]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Implement PMOVSSET
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086 204#ifdef TARGET_AARCH64
991ad91b 205/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
991ad91b
RH
209
210/* In AArch32 mode, PAC keys do not exist at all. */
211typedef struct ARMPACKey {
212 uint64_t lo, hi;
213} ARMPACKey;
3c7d3086
RH
214#endif
215
c39c2b90 216
2c0262af 217typedef struct CPUARMState {
b5ff1b31 218 /* Regs for current mode. */
2c0262af 219 uint32_t regs[16];
3926cc84
AG
220
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
224 */
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
d356312f
PM
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 236 * DAIF (exception masks) are kept in env->daif
d356312f 237 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
238 */
239 uint32_t pstate;
240 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
241
b90372ad 242 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 243 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
244 the whole CPSR. */
245 uint32_t uncached_cpsr;
246 uint32_t spsr;
247
248 /* Banked registers. */
28c9457d 249 uint64_t banked_spsr[8];
0b7d409d
FA
250 uint32_t banked_r13[8];
251 uint32_t banked_r14[8];
3b46e624 252
b5ff1b31
FB
253 /* These hold r8-r12. */
254 uint32_t usr_regs[5];
255 uint32_t fiq_regs[5];
3b46e624 256
2c0262af
FB
257 /* cpsr flag cache for faster execution */
258 uint32_t CF; /* 0 or 1 */
259 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
260 uint32_t NF; /* N is bit 31. All other bits are undefined. */
261 uint32_t ZF; /* Z set if zero. */
99c475ab 262 uint32_t QF; /* 0 or 1 */
9ee6e8bb 263 uint32_t GE; /* cpsr[19:16] */
b26eefb6 264 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 265 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 266 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 267
1b174238 268 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 269 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 270
b5ff1b31
FB
271 /* System control coprocessor (cp15) */
272 struct {
40f137e1 273 uint32_t c0_cpuid;
b85a1fd6
FA
274 union { /* Cache size selection */
275 struct {
276 uint64_t _unused_csselr0;
277 uint64_t csselr_ns;
278 uint64_t _unused_csselr1;
279 uint64_t csselr_s;
280 };
281 uint64_t csselr_el[4];
282 };
137feaa9
FA
283 union { /* System control register. */
284 struct {
285 uint64_t _unused_sctlr;
286 uint64_t sctlr_ns;
287 uint64_t hsctlr;
288 uint64_t sctlr_s;
289 };
290 uint64_t sctlr_el[4];
291 };
7ebd5f2e 292 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 293 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 294 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 295 uint64_t sder; /* Secure debug enable register. */
77022576 296 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
297 union { /* MMU translation table base 0. */
298 struct {
299 uint64_t _unused_ttbr0_0;
300 uint64_t ttbr0_ns;
301 uint64_t _unused_ttbr0_1;
302 uint64_t ttbr0_s;
303 };
304 uint64_t ttbr0_el[4];
305 };
306 union { /* MMU translation table base 1. */
307 struct {
308 uint64_t _unused_ttbr1_0;
309 uint64_t ttbr1_ns;
310 uint64_t _unused_ttbr1_1;
311 uint64_t ttbr1_s;
312 };
313 uint64_t ttbr1_el[4];
314 };
b698e9cf 315 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
316 /* MMU translation table base control. */
317 TCR tcr_el[4];
68e9c2fe 318 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
319 uint32_t c2_data; /* MPU data cacheable bits. */
320 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
321 union { /* MMU domain access control register
322 * MPU write buffer control.
323 */
324 struct {
325 uint64_t dacr_ns;
326 uint64_t dacr_s;
327 };
328 struct {
329 uint64_t dacr32_el2;
330 };
331 };
7e09797c
PM
332 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
333 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 334 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 335 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
336 union { /* Fault status registers. */
337 struct {
338 uint64_t ifsr_ns;
339 uint64_t ifsr_s;
340 };
341 struct {
342 uint64_t ifsr32_el2;
343 };
344 };
4a7e2d73
FA
345 union {
346 struct {
347 uint64_t _unused_dfsr;
348 uint64_t dfsr_ns;
349 uint64_t hsr;
350 uint64_t dfsr_s;
351 };
352 uint64_t esr_el[4];
353 };
ce819861 354 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
355 union { /* Fault address registers. */
356 struct {
357 uint64_t _unused_far0;
358#ifdef HOST_WORDS_BIGENDIAN
359 uint32_t ifar_ns;
360 uint32_t dfar_ns;
361 uint32_t ifar_s;
362 uint32_t dfar_s;
363#else
364 uint32_t dfar_ns;
365 uint32_t ifar_ns;
366 uint32_t dfar_s;
367 uint32_t ifar_s;
368#endif
369 uint64_t _unused_far3;
370 };
371 uint64_t far_el[4];
372 };
59e05530 373 uint64_t hpfar_el2;
2a5a9abd 374 uint64_t hstr_el2;
01c097f7
FA
375 union { /* Translation result. */
376 struct {
377 uint64_t _unused_par_0;
378 uint64_t par_ns;
379 uint64_t _unused_par_1;
380 uint64_t par_s;
381 };
382 uint64_t par_el[4];
383 };
6cb0b013 384
b5ff1b31
FB
385 uint32_t c9_insn; /* Cache lockdown registers. */
386 uint32_t c9_data;
8521466b
AF
387 uint64_t c9_pmcr; /* performance monitor control register */
388 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
389 uint64_t c9_pmovsr; /* perf monitor overflow status */
390 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 391 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 392 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
393 union { /* Memory attribute redirection */
394 struct {
395#ifdef HOST_WORDS_BIGENDIAN
396 uint64_t _unused_mair_0;
397 uint32_t mair1_ns;
398 uint32_t mair0_ns;
399 uint64_t _unused_mair_1;
400 uint32_t mair1_s;
401 uint32_t mair0_s;
402#else
403 uint64_t _unused_mair_0;
404 uint32_t mair0_ns;
405 uint32_t mair1_ns;
406 uint64_t _unused_mair_1;
407 uint32_t mair0_s;
408 uint32_t mair1_s;
409#endif
410 };
411 uint64_t mair_el[4];
412 };
fb6c91ba
GB
413 union { /* vector base address register */
414 struct {
415 uint64_t _unused_vbar;
416 uint64_t vbar_ns;
417 uint64_t hvbar;
418 uint64_t vbar_s;
419 };
420 uint64_t vbar_el[4];
421 };
e89e51a1 422 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
423 struct { /* FCSE PID. */
424 uint32_t fcseidr_ns;
425 uint32_t fcseidr_s;
426 };
427 union { /* Context ID. */
428 struct {
429 uint64_t _unused_contextidr_0;
430 uint64_t contextidr_ns;
431 uint64_t _unused_contextidr_1;
432 uint64_t contextidr_s;
433 };
434 uint64_t contextidr_el[4];
435 };
436 union { /* User RW Thread register. */
437 struct {
438 uint64_t tpidrurw_ns;
439 uint64_t tpidrprw_ns;
440 uint64_t htpidr;
441 uint64_t _tpidr_el3;
442 };
443 uint64_t tpidr_el[4];
444 };
445 /* The secure banks of these registers don't map anywhere */
446 uint64_t tpidrurw_s;
447 uint64_t tpidrprw_s;
448 uint64_t tpidruro_s;
449
450 union { /* User RO Thread register. */
451 uint64_t tpidruro_ns;
452 uint64_t tpidrro_el[1];
453 };
a7adc4b7
PM
454 uint64_t c14_cntfrq; /* Counter Frequency register */
455 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 456 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 457 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 458 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 459 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
460 uint32_t c15_ticonfig; /* TI925T configuration byte. */
461 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
462 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
463 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
464 uint32_t c15_config_base_address; /* SCU base address. */
465 uint32_t c15_diagnostic; /* diagnostic register */
466 uint32_t c15_power_diagnostic;
467 uint32_t c15_power_control; /* power control */
0b45451e
PM
468 uint64_t dbgbvr[16]; /* breakpoint value registers */
469 uint64_t dbgbcr[16]; /* breakpoint control registers */
470 uint64_t dbgwvr[16]; /* watchpoint value registers */
471 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 472 uint64_t mdscr_el1;
1424ca8d 473 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 474 uint64_t mdcr_el2;
5513c3ab 475 uint64_t mdcr_el3;
5d05b9d4
AL
476 /* Stores the architectural value of the counter *the last time it was
477 * updated* by pmccntr_op_start. Accesses should always be surrounded
478 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
479 * architecturally-correct value is being read/set.
7c2cb42b 480 */
c92c0687 481 uint64_t c15_ccnt;
5d05b9d4
AL
482 /* Stores the delta between the architectural value and the underlying
483 * cycle count during normal operation. It is used to update c15_ccnt
484 * to be the correct architectural value before accesses. During
485 * accesses, c15_ccnt_delta contains the underlying count being used
486 * for the access, after which it reverts to the delta value in
487 * pmccntr_op_finish.
488 */
489 uint64_t c15_ccnt_delta;
8521466b 490 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 491 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 492 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 493 } cp15;
40f137e1 494
9ee6e8bb 495 struct {
fb602cb7
PM
496 /* M profile has up to 4 stack pointers:
497 * a Main Stack Pointer and a Process Stack Pointer for each
498 * of the Secure and Non-Secure states. (If the CPU doesn't support
499 * the security extension then it has only two SPs.)
500 * In QEMU we always store the currently active SP in regs[13],
501 * and the non-active SP for the current security state in
502 * v7m.other_sp. The stack pointers for the inactive security state
503 * are stored in other_ss_msp and other_ss_psp.
504 * switch_v7m_security_state() is responsible for rearranging them
505 * when we change security state.
506 */
9ee6e8bb 507 uint32_t other_sp;
fb602cb7
PM
508 uint32_t other_ss_msp;
509 uint32_t other_ss_psp;
4a16724f
PM
510 uint32_t vecbase[M_REG_NUM_BANKS];
511 uint32_t basepri[M_REG_NUM_BANKS];
512 uint32_t control[M_REG_NUM_BANKS];
513 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
514 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
515 uint32_t hfsr; /* HardFault Status */
516 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 517 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 518 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 519 uint32_t bfar; /* BusFault Address */
bed079da 520 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 521 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 522 int exception;
4a16724f
PM
523 uint32_t primask[M_REG_NUM_BANKS];
524 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 525 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 526 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 527 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 528 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
529 uint32_t msplim[M_REG_NUM_BANKS];
530 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
531 } v7m;
532
abf1172f
PM
533 /* Information associated with an exception about to be taken:
534 * code which raises an exception must set cs->exception_index and
535 * the relevant parts of this structure; the cpu_do_interrupt function
536 * will then set the guest-visible registers as part of the exception
537 * entry process.
538 */
539 struct {
540 uint32_t syndrome; /* AArch64 format syndrome register */
541 uint32_t fsr; /* AArch32 format fault status register info */
542 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 543 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
544 /* If we implement EL2 we will also need to store information
545 * about the intermediate physical address for stage 2 faults.
546 */
547 } exception;
548
202ccb6b
DG
549 /* Information associated with an SError */
550 struct {
551 uint8_t pending;
552 uint8_t has_esr;
553 uint64_t esr;
554 } serror;
555
ed89f078
PM
556 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
557 uint32_t irq_line_state;
558
fe1479c3
PB
559 /* Thumb-2 EE state. */
560 uint32_t teecr;
561 uint32_t teehbr;
562
b7bcbe95
FB
563 /* VFP coprocessor state. */
564 struct {
c39c2b90 565 ARMVectorReg zregs[32];
b7bcbe95 566
3c7d3086
RH
567#ifdef TARGET_AARCH64
568 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 569#define FFR_PRED_NUM 16
3c7d3086 570 ARMPredicateReg pregs[17];
516e246a
RH
571 /* Scratch space for aa64 sve predicate temporary. */
572 ARMPredicateReg preg_tmp;
3c7d3086
RH
573#endif
574
40f137e1 575 uint32_t xregs[16];
b7bcbe95
FB
576 /* We store these fpcsr fields separately for convenience. */
577 int vec_len;
578 int vec_stride;
579
516e246a 580 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 581 uint32_t scratch[8];
3b46e624 582
d81ce0ef
AB
583 /* There are a number of distinct float control structures:
584 *
585 * fp_status: is the "normal" fp status.
586 * fp_status_fp16: used for half-precision calculations
587 * standard_fp_status : the ARM "Standard FPSCR Value"
588 *
589 * Half-precision operations are governed by a separate
590 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
591 * status structure to control this.
592 *
593 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
594 * round-to-nearest and is used by any operations (generally
595 * Neon) which the architecture defines as controlled by the
596 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
597 *
598 * To avoid having to transfer exception bits around, we simply
599 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 600 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
601 * only thing which needs to read the exception flags being
602 * an explicit FPSCR read.
603 */
53cd6637 604 float_status fp_status;
d81ce0ef 605 float_status fp_status_f16;
3a492f3a 606 float_status standard_fp_status;
5be5e8ed
RH
607
608 /* ZCR_EL[1-3] */
609 uint64_t zcr_el[4];
b7bcbe95 610 } vfp;
03d05e2d
PM
611 uint64_t exclusive_addr;
612 uint64_t exclusive_val;
613 uint64_t exclusive_high;
b7bcbe95 614
18c9b560
AZ
615 /* iwMMXt coprocessor state. */
616 struct {
617 uint64_t regs[16];
618 uint64_t val;
619
620 uint32_t cregs[16];
621 } iwmmxt;
622
991ad91b
RH
623#ifdef TARGET_AARCH64
624 ARMPACKey apia_key;
625 ARMPACKey apib_key;
626 ARMPACKey apda_key;
627 ARMPACKey apdb_key;
628 ARMPACKey apga_key;
629#endif
630
ce4defa0
PB
631#if defined(CONFIG_USER_ONLY)
632 /* For usermode syscall translation. */
633 int eabi;
634#endif
635
46747d15 636 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
637 struct CPUWatchpoint *cpu_watchpoint[16];
638
1f5c00cf
AB
639 /* Fields up to this point are cleared by a CPU reset */
640 struct {} end_reset_fields;
641
a316d335
FB
642 CPU_COMMON
643
1f5c00cf 644 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 645
581be094 646 /* Internal CPU feature flags. */
918f5dca 647 uint64_t features;
581be094 648
6cb0b013
PC
649 /* PMSAv7 MPU */
650 struct {
651 uint32_t *drbar;
652 uint32_t *drsr;
653 uint32_t *dracr;
4a16724f 654 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
655 } pmsav7;
656
0e1a46bb
PM
657 /* PMSAv8 MPU */
658 struct {
659 /* The PMSAv8 implementation also shares some PMSAv7 config
660 * and state:
661 * pmsav7.rnr (region number register)
662 * pmsav7_dregion (number of configured regions)
663 */
4a16724f
PM
664 uint32_t *rbar[M_REG_NUM_BANKS];
665 uint32_t *rlar[M_REG_NUM_BANKS];
666 uint32_t mair0[M_REG_NUM_BANKS];
667 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
668 } pmsav8;
669
9901c576
PM
670 /* v8M SAU */
671 struct {
672 uint32_t *rbar;
673 uint32_t *rlar;
674 uint32_t rnr;
675 uint32_t ctrl;
676 } sau;
677
983fe826 678 void *nvic;
462a8bc6 679 const struct arm_boot_info *boot_info;
d3a3e529
VK
680 /* Store GICv3CPUState to access from this struct */
681 void *gicv3state;
2c0262af
FB
682} CPUARMState;
683
bd7d00fc 684/**
08267487 685 * ARMELChangeHookFn:
bd7d00fc
PM
686 * type of a function which can be registered via arm_register_el_change_hook()
687 * to get callbacks when the CPU changes its exception level or mode.
688 */
08267487
AL
689typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
690typedef struct ARMELChangeHook ARMELChangeHook;
691struct ARMELChangeHook {
692 ARMELChangeHookFn *hook;
693 void *opaque;
694 QLIST_ENTRY(ARMELChangeHook) node;
695};
062ba099
AB
696
697/* These values map onto the return values for
698 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
699typedef enum ARMPSCIState {
d5affb0d
AJ
700 PSCI_ON = 0,
701 PSCI_OFF = 1,
062ba099
AB
702 PSCI_ON_PENDING = 2
703} ARMPSCIState;
704
962fcbf2
RH
705typedef struct ARMISARegisters ARMISARegisters;
706
74e75564
PB
707/**
708 * ARMCPU:
709 * @env: #CPUARMState
710 *
711 * An ARM CPU core.
712 */
713struct ARMCPU {
714 /*< private >*/
715 CPUState parent_obj;
716 /*< public >*/
717
718 CPUARMState env;
719
720 /* Coprocessor information */
721 GHashTable *cp_regs;
722 /* For marshalling (mostly coprocessor) register state between the
723 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
724 * we use these arrays.
725 */
726 /* List of register indexes managed via these arrays; (full KVM style
727 * 64 bit indexes, not CPRegInfo 32 bit indexes)
728 */
729 uint64_t *cpreg_indexes;
730 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
731 uint64_t *cpreg_values;
732 /* Length of the indexes, values, reset_values arrays */
733 int32_t cpreg_array_len;
734 /* These are used only for migration: incoming data arrives in
735 * these fields and is sanity checked in post_load before copying
736 * to the working data structures above.
737 */
738 uint64_t *cpreg_vmstate_indexes;
739 uint64_t *cpreg_vmstate_values;
740 int32_t cpreg_vmstate_array_len;
741
200bf5b7
AB
742 DynamicGDBXMLInfo dyn_xml;
743
74e75564
PB
744 /* Timers used by the generic (architected) timer */
745 QEMUTimer *gt_timer[NUM_GTIMERS];
746 /* GPIO outputs for generic timer */
747 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
748 /* GPIO output for GICv3 maintenance interrupt signal */
749 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
750 /* GPIO output for the PMU interrupt */
751 qemu_irq pmu_interrupt;
74e75564
PB
752
753 /* MemoryRegion to use for secure physical accesses */
754 MemoryRegion *secure_memory;
755
181962fd
PM
756 /* For v8M, pointer to the IDAU interface provided by board/SoC */
757 Object *idau;
758
74e75564
PB
759 /* 'compatible' string for this CPU for Linux device trees */
760 const char *dtb_compatible;
761
762 /* PSCI version for this CPU
763 * Bits[31:16] = Major Version
764 * Bits[15:0] = Minor Version
765 */
766 uint32_t psci_version;
767
768 /* Should CPU start in PSCI powered-off state? */
769 bool start_powered_off;
062ba099
AB
770
771 /* Current power state, access guarded by BQL */
772 ARMPSCIState power_state;
773
c25bd18a
PM
774 /* CPU has virtualization extension */
775 bool has_el2;
74e75564
PB
776 /* CPU has security extension */
777 bool has_el3;
5c0a3819
SZ
778 /* CPU has PMU (Performance Monitor Unit) */
779 bool has_pmu;
74e75564
PB
780
781 /* CPU has memory protection unit */
782 bool has_mpu;
783 /* PMSAv7 MPU number of supported regions */
784 uint32_t pmsav7_dregion;
9901c576
PM
785 /* v8M SAU number of supported regions */
786 uint32_t sau_sregion;
74e75564
PB
787
788 /* PSCI conduit used to invoke PSCI methods
789 * 0 - disabled, 1 - smc, 2 - hvc
790 */
791 uint32_t psci_conduit;
792
38e2a77c
PM
793 /* For v8M, initial value of the Secure VTOR */
794 uint32_t init_svtor;
795
74e75564
PB
796 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
797 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
798 */
799 uint32_t kvm_target;
800
801 /* KVM init features for this CPU */
802 uint32_t kvm_init_features[7];
803
804 /* Uniprocessor system with MP extensions */
805 bool mp_is_up;
806
c4487d76
PM
807 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
808 * and the probe failed (so we need to report the error in realize)
809 */
810 bool host_cpu_probe_failed;
811
f9a69711
AF
812 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
813 * register.
814 */
815 int32_t core_count;
816
74e75564
PB
817 /* The instance init functions for implementation-specific subclasses
818 * set these fields to specify the implementation-dependent values of
819 * various constant registers and reset values of non-constant
820 * registers.
821 * Some of these might become QOM properties eventually.
822 * Field names match the official register names as defined in the
823 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
824 * is used for reset values of non-constant registers; no reset_
825 * prefix means a constant register.
47576b94
RH
826 * Some of these registers are split out into a substructure that
827 * is shared with the translators to control the ISA.
74e75564 828 */
47576b94
RH
829 struct ARMISARegisters {
830 uint32_t id_isar0;
831 uint32_t id_isar1;
832 uint32_t id_isar2;
833 uint32_t id_isar3;
834 uint32_t id_isar4;
835 uint32_t id_isar5;
836 uint32_t id_isar6;
837 uint32_t mvfr0;
838 uint32_t mvfr1;
839 uint32_t mvfr2;
840 uint64_t id_aa64isar0;
841 uint64_t id_aa64isar1;
842 uint64_t id_aa64pfr0;
843 uint64_t id_aa64pfr1;
3dc91ddb
PM
844 uint64_t id_aa64mmfr0;
845 uint64_t id_aa64mmfr1;
47576b94 846 } isar;
74e75564
PB
847 uint32_t midr;
848 uint32_t revidr;
849 uint32_t reset_fpsid;
74e75564
PB
850 uint32_t ctr;
851 uint32_t reset_sctlr;
852 uint32_t id_pfr0;
853 uint32_t id_pfr1;
854 uint32_t id_dfr0;
855 uint32_t pmceid0;
856 uint32_t pmceid1;
857 uint32_t id_afr0;
858 uint32_t id_mmfr0;
859 uint32_t id_mmfr1;
860 uint32_t id_mmfr2;
861 uint32_t id_mmfr3;
862 uint32_t id_mmfr4;
74e75564
PB
863 uint64_t id_aa64dfr0;
864 uint64_t id_aa64dfr1;
865 uint64_t id_aa64afr0;
866 uint64_t id_aa64afr1;
74e75564
PB
867 uint32_t dbgdidr;
868 uint32_t clidr;
869 uint64_t mp_affinity; /* MP ID without feature bits */
870 /* The elements of this array are the CCSIDR values for each cache,
871 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
872 */
873 uint32_t ccsidr[16];
874 uint64_t reset_cbar;
875 uint32_t reset_auxcr;
876 bool reset_hivecs;
877 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
878 uint32_t dcz_blocksize;
879 uint64_t rvbar;
bd7d00fc 880
e45868a3
PM
881 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
882 int gic_num_lrs; /* number of list registers */
883 int gic_vpribits; /* number of virtual priority bits */
884 int gic_vprebits; /* number of virtual preemption bits */
885
3a062d57
JB
886 /* Whether the cfgend input is high (i.e. this CPU should reset into
887 * big-endian mode). This setting isn't used directly: instead it modifies
888 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
889 * architecture version.
890 */
891 bool cfgend;
892
b5c53d1b 893 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 894 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
895
896 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
897
898 /* Used to synchronize KVM and QEMU in-kernel device levels */
899 uint8_t device_irq_level;
adf92eab
RH
900
901 /* Used to set the maximum vector length the cpu will support. */
902 uint32_t sve_max_vq;
74e75564
PB
903};
904
905static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
906{
907 return container_of(env, ARMCPU, env);
908}
909
51e5ef45
MAL
910void arm_cpu_post_init(Object *obj);
911
46de5913
IM
912uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
913
74e75564
PB
914#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
915
916#define ENV_OFFSET offsetof(ARMCPU, env)
917
918#ifndef CONFIG_USER_ONLY
919extern const struct VMStateDescription vmstate_arm_cpu;
920#endif
921
922void arm_cpu_do_interrupt(CPUState *cpu);
923void arm_v7m_cpu_do_interrupt(CPUState *cpu);
924bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
925
926void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
927 int flags);
928
929hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
930 MemTxAttrs *attrs);
931
932int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
933int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
934
200bf5b7
AB
935/* Dynamically generates for gdb stub an XML description of the sysregs from
936 * the cp_regs hashtable. Returns the registered sysregs number.
937 */
938int arm_gen_dynamic_xml(CPUState *cpu);
939
940/* Returns the dynamically generated XML for the gdb stub.
941 * Returns a pointer to the XML contents for the specified XML file or NULL
942 * if the XML name doesn't match the predefined one.
943 */
944const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
945
74e75564
PB
946int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
947 int cpuid, void *opaque);
948int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
949 int cpuid, void *opaque);
950
951#ifdef TARGET_AARCH64
952int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
953int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 954void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
955void aarch64_sve_change_el(CPUARMState *env, int old_el,
956 int new_el, bool el0_a64);
0ab5953b
RH
957#else
958static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
959static inline void aarch64_sve_change_el(CPUARMState *env, int o,
960 int n, bool a)
961{ }
74e75564 962#endif
778c3a06 963
faacc041 964target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
965void aarch64_sync_32_to_64(CPUARMState *env);
966void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 967
ced31551
RH
968int fp_exception_el(CPUARMState *env, int cur_el);
969int sve_exception_el(CPUARMState *env, int cur_el);
970uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
971
3926cc84
AG
972static inline bool is_a64(CPUARMState *env)
973{
974 return env->aarch64;
975}
976
2c0262af
FB
977/* you can call this signal handler from your SIGBUS and SIGSEGV
978 signal handlers to inform the virtual CPU of exceptions. non zero
979 is returned if the signal was handled by the virtual CPU. */
5fafdf24 980int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
981 void *puc);
982
ec7b4ce4 983/**
5d05b9d4
AL
984 * pmccntr_op_start/finish
985 * @env: CPUARMState
986 *
987 * Convert the counter in the PMCCNTR between its delta form (the typical mode
988 * when it's enabled) and the guest-visible value. These two calls must always
989 * surround any action which might affect the counter.
990 */
991void pmccntr_op_start(CPUARMState *env);
992void pmccntr_op_finish(CPUARMState *env);
993
994/**
995 * pmu_op_start/finish
ec7b4ce4
AF
996 * @env: CPUARMState
997 *
5d05b9d4
AL
998 * Convert all PMU counters between their delta form (the typical mode when
999 * they are enabled) and the guest-visible values. These two calls must
1000 * surround any action which might affect the counters.
ec7b4ce4 1001 */
5d05b9d4
AL
1002void pmu_op_start(CPUARMState *env);
1003void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1004
033614c4
AL
1005/**
1006 * Functions to register as EL change hooks for PMU mode filtering
1007 */
1008void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1009void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1010
76e3e1bc
PM
1011/* SCTLR bit meanings. Several bits have been reused in newer
1012 * versions of the architecture; in that case we define constants
1013 * for both old and new bit meanings. Code which tests against those
1014 * bits should probably check or otherwise arrange that the CPU
1015 * is the architectural version it expects.
1016 */
1017#define SCTLR_M (1U << 0)
1018#define SCTLR_A (1U << 1)
1019#define SCTLR_C (1U << 2)
1020#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1021#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1022#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1023#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1024#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1025#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1026#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1027#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1028#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1029#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1030#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1031#define SCTLR_ITD (1U << 7) /* v8 onward */
1032#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1033#define SCTLR_SED (1U << 8) /* v8 onward */
1034#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1035#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1036#define SCTLR_F (1U << 10) /* up to v6 */
b2af69d0
RH
1037#define SCTLR_SW (1U << 10) /* v7, RES0 in v8 */
1038#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1039#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1040#define SCTLR_I (1U << 12)
b2af69d0
RH
1041#define SCTLR_V (1U << 13) /* AArch32 only */
1042#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1043#define SCTLR_RR (1U << 14) /* up to v7 */
1044#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1045#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1046#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1047#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1048#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1049#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1050#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1051#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1052#define SCTLR_nTWE (1U << 18) /* v8 onward */
1053#define SCTLR_WXN (1U << 19)
1054#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1055#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1056#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1057#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1058#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1059#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1060#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1061#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1062#define SCTLR_VE (1U << 24) /* up to v7 */
1063#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1064#define SCTLR_EE (1U << 25)
1065#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1066#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1067#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1068#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1069#define SCTLR_TRE (1U << 28) /* AArch32 only */
1070#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1071#define SCTLR_AFE (1U << 29) /* AArch32 only */
1072#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1073#define SCTLR_TE (1U << 30) /* AArch32 only */
1074#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1075#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1076#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1077#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1078#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1079#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1080#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1081#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1082#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1083#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1084
c6f19164
GB
1085#define CPTR_TCPAC (1U << 31)
1086#define CPTR_TTA (1U << 20)
1087#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1088#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1089#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1090
187f678d
PM
1091#define MDCR_EPMAD (1U << 21)
1092#define MDCR_EDAD (1U << 20)
033614c4
AL
1093#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1094#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1095#define MDCR_SDD (1U << 16)
a8d64e73 1096#define MDCR_SPD (3U << 14)
187f678d
PM
1097#define MDCR_TDRA (1U << 11)
1098#define MDCR_TDOSA (1U << 10)
1099#define MDCR_TDA (1U << 9)
1100#define MDCR_TDE (1U << 8)
1101#define MDCR_HPME (1U << 7)
1102#define MDCR_TPM (1U << 6)
1103#define MDCR_TPMCR (1U << 5)
033614c4 1104#define MDCR_HPMN (0x1fU)
187f678d 1105
a8d64e73
PM
1106/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1107#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1108
78dbbbe4
PM
1109#define CPSR_M (0x1fU)
1110#define CPSR_T (1U << 5)
1111#define CPSR_F (1U << 6)
1112#define CPSR_I (1U << 7)
1113#define CPSR_A (1U << 8)
1114#define CPSR_E (1U << 9)
1115#define CPSR_IT_2_7 (0xfc00U)
1116#define CPSR_GE (0xfU << 16)
4051e12c
PM
1117#define CPSR_IL (1U << 20)
1118/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1119 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1120 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1121 * where it is live state but not accessible to the AArch32 code.
1122 */
1123#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1124#define CPSR_J (1U << 24)
1125#define CPSR_IT_0_1 (3U << 25)
1126#define CPSR_Q (1U << 27)
1127#define CPSR_V (1U << 28)
1128#define CPSR_C (1U << 29)
1129#define CPSR_Z (1U << 30)
1130#define CPSR_N (1U << 31)
9ee6e8bb 1131#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1132#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1133
1134#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1135#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1136 | CPSR_NZCV)
9ee6e8bb
PB
1137/* Bits writable in user mode. */
1138#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1139/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1140#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1141/* Mask of bits which may be set by exception return copying them from SPSR */
1142#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1143
987ab45e
PM
1144/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1145#define XPSR_EXCP 0x1ffU
1146#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1147#define XPSR_IT_2_7 CPSR_IT_2_7
1148#define XPSR_GE CPSR_GE
1149#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1150#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1151#define XPSR_IT_0_1 CPSR_IT_0_1
1152#define XPSR_Q CPSR_Q
1153#define XPSR_V CPSR_V
1154#define XPSR_C CPSR_C
1155#define XPSR_Z CPSR_Z
1156#define XPSR_N CPSR_N
1157#define XPSR_NZCV CPSR_NZCV
1158#define XPSR_IT CPSR_IT
1159
e389be16
FA
1160#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1161#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1162#define TTBCR_PD0 (1U << 4)
1163#define TTBCR_PD1 (1U << 5)
1164#define TTBCR_EPD0 (1U << 7)
1165#define TTBCR_IRGN0 (3U << 8)
1166#define TTBCR_ORGN0 (3U << 10)
1167#define TTBCR_SH0 (3U << 12)
1168#define TTBCR_T1SZ (3U << 16)
1169#define TTBCR_A1 (1U << 22)
1170#define TTBCR_EPD1 (1U << 23)
1171#define TTBCR_IRGN1 (3U << 24)
1172#define TTBCR_ORGN1 (3U << 26)
1173#define TTBCR_SH1 (1U << 28)
1174#define TTBCR_EAE (1U << 31)
1175
d356312f
PM
1176/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1177 * Only these are valid when in AArch64 mode; in
1178 * AArch32 mode SPSRs are basically CPSR-format.
1179 */
f502cfc2 1180#define PSTATE_SP (1U)
d356312f
PM
1181#define PSTATE_M (0xFU)
1182#define PSTATE_nRW (1U << 4)
1183#define PSTATE_F (1U << 6)
1184#define PSTATE_I (1U << 7)
1185#define PSTATE_A (1U << 8)
1186#define PSTATE_D (1U << 9)
1187#define PSTATE_IL (1U << 20)
1188#define PSTATE_SS (1U << 21)
1189#define PSTATE_V (1U << 28)
1190#define PSTATE_C (1U << 29)
1191#define PSTATE_Z (1U << 30)
1192#define PSTATE_N (1U << 31)
1193#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
1194#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1195#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
1196/* Mode values for AArch64 */
1197#define PSTATE_MODE_EL3h 13
1198#define PSTATE_MODE_EL3t 12
1199#define PSTATE_MODE_EL2h 9
1200#define PSTATE_MODE_EL2t 8
1201#define PSTATE_MODE_EL1h 5
1202#define PSTATE_MODE_EL1t 4
1203#define PSTATE_MODE_EL0t 0
1204
de2db7ec
PM
1205/* Write a new value to v7m.exception, thus transitioning into or out
1206 * of Handler mode; this may result in a change of active stack pointer.
1207 */
1208void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1209
9e729b57
EI
1210/* Map EL and handler into a PSTATE_MODE. */
1211static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1212{
1213 return (el << 2) | handler;
1214}
1215
d356312f
PM
1216/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1217 * interprocessing, so we don't attempt to sync with the cpsr state used by
1218 * the 32 bit decoder.
1219 */
1220static inline uint32_t pstate_read(CPUARMState *env)
1221{
1222 int ZF;
1223
1224 ZF = (env->ZF == 0);
1225 return (env->NF & 0x80000000) | (ZF << 30)
1226 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1227 | env->pstate | env->daif;
d356312f
PM
1228}
1229
1230static inline void pstate_write(CPUARMState *env, uint32_t val)
1231{
1232 env->ZF = (~val) & PSTATE_Z;
1233 env->NF = val;
1234 env->CF = (val >> 29) & 1;
1235 env->VF = (val << 3) & 0x80000000;
4cc35614 1236 env->daif = val & PSTATE_DAIF;
d356312f
PM
1237 env->pstate = val & ~CACHED_PSTATE_BITS;
1238}
1239
b5ff1b31 1240/* Return the current CPSR value. */
2f4a40e5 1241uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1242
1243typedef enum CPSRWriteType {
1244 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1245 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1246 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1247 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1248} CPSRWriteType;
1249
1250/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1251void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1252 CPSRWriteType write_type);
9ee6e8bb
PB
1253
1254/* Return the current xPSR value. */
1255static inline uint32_t xpsr_read(CPUARMState *env)
1256{
1257 int ZF;
6fbe23d5
PB
1258 ZF = (env->ZF == 0);
1259 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1260 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1261 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1262 | ((env->condexec_bits & 0xfc) << 8)
1263 | env->v7m.exception;
b5ff1b31
FB
1264}
1265
9ee6e8bb
PB
1266/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1267static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1268{
987ab45e
PM
1269 if (mask & XPSR_NZCV) {
1270 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1271 env->NF = val;
9ee6e8bb
PB
1272 env->CF = (val >> 29) & 1;
1273 env->VF = (val << 3) & 0x80000000;
1274 }
987ab45e
PM
1275 if (mask & XPSR_Q) {
1276 env->QF = ((val & XPSR_Q) != 0);
1277 }
1278 if (mask & XPSR_T) {
1279 env->thumb = ((val & XPSR_T) != 0);
1280 }
1281 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1282 env->condexec_bits &= ~3;
1283 env->condexec_bits |= (val >> 25) & 3;
1284 }
987ab45e 1285 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1286 env->condexec_bits &= 3;
1287 env->condexec_bits |= (val >> 8) & 0xfc;
1288 }
987ab45e 1289 if (mask & XPSR_EXCP) {
de2db7ec
PM
1290 /* Note that this only happens on exception exit */
1291 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1292 }
1293}
1294
f149e3e8
EI
1295#define HCR_VM (1ULL << 0)
1296#define HCR_SWIO (1ULL << 1)
1297#define HCR_PTW (1ULL << 2)
1298#define HCR_FMO (1ULL << 3)
1299#define HCR_IMO (1ULL << 4)
1300#define HCR_AMO (1ULL << 5)
1301#define HCR_VF (1ULL << 6)
1302#define HCR_VI (1ULL << 7)
1303#define HCR_VSE (1ULL << 8)
1304#define HCR_FB (1ULL << 9)
1305#define HCR_BSU_MASK (3ULL << 10)
1306#define HCR_DC (1ULL << 12)
1307#define HCR_TWI (1ULL << 13)
1308#define HCR_TWE (1ULL << 14)
1309#define HCR_TID0 (1ULL << 15)
1310#define HCR_TID1 (1ULL << 16)
1311#define HCR_TID2 (1ULL << 17)
1312#define HCR_TID3 (1ULL << 18)
1313#define HCR_TSC (1ULL << 19)
1314#define HCR_TIDCP (1ULL << 20)
1315#define HCR_TACR (1ULL << 21)
1316#define HCR_TSW (1ULL << 22)
099bf53b 1317#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1318#define HCR_TPU (1ULL << 24)
1319#define HCR_TTLB (1ULL << 25)
1320#define HCR_TVM (1ULL << 26)
1321#define HCR_TGE (1ULL << 27)
1322#define HCR_TDZ (1ULL << 28)
1323#define HCR_HCD (1ULL << 29)
1324#define HCR_TRVM (1ULL << 30)
1325#define HCR_RW (1ULL << 31)
1326#define HCR_CD (1ULL << 32)
1327#define HCR_ID (1ULL << 33)
ac656b16 1328#define HCR_E2H (1ULL << 34)
099bf53b
RH
1329#define HCR_TLOR (1ULL << 35)
1330#define HCR_TERR (1ULL << 36)
1331#define HCR_TEA (1ULL << 37)
1332#define HCR_MIOCNCE (1ULL << 38)
1333#define HCR_APK (1ULL << 40)
1334#define HCR_API (1ULL << 41)
1335#define HCR_NV (1ULL << 42)
1336#define HCR_NV1 (1ULL << 43)
1337#define HCR_AT (1ULL << 44)
1338#define HCR_NV2 (1ULL << 45)
1339#define HCR_FWB (1ULL << 46)
1340#define HCR_FIEN (1ULL << 47)
1341#define HCR_TID4 (1ULL << 49)
1342#define HCR_TICAB (1ULL << 50)
1343#define HCR_TOCU (1ULL << 52)
1344#define HCR_TTLBIS (1ULL << 54)
1345#define HCR_TTLBOS (1ULL << 55)
1346#define HCR_ATA (1ULL << 56)
1347#define HCR_DCT (1ULL << 57)
1348
ac656b16
PM
1349/*
1350 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1351 * HCR_MASK and then clear it again if the feature bit is not set in
1352 * hcr_write().
1353 */
f149e3e8
EI
1354#define HCR_MASK ((1ULL << 34) - 1)
1355
64e0e2de
EI
1356#define SCR_NS (1U << 0)
1357#define SCR_IRQ (1U << 1)
1358#define SCR_FIQ (1U << 2)
1359#define SCR_EA (1U << 3)
1360#define SCR_FW (1U << 4)
1361#define SCR_AW (1U << 5)
1362#define SCR_NET (1U << 6)
1363#define SCR_SMD (1U << 7)
1364#define SCR_HCE (1U << 8)
1365#define SCR_SIF (1U << 9)
1366#define SCR_RW (1U << 10)
1367#define SCR_ST (1U << 11)
1368#define SCR_TWI (1U << 12)
1369#define SCR_TWE (1U << 13)
99f8f86d
RH
1370#define SCR_TLOR (1U << 14)
1371#define SCR_TERR (1U << 15)
1372#define SCR_APK (1U << 16)
1373#define SCR_API (1U << 17)
1374#define SCR_EEL2 (1U << 18)
1375#define SCR_EASE (1U << 19)
1376#define SCR_NMEA (1U << 20)
1377#define SCR_FIEN (1U << 21)
1378#define SCR_ENSCXT (1U << 25)
1379#define SCR_ATA (1U << 26)
64e0e2de 1380
01653295
PM
1381/* Return the current FPSCR value. */
1382uint32_t vfp_get_fpscr(CPUARMState *env);
1383void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1384
d81ce0ef
AB
1385/* FPCR, Floating Point Control Register
1386 * FPSR, Floating Poiht Status Register
1387 *
1388 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1389 * FPCR and FPSR. However since they still use non-overlapping bits
1390 * we store the underlying state in fpscr and just mask on read/write.
1391 */
1392#define FPSR_MASK 0xf800009f
0b62159b 1393#define FPCR_MASK 0x07ff9f00
d81ce0ef
AB
1394
1395#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1396#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1397#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1398
f903fa22
PM
1399static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1400{
1401 return vfp_get_fpscr(env) & FPSR_MASK;
1402}
1403
1404static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1405{
1406 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1407 vfp_set_fpscr(env, new_fpscr);
1408}
1409
1410static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1411{
1412 return vfp_get_fpscr(env) & FPCR_MASK;
1413}
1414
1415static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1416{
1417 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1418 vfp_set_fpscr(env, new_fpscr);
1419}
1420
b5ff1b31
FB
1421enum arm_cpu_mode {
1422 ARM_CPU_MODE_USR = 0x10,
1423 ARM_CPU_MODE_FIQ = 0x11,
1424 ARM_CPU_MODE_IRQ = 0x12,
1425 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1426 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1427 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1428 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1429 ARM_CPU_MODE_UND = 0x1b,
1430 ARM_CPU_MODE_SYS = 0x1f
1431};
1432
40f137e1
PB
1433/* VFP system registers. */
1434#define ARM_VFP_FPSID 0
1435#define ARM_VFP_FPSCR 1
a50c0f51 1436#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1437#define ARM_VFP_MVFR1 6
1438#define ARM_VFP_MVFR0 7
40f137e1
PB
1439#define ARM_VFP_FPEXC 8
1440#define ARM_VFP_FPINST 9
1441#define ARM_VFP_FPINST2 10
1442
18c9b560 1443/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1444#define ARM_IWMMXT_wCID 0
1445#define ARM_IWMMXT_wCon 1
1446#define ARM_IWMMXT_wCSSF 2
1447#define ARM_IWMMXT_wCASF 3
1448#define ARM_IWMMXT_wCGR0 8
1449#define ARM_IWMMXT_wCGR1 9
1450#define ARM_IWMMXT_wCGR2 10
1451#define ARM_IWMMXT_wCGR3 11
18c9b560 1452
2c4da50d
PM
1453/* V7M CCR bits */
1454FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1455FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1456FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1457FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1458FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1459FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1460FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1461FIELD(V7M_CCR, DC, 16, 1)
1462FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1463FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1464
24ac0fb1
PM
1465/* V7M SCR bits */
1466FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1467FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1468FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1469FIELD(V7M_SCR, SEVONPEND, 4, 1)
1470
3b2e9344
PM
1471/* V7M AIRCR bits */
1472FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1473FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1474FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1475FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1476FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1477FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1478FIELD(V7M_AIRCR, PRIS, 14, 1)
1479FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1480FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1481
2c4da50d
PM
1482/* V7M CFSR bits for MMFSR */
1483FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1484FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1485FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1486FIELD(V7M_CFSR, MSTKERR, 4, 1)
1487FIELD(V7M_CFSR, MLSPERR, 5, 1)
1488FIELD(V7M_CFSR, MMARVALID, 7, 1)
1489
1490/* V7M CFSR bits for BFSR */
1491FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1492FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1493FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1494FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1495FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1496FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1497FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1498
1499/* V7M CFSR bits for UFSR */
1500FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1501FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1502FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1503FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1504FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1505FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1506FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1507
334e8dad
PM
1508/* V7M CFSR bit masks covering all of the subregister bits */
1509FIELD(V7M_CFSR, MMFSR, 0, 8)
1510FIELD(V7M_CFSR, BFSR, 8, 8)
1511FIELD(V7M_CFSR, UFSR, 16, 16)
1512
2c4da50d
PM
1513/* V7M HFSR bits */
1514FIELD(V7M_HFSR, VECTTBL, 1, 1)
1515FIELD(V7M_HFSR, FORCED, 30, 1)
1516FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1517
1518/* V7M DFSR bits */
1519FIELD(V7M_DFSR, HALTED, 0, 1)
1520FIELD(V7M_DFSR, BKPT, 1, 1)
1521FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1522FIELD(V7M_DFSR, VCATCH, 3, 1)
1523FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1524
bed079da
PM
1525/* V7M SFSR bits */
1526FIELD(V7M_SFSR, INVEP, 0, 1)
1527FIELD(V7M_SFSR, INVIS, 1, 1)
1528FIELD(V7M_SFSR, INVER, 2, 1)
1529FIELD(V7M_SFSR, AUVIOL, 3, 1)
1530FIELD(V7M_SFSR, INVTRAN, 4, 1)
1531FIELD(V7M_SFSR, LSPERR, 5, 1)
1532FIELD(V7M_SFSR, SFARVALID, 6, 1)
1533FIELD(V7M_SFSR, LSERR, 7, 1)
1534
29c483a5
MD
1535/* v7M MPU_CTRL bits */
1536FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1537FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1538FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1539
43bbce7f
PM
1540/* v7M CLIDR bits */
1541FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1542FIELD(V7M_CLIDR, LOUIS, 21, 3)
1543FIELD(V7M_CLIDR, LOC, 24, 3)
1544FIELD(V7M_CLIDR, LOUU, 27, 3)
1545FIELD(V7M_CLIDR, ICB, 30, 2)
1546
1547FIELD(V7M_CSSELR, IND, 0, 1)
1548FIELD(V7M_CSSELR, LEVEL, 1, 3)
1549/* We use the combination of InD and Level to index into cpu->ccsidr[];
1550 * define a mask for this and check that it doesn't permit running off
1551 * the end of the array.
1552 */
1553FIELD(V7M_CSSELR, INDEX, 0, 4)
1554
a62e62af
RH
1555/*
1556 * System register ID fields.
1557 */
1558FIELD(ID_ISAR0, SWAP, 0, 4)
1559FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1560FIELD(ID_ISAR0, BITFIELD, 8, 4)
1561FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1562FIELD(ID_ISAR0, COPROC, 16, 4)
1563FIELD(ID_ISAR0, DEBUG, 20, 4)
1564FIELD(ID_ISAR0, DIVIDE, 24, 4)
1565
1566FIELD(ID_ISAR1, ENDIAN, 0, 4)
1567FIELD(ID_ISAR1, EXCEPT, 4, 4)
1568FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1569FIELD(ID_ISAR1, EXTEND, 12, 4)
1570FIELD(ID_ISAR1, IFTHEN, 16, 4)
1571FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1572FIELD(ID_ISAR1, INTERWORK, 24, 4)
1573FIELD(ID_ISAR1, JAZELLE, 28, 4)
1574
1575FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1576FIELD(ID_ISAR2, MEMHINT, 4, 4)
1577FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1578FIELD(ID_ISAR2, MULT, 12, 4)
1579FIELD(ID_ISAR2, MULTS, 16, 4)
1580FIELD(ID_ISAR2, MULTU, 20, 4)
1581FIELD(ID_ISAR2, PSR_AR, 24, 4)
1582FIELD(ID_ISAR2, REVERSAL, 28, 4)
1583
1584FIELD(ID_ISAR3, SATURATE, 0, 4)
1585FIELD(ID_ISAR3, SIMD, 4, 4)
1586FIELD(ID_ISAR3, SVC, 8, 4)
1587FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1588FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1589FIELD(ID_ISAR3, T32COPY, 20, 4)
1590FIELD(ID_ISAR3, TRUENOP, 24, 4)
1591FIELD(ID_ISAR3, T32EE, 28, 4)
1592
1593FIELD(ID_ISAR4, UNPRIV, 0, 4)
1594FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1595FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1596FIELD(ID_ISAR4, SMC, 12, 4)
1597FIELD(ID_ISAR4, BARRIER, 16, 4)
1598FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1599FIELD(ID_ISAR4, PSR_M, 24, 4)
1600FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1601
1602FIELD(ID_ISAR5, SEVL, 0, 4)
1603FIELD(ID_ISAR5, AES, 4, 4)
1604FIELD(ID_ISAR5, SHA1, 8, 4)
1605FIELD(ID_ISAR5, SHA2, 12, 4)
1606FIELD(ID_ISAR5, CRC32, 16, 4)
1607FIELD(ID_ISAR5, RDM, 24, 4)
1608FIELD(ID_ISAR5, VCMA, 28, 4)
1609
1610FIELD(ID_ISAR6, JSCVT, 0, 4)
1611FIELD(ID_ISAR6, DP, 4, 4)
1612FIELD(ID_ISAR6, FHM, 8, 4)
1613FIELD(ID_ISAR6, SB, 12, 4)
1614FIELD(ID_ISAR6, SPECRES, 16, 4)
1615
ab638a32
RH
1616FIELD(ID_MMFR4, SPECSEI, 0, 4)
1617FIELD(ID_MMFR4, AC2, 4, 4)
1618FIELD(ID_MMFR4, XNX, 8, 4)
1619FIELD(ID_MMFR4, CNP, 12, 4)
1620FIELD(ID_MMFR4, HPDS, 16, 4)
1621FIELD(ID_MMFR4, LSM, 20, 4)
1622FIELD(ID_MMFR4, CCIDX, 24, 4)
1623FIELD(ID_MMFR4, EVT, 28, 4)
1624
a62e62af
RH
1625FIELD(ID_AA64ISAR0, AES, 4, 4)
1626FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1627FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1628FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1629FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1630FIELD(ID_AA64ISAR0, RDM, 28, 4)
1631FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1632FIELD(ID_AA64ISAR0, SM3, 36, 4)
1633FIELD(ID_AA64ISAR0, SM4, 40, 4)
1634FIELD(ID_AA64ISAR0, DP, 44, 4)
1635FIELD(ID_AA64ISAR0, FHM, 48, 4)
1636FIELD(ID_AA64ISAR0, TS, 52, 4)
1637FIELD(ID_AA64ISAR0, TLB, 56, 4)
1638FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1639
1640FIELD(ID_AA64ISAR1, DPB, 0, 4)
1641FIELD(ID_AA64ISAR1, APA, 4, 4)
1642FIELD(ID_AA64ISAR1, API, 8, 4)
1643FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1644FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1645FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1646FIELD(ID_AA64ISAR1, GPA, 24, 4)
1647FIELD(ID_AA64ISAR1, GPI, 28, 4)
1648FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1649FIELD(ID_AA64ISAR1, SB, 36, 4)
1650FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1651
cd208a1c
RH
1652FIELD(ID_AA64PFR0, EL0, 0, 4)
1653FIELD(ID_AA64PFR0, EL1, 4, 4)
1654FIELD(ID_AA64PFR0, EL2, 8, 4)
1655FIELD(ID_AA64PFR0, EL3, 12, 4)
1656FIELD(ID_AA64PFR0, FP, 16, 4)
1657FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1658FIELD(ID_AA64PFR0, GIC, 24, 4)
1659FIELD(ID_AA64PFR0, RAS, 28, 4)
1660FIELD(ID_AA64PFR0, SVE, 32, 4)
1661
3dc91ddb
PM
1662FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1663FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1664FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1665FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1666FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1667FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1668FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1669FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1670FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1671FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1672FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1673FIELD(ID_AA64MMFR0, EXS, 44, 4)
1674
1675FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1676FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1677FIELD(ID_AA64MMFR1, VH, 8, 4)
1678FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1679FIELD(ID_AA64MMFR1, LO, 16, 4)
1680FIELD(ID_AA64MMFR1, PAN, 20, 4)
1681FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1682FIELD(ID_AA64MMFR1, XNX, 28, 4)
1683
43bbce7f
PM
1684QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1685
ce854d7c
BC
1686/* If adding a feature bit which corresponds to a Linux ELF
1687 * HWCAP bit, remember to update the feature-bit-to-hwcap
1688 * mapping in linux-user/elfload.c:get_elf_hwcap().
1689 */
40f137e1
PB
1690enum arm_features {
1691 ARM_FEATURE_VFP,
c1713132
AZ
1692 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1693 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1694 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1695 ARM_FEATURE_V6,
1696 ARM_FEATURE_V6K,
1697 ARM_FEATURE_V7,
1698 ARM_FEATURE_THUMB2,
452a0955 1699 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1700 ARM_FEATURE_VFP3,
60011498 1701 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1702 ARM_FEATURE_NEON,
9ee6e8bb 1703 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1704 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1705 ARM_FEATURE_THUMB2EE,
be5e7a76 1706 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1707 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1708 ARM_FEATURE_V4T,
1709 ARM_FEATURE_V5,
5bc95aa2 1710 ARM_FEATURE_STRONGARM,
906879a9 1711 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1712 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1713 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1714 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1715 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1716 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1717 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1718 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1719 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1720 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1721 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1722 ARM_FEATURE_V8,
3926cc84 1723 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1724 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1725 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1726 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1727 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1728 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1729 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1730 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1731 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1732 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1733 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1734};
1735
1736static inline int arm_feature(CPUARMState *env, int feature)
1737{
918f5dca 1738 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1739}
1740
19e0fefa
FA
1741#if !defined(CONFIG_USER_ONLY)
1742/* Return true if exception levels below EL3 are in secure state,
1743 * or would be following an exception return to that level.
1744 * Unlike arm_is_secure() (which is always a question about the
1745 * _current_ state of the CPU) this doesn't care about the current
1746 * EL or mode.
1747 */
1748static inline bool arm_is_secure_below_el3(CPUARMState *env)
1749{
1750 if (arm_feature(env, ARM_FEATURE_EL3)) {
1751 return !(env->cp15.scr_el3 & SCR_NS);
1752 } else {
6b7f0b61 1753 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1754 * defined, in which case QEMU defaults to non-secure.
1755 */
1756 return false;
1757 }
1758}
1759
71205876
PM
1760/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1761static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1762{
1763 if (arm_feature(env, ARM_FEATURE_EL3)) {
1764 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1765 /* CPU currently in AArch64 state and EL3 */
1766 return true;
1767 } else if (!is_a64(env) &&
1768 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1769 /* CPU currently in AArch32 state and monitor mode */
1770 return true;
1771 }
1772 }
71205876
PM
1773 return false;
1774}
1775
1776/* Return true if the processor is in secure state */
1777static inline bool arm_is_secure(CPUARMState *env)
1778{
1779 if (arm_is_el3_or_mon(env)) {
1780 return true;
1781 }
19e0fefa
FA
1782 return arm_is_secure_below_el3(env);
1783}
1784
1785#else
1786static inline bool arm_is_secure_below_el3(CPUARMState *env)
1787{
1788 return false;
1789}
1790
1791static inline bool arm_is_secure(CPUARMState *env)
1792{
1793 return false;
1794}
1795#endif
1796
f7778444
RH
1797/**
1798 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1799 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1800 * "for all purposes other than a direct read or write access of HCR_EL2."
1801 * Not included here is HCR_RW.
1802 */
1803uint64_t arm_hcr_el2_eff(CPUARMState *env);
1804
1f79ee32
PM
1805/* Return true if the specified exception level is running in AArch64 state. */
1806static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1807{
446c81ab
PM
1808 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1809 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1810 */
446c81ab
PM
1811 assert(el >= 1 && el <= 3);
1812 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1813
446c81ab
PM
1814 /* The highest exception level is always at the maximum supported
1815 * register width, and then lower levels have a register width controlled
1816 * by bits in the SCR or HCR registers.
1f79ee32 1817 */
446c81ab
PM
1818 if (el == 3) {
1819 return aa64;
1820 }
1821
1822 if (arm_feature(env, ARM_FEATURE_EL3)) {
1823 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1824 }
1825
1826 if (el == 2) {
1827 return aa64;
1828 }
1829
1830 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1831 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1832 }
1833
1834 return aa64;
1f79ee32
PM
1835}
1836
3f342b9e
SF
1837/* Function for determing whether guest cp register reads and writes should
1838 * access the secure or non-secure bank of a cp register. When EL3 is
1839 * operating in AArch32 state, the NS-bit determines whether the secure
1840 * instance of a cp register should be used. When EL3 is AArch64 (or if
1841 * it doesn't exist at all) then there is no register banking, and all
1842 * accesses are to the non-secure version.
1843 */
1844static inline bool access_secure_reg(CPUARMState *env)
1845{
1846 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1847 !arm_el_is_aa64(env, 3) &&
1848 !(env->cp15.scr_el3 & SCR_NS));
1849
1850 return ret;
1851}
1852
ea30a4b8
FA
1853/* Macros for accessing a specified CP register bank */
1854#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1855 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1856
1857#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1858 do { \
1859 if (_secure) { \
1860 (_env)->cp15._regname##_s = (_val); \
1861 } else { \
1862 (_env)->cp15._regname##_ns = (_val); \
1863 } \
1864 } while (0)
1865
1866/* Macros for automatically accessing a specific CP register bank depending on
1867 * the current secure state of the system. These macros are not intended for
1868 * supporting instruction translation reads/writes as these are dependent
1869 * solely on the SCR.NS bit and not the mode.
1870 */
1871#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1872 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1873 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1874
1875#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1876 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1877 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1878 (_val))
1879
9a78eead 1880void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1881uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1882 uint32_t cur_el, bool secure);
40f137e1 1883
9ee6e8bb 1884/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1885#ifndef CONFIG_USER_ONLY
1886bool armv7m_nvic_can_take_pending_exception(void *opaque);
1887#else
1888static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1889{
1890 return true;
1891}
1892#endif
2fb50a33
PM
1893/**
1894 * armv7m_nvic_set_pending: mark the specified exception as pending
1895 * @opaque: the NVIC
1896 * @irq: the exception number to mark pending
1897 * @secure: false for non-banked exceptions or for the nonsecure
1898 * version of a banked exception, true for the secure version of a banked
1899 * exception.
1900 *
1901 * Marks the specified exception as pending. Note that we will assert()
1902 * if @secure is true and @irq does not specify one of the fixed set
1903 * of architecturally banked exceptions.
1904 */
1905void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1906/**
1907 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1908 * @opaque: the NVIC
1909 * @irq: the exception number to mark pending
1910 * @secure: false for non-banked exceptions or for the nonsecure
1911 * version of a banked exception, true for the secure version of a banked
1912 * exception.
1913 *
1914 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1915 * exceptions (exceptions generated in the course of trying to take
1916 * a different exception).
1917 */
1918void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1919/**
1920 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1921 * exception, and whether it targets Secure state
1922 * @opaque: the NVIC
1923 * @pirq: set to pending exception number
1924 * @ptargets_secure: set to whether pending exception targets Secure
1925 *
1926 * This function writes the number of the highest priority pending
1927 * exception (the one which would be made active by
1928 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1929 * to true if the current highest priority pending exception should
1930 * be taken to Secure state, false for NS.
1931 */
1932void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1933 bool *ptargets_secure);
5cb18069
PM
1934/**
1935 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1936 * @opaque: the NVIC
1937 *
1938 * Move the current highest priority pending exception from the pending
1939 * state to the active state, and update v7m.exception to indicate that
1940 * it is the exception currently being handled.
5cb18069 1941 */
6c948518 1942void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1943/**
1944 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1945 * @opaque: the NVIC
1946 * @irq: the exception number to complete
5cb18069 1947 * @secure: true if this exception was secure
aa488fe3
PM
1948 *
1949 * Returns: -1 if the irq was not active
1950 * 1 if completing this irq brought us back to base (no active irqs)
1951 * 0 if there is still an irq active after this one was completed
1952 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1953 */
5cb18069 1954int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1955/**
1956 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1957 * @opaque: the NVIC
1958 *
1959 * Returns: the raw execution priority as defined by the v8M architecture.
1960 * This is the execution priority minus the effects of AIRCR.PRIS,
1961 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1962 * (v8M ARM ARM I_PKLD.)
1963 */
1964int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
1965/**
1966 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1967 * priority is negative for the specified security state.
1968 * @opaque: the NVIC
1969 * @secure: the security state to test
1970 * This corresponds to the pseudocode IsReqExecPriNeg().
1971 */
1972#ifndef CONFIG_USER_ONLY
1973bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1974#else
1975static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1976{
1977 return false;
1978}
1979#endif
9ee6e8bb 1980
4b6a83fb
PM
1981/* Interface for defining coprocessor registers.
1982 * Registers are defined in tables of arm_cp_reginfo structs
1983 * which are passed to define_arm_cp_regs().
1984 */
1985
1986/* When looking up a coprocessor register we look for it
1987 * via an integer which encodes all of:
1988 * coprocessor number
1989 * Crn, Crm, opc1, opc2 fields
1990 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1991 * or via MRRC/MCRR?)
51a79b03 1992 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1993 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1994 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1995 * For AArch64, there is no 32/64 bit size distinction;
1996 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1997 * and 4 bit CRn and CRm. The encoding patterns are chosen
1998 * to be easy to convert to and from the KVM encodings, and also
1999 * so that the hashtable can contain both AArch32 and AArch64
2000 * registers (to allow for interprocessing where we might run
2001 * 32 bit code on a 64 bit core).
4b6a83fb 2002 */
f5a0a5a5
PM
2003/* This bit is private to our hashtable cpreg; in KVM register
2004 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2005 * in the upper bits of the 64 bit ID.
2006 */
2007#define CP_REG_AA64_SHIFT 28
2008#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2009
51a79b03
PM
2010/* To enable banking of coprocessor registers depending on ns-bit we
2011 * add a bit to distinguish between secure and non-secure cpregs in the
2012 * hashtable.
2013 */
2014#define CP_REG_NS_SHIFT 29
2015#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2016
2017#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2018 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2019 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2020
f5a0a5a5
PM
2021#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2022 (CP_REG_AA64_MASK | \
2023 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2024 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2025 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2026 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2027 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2028 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2029
721fae12
PM
2030/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2031 * version used as a key for the coprocessor register hashtable
2032 */
2033static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2034{
2035 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2036 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2037 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2038 } else {
2039 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2040 cpregid |= (1 << 15);
2041 }
2042
2043 /* KVM is always non-secure so add the NS flag on AArch32 register
2044 * entries.
2045 */
2046 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2047 }
2048 return cpregid;
2049}
2050
2051/* Convert a truncated 32 bit hashtable key into the full
2052 * 64 bit KVM register ID.
2053 */
2054static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2055{
f5a0a5a5
PM
2056 uint64_t kvmid;
2057
2058 if (cpregid & CP_REG_AA64_MASK) {
2059 kvmid = cpregid & ~CP_REG_AA64_MASK;
2060 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2061 } else {
f5a0a5a5
PM
2062 kvmid = cpregid & ~(1 << 15);
2063 if (cpregid & (1 << 15)) {
2064 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2065 } else {
2066 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2067 }
721fae12
PM
2068 }
2069 return kvmid;
2070}
2071
4b6a83fb 2072/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2073 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2074 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2075 * TCG can assume the value to be constant (ie load at translate time)
2076 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2077 * indicates that the TB should not be ended after a write to this register
2078 * (the default is that the TB ends after cp writes). OVERRIDE permits
2079 * a register definition to override a previous definition for the
2080 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2081 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2082 * ALIAS indicates that this register is an alias view of some underlying
2083 * state which is also visible via another register, and that the other
b061a82b
SF
2084 * register is handling migration and reset; registers marked ALIAS will not be
2085 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2086 * NO_RAW indicates that this register has no underlying state and does not
2087 * support raw access for state saving/loading; it will not be used for either
2088 * migration or KVM state synchronization. (Typically this is for "registers"
2089 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2090 * IO indicates that this register does I/O and therefore its accesses
2091 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2092 * registers which implement clocks or timers require this.
4b6a83fb 2093 */
fe03d45f
RH
2094#define ARM_CP_SPECIAL 0x0001
2095#define ARM_CP_CONST 0x0002
2096#define ARM_CP_64BIT 0x0004
2097#define ARM_CP_SUPPRESS_TB_END 0x0008
2098#define ARM_CP_OVERRIDE 0x0010
2099#define ARM_CP_ALIAS 0x0020
2100#define ARM_CP_IO 0x0040
2101#define ARM_CP_NO_RAW 0x0080
2102#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2103#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2104#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2105#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2106#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2107#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2108#define ARM_CP_FPU 0x1000
490aa7f1 2109#define ARM_CP_SVE 0x2000
1f163787 2110#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2111/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2112#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2113/* Mask of only the flag bits in a type field */
1f163787 2114#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2115
f5a0a5a5
PM
2116/* Valid values for ARMCPRegInfo state field, indicating which of
2117 * the AArch32 and AArch64 execution states this register is visible in.
2118 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2119 * If the reginfo is declared to be visible in both states then a second
2120 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2121 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2122 * Note that we rely on the values of these enums as we iterate through
2123 * the various states in some places.
2124 */
2125enum {
2126 ARM_CP_STATE_AA32 = 0,
2127 ARM_CP_STATE_AA64 = 1,
2128 ARM_CP_STATE_BOTH = 2,
2129};
2130
c3e30260
FA
2131/* ARM CP register secure state flags. These flags identify security state
2132 * attributes for a given CP register entry.
2133 * The existence of both or neither secure and non-secure flags indicates that
2134 * the register has both a secure and non-secure hash entry. A single one of
2135 * these flags causes the register to only be hashed for the specified
2136 * security state.
2137 * Although definitions may have any combination of the S/NS bits, each
2138 * registered entry will only have one to identify whether the entry is secure
2139 * or non-secure.
2140 */
2141enum {
2142 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2143 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2144};
2145
4b6a83fb
PM
2146/* Return true if cptype is a valid type field. This is used to try to
2147 * catch errors where the sentinel has been accidentally left off the end
2148 * of a list of registers.
2149 */
2150static inline bool cptype_valid(int cptype)
2151{
2152 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2153 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2154 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2155}
2156
2157/* Access rights:
2158 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2159 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2160 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2161 * (ie any of the privileged modes in Secure state, or Monitor mode).
2162 * If a register is accessible in one privilege level it's always accessible
2163 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2164 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2165 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2166 * terminology a little and call this PL3.
f5a0a5a5
PM
2167 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2168 * with the ELx exception levels.
4b6a83fb
PM
2169 *
2170 * If access permissions for a register are more complex than can be
2171 * described with these bits, then use a laxer set of restrictions, and
2172 * do the more restrictive/complex check inside a helper function.
2173 */
2174#define PL3_R 0x80
2175#define PL3_W 0x40
2176#define PL2_R (0x20 | PL3_R)
2177#define PL2_W (0x10 | PL3_W)
2178#define PL1_R (0x08 | PL2_R)
2179#define PL1_W (0x04 | PL2_W)
2180#define PL0_R (0x02 | PL1_R)
2181#define PL0_W (0x01 | PL1_W)
2182
2183#define PL3_RW (PL3_R | PL3_W)
2184#define PL2_RW (PL2_R | PL2_W)
2185#define PL1_RW (PL1_R | PL1_W)
2186#define PL0_RW (PL0_R | PL0_W)
2187
75502672
PM
2188/* Return the highest implemented Exception Level */
2189static inline int arm_highest_el(CPUARMState *env)
2190{
2191 if (arm_feature(env, ARM_FEATURE_EL3)) {
2192 return 3;
2193 }
2194 if (arm_feature(env, ARM_FEATURE_EL2)) {
2195 return 2;
2196 }
2197 return 1;
2198}
2199
15b3f556
PM
2200/* Return true if a v7M CPU is in Handler mode */
2201static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2202{
2203 return env->v7m.exception != 0;
2204}
2205
dcbff19b
GB
2206/* Return the current Exception Level (as per ARMv8; note that this differs
2207 * from the ARMv7 Privilege Level).
2208 */
2209static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2210{
6d54ed3c 2211 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2212 return arm_v7m_is_handler_mode(env) ||
2213 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2214 }
2215
592125f8 2216 if (is_a64(env)) {
f5a0a5a5
PM
2217 return extract32(env->pstate, 2, 2);
2218 }
2219
592125f8
FA
2220 switch (env->uncached_cpsr & 0x1f) {
2221 case ARM_CPU_MODE_USR:
4b6a83fb 2222 return 0;
592125f8
FA
2223 case ARM_CPU_MODE_HYP:
2224 return 2;
2225 case ARM_CPU_MODE_MON:
2226 return 3;
2227 default:
2228 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2229 /* If EL3 is 32-bit then all secure privileged modes run in
2230 * EL3
2231 */
2232 return 3;
2233 }
2234
2235 return 1;
4b6a83fb 2236 }
4b6a83fb
PM
2237}
2238
2239typedef struct ARMCPRegInfo ARMCPRegInfo;
2240
f59df3f2
PM
2241typedef enum CPAccessResult {
2242 /* Access is permitted */
2243 CP_ACCESS_OK = 0,
2244 /* Access fails due to a configurable trap or enable which would
2245 * result in a categorized exception syndrome giving information about
2246 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2247 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2248 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2249 */
2250 CP_ACCESS_TRAP = 1,
2251 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2252 * Note that this is not a catch-all case -- the set of cases which may
2253 * result in this failure is specifically defined by the architecture.
2254 */
2255 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2256 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2257 CP_ACCESS_TRAP_EL2 = 3,
2258 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2259 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2260 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2261 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2262 /* Access fails and results in an exception syndrome for an FP access,
2263 * trapped directly to EL2 or EL3
2264 */
2265 CP_ACCESS_TRAP_FP_EL2 = 7,
2266 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2267} CPAccessResult;
2268
c4241c7d
PM
2269/* Access functions for coprocessor registers. These cannot fail and
2270 * may not raise exceptions.
2271 */
2272typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2273typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2274 uint64_t value);
f59df3f2 2275/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2276typedef CPAccessResult CPAccessFn(CPUARMState *env,
2277 const ARMCPRegInfo *opaque,
2278 bool isread);
4b6a83fb
PM
2279/* Hook function for register reset */
2280typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2281
2282#define CP_ANY 0xff
2283
2284/* Definition of an ARM coprocessor register */
2285struct ARMCPRegInfo {
2286 /* Name of register (useful mainly for debugging, need not be unique) */
2287 const char *name;
2288 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2289 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2290 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2291 * will be decoded to this register. The register read and write
2292 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2293 * used by the program, so it is possible to register a wildcard and
2294 * then behave differently on read/write if necessary.
2295 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2296 * must both be zero.
f5a0a5a5
PM
2297 * For AArch64-visible registers, opc0 is also used.
2298 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2299 * way to distinguish (for KVM's benefit) guest-visible system registers
2300 * from demuxed ones provided to preserve the "no side effects on
2301 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2302 * visible (to match KVM's encoding); cp==0 will be converted to
2303 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2304 */
2305 uint8_t cp;
2306 uint8_t crn;
2307 uint8_t crm;
f5a0a5a5 2308 uint8_t opc0;
4b6a83fb
PM
2309 uint8_t opc1;
2310 uint8_t opc2;
f5a0a5a5
PM
2311 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2312 int state;
4b6a83fb
PM
2313 /* Register type: ARM_CP_* bits/values */
2314 int type;
2315 /* Access rights: PL*_[RW] */
2316 int access;
c3e30260
FA
2317 /* Security state: ARM_CP_SECSTATE_* bits/values */
2318 int secure;
4b6a83fb
PM
2319 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2320 * this register was defined: can be used to hand data through to the
2321 * register read/write functions, since they are passed the ARMCPRegInfo*.
2322 */
2323 void *opaque;
2324 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2325 * fieldoffset is non-zero, the reset value of the register.
2326 */
2327 uint64_t resetvalue;
c3e30260
FA
2328 /* Offset of the field in CPUARMState for this register.
2329 *
2330 * This is not needed if either:
4b6a83fb
PM
2331 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2332 * 2. both readfn and writefn are specified
2333 */
2334 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2335
2336 /* Offsets of the secure and non-secure fields in CPUARMState for the
2337 * register if it is banked. These fields are only used during the static
2338 * registration of a register. During hashing the bank associated
2339 * with a given security state is copied to fieldoffset which is used from
2340 * there on out.
2341 *
2342 * It is expected that register definitions use either fieldoffset or
2343 * bank_fieldoffsets in the definition but not both. It is also expected
2344 * that both bank offsets are set when defining a banked register. This
2345 * use indicates that a register is banked.
2346 */
2347 ptrdiff_t bank_fieldoffsets[2];
2348
f59df3f2
PM
2349 /* Function for making any access checks for this register in addition to
2350 * those specified by the 'access' permissions bits. If NULL, no extra
2351 * checks required. The access check is performed at runtime, not at
2352 * translate time.
2353 */
2354 CPAccessFn *accessfn;
4b6a83fb
PM
2355 /* Function for handling reads of this register. If NULL, then reads
2356 * will be done by loading from the offset into CPUARMState specified
2357 * by fieldoffset.
2358 */
2359 CPReadFn *readfn;
2360 /* Function for handling writes of this register. If NULL, then writes
2361 * will be done by writing to the offset into CPUARMState specified
2362 * by fieldoffset.
2363 */
2364 CPWriteFn *writefn;
7023ec7e
PM
2365 /* Function for doing a "raw" read; used when we need to copy
2366 * coprocessor state to the kernel for KVM or out for
2367 * migration. This only needs to be provided if there is also a
c4241c7d 2368 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2369 */
2370 CPReadFn *raw_readfn;
2371 /* Function for doing a "raw" write; used when we need to copy KVM
2372 * kernel coprocessor state into userspace, or for inbound
2373 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2374 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2375 * or similar behaviour.
7023ec7e
PM
2376 */
2377 CPWriteFn *raw_writefn;
4b6a83fb
PM
2378 /* Function for resetting the register. If NULL, then reset will be done
2379 * by writing resetvalue to the field specified in fieldoffset. If
2380 * fieldoffset is 0 then no reset will be done.
2381 */
2382 CPResetFn *resetfn;
2383};
2384
2385/* Macros which are lvalues for the field in CPUARMState for the
2386 * ARMCPRegInfo *ri.
2387 */
2388#define CPREG_FIELD32(env, ri) \
2389 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2390#define CPREG_FIELD64(env, ri) \
2391 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2392
2393#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2394
2395void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2396 const ARMCPRegInfo *regs, void *opaque);
2397void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2398 const ARMCPRegInfo *regs, void *opaque);
2399static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2400{
2401 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2402}
2403static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2404{
2405 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2406}
60322b39 2407const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2408
2409/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2410void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2411 uint64_t value);
4b6a83fb 2412/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2413uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2414
f5a0a5a5
PM
2415/* CPResetFn that does nothing, for use if no reset is required even
2416 * if fieldoffset is non zero.
2417 */
2418void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2419
67ed771d
PM
2420/* Return true if this reginfo struct's field in the cpu state struct
2421 * is 64 bits wide.
2422 */
2423static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2424{
2425 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2426}
2427
dcbff19b 2428static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2429 const ARMCPRegInfo *ri, int isread)
2430{
dcbff19b 2431 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2432}
2433
49a66191
PM
2434/* Raw read of a coprocessor register (as needed for migration, etc) */
2435uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2436
721fae12
PM
2437/**
2438 * write_list_to_cpustate
2439 * @cpu: ARMCPU
2440 *
2441 * For each register listed in the ARMCPU cpreg_indexes list, write
2442 * its value from the cpreg_values list into the ARMCPUState structure.
2443 * This updates TCG's working data structures from KVM data or
2444 * from incoming migration state.
2445 *
2446 * Returns: true if all register values were updated correctly,
2447 * false if some register was unknown or could not be written.
2448 * Note that we do not stop early on failure -- we will attempt
2449 * writing all registers in the list.
2450 */
2451bool write_list_to_cpustate(ARMCPU *cpu);
2452
2453/**
2454 * write_cpustate_to_list:
2455 * @cpu: ARMCPU
2456 *
2457 * For each register listed in the ARMCPU cpreg_indexes list, write
2458 * its value from the ARMCPUState structure into the cpreg_values list.
2459 * This is used to copy info from TCG's working data structures into
2460 * KVM or for outbound migration.
2461 *
2462 * Returns: true if all register values were read correctly,
2463 * false if some register was unknown or could not be read.
2464 * Note that we do not stop early on failure -- we will attempt
2465 * reading all registers in the list.
2466 */
2467bool write_cpustate_to_list(ARMCPU *cpu);
2468
9ee6e8bb
PB
2469#define ARM_CPUID_TI915T 0x54029152
2470#define ARM_CPUID_TI925T 0x54029252
40f137e1 2471
b5ff1b31 2472#if defined(CONFIG_USER_ONLY)
2c0262af 2473#define TARGET_PAGE_BITS 12
b5ff1b31 2474#else
e97da98f
PM
2475/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2476 * have to support 1K tiny pages.
2477 */
2478#define TARGET_PAGE_BITS_VARY
2479#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2480#endif
9467d44c 2481
3926cc84
AG
2482#if defined(TARGET_AARCH64)
2483# define TARGET_PHYS_ADDR_SPACE_BITS 48
2484# define TARGET_VIRT_ADDR_SPACE_BITS 64
2485#else
2486# define TARGET_PHYS_ADDR_SPACE_BITS 40
2487# define TARGET_VIRT_ADDR_SPACE_BITS 32
2488#endif
52705890 2489
012a906b
GB
2490static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2491 unsigned int target_el)
043b7f8d
EI
2492{
2493 CPUARMState *env = cs->env_ptr;
dcbff19b 2494 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2495 bool secure = arm_is_secure(env);
57e3a0c7
GB
2496 bool pstate_unmasked;
2497 int8_t unmasked = 0;
f7778444 2498 uint64_t hcr_el2;
57e3a0c7
GB
2499
2500 /* Don't take exceptions if they target a lower EL.
2501 * This check should catch any exceptions that would not be taken but left
2502 * pending.
2503 */
dfafd090
EI
2504 if (cur_el > target_el) {
2505 return false;
2506 }
043b7f8d 2507
f7778444
RH
2508 hcr_el2 = arm_hcr_el2_eff(env);
2509
043b7f8d
EI
2510 switch (excp_idx) {
2511 case EXCP_FIQ:
57e3a0c7
GB
2512 pstate_unmasked = !(env->daif & PSTATE_F);
2513 break;
2514
043b7f8d 2515 case EXCP_IRQ:
57e3a0c7
GB
2516 pstate_unmasked = !(env->daif & PSTATE_I);
2517 break;
2518
136e67e9 2519 case EXCP_VFIQ:
f7778444 2520 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2521 /* VFIQs are only taken when hypervized and non-secure. */
2522 return false;
2523 }
2524 return !(env->daif & PSTATE_F);
2525 case EXCP_VIRQ:
f7778444 2526 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2527 /* VIRQs are only taken when hypervized and non-secure. */
2528 return false;
2529 }
b5c633c5 2530 return !(env->daif & PSTATE_I);
043b7f8d
EI
2531 default:
2532 g_assert_not_reached();
2533 }
57e3a0c7
GB
2534
2535 /* Use the target EL, current execution state and SCR/HCR settings to
2536 * determine whether the corresponding CPSR bit is used to mask the
2537 * interrupt.
2538 */
2539 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2540 /* Exceptions targeting a higher EL may not be maskable */
2541 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2542 /* 64-bit masking rules are simple: exceptions to EL3
2543 * can't be masked, and exceptions to EL2 can only be
2544 * masked from Secure state. The HCR and SCR settings
2545 * don't affect the masking logic, only the interrupt routing.
2546 */
2547 if (target_el == 3 || !secure) {
2548 unmasked = 1;
2549 }
2550 } else {
2551 /* The old 32-bit-only environment has a more complicated
2552 * masking setup. HCR and SCR bits not only affect interrupt
2553 * routing but also change the behaviour of masking.
2554 */
2555 bool hcr, scr;
2556
2557 switch (excp_idx) {
2558 case EXCP_FIQ:
2559 /* If FIQs are routed to EL3 or EL2 then there are cases where
2560 * we override the CPSR.F in determining if the exception is
2561 * masked or not. If neither of these are set then we fall back
2562 * to the CPSR.F setting otherwise we further assess the state
2563 * below.
2564 */
f7778444 2565 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2566 scr = (env->cp15.scr_el3 & SCR_FIQ);
2567
2568 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2569 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2570 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2571 * when non-secure but only when FIQs are only routed to EL3.
2572 */
2573 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2574 break;
2575 case EXCP_IRQ:
2576 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2577 * we may override the CPSR.I masking when in non-secure state.
2578 * The SCR.IRQ setting has already been taken into consideration
2579 * when setting the target EL, so it does not have a further
2580 * affect here.
2581 */
f7778444 2582 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2583 scr = false;
2584 break;
2585 default:
2586 g_assert_not_reached();
2587 }
2588
2589 if ((scr || hcr) && !secure) {
2590 unmasked = 1;
2591 }
57e3a0c7
GB
2592 }
2593 }
2594
2595 /* The PSTATE bits only mask the interrupt if we have not overriden the
2596 * ability above.
2597 */
2598 return unmasked || pstate_unmasked;
043b7f8d
EI
2599}
2600
ba1ba5cc
IM
2601#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2602#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2603#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2604
9467d44c 2605#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2606#define cpu_list arm_cpu_list
9467d44c 2607
c1e37810
PM
2608/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2609 *
2610 * If EL3 is 64-bit:
2611 * + NonSecure EL1 & 0 stage 1
2612 * + NonSecure EL1 & 0 stage 2
2613 * + NonSecure EL2
2614 * + Secure EL1 & EL0
2615 * + Secure EL3
2616 * If EL3 is 32-bit:
2617 * + NonSecure PL1 & 0 stage 1
2618 * + NonSecure PL1 & 0 stage 2
2619 * + NonSecure PL2
2620 * + Secure PL0 & PL1
2621 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2622 *
2623 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2624 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2625 * may differ in access permissions even if the VA->PA map is the same
2626 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2627 * translation, which means that we have one mmu_idx that deals with two
2628 * concatenated translation regimes [this sort of combined s1+2 TLB is
2629 * architecturally permitted]
2630 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2631 * handling via the TLB. The only way to do a stage 1 translation without
2632 * the immediate stage 2 translation is via the ATS or AT system insns,
2633 * which can be slow-pathed and always do a page table walk.
2634 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2635 * translation regimes, because they map reasonably well to each other
2636 * and they can't both be active at the same time.
2637 * This gives us the following list of mmu_idx values:
2638 *
2639 * NS EL0 (aka NS PL0) stage 1+2
2640 * NS EL1 (aka NS PL1) stage 1+2
2641 * NS EL2 (aka NS PL2)
2642 * S EL3 (aka S PL1)
2643 * S EL0 (aka S PL0)
2644 * S EL1 (not used if EL3 is 32 bit)
2645 * NS EL0+1 stage 2
2646 *
2647 * (The last of these is an mmu_idx because we want to be able to use the TLB
2648 * for the accesses done as part of a stage 1 page table walk, rather than
2649 * having to walk the stage 2 page table over and over.)
2650 *
3bef7012
PM
2651 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2652 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2653 * NS EL2 if we ever model a Cortex-R52).
2654 *
2655 * M profile CPUs are rather different as they do not have a true MMU.
2656 * They have the following different MMU indexes:
2657 * User
2658 * Privileged
62593718
PM
2659 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2660 * Privileged, execution priority negative (ditto)
66787c78
PM
2661 * If the CPU supports the v8M Security Extension then there are also:
2662 * Secure User
2663 * Secure Privileged
62593718
PM
2664 * Secure User, execution priority negative
2665 * Secure Privileged, execution priority negative
3bef7012 2666 *
8bd5c820
PM
2667 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2668 * are not quite the same -- different CPU types (most notably M profile
2669 * vs A/R profile) would like to use MMU indexes with different semantics,
2670 * but since we don't ever need to use all of those in a single CPU we
2671 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2672 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2673 * the same for any particular CPU.
2674 * Variables of type ARMMUIdx are always full values, and the core
2675 * index values are in variables of type 'int'.
2676 *
c1e37810
PM
2677 * Our enumeration includes at the end some entries which are not "true"
2678 * mmu_idx values in that they don't have corresponding TLBs and are only
2679 * valid for doing slow path page table walks.
2680 *
2681 * The constant names here are patterned after the general style of the names
2682 * of the AT/ATS operations.
2683 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2684 * For M profile we arrange them to have a bit for priv, a bit for negpri
2685 * and a bit for secure.
c1e37810 2686 */
e7b921c2 2687#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2688#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2689#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2690
62593718
PM
2691/* meanings of the bits for M profile mmu idx values */
2692#define ARM_MMU_IDX_M_PRIV 0x1
2693#define ARM_MMU_IDX_M_NEGPRI 0x2
2694#define ARM_MMU_IDX_M_S 0x4
2695
8bd5c820
PM
2696#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2697#define ARM_MMU_IDX_COREIDX_MASK 0x7
2698
c1e37810 2699typedef enum ARMMMUIdx {
8bd5c820
PM
2700 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2701 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2702 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2703 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2704 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2705 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2706 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2707 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2708 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2709 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2710 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2711 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2712 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2713 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2714 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2715 /* Indexes below here don't have TLBs and are used only for AT system
2716 * instructions or for the first stage of an S12 page table walk.
2717 */
8bd5c820
PM
2718 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2719 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2720} ARMMMUIdx;
2721
8bd5c820
PM
2722/* Bit macros for the core-mmu-index values for each index,
2723 * for use when calling tlb_flush_by_mmuidx() and friends.
2724 */
2725typedef enum ARMMMUIdxBit {
2726 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2727 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2728 ARMMMUIdxBit_S1E2 = 1 << 2,
2729 ARMMMUIdxBit_S1E3 = 1 << 3,
2730 ARMMMUIdxBit_S1SE0 = 1 << 4,
2731 ARMMMUIdxBit_S1SE1 = 1 << 5,
2732 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2733 ARMMMUIdxBit_MUser = 1 << 0,
2734 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2735 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2736 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2737 ARMMMUIdxBit_MSUser = 1 << 4,
2738 ARMMMUIdxBit_MSPriv = 1 << 5,
2739 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2740 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2741} ARMMMUIdxBit;
2742
f79fbf39 2743#define MMU_USER_IDX 0
c1e37810 2744
8bd5c820
PM
2745static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2746{
2747 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2748}
2749
2750static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2751{
e7b921c2
PM
2752 if (arm_feature(env, ARM_FEATURE_M)) {
2753 return mmu_idx | ARM_MMU_IDX_M;
2754 } else {
2755 return mmu_idx | ARM_MMU_IDX_A;
2756 }
8bd5c820
PM
2757}
2758
c1e37810
PM
2759/* Return the exception level we're running at if this is our mmu_idx */
2760static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2761{
8bd5c820
PM
2762 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2763 case ARM_MMU_IDX_A:
2764 return mmu_idx & 3;
e7b921c2 2765 case ARM_MMU_IDX_M:
62593718 2766 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2767 default:
2768 g_assert_not_reached();
2769 }
c1e37810
PM
2770}
2771
ec8e3340 2772/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2773 * privilege state.
ec8e3340 2774 */
65e4655c
RH
2775ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2776 bool secstate, bool priv);
b81ac0eb 2777
ec8e3340 2778/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2779ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2780
50494a27
RH
2781/**
2782 * cpu_mmu_index:
2783 * @env: The cpu environment
2784 * @ifetch: True for code access, false for data access.
2785 *
2786 * Return the core mmu index for the current translation regime.
2787 * This function is used by generic TCG code paths.
2788 */
65e4655c 2789int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2790
9e273ef2
PM
2791/* Indexes used when registering address spaces with cpu_address_space_init */
2792typedef enum ARMASIdx {
2793 ARMASIdx_NS = 0,
2794 ARMASIdx_S = 1,
2795} ARMASIdx;
2796
533e93f1 2797/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2798static inline int arm_debug_target_el(CPUARMState *env)
2799{
81669b8b
SF
2800 bool secure = arm_is_secure(env);
2801 bool route_to_el2 = false;
2802
2803 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2804 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2805 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2806 }
2807
2808 if (route_to_el2) {
2809 return 2;
2810 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2811 !arm_el_is_aa64(env, 3) && secure) {
2812 return 3;
2813 } else {
2814 return 1;
2815 }
3a298203
PM
2816}
2817
43bbce7f
PM
2818static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2819{
2820 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2821 * CSSELR is RAZ/WI.
2822 */
2823 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2824}
2825
22af9025 2826/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2827static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2828{
22af9025
AB
2829 int cur_el = arm_current_el(env);
2830 int debug_el;
2831
2832 if (cur_el == 3) {
2833 return false;
533e93f1
PM
2834 }
2835
22af9025
AB
2836 /* MDCR_EL3.SDD disables debug events from Secure state */
2837 if (arm_is_secure_below_el3(env)
2838 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2839 return false;
3a298203 2840 }
22af9025
AB
2841
2842 /*
2843 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2844 * while not masking the (D)ebug bit in DAIF.
2845 */
2846 debug_el = arm_debug_target_el(env);
2847
2848 if (cur_el == debug_el) {
2849 return extract32(env->cp15.mdscr_el1, 13, 1)
2850 && !(env->daif & PSTATE_D);
2851 }
2852
2853 /* Otherwise the debug target needs to be a higher EL */
2854 return debug_el > cur_el;
3a298203
PM
2855}
2856
2857static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2858{
533e93f1
PM
2859 int el = arm_current_el(env);
2860
2861 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2862 return aa64_generate_debug_exceptions(env);
2863 }
533e93f1
PM
2864
2865 if (arm_is_secure(env)) {
2866 int spd;
2867
2868 if (el == 0 && (env->cp15.sder & 1)) {
2869 /* SDER.SUIDEN means debug exceptions from Secure EL0
2870 * are always enabled. Otherwise they are controlled by
2871 * SDCR.SPD like those from other Secure ELs.
2872 */
2873 return true;
2874 }
2875
2876 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2877 switch (spd) {
2878 case 1:
2879 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2880 case 0:
2881 /* For 0b00 we return true if external secure invasive debug
2882 * is enabled. On real hardware this is controlled by external
2883 * signals to the core. QEMU always permits debug, and behaves
2884 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2885 */
2886 return true;
2887 case 2:
2888 return false;
2889 case 3:
2890 return true;
2891 }
2892 }
2893
2894 return el != 2;
3a298203
PM
2895}
2896
2897/* Return true if debugging exceptions are currently enabled.
2898 * This corresponds to what in ARM ARM pseudocode would be
2899 * if UsingAArch32() then
2900 * return AArch32.GenerateDebugExceptions()
2901 * else
2902 * return AArch64.GenerateDebugExceptions()
2903 * We choose to push the if() down into this function for clarity,
2904 * since the pseudocode has it at all callsites except for the one in
2905 * CheckSoftwareStep(), where it is elided because both branches would
2906 * always return the same value.
3a298203
PM
2907 */
2908static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2909{
2910 if (env->aarch64) {
2911 return aa64_generate_debug_exceptions(env);
2912 } else {
2913 return aa32_generate_debug_exceptions(env);
2914 }
2915}
2916
2917/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2918 * implicitly means this always returns false in pre-v8 CPUs.)
2919 */
2920static inline bool arm_singlestep_active(CPUARMState *env)
2921{
2922 return extract32(env->cp15.mdscr_el1, 0, 1)
2923 && arm_el_is_aa64(env, arm_debug_target_el(env))
2924 && arm_generate_debug_exceptions(env);
2925}
2926
f9fd40eb
PB
2927static inline bool arm_sctlr_b(CPUARMState *env)
2928{
2929 return
2930 /* We need not implement SCTLR.ITD in user-mode emulation, so
2931 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2932 * This lets people run BE32 binaries with "-cpu any".
2933 */
2934#ifndef CONFIG_USER_ONLY
2935 !arm_feature(env, ARM_FEATURE_V7) &&
2936#endif
2937 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2938}
2939
ed50ff78
PC
2940/* Return true if the processor is in big-endian mode. */
2941static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2942{
2943 int cur_el;
2944
2945 /* In 32bit endianness is determined by looking at CPSR's E bit */
2946 if (!is_a64(env)) {
b2e62d9a
PC
2947 return
2948#ifdef CONFIG_USER_ONLY
2949 /* In system mode, BE32 is modelled in line with the
2950 * architecture (as word-invariant big-endianness), where loads
2951 * and stores are done little endian but from addresses which
2952 * are adjusted by XORing with the appropriate constant. So the
2953 * endianness to use for the raw data access is not affected by
2954 * SCTLR.B.
2955 * In user mode, however, we model BE32 as byte-invariant
2956 * big-endianness (because user-only code cannot tell the
2957 * difference), and so we need to use a data access endianness
2958 * that depends on SCTLR.B.
2959 */
2960 arm_sctlr_b(env) ||
2961#endif
2962 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2963 }
2964
2965 cur_el = arm_current_el(env);
2966
2967 if (cur_el == 0) {
2968 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2969 }
2970
2971 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2972}
2973
022c62cb 2974#include "exec/cpu-all.h"
622ed360 2975
3926cc84
AG
2976/* Bit usage in the TB flags field: bit 31 indicates whether we are
2977 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2978 * We put flags which are shared between 32 and 64 bit mode at the top
2979 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 2980 */
aad821ac
RH
2981FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
2982FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
2983FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
2984FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 2985/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
2986FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
2987FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
2988
2989/* Bit usage when in AArch32 state: */
aad821ac
RH
2990FIELD(TBFLAG_A32, THUMB, 0, 1)
2991FIELD(TBFLAG_A32, VECLEN, 1, 3)
2992FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
2993FIELD(TBFLAG_A32, VFPEN, 7, 1)
2994FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
2995FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
c0f4af17
PM
2996/* We store the bottom two bits of the CPAR as TB flags and handle
2997 * checks on the other bits at runtime
2998 */
aad821ac 2999FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3f342b9e
SF
3000/* Indicates whether cp register reads and writes by guest code should access
3001 * the secure or nonsecure bank of banked registers; note that this is not
3002 * the same thing as the current security state of the processor!
3003 */
aad821ac 3004FIELD(TBFLAG_A32, NS, 19, 1)
064c379c 3005/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3006FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3007/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3008FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3009
86fb3fa4 3010/* Bit usage when in AArch64 state */
476a4692 3011FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3012FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3013FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3014FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
a1705768 3015
f9fd40eb
PB
3016static inline bool bswap_code(bool sctlr_b)
3017{
3018#ifdef CONFIG_USER_ONLY
3019 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3020 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3021 * would also end up as a mixed-endian mode with BE code, LE data.
3022 */
3023 return
3024#ifdef TARGET_WORDS_BIGENDIAN
3025 1 ^
3026#endif
3027 sctlr_b;
3028#else
e334bd31
PB
3029 /* All code access in ARM is little endian, and there are no loaders
3030 * doing swaps that need to be reversed
f9fd40eb
PB
3031 */
3032 return 0;
3033#endif
3034}
3035
c3ae85fc
PB
3036#ifdef CONFIG_USER_ONLY
3037static inline bool arm_cpu_bswap_data(CPUARMState *env)
3038{
3039 return
3040#ifdef TARGET_WORDS_BIGENDIAN
3041 1 ^
3042#endif
3043 arm_cpu_data_is_big_endian(env);
3044}
3045#endif
3046
a9e01311
RH
3047void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3048 target_ulong *cs_base, uint32_t *flags);
6b917547 3049
98128601
RH
3050enum {
3051 QEMU_PSCI_CONDUIT_DISABLED = 0,
3052 QEMU_PSCI_CONDUIT_SMC = 1,
3053 QEMU_PSCI_CONDUIT_HVC = 2,
3054};
3055
017518c1
PM
3056#ifndef CONFIG_USER_ONLY
3057/* Return the address space index to use for a memory access */
3058static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3059{
3060 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3061}
5ce4ff65
PM
3062
3063/* Return the AddressSpace to use for a memory access
3064 * (which depends on whether the access is S or NS, and whether
3065 * the board gave us a separate AddressSpace for S accesses).
3066 */
3067static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3068{
3069 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3070}
017518c1
PM
3071#endif
3072
bd7d00fc 3073/**
b5c53d1b
AL
3074 * arm_register_pre_el_change_hook:
3075 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3076 * CPU changes exception level or mode. The hook function will be
3077 * passed a pointer to the ARMCPU and the opaque data pointer passed
3078 * to this function when the hook was registered.
b5c53d1b
AL
3079 *
3080 * Note that if a pre-change hook is called, any registered post-change hooks
3081 * are guaranteed to subsequently be called.
bd7d00fc 3082 */
b5c53d1b 3083void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3084 void *opaque);
b5c53d1b
AL
3085/**
3086 * arm_register_el_change_hook:
3087 * Register a hook function which will be called immediately after this
3088 * CPU changes exception level or mode. The hook function will be
3089 * passed a pointer to the ARMCPU and the opaque data pointer passed
3090 * to this function when the hook was registered.
3091 *
3092 * Note that any registered hooks registered here are guaranteed to be called
3093 * if pre-change hooks have been.
3094 */
3095void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3096 *opaque);
bd7d00fc 3097
9a2b5256
RH
3098/**
3099 * aa32_vfp_dreg:
3100 * Return a pointer to the Dn register within env in 32-bit mode.
3101 */
3102static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3103{
c39c2b90 3104 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3105}
3106
3107/**
3108 * aa32_vfp_qreg:
3109 * Return a pointer to the Qn register within env in 32-bit mode.
3110 */
3111static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3112{
c39c2b90 3113 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3114}
3115
3116/**
3117 * aa64_vfp_qreg:
3118 * Return a pointer to the Qn register within env in 64-bit mode.
3119 */
3120static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3121{
c39c2b90 3122 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3123}
3124
028e2a7b
RH
3125/* Shared between translate-sve.c and sve_helper.c. */
3126extern const uint64_t pred_esz_masks[4];
3127
962fcbf2
RH
3128/*
3129 * 32-bit feature tests via id registers.
3130 */
7e0cf8b4
RH
3131static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3132{
3133 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3134}
3135
3136static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3137{
3138 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3139}
3140
09cbd501
RH
3141static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3142{
3143 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3144}
3145
962fcbf2
RH
3146static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3147{
3148 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3149}
3150
3151static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3152{
3153 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3154}
3155
3156static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3157{
3158 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3159}
3160
3161static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3162{
3163 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3164}
3165
3166static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3167{
3168 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3169}
3170
3171static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3172{
3173 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3174}
3175
3176static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3177{
3178 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3179}
3180
3181static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3182{
3183 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3184}
3185
5763190f
RH
3186static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3187{
3188 /*
3189 * This is a placeholder for use by VCMA until the rest of
3190 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3191 * At which point we can properly set and check MVFR1.FPHP.
3192 */
3193 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3194}
3195
962fcbf2
RH
3196/*
3197 * 64-bit feature tests via id registers.
3198 */
3199static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3200{
3201 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3202}
3203
3204static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3205{
3206 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3207}
3208
3209static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3210{
3211 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3212}
3213
3214static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3215{
3216 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3217}
3218
3219static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3220{
3221 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3222}
3223
3224static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3225{
3226 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3227}
3228
3229static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3230{
3231 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3232}
3233
3234static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3235{
3236 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3237}
3238
3239static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3240{
3241 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3242}
3243
3244static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3245{
3246 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3247}
3248
3249static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3250{
3251 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3252}
3253
3254static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3255{
3256 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3257}
3258
3259static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3260{
3261 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3262}
3263
991ad91b
RH
3264static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3265{
3266 /*
3267 * Note that while QEMU will only implement the architected algorithm
3268 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3269 * defined algorithms, and thus API+GPI, and this predicate controls
3270 * migration of the 128-bit keys.
3271 */
3272 return (id->id_aa64isar1 &
3273 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3274 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3275 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3276 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3277}
3278
5763190f
RH
3279static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3280{
3281 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3282 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3283}
3284
0f8d06f1
RH
3285static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3286{
3287 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3288}
3289
cd208a1c
RH
3290static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3291{
3292 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3293}
3294
2d7137c1
RH
3295static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3296{
3297 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3298}
3299
962fcbf2
RH
3300/*
3301 * Forward to the above feature tests given an ARMCPU pointer.
3302 */
3303#define cpu_isar_feature(name, cpu) \
3304 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3305
2c0262af 3306#endif