
bb5de525
AJ
3253void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3254 uint64_t *cs_base, uint32_t *flags);
6b917547 3255
98128601
RH
3256enum {
3257 QEMU_PSCI_CONDUIT_DISABLED = 0,
3258 QEMU_PSCI_CONDUIT_SMC = 1,
3259 QEMU_PSCI_CONDUIT_HVC = 2,
3260};
3261
017518c1
PM
3262#ifndef CONFIG_USER_ONLY
3263/* Return the address space index to use for a memory access */
3264static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3265{
3266 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3267}
5ce4ff65
PM
3268
3269/* Return the AddressSpace to use for a memory access
3270 * (which depends on whether the access is S or NS, and whether
3271 * the board gave us a separate AddressSpace for S accesses).
3272 */
3273static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3274{
3275 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3276}
017518c1
PM
3277#endif
3278
bd7d00fc 3279/**
b5c53d1b
AL
3280 * arm_register_pre_el_change_hook:
3281 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3282 * CPU changes exception level or mode. The hook function will be
3283 * passed a pointer to the ARMCPU and the opaque data pointer passed
3284 * to this function when the hook was registered.
b5c53d1b
AL
3285 *
3286 * Note that if a pre-change hook is called, any registered post-change hooks
3287 * are guaranteed to subsequently be called.
bd7d00fc 3288 */
b5c53d1b 3289void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3290 void *opaque);
b5c53d1b
AL
3291/**
3292 * arm_register_el_change_hook:
3293 * Register a hook function which will be called immediately after this
3294 * CPU changes exception level or mode. The hook function will be
3295 * passed a pointer to the ARMCPU and the opaque data pointer passed
3296 * to this function when the hook was registered.
3297 *
3298 * Note that any registered hooks registered here are guaranteed to be called
3299 * if pre-change hooks have been.
3300 */
3301void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3302 *opaque);
bd7d00fc 3303
3d74e2e9
RH
3304/**
3305 * arm_rebuild_hflags:
3306 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3307 */
3308void arm_rebuild_hflags(CPUARMState *env);
3309
9a2b5256
RH
3310/**
3311 * aa32_vfp_dreg:
3312 * Return a pointer to the Dn register within env in 32-bit mode.
3313 */
3314static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3315{
c39c2b90 3316 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3317}
3318
3319/**
3320 * aa32_vfp_qreg:
3321 * Return a pointer to the Qn register within env in 32-bit mode.
3322 */
3323static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3324{
c39c2b90 3325 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3326}
3327
3328/**
3329 * aa64_vfp_qreg:
3330 * Return a pointer to the Qn register within env in 64-bit mode.
3331 */
3332static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3333{
c39c2b90 3334 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3335}
3336
028e2a7b 3337/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3338extern const uint64_t pred_esz_masks[5];
028e2a7b 3339
be5d6f48
RH
3340/*
3341 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3342 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3343 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3344 */
7f2cf760
RH
3345#define PAGE_BTI PAGE_TARGET_1
3346#define PAGE_MTE PAGE_TARGET_2
3347#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3348
50d4c8c1
RH
3349/* We associate one allocation tag per 16 bytes, the minimum. */
3350#define LOG2_TAG_GRANULE 4
3351#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3352
3353#ifdef CONFIG_USER_ONLY
3354#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3355#endif
3356
0e0c030c
RH
3357#ifdef TARGET_TAGGED_ADDRESSES
3358/**
3359 * cpu_untagged_addr:
3360 * @cs: CPU context
3361 * @x: tagged address
3362 *
3363 * Remove any address tag from @x. This is explicitly related to the
3364 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3365 *
3366 * There should be a better place to put this, but we need this in
3367 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3368 */
3369static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3370{
3371 ARMCPU *cpu = ARM_CPU(cs);
3372 if (cpu->env.tagged_addr_enable) {
3373 /*
3374 * TBI is enabled for userspace but not kernelspace addresses.
3375 * Only clear the tag if bit 55 is clear.
3376 */
3377 x &= sextract64(x, 0, 56);
3378 }
3379 return x;
3380}
3381#endif
3382
873b73c0
PM
3383/*
3384 * Naming convention for isar_feature functions:
3385 * Functions which test 32-bit ID registers should have _aa32_ in
3386 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3387 * _aa64_ in their name. These must only be used in code where we
3388 * know for certain that the CPU has AArch32 or AArch64 respectively
3389 * or where the correct answer for a CPU which doesn't implement that
3390 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3391 * system registers that are specific to that CPU state, for "should
3392 * we let this system register bit be set" tests where the 32-bit
3393 * flavour of the register doesn't have the bit, and so on).
3394 * Functions which simply ask "does this feature exist at all" have
3395 * _any_ in their name, and always return the logical OR of the _aa64_
3396 * and the _aa32_ function.
873b73c0
PM
3397 */
3398
962fcbf2
RH
3399/*
3400 * 32-bit feature tests via id registers.
3401 */
873b73c0 3402static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3403{
3404 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3405}
3406
873b73c0 3407static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3408{
3409 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3410}
05903f03
PM
3411
3412static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3413{
3414 /* (M-profile) low-overhead loops and branch future */
3415 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3416}
7e0cf8b4 3417
873b73c0 3418static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3419{
3420 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3421}
3422
962fcbf2
RH
3423static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3424{
3425 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3426}
3427
3428static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3429{
3430 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3431}
3432
3433static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3434{
3435 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3436}
3437
3438static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3439{
3440 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3441}
3442
3443static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3444{
3445 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3446}
3447
3448static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3449{
3450 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3451}
3452
3453static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3454{
3455 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3456}
3457
6c1f6f27
RH
3458static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3459{
3460 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3461}
3462
962fcbf2
RH
3463static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3464{
3465 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3466}
3467
87732318
RH
3468static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3469{
3470 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3471}
3472
9888bd1e
RH
3473static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3474{
3475 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3476}
3477
cb570bd3
RH
3478static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3479{
3480 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3481}
3482
c0b9e8a4
RH
3483static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3484{
3485 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3486}
3487
51879c67
RH
3488static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3489{
3490 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3491}
3492
46f4976f
PM
3493static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3494{
3495 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3496}
3497
dfc523a8
PM
3498static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3499{
3500 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3501}
3502
83ff3d6a
PM
3503static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3504{
3505 /*
3506 * Return true if M-profile state handling insns
3507 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3508 */
3509 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3510}
3511
5763190f
RH
3512static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3513{
dfc523a8
PM
3514 /* Sadly this is encoded differently for A-profile and M-profile */
3515 if (isar_feature_aa32_mprofile(id)) {
3516 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3517 } else {
3518 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3519 }
5763190f
RH
3520}
3521
7df6a1ff
PM
3522static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3523{
3524 /*
3525 * Return true if MVE is supported (either integer or floating point).
3526 * We must check for M-profile as the MVFR1 field means something
3527 * else for A-profile.
3528 */
3529 return isar_feature_aa32_mprofile(id) &&
3530 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3531}
3532
3533static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3534{
3535 /*
3536 * Return true if MVE is supported (either integer or floating point).
3537 * We must check for M-profile as the MVFR1 field means something
3538 * else for A-profile.
3539 */
3540 return isar_feature_aa32_mprofile(id) &&
3541 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3542}
3543
7fbc6a40
RH
3544static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3545{
3546 /*
3547 * Return true if either VFP or SIMD is implemented.
3548 * In this case, a minimum of VFP w/ D0-D15.
3549 */
3550 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3551}
3552
0e13ba78 3553static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3554{
3555 /* Return true if D16-D31 are implemented */
b3a816f6 3556 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3557}
3558
266bd25c
PM
3559static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3560{
b3a816f6 3561 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3562}
3563
f67957e1
RH
3564static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3565{
3566 /* Return true if CPU supports single precision floating point, VFPv2 */
3567 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3568}
3569
3570static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3571{
3572 /* Return true if CPU supports single precision floating point, VFPv3 */
3573 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3574}
3575
c4ff8735 3576static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3577{
c4ff8735 3578 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3579 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3580}
3581
f67957e1
RH
3582static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3583{
3584 /* Return true if CPU supports double precision floating point, VFPv3 */
3585 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3586}
3587
7d63183f
RH
3588static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3589{
3590 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3591}
3592
602f6e42
PM
3593/*
3594 * We always set the FP and SIMD FP16 fields to indicate identical
3595 * levels of support (assuming SIMD is implemented at all), so
3596 * we only need one set of accessors.
3597 */
3598static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3599{
b3a816f6 3600 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3601}
3602
3603static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3604{
b3a816f6 3605 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3606}
3607
c52881bb
RH
3608/*
3609 * Note that this ID register field covers both VFP and Neon FMAC,
3610 * so should usually be tested in combination with some other
3611 * check that confirms the presence of whichever of VFP or Neon is
3612 * relevant, to avoid accidentally enabling a Neon feature on
3613 * a VFP-no-Neon core or vice-versa.
3614 */
3615static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3616{
3617 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3618}
3619
c0c760af
PM
3620static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3621{
b3a816f6 3622 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3623}
3624
3625static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3626{
b3a816f6 3627 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3628}
3629
3630static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3631{
b3a816f6 3632 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3633}
3634
3635static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3636{
b3a816f6 3637 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3638}
3639
0ae0326b
PM
3640static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3641{
3642 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3643}
3644
3d6ad6bb
RH
3645static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3646{
10054016 3647 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3648}
3649
3650static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3651{
10054016 3652 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3653}
3654
a793bcd0 3655static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3656{
3657 /* 0xf means "non-standard IMPDEF PMU" */
3658 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3659 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3660}
3661
a793bcd0 3662static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3663{
3664 /* 0xf means "non-standard IMPDEF PMU" */
3665 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3666 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3667}
3668
0b42f4fa
PM
3669static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3670{
3671 /* 0xf means "non-standard IMPDEF PMU" */
3672 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3673 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3674}
3675
4036b7d1
PM
3676static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3677{
3678 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3679}
3680
f6287c24
PM
3681static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3682{
3683 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3684}
3685
957e6155
PM
3686static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3687{
3688 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3689}
3690
ce3125be
PM
3691static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3692{
3693 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3694}
3695
d2fd9313
PM
3696static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3697{
3698 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3699}
3700
3701static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3702{
3703 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3704}
3705
dc8b1853
RC
3706static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3707{
3708 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3709}
3710
f2f68a78
RC
3711static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3712{
3713 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3714}
3715
09754ca8
PM
3716static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3717{
3718 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3719}
3720
ca56aac5
RH
3721static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3722{
3723 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3724}
3725
f94a6df5
PM
3726static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3727{
3728 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3729}
3730
962fcbf2
RH
3731/*
3732 * 64-bit feature tests via id registers.
3733 */
3734static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3735{
3736 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3737}
3738
3739static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3740{
3741 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3742}
3743
3744static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3745{
3746 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3747}
3748
3749static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3750{
3751 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3752}
3753
3754static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3755{
3756 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3757}
3758
3759static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3760{
3761 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3762}
3763
3764static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3765{
3766 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3767}
3768
3769static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3770{
3771 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3772}
3773
3774static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3775{
3776 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3777}
3778
3779static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3780{
3781 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3782}
3783
3784static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3785{
3786 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3787}
3788
3789static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3790{
3791 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3792}
3793
0caa5af8
RH
3794static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3795{
3796 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3797}
3798
b89d9c98
RH
3799static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3800{
3801 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3802}
3803
5ef84f11
RH
3804static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3805{
3806 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3807}
3808
de390645
RH
3809static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3810{
3811 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3812}
3813
6c1f6f27
RH
3814static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3815{
3816 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3817}
3818
962fcbf2
RH
3819static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3820{
3821 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3822}
3823
0274bd7b
AL
3824/*
3825 * These are the values from APA/API/APA3.
3826 * In general these must be compared '>=', per the normal Arm ARM
3827 * treatment of fields in ID registers.
3828 */
3829typedef enum {
3830 PauthFeat_None = 0,
3831 PauthFeat_1 = 1,
3832 PauthFeat_EPAC = 2,
3833 PauthFeat_2 = 3,
3834 PauthFeat_FPAC = 4,
3835 PauthFeat_FPACCOMBINED = 5,
3836} ARMPauthFeature;
3837
3838static inline ARMPauthFeature
3839isar_feature_pauth_feature(const ARMISARegisters *id)
3840{
3841 /*
3842 * Architecturally, only one of {APA,API,APA3} may be active (non-zero)
3843 * and the other two must be zero. Thus we may avoid conditionals.
3844 */
3845 return (FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) |
3846 FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, API) |
3847 FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, APA3));
3848}
3849
991ad91b
RH
3850static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3851{
3852 /*
283fc52a
RH
3853 * Return true if any form of pauth is enabled, as this
3854 * predicate controls migration of the 128-bit keys.
991ad91b 3855 */
0274bd7b 3856 return isar_feature_pauth_feature(id) != PauthFeat_None;
991ad91b
RH
3857}
3858
0274bd7b 3859static inline bool isar_feature_aa64_pauth_qarma5(const ARMISARegisters *id)
283fc52a
RH
3860{
3861 /*
0274bd7b
AL
3862 * Return true if pauth is enabled with the architected QARMA5 algorithm.
3863 * QEMU will always enable or disable both APA and GPA.
283fc52a
RH
3864 */
3865 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3866}
3867
0274bd7b
AL
3868static inline bool isar_feature_aa64_pauth_qarma3(const ARMISARegisters *id)
3869{
3870 /*
3871 * Return true if pauth is enabled with the architected QARMA3 algorithm.
3872 * QEMU will always enable or disable both APA3 and GPA3.
3873 */
3874 return FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, APA3) != 0;
3875}
3876
84940ed8
RC
3877static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3878{
3879 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3880}
3881
7113d618
RC
3882static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3883{
3884 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3885}
3886
9888bd1e
RH
3887static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3888{
3889 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3890}
3891
cb570bd3
RH
3892static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3893{
3894 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3895}
3896
6bea2563
RH
3897static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3898{
3899 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3900}
3901
0d57b499
BM
3902static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3903{
3904 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3905}
3906
3907static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3908{
3909 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3910}
3911
c0b9e8a4
RH
3912static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3913{
3914 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3915}
3916
7d63183f
RH
3917static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3918{
3919 /* We always set the AdvSIMD and FP fields identically. */
3920 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3921}
3922
5763190f
RH
3923static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3924{
3925 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3926 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3927}
3928
0f8d06f1
RH
3929static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3930{
3931 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3932}
3933
10d0ef3e
MN
3934static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3935{
3936 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3937}
3938
6bcbb07a
RH
3939static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3940{
3941 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3942}
3943
25e168ab
RH
3944static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3945{
3946 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3947}
3948
7ac61020
PM
3949static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3950{
3951 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3952}
3953
cd208a1c
RH
3954static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3955{
3956 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3957}
3958
5ca192df
RDC
3959static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3960{
3961 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3962}
3963
b9f335c2
RH
3964static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
3965{
3966 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
3967}
3968
8fc2ea21
RH
3969static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3970{
3971 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3972}
3973
2d7137c1
RH
3974static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3975{
3976 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3977}
3978
3d6ad6bb
RH
3979static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3980{
3981 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3982}
3983
3984static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3985{
3986 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3987}
3988
dd17143f
PM
3989static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3990{
3991 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3992}
3993
5814d587
RH
3994static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3995{
3996 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3997}
3998
9cd0c0de
RH
3999static inline bool isar_feature_aa64_tidcp1(const ARMISARegisters *id)
4000{
4001 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR1, TIDCP1) != 0;
4002}
4003
9eeb7a1c
RH
4004static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4005{
4006 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4007}
4008
c36c65ea
RDC
4009static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4010{
4011 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4012}
4013
cf1cbf50
RH
4014static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
4015{
4016 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
4017}
4018
8c7e17ef
PM
4019static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4020{
4021 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4022}
4023
75662f36
PM
4024static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4025{
4026 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4027}
4028
d2fd9313
PM
4029static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
4030{
4031 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
4032}
4033
4034static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
4035{
4036 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
4037}
4038
be53b6f4
RH
4039static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4040{
4041 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4042}
4043
c7fd0baa
RH
4044static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4045{
4046 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4047}
4048
4049static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4050{
4051 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4052}
4053
f305bf94
RH
4054static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4055{
4056 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4057}
4058
a793bcd0 4059static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
4060{
4061 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4062 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4063}
4064
a793bcd0 4065static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4066{
54117b90
PM
4067 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4068 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4069}
4070
0b42f4fa
PM
4071static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4072{
4073 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4074 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4075}
4076
2677cf9f
PM
4077static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4078{
4079 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4080}
4081
a1229109
PM
4082static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4083{
4084 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4085}
4086
f7da051f
RH
4087static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4088{
4089 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4090}
4091
3039b090
PM
4092static inline bool isar_feature_aa64_hbc(const ARMISARegisters *id)
4093{
4094 return FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, BC) != 0;
4095}
4096
ef56c242
RH
4097static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4098{
4099 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4100}
4101
4102static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4103{
4104 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4105 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4106}
4107
4108static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4109{
4110 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4111}
4112
4113static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4114{
4115 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4116 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4117}
4118
104f703d
PM
4119static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4120{
4121 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4122}
4123
4124static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4125{
4126 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4127}
4128
4129static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4130{
4131 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4132}
4133
4134static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4135{
4136 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4137 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4138}
4139
4140static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4141{
4142 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4143 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4144}
4145
4146static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4147{
4148 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4149 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4150}
4151
15126d9c
PM
4152static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4153{
4154 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4155}
4156
957e6155
PM
4157static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4158{
4159 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4160}
4161
0af312b6
RH
4162static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4163{
4164 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4165}
4166
e4c93e44
PM
4167static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4168{
4169 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4170}
4171
980a6892
RH
4172static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4173{
4174 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4175}
4176
4177static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4178{
4179 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4180}
4181
ce3125be
PM
4182static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4183{
4184 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4185}
4186
dc8b1853
RC
4187static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4188{
4189 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4190}
4191
7cb1e618
RH
4192static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4193{
4194 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4195 if (key >= 2) {
4196 return true; /* FEAT_CSV2_2 */
4197 }
4198 if (key == 1) {
4199 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4200 return key >= 2; /* FEAT_CSV2_1p2 */
4201 }
4202 return false;
4203}
4204
f2f68a78
RC
4205static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4206{
4207 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4208}
4209
ca56aac5
RH
4210static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4211{
4212 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4213}
4214
2dc10fa2
RH
4215static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4216{
4217 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4218}
4219
e3a56131
RH
4220static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4221{
4222 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4223}
4224
4225static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4226{
4227 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4228}
4229
cb9c33b8
RH
4230static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4231{
4232 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4233}
4234
c0b9e8a4
RH
4235static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4236{
4237 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4238}
4239
3358eb3f
RH
4240static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4241{
4242 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4243}
4244
3cc7a88e
RH
4245static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4246{
4247 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4248}
4249
2867039a
RH
4250static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4251{
4252 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4253}
4254
4f26756b
SL
4255static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4256{
4257 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4258}
4259
4260static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4261{
4262 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4263}
4264
414c54d5
RH
4265static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4266{
4267 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4268}
4269
4270static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4271{
4272 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4273}
4274
4275static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4276{
4277 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4278}
4279
f94a6df5
PM
4280static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4281{
4282 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4283}
4284
dbc678f9
PM
4285static inline bool isar_feature_aa64_mops(const ARMISARegisters *id)
4286{
4287 return FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, MOPS);
4288}
4289
6e61f839
PM
4290/*
4291 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4292 */
4293static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4294{
4295 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4296}
4297
22e57073
PM
4298static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4299{
4300 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4301}
4302
a793bcd0 4303static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4304{
a793bcd0 4305 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4306}
4307
a793bcd0 4308static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4309{
a793bcd0 4310 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4311}
4312
0b42f4fa
PM
4313static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4314{
4315 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4316}
4317
957e6155
PM
4318static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4319{
4320 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4321}
4322
ce3125be
PM
4323static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4324{
4325 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4326}
4327
ca56aac5
RH
4328static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4329{
4330 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4331}
4332
25e168ab
RH
4333static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4334{
4335 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4336}
4337
d2fd9313
PM
4338static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4339{
4340 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4341}
4342
4343static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4344{
4345 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4346}
4347
962fcbf2
RH
4348/*
4349 * Forward to the above feature tests given an ARMCPU pointer.
4350 */
4351#define cpu_isar_feature(name, cpu) \
4352 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4353
2c0262af 4354#endif