]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Add DISAS_UPDATE_NOCHAIN
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
e24fd076
DG
31#ifdef TARGET_AARCH64
32#define KVM_HAVE_MCE_INJECTION 1
33#endif
34
b8a9e8f1
FB
35#define EXCP_UDEF 1 /* undefined instruction */
36#define EXCP_SWI 2 /* software interrupt */
37#define EXCP_PREFETCH_ABORT 3
38#define EXCP_DATA_ABORT 4
b5ff1b31
FB
39#define EXCP_IRQ 5
40#define EXCP_FIQ 6
06c949e6 41#define EXCP_BKPT 7
9ee6e8bb 42#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 43#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 44#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 45#define EXCP_HYP_TRAP 12
e0d6e6a5 46#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
47#define EXCP_VIRQ 14
48#define EXCP_VFIQ 15
19a6e31c 49#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 50#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 51#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 52#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 53#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
54#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
55#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 56/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
57
58#define ARMV7M_EXCP_RESET 1
59#define ARMV7M_EXCP_NMI 2
60#define ARMV7M_EXCP_HARD 3
61#define ARMV7M_EXCP_MEM 4
62#define ARMV7M_EXCP_BUS 5
63#define ARMV7M_EXCP_USAGE 6
1e577cc7 64#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
65#define ARMV7M_EXCP_SVC 11
66#define ARMV7M_EXCP_DEBUG 12
67#define ARMV7M_EXCP_PENDSV 14
68#define ARMV7M_EXCP_SYSTICK 15
2c0262af 69
acf94941
PM
70/* For M profile, some registers are banked secure vs non-secure;
71 * these are represented as a 2-element array where the first element
72 * is the non-secure copy and the second is the secure copy.
73 * When the CPU does not have implement the security extension then
74 * only the first element is used.
75 * This means that the copy for the current security state can be
76 * accessed via env->registerfield[env->v7m.secure] (whether the security
77 * extension is implemented or not).
78 */
4a16724f
PM
79enum {
80 M_REG_NS = 0,
81 M_REG_S = 1,
82 M_REG_NUM_BANKS = 2,
83};
acf94941 84
403946c0
RH
85/* ARM-specific interrupt pending bits. */
86#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
87#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
88#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 89
e4fe830b
PM
90/* The usual mapping for an AArch64 system register to its AArch32
91 * counterpart is for the 32 bit world to have access to the lower
92 * half only (with writes leaving the upper half untouched). It's
93 * therefore useful to be able to pass TCG the offset of the least
94 * significant half of a uint64_t struct member.
95 */
96#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 97#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 98#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
99#else
100#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 101#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
102#endif
103
136e67e9 104/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
105#define ARM_CPU_IRQ 0
106#define ARM_CPU_FIQ 1
136e67e9
EI
107#define ARM_CPU_VIRQ 2
108#define ARM_CPU_VFIQ 3
403946c0 109
aaa1f954
EI
110/* ARM-specific extra insn start words:
111 * 1: Conditional execution bits
112 * 2: Partial exception syndrome for data aborts
113 */
114#define TARGET_INSN_START_EXTRA_WORDS 2
115
116/* The 2nd extra word holding syndrome info for data aborts does not use
117 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
118 * help the sleb128 encoder do a better job.
119 * When restoring the CPU state, we shift it back up.
120 */
121#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
122#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 123
b7bcbe95
FB
124/* We currently assume float and double are IEEE single and double
125 precision respectively.
126 Doing runtime conversions is tricky because VFP registers may contain
127 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
128 s<2n> maps to the least significant half of d<n>
129 s<2n+1> maps to the most significant half of d<n>
130 */
b7bcbe95 131
200bf5b7
AB
132/**
133 * DynamicGDBXMLInfo:
134 * @desc: Contains the XML descriptions.
448d4d14
AB
135 * @num: Number of the registers in this XML seen by GDB.
136 * @data: A union with data specific to the set of registers
137 * @cpregs_keys: Array that contains the corresponding Key of
138 * a given cpreg with the same order of the cpreg
139 * in the XML description.
200bf5b7
AB
140 */
141typedef struct DynamicGDBXMLInfo {
142 char *desc;
448d4d14
AB
143 int num;
144 union {
145 struct {
146 uint32_t *keys;
147 } cpregs;
148 } data;
200bf5b7
AB
149} DynamicGDBXMLInfo;
150
55d284af
PM
151/* CPU state for each instance of a generic timer (in cp15 c14) */
152typedef struct ARMGenericTimer {
153 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 154 uint64_t ctl; /* Timer Control register */
55d284af
PM
155} ARMGenericTimer;
156
8c94b071
RH
157#define GTIMER_PHYS 0
158#define GTIMER_VIRT 1
159#define GTIMER_HYP 2
160#define GTIMER_SEC 3
161#define GTIMER_HYPVIRT 4
162#define NUM_GTIMERS 5
55d284af 163
11f136ee
FA
164typedef struct {
165 uint64_t raw_tcr;
166 uint32_t mask;
167 uint32_t base_mask;
168} TCR;
169
c39c2b90
RH
170/* Define a maximum sized vector register.
171 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
172 * For 64-bit, this is a 2048-bit SVE register.
173 *
174 * Note that the mapping between S, D, and Q views of the register bank
175 * differs between AArch64 and AArch32.
176 * In AArch32:
177 * Qn = regs[n].d[1]:regs[n].d[0]
178 * Dn = regs[n / 2].d[n & 1]
179 * Sn = regs[n / 4].d[n % 4 / 2],
180 * bits 31..0 for even n, and bits 63..32 for odd n
181 * (and regs[16] to regs[31] are inaccessible)
182 * In AArch64:
183 * Zn = regs[n].d[*]
184 * Qn = regs[n].d[1]:regs[n].d[0]
185 * Dn = regs[n].d[0]
186 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 187 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
188 *
189 * This corresponds to the architecturally defined mapping between
190 * the two execution states, and means we do not need to explicitly
191 * map these registers when changing states.
192 *
193 * Align the data for use with TCG host vector operations.
194 */
195
196#ifdef TARGET_AARCH64
197# define ARM_MAX_VQ 16
0df9142d 198void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
199#else
200# define ARM_MAX_VQ 1
0df9142d 201static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
202#endif
203
204typedef struct ARMVectorReg {
205 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
206} ARMVectorReg;
207
3c7d3086 208#ifdef TARGET_AARCH64
991ad91b 209/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 210typedef struct ARMPredicateReg {
46417784 211 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 212} ARMPredicateReg;
991ad91b
RH
213
214/* In AArch32 mode, PAC keys do not exist at all. */
215typedef struct ARMPACKey {
216 uint64_t lo, hi;
217} ARMPACKey;
3c7d3086
RH
218#endif
219
c39c2b90 220
2c0262af 221typedef struct CPUARMState {
b5ff1b31 222 /* Regs for current mode. */
2c0262af 223 uint32_t regs[16];
3926cc84
AG
224
225 /* 32/64 switch only happens when taking and returning from
226 * exceptions so the overlap semantics are taken care of then
227 * instead of having a complicated union.
228 */
229 /* Regs for A64 mode. */
230 uint64_t xregs[32];
231 uint64_t pc;
d356312f
PM
232 /* PSTATE isn't an architectural register for ARMv8. However, it is
233 * convenient for us to assemble the underlying state into a 32 bit format
234 * identical to the architectural format used for the SPSR. (This is also
235 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
236 * 'pstate' register are.) Of the PSTATE bits:
237 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
238 * semantics as for AArch32, as described in the comments on each field)
239 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 240 * DAIF (exception masks) are kept in env->daif
f6e52eaa 241 * BTYPE is kept in env->btype
d356312f 242 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
243 */
244 uint32_t pstate;
245 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
246
fdd1b228
RH
247 /* Cached TBFLAGS state. See below for which bits are included. */
248 uint32_t hflags;
249
b90372ad 250 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 251 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
252 the whole CPSR. */
253 uint32_t uncached_cpsr;
254 uint32_t spsr;
255
256 /* Banked registers. */
28c9457d 257 uint64_t banked_spsr[8];
0b7d409d
FA
258 uint32_t banked_r13[8];
259 uint32_t banked_r14[8];
3b46e624 260
b5ff1b31
FB
261 /* These hold r8-r12. */
262 uint32_t usr_regs[5];
263 uint32_t fiq_regs[5];
3b46e624 264
2c0262af
FB
265 /* cpsr flag cache for faster execution */
266 uint32_t CF; /* 0 or 1 */
267 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
268 uint32_t NF; /* N is bit 31. All other bits are undefined. */
269 uint32_t ZF; /* Z set if zero. */
99c475ab 270 uint32_t QF; /* 0 or 1 */
9ee6e8bb 271 uint32_t GE; /* cpsr[19:16] */
b26eefb6 272 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 273 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 274 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 275 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 276
1b174238 277 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 278 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 279
b5ff1b31
FB
280 /* System control coprocessor (cp15) */
281 struct {
40f137e1 282 uint32_t c0_cpuid;
b85a1fd6
FA
283 union { /* Cache size selection */
284 struct {
285 uint64_t _unused_csselr0;
286 uint64_t csselr_ns;
287 uint64_t _unused_csselr1;
288 uint64_t csselr_s;
289 };
290 uint64_t csselr_el[4];
291 };
137feaa9
FA
292 union { /* System control register. */
293 struct {
294 uint64_t _unused_sctlr;
295 uint64_t sctlr_ns;
296 uint64_t hsctlr;
297 uint64_t sctlr_s;
298 };
299 uint64_t sctlr_el[4];
300 };
7ebd5f2e 301 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 302 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 303 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 304 uint64_t sder; /* Secure debug enable register. */
77022576 305 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
306 union { /* MMU translation table base 0. */
307 struct {
308 uint64_t _unused_ttbr0_0;
309 uint64_t ttbr0_ns;
310 uint64_t _unused_ttbr0_1;
311 uint64_t ttbr0_s;
312 };
313 uint64_t ttbr0_el[4];
314 };
315 union { /* MMU translation table base 1. */
316 struct {
317 uint64_t _unused_ttbr1_0;
318 uint64_t ttbr1_ns;
319 uint64_t _unused_ttbr1_1;
320 uint64_t ttbr1_s;
321 };
322 uint64_t ttbr1_el[4];
323 };
b698e9cf 324 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
325 /* MMU translation table base control. */
326 TCR tcr_el[4];
68e9c2fe 327 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
328 uint32_t c2_data; /* MPU data cacheable bits. */
329 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
330 union { /* MMU domain access control register
331 * MPU write buffer control.
332 */
333 struct {
334 uint64_t dacr_ns;
335 uint64_t dacr_s;
336 };
337 struct {
338 uint64_t dacr32_el2;
339 };
340 };
7e09797c
PM
341 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
342 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 343 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 344 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
345 union { /* Fault status registers. */
346 struct {
347 uint64_t ifsr_ns;
348 uint64_t ifsr_s;
349 };
350 struct {
351 uint64_t ifsr32_el2;
352 };
353 };
4a7e2d73
FA
354 union {
355 struct {
356 uint64_t _unused_dfsr;
357 uint64_t dfsr_ns;
358 uint64_t hsr;
359 uint64_t dfsr_s;
360 };
361 uint64_t esr_el[4];
362 };
ce819861 363 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
364 union { /* Fault address registers. */
365 struct {
366 uint64_t _unused_far0;
367#ifdef HOST_WORDS_BIGENDIAN
368 uint32_t ifar_ns;
369 uint32_t dfar_ns;
370 uint32_t ifar_s;
371 uint32_t dfar_s;
372#else
373 uint32_t dfar_ns;
374 uint32_t ifar_ns;
375 uint32_t dfar_s;
376 uint32_t ifar_s;
377#endif
378 uint64_t _unused_far3;
379 };
380 uint64_t far_el[4];
381 };
59e05530 382 uint64_t hpfar_el2;
2a5a9abd 383 uint64_t hstr_el2;
01c097f7
FA
384 union { /* Translation result. */
385 struct {
386 uint64_t _unused_par_0;
387 uint64_t par_ns;
388 uint64_t _unused_par_1;
389 uint64_t par_s;
390 };
391 uint64_t par_el[4];
392 };
6cb0b013 393
b5ff1b31
FB
394 uint32_t c9_insn; /* Cache lockdown registers. */
395 uint32_t c9_data;
8521466b
AF
396 uint64_t c9_pmcr; /* performance monitor control register */
397 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
398 uint64_t c9_pmovsr; /* perf monitor overflow status */
399 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 400 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 401 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
402 union { /* Memory attribute redirection */
403 struct {
404#ifdef HOST_WORDS_BIGENDIAN
405 uint64_t _unused_mair_0;
406 uint32_t mair1_ns;
407 uint32_t mair0_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair1_s;
410 uint32_t mair0_s;
411#else
412 uint64_t _unused_mair_0;
413 uint32_t mair0_ns;
414 uint32_t mair1_ns;
415 uint64_t _unused_mair_1;
416 uint32_t mair0_s;
417 uint32_t mair1_s;
418#endif
419 };
420 uint64_t mair_el[4];
421 };
fb6c91ba
GB
422 union { /* vector base address register */
423 struct {
424 uint64_t _unused_vbar;
425 uint64_t vbar_ns;
426 uint64_t hvbar;
427 uint64_t vbar_s;
428 };
429 uint64_t vbar_el[4];
430 };
e89e51a1 431 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
432 struct { /* FCSE PID. */
433 uint32_t fcseidr_ns;
434 uint32_t fcseidr_s;
435 };
436 union { /* Context ID. */
437 struct {
438 uint64_t _unused_contextidr_0;
439 uint64_t contextidr_ns;
440 uint64_t _unused_contextidr_1;
441 uint64_t contextidr_s;
442 };
443 uint64_t contextidr_el[4];
444 };
445 union { /* User RW Thread register. */
446 struct {
447 uint64_t tpidrurw_ns;
448 uint64_t tpidrprw_ns;
449 uint64_t htpidr;
450 uint64_t _tpidr_el3;
451 };
452 uint64_t tpidr_el[4];
453 };
454 /* The secure banks of these registers don't map anywhere */
455 uint64_t tpidrurw_s;
456 uint64_t tpidrprw_s;
457 uint64_t tpidruro_s;
458
459 union { /* User RO Thread register. */
460 uint64_t tpidruro_ns;
461 uint64_t tpidrro_el[1];
462 };
a7adc4b7
PM
463 uint64_t c14_cntfrq; /* Counter Frequency register */
464 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 465 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 466 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 467 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 468 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
469 uint32_t c15_ticonfig; /* TI925T configuration byte. */
470 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
471 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
472 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
473 uint32_t c15_config_base_address; /* SCU base address. */
474 uint32_t c15_diagnostic; /* diagnostic register */
475 uint32_t c15_power_diagnostic;
476 uint32_t c15_power_control; /* power control */
0b45451e
PM
477 uint64_t dbgbvr[16]; /* breakpoint value registers */
478 uint64_t dbgbcr[16]; /* breakpoint control registers */
479 uint64_t dbgwvr[16]; /* watchpoint value registers */
480 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 481 uint64_t mdscr_el1;
1424ca8d 482 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 483 uint64_t mdcr_el2;
5513c3ab 484 uint64_t mdcr_el3;
5d05b9d4
AL
485 /* Stores the architectural value of the counter *the last time it was
486 * updated* by pmccntr_op_start. Accesses should always be surrounded
487 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
488 * architecturally-correct value is being read/set.
7c2cb42b 489 */
c92c0687 490 uint64_t c15_ccnt;
5d05b9d4
AL
491 /* Stores the delta between the architectural value and the underlying
492 * cycle count during normal operation. It is used to update c15_ccnt
493 * to be the correct architectural value before accesses. During
494 * accesses, c15_ccnt_delta contains the underlying count being used
495 * for the access, after which it reverts to the delta value in
496 * pmccntr_op_finish.
497 */
498 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
499 uint64_t c14_pmevcntr[31];
500 uint64_t c14_pmevcntr_delta[31];
501 uint64_t c14_pmevtyper[31];
8521466b 502 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 503 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 504 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 505 } cp15;
40f137e1 506
9ee6e8bb 507 struct {
fb602cb7
PM
508 /* M profile has up to 4 stack pointers:
509 * a Main Stack Pointer and a Process Stack Pointer for each
510 * of the Secure and Non-Secure states. (If the CPU doesn't support
511 * the security extension then it has only two SPs.)
512 * In QEMU we always store the currently active SP in regs[13],
513 * and the non-active SP for the current security state in
514 * v7m.other_sp. The stack pointers for the inactive security state
515 * are stored in other_ss_msp and other_ss_psp.
516 * switch_v7m_security_state() is responsible for rearranging them
517 * when we change security state.
518 */
9ee6e8bb 519 uint32_t other_sp;
fb602cb7
PM
520 uint32_t other_ss_msp;
521 uint32_t other_ss_psp;
4a16724f
PM
522 uint32_t vecbase[M_REG_NUM_BANKS];
523 uint32_t basepri[M_REG_NUM_BANKS];
524 uint32_t control[M_REG_NUM_BANKS];
525 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
526 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
527 uint32_t hfsr; /* HardFault Status */
528 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 529 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 530 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 531 uint32_t bfar; /* BusFault Address */
bed079da 532 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 533 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 534 int exception;
4a16724f
PM
535 uint32_t primask[M_REG_NUM_BANKS];
536 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 537 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 538 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 539 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 540 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
541 uint32_t msplim[M_REG_NUM_BANKS];
542 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
543 uint32_t fpcar[M_REG_NUM_BANKS];
544 uint32_t fpccr[M_REG_NUM_BANKS];
545 uint32_t fpdscr[M_REG_NUM_BANKS];
546 uint32_t cpacr[M_REG_NUM_BANKS];
547 uint32_t nsacr;
9ee6e8bb
PB
548 } v7m;
549
abf1172f
PM
550 /* Information associated with an exception about to be taken:
551 * code which raises an exception must set cs->exception_index and
552 * the relevant parts of this structure; the cpu_do_interrupt function
553 * will then set the guest-visible registers as part of the exception
554 * entry process.
555 */
556 struct {
557 uint32_t syndrome; /* AArch64 format syndrome register */
558 uint32_t fsr; /* AArch32 format fault status register info */
559 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 560 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
561 /* If we implement EL2 we will also need to store information
562 * about the intermediate physical address for stage 2 faults.
563 */
564 } exception;
565
202ccb6b
DG
566 /* Information associated with an SError */
567 struct {
568 uint8_t pending;
569 uint8_t has_esr;
570 uint64_t esr;
571 } serror;
572
ed89f078
PM
573 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
574 uint32_t irq_line_state;
575
fe1479c3
PB
576 /* Thumb-2 EE state. */
577 uint32_t teecr;
578 uint32_t teehbr;
579
b7bcbe95
FB
580 /* VFP coprocessor state. */
581 struct {
c39c2b90 582 ARMVectorReg zregs[32];
b7bcbe95 583
3c7d3086
RH
584#ifdef TARGET_AARCH64
585 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 586#define FFR_PRED_NUM 16
3c7d3086 587 ARMPredicateReg pregs[17];
516e246a
RH
588 /* Scratch space for aa64 sve predicate temporary. */
589 ARMPredicateReg preg_tmp;
3c7d3086
RH
590#endif
591
b7bcbe95 592 /* We store these fpcsr fields separately for convenience. */
a4d58462 593 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
594 int vec_len;
595 int vec_stride;
596
a4d58462
RH
597 uint32_t xregs[16];
598
516e246a 599 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 600 uint32_t scratch[8];
3b46e624 601
d81ce0ef
AB
602 /* There are a number of distinct float control structures:
603 *
604 * fp_status: is the "normal" fp status.
605 * fp_status_fp16: used for half-precision calculations
606 * standard_fp_status : the ARM "Standard FPSCR Value"
607 *
608 * Half-precision operations are governed by a separate
609 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
610 * status structure to control this.
611 *
612 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
613 * round-to-nearest and is used by any operations (generally
614 * Neon) which the architecture defines as controlled by the
615 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
616 *
617 * To avoid having to transfer exception bits around, we simply
618 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 619 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
620 * only thing which needs to read the exception flags being
621 * an explicit FPSCR read.
622 */
53cd6637 623 float_status fp_status;
d81ce0ef 624 float_status fp_status_f16;
3a492f3a 625 float_status standard_fp_status;
5be5e8ed
RH
626
627 /* ZCR_EL[1-3] */
628 uint64_t zcr_el[4];
b7bcbe95 629 } vfp;
03d05e2d
PM
630 uint64_t exclusive_addr;
631 uint64_t exclusive_val;
632 uint64_t exclusive_high;
b7bcbe95 633
18c9b560
AZ
634 /* iwMMXt coprocessor state. */
635 struct {
636 uint64_t regs[16];
637 uint64_t val;
638
639 uint32_t cregs[16];
640 } iwmmxt;
641
991ad91b 642#ifdef TARGET_AARCH64
108b3ba8
RH
643 struct {
644 ARMPACKey apia;
645 ARMPACKey apib;
646 ARMPACKey apda;
647 ARMPACKey apdb;
648 ARMPACKey apga;
649 } keys;
991ad91b
RH
650#endif
651
ce4defa0
PB
652#if defined(CONFIG_USER_ONLY)
653 /* For usermode syscall translation. */
654 int eabi;
655#endif
656
46747d15 657 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
658 struct CPUWatchpoint *cpu_watchpoint[16];
659
1f5c00cf
AB
660 /* Fields up to this point are cleared by a CPU reset */
661 struct {} end_reset_fields;
662
e8b5fae5 663 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 664
581be094 665 /* Internal CPU feature flags. */
918f5dca 666 uint64_t features;
581be094 667
6cb0b013
PC
668 /* PMSAv7 MPU */
669 struct {
670 uint32_t *drbar;
671 uint32_t *drsr;
672 uint32_t *dracr;
4a16724f 673 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
674 } pmsav7;
675
0e1a46bb
PM
676 /* PMSAv8 MPU */
677 struct {
678 /* The PMSAv8 implementation also shares some PMSAv7 config
679 * and state:
680 * pmsav7.rnr (region number register)
681 * pmsav7_dregion (number of configured regions)
682 */
4a16724f
PM
683 uint32_t *rbar[M_REG_NUM_BANKS];
684 uint32_t *rlar[M_REG_NUM_BANKS];
685 uint32_t mair0[M_REG_NUM_BANKS];
686 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
687 } pmsav8;
688
9901c576
PM
689 /* v8M SAU */
690 struct {
691 uint32_t *rbar;
692 uint32_t *rlar;
693 uint32_t rnr;
694 uint32_t ctrl;
695 } sau;
696
983fe826 697 void *nvic;
462a8bc6 698 const struct arm_boot_info *boot_info;
d3a3e529
VK
699 /* Store GICv3CPUState to access from this struct */
700 void *gicv3state;
2c0262af
FB
701} CPUARMState;
702
5fda9504
TH
703static inline void set_feature(CPUARMState *env, int feature)
704{
705 env->features |= 1ULL << feature;
706}
707
708static inline void unset_feature(CPUARMState *env, int feature)
709{
710 env->features &= ~(1ULL << feature);
711}
712
bd7d00fc 713/**
08267487 714 * ARMELChangeHookFn:
bd7d00fc
PM
715 * type of a function which can be registered via arm_register_el_change_hook()
716 * to get callbacks when the CPU changes its exception level or mode.
717 */
08267487
AL
718typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
719typedef struct ARMELChangeHook ARMELChangeHook;
720struct ARMELChangeHook {
721 ARMELChangeHookFn *hook;
722 void *opaque;
723 QLIST_ENTRY(ARMELChangeHook) node;
724};
062ba099
AB
725
726/* These values map onto the return values for
727 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
728typedef enum ARMPSCIState {
d5affb0d
AJ
729 PSCI_ON = 0,
730 PSCI_OFF = 1,
062ba099
AB
731 PSCI_ON_PENDING = 2
732} ARMPSCIState;
733
962fcbf2
RH
734typedef struct ARMISARegisters ARMISARegisters;
735
74e75564
PB
736/**
737 * ARMCPU:
738 * @env: #CPUARMState
739 *
740 * An ARM CPU core.
741 */
742struct ARMCPU {
743 /*< private >*/
744 CPUState parent_obj;
745 /*< public >*/
746
5b146dc7 747 CPUNegativeOffsetState neg;
74e75564
PB
748 CPUARMState env;
749
750 /* Coprocessor information */
751 GHashTable *cp_regs;
752 /* For marshalling (mostly coprocessor) register state between the
753 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
754 * we use these arrays.
755 */
756 /* List of register indexes managed via these arrays; (full KVM style
757 * 64 bit indexes, not CPRegInfo 32 bit indexes)
758 */
759 uint64_t *cpreg_indexes;
760 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
761 uint64_t *cpreg_values;
762 /* Length of the indexes, values, reset_values arrays */
763 int32_t cpreg_array_len;
764 /* These are used only for migration: incoming data arrives in
765 * these fields and is sanity checked in post_load before copying
766 * to the working data structures above.
767 */
768 uint64_t *cpreg_vmstate_indexes;
769 uint64_t *cpreg_vmstate_values;
770 int32_t cpreg_vmstate_array_len;
771
448d4d14 772 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 773 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 774
74e75564
PB
775 /* Timers used by the generic (architected) timer */
776 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
777 /*
778 * Timer used by the PMU. Its state is restored after migration by
779 * pmu_op_finish() - it does not need other handling during migration
780 */
781 QEMUTimer *pmu_timer;
74e75564
PB
782 /* GPIO outputs for generic timer */
783 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
784 /* GPIO output for GICv3 maintenance interrupt signal */
785 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
786 /* GPIO output for the PMU interrupt */
787 qemu_irq pmu_interrupt;
74e75564
PB
788
789 /* MemoryRegion to use for secure physical accesses */
790 MemoryRegion *secure_memory;
791
181962fd
PM
792 /* For v8M, pointer to the IDAU interface provided by board/SoC */
793 Object *idau;
794
74e75564
PB
795 /* 'compatible' string for this CPU for Linux device trees */
796 const char *dtb_compatible;
797
798 /* PSCI version for this CPU
799 * Bits[31:16] = Major Version
800 * Bits[15:0] = Minor Version
801 */
802 uint32_t psci_version;
803
804 /* Should CPU start in PSCI powered-off state? */
805 bool start_powered_off;
062ba099
AB
806
807 /* Current power state, access guarded by BQL */
808 ARMPSCIState power_state;
809
c25bd18a
PM
810 /* CPU has virtualization extension */
811 bool has_el2;
74e75564
PB
812 /* CPU has security extension */
813 bool has_el3;
5c0a3819
SZ
814 /* CPU has PMU (Performance Monitor Unit) */
815 bool has_pmu;
97a28b0e
PM
816 /* CPU has VFP */
817 bool has_vfp;
818 /* CPU has Neon */
819 bool has_neon;
ea90db0a
PM
820 /* CPU has M-profile DSP extension */
821 bool has_dsp;
74e75564
PB
822
823 /* CPU has memory protection unit */
824 bool has_mpu;
825 /* PMSAv7 MPU number of supported regions */
826 uint32_t pmsav7_dregion;
9901c576
PM
827 /* v8M SAU number of supported regions */
828 uint32_t sau_sregion;
74e75564
PB
829
830 /* PSCI conduit used to invoke PSCI methods
831 * 0 - disabled, 1 - smc, 2 - hvc
832 */
833 uint32_t psci_conduit;
834
38e2a77c
PM
835 /* For v8M, initial value of the Secure VTOR */
836 uint32_t init_svtor;
837
74e75564
PB
838 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
839 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
840 */
841 uint32_t kvm_target;
842
843 /* KVM init features for this CPU */
844 uint32_t kvm_init_features[7];
845
e5ac4200
AJ
846 /* KVM CPU state */
847
848 /* KVM virtual time adjustment */
849 bool kvm_adjvtime;
850 bool kvm_vtime_dirty;
851 uint64_t kvm_vtime;
852
74e75564
PB
853 /* Uniprocessor system with MP extensions */
854 bool mp_is_up;
855
c4487d76
PM
856 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
857 * and the probe failed (so we need to report the error in realize)
858 */
859 bool host_cpu_probe_failed;
860
f9a69711
AF
861 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
862 * register.
863 */
864 int32_t core_count;
865
74e75564
PB
866 /* The instance init functions for implementation-specific subclasses
867 * set these fields to specify the implementation-dependent values of
868 * various constant registers and reset values of non-constant
869 * registers.
870 * Some of these might become QOM properties eventually.
871 * Field names match the official register names as defined in the
872 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
873 * is used for reset values of non-constant registers; no reset_
874 * prefix means a constant register.
47576b94
RH
875 * Some of these registers are split out into a substructure that
876 * is shared with the translators to control the ISA.
1548a7b2
PM
877 *
878 * Note that if you add an ID register to the ARMISARegisters struct
879 * you need to also update the 32-bit and 64-bit versions of the
880 * kvm_arm_get_host_cpu_features() function to correctly populate the
881 * field by reading the value from the KVM vCPU.
74e75564 882 */
47576b94
RH
883 struct ARMISARegisters {
884 uint32_t id_isar0;
885 uint32_t id_isar1;
886 uint32_t id_isar2;
887 uint32_t id_isar3;
888 uint32_t id_isar4;
889 uint32_t id_isar5;
890 uint32_t id_isar6;
10054016
PM
891 uint32_t id_mmfr0;
892 uint32_t id_mmfr1;
893 uint32_t id_mmfr2;
894 uint32_t id_mmfr3;
895 uint32_t id_mmfr4;
47576b94
RH
896 uint32_t mvfr0;
897 uint32_t mvfr1;
898 uint32_t mvfr2;
a6179538 899 uint32_t id_dfr0;
4426d361 900 uint32_t dbgdidr;
47576b94
RH
901 uint64_t id_aa64isar0;
902 uint64_t id_aa64isar1;
903 uint64_t id_aa64pfr0;
904 uint64_t id_aa64pfr1;
3dc91ddb
PM
905 uint64_t id_aa64mmfr0;
906 uint64_t id_aa64mmfr1;
64761e10 907 uint64_t id_aa64mmfr2;
2a609df8
PM
908 uint64_t id_aa64dfr0;
909 uint64_t id_aa64dfr1;
47576b94 910 } isar;
e544f800 911 uint64_t midr;
74e75564
PB
912 uint32_t revidr;
913 uint32_t reset_fpsid;
74e75564
PB
914 uint32_t ctr;
915 uint32_t reset_sctlr;
916 uint32_t id_pfr0;
917 uint32_t id_pfr1;
cad86737
AL
918 uint64_t pmceid0;
919 uint64_t pmceid1;
74e75564 920 uint32_t id_afr0;
74e75564
PB
921 uint64_t id_aa64afr0;
922 uint64_t id_aa64afr1;
74e75564
PB
923 uint32_t clidr;
924 uint64_t mp_affinity; /* MP ID without feature bits */
925 /* The elements of this array are the CCSIDR values for each cache,
926 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
927 */
957e6155 928 uint64_t ccsidr[16];
74e75564
PB
929 uint64_t reset_cbar;
930 uint32_t reset_auxcr;
931 bool reset_hivecs;
932 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
933 uint32_t dcz_blocksize;
934 uint64_t rvbar;
bd7d00fc 935
e45868a3
PM
936 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
937 int gic_num_lrs; /* number of list registers */
938 int gic_vpribits; /* number of virtual priority bits */
939 int gic_vprebits; /* number of virtual preemption bits */
940
3a062d57
JB
941 /* Whether the cfgend input is high (i.e. this CPU should reset into
942 * big-endian mode). This setting isn't used directly: instead it modifies
943 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
944 * architecture version.
945 */
946 bool cfgend;
947
b5c53d1b 948 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 949 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
950
951 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
952
953 /* Used to synchronize KVM and QEMU in-kernel device levels */
954 uint8_t device_irq_level;
adf92eab
RH
955
956 /* Used to set the maximum vector length the cpu will support. */
957 uint32_t sve_max_vq;
0df9142d
AJ
958
959 /*
960 * In sve_vq_map each set bit is a supported vector length of
961 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
962 * length in quadwords.
963 *
964 * While processing properties during initialization, corresponding
965 * sve_vq_init bits are set for bits in sve_vq_map that have been
966 * set by properties.
967 */
968 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
969 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
970
971 /* Generic timer counter frequency, in Hz */
972 uint64_t gt_cntfrq_hz;
74e75564
PB
973};
974
7def8754
AJ
975unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
976
51e5ef45
MAL
977void arm_cpu_post_init(Object *obj);
978
46de5913
IM
979uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
980
74e75564 981#ifndef CONFIG_USER_ONLY
8a9358cc 982extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
983#endif
984
985void arm_cpu_do_interrupt(CPUState *cpu);
986void arm_v7m_cpu_do_interrupt(CPUState *cpu);
987bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
988
74e75564
PB
989hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
990 MemTxAttrs *attrs);
991
a010bdbe 992int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
993int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
994
d12379c5
AB
995/*
996 * Helpers to dynamically generates XML descriptions of the sysregs
997 * and SVE registers. Returns the number of registers in each set.
200bf5b7 998 */
32d6e32a 999int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1000int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1001
1002/* Returns the dynamically generated XML for the gdb stub.
1003 * Returns a pointer to the XML contents for the specified XML file or NULL
1004 * if the XML name doesn't match the predefined one.
1005 */
1006const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1007
74e75564
PB
1008int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1009 int cpuid, void *opaque);
1010int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1011 int cpuid, void *opaque);
1012
1013#ifdef TARGET_AARCH64
a010bdbe 1014int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1015int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1016void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1017void aarch64_sve_change_el(CPUARMState *env, int old_el,
1018 int new_el, bool el0_a64);
87014c6b 1019void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
1020
1021/*
1022 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1023 * The byte at offset i from the start of the in-memory representation contains
1024 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1025 * lowest offsets are stored in the lowest memory addresses, then that nearly
1026 * matches QEMU's representation, which is to use an array of host-endian
1027 * uint64_t's, where the lower offsets are at the lower indices. To complete
1028 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1029 */
1030static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1031{
1032#ifdef HOST_WORDS_BIGENDIAN
1033 int i;
1034
1035 for (i = 0; i < nr; ++i) {
1036 dst[i] = bswap64(src[i]);
1037 }
1038
1039 return dst;
1040#else
1041 return src;
1042#endif
1043}
1044
0ab5953b
RH
1045#else
1046static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1047static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1048 int n, bool a)
1049{ }
87014c6b 1050static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1051#endif
778c3a06 1052
91f78c58
PMD
1053#if !defined(CONFIG_TCG)
1054static inline target_ulong do_arm_semihosting(CPUARMState *env)
1055{
1056 g_assert_not_reached();
1057}
1058#else
faacc041 1059target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 1060#endif
ce02049d
GB
1061void aarch64_sync_32_to_64(CPUARMState *env);
1062void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1063
ced31551
RH
1064int fp_exception_el(CPUARMState *env, int cur_el);
1065int sve_exception_el(CPUARMState *env, int cur_el);
1066uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1067
3926cc84
AG
1068static inline bool is_a64(CPUARMState *env)
1069{
1070 return env->aarch64;
1071}
1072
2c0262af
FB
1073/* you can call this signal handler from your SIGBUS and SIGSEGV
1074 signal handlers to inform the virtual CPU of exceptions. non zero
1075 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1076int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1077 void *puc);
1078
5d05b9d4
AL
1079/**
1080 * pmu_op_start/finish
ec7b4ce4
AF
1081 * @env: CPUARMState
1082 *
5d05b9d4
AL
1083 * Convert all PMU counters between their delta form (the typical mode when
1084 * they are enabled) and the guest-visible values. These two calls must
1085 * surround any action which might affect the counters.
ec7b4ce4 1086 */
5d05b9d4
AL
1087void pmu_op_start(CPUARMState *env);
1088void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1089
4e7beb0c
AL
1090/*
1091 * Called when a PMU counter is due to overflow
1092 */
1093void arm_pmu_timer_cb(void *opaque);
1094
033614c4
AL
1095/**
1096 * Functions to register as EL change hooks for PMU mode filtering
1097 */
1098void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1099void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1100
57a4a11b 1101/*
bf8d0969
AL
1102 * pmu_init
1103 * @cpu: ARMCPU
57a4a11b 1104 *
bf8d0969
AL
1105 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1106 * for the current configuration
57a4a11b 1107 */
bf8d0969 1108void pmu_init(ARMCPU *cpu);
57a4a11b 1109
76e3e1bc
PM
1110/* SCTLR bit meanings. Several bits have been reused in newer
1111 * versions of the architecture; in that case we define constants
1112 * for both old and new bit meanings. Code which tests against those
1113 * bits should probably check or otherwise arrange that the CPU
1114 * is the architectural version it expects.
1115 */
1116#define SCTLR_M (1U << 0)
1117#define SCTLR_A (1U << 1)
1118#define SCTLR_C (1U << 2)
1119#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1120#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1121#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1122#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1123#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1124#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1125#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1126#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1127#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1128#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1129#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1130#define SCTLR_ITD (1U << 7) /* v8 onward */
1131#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1132#define SCTLR_SED (1U << 8) /* v8 onward */
1133#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1134#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1135#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1136#define SCTLR_SW (1U << 10) /* v7 */
1137#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1138#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1139#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1140#define SCTLR_I (1U << 12)
b2af69d0
RH
1141#define SCTLR_V (1U << 13) /* AArch32 only */
1142#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1143#define SCTLR_RR (1U << 14) /* up to v7 */
1144#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1145#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1146#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1147#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1148#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1149#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1150#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1151#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1152#define SCTLR_nTWE (1U << 18) /* v8 onward */
1153#define SCTLR_WXN (1U << 19)
1154#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1155#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1156#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1157#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1158#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1159#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1160#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1161#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1162#define SCTLR_VE (1U << 24) /* up to v7 */
1163#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1164#define SCTLR_EE (1U << 25)
1165#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1166#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1167#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1168#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1169#define SCTLR_TRE (1U << 28) /* AArch32 only */
1170#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1171#define SCTLR_AFE (1U << 29) /* AArch32 only */
1172#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1173#define SCTLR_TE (1U << 30) /* AArch32 only */
1174#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1175#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1176#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1177#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1178#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1179#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1180#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1181#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1182#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1183#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1184
c6f19164
GB
1185#define CPTR_TCPAC (1U << 31)
1186#define CPTR_TTA (1U << 20)
1187#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1188#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1189#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1190
187f678d
PM
1191#define MDCR_EPMAD (1U << 21)
1192#define MDCR_EDAD (1U << 20)
033614c4
AL
1193#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1194#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1195#define MDCR_SDD (1U << 16)
a8d64e73 1196#define MDCR_SPD (3U << 14)
187f678d
PM
1197#define MDCR_TDRA (1U << 11)
1198#define MDCR_TDOSA (1U << 10)
1199#define MDCR_TDA (1U << 9)
1200#define MDCR_TDE (1U << 8)
1201#define MDCR_HPME (1U << 7)
1202#define MDCR_TPM (1U << 6)
1203#define MDCR_TPMCR (1U << 5)
033614c4 1204#define MDCR_HPMN (0x1fU)
187f678d 1205
a8d64e73
PM
1206/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1207#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1208
78dbbbe4
PM
1209#define CPSR_M (0x1fU)
1210#define CPSR_T (1U << 5)
1211#define CPSR_F (1U << 6)
1212#define CPSR_I (1U << 7)
1213#define CPSR_A (1U << 8)
1214#define CPSR_E (1U << 9)
1215#define CPSR_IT_2_7 (0xfc00U)
1216#define CPSR_GE (0xfU << 16)
4051e12c 1217#define CPSR_IL (1U << 20)
220f508f 1218#define CPSR_PAN (1U << 22)
78dbbbe4
PM
1219#define CPSR_J (1U << 24)
1220#define CPSR_IT_0_1 (3U << 25)
1221#define CPSR_Q (1U << 27)
1222#define CPSR_V (1U << 28)
1223#define CPSR_C (1U << 29)
1224#define CPSR_Z (1U << 30)
1225#define CPSR_N (1U << 31)
9ee6e8bb 1226#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1227#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1228
1229#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1230#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1231 | CPSR_NZCV)
9ee6e8bb 1232/* Bits writable in user mode. */
268b1b3d 1233#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1234/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1235#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1236
987ab45e
PM
1237/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1238#define XPSR_EXCP 0x1ffU
1239#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1240#define XPSR_IT_2_7 CPSR_IT_2_7
1241#define XPSR_GE CPSR_GE
1242#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1243#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1244#define XPSR_IT_0_1 CPSR_IT_0_1
1245#define XPSR_Q CPSR_Q
1246#define XPSR_V CPSR_V
1247#define XPSR_C CPSR_C
1248#define XPSR_Z CPSR_Z
1249#define XPSR_N CPSR_N
1250#define XPSR_NZCV CPSR_NZCV
1251#define XPSR_IT CPSR_IT
1252
e389be16
FA
1253#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1254#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1255#define TTBCR_PD0 (1U << 4)
1256#define TTBCR_PD1 (1U << 5)
1257#define TTBCR_EPD0 (1U << 7)
1258#define TTBCR_IRGN0 (3U << 8)
1259#define TTBCR_ORGN0 (3U << 10)
1260#define TTBCR_SH0 (3U << 12)
1261#define TTBCR_T1SZ (3U << 16)
1262#define TTBCR_A1 (1U << 22)
1263#define TTBCR_EPD1 (1U << 23)
1264#define TTBCR_IRGN1 (3U << 24)
1265#define TTBCR_ORGN1 (3U << 26)
1266#define TTBCR_SH1 (1U << 28)
1267#define TTBCR_EAE (1U << 31)
1268
d356312f
PM
1269/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1270 * Only these are valid when in AArch64 mode; in
1271 * AArch32 mode SPSRs are basically CPSR-format.
1272 */
f502cfc2 1273#define PSTATE_SP (1U)
d356312f
PM
1274#define PSTATE_M (0xFU)
1275#define PSTATE_nRW (1U << 4)
1276#define PSTATE_F (1U << 6)
1277#define PSTATE_I (1U << 7)
1278#define PSTATE_A (1U << 8)
1279#define PSTATE_D (1U << 9)
f6e52eaa 1280#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1281#define PSTATE_IL (1U << 20)
1282#define PSTATE_SS (1U << 21)
220f508f 1283#define PSTATE_PAN (1U << 22)
9eeb7a1c 1284#define PSTATE_UAO (1U << 23)
d356312f
PM
1285#define PSTATE_V (1U << 28)
1286#define PSTATE_C (1U << 29)
1287#define PSTATE_Z (1U << 30)
1288#define PSTATE_N (1U << 31)
1289#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1290#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1291#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1292/* Mode values for AArch64 */
1293#define PSTATE_MODE_EL3h 13
1294#define PSTATE_MODE_EL3t 12
1295#define PSTATE_MODE_EL2h 9
1296#define PSTATE_MODE_EL2t 8
1297#define PSTATE_MODE_EL1h 5
1298#define PSTATE_MODE_EL1t 4
1299#define PSTATE_MODE_EL0t 0
1300
de2db7ec
PM
1301/* Write a new value to v7m.exception, thus transitioning into or out
1302 * of Handler mode; this may result in a change of active stack pointer.
1303 */
1304void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1305
9e729b57
EI
1306/* Map EL and handler into a PSTATE_MODE. */
1307static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1308{
1309 return (el << 2) | handler;
1310}
1311
d356312f
PM
1312/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1313 * interprocessing, so we don't attempt to sync with the cpsr state used by
1314 * the 32 bit decoder.
1315 */
1316static inline uint32_t pstate_read(CPUARMState *env)
1317{
1318 int ZF;
1319
1320 ZF = (env->ZF == 0);
1321 return (env->NF & 0x80000000) | (ZF << 30)
1322 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1323 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1324}
1325
1326static inline void pstate_write(CPUARMState *env, uint32_t val)
1327{
1328 env->ZF = (~val) & PSTATE_Z;
1329 env->NF = val;
1330 env->CF = (val >> 29) & 1;
1331 env->VF = (val << 3) & 0x80000000;
4cc35614 1332 env->daif = val & PSTATE_DAIF;
f6e52eaa 1333 env->btype = (val >> 10) & 3;
d356312f
PM
1334 env->pstate = val & ~CACHED_PSTATE_BITS;
1335}
1336
b5ff1b31 1337/* Return the current CPSR value. */
2f4a40e5 1338uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1339
1340typedef enum CPSRWriteType {
1341 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1342 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1343 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1344 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1345} CPSRWriteType;
1346
1347/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1348void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1349 CPSRWriteType write_type);
9ee6e8bb
PB
1350
1351/* Return the current xPSR value. */
1352static inline uint32_t xpsr_read(CPUARMState *env)
1353{
1354 int ZF;
6fbe23d5
PB
1355 ZF = (env->ZF == 0);
1356 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1357 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1358 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1359 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1360 | (env->GE << 16)
9ee6e8bb 1361 | env->v7m.exception;
b5ff1b31
FB
1362}
1363
9ee6e8bb
PB
1364/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1365static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1366{
987ab45e
PM
1367 if (mask & XPSR_NZCV) {
1368 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1369 env->NF = val;
9ee6e8bb
PB
1370 env->CF = (val >> 29) & 1;
1371 env->VF = (val << 3) & 0x80000000;
1372 }
987ab45e
PM
1373 if (mask & XPSR_Q) {
1374 env->QF = ((val & XPSR_Q) != 0);
1375 }
f1e2598c
PM
1376 if (mask & XPSR_GE) {
1377 env->GE = (val & XPSR_GE) >> 16;
1378 }
04c9c81b 1379#ifndef CONFIG_USER_ONLY
987ab45e
PM
1380 if (mask & XPSR_T) {
1381 env->thumb = ((val & XPSR_T) != 0);
1382 }
1383 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1384 env->condexec_bits &= ~3;
1385 env->condexec_bits |= (val >> 25) & 3;
1386 }
987ab45e 1387 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1388 env->condexec_bits &= 3;
1389 env->condexec_bits |= (val >> 8) & 0xfc;
1390 }
987ab45e 1391 if (mask & XPSR_EXCP) {
de2db7ec
PM
1392 /* Note that this only happens on exception exit */
1393 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1394 }
04c9c81b 1395#endif
9ee6e8bb
PB
1396}
1397
f149e3e8
EI
1398#define HCR_VM (1ULL << 0)
1399#define HCR_SWIO (1ULL << 1)
1400#define HCR_PTW (1ULL << 2)
1401#define HCR_FMO (1ULL << 3)
1402#define HCR_IMO (1ULL << 4)
1403#define HCR_AMO (1ULL << 5)
1404#define HCR_VF (1ULL << 6)
1405#define HCR_VI (1ULL << 7)
1406#define HCR_VSE (1ULL << 8)
1407#define HCR_FB (1ULL << 9)
1408#define HCR_BSU_MASK (3ULL << 10)
1409#define HCR_DC (1ULL << 12)
1410#define HCR_TWI (1ULL << 13)
1411#define HCR_TWE (1ULL << 14)
1412#define HCR_TID0 (1ULL << 15)
1413#define HCR_TID1 (1ULL << 16)
1414#define HCR_TID2 (1ULL << 17)
1415#define HCR_TID3 (1ULL << 18)
1416#define HCR_TSC (1ULL << 19)
1417#define HCR_TIDCP (1ULL << 20)
1418#define HCR_TACR (1ULL << 21)
1419#define HCR_TSW (1ULL << 22)
099bf53b 1420#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1421#define HCR_TPU (1ULL << 24)
1422#define HCR_TTLB (1ULL << 25)
1423#define HCR_TVM (1ULL << 26)
1424#define HCR_TGE (1ULL << 27)
1425#define HCR_TDZ (1ULL << 28)
1426#define HCR_HCD (1ULL << 29)
1427#define HCR_TRVM (1ULL << 30)
1428#define HCR_RW (1ULL << 31)
1429#define HCR_CD (1ULL << 32)
1430#define HCR_ID (1ULL << 33)
ac656b16 1431#define HCR_E2H (1ULL << 34)
099bf53b
RH
1432#define HCR_TLOR (1ULL << 35)
1433#define HCR_TERR (1ULL << 36)
1434#define HCR_TEA (1ULL << 37)
1435#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1436/* RES0 bit 39 */
099bf53b
RH
1437#define HCR_APK (1ULL << 40)
1438#define HCR_API (1ULL << 41)
1439#define HCR_NV (1ULL << 42)
1440#define HCR_NV1 (1ULL << 43)
1441#define HCR_AT (1ULL << 44)
1442#define HCR_NV2 (1ULL << 45)
1443#define HCR_FWB (1ULL << 46)
1444#define HCR_FIEN (1ULL << 47)
e0a38bb3 1445/* RES0 bit 48 */
099bf53b
RH
1446#define HCR_TID4 (1ULL << 49)
1447#define HCR_TICAB (1ULL << 50)
e0a38bb3 1448#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1449#define HCR_TOCU (1ULL << 52)
e0a38bb3 1450#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1451#define HCR_TTLBIS (1ULL << 54)
1452#define HCR_TTLBOS (1ULL << 55)
1453#define HCR_ATA (1ULL << 56)
1454#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1455#define HCR_TID5 (1ULL << 58)
1456#define HCR_TWEDEN (1ULL << 59)
1457#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1458
64e0e2de
EI
1459#define SCR_NS (1U << 0)
1460#define SCR_IRQ (1U << 1)
1461#define SCR_FIQ (1U << 2)
1462#define SCR_EA (1U << 3)
1463#define SCR_FW (1U << 4)
1464#define SCR_AW (1U << 5)
1465#define SCR_NET (1U << 6)
1466#define SCR_SMD (1U << 7)
1467#define SCR_HCE (1U << 8)
1468#define SCR_SIF (1U << 9)
1469#define SCR_RW (1U << 10)
1470#define SCR_ST (1U << 11)
1471#define SCR_TWI (1U << 12)
1472#define SCR_TWE (1U << 13)
99f8f86d
RH
1473#define SCR_TLOR (1U << 14)
1474#define SCR_TERR (1U << 15)
1475#define SCR_APK (1U << 16)
1476#define SCR_API (1U << 17)
1477#define SCR_EEL2 (1U << 18)
1478#define SCR_EASE (1U << 19)
1479#define SCR_NMEA (1U << 20)
1480#define SCR_FIEN (1U << 21)
1481#define SCR_ENSCXT (1U << 25)
1482#define SCR_ATA (1U << 26)
64e0e2de 1483
01653295
PM
1484/* Return the current FPSCR value. */
1485uint32_t vfp_get_fpscr(CPUARMState *env);
1486void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1487
d81ce0ef
AB
1488/* FPCR, Floating Point Control Register
1489 * FPSR, Floating Poiht Status Register
1490 *
1491 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1492 * FPCR and FPSR. However since they still use non-overlapping bits
1493 * we store the underlying state in fpscr and just mask on read/write.
1494 */
1495#define FPSR_MASK 0xf800009f
0b62159b 1496#define FPCR_MASK 0x07ff9f00
d81ce0ef 1497
a15945d9
PM
1498#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1499#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1500#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1501#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1502#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1503#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1504#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1505#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1506#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1507#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1508
f903fa22
PM
1509static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1510{
1511 return vfp_get_fpscr(env) & FPSR_MASK;
1512}
1513
1514static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1515{
1516 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1517 vfp_set_fpscr(env, new_fpscr);
1518}
1519
1520static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1521{
1522 return vfp_get_fpscr(env) & FPCR_MASK;
1523}
1524
1525static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1526{
1527 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1528 vfp_set_fpscr(env, new_fpscr);
1529}
1530
b5ff1b31
FB
1531enum arm_cpu_mode {
1532 ARM_CPU_MODE_USR = 0x10,
1533 ARM_CPU_MODE_FIQ = 0x11,
1534 ARM_CPU_MODE_IRQ = 0x12,
1535 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1536 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1537 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1538 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1539 ARM_CPU_MODE_UND = 0x1b,
1540 ARM_CPU_MODE_SYS = 0x1f
1541};
1542
40f137e1
PB
1543/* VFP system registers. */
1544#define ARM_VFP_FPSID 0
1545#define ARM_VFP_FPSCR 1
a50c0f51 1546#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1547#define ARM_VFP_MVFR1 6
1548#define ARM_VFP_MVFR0 7
40f137e1
PB
1549#define ARM_VFP_FPEXC 8
1550#define ARM_VFP_FPINST 9
1551#define ARM_VFP_FPINST2 10
1552
18c9b560 1553/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1554#define ARM_IWMMXT_wCID 0
1555#define ARM_IWMMXT_wCon 1
1556#define ARM_IWMMXT_wCSSF 2
1557#define ARM_IWMMXT_wCASF 3
1558#define ARM_IWMMXT_wCGR0 8
1559#define ARM_IWMMXT_wCGR1 9
1560#define ARM_IWMMXT_wCGR2 10
1561#define ARM_IWMMXT_wCGR3 11
18c9b560 1562
2c4da50d
PM
1563/* V7M CCR bits */
1564FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1565FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1566FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1567FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1568FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1569FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1570FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1571FIELD(V7M_CCR, DC, 16, 1)
1572FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1573FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1574
24ac0fb1
PM
1575/* V7M SCR bits */
1576FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1577FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1578FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1579FIELD(V7M_SCR, SEVONPEND, 4, 1)
1580
3b2e9344
PM
1581/* V7M AIRCR bits */
1582FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1583FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1584FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1585FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1586FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1587FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1588FIELD(V7M_AIRCR, PRIS, 14, 1)
1589FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1590FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1591
2c4da50d
PM
1592/* V7M CFSR bits for MMFSR */
1593FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1594FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1595FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1596FIELD(V7M_CFSR, MSTKERR, 4, 1)
1597FIELD(V7M_CFSR, MLSPERR, 5, 1)
1598FIELD(V7M_CFSR, MMARVALID, 7, 1)
1599
1600/* V7M CFSR bits for BFSR */
1601FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1602FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1603FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1604FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1605FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1606FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1607FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1608
1609/* V7M CFSR bits for UFSR */
1610FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1611FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1612FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1613FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1614FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1615FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1616FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1617
334e8dad
PM
1618/* V7M CFSR bit masks covering all of the subregister bits */
1619FIELD(V7M_CFSR, MMFSR, 0, 8)
1620FIELD(V7M_CFSR, BFSR, 8, 8)
1621FIELD(V7M_CFSR, UFSR, 16, 16)
1622
2c4da50d
PM
1623/* V7M HFSR bits */
1624FIELD(V7M_HFSR, VECTTBL, 1, 1)
1625FIELD(V7M_HFSR, FORCED, 30, 1)
1626FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1627
1628/* V7M DFSR bits */
1629FIELD(V7M_DFSR, HALTED, 0, 1)
1630FIELD(V7M_DFSR, BKPT, 1, 1)
1631FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1632FIELD(V7M_DFSR, VCATCH, 3, 1)
1633FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1634
bed079da
PM
1635/* V7M SFSR bits */
1636FIELD(V7M_SFSR, INVEP, 0, 1)
1637FIELD(V7M_SFSR, INVIS, 1, 1)
1638FIELD(V7M_SFSR, INVER, 2, 1)
1639FIELD(V7M_SFSR, AUVIOL, 3, 1)
1640FIELD(V7M_SFSR, INVTRAN, 4, 1)
1641FIELD(V7M_SFSR, LSPERR, 5, 1)
1642FIELD(V7M_SFSR, SFARVALID, 6, 1)
1643FIELD(V7M_SFSR, LSERR, 7, 1)
1644
29c483a5
MD
1645/* v7M MPU_CTRL bits */
1646FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1647FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1648FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1649
43bbce7f
PM
1650/* v7M CLIDR bits */
1651FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1652FIELD(V7M_CLIDR, LOUIS, 21, 3)
1653FIELD(V7M_CLIDR, LOC, 24, 3)
1654FIELD(V7M_CLIDR, LOUU, 27, 3)
1655FIELD(V7M_CLIDR, ICB, 30, 2)
1656
1657FIELD(V7M_CSSELR, IND, 0, 1)
1658FIELD(V7M_CSSELR, LEVEL, 1, 3)
1659/* We use the combination of InD and Level to index into cpu->ccsidr[];
1660 * define a mask for this and check that it doesn't permit running off
1661 * the end of the array.
1662 */
1663FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1664
1665/* v7M FPCCR bits */
1666FIELD(V7M_FPCCR, LSPACT, 0, 1)
1667FIELD(V7M_FPCCR, USER, 1, 1)
1668FIELD(V7M_FPCCR, S, 2, 1)
1669FIELD(V7M_FPCCR, THREAD, 3, 1)
1670FIELD(V7M_FPCCR, HFRDY, 4, 1)
1671FIELD(V7M_FPCCR, MMRDY, 5, 1)
1672FIELD(V7M_FPCCR, BFRDY, 6, 1)
1673FIELD(V7M_FPCCR, SFRDY, 7, 1)
1674FIELD(V7M_FPCCR, MONRDY, 8, 1)
1675FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1676FIELD(V7M_FPCCR, UFRDY, 10, 1)
1677FIELD(V7M_FPCCR, RES0, 11, 15)
1678FIELD(V7M_FPCCR, TS, 26, 1)
1679FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1680FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1681FIELD(V7M_FPCCR, LSPENS, 29, 1)
1682FIELD(V7M_FPCCR, LSPEN, 30, 1)
1683FIELD(V7M_FPCCR, ASPEN, 31, 1)
1684/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1685#define R_V7M_FPCCR_BANKED_MASK \
1686 (R_V7M_FPCCR_LSPACT_MASK | \
1687 R_V7M_FPCCR_USER_MASK | \
1688 R_V7M_FPCCR_THREAD_MASK | \
1689 R_V7M_FPCCR_MMRDY_MASK | \
1690 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1691 R_V7M_FPCCR_UFRDY_MASK | \
1692 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1693
a62e62af
RH
1694/*
1695 * System register ID fields.
1696 */
2bd5f41c
AB
1697FIELD(MIDR_EL1, REVISION, 0, 4)
1698FIELD(MIDR_EL1, PARTNUM, 4, 12)
1699FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1700FIELD(MIDR_EL1, VARIANT, 20, 4)
1701FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1702
a62e62af
RH
1703FIELD(ID_ISAR0, SWAP, 0, 4)
1704FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1705FIELD(ID_ISAR0, BITFIELD, 8, 4)
1706FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1707FIELD(ID_ISAR0, COPROC, 16, 4)
1708FIELD(ID_ISAR0, DEBUG, 20, 4)
1709FIELD(ID_ISAR0, DIVIDE, 24, 4)
1710
1711FIELD(ID_ISAR1, ENDIAN, 0, 4)
1712FIELD(ID_ISAR1, EXCEPT, 4, 4)
1713FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1714FIELD(ID_ISAR1, EXTEND, 12, 4)
1715FIELD(ID_ISAR1, IFTHEN, 16, 4)
1716FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1717FIELD(ID_ISAR1, INTERWORK, 24, 4)
1718FIELD(ID_ISAR1, JAZELLE, 28, 4)
1719
1720FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1721FIELD(ID_ISAR2, MEMHINT, 4, 4)
1722FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1723FIELD(ID_ISAR2, MULT, 12, 4)
1724FIELD(ID_ISAR2, MULTS, 16, 4)
1725FIELD(ID_ISAR2, MULTU, 20, 4)
1726FIELD(ID_ISAR2, PSR_AR, 24, 4)
1727FIELD(ID_ISAR2, REVERSAL, 28, 4)
1728
1729FIELD(ID_ISAR3, SATURATE, 0, 4)
1730FIELD(ID_ISAR3, SIMD, 4, 4)
1731FIELD(ID_ISAR3, SVC, 8, 4)
1732FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1733FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1734FIELD(ID_ISAR3, T32COPY, 20, 4)
1735FIELD(ID_ISAR3, TRUENOP, 24, 4)
1736FIELD(ID_ISAR3, T32EE, 28, 4)
1737
1738FIELD(ID_ISAR4, UNPRIV, 0, 4)
1739FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1740FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1741FIELD(ID_ISAR4, SMC, 12, 4)
1742FIELD(ID_ISAR4, BARRIER, 16, 4)
1743FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1744FIELD(ID_ISAR4, PSR_M, 24, 4)
1745FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1746
1747FIELD(ID_ISAR5, SEVL, 0, 4)
1748FIELD(ID_ISAR5, AES, 4, 4)
1749FIELD(ID_ISAR5, SHA1, 8, 4)
1750FIELD(ID_ISAR5, SHA2, 12, 4)
1751FIELD(ID_ISAR5, CRC32, 16, 4)
1752FIELD(ID_ISAR5, RDM, 24, 4)
1753FIELD(ID_ISAR5, VCMA, 28, 4)
1754
1755FIELD(ID_ISAR6, JSCVT, 0, 4)
1756FIELD(ID_ISAR6, DP, 4, 4)
1757FIELD(ID_ISAR6, FHM, 8, 4)
1758FIELD(ID_ISAR6, SB, 12, 4)
1759FIELD(ID_ISAR6, SPECRES, 16, 4)
1760
3d6ad6bb
RH
1761FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1762FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1763FIELD(ID_MMFR3, BPMAINT, 8, 4)
1764FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1765FIELD(ID_MMFR3, PAN, 16, 4)
1766FIELD(ID_MMFR3, COHWALK, 20, 4)
1767FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1768FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1769
ab638a32
RH
1770FIELD(ID_MMFR4, SPECSEI, 0, 4)
1771FIELD(ID_MMFR4, AC2, 4, 4)
1772FIELD(ID_MMFR4, XNX, 8, 4)
1773FIELD(ID_MMFR4, CNP, 12, 4)
1774FIELD(ID_MMFR4, HPDS, 16, 4)
1775FIELD(ID_MMFR4, LSM, 20, 4)
1776FIELD(ID_MMFR4, CCIDX, 24, 4)
1777FIELD(ID_MMFR4, EVT, 28, 4)
1778
a62e62af
RH
1779FIELD(ID_AA64ISAR0, AES, 4, 4)
1780FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1781FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1782FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1783FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1784FIELD(ID_AA64ISAR0, RDM, 28, 4)
1785FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1786FIELD(ID_AA64ISAR0, SM3, 36, 4)
1787FIELD(ID_AA64ISAR0, SM4, 40, 4)
1788FIELD(ID_AA64ISAR0, DP, 44, 4)
1789FIELD(ID_AA64ISAR0, FHM, 48, 4)
1790FIELD(ID_AA64ISAR0, TS, 52, 4)
1791FIELD(ID_AA64ISAR0, TLB, 56, 4)
1792FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1793
1794FIELD(ID_AA64ISAR1, DPB, 0, 4)
1795FIELD(ID_AA64ISAR1, APA, 4, 4)
1796FIELD(ID_AA64ISAR1, API, 8, 4)
1797FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1798FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1799FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1800FIELD(ID_AA64ISAR1, GPA, 24, 4)
1801FIELD(ID_AA64ISAR1, GPI, 28, 4)
1802FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1803FIELD(ID_AA64ISAR1, SB, 36, 4)
1804FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1805
cd208a1c
RH
1806FIELD(ID_AA64PFR0, EL0, 0, 4)
1807FIELD(ID_AA64PFR0, EL1, 4, 4)
1808FIELD(ID_AA64PFR0, EL2, 8, 4)
1809FIELD(ID_AA64PFR0, EL3, 12, 4)
1810FIELD(ID_AA64PFR0, FP, 16, 4)
1811FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1812FIELD(ID_AA64PFR0, GIC, 24, 4)
1813FIELD(ID_AA64PFR0, RAS, 28, 4)
1814FIELD(ID_AA64PFR0, SVE, 32, 4)
1815
be53b6f4
RH
1816FIELD(ID_AA64PFR1, BT, 0, 4)
1817FIELD(ID_AA64PFR1, SBSS, 4, 4)
1818FIELD(ID_AA64PFR1, MTE, 8, 4)
1819FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1820
3dc91ddb
PM
1821FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1822FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1823FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1824FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1825FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1826FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1827FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1828FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1829FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1830FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1831FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1832FIELD(ID_AA64MMFR0, EXS, 44, 4)
1833
1834FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1835FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1836FIELD(ID_AA64MMFR1, VH, 8, 4)
1837FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1838FIELD(ID_AA64MMFR1, LO, 16, 4)
1839FIELD(ID_AA64MMFR1, PAN, 20, 4)
1840FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1841FIELD(ID_AA64MMFR1, XNX, 28, 4)
1842
64761e10
RH
1843FIELD(ID_AA64MMFR2, CNP, 0, 4)
1844FIELD(ID_AA64MMFR2, UAO, 4, 4)
1845FIELD(ID_AA64MMFR2, LSM, 8, 4)
1846FIELD(ID_AA64MMFR2, IESB, 12, 4)
1847FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1848FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1849FIELD(ID_AA64MMFR2, NV, 24, 4)
1850FIELD(ID_AA64MMFR2, ST, 28, 4)
1851FIELD(ID_AA64MMFR2, AT, 32, 4)
1852FIELD(ID_AA64MMFR2, IDS, 36, 4)
1853FIELD(ID_AA64MMFR2, FWB, 40, 4)
1854FIELD(ID_AA64MMFR2, TTL, 48, 4)
1855FIELD(ID_AA64MMFR2, BBM, 52, 4)
1856FIELD(ID_AA64MMFR2, EVT, 56, 4)
1857FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1858
ceb2744b
PM
1859FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1860FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1861FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1862FIELD(ID_AA64DFR0, BRPS, 12, 4)
1863FIELD(ID_AA64DFR0, WRPS, 20, 4)
1864FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1865FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1866FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1867FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1868
beceb99c
AL
1869FIELD(ID_DFR0, COPDBG, 0, 4)
1870FIELD(ID_DFR0, COPSDBG, 4, 4)
1871FIELD(ID_DFR0, MMAPDBG, 8, 4)
1872FIELD(ID_DFR0, COPTRC, 12, 4)
1873FIELD(ID_DFR0, MMAPTRC, 16, 4)
1874FIELD(ID_DFR0, MPROFDBG, 20, 4)
1875FIELD(ID_DFR0, PERFMON, 24, 4)
1876FIELD(ID_DFR0, TRACEFILT, 28, 4)
1877
88ce6c6e
PM
1878FIELD(DBGDIDR, SE_IMP, 12, 1)
1879FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1880FIELD(DBGDIDR, VERSION, 16, 4)
1881FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1882FIELD(DBGDIDR, BRPS, 24, 4)
1883FIELD(DBGDIDR, WRPS, 28, 4)
1884
602f6e42
PM
1885FIELD(MVFR0, SIMDREG, 0, 4)
1886FIELD(MVFR0, FPSP, 4, 4)
1887FIELD(MVFR0, FPDP, 8, 4)
1888FIELD(MVFR0, FPTRAP, 12, 4)
1889FIELD(MVFR0, FPDIVIDE, 16, 4)
1890FIELD(MVFR0, FPSQRT, 20, 4)
1891FIELD(MVFR0, FPSHVEC, 24, 4)
1892FIELD(MVFR0, FPROUND, 28, 4)
1893
1894FIELD(MVFR1, FPFTZ, 0, 4)
1895FIELD(MVFR1, FPDNAN, 4, 4)
1896FIELD(MVFR1, SIMDLS, 8, 4)
1897FIELD(MVFR1, SIMDINT, 12, 4)
1898FIELD(MVFR1, SIMDSP, 16, 4)
1899FIELD(MVFR1, SIMDHP, 20, 4)
1900FIELD(MVFR1, FPHP, 24, 4)
1901FIELD(MVFR1, SIMDFMAC, 28, 4)
1902
1903FIELD(MVFR2, SIMDMISC, 0, 4)
1904FIELD(MVFR2, FPMISC, 4, 4)
1905
43bbce7f
PM
1906QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1907
ce854d7c
BC
1908/* If adding a feature bit which corresponds to a Linux ELF
1909 * HWCAP bit, remember to update the feature-bit-to-hwcap
1910 * mapping in linux-user/elfload.c:get_elf_hwcap().
1911 */
40f137e1 1912enum arm_features {
c1713132
AZ
1913 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1914 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1915 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1916 ARM_FEATURE_V6,
1917 ARM_FEATURE_V6K,
1918 ARM_FEATURE_V7,
1919 ARM_FEATURE_THUMB2,
452a0955 1920 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1921 ARM_FEATURE_NEON,
9ee6e8bb 1922 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1923 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1924 ARM_FEATURE_THUMB2EE,
be5e7a76 1925 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1926 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1927 ARM_FEATURE_V4T,
1928 ARM_FEATURE_V5,
5bc95aa2 1929 ARM_FEATURE_STRONGARM,
906879a9 1930 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 1931 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1932 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1933 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1934 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1935 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1936 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1937 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1938 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1939 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1940 ARM_FEATURE_V8,
3926cc84 1941 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1942 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1943 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1944 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1945 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1946 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1947 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1948 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1949 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1950 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1951 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1952};
1953
1954static inline int arm_feature(CPUARMState *env, int feature)
1955{
918f5dca 1956 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1957}
1958
0df9142d
AJ
1959void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1960
19e0fefa
FA
1961#if !defined(CONFIG_USER_ONLY)
1962/* Return true if exception levels below EL3 are in secure state,
1963 * or would be following an exception return to that level.
1964 * Unlike arm_is_secure() (which is always a question about the
1965 * _current_ state of the CPU) this doesn't care about the current
1966 * EL or mode.
1967 */
1968static inline bool arm_is_secure_below_el3(CPUARMState *env)
1969{
1970 if (arm_feature(env, ARM_FEATURE_EL3)) {
1971 return !(env->cp15.scr_el3 & SCR_NS);
1972 } else {
6b7f0b61 1973 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1974 * defined, in which case QEMU defaults to non-secure.
1975 */
1976 return false;
1977 }
1978}
1979
71205876
PM
1980/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1981static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1982{
1983 if (arm_feature(env, ARM_FEATURE_EL3)) {
1984 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1985 /* CPU currently in AArch64 state and EL3 */
1986 return true;
1987 } else if (!is_a64(env) &&
1988 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1989 /* CPU currently in AArch32 state and monitor mode */
1990 return true;
1991 }
1992 }
71205876
PM
1993 return false;
1994}
1995
1996/* Return true if the processor is in secure state */
1997static inline bool arm_is_secure(CPUARMState *env)
1998{
1999 if (arm_is_el3_or_mon(env)) {
2000 return true;
2001 }
19e0fefa
FA
2002 return arm_is_secure_below_el3(env);
2003}
2004
2005#else
2006static inline bool arm_is_secure_below_el3(CPUARMState *env)
2007{
2008 return false;
2009}
2010
2011static inline bool arm_is_secure(CPUARMState *env)
2012{
2013 return false;
2014}
2015#endif
2016
f7778444
RH
2017/**
2018 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2019 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2020 * "for all purposes other than a direct read or write access of HCR_EL2."
2021 * Not included here is HCR_RW.
2022 */
2023uint64_t arm_hcr_el2_eff(CPUARMState *env);
2024
1f79ee32
PM
2025/* Return true if the specified exception level is running in AArch64 state. */
2026static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2027{
446c81ab
PM
2028 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2029 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2030 */
446c81ab
PM
2031 assert(el >= 1 && el <= 3);
2032 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2033
446c81ab
PM
2034 /* The highest exception level is always at the maximum supported
2035 * register width, and then lower levels have a register width controlled
2036 * by bits in the SCR or HCR registers.
1f79ee32 2037 */
446c81ab
PM
2038 if (el == 3) {
2039 return aa64;
2040 }
2041
2042 if (arm_feature(env, ARM_FEATURE_EL3)) {
2043 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2044 }
2045
2046 if (el == 2) {
2047 return aa64;
2048 }
2049
2050 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2051 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2052 }
2053
2054 return aa64;
1f79ee32
PM
2055}
2056
3f342b9e
SF
2057/* Function for determing whether guest cp register reads and writes should
2058 * access the secure or non-secure bank of a cp register. When EL3 is
2059 * operating in AArch32 state, the NS-bit determines whether the secure
2060 * instance of a cp register should be used. When EL3 is AArch64 (or if
2061 * it doesn't exist at all) then there is no register banking, and all
2062 * accesses are to the non-secure version.
2063 */
2064static inline bool access_secure_reg(CPUARMState *env)
2065{
2066 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2067 !arm_el_is_aa64(env, 3) &&
2068 !(env->cp15.scr_el3 & SCR_NS));
2069
2070 return ret;
2071}
2072
ea30a4b8
FA
2073/* Macros for accessing a specified CP register bank */
2074#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2075 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2076
2077#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2078 do { \
2079 if (_secure) { \
2080 (_env)->cp15._regname##_s = (_val); \
2081 } else { \
2082 (_env)->cp15._regname##_ns = (_val); \
2083 } \
2084 } while (0)
2085
2086/* Macros for automatically accessing a specific CP register bank depending on
2087 * the current secure state of the system. These macros are not intended for
2088 * supporting instruction translation reads/writes as these are dependent
2089 * solely on the SCR.NS bit and not the mode.
2090 */
2091#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2092 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2093 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2094
2095#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2096 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2097 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2098 (_val))
2099
0442428a 2100void arm_cpu_list(void);
012a906b
GB
2101uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2102 uint32_t cur_el, bool secure);
40f137e1 2103
9ee6e8bb 2104/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2105#ifndef CONFIG_USER_ONLY
2106bool armv7m_nvic_can_take_pending_exception(void *opaque);
2107#else
2108static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2109{
2110 return true;
2111}
2112#endif
2fb50a33
PM
2113/**
2114 * armv7m_nvic_set_pending: mark the specified exception as pending
2115 * @opaque: the NVIC
2116 * @irq: the exception number to mark pending
2117 * @secure: false for non-banked exceptions or for the nonsecure
2118 * version of a banked exception, true for the secure version of a banked
2119 * exception.
2120 *
2121 * Marks the specified exception as pending. Note that we will assert()
2122 * if @secure is true and @irq does not specify one of the fixed set
2123 * of architecturally banked exceptions.
2124 */
2125void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2126/**
2127 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2128 * @opaque: the NVIC
2129 * @irq: the exception number to mark pending
2130 * @secure: false for non-banked exceptions or for the nonsecure
2131 * version of a banked exception, true for the secure version of a banked
2132 * exception.
2133 *
2134 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2135 * exceptions (exceptions generated in the course of trying to take
2136 * a different exception).
2137 */
2138void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2139/**
2140 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2141 * @opaque: the NVIC
2142 * @irq: the exception number to mark pending
2143 * @secure: false for non-banked exceptions or for the nonsecure
2144 * version of a banked exception, true for the secure version of a banked
2145 * exception.
2146 *
2147 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2148 * generated in the course of lazy stacking of FP registers.
2149 */
2150void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2151/**
2152 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2153 * exception, and whether it targets Secure state
2154 * @opaque: the NVIC
2155 * @pirq: set to pending exception number
2156 * @ptargets_secure: set to whether pending exception targets Secure
2157 *
2158 * This function writes the number of the highest priority pending
2159 * exception (the one which would be made active by
2160 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2161 * to true if the current highest priority pending exception should
2162 * be taken to Secure state, false for NS.
2163 */
2164void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2165 bool *ptargets_secure);
5cb18069
PM
2166/**
2167 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2168 * @opaque: the NVIC
2169 *
2170 * Move the current highest priority pending exception from the pending
2171 * state to the active state, and update v7m.exception to indicate that
2172 * it is the exception currently being handled.
5cb18069 2173 */
6c948518 2174void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2175/**
2176 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2177 * @opaque: the NVIC
2178 * @irq: the exception number to complete
5cb18069 2179 * @secure: true if this exception was secure
aa488fe3
PM
2180 *
2181 * Returns: -1 if the irq was not active
2182 * 1 if completing this irq brought us back to base (no active irqs)
2183 * 0 if there is still an irq active after this one was completed
2184 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2185 */
5cb18069 2186int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2187/**
2188 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2189 * @opaque: the NVIC
2190 * @irq: the exception number to mark pending
2191 * @secure: false for non-banked exceptions or for the nonsecure
2192 * version of a banked exception, true for the secure version of a banked
2193 * exception.
2194 *
2195 * Return whether an exception is "ready", i.e. whether the exception is
2196 * enabled and is configured at a priority which would allow it to
2197 * interrupt the current execution priority. This controls whether the
2198 * RDY bit for it in the FPCCR is set.
2199 */
2200bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2201/**
2202 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2203 * @opaque: the NVIC
2204 *
2205 * Returns: the raw execution priority as defined by the v8M architecture.
2206 * This is the execution priority minus the effects of AIRCR.PRIS,
2207 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2208 * (v8M ARM ARM I_PKLD.)
2209 */
2210int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2211/**
2212 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2213 * priority is negative for the specified security state.
2214 * @opaque: the NVIC
2215 * @secure: the security state to test
2216 * This corresponds to the pseudocode IsReqExecPriNeg().
2217 */
2218#ifndef CONFIG_USER_ONLY
2219bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2220#else
2221static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2222{
2223 return false;
2224}
2225#endif
9ee6e8bb 2226
4b6a83fb
PM
2227/* Interface for defining coprocessor registers.
2228 * Registers are defined in tables of arm_cp_reginfo structs
2229 * which are passed to define_arm_cp_regs().
2230 */
2231
2232/* When looking up a coprocessor register we look for it
2233 * via an integer which encodes all of:
2234 * coprocessor number
2235 * Crn, Crm, opc1, opc2 fields
2236 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2237 * or via MRRC/MCRR?)
51a79b03 2238 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2239 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2240 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2241 * For AArch64, there is no 32/64 bit size distinction;
2242 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2243 * and 4 bit CRn and CRm. The encoding patterns are chosen
2244 * to be easy to convert to and from the KVM encodings, and also
2245 * so that the hashtable can contain both AArch32 and AArch64
2246 * registers (to allow for interprocessing where we might run
2247 * 32 bit code on a 64 bit core).
4b6a83fb 2248 */
f5a0a5a5
PM
2249/* This bit is private to our hashtable cpreg; in KVM register
2250 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2251 * in the upper bits of the 64 bit ID.
2252 */
2253#define CP_REG_AA64_SHIFT 28
2254#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2255
51a79b03
PM
2256/* To enable banking of coprocessor registers depending on ns-bit we
2257 * add a bit to distinguish between secure and non-secure cpregs in the
2258 * hashtable.
2259 */
2260#define CP_REG_NS_SHIFT 29
2261#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2262
2263#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2264 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2265 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2266
f5a0a5a5
PM
2267#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2268 (CP_REG_AA64_MASK | \
2269 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2270 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2271 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2272 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2273 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2274 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2275
721fae12
PM
2276/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2277 * version used as a key for the coprocessor register hashtable
2278 */
2279static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2280{
2281 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2282 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2283 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2284 } else {
2285 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2286 cpregid |= (1 << 15);
2287 }
2288
2289 /* KVM is always non-secure so add the NS flag on AArch32 register
2290 * entries.
2291 */
2292 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2293 }
2294 return cpregid;
2295}
2296
2297/* Convert a truncated 32 bit hashtable key into the full
2298 * 64 bit KVM register ID.
2299 */
2300static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2301{
f5a0a5a5
PM
2302 uint64_t kvmid;
2303
2304 if (cpregid & CP_REG_AA64_MASK) {
2305 kvmid = cpregid & ~CP_REG_AA64_MASK;
2306 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2307 } else {
f5a0a5a5
PM
2308 kvmid = cpregid & ~(1 << 15);
2309 if (cpregid & (1 << 15)) {
2310 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2311 } else {
2312 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2313 }
721fae12
PM
2314 }
2315 return kvmid;
2316}
2317
4b6a83fb 2318/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2319 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2320 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2321 * TCG can assume the value to be constant (ie load at translate time)
2322 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2323 * indicates that the TB should not be ended after a write to this register
2324 * (the default is that the TB ends after cp writes). OVERRIDE permits
2325 * a register definition to override a previous definition for the
2326 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2327 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2328 * ALIAS indicates that this register is an alias view of some underlying
2329 * state which is also visible via another register, and that the other
b061a82b
SF
2330 * register is handling migration and reset; registers marked ALIAS will not be
2331 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2332 * NO_RAW indicates that this register has no underlying state and does not
2333 * support raw access for state saving/loading; it will not be used for either
2334 * migration or KVM state synchronization. (Typically this is for "registers"
2335 * which are actually used as instructions for cache maintenance and so on.)
2452731c 2336 * IO indicates that this register does I/O and therefore its accesses
55c812b7 2337 * need to be marked with gen_io_start() and also end the TB. In particular,
2452731c 2338 * registers which implement clocks or timers require this.
37ff584c
PM
2339 * RAISES_EXC is for when the read or write hook might raise an exception;
2340 * the generated code will synchronize the CPU state before calling the hook
2341 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2342 * NEWEL is for writes to registers that might change the exception
2343 * level - typically on older ARM chips. For those cases we need to
2344 * re-read the new el when recomputing the translation flags.
4b6a83fb 2345 */
fe03d45f
RH
2346#define ARM_CP_SPECIAL 0x0001
2347#define ARM_CP_CONST 0x0002
2348#define ARM_CP_64BIT 0x0004
2349#define ARM_CP_SUPPRESS_TB_END 0x0008
2350#define ARM_CP_OVERRIDE 0x0010
2351#define ARM_CP_ALIAS 0x0020
2352#define ARM_CP_IO 0x0040
2353#define ARM_CP_NO_RAW 0x0080
2354#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2355#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2356#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2357#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2358#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2359#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2360#define ARM_CP_FPU 0x1000
490aa7f1 2361#define ARM_CP_SVE 0x2000
1f163787 2362#define ARM_CP_NO_GDB 0x4000
37ff584c 2363#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2364#define ARM_CP_NEWEL 0x10000
4b6a83fb 2365/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2366#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2367/* Mask of only the flag bits in a type field */
f80741d1 2368#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2369
f5a0a5a5
PM
2370/* Valid values for ARMCPRegInfo state field, indicating which of
2371 * the AArch32 and AArch64 execution states this register is visible in.
2372 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2373 * If the reginfo is declared to be visible in both states then a second
2374 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2375 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2376 * Note that we rely on the values of these enums as we iterate through
2377 * the various states in some places.
2378 */
2379enum {
2380 ARM_CP_STATE_AA32 = 0,
2381 ARM_CP_STATE_AA64 = 1,
2382 ARM_CP_STATE_BOTH = 2,
2383};
2384
c3e30260
FA
2385/* ARM CP register secure state flags. These flags identify security state
2386 * attributes for a given CP register entry.
2387 * The existence of both or neither secure and non-secure flags indicates that
2388 * the register has both a secure and non-secure hash entry. A single one of
2389 * these flags causes the register to only be hashed for the specified
2390 * security state.
2391 * Although definitions may have any combination of the S/NS bits, each
2392 * registered entry will only have one to identify whether the entry is secure
2393 * or non-secure.
2394 */
2395enum {
2396 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2397 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2398};
2399
4b6a83fb
PM
2400/* Return true if cptype is a valid type field. This is used to try to
2401 * catch errors where the sentinel has been accidentally left off the end
2402 * of a list of registers.
2403 */
2404static inline bool cptype_valid(int cptype)
2405{
2406 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2407 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2408 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2409}
2410
2411/* Access rights:
2412 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2413 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2414 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2415 * (ie any of the privileged modes in Secure state, or Monitor mode).
2416 * If a register is accessible in one privilege level it's always accessible
2417 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2418 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2419 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2420 * terminology a little and call this PL3.
f5a0a5a5
PM
2421 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2422 * with the ELx exception levels.
4b6a83fb
PM
2423 *
2424 * If access permissions for a register are more complex than can be
2425 * described with these bits, then use a laxer set of restrictions, and
2426 * do the more restrictive/complex check inside a helper function.
2427 */
2428#define PL3_R 0x80
2429#define PL3_W 0x40
2430#define PL2_R (0x20 | PL3_R)
2431#define PL2_W (0x10 | PL3_W)
2432#define PL1_R (0x08 | PL2_R)
2433#define PL1_W (0x04 | PL2_W)
2434#define PL0_R (0x02 | PL1_R)
2435#define PL0_W (0x01 | PL1_W)
2436
b5bd7440
AB
2437/*
2438 * For user-mode some registers are accessible to EL0 via a kernel
2439 * trap-and-emulate ABI. In this case we define the read permissions
2440 * as actually being PL0_R. However some bits of any given register
2441 * may still be masked.
2442 */
2443#ifdef CONFIG_USER_ONLY
2444#define PL0U_R PL0_R
2445#else
2446#define PL0U_R PL1_R
2447#endif
2448
4b6a83fb
PM
2449#define PL3_RW (PL3_R | PL3_W)
2450#define PL2_RW (PL2_R | PL2_W)
2451#define PL1_RW (PL1_R | PL1_W)
2452#define PL0_RW (PL0_R | PL0_W)
2453
75502672
PM
2454/* Return the highest implemented Exception Level */
2455static inline int arm_highest_el(CPUARMState *env)
2456{
2457 if (arm_feature(env, ARM_FEATURE_EL3)) {
2458 return 3;
2459 }
2460 if (arm_feature(env, ARM_FEATURE_EL2)) {
2461 return 2;
2462 }
2463 return 1;
2464}
2465
15b3f556
PM
2466/* Return true if a v7M CPU is in Handler mode */
2467static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2468{
2469 return env->v7m.exception != 0;
2470}
2471
dcbff19b
GB
2472/* Return the current Exception Level (as per ARMv8; note that this differs
2473 * from the ARMv7 Privilege Level).
2474 */
2475static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2476{
6d54ed3c 2477 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2478 return arm_v7m_is_handler_mode(env) ||
2479 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2480 }
2481
592125f8 2482 if (is_a64(env)) {
f5a0a5a5
PM
2483 return extract32(env->pstate, 2, 2);
2484 }
2485
592125f8
FA
2486 switch (env->uncached_cpsr & 0x1f) {
2487 case ARM_CPU_MODE_USR:
4b6a83fb 2488 return 0;
592125f8
FA
2489 case ARM_CPU_MODE_HYP:
2490 return 2;
2491 case ARM_CPU_MODE_MON:
2492 return 3;
2493 default:
2494 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2495 /* If EL3 is 32-bit then all secure privileged modes run in
2496 * EL3
2497 */
2498 return 3;
2499 }
2500
2501 return 1;
4b6a83fb 2502 }
4b6a83fb
PM
2503}
2504
2505typedef struct ARMCPRegInfo ARMCPRegInfo;
2506
f59df3f2
PM
2507typedef enum CPAccessResult {
2508 /* Access is permitted */
2509 CP_ACCESS_OK = 0,
2510 /* Access fails due to a configurable trap or enable which would
2511 * result in a categorized exception syndrome giving information about
2512 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2513 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2514 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2515 */
2516 CP_ACCESS_TRAP = 1,
2517 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2518 * Note that this is not a catch-all case -- the set of cases which may
2519 * result in this failure is specifically defined by the architecture.
2520 */
2521 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2522 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2523 CP_ACCESS_TRAP_EL2 = 3,
2524 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2525 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2526 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2527 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2528 /* Access fails and results in an exception syndrome for an FP access,
2529 * trapped directly to EL2 or EL3
2530 */
2531 CP_ACCESS_TRAP_FP_EL2 = 7,
2532 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2533} CPAccessResult;
2534
c4241c7d
PM
2535/* Access functions for coprocessor registers. These cannot fail and
2536 * may not raise exceptions.
2537 */
2538typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2539typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2540 uint64_t value);
f59df3f2 2541/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2542typedef CPAccessResult CPAccessFn(CPUARMState *env,
2543 const ARMCPRegInfo *opaque,
2544 bool isread);
4b6a83fb
PM
2545/* Hook function for register reset */
2546typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2547
2548#define CP_ANY 0xff
2549
2550/* Definition of an ARM coprocessor register */
2551struct ARMCPRegInfo {
2552 /* Name of register (useful mainly for debugging, need not be unique) */
2553 const char *name;
2554 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2555 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2556 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2557 * will be decoded to this register. The register read and write
2558 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2559 * used by the program, so it is possible to register a wildcard and
2560 * then behave differently on read/write if necessary.
2561 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2562 * must both be zero.
f5a0a5a5
PM
2563 * For AArch64-visible registers, opc0 is also used.
2564 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2565 * way to distinguish (for KVM's benefit) guest-visible system registers
2566 * from demuxed ones provided to preserve the "no side effects on
2567 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2568 * visible (to match KVM's encoding); cp==0 will be converted to
2569 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2570 */
2571 uint8_t cp;
2572 uint8_t crn;
2573 uint8_t crm;
f5a0a5a5 2574 uint8_t opc0;
4b6a83fb
PM
2575 uint8_t opc1;
2576 uint8_t opc2;
f5a0a5a5
PM
2577 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2578 int state;
4b6a83fb
PM
2579 /* Register type: ARM_CP_* bits/values */
2580 int type;
2581 /* Access rights: PL*_[RW] */
2582 int access;
c3e30260
FA
2583 /* Security state: ARM_CP_SECSTATE_* bits/values */
2584 int secure;
4b6a83fb
PM
2585 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2586 * this register was defined: can be used to hand data through to the
2587 * register read/write functions, since they are passed the ARMCPRegInfo*.
2588 */
2589 void *opaque;
2590 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2591 * fieldoffset is non-zero, the reset value of the register.
2592 */
2593 uint64_t resetvalue;
c3e30260
FA
2594 /* Offset of the field in CPUARMState for this register.
2595 *
2596 * This is not needed if either:
4b6a83fb
PM
2597 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2598 * 2. both readfn and writefn are specified
2599 */
2600 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2601
2602 /* Offsets of the secure and non-secure fields in CPUARMState for the
2603 * register if it is banked. These fields are only used during the static
2604 * registration of a register. During hashing the bank associated
2605 * with a given security state is copied to fieldoffset which is used from
2606 * there on out.
2607 *
2608 * It is expected that register definitions use either fieldoffset or
2609 * bank_fieldoffsets in the definition but not both. It is also expected
2610 * that both bank offsets are set when defining a banked register. This
2611 * use indicates that a register is banked.
2612 */
2613 ptrdiff_t bank_fieldoffsets[2];
2614
f59df3f2
PM
2615 /* Function for making any access checks for this register in addition to
2616 * those specified by the 'access' permissions bits. If NULL, no extra
2617 * checks required. The access check is performed at runtime, not at
2618 * translate time.
2619 */
2620 CPAccessFn *accessfn;
4b6a83fb
PM
2621 /* Function for handling reads of this register. If NULL, then reads
2622 * will be done by loading from the offset into CPUARMState specified
2623 * by fieldoffset.
2624 */
2625 CPReadFn *readfn;
2626 /* Function for handling writes of this register. If NULL, then writes
2627 * will be done by writing to the offset into CPUARMState specified
2628 * by fieldoffset.
2629 */
2630 CPWriteFn *writefn;
7023ec7e
PM
2631 /* Function for doing a "raw" read; used when we need to copy
2632 * coprocessor state to the kernel for KVM or out for
2633 * migration. This only needs to be provided if there is also a
c4241c7d 2634 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2635 */
2636 CPReadFn *raw_readfn;
2637 /* Function for doing a "raw" write; used when we need to copy KVM
2638 * kernel coprocessor state into userspace, or for inbound
2639 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2640 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2641 * or similar behaviour.
7023ec7e
PM
2642 */
2643 CPWriteFn *raw_writefn;
4b6a83fb
PM
2644 /* Function for resetting the register. If NULL, then reset will be done
2645 * by writing resetvalue to the field specified in fieldoffset. If
2646 * fieldoffset is 0 then no reset will be done.
2647 */
2648 CPResetFn *resetfn;
e2cce18f
RH
2649
2650 /*
2651 * "Original" writefn and readfn.
2652 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2653 * accessor functions of various EL1/EL0 to perform the runtime
2654 * check for which sysreg should actually be modified, and then
2655 * forwards the operation. Before overwriting the accessors,
2656 * the original function is copied here, so that accesses that
2657 * really do go to the EL1/EL0 version proceed normally.
2658 * (The corresponding EL2 register is linked via opaque.)
2659 */
2660 CPReadFn *orig_readfn;
2661 CPWriteFn *orig_writefn;
4b6a83fb
PM
2662};
2663
2664/* Macros which are lvalues for the field in CPUARMState for the
2665 * ARMCPRegInfo *ri.
2666 */
2667#define CPREG_FIELD32(env, ri) \
2668 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2669#define CPREG_FIELD64(env, ri) \
2670 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2671
2672#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2673
2674void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2675 const ARMCPRegInfo *regs, void *opaque);
2676void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2677 const ARMCPRegInfo *regs, void *opaque);
2678static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2679{
2680 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2681}
2682static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2683{
2684 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2685}
60322b39 2686const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2687
6c5c0fec
AB
2688/*
2689 * Definition of an ARM co-processor register as viewed from
2690 * userspace. This is used for presenting sanitised versions of
2691 * registers to userspace when emulating the Linux AArch64 CPU
2692 * ID/feature ABI (advertised as HWCAP_CPUID).
2693 */
2694typedef struct ARMCPRegUserSpaceInfo {
2695 /* Name of register */
2696 const char *name;
2697
d040242e
AB
2698 /* Is the name actually a glob pattern */
2699 bool is_glob;
2700
6c5c0fec
AB
2701 /* Only some bits are exported to user space */
2702 uint64_t exported_bits;
2703
2704 /* Fixed bits are applied after the mask */
2705 uint64_t fixed_bits;
2706} ARMCPRegUserSpaceInfo;
2707
2708#define REGUSERINFO_SENTINEL { .name = NULL }
2709
2710void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2711
4b6a83fb 2712/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2713void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2714 uint64_t value);
4b6a83fb 2715/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2716uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2717
f5a0a5a5
PM
2718/* CPResetFn that does nothing, for use if no reset is required even
2719 * if fieldoffset is non zero.
2720 */
2721void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2722
67ed771d
PM
2723/* Return true if this reginfo struct's field in the cpu state struct
2724 * is 64 bits wide.
2725 */
2726static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2727{
2728 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2729}
2730
dcbff19b 2731static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2732 const ARMCPRegInfo *ri, int isread)
2733{
dcbff19b 2734 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2735}
2736
49a66191
PM
2737/* Raw read of a coprocessor register (as needed for migration, etc) */
2738uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2739
721fae12
PM
2740/**
2741 * write_list_to_cpustate
2742 * @cpu: ARMCPU
2743 *
2744 * For each register listed in the ARMCPU cpreg_indexes list, write
2745 * its value from the cpreg_values list into the ARMCPUState structure.
2746 * This updates TCG's working data structures from KVM data or
2747 * from incoming migration state.
2748 *
2749 * Returns: true if all register values were updated correctly,
2750 * false if some register was unknown or could not be written.
2751 * Note that we do not stop early on failure -- we will attempt
2752 * writing all registers in the list.
2753 */
2754bool write_list_to_cpustate(ARMCPU *cpu);
2755
2756/**
2757 * write_cpustate_to_list:
2758 * @cpu: ARMCPU
b698e4ee 2759 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2760 *
2761 * For each register listed in the ARMCPU cpreg_indexes list, write
2762 * its value from the ARMCPUState structure into the cpreg_values list.
2763 * This is used to copy info from TCG's working data structures into
2764 * KVM or for outbound migration.
2765 *
b698e4ee
PM
2766 * @kvm_sync is true if we are doing this in order to sync the
2767 * register state back to KVM. In this case we will only update
2768 * values in the list if the previous list->cpustate sync actually
2769 * successfully wrote the CPU state. Otherwise we will keep the value
2770 * that is in the list.
2771 *
721fae12
PM
2772 * Returns: true if all register values were read correctly,
2773 * false if some register was unknown or could not be read.
2774 * Note that we do not stop early on failure -- we will attempt
2775 * reading all registers in the list.
2776 */
b698e4ee 2777bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2778
9ee6e8bb
PB
2779#define ARM_CPUID_TI915T 0x54029152
2780#define ARM_CPUID_TI925T 0x54029252
40f137e1 2781
ba1ba5cc
IM
2782#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2783#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2784#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2785
9467d44c 2786#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2787#define cpu_list arm_cpu_list
9467d44c 2788
c1e37810
PM
2789/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2790 *
2791 * If EL3 is 64-bit:
2792 * + NonSecure EL1 & 0 stage 1
2793 * + NonSecure EL1 & 0 stage 2
2794 * + NonSecure EL2
b9f6033c
RH
2795 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2796 * + Secure EL1 & 0
c1e37810
PM
2797 * + Secure EL3
2798 * If EL3 is 32-bit:
2799 * + NonSecure PL1 & 0 stage 1
2800 * + NonSecure PL1 & 0 stage 2
2801 * + NonSecure PL2
b9f6033c
RH
2802 * + Secure PL0
2803 * + Secure PL1
c1e37810
PM
2804 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2805 *
2806 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2807 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2808 * because they may differ in access permissions even if the VA->PA map is
2809 * the same
c1e37810
PM
2810 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2811 * translation, which means that we have one mmu_idx that deals with two
2812 * concatenated translation regimes [this sort of combined s1+2 TLB is
2813 * architecturally permitted]
2814 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2815 * handling via the TLB. The only way to do a stage 1 translation without
2816 * the immediate stage 2 translation is via the ATS or AT system insns,
2817 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2818 * The only use of stage 2 translations is either as part of an s1+2
2819 * lookup or when loading the descriptors during a stage 1 page table walk,
2820 * and in both those cases we don't use the TLB.
c1e37810
PM
2821 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2822 * translation regimes, because they map reasonably well to each other
2823 * and they can't both be active at the same time.
b9f6033c
RH
2824 * 5. we want to be able to use the TLB for accesses done as part of a
2825 * stage1 page table walk, rather than having to walk the stage2 page
2826 * table over and over.
452ef8cb
RH
2827 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2828 * Never (PAN) bit within PSTATE.
c1e37810 2829 *
b9f6033c
RH
2830 * This gives us the following list of cases:
2831 *
2832 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2833 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2834 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2835 * NS EL0 EL2&0
bf05340c 2836 * NS EL2 EL2&0
452ef8cb 2837 * NS EL2 EL2&0 +PAN
c1e37810 2838 * NS EL2 (aka NS PL2)
b9f6033c
RH
2839 * S EL0 EL1&0 (aka S PL0)
2840 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2841 * S EL1 EL1&0 +PAN
c1e37810 2842 * S EL3 (aka S PL1)
c1e37810 2843 *
bf05340c 2844 * for a total of 11 different mmu_idx.
c1e37810 2845 *
3bef7012
PM
2846 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2847 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2848 * NS EL2 if we ever model a Cortex-R52).
2849 *
2850 * M profile CPUs are rather different as they do not have a true MMU.
2851 * They have the following different MMU indexes:
2852 * User
2853 * Privileged
62593718
PM
2854 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2855 * Privileged, execution priority negative (ditto)
66787c78
PM
2856 * If the CPU supports the v8M Security Extension then there are also:
2857 * Secure User
2858 * Secure Privileged
62593718
PM
2859 * Secure User, execution priority negative
2860 * Secure Privileged, execution priority negative
3bef7012 2861 *
8bd5c820
PM
2862 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2863 * are not quite the same -- different CPU types (most notably M profile
2864 * vs A/R profile) would like to use MMU indexes with different semantics,
2865 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2866 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2867 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2868 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2869 * the same for any particular CPU.
2870 * Variables of type ARMMUIdx are always full values, and the core
2871 * index values are in variables of type 'int'.
2872 *
c1e37810
PM
2873 * Our enumeration includes at the end some entries which are not "true"
2874 * mmu_idx values in that they don't have corresponding TLBs and are only
2875 * valid for doing slow path page table walks.
2876 *
2877 * The constant names here are patterned after the general style of the names
2878 * of the AT/ATS operations.
2879 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2880 * For M profile we arrange them to have a bit for priv, a bit for negpri
2881 * and a bit for secure.
c1e37810 2882 */
b9f6033c
RH
2883#define ARM_MMU_IDX_A 0x10 /* A profile */
2884#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2885#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2886
b9f6033c
RH
2887/* Meanings of the bits for M profile mmu idx values */
2888#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2889#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2890#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2891
b9f6033c
RH
2892#define ARM_MMU_IDX_TYPE_MASK \
2893 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2894#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2895
c1e37810 2896typedef enum ARMMMUIdx {
b9f6033c
RH
2897 /*
2898 * A-profile.
2899 */
452ef8cb
RH
2900 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2901 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
b9f6033c 2902
452ef8cb
RH
2903 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2904 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
b9f6033c 2905
452ef8cb
RH
2906 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
2907 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
2908 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
b9f6033c 2909
452ef8cb
RH
2910 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
2911 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
2912 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2913 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
b9f6033c 2914
b9f6033c
RH
2915 /*
2916 * These are not allocated TLBs and are used only for AT system
2917 * instructions or for the first stage of an S12 page table walk.
2918 */
2919 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2920 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2921 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2922 /*
2923 * Not allocated a TLB: used only for second stage of an S12 page
2924 * table walk, or for descriptor loads during first stage of an S1
2925 * page table walk. Note that if we ever want to have a TLB for this
2926 * then various TLB flush insns which currently are no-ops or flush
2927 * only stage 1 MMU indexes will need to change to flush stage 2.
2928 */
2929 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2930
2931 /*
2932 * M-profile.
2933 */
25568316
RH
2934 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2935 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2936 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2937 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2938 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2939 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2940 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2941 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2942} ARMMMUIdx;
2943
5f09a6df
RH
2944/*
2945 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2946 * for use when calling tlb_flush_by_mmuidx() and friends.
2947 */
5f09a6df
RH
2948#define TO_CORE_BIT(NAME) \
2949 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2950
8bd5c820 2951typedef enum ARMMMUIdxBit {
5f09a6df 2952 TO_CORE_BIT(E10_0),
b9f6033c 2953 TO_CORE_BIT(E20_0),
5f09a6df 2954 TO_CORE_BIT(E10_1),
452ef8cb 2955 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2956 TO_CORE_BIT(E2),
b9f6033c 2957 TO_CORE_BIT(E20_2),
452ef8cb 2958 TO_CORE_BIT(E20_2_PAN),
5f09a6df
RH
2959 TO_CORE_BIT(SE10_0),
2960 TO_CORE_BIT(SE10_1),
452ef8cb 2961 TO_CORE_BIT(SE10_1_PAN),
5f09a6df 2962 TO_CORE_BIT(SE3),
5f09a6df
RH
2963
2964 TO_CORE_BIT(MUser),
2965 TO_CORE_BIT(MPriv),
2966 TO_CORE_BIT(MUserNegPri),
2967 TO_CORE_BIT(MPrivNegPri),
2968 TO_CORE_BIT(MSUser),
2969 TO_CORE_BIT(MSPriv),
2970 TO_CORE_BIT(MSUserNegPri),
2971 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2972} ARMMMUIdxBit;
2973
5f09a6df
RH
2974#undef TO_CORE_BIT
2975
f79fbf39 2976#define MMU_USER_IDX 0
c1e37810 2977
9e273ef2
PM
2978/* Indexes used when registering address spaces with cpu_address_space_init */
2979typedef enum ARMASIdx {
2980 ARMASIdx_NS = 0,
2981 ARMASIdx_S = 1,
2982} ARMASIdx;
2983
533e93f1 2984/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2985static inline int arm_debug_target_el(CPUARMState *env)
2986{
81669b8b
SF
2987 bool secure = arm_is_secure(env);
2988 bool route_to_el2 = false;
2989
2990 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2991 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2992 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2993 }
2994
2995 if (route_to_el2) {
2996 return 2;
2997 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2998 !arm_el_is_aa64(env, 3) && secure) {
2999 return 3;
3000 } else {
3001 return 1;
3002 }
3a298203
PM
3003}
3004
43bbce7f
PM
3005static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3006{
3007 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3008 * CSSELR is RAZ/WI.
3009 */
3010 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3011}
3012
22af9025 3013/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
3014static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3015{
22af9025
AB
3016 int cur_el = arm_current_el(env);
3017 int debug_el;
3018
3019 if (cur_el == 3) {
3020 return false;
533e93f1
PM
3021 }
3022
22af9025
AB
3023 /* MDCR_EL3.SDD disables debug events from Secure state */
3024 if (arm_is_secure_below_el3(env)
3025 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3026 return false;
3a298203 3027 }
22af9025
AB
3028
3029 /*
3030 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3031 * while not masking the (D)ebug bit in DAIF.
3032 */
3033 debug_el = arm_debug_target_el(env);
3034
3035 if (cur_el == debug_el) {
3036 return extract32(env->cp15.mdscr_el1, 13, 1)
3037 && !(env->daif & PSTATE_D);
3038 }
3039
3040 /* Otherwise the debug target needs to be a higher EL */
3041 return debug_el > cur_el;
3a298203
PM
3042}
3043
3044static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3045{
533e93f1
PM
3046 int el = arm_current_el(env);
3047
3048 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3049 return aa64_generate_debug_exceptions(env);
3050 }
533e93f1
PM
3051
3052 if (arm_is_secure(env)) {
3053 int spd;
3054
3055 if (el == 0 && (env->cp15.sder & 1)) {
3056 /* SDER.SUIDEN means debug exceptions from Secure EL0
3057 * are always enabled. Otherwise they are controlled by
3058 * SDCR.SPD like those from other Secure ELs.
3059 */
3060 return true;
3061 }
3062
3063 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3064 switch (spd) {
3065 case 1:
3066 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3067 case 0:
3068 /* For 0b00 we return true if external secure invasive debug
3069 * is enabled. On real hardware this is controlled by external
3070 * signals to the core. QEMU always permits debug, and behaves
3071 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3072 */
3073 return true;
3074 case 2:
3075 return false;
3076 case 3:
3077 return true;
3078 }
3079 }
3080
3081 return el != 2;
3a298203
PM
3082}
3083
3084/* Return true if debugging exceptions are currently enabled.
3085 * This corresponds to what in ARM ARM pseudocode would be
3086 * if UsingAArch32() then
3087 * return AArch32.GenerateDebugExceptions()
3088 * else
3089 * return AArch64.GenerateDebugExceptions()
3090 * We choose to push the if() down into this function for clarity,
3091 * since the pseudocode has it at all callsites except for the one in
3092 * CheckSoftwareStep(), where it is elided because both branches would
3093 * always return the same value.
3a298203
PM
3094 */
3095static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3096{
3097 if (env->aarch64) {
3098 return aa64_generate_debug_exceptions(env);
3099 } else {
3100 return aa32_generate_debug_exceptions(env);
3101 }
3102}
3103
3104/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3105 * implicitly means this always returns false in pre-v8 CPUs.)
3106 */
3107static inline bool arm_singlestep_active(CPUARMState *env)
3108{
3109 return extract32(env->cp15.mdscr_el1, 0, 1)
3110 && arm_el_is_aa64(env, arm_debug_target_el(env))
3111 && arm_generate_debug_exceptions(env);
3112}
3113
f9fd40eb
PB
3114static inline bool arm_sctlr_b(CPUARMState *env)
3115{
3116 return
3117 /* We need not implement SCTLR.ITD in user-mode emulation, so
3118 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3119 * This lets people run BE32 binaries with "-cpu any".
3120 */
3121#ifndef CONFIG_USER_ONLY
3122 !arm_feature(env, ARM_FEATURE_V7) &&
3123#endif
3124 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3125}
3126
aaec1432 3127uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3128
8061a649
RH
3129static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3130 bool sctlr_b)
3131{
3132#ifdef CONFIG_USER_ONLY
3133 /*
3134 * In system mode, BE32 is modelled in line with the
3135 * architecture (as word-invariant big-endianness), where loads
3136 * and stores are done little endian but from addresses which
3137 * are adjusted by XORing with the appropriate constant. So the
3138 * endianness to use for the raw data access is not affected by
3139 * SCTLR.B.
3140 * In user mode, however, we model BE32 as byte-invariant
3141 * big-endianness (because user-only code cannot tell the
3142 * difference), and so we need to use a data access endianness
3143 * that depends on SCTLR.B.
3144 */
3145 if (sctlr_b) {
3146 return true;
3147 }
3148#endif
3149 /* In 32bit endianness is determined by looking at CPSR's E bit */
3150 return env->uncached_cpsr & CPSR_E;
3151}
3152
3153static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3154{
3155 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3156}
64e40755 3157
ed50ff78
PC
3158/* Return true if the processor is in big-endian mode. */
3159static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3160{
ed50ff78 3161 if (!is_a64(env)) {
8061a649 3162 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3163 } else {
3164 int cur_el = arm_current_el(env);
3165 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3166 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3167 }
ed50ff78
PC
3168}
3169
4f7c64b3 3170typedef CPUARMState CPUArchState;
2161a612 3171typedef ARMCPU ArchCPU;
4f7c64b3 3172
022c62cb 3173#include "exec/cpu-all.h"
622ed360 3174
fdd1b228
RH
3175/*
3176 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3177 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3178 * We put flags which are shared between 32 and 64 bit mode at the top
3179 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3180 *
506f1498 3181 * 31 20 18 14 9 0
79cabf1f
RH
3182 * +--------------+-----+-----+----------+--------------+
3183 * | | | TBFLAG_A32 | |
3184 * | | +-----+----------+ TBFLAG_AM32 |
3185 * | TBFLAG_ANY | |TBFLAG_M32| |
cc28fc30
RH
3186 * | | +-+----------+--------------|
3187 * | | | TBFLAG_A64 |
3188 * +--------------+---------+---------------------------+
3189 * 31 20 15 0
79cabf1f 3190 *
fdd1b228 3191 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3192 */
aad821ac 3193FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3194FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3195FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3196FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3197FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3198/* Target EL if we take a floating-point-disabled exception */
506f1498 3199FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3200/* For A-profile only, target EL for debug exceptions. */
506f1498 3201FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3202
8bd587c1 3203/*
79cabf1f 3204 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3205 */
79cabf1f
RH
3206FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3207FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3208
79cabf1f
RH
3209/*
3210 * Bit usage when in AArch32 state, for A-profile only.
3211 */
3212FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3213FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3214/*
3215 * We store the bottom two bits of the CPAR as TB flags and handle
3216 * checks on the other bits at runtime. This shares the same bits as
3217 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3218 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3219 */
79cabf1f
RH
3220FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3221FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3222FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3223FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3224/*
3225 * Indicates whether cp register reads and writes by guest code should access
3226 * the secure or nonsecure bank of banked registers; note that this is not
3227 * the same thing as the current security state of the processor!
3228 */
79cabf1f
RH
3229FIELD(TBFLAG_A32, NS, 17, 1)
3230
3231/*
3232 * Bit usage when in AArch32 state, for M-profile only.
3233 */
3234/* Handler (ie not Thread) mode */
3235FIELD(TBFLAG_M32, HANDLER, 9, 1)
3236/* Whether we should generate stack-limit checks */
3237FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3238/* Set if FPCCR.LSPACT is set */
3239FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3240/* Set if we must create a new FP context */
3241FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3242/* Set if FPCCR.S does not match current security state */
3243FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3244
3245/*
3246 * Bit usage when in AArch64 state
3247 */
476a4692 3248FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3249FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3250FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3251FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3252FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3253FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3254FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3255FIELD(TBFLAG_A64, UNPRIV, 14, 1)
a1705768 3256
fb901c90
RH
3257/**
3258 * cpu_mmu_index:
3259 * @env: The cpu environment
3260 * @ifetch: True for code access, false for data access.
3261 *
3262 * Return the core mmu index for the current translation regime.
3263 * This function is used by generic TCG code paths.
3264 */
3265static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3266{
3267 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3268}
3269
f9fd40eb
PB
3270static inline bool bswap_code(bool sctlr_b)
3271{
3272#ifdef CONFIG_USER_ONLY
3273 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3274 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3275 * would also end up as a mixed-endian mode with BE code, LE data.
3276 */
3277 return
3278#ifdef TARGET_WORDS_BIGENDIAN
3279 1 ^
3280#endif
3281 sctlr_b;
3282#else
e334bd31
PB
3283 /* All code access in ARM is little endian, and there are no loaders
3284 * doing swaps that need to be reversed
f9fd40eb
PB
3285 */
3286 return 0;
3287#endif
3288}
3289
c3ae85fc
PB
3290#ifdef CONFIG_USER_ONLY
3291static inline bool arm_cpu_bswap_data(CPUARMState *env)
3292{
3293 return
3294#ifdef TARGET_WORDS_BIGENDIAN
3295 1 ^
3296#endif
3297 arm_cpu_data_is_big_endian(env);
3298}
3299#endif
3300
a9e01311
RH
3301void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3302 target_ulong *cs_base, uint32_t *flags);
6b917547 3303
98128601
RH
3304enum {
3305 QEMU_PSCI_CONDUIT_DISABLED = 0,
3306 QEMU_PSCI_CONDUIT_SMC = 1,
3307 QEMU_PSCI_CONDUIT_HVC = 2,
3308};
3309
017518c1
PM
3310#ifndef CONFIG_USER_ONLY
3311/* Return the address space index to use for a memory access */
3312static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3313{
3314 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3315}
5ce4ff65
PM
3316
3317/* Return the AddressSpace to use for a memory access
3318 * (which depends on whether the access is S or NS, and whether
3319 * the board gave us a separate AddressSpace for S accesses).
3320 */
3321static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3322{
3323 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3324}
017518c1
PM
3325#endif
3326
bd7d00fc 3327/**
b5c53d1b
AL
3328 * arm_register_pre_el_change_hook:
3329 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3330 * CPU changes exception level or mode. The hook function will be
3331 * passed a pointer to the ARMCPU and the opaque data pointer passed
3332 * to this function when the hook was registered.
b5c53d1b
AL
3333 *
3334 * Note that if a pre-change hook is called, any registered post-change hooks
3335 * are guaranteed to subsequently be called.
bd7d00fc 3336 */
b5c53d1b 3337void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3338 void *opaque);
b5c53d1b
AL
3339/**
3340 * arm_register_el_change_hook:
3341 * Register a hook function which will be called immediately after this
3342 * CPU changes exception level or mode. The hook function will be
3343 * passed a pointer to the ARMCPU and the opaque data pointer passed
3344 * to this function when the hook was registered.
3345 *
3346 * Note that any registered hooks registered here are guaranteed to be called
3347 * if pre-change hooks have been.
3348 */
3349void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3350 *opaque);
bd7d00fc 3351
3d74e2e9
RH
3352/**
3353 * arm_rebuild_hflags:
3354 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3355 */
3356void arm_rebuild_hflags(CPUARMState *env);
3357
9a2b5256
RH
3358/**
3359 * aa32_vfp_dreg:
3360 * Return a pointer to the Dn register within env in 32-bit mode.
3361 */
3362static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3363{
c39c2b90 3364 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3365}
3366
3367/**
3368 * aa32_vfp_qreg:
3369 * Return a pointer to the Qn register within env in 32-bit mode.
3370 */
3371static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3372{
c39c2b90 3373 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3374}
3375
3376/**
3377 * aa64_vfp_qreg:
3378 * Return a pointer to the Qn register within env in 64-bit mode.
3379 */
3380static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3381{
c39c2b90 3382 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3383}
3384
028e2a7b
RH
3385/* Shared between translate-sve.c and sve_helper.c. */
3386extern const uint64_t pred_esz_masks[4];
3387
873b73c0
PM
3388/*
3389 * Naming convention for isar_feature functions:
3390 * Functions which test 32-bit ID registers should have _aa32_ in
3391 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3392 * _aa64_ in their name. These must only be used in code where we
3393 * know for certain that the CPU has AArch32 or AArch64 respectively
3394 * or where the correct answer for a CPU which doesn't implement that
3395 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3396 * system registers that are specific to that CPU state, for "should
3397 * we let this system register bit be set" tests where the 32-bit
3398 * flavour of the register doesn't have the bit, and so on).
3399 * Functions which simply ask "does this feature exist at all" have
3400 * _any_ in their name, and always return the logical OR of the _aa64_
3401 * and the _aa32_ function.
873b73c0
PM
3402 */
3403
962fcbf2
RH
3404/*
3405 * 32-bit feature tests via id registers.
3406 */
873b73c0 3407static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3408{
3409 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3410}
3411
873b73c0 3412static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3413{
3414 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3415}
3416
873b73c0 3417static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3418{
3419 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3420}
3421
962fcbf2
RH
3422static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3423{
3424 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3425}
3426
3427static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3428{
3429 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3430}
3431
3432static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3433{
3434 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3435}
3436
3437static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3438{
3439 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3440}
3441
3442static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3443{
3444 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3445}
3446
3447static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3448{
3449 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3450}
3451
3452static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3453{
3454 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3455}
3456
6c1f6f27
RH
3457static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3458{
3459 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3460}
3461
962fcbf2
RH
3462static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3463{
3464 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3465}
3466
87732318
RH
3467static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3468{
3469 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3470}
3471
9888bd1e
RH
3472static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3473{
3474 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3475}
3476
cb570bd3
RH
3477static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3478{
3479 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3480}
3481
5763190f
RH
3482static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3483{
3484 /*
3485 * This is a placeholder for use by VCMA until the rest of
3486 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3487 * At which point we can properly set and check MVFR1.FPHP.
3488 */
3489 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3490}
3491
7fbc6a40
RH
3492static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3493{
3494 /*
3495 * Return true if either VFP or SIMD is implemented.
3496 * In this case, a minimum of VFP w/ D0-D15.
3497 */
3498 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3499}
3500
0e13ba78 3501static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3502{
3503 /* Return true if D16-D31 are implemented */
b3a816f6 3504 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3505}
3506
266bd25c
PM
3507static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3508{
b3a816f6 3509 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3510}
3511
f67957e1
RH
3512static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3513{
3514 /* Return true if CPU supports single precision floating point, VFPv2 */
3515 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3516}
3517
3518static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3519{
3520 /* Return true if CPU supports single precision floating point, VFPv3 */
3521 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3522}
3523
c4ff8735 3524static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3525{
c4ff8735 3526 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3527 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3528}
3529
f67957e1
RH
3530static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3531{
3532 /* Return true if CPU supports double precision floating point, VFPv3 */
3533 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3534}
3535
7d63183f
RH
3536static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3537{
3538 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3539}
3540
602f6e42
PM
3541/*
3542 * We always set the FP and SIMD FP16 fields to indicate identical
3543 * levels of support (assuming SIMD is implemented at all), so
3544 * we only need one set of accessors.
3545 */
3546static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3547{
b3a816f6 3548 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3549}
3550
3551static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3552{
b3a816f6 3553 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3554}
3555
c52881bb
RH
3556/*
3557 * Note that this ID register field covers both VFP and Neon FMAC,
3558 * so should usually be tested in combination with some other
3559 * check that confirms the presence of whichever of VFP or Neon is
3560 * relevant, to avoid accidentally enabling a Neon feature on
3561 * a VFP-no-Neon core or vice-versa.
3562 */
3563static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3564{
3565 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3566}
3567
c0c760af
PM
3568static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3569{
b3a816f6 3570 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3571}
3572
3573static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3574{
b3a816f6 3575 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3576}
3577
3578static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3579{
b3a816f6 3580 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3581}
3582
3583static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3584{
b3a816f6 3585 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3586}
3587
3d6ad6bb
RH
3588static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3589{
10054016 3590 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3591}
3592
3593static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3594{
10054016 3595 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3596}
3597
a6179538
PM
3598static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3599{
3600 /* 0xf means "non-standard IMPDEF PMU" */
3601 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3602 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3603}
3604
15dd1ebd
PM
3605static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3606{
3607 /* 0xf means "non-standard IMPDEF PMU" */
3608 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3609 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3610}
3611
4036b7d1
PM
3612static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3613{
3614 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3615}
3616
f6287c24
PM
3617static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3618{
3619 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3620}
3621
957e6155
PM
3622static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3623{
3624 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3625}
3626
ce3125be
PM
3627static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3628{
3629 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3630}
3631
962fcbf2
RH
3632/*
3633 * 64-bit feature tests via id registers.
3634 */
3635static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3636{
3637 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3638}
3639
3640static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3641{
3642 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3643}
3644
3645static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3646{
3647 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3648}
3649
3650static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3651{
3652 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3653}
3654
3655static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3656{
3657 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3658}
3659
3660static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3661{
3662 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3663}
3664
3665static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3666{
3667 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3668}
3669
3670static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3671{
3672 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3673}
3674
3675static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3676{
3677 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3678}
3679
3680static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3681{
3682 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3683}
3684
3685static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3686{
3687 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3688}
3689
3690static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3691{
3692 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3693}
3694
0caa5af8
RH
3695static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3696{
3697 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3698}
3699
b89d9c98
RH
3700static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3701{
3702 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3703}
3704
5ef84f11
RH
3705static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3706{
3707 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3708}
3709
de390645
RH
3710static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3711{
3712 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3713}
3714
6c1f6f27
RH
3715static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3716{
3717 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3718}
3719
962fcbf2
RH
3720static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3721{
3722 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3723}
3724
991ad91b
RH
3725static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3726{
3727 /*
3728 * Note that while QEMU will only implement the architected algorithm
3729 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3730 * defined algorithms, and thus API+GPI, and this predicate controls
3731 * migration of the 128-bit keys.
3732 */
3733 return (id->id_aa64isar1 &
3734 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3735 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3736 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3737 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3738}
3739
9888bd1e
RH
3740static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3741{
3742 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3743}
3744
cb570bd3
RH
3745static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3746{
3747 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3748}
3749
6bea2563
RH
3750static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3751{
3752 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3753}
3754
0d57b499
BM
3755static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3756{
3757 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3758}
3759
3760static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3761{
3762 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3763}
3764
7d63183f
RH
3765static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3766{
3767 /* We always set the AdvSIMD and FP fields identically. */
3768 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3769}
3770
5763190f
RH
3771static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3772{
3773 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3774 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3775}
3776
0f8d06f1
RH
3777static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3778{
3779 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3780}
3781
cd208a1c
RH
3782static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3783{
3784 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3785}
3786
8fc2ea21
RH
3787static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3788{
3789 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3790}
3791
2d7137c1
RH
3792static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3793{
3794 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3795}
3796
3d6ad6bb
RH
3797static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3798{
3799 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3800}
3801
3802static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3803{
3804 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3805}
3806
9eeb7a1c
RH
3807static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3808{
3809 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3810}
3811
be53b6f4
RH
3812static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3813{
3814 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3815}
3816
c7fd0baa
RH
3817static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3818{
3819 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3820}
3821
3822static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3823{
3824 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3825}
3826
2a609df8
PM
3827static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3828{
3829 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3830 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3831}
3832
15dd1ebd
PM
3833static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3834{
54117b90
PM
3835 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3836 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3837}
3838
2677cf9f
PM
3839static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3840{
3841 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3842}
3843
a1229109
PM
3844static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3845{
3846 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3847}
3848
957e6155
PM
3849static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3850{
3851 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3852}
3853
ce3125be
PM
3854static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3855{
3856 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3857}
3858
6e61f839
PM
3859/*
3860 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3861 */
3862static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3863{
3864 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3865}
3866
22e57073
PM
3867static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3868{
3869 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3870}
3871
2a609df8
PM
3872static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3873{
3874 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3875}
3876
15dd1ebd
PM
3877static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3878{
3879 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3880}
3881
957e6155
PM
3882static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3883{
3884 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3885}
3886
ce3125be
PM
3887static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3888{
3889 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3890}
3891
962fcbf2
RH
3892/*
3893 * Forward to the above feature tests given an ARMCPU pointer.
3894 */
3895#define cpu_isar_feature(name, cpu) \
3896 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3897
2c0262af 3898#endif