]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target: Mention 'cpu-qom.h' is target agnostic
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
11b76fda 60#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
2c4a7cc5 61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
62
63#define ARMV7M_EXCP_RESET 1
64#define ARMV7M_EXCP_NMI 2
65#define ARMV7M_EXCP_HARD 3
66#define ARMV7M_EXCP_MEM 4
67#define ARMV7M_EXCP_BUS 5
68#define ARMV7M_EXCP_USAGE 6
1e577cc7 69#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
70#define ARMV7M_EXCP_SVC 11
71#define ARMV7M_EXCP_DEBUG 12
72#define ARMV7M_EXCP_PENDSV 14
73#define ARMV7M_EXCP_SYSTICK 15
2c0262af 74
acf94941
PM
75/* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
4a16724f
PM
84enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88};
acf94941 89
403946c0
RH
90/* ARM-specific interrupt pending bits. */
91#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
92#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 94#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 95
e4fe830b
PM
96/* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
e03b5686 102#if HOST_BIG_ENDIAN
5cd8a118 103#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 104#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
105#else
106#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 107#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
108#endif
109
136e67e9 110/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
111#define ARM_CPU_IRQ 0
112#define ARM_CPU_FIQ 1
136e67e9
EI
113#define ARM_CPU_VIRQ 2
114#define ARM_CPU_VFIQ 3
403946c0 115
aaa1f954
EI
116/* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120#define TARGET_INSN_START_EXTRA_WORDS 2
121
122/* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 129
b7bcbe95
FB
130/* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
b7bcbe95 137
200bf5b7
AB
138/**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
448d4d14
AB
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
200bf5b7
AB
146 */
147typedef struct DynamicGDBXMLInfo {
148 char *desc;
448d4d14
AB
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
200bf5b7
AB
155} DynamicGDBXMLInfo;
156
55d284af
PM
157/* CPU state for each instance of a generic timer (in cp15 c14) */
158typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 160 uint64_t ctl; /* Timer Control register */
55d284af
PM
161} ARMGenericTimer;
162
8c94b071
RH
163#define GTIMER_PHYS 0
164#define GTIMER_VIRT 1
165#define GTIMER_HYP 2
166#define GTIMER_SEC 3
167#define GTIMER_HYPVIRT 4
168#define NUM_GTIMERS 5
55d284af 169
e9152ee9
RDC
170#define VTCR_NSW (1u << 29)
171#define VTCR_NSA (1u << 30)
172#define VSTCR_SW VTCR_NSW
173#define VSTCR_SA VTCR_NSA
174
c39c2b90
RH
175/* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 192 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201#ifdef TARGET_AARCH64
202# define ARM_MAX_VQ 16
203#else
204# define ARM_MAX_VQ 1
205#endif
206
207typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209} ARMVectorReg;
210
3c7d3086 211#ifdef TARGET_AARCH64
991ad91b 212/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 213typedef struct ARMPredicateReg {
46417784 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 215} ARMPredicateReg;
991ad91b
RH
216
217/* In AArch32 mode, PAC keys do not exist at all. */
218typedef struct ARMPACKey {
219 uint64_t lo, hi;
220} ARMPACKey;
3c7d3086
RH
221#endif
222
3902bfc6
RH
223/* See the commentary above the TBFLAG field definitions. */
224typedef struct CPUARMTBFlags {
225 uint32_t flags;
a378206a 226 target_ulong flags2;
3902bfc6 227} CPUARMTBFlags;
c39c2b90 228
f3639a64
RH
229typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
8f4e07c9
PMD
231typedef struct NVICState NVICState;
232
1ea4a06a 233typedef struct CPUArchState {
b5ff1b31 234 /* Regs for current mode. */
2c0262af 235 uint32_t regs[16];
3926cc84
AG
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
d356312f
PM
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 252 * DAIF (exception masks) are kept in env->daif
f6e52eaa 253 * BTYPE is kept in env->btype
c37e6ac9 254 * SM and ZA are kept in env->svcr
d356312f 255 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
256 */
257 uint32_t pstate;
53221552 258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 260
fdd1b228 261 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 262 CPUARMTBFlags hflags;
fdd1b228 263
b90372ad 264 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 265 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
28c9457d 271 uint64_t banked_spsr[8];
0b7d409d
FA
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
3b46e624 274
b5ff1b31
FB
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
3b46e624 278
2c0262af
FB
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
99c475ab 284 uint32_t QF; /* 0 or 1 */
9ee6e8bb 285 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 290
1b174238 291 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 293
b5ff1b31
FB
294 /* System control coprocessor (cp15) */
295 struct {
40f137e1 296 uint32_t c0_cpuid;
b85a1fd6
FA
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
137feaa9
FA
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
761c4642 315 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 316 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 319 uint64_t sder; /* Secure debug enable register. */
77022576 320 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
b698e9cf 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 341 /* MMU translation table base control. */
cb4a0a34 342 uint64_t tcr_el[4];
988cc190
PM
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
7e09797c
PM
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 360 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 362 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
4a7e2d73
FA
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
ce819861 381 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
e03b5686 385#if HOST_BIG_ENDIAN
b848ce2b
FA
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390#else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395#endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
59e05530 400 uint64_t hpfar_el2;
2a5a9abd 401 uint64_t hstr_el2;
01c097f7
FA
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
6cb0b013 411
b5ff1b31
FB
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
8521466b
AF
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 418 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 419 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
420 union { /* Memory attribute redirection */
421 struct {
e03b5686 422#if HOST_BIG_ENDIAN
be693c87
GB
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429#else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436#endif
437 };
438 uint64_t mair_el[4];
439 };
fb6c91ba
GB
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
e89e51a1 449 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
9e5ec745 473 uint64_t tpidr2_el0;
54bf36ed
FA
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
a7adc4b7
PM
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 487 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
0b45451e
PM
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 501 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 502 uint64_t mdscr_el1;
1424ca8d 503 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 504 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 505 uint64_t mdcr_el2;
5513c3ab 506 uint64_t mdcr_el3;
5d05b9d4
AL
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
7c2cb42b 511 */
c92c0687 512 uint64_t c15_ccnt;
5d05b9d4
AL
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
8521466b 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
58e93b48
RH
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
15126d9c
PM
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
b5ff1b31 550 } cp15;
40f137e1 551
9ee6e8bb 552 struct {
fb602cb7
PM
553 /* M profile has up to 4 stack pointers:
554 * a Main Stack Pointer and a Process Stack Pointer for each
555 * of the Secure and Non-Secure states. (If the CPU doesn't support
556 * the security extension then it has only two SPs.)
557 * In QEMU we always store the currently active SP in regs[13],
558 * and the non-active SP for the current security state in
559 * v7m.other_sp. The stack pointers for the inactive security state
560 * are stored in other_ss_msp and other_ss_psp.
561 * switch_v7m_security_state() is responsible for rearranging them
562 * when we change security state.
563 */
9ee6e8bb 564 uint32_t other_sp;
fb602cb7
PM
565 uint32_t other_ss_msp;
566 uint32_t other_ss_psp;
4a16724f
PM
567 uint32_t vecbase[M_REG_NUM_BANKS];
568 uint32_t basepri[M_REG_NUM_BANKS];
569 uint32_t control[M_REG_NUM_BANKS];
570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
572 uint32_t hfsr; /* HardFault Status */
573 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 574 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 576 uint32_t bfar; /* BusFault Address */
bed079da 577 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 579 int exception;
4a16724f
PM
580 uint32_t primask[M_REG_NUM_BANKS];
581 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 582 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 584 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 585 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
586 uint32_t msplim[M_REG_NUM_BANKS];
587 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
588 uint32_t fpcar[M_REG_NUM_BANKS];
589 uint32_t fpccr[M_REG_NUM_BANKS];
590 uint32_t fpdscr[M_REG_NUM_BANKS];
591 uint32_t cpacr[M_REG_NUM_BANKS];
592 uint32_t nsacr;
b26b5629 593 uint32_t ltpsize;
7c3d47da 594 uint32_t vpr;
9ee6e8bb
PB
595 } v7m;
596
abf1172f
PM
597 /* Information associated with an exception about to be taken:
598 * code which raises an exception must set cs->exception_index and
599 * the relevant parts of this structure; the cpu_do_interrupt function
600 * will then set the guest-visible registers as part of the exception
601 * entry process.
602 */
603 struct {
604 uint32_t syndrome; /* AArch64 format syndrome register */
605 uint32_t fsr; /* AArch32 format fault status register info */
606 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 607 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
608 /* If we implement EL2 we will also need to store information
609 * about the intermediate physical address for stage 2 faults.
610 */
611 } exception;
612
202ccb6b
DG
613 /* Information associated with an SError */
614 struct {
615 uint8_t pending;
616 uint8_t has_esr;
617 uint64_t esr;
618 } serror;
619
1711bfa5
BM
620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621
ed89f078
PM
622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623 uint32_t irq_line_state;
624
fe1479c3
PB
625 /* Thumb-2 EE state. */
626 uint32_t teecr;
627 uint32_t teehbr;
628
b7bcbe95
FB
629 /* VFP coprocessor state. */
630 struct {
c39c2b90 631 ARMVectorReg zregs[32];
b7bcbe95 632
3c7d3086
RH
633#ifdef TARGET_AARCH64
634 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 635#define FFR_PRED_NUM 16
3c7d3086 636 ARMPredicateReg pregs[17];
516e246a
RH
637 /* Scratch space for aa64 sve predicate temporary. */
638 ARMPredicateReg preg_tmp;
3c7d3086
RH
639#endif
640
b7bcbe95 641 /* We store these fpcsr fields separately for convenience. */
a4d58462 642 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
643 int vec_len;
644 int vec_stride;
645
a4d58462
RH
646 uint32_t xregs[16];
647
516e246a 648 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 649 uint32_t scratch[8];
3b46e624 650
d81ce0ef
AB
651 /* There are a number of distinct float control structures:
652 *
653 * fp_status: is the "normal" fp status.
654 * fp_status_fp16: used for half-precision calculations
655 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
656 * standard_fp_status_fp16 : used for half-precision
657 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
658 *
659 * Half-precision operations are governed by a separate
660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661 * status structure to control this.
662 *
663 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664 * round-to-nearest and is used by any operations (generally
665 * Neon) which the architecture defines as controlled by the
666 * standard FPSCR value rather than the FPSCR.
3a492f3a 667 *
aaae563b
PM
668 * The "standard FPSCR but for fp16 ops" is needed because
669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670 * using a fixed value for it.
671 *
3a492f3a
PM
672 * To avoid having to transfer exception bits around, we simply
673 * say that the FPSCR cumulative exception flags are the logical
aaae563b 674 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
675 * only thing which needs to read the exception flags being
676 * an explicit FPSCR read.
677 */
53cd6637 678 float_status fp_status;
d81ce0ef 679 float_status fp_status_f16;
3a492f3a 680 float_status standard_fp_status;
aaae563b 681 float_status standard_fp_status_f16;
5be5e8ed 682
de561988
RH
683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 685 } vfp;
0f08429c 686
03d05e2d
PM
687 uint64_t exclusive_addr;
688 uint64_t exclusive_val;
0f08429c
RH
689 /*
690 * Contains the 'val' for the second 64-bit register of LDXP, which comes
691 * from the higher address, not the high part of a complete 128-bit value.
692 * In some ways it might be more convenient to record the exclusive value
693 * as the low and high halves of a 128 bit data value, but the current
694 * semantics of these fields are baked into the migration format.
695 */
03d05e2d 696 uint64_t exclusive_high;
b7bcbe95 697
18c9b560
AZ
698 /* iwMMXt coprocessor state. */
699 struct {
700 uint64_t regs[16];
701 uint64_t val;
702
703 uint32_t cregs[16];
704 } iwmmxt;
705
991ad91b 706#ifdef TARGET_AARCH64
108b3ba8
RH
707 struct {
708 ARMPACKey apia;
709 ARMPACKey apib;
710 ARMPACKey apda;
711 ARMPACKey apdb;
712 ARMPACKey apga;
713 } keys;
7cb1e618
RH
714
715 uint64_t scxtnum_el[4];
dc993a01
RH
716
717 /*
718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721 * When SVL is less than the architectural maximum, the accessible
722 * storage is restricted, such that if the SVL is X bytes the guest can
723 * see only the bottom X elements of zarray[], and only the least
724 * significant X bytes of each element of the array. (In other words,
725 * the observable part is always square.)
726 *
727 * The ZA storage can also be considered as a set of square tiles of
728 * elements of different sizes. The mapping from tiles to the ZA array
729 * is architecturally defined, such that for tiles of elements of esz
730 * bytes, the Nth row (or "horizontal slice") of tile T is in
731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732 * in the ZA storage, because its rows are striped through the ZA array.
733 *
734 * Because this is so large, keep this toward the end of the reset area,
735 * to keep the offsets into the rest of the structure smaller.
736 */
737 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
738#endif
739
46747d15 740 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
741 struct CPUWatchpoint *cpu_watchpoint[16];
742
f3639a64
RH
743 /* Optional fault info across tlb lookup. */
744 ARMMMUFaultInfo *tlb_fi;
745
1f5c00cf
AB
746 /* Fields up to this point are cleared by a CPU reset */
747 struct {} end_reset_fields;
748
e8b5fae5 749 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 750
581be094 751 /* Internal CPU feature flags. */
918f5dca 752 uint64_t features;
581be094 753
6cb0b013
PC
754 /* PMSAv7 MPU */
755 struct {
756 uint32_t *drbar;
757 uint32_t *drsr;
758 uint32_t *dracr;
4a16724f 759 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
760 } pmsav7;
761
0e1a46bb
PM
762 /* PMSAv8 MPU */
763 struct {
764 /* The PMSAv8 implementation also shares some PMSAv7 config
765 * and state:
766 * pmsav7.rnr (region number register)
767 * pmsav7_dregion (number of configured regions)
768 */
4a16724f
PM
769 uint32_t *rbar[M_REG_NUM_BANKS];
770 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
771 uint32_t *hprbar;
772 uint32_t *hprlar;
4a16724f
PM
773 uint32_t mair0[M_REG_NUM_BANKS];
774 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 775 uint32_t hprselr;
0e1a46bb
PM
776 } pmsav8;
777
9901c576
PM
778 /* v8M SAU */
779 struct {
780 uint32_t *rbar;
781 uint32_t *rlar;
782 uint32_t rnr;
783 uint32_t ctrl;
784 } sau;
785
1701d70e 786#if !defined(CONFIG_USER_ONLY)
8f4e07c9 787 NVICState *nvic;
2a94a507 788 const struct arm_boot_info *boot_info;
d3a3e529
VK
789 /* Store GICv3CPUState to access from this struct */
790 void *gicv3state;
1701d70e 791#else /* CONFIG_USER_ONLY */
26f08561
PMD
792 /* For usermode syscall translation. */
793 bool eabi;
794#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
795
796#ifdef TARGET_TAGGED_ADDRESSES
797 /* Linux syscall tagged address support */
798 bool tagged_addr_enable;
799#endif
2c0262af
FB
800} CPUARMState;
801
5fda9504
TH
802static inline void set_feature(CPUARMState *env, int feature)
803{
804 env->features |= 1ULL << feature;
805}
806
807static inline void unset_feature(CPUARMState *env, int feature)
808{
809 env->features &= ~(1ULL << feature);
810}
811
bd7d00fc 812/**
08267487 813 * ARMELChangeHookFn:
bd7d00fc
PM
814 * type of a function which can be registered via arm_register_el_change_hook()
815 * to get callbacks when the CPU changes its exception level or mode.
816 */
08267487
AL
817typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818typedef struct ARMELChangeHook ARMELChangeHook;
819struct ARMELChangeHook {
820 ARMELChangeHookFn *hook;
821 void *opaque;
822 QLIST_ENTRY(ARMELChangeHook) node;
823};
062ba099
AB
824
825/* These values map onto the return values for
826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827typedef enum ARMPSCIState {
d5affb0d
AJ
828 PSCI_ON = 0,
829 PSCI_OFF = 1,
062ba099
AB
830 PSCI_ON_PENDING = 2
831} ARMPSCIState;
832
962fcbf2
RH
833typedef struct ARMISARegisters ARMISARegisters;
834
7f9e25a6
RH
835/*
836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838 *
839 * While processing properties during initialization, corresponding init bits
840 * are set for bits in sve_vq_map that have been set by properties.
841 *
842 * Bits set in supported represent valid vector lengths for the CPU type.
843 */
844typedef struct {
845 uint32_t map, init, supported;
846} ARMVQMap;
847
74e75564
PB
848/**
849 * ARMCPU:
850 * @env: #CPUARMState
851 *
852 * An ARM CPU core.
853 */
b36e239e 854struct ArchCPU {
74e75564 855 CPUState parent_obj;
74e75564
PB
856
857 CPUARMState env;
858
859 /* Coprocessor information */
860 GHashTable *cp_regs;
861 /* For marshalling (mostly coprocessor) register state between the
862 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
863 * we use these arrays.
864 */
865 /* List of register indexes managed via these arrays; (full KVM style
866 * 64 bit indexes, not CPRegInfo 32 bit indexes)
867 */
868 uint64_t *cpreg_indexes;
869 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
870 uint64_t *cpreg_values;
871 /* Length of the indexes, values, reset_values arrays */
872 int32_t cpreg_array_len;
873 /* These are used only for migration: incoming data arrives in
874 * these fields and is sanity checked in post_load before copying
875 * to the working data structures above.
876 */
877 uint64_t *cpreg_vmstate_indexes;
878 uint64_t *cpreg_vmstate_values;
879 int32_t cpreg_vmstate_array_len;
880
448d4d14 881 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 882 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
883 DynamicGDBXMLInfo dyn_m_systemreg_xml;
884 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 885
74e75564
PB
886 /* Timers used by the generic (architected) timer */
887 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
888 /*
889 * Timer used by the PMU. Its state is restored after migration by
890 * pmu_op_finish() - it does not need other handling during migration
891 */
892 QEMUTimer *pmu_timer;
74e75564
PB
893 /* GPIO outputs for generic timer */
894 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
895 /* GPIO output for GICv3 maintenance interrupt signal */
896 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
897 /* GPIO output for the PMU interrupt */
898 qemu_irq pmu_interrupt;
74e75564
PB
899
900 /* MemoryRegion to use for secure physical accesses */
901 MemoryRegion *secure_memory;
902
8bce44a2
RH
903 /* MemoryRegion to use for allocation tag accesses */
904 MemoryRegion *tag_memory;
905 MemoryRegion *secure_tag_memory;
906
181962fd
PM
907 /* For v8M, pointer to the IDAU interface provided by board/SoC */
908 Object *idau;
909
74e75564
PB
910 /* 'compatible' string for this CPU for Linux device trees */
911 const char *dtb_compatible;
912
913 /* PSCI version for this CPU
914 * Bits[31:16] = Major Version
915 * Bits[15:0] = Minor Version
916 */
917 uint32_t psci_version;
918
062ba099
AB
919 /* Current power state, access guarded by BQL */
920 ARMPSCIState power_state;
921
c25bd18a
PM
922 /* CPU has virtualization extension */
923 bool has_el2;
74e75564
PB
924 /* CPU has security extension */
925 bool has_el3;
5c0a3819
SZ
926 /* CPU has PMU (Performance Monitor Unit) */
927 bool has_pmu;
97a28b0e
PM
928 /* CPU has VFP */
929 bool has_vfp;
42bea956
CLG
930 /* CPU has 32 VFP registers */
931 bool has_vfp_d32;
97a28b0e
PM
932 /* CPU has Neon */
933 bool has_neon;
ea90db0a
PM
934 /* CPU has M-profile DSP extension */
935 bool has_dsp;
74e75564
PB
936
937 /* CPU has memory protection unit */
938 bool has_mpu;
939 /* PMSAv7 MPU number of supported regions */
940 uint32_t pmsav7_dregion;
761c4642
TR
941 /* PMSAv8 MPU number of supported hyp regions */
942 uint32_t pmsav8r_hdregion;
9901c576
PM
943 /* v8M SAU number of supported regions */
944 uint32_t sau_sregion;
74e75564
PB
945
946 /* PSCI conduit used to invoke PSCI methods
947 * 0 - disabled, 1 - smc, 2 - hvc
948 */
949 uint32_t psci_conduit;
950
38e2a77c
PM
951 /* For v8M, initial value of the Secure VTOR */
952 uint32_t init_svtor;
7cda2149
PM
953 /* For v8M, initial value of the Non-secure VTOR */
954 uint32_t init_nsvtor;
38e2a77c 955
74e75564
PB
956 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
957 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
958 */
959 uint32_t kvm_target;
960
cf43b5b6 961#ifdef CONFIG_KVM
74e75564
PB
962 /* KVM init features for this CPU */
963 uint32_t kvm_init_features[7];
964
e5ac4200
AJ
965 /* KVM CPU state */
966
967 /* KVM virtual time adjustment */
968 bool kvm_adjvtime;
969 bool kvm_vtime_dirty;
970 uint64_t kvm_vtime;
971
68970d1e
AJ
972 /* KVM steal time */
973 OnOffAuto kvm_steal_time;
cf43b5b6 974#endif /* CONFIG_KVM */
68970d1e 975
74e75564
PB
976 /* Uniprocessor system with MP extensions */
977 bool mp_is_up;
978
c4487d76
PM
979 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
980 * and the probe failed (so we need to report the error in realize)
981 */
982 bool host_cpu_probe_failed;
983
f9a69711
AF
984 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
985 * register.
986 */
987 int32_t core_count;
988
74e75564
PB
989 /* The instance init functions for implementation-specific subclasses
990 * set these fields to specify the implementation-dependent values of
991 * various constant registers and reset values of non-constant
992 * registers.
993 * Some of these might become QOM properties eventually.
994 * Field names match the official register names as defined in the
995 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
996 * is used for reset values of non-constant registers; no reset_
997 * prefix means a constant register.
47576b94
RH
998 * Some of these registers are split out into a substructure that
999 * is shared with the translators to control the ISA.
1548a7b2
PM
1000 *
1001 * Note that if you add an ID register to the ARMISARegisters struct
1002 * you need to also update the 32-bit and 64-bit versions of the
1003 * kvm_arm_get_host_cpu_features() function to correctly populate the
1004 * field by reading the value from the KVM vCPU.
74e75564 1005 */
47576b94
RH
1006 struct ARMISARegisters {
1007 uint32_t id_isar0;
1008 uint32_t id_isar1;
1009 uint32_t id_isar2;
1010 uint32_t id_isar3;
1011 uint32_t id_isar4;
1012 uint32_t id_isar5;
1013 uint32_t id_isar6;
10054016
PM
1014 uint32_t id_mmfr0;
1015 uint32_t id_mmfr1;
1016 uint32_t id_mmfr2;
1017 uint32_t id_mmfr3;
1018 uint32_t id_mmfr4;
32957aad 1019 uint32_t id_mmfr5;
8a130a7b
PM
1020 uint32_t id_pfr0;
1021 uint32_t id_pfr1;
1d51bc96 1022 uint32_t id_pfr2;
47576b94
RH
1023 uint32_t mvfr0;
1024 uint32_t mvfr1;
1025 uint32_t mvfr2;
a6179538 1026 uint32_t id_dfr0;
d22c5649 1027 uint32_t id_dfr1;
4426d361 1028 uint32_t dbgdidr;
09754ca8
PM
1029 uint32_t dbgdevid;
1030 uint32_t dbgdevid1;
47576b94
RH
1031 uint64_t id_aa64isar0;
1032 uint64_t id_aa64isar1;
a969fe97 1033 uint64_t id_aa64isar2;
47576b94
RH
1034 uint64_t id_aa64pfr0;
1035 uint64_t id_aa64pfr1;
3dc91ddb
PM
1036 uint64_t id_aa64mmfr0;
1037 uint64_t id_aa64mmfr1;
64761e10 1038 uint64_t id_aa64mmfr2;
2a609df8
PM
1039 uint64_t id_aa64dfr0;
1040 uint64_t id_aa64dfr1;
2dc10fa2 1041 uint64_t id_aa64zfr0;
414c54d5 1042 uint64_t id_aa64smfr0;
24526bb9 1043 uint64_t reset_pmcr_el0;
47576b94 1044 } isar;
e544f800 1045 uint64_t midr;
74e75564
PB
1046 uint32_t revidr;
1047 uint32_t reset_fpsid;
a5fd319a 1048 uint64_t ctr;
74e75564 1049 uint32_t reset_sctlr;
cad86737
AL
1050 uint64_t pmceid0;
1051 uint64_t pmceid1;
74e75564 1052 uint32_t id_afr0;
74e75564
PB
1053 uint64_t id_aa64afr0;
1054 uint64_t id_aa64afr1;
f6450bcb 1055 uint64_t clidr;
74e75564
PB
1056 uint64_t mp_affinity; /* MP ID without feature bits */
1057 /* The elements of this array are the CCSIDR values for each cache,
1058 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1059 */
957e6155 1060 uint64_t ccsidr[16];
74e75564
PB
1061 uint64_t reset_cbar;
1062 uint32_t reset_auxcr;
1063 bool reset_hivecs;
ef1febe7 1064 uint8_t reset_l0gptsz;
eb94284d
RH
1065
1066 /*
1067 * Intermediate values used during property parsing.
69b2265d 1068 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1069 */
1070 bool prop_pauth;
1071 bool prop_pauth_impdef;
399e5e71 1072 bool prop_pauth_qarma3;
69b2265d 1073 bool prop_lpa2;
eb94284d 1074
74e75564 1075 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
ae4acc69 1076 uint8_t dcz_blocksize;
851ec6eb
RH
1077 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1078 uint8_t gm_blocksize;
ae4acc69 1079
4a7319b7 1080 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1081
e45868a3
PM
1082 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1083 int gic_num_lrs; /* number of list registers */
1084 int gic_vpribits; /* number of virtual priority bits */
1085 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1086 int gic_pribits; /* number of physical priority bits */
e45868a3 1087
3a062d57
JB
1088 /* Whether the cfgend input is high (i.e. this CPU should reset into
1089 * big-endian mode). This setting isn't used directly: instead it modifies
1090 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1091 * architecture version.
1092 */
1093 bool cfgend;
1094
b5c53d1b 1095 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1096 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1097
1098 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1099
1100 /* Used to synchronize KVM and QEMU in-kernel device levels */
1101 uint8_t device_irq_level;
adf92eab
RH
1102
1103 /* Used to set the maximum vector length the cpu will support. */
1104 uint32_t sve_max_vq;
0df9142d 1105
b3d52804
RH
1106#ifdef CONFIG_USER_ONLY
1107 /* Used to set the default vector length at process start. */
1108 uint32_t sve_default_vq;
e74c0976 1109 uint32_t sme_default_vq;
b3d52804
RH
1110#endif
1111
7f9e25a6 1112 ARMVQMap sve_vq;
e74c0976 1113 ARMVQMap sme_vq;
7def8754
AJ
1114
1115 /* Generic timer counter frequency, in Hz */
1116 uint64_t gt_cntfrq_hz;
74e75564
PB
1117};
1118
7def8754 1119unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
f6fc36de 1120void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
7def8754 1121
51e5ef45
MAL
1122void arm_cpu_post_init(Object *obj);
1123
46de5913
IM
1124uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1125
74e75564 1126#ifndef CONFIG_USER_ONLY
8a9358cc 1127extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1128
1129void arm_cpu_do_interrupt(CPUState *cpu);
1130void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1131
74e75564
PB
1132hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1133 MemTxAttrs *attrs);
6d2d454a 1134#endif /* !CONFIG_USER_ONLY */
74e75564 1135
a010bdbe 1136int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1137int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1138
200bf5b7
AB
1139/* Returns the dynamically generated XML for the gdb stub.
1140 * Returns a pointer to the XML contents for the specified XML file or NULL
1141 * if the XML name doesn't match the predefined one.
1142 */
1143const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1144
74e75564 1145int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1146 int cpuid, DumpState *s);
74e75564 1147int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1148 int cpuid, DumpState *s);
74e75564 1149
3a45f4f5
PM
1150/**
1151 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1152 * @cpu: CPU (which must have been freshly reset)
1153 * @target_el: exception level to put the CPU into
1154 * @secure: whether to put the CPU in secure state
1155 *
1156 * When QEMU is directly running a guest kernel at a lower level than
1157 * EL3 it implicitly emulates some aspects of the guest firmware.
1158 * This includes that on reset we need to configure the parts of the
1159 * CPU corresponding to EL3 so that the real guest code can run at its
1160 * lower exception level. This function does that post-reset CPU setup,
1161 * for when we do direct boot of a guest kernel, and for when we
1162 * emulate PSCI and similar firmware interfaces starting a CPU at a
1163 * lower exception level.
1164 *
1165 * @target_el must be an EL implemented by the CPU between 1 and 3.
1166 * We do not support dropping into a Secure EL other than 3.
1167 *
1168 * It is the responsibility of the caller to call arm_rebuild_hflags().
1169 */
1170void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1171
74e75564 1172#ifdef TARGET_AARCH64
a010bdbe 1173int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1174int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1175void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1176void aarch64_sve_change_el(CPUARMState *env, int old_el,
1177 int new_el, bool el0_a64);
2a8af382 1178void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1179
1180/*
1181 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1182 * The byte at offset i from the start of the in-memory representation contains
1183 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1184 * lowest offsets are stored in the lowest memory addresses, then that nearly
1185 * matches QEMU's representation, which is to use an array of host-endian
1186 * uint64_t's, where the lower offsets are at the lower indices. To complete
1187 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1188 */
1189static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1190{
e03b5686 1191#if HOST_BIG_ENDIAN
538baab2
AJ
1192 int i;
1193
1194 for (i = 0; i < nr; ++i) {
1195 dst[i] = bswap64(src[i]);
1196 }
1197
1198 return dst;
1199#else
1200 return src;
1201#endif
1202}
1203
0ab5953b
RH
1204#else
1205static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1206static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1207 int n, bool a)
1208{ }
74e75564 1209#endif
778c3a06 1210
ce02049d
GB
1211void aarch64_sync_32_to_64(CPUARMState *env);
1212void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1213
ced31551
RH
1214int fp_exception_el(CPUARMState *env, int cur_el);
1215int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1216int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1217
1218/**
6ca54aa9 1219 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1220 * @env: CPUARMState
1221 * @el: exception level
6ca54aa9 1222 * @sm: streaming mode
5ef3cc56 1223 *
6ca54aa9 1224 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1225 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1226 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1227 */
6ca54aa9
RH
1228uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1229
1230/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1231uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1232
3926cc84
AG
1233static inline bool is_a64(CPUARMState *env)
1234{
1235 return env->aarch64;
1236}
1237
5d05b9d4
AL
1238/**
1239 * pmu_op_start/finish
ec7b4ce4
AF
1240 * @env: CPUARMState
1241 *
5d05b9d4
AL
1242 * Convert all PMU counters between their delta form (the typical mode when
1243 * they are enabled) and the guest-visible values. These two calls must
1244 * surround any action which might affect the counters.
ec7b4ce4 1245 */
5d05b9d4
AL
1246void pmu_op_start(CPUARMState *env);
1247void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1248
4e7beb0c
AL
1249/*
1250 * Called when a PMU counter is due to overflow
1251 */
1252void arm_pmu_timer_cb(void *opaque);
1253
033614c4
AL
1254/**
1255 * Functions to register as EL change hooks for PMU mode filtering
1256 */
1257void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1258void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1259
57a4a11b 1260/*
bf8d0969
AL
1261 * pmu_init
1262 * @cpu: ARMCPU
57a4a11b 1263 *
bf8d0969
AL
1264 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1265 * for the current configuration
57a4a11b 1266 */
bf8d0969 1267void pmu_init(ARMCPU *cpu);
57a4a11b 1268
76e3e1bc
PM
1269/* SCTLR bit meanings. Several bits have been reused in newer
1270 * versions of the architecture; in that case we define constants
1271 * for both old and new bit meanings. Code which tests against those
1272 * bits should probably check or otherwise arrange that the CPU
1273 * is the architectural version it expects.
1274 */
1275#define SCTLR_M (1U << 0)
1276#define SCTLR_A (1U << 1)
1277#define SCTLR_C (1U << 2)
1278#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1279#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1280#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1281#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1282#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1283#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1284#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1285#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1286#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1287#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1288#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1289#define SCTLR_ITD (1U << 7) /* v8 onward */
1290#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1291#define SCTLR_SED (1U << 8) /* v8 onward */
1292#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1293#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1294#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1295#define SCTLR_SW (1U << 10) /* v7 */
1296#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1297#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1298#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1299#define SCTLR_I (1U << 12)
b2af69d0
RH
1300#define SCTLR_V (1U << 13) /* AArch32 only */
1301#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1302#define SCTLR_RR (1U << 14) /* up to v7 */
1303#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1304#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1305#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1306#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1307#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1308#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1309#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1310#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1311#define SCTLR_nTWE (1U << 18) /* v8 onward */
1312#define SCTLR_WXN (1U << 19)
1313#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1314#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1315#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1316#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1317#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1318#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1319#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1320#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1321#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1322#define SCTLR_VE (1U << 24) /* up to v7 */
1323#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1324#define SCTLR_EE (1U << 25)
1325#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1326#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1327#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1328#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1329#define SCTLR_TRE (1U << 28) /* AArch32 only */
1330#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1331#define SCTLR_AFE (1U << 29) /* AArch32 only */
1332#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1333#define SCTLR_TE (1U << 30) /* AArch32 only */
1334#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1335#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1336#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
dbc678f9 1337#define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
b2af69d0
RH
1338#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1339#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1340#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1341#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1342#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1343#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1344#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1345#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1346#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1347#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1348#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1349#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1350#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1351#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1352#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1353#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1354#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1355#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1356#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1357#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1358#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1359#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1360
fab8ad39
RH
1361/* Bit definitions for CPACR (AArch32 only) */
1362FIELD(CPACR, CP10, 20, 2)
1363FIELD(CPACR, CP11, 22, 2)
1364FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1365FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1366FIELD(CPACR, ASEDIS, 31, 1)
1367
1368/* Bit definitions for CPACR_EL1 (AArch64 only) */
1369FIELD(CPACR_EL1, ZEN, 16, 2)
1370FIELD(CPACR_EL1, FPEN, 20, 2)
1371FIELD(CPACR_EL1, SMEN, 24, 2)
1372FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1373
1374/* Bit definitions for HCPTR (AArch32 only) */
1375FIELD(HCPTR, TCP10, 10, 1)
1376FIELD(HCPTR, TCP11, 11, 1)
1377FIELD(HCPTR, TASE, 15, 1)
1378FIELD(HCPTR, TTA, 20, 1)
1379FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1380FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1381
1382/* Bit definitions for CPTR_EL2 (AArch64 only) */
1383FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1384FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1385FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1386FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1387FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1388FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1389FIELD(CPTR_EL2, TTA, 28, 1)
1390FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1391FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1392
1393/* Bit definitions for CPTR_EL3 (AArch64 only) */
1394FIELD(CPTR_EL3, EZ, 8, 1)
1395FIELD(CPTR_EL3, TFP, 10, 1)
1396FIELD(CPTR_EL3, ESM, 12, 1)
1397FIELD(CPTR_EL3, TTA, 20, 1)
1398FIELD(CPTR_EL3, TAM, 30, 1)
1399FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1400
f190bd1d
PM
1401#define MDCR_MTPME (1U << 28)
1402#define MDCR_TDCC (1U << 27)
47b385da 1403#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1404#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1405#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1406#define MDCR_EPMAD (1U << 21)
1407#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1408#define MDCR_TTRF (1U << 19)
1409#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1410#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1411#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1412#define MDCR_SDD (1U << 16)
a8d64e73 1413#define MDCR_SPD (3U << 14)
187f678d
PM
1414#define MDCR_TDRA (1U << 11)
1415#define MDCR_TDOSA (1U << 10)
1416#define MDCR_TDA (1U << 9)
1417#define MDCR_TDE (1U << 8)
1418#define MDCR_HPME (1U << 7)
1419#define MDCR_TPM (1U << 6)
1420#define MDCR_TPMCR (1U << 5)
033614c4 1421#define MDCR_HPMN (0x1fU)
187f678d 1422
a8d64e73 1423/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1424#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1425 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1426 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1427
78dbbbe4
PM
1428#define CPSR_M (0x1fU)
1429#define CPSR_T (1U << 5)
1430#define CPSR_F (1U << 6)
1431#define CPSR_I (1U << 7)
1432#define CPSR_A (1U << 8)
1433#define CPSR_E (1U << 9)
1434#define CPSR_IT_2_7 (0xfc00U)
1435#define CPSR_GE (0xfU << 16)
4051e12c 1436#define CPSR_IL (1U << 20)
dc8b1853 1437#define CPSR_DIT (1U << 21)
220f508f 1438#define CPSR_PAN (1U << 22)
f2f68a78 1439#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1440#define CPSR_J (1U << 24)
1441#define CPSR_IT_0_1 (3U << 25)
1442#define CPSR_Q (1U << 27)
1443#define CPSR_V (1U << 28)
1444#define CPSR_C (1U << 29)
1445#define CPSR_Z (1U << 30)
1446#define CPSR_N (1U << 31)
9ee6e8bb 1447#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1448#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1449
1450#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1451#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1452 | CPSR_NZCV)
9ee6e8bb 1453/* Bits writable in user mode. */
268b1b3d 1454#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1455/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1456#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1457
987ab45e
PM
1458/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1459#define XPSR_EXCP 0x1ffU
1460#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1461#define XPSR_IT_2_7 CPSR_IT_2_7
1462#define XPSR_GE CPSR_GE
1463#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1464#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1465#define XPSR_IT_0_1 CPSR_IT_0_1
1466#define XPSR_Q CPSR_Q
1467#define XPSR_V CPSR_V
1468#define XPSR_C CPSR_C
1469#define XPSR_Z CPSR_Z
1470#define XPSR_N CPSR_N
1471#define XPSR_NZCV CPSR_NZCV
1472#define XPSR_IT CPSR_IT
1473
e389be16
FA
1474#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1475#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1476#define TTBCR_PD0 (1U << 4)
1477#define TTBCR_PD1 (1U << 5)
1478#define TTBCR_EPD0 (1U << 7)
1479#define TTBCR_IRGN0 (3U << 8)
1480#define TTBCR_ORGN0 (3U << 10)
1481#define TTBCR_SH0 (3U << 12)
1482#define TTBCR_T1SZ (3U << 16)
1483#define TTBCR_A1 (1U << 22)
1484#define TTBCR_EPD1 (1U << 23)
1485#define TTBCR_IRGN1 (3U << 24)
1486#define TTBCR_ORGN1 (3U << 26)
1487#define TTBCR_SH1 (1U << 28)
1488#define TTBCR_EAE (1U << 31)
1489
f04383e7
PM
1490FIELD(VTCR, T0SZ, 0, 6)
1491FIELD(VTCR, SL0, 6, 2)
1492FIELD(VTCR, IRGN0, 8, 2)
1493FIELD(VTCR, ORGN0, 10, 2)
1494FIELD(VTCR, SH0, 12, 2)
1495FIELD(VTCR, TG0, 14, 2)
1496FIELD(VTCR, PS, 16, 3)
1497FIELD(VTCR, VS, 19, 1)
1498FIELD(VTCR, HA, 21, 1)
1499FIELD(VTCR, HD, 22, 1)
1500FIELD(VTCR, HWU59, 25, 1)
1501FIELD(VTCR, HWU60, 26, 1)
1502FIELD(VTCR, HWU61, 27, 1)
1503FIELD(VTCR, HWU62, 28, 1)
1504FIELD(VTCR, NSW, 29, 1)
1505FIELD(VTCR, NSA, 30, 1)
1506FIELD(VTCR, DS, 32, 1)
1507FIELD(VTCR, SL2, 33, 1)
1508
d356312f
PM
1509/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1510 * Only these are valid when in AArch64 mode; in
1511 * AArch32 mode SPSRs are basically CPSR-format.
1512 */
f502cfc2 1513#define PSTATE_SP (1U)
d356312f
PM
1514#define PSTATE_M (0xFU)
1515#define PSTATE_nRW (1U << 4)
1516#define PSTATE_F (1U << 6)
1517#define PSTATE_I (1U << 7)
1518#define PSTATE_A (1U << 8)
1519#define PSTATE_D (1U << 9)
f6e52eaa 1520#define PSTATE_BTYPE (3U << 10)
f2f68a78 1521#define PSTATE_SSBS (1U << 12)
d356312f
PM
1522#define PSTATE_IL (1U << 20)
1523#define PSTATE_SS (1U << 21)
220f508f 1524#define PSTATE_PAN (1U << 22)
9eeb7a1c 1525#define PSTATE_UAO (1U << 23)
dc8b1853 1526#define PSTATE_DIT (1U << 24)
4b779ceb 1527#define PSTATE_TCO (1U << 25)
d356312f
PM
1528#define PSTATE_V (1U << 28)
1529#define PSTATE_C (1U << 29)
1530#define PSTATE_Z (1U << 30)
1531#define PSTATE_N (1U << 31)
1532#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1533#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1534#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1535/* Mode values for AArch64 */
1536#define PSTATE_MODE_EL3h 13
1537#define PSTATE_MODE_EL3t 12
1538#define PSTATE_MODE_EL2h 9
1539#define PSTATE_MODE_EL2t 8
1540#define PSTATE_MODE_EL1h 5
1541#define PSTATE_MODE_EL1t 4
1542#define PSTATE_MODE_EL0t 0
1543
c37e6ac9
RH
1544/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1545FIELD(SVCR, SM, 0, 1)
1546FIELD(SVCR, ZA, 1, 1)
1547
de561988
RH
1548/* Fields for SMCR_ELx. */
1549FIELD(SMCR, LEN, 0, 4)
1550FIELD(SMCR, FA64, 31, 1)
1551
de2db7ec
PM
1552/* Write a new value to v7m.exception, thus transitioning into or out
1553 * of Handler mode; this may result in a change of active stack pointer.
1554 */
1555void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1556
9e729b57
EI
1557/* Map EL and handler into a PSTATE_MODE. */
1558static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1559{
1560 return (el << 2) | handler;
1561}
1562
d356312f
PM
1563/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1564 * interprocessing, so we don't attempt to sync with the cpsr state used by
1565 * the 32 bit decoder.
1566 */
1567static inline uint32_t pstate_read(CPUARMState *env)
1568{
1569 int ZF;
1570
1571 ZF = (env->ZF == 0);
1572 return (env->NF & 0x80000000) | (ZF << 30)
1573 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1574 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1575}
1576
1577static inline void pstate_write(CPUARMState *env, uint32_t val)
1578{
1579 env->ZF = (~val) & PSTATE_Z;
1580 env->NF = val;
1581 env->CF = (val >> 29) & 1;
1582 env->VF = (val << 3) & 0x80000000;
4cc35614 1583 env->daif = val & PSTATE_DAIF;
f6e52eaa 1584 env->btype = (val >> 10) & 3;
d356312f
PM
1585 env->pstate = val & ~CACHED_PSTATE_BITS;
1586}
1587
b5ff1b31 1588/* Return the current CPSR value. */
2f4a40e5 1589uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1590
1591typedef enum CPSRWriteType {
1592 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1593 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1594 CPSRWriteRaw = 2,
1595 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1596 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1597} CPSRWriteType;
1598
e784807c
PM
1599/*
1600 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1601 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1602 * correspond to TB flags bits cached in the hflags, unless @write_type
1603 * is CPSRWriteRaw.
1604 */
50866ba5
PM
1605void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1606 CPSRWriteType write_type);
9ee6e8bb
PB
1607
1608/* Return the current xPSR value. */
1609static inline uint32_t xpsr_read(CPUARMState *env)
1610{
1611 int ZF;
6fbe23d5
PB
1612 ZF = (env->ZF == 0);
1613 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1614 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1615 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1616 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1617 | (env->GE << 16)
9ee6e8bb 1618 | env->v7m.exception;
b5ff1b31
FB
1619}
1620
9ee6e8bb
PB
1621/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1622static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1623{
987ab45e
PM
1624 if (mask & XPSR_NZCV) {
1625 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1626 env->NF = val;
9ee6e8bb
PB
1627 env->CF = (val >> 29) & 1;
1628 env->VF = (val << 3) & 0x80000000;
1629 }
987ab45e
PM
1630 if (mask & XPSR_Q) {
1631 env->QF = ((val & XPSR_Q) != 0);
1632 }
f1e2598c
PM
1633 if (mask & XPSR_GE) {
1634 env->GE = (val & XPSR_GE) >> 16;
1635 }
04c9c81b 1636#ifndef CONFIG_USER_ONLY
987ab45e
PM
1637 if (mask & XPSR_T) {
1638 env->thumb = ((val & XPSR_T) != 0);
1639 }
1640 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1641 env->condexec_bits &= ~3;
1642 env->condexec_bits |= (val >> 25) & 3;
1643 }
987ab45e 1644 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1645 env->condexec_bits &= 3;
1646 env->condexec_bits |= (val >> 8) & 0xfc;
1647 }
987ab45e 1648 if (mask & XPSR_EXCP) {
de2db7ec
PM
1649 /* Note that this only happens on exception exit */
1650 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1651 }
04c9c81b 1652#endif
9ee6e8bb
PB
1653}
1654
f149e3e8
EI
1655#define HCR_VM (1ULL << 0)
1656#define HCR_SWIO (1ULL << 1)
1657#define HCR_PTW (1ULL << 2)
1658#define HCR_FMO (1ULL << 3)
1659#define HCR_IMO (1ULL << 4)
1660#define HCR_AMO (1ULL << 5)
1661#define HCR_VF (1ULL << 6)
1662#define HCR_VI (1ULL << 7)
1663#define HCR_VSE (1ULL << 8)
1664#define HCR_FB (1ULL << 9)
1665#define HCR_BSU_MASK (3ULL << 10)
1666#define HCR_DC (1ULL << 12)
1667#define HCR_TWI (1ULL << 13)
1668#define HCR_TWE (1ULL << 14)
1669#define HCR_TID0 (1ULL << 15)
1670#define HCR_TID1 (1ULL << 16)
1671#define HCR_TID2 (1ULL << 17)
1672#define HCR_TID3 (1ULL << 18)
1673#define HCR_TSC (1ULL << 19)
1674#define HCR_TIDCP (1ULL << 20)
1675#define HCR_TACR (1ULL << 21)
1676#define HCR_TSW (1ULL << 22)
099bf53b 1677#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1678#define HCR_TPU (1ULL << 24)
1679#define HCR_TTLB (1ULL << 25)
1680#define HCR_TVM (1ULL << 26)
1681#define HCR_TGE (1ULL << 27)
1682#define HCR_TDZ (1ULL << 28)
1683#define HCR_HCD (1ULL << 29)
1684#define HCR_TRVM (1ULL << 30)
1685#define HCR_RW (1ULL << 31)
1686#define HCR_CD (1ULL << 32)
1687#define HCR_ID (1ULL << 33)
ac656b16 1688#define HCR_E2H (1ULL << 34)
099bf53b
RH
1689#define HCR_TLOR (1ULL << 35)
1690#define HCR_TERR (1ULL << 36)
1691#define HCR_TEA (1ULL << 37)
1692#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1693#define HCR_TME (1ULL << 39)
099bf53b
RH
1694#define HCR_APK (1ULL << 40)
1695#define HCR_API (1ULL << 41)
1696#define HCR_NV (1ULL << 42)
1697#define HCR_NV1 (1ULL << 43)
1698#define HCR_AT (1ULL << 44)
1699#define HCR_NV2 (1ULL << 45)
1700#define HCR_FWB (1ULL << 46)
1701#define HCR_FIEN (1ULL << 47)
aa3cc42c 1702#define HCR_GPF (1ULL << 48)
099bf53b
RH
1703#define HCR_TID4 (1ULL << 49)
1704#define HCR_TICAB (1ULL << 50)
e0a38bb3 1705#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1706#define HCR_TOCU (1ULL << 52)
e0a38bb3 1707#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1708#define HCR_TTLBIS (1ULL << 54)
1709#define HCR_TTLBOS (1ULL << 55)
1710#define HCR_ATA (1ULL << 56)
1711#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1712#define HCR_TID5 (1ULL << 58)
1713#define HCR_TWEDEN (1ULL << 59)
1714#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1715
5814d587
RH
1716#define HCRX_ENAS0 (1ULL << 0)
1717#define HCRX_ENALS (1ULL << 1)
1718#define HCRX_ENASR (1ULL << 2)
1719#define HCRX_FNXS (1ULL << 3)
1720#define HCRX_FGTNXS (1ULL << 4)
1721#define HCRX_SMPME (1ULL << 5)
1722#define HCRX_TALLINT (1ULL << 6)
1723#define HCRX_VINMI (1ULL << 7)
1724#define HCRX_VFNMI (1ULL << 8)
1725#define HCRX_CMOW (1ULL << 9)
1726#define HCRX_MCE2 (1ULL << 10)
1727#define HCRX_MSCEN (1ULL << 11)
1728
9861248f
RDC
1729#define HPFAR_NS (1ULL << 63)
1730
06f2adcc
JF
1731#define SCR_NS (1ULL << 0)
1732#define SCR_IRQ (1ULL << 1)
1733#define SCR_FIQ (1ULL << 2)
1734#define SCR_EA (1ULL << 3)
1735#define SCR_FW (1ULL << 4)
1736#define SCR_AW (1ULL << 5)
1737#define SCR_NET (1ULL << 6)
1738#define SCR_SMD (1ULL << 7)
1739#define SCR_HCE (1ULL << 8)
1740#define SCR_SIF (1ULL << 9)
1741#define SCR_RW (1ULL << 10)
1742#define SCR_ST (1ULL << 11)
1743#define SCR_TWI (1ULL << 12)
1744#define SCR_TWE (1ULL << 13)
1745#define SCR_TLOR (1ULL << 14)
1746#define SCR_TERR (1ULL << 15)
1747#define SCR_APK (1ULL << 16)
1748#define SCR_API (1ULL << 17)
1749#define SCR_EEL2 (1ULL << 18)
1750#define SCR_EASE (1ULL << 19)
1751#define SCR_NMEA (1ULL << 20)
1752#define SCR_FIEN (1ULL << 21)
1753#define SCR_ENSCXT (1ULL << 25)
1754#define SCR_ATA (1ULL << 26)
1755#define SCR_FGTEN (1ULL << 27)
1756#define SCR_ECVEN (1ULL << 28)
1757#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1758#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1759#define SCR_TME (1ULL << 34)
1760#define SCR_AMVOFFEN (1ULL << 35)
1761#define SCR_ENAS0 (1ULL << 36)
1762#define SCR_ADEN (1ULL << 37)
1763#define SCR_HXEN (1ULL << 38)
1764#define SCR_TRNDR (1ULL << 40)
1765#define SCR_ENTP2 (1ULL << 41)
1766#define SCR_GPF (1ULL << 48)
aa3cc42c 1767#define SCR_NSE (1ULL << 62)
64e0e2de 1768
cc7613bf 1769#define HSTR_TTEE (1 << 16)
8e228c9e 1770#define HSTR_TJDBX (1 << 17)
cc7613bf 1771
f6fc36de
JPB
1772#define CNTHCTL_CNTVMASK (1 << 18)
1773#define CNTHCTL_CNTPMASK (1 << 19)
1774
01653295
PM
1775/* Return the current FPSCR value. */
1776uint32_t vfp_get_fpscr(CPUARMState *env);
1777void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1778
d81ce0ef
AB
1779/* FPCR, Floating Point Control Register
1780 * FPSR, Floating Poiht Status Register
1781 *
1782 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1783 * FPCR and FPSR. However since they still use non-overlapping bits
1784 * we store the underlying state in fpscr and just mask on read/write.
1785 */
1786#define FPSR_MASK 0xf800009f
0b62159b 1787#define FPCR_MASK 0x07ff9f00
d81ce0ef 1788
a15945d9
PM
1789#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1790#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1791#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1792#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1793#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1794#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1795#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1796#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1797#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1798#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1799#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1800#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1801#define FPCR_V (1 << 28) /* FP overflow flag */
1802#define FPCR_C (1 << 29) /* FP carry flag */
1803#define FPCR_Z (1 << 30) /* FP zero flag */
1804#define FPCR_N (1 << 31) /* FP negative flag */
1805
99c7834f
PM
1806#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1807#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1808#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1809
9542c30b
PM
1810#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1811#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1812
f903fa22
PM
1813static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1814{
1815 return vfp_get_fpscr(env) & FPSR_MASK;
1816}
1817
1818static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1819{
1820 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1821 vfp_set_fpscr(env, new_fpscr);
1822}
1823
1824static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1825{
1826 return vfp_get_fpscr(env) & FPCR_MASK;
1827}
1828
1829static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1830{
1831 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1832 vfp_set_fpscr(env, new_fpscr);
1833}
1834
b5ff1b31
FB
1835enum arm_cpu_mode {
1836 ARM_CPU_MODE_USR = 0x10,
1837 ARM_CPU_MODE_FIQ = 0x11,
1838 ARM_CPU_MODE_IRQ = 0x12,
1839 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1840 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1841 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1842 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1843 ARM_CPU_MODE_UND = 0x1b,
1844 ARM_CPU_MODE_SYS = 0x1f
1845};
1846
40f137e1
PB
1847/* VFP system registers. */
1848#define ARM_VFP_FPSID 0
1849#define ARM_VFP_FPSCR 1
a50c0f51 1850#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1851#define ARM_VFP_MVFR1 6
1852#define ARM_VFP_MVFR0 7
40f137e1
PB
1853#define ARM_VFP_FPEXC 8
1854#define ARM_VFP_FPINST 9
1855#define ARM_VFP_FPINST2 10
9542c30b
PM
1856/* These ones are M-profile only */
1857#define ARM_VFP_FPSCR_NZCVQC 2
1858#define ARM_VFP_VPR 12
1859#define ARM_VFP_P0 13
1860#define ARM_VFP_FPCXT_NS 14
1861#define ARM_VFP_FPCXT_S 15
40f137e1 1862
32a290b8
PM
1863/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1864#define QEMU_VFP_FPSCR_NZCV 0xffff
1865
18c9b560 1866/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1867#define ARM_IWMMXT_wCID 0
1868#define ARM_IWMMXT_wCon 1
1869#define ARM_IWMMXT_wCSSF 2
1870#define ARM_IWMMXT_wCASF 3
1871#define ARM_IWMMXT_wCGR0 8
1872#define ARM_IWMMXT_wCGR1 9
1873#define ARM_IWMMXT_wCGR2 10
1874#define ARM_IWMMXT_wCGR3 11
18c9b560 1875
2c4da50d
PM
1876/* V7M CCR bits */
1877FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1878FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1879FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1880FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1881FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1882FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1883FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1884FIELD(V7M_CCR, DC, 16, 1)
1885FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1886FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1887FIELD(V7M_CCR, LOB, 19, 1)
1888FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1889
24ac0fb1
PM
1890/* V7M SCR bits */
1891FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1892FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1893FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1894FIELD(V7M_SCR, SEVONPEND, 4, 1)
1895
3b2e9344
PM
1896/* V7M AIRCR bits */
1897FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1898FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1899FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1900FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1901FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1902FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1903FIELD(V7M_AIRCR, PRIS, 14, 1)
1904FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1905FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1906
2c4da50d
PM
1907/* V7M CFSR bits for MMFSR */
1908FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1909FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1910FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1911FIELD(V7M_CFSR, MSTKERR, 4, 1)
1912FIELD(V7M_CFSR, MLSPERR, 5, 1)
1913FIELD(V7M_CFSR, MMARVALID, 7, 1)
1914
1915/* V7M CFSR bits for BFSR */
1916FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1917FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1918FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1919FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1920FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1921FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1922FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1923
1924/* V7M CFSR bits for UFSR */
1925FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1926FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1927FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1928FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1929FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1930FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1931FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1932
334e8dad
PM
1933/* V7M CFSR bit masks covering all of the subregister bits */
1934FIELD(V7M_CFSR, MMFSR, 0, 8)
1935FIELD(V7M_CFSR, BFSR, 8, 8)
1936FIELD(V7M_CFSR, UFSR, 16, 16)
1937
2c4da50d
PM
1938/* V7M HFSR bits */
1939FIELD(V7M_HFSR, VECTTBL, 1, 1)
1940FIELD(V7M_HFSR, FORCED, 30, 1)
1941FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1942
1943/* V7M DFSR bits */
1944FIELD(V7M_DFSR, HALTED, 0, 1)
1945FIELD(V7M_DFSR, BKPT, 1, 1)
1946FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1947FIELD(V7M_DFSR, VCATCH, 3, 1)
1948FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1949
bed079da
PM
1950/* V7M SFSR bits */
1951FIELD(V7M_SFSR, INVEP, 0, 1)
1952FIELD(V7M_SFSR, INVIS, 1, 1)
1953FIELD(V7M_SFSR, INVER, 2, 1)
1954FIELD(V7M_SFSR, AUVIOL, 3, 1)
1955FIELD(V7M_SFSR, INVTRAN, 4, 1)
1956FIELD(V7M_SFSR, LSPERR, 5, 1)
1957FIELD(V7M_SFSR, SFARVALID, 6, 1)
1958FIELD(V7M_SFSR, LSERR, 7, 1)
1959
29c483a5
MD
1960/* v7M MPU_CTRL bits */
1961FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1962FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1963FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1964
43bbce7f
PM
1965/* v7M CLIDR bits */
1966FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1967FIELD(V7M_CLIDR, LOUIS, 21, 3)
1968FIELD(V7M_CLIDR, LOC, 24, 3)
1969FIELD(V7M_CLIDR, LOUU, 27, 3)
1970FIELD(V7M_CLIDR, ICB, 30, 2)
1971
1972FIELD(V7M_CSSELR, IND, 0, 1)
1973FIELD(V7M_CSSELR, LEVEL, 1, 3)
1974/* We use the combination of InD and Level to index into cpu->ccsidr[];
1975 * define a mask for this and check that it doesn't permit running off
1976 * the end of the array.
1977 */
1978FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1979
1980/* v7M FPCCR bits */
1981FIELD(V7M_FPCCR, LSPACT, 0, 1)
1982FIELD(V7M_FPCCR, USER, 1, 1)
1983FIELD(V7M_FPCCR, S, 2, 1)
1984FIELD(V7M_FPCCR, THREAD, 3, 1)
1985FIELD(V7M_FPCCR, HFRDY, 4, 1)
1986FIELD(V7M_FPCCR, MMRDY, 5, 1)
1987FIELD(V7M_FPCCR, BFRDY, 6, 1)
1988FIELD(V7M_FPCCR, SFRDY, 7, 1)
1989FIELD(V7M_FPCCR, MONRDY, 8, 1)
1990FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1991FIELD(V7M_FPCCR, UFRDY, 10, 1)
1992FIELD(V7M_FPCCR, RES0, 11, 15)
1993FIELD(V7M_FPCCR, TS, 26, 1)
1994FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1995FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1996FIELD(V7M_FPCCR, LSPENS, 29, 1)
1997FIELD(V7M_FPCCR, LSPEN, 30, 1)
1998FIELD(V7M_FPCCR, ASPEN, 31, 1)
1999/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
2000#define R_V7M_FPCCR_BANKED_MASK \
2001 (R_V7M_FPCCR_LSPACT_MASK | \
2002 R_V7M_FPCCR_USER_MASK | \
2003 R_V7M_FPCCR_THREAD_MASK | \
2004 R_V7M_FPCCR_MMRDY_MASK | \
2005 R_V7M_FPCCR_SPLIMVIOL_MASK | \
2006 R_V7M_FPCCR_UFRDY_MASK | \
2007 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 2008
7c3d47da
PM
2009/* v7M VPR bits */
2010FIELD(V7M_VPR, P0, 0, 16)
2011FIELD(V7M_VPR, MASK01, 16, 4)
2012FIELD(V7M_VPR, MASK23, 20, 4)
2013
a62e62af
RH
2014/*
2015 * System register ID fields.
2016 */
2a14526a
LL
2017FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2018FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2019FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2020FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2021FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2022FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2023FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2024FIELD(CLIDR_EL1, LOUIS, 21, 3)
2025FIELD(CLIDR_EL1, LOC, 24, 3)
2026FIELD(CLIDR_EL1, LOUU, 27, 3)
2027FIELD(CLIDR_EL1, ICB, 30, 3)
2028
2029/* When FEAT_CCIDX is implemented */
2030FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2031FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2032FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2033
2034/* When FEAT_CCIDX is not implemented */
2035FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2036FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2037FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2038
2039FIELD(CTR_EL0, IMINLINE, 0, 4)
2040FIELD(CTR_EL0, L1IP, 14, 2)
2041FIELD(CTR_EL0, DMINLINE, 16, 4)
2042FIELD(CTR_EL0, ERG, 20, 4)
2043FIELD(CTR_EL0, CWG, 24, 4)
2044FIELD(CTR_EL0, IDC, 28, 1)
2045FIELD(CTR_EL0, DIC, 29, 1)
2046FIELD(CTR_EL0, TMINLINE, 32, 6)
2047
2bd5f41c
AB
2048FIELD(MIDR_EL1, REVISION, 0, 4)
2049FIELD(MIDR_EL1, PARTNUM, 4, 12)
2050FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2051FIELD(MIDR_EL1, VARIANT, 20, 4)
2052FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2053
a62e62af
RH
2054FIELD(ID_ISAR0, SWAP, 0, 4)
2055FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2056FIELD(ID_ISAR0, BITFIELD, 8, 4)
2057FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2058FIELD(ID_ISAR0, COPROC, 16, 4)
2059FIELD(ID_ISAR0, DEBUG, 20, 4)
2060FIELD(ID_ISAR0, DIVIDE, 24, 4)
2061
2062FIELD(ID_ISAR1, ENDIAN, 0, 4)
2063FIELD(ID_ISAR1, EXCEPT, 4, 4)
2064FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2065FIELD(ID_ISAR1, EXTEND, 12, 4)
2066FIELD(ID_ISAR1, IFTHEN, 16, 4)
2067FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2068FIELD(ID_ISAR1, INTERWORK, 24, 4)
2069FIELD(ID_ISAR1, JAZELLE, 28, 4)
2070
2071FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2072FIELD(ID_ISAR2, MEMHINT, 4, 4)
2073FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2074FIELD(ID_ISAR2, MULT, 12, 4)
2075FIELD(ID_ISAR2, MULTS, 16, 4)
2076FIELD(ID_ISAR2, MULTU, 20, 4)
2077FIELD(ID_ISAR2, PSR_AR, 24, 4)
2078FIELD(ID_ISAR2, REVERSAL, 28, 4)
2079
2080FIELD(ID_ISAR3, SATURATE, 0, 4)
2081FIELD(ID_ISAR3, SIMD, 4, 4)
2082FIELD(ID_ISAR3, SVC, 8, 4)
2083FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2084FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2085FIELD(ID_ISAR3, T32COPY, 20, 4)
2086FIELD(ID_ISAR3, TRUENOP, 24, 4)
2087FIELD(ID_ISAR3, T32EE, 28, 4)
2088
2089FIELD(ID_ISAR4, UNPRIV, 0, 4)
2090FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2091FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2092FIELD(ID_ISAR4, SMC, 12, 4)
2093FIELD(ID_ISAR4, BARRIER, 16, 4)
2094FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2095FIELD(ID_ISAR4, PSR_M, 24, 4)
2096FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2097
2098FIELD(ID_ISAR5, SEVL, 0, 4)
2099FIELD(ID_ISAR5, AES, 4, 4)
2100FIELD(ID_ISAR5, SHA1, 8, 4)
2101FIELD(ID_ISAR5, SHA2, 12, 4)
2102FIELD(ID_ISAR5, CRC32, 16, 4)
2103FIELD(ID_ISAR5, RDM, 24, 4)
2104FIELD(ID_ISAR5, VCMA, 28, 4)
2105
2106FIELD(ID_ISAR6, JSCVT, 0, 4)
2107FIELD(ID_ISAR6, DP, 4, 4)
2108FIELD(ID_ISAR6, FHM, 8, 4)
2109FIELD(ID_ISAR6, SB, 12, 4)
2110FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2111FIELD(ID_ISAR6, BF16, 20, 4)
2112FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2113
0ae0326b
PM
2114FIELD(ID_MMFR0, VMSA, 0, 4)
2115FIELD(ID_MMFR0, PMSA, 4, 4)
2116FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2117FIELD(ID_MMFR0, SHARELVL, 12, 4)
2118FIELD(ID_MMFR0, TCM, 16, 4)
2119FIELD(ID_MMFR0, AUXREG, 20, 4)
2120FIELD(ID_MMFR0, FCSE, 24, 4)
2121FIELD(ID_MMFR0, INNERSHR, 28, 4)
2122
bd78b6be
LL
2123FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2124FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2125FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2126FIELD(ID_MMFR1, L1UNISW, 12, 4)
2127FIELD(ID_MMFR1, L1HVD, 16, 4)
2128FIELD(ID_MMFR1, L1UNI, 20, 4)
2129FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2130FIELD(ID_MMFR1, BPRED, 28, 4)
2131
2132FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2133FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2134FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2135FIELD(ID_MMFR2, HVDTLB, 12, 4)
2136FIELD(ID_MMFR2, UNITLB, 16, 4)
2137FIELD(ID_MMFR2, MEMBARR, 20, 4)
2138FIELD(ID_MMFR2, WFISTALL, 24, 4)
2139FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2140
3d6ad6bb
RH
2141FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2142FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2143FIELD(ID_MMFR3, BPMAINT, 8, 4)
2144FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2145FIELD(ID_MMFR3, PAN, 16, 4)
2146FIELD(ID_MMFR3, COHWALK, 20, 4)
2147FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2148FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2149
ab638a32
RH
2150FIELD(ID_MMFR4, SPECSEI, 0, 4)
2151FIELD(ID_MMFR4, AC2, 4, 4)
2152FIELD(ID_MMFR4, XNX, 8, 4)
2153FIELD(ID_MMFR4, CNP, 12, 4)
2154FIELD(ID_MMFR4, HPDS, 16, 4)
2155FIELD(ID_MMFR4, LSM, 20, 4)
2156FIELD(ID_MMFR4, CCIDX, 24, 4)
2157FIELD(ID_MMFR4, EVT, 28, 4)
2158
bd78b6be 2159FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2160FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2161
46f4976f
PM
2162FIELD(ID_PFR0, STATE0, 0, 4)
2163FIELD(ID_PFR0, STATE1, 4, 4)
2164FIELD(ID_PFR0, STATE2, 8, 4)
2165FIELD(ID_PFR0, STATE3, 12, 4)
2166FIELD(ID_PFR0, CSV2, 16, 4)
2167FIELD(ID_PFR0, AMU, 20, 4)
2168FIELD(ID_PFR0, DIT, 24, 4)
2169FIELD(ID_PFR0, RAS, 28, 4)
2170
dfc523a8
PM
2171FIELD(ID_PFR1, PROGMOD, 0, 4)
2172FIELD(ID_PFR1, SECURITY, 4, 4)
2173FIELD(ID_PFR1, MPROGMOD, 8, 4)
2174FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2175FIELD(ID_PFR1, GENTIMER, 16, 4)
2176FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2177FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2178FIELD(ID_PFR1, GIC, 28, 4)
2179
bd78b6be
LL
2180FIELD(ID_PFR2, CSV3, 0, 4)
2181FIELD(ID_PFR2, SSBS, 4, 4)
2182FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2183
a62e62af
RH
2184FIELD(ID_AA64ISAR0, AES, 4, 4)
2185FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2186FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2187FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2188FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
4d9eb296 2189FIELD(ID_AA64ISAR0, TME, 24, 4)
a62e62af
RH
2190FIELD(ID_AA64ISAR0, RDM, 28, 4)
2191FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2192FIELD(ID_AA64ISAR0, SM3, 36, 4)
2193FIELD(ID_AA64ISAR0, SM4, 40, 4)
2194FIELD(ID_AA64ISAR0, DP, 44, 4)
2195FIELD(ID_AA64ISAR0, FHM, 48, 4)
2196FIELD(ID_AA64ISAR0, TS, 52, 4)
2197FIELD(ID_AA64ISAR0, TLB, 56, 4)
2198FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2199
2200FIELD(ID_AA64ISAR1, DPB, 0, 4)
2201FIELD(ID_AA64ISAR1, APA, 4, 4)
2202FIELD(ID_AA64ISAR1, API, 8, 4)
2203FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2204FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2205FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2206FIELD(ID_AA64ISAR1, GPA, 24, 4)
2207FIELD(ID_AA64ISAR1, GPI, 28, 4)
2208FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2209FIELD(ID_AA64ISAR1, SB, 36, 4)
2210FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2211FIELD(ID_AA64ISAR1, BF16, 44, 4)
2212FIELD(ID_AA64ISAR1, DGH, 48, 4)
2213FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2214FIELD(ID_AA64ISAR1, XS, 56, 4)
2215FIELD(ID_AA64ISAR1, LS64, 60, 4)
2216
2217FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2218FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2219FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2220FIELD(ID_AA64ISAR2, APA3, 12, 4)
2221FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2222FIELD(ID_AA64ISAR2, BC, 20, 4)
2223FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
4d9eb296
PM
2224FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2225FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2226FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2227FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2228FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2229FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2230FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
a62e62af 2231
cd208a1c
RH
2232FIELD(ID_AA64PFR0, EL0, 0, 4)
2233FIELD(ID_AA64PFR0, EL1, 4, 4)
2234FIELD(ID_AA64PFR0, EL2, 8, 4)
2235FIELD(ID_AA64PFR0, EL3, 12, 4)
2236FIELD(ID_AA64PFR0, FP, 16, 4)
2237FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2238FIELD(ID_AA64PFR0, GIC, 24, 4)
2239FIELD(ID_AA64PFR0, RAS, 28, 4)
2240FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2241FIELD(ID_AA64PFR0, SEL2, 36, 4)
2242FIELD(ID_AA64PFR0, MPAM, 40, 4)
2243FIELD(ID_AA64PFR0, AMU, 44, 4)
2244FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2245FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2246FIELD(ID_AA64PFR0, CSV2, 56, 4)
2247FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2248
be53b6f4 2249FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2250FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2251FIELD(ID_AA64PFR1, MTE, 8, 4)
2252FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2253FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2254FIELD(ID_AA64PFR1, SME, 24, 4)
2255FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2256FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2257FIELD(ID_AA64PFR1, NMI, 36, 4)
4d9eb296
PM
2258FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2259FIELD(ID_AA64PFR1, GCS, 44, 4)
2260FIELD(ID_AA64PFR1, THE, 48, 4)
2261FIELD(ID_AA64PFR1, MTEX, 52, 4)
2262FIELD(ID_AA64PFR1, DF2, 56, 4)
2263FIELD(ID_AA64PFR1, PFAR, 60, 4)
be53b6f4 2264
3dc91ddb
PM
2265FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2266FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2267FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2268FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2269FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2270FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2271FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2272FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2273FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2274FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2275FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2276FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2277FIELD(ID_AA64MMFR0, FGT, 56, 4)
2278FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2279
2280FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2281FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2282FIELD(ID_AA64MMFR1, VH, 8, 4)
2283FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2284FIELD(ID_AA64MMFR1, LO, 16, 4)
2285FIELD(ID_AA64MMFR1, PAN, 20, 4)
2286FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2287FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2288FIELD(ID_AA64MMFR1, TWED, 32, 4)
2289FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2290FIELD(ID_AA64MMFR1, HCX, 40, 4)
2291FIELD(ID_AA64MMFR1, AFP, 44, 4)
2292FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2293FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2294FIELD(ID_AA64MMFR1, CMOW, 56, 4)
4d9eb296 2295FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
3dc91ddb 2296
64761e10
RH
2297FIELD(ID_AA64MMFR2, CNP, 0, 4)
2298FIELD(ID_AA64MMFR2, UAO, 4, 4)
2299FIELD(ID_AA64MMFR2, LSM, 8, 4)
2300FIELD(ID_AA64MMFR2, IESB, 12, 4)
2301FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2302FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2303FIELD(ID_AA64MMFR2, NV, 24, 4)
2304FIELD(ID_AA64MMFR2, ST, 28, 4)
2305FIELD(ID_AA64MMFR2, AT, 32, 4)
2306FIELD(ID_AA64MMFR2, IDS, 36, 4)
2307FIELD(ID_AA64MMFR2, FWB, 40, 4)
2308FIELD(ID_AA64MMFR2, TTL, 48, 4)
2309FIELD(ID_AA64MMFR2, BBM, 52, 4)
2310FIELD(ID_AA64MMFR2, EVT, 56, 4)
2311FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2312
ceb2744b
PM
2313FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2314FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2315FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2316FIELD(ID_AA64DFR0, BRPS, 12, 4)
4d9eb296 2317FIELD(ID_AA64DFR0, PMSS, 16, 4)
ceb2744b 2318FIELD(ID_AA64DFR0, WRPS, 20, 4)
4d9eb296 2319FIELD(ID_AA64DFR0, SEBEP, 24, 4)
ceb2744b
PM
2320FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2321FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2322FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2323FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2324FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2325FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b 2326FIELD(ID_AA64DFR0, BRBE, 52, 4)
4d9eb296 2327FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
c42fb26b 2328FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2329
2dc10fa2
RH
2330FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2331FIELD(ID_AA64ZFR0, AES, 4, 4)
2332FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2333FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
4d9eb296 2334FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2dc10fa2
RH
2335FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2336FIELD(ID_AA64ZFR0, SM4, 40, 4)
2337FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2338FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2339FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2340
414c54d5 2341FIELD(ID_AA64SMFR0, F32F32, 32, 1)
4d9eb296 2342FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
414c54d5
RH
2343FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2344FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2345FIELD(ID_AA64SMFR0, I8I32, 36, 4)
4d9eb296
PM
2346FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2347FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2348FIELD(ID_AA64SMFR0, I16I32, 44, 4)
414c54d5
RH
2349FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2350FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2351FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2352FIELD(ID_AA64SMFR0, FA64, 63, 1)
2353
beceb99c
AL
2354FIELD(ID_DFR0, COPDBG, 0, 4)
2355FIELD(ID_DFR0, COPSDBG, 4, 4)
2356FIELD(ID_DFR0, MMAPDBG, 8, 4)
2357FIELD(ID_DFR0, COPTRC, 12, 4)
2358FIELD(ID_DFR0, MMAPTRC, 16, 4)
2359FIELD(ID_DFR0, MPROFDBG, 20, 4)
2360FIELD(ID_DFR0, PERFMON, 24, 4)
2361FIELD(ID_DFR0, TRACEFILT, 28, 4)
2362
bd78b6be 2363FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2364FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2365
88ce6c6e
PM
2366FIELD(DBGDIDR, SE_IMP, 12, 1)
2367FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2368FIELD(DBGDIDR, VERSION, 16, 4)
2369FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2370FIELD(DBGDIDR, BRPS, 24, 4)
2371FIELD(DBGDIDR, WRPS, 28, 4)
2372
f94a6df5
PM
2373FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2374FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2375FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2376FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2377FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2378FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2379FIELD(DBGDEVID, AUXREGS, 24, 4)
2380FIELD(DBGDEVID, CIDMASK, 28, 4)
2381
602f6e42
PM
2382FIELD(MVFR0, SIMDREG, 0, 4)
2383FIELD(MVFR0, FPSP, 4, 4)
2384FIELD(MVFR0, FPDP, 8, 4)
2385FIELD(MVFR0, FPTRAP, 12, 4)
2386FIELD(MVFR0, FPDIVIDE, 16, 4)
2387FIELD(MVFR0, FPSQRT, 20, 4)
2388FIELD(MVFR0, FPSHVEC, 24, 4)
2389FIELD(MVFR0, FPROUND, 28, 4)
2390
2391FIELD(MVFR1, FPFTZ, 0, 4)
2392FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2393FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2394FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2395FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2396FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2397FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2398FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2399FIELD(MVFR1, FPHP, 24, 4)
2400FIELD(MVFR1, SIMDFMAC, 28, 4)
2401
2402FIELD(MVFR2, SIMDMISC, 0, 4)
2403FIELD(MVFR2, FPMISC, 4, 4)
2404
ef1febe7
RH
2405FIELD(GPCCR, PPS, 0, 3)
2406FIELD(GPCCR, IRGN, 8, 2)
2407FIELD(GPCCR, ORGN, 10, 2)
2408FIELD(GPCCR, SH, 12, 2)
2409FIELD(GPCCR, PGS, 14, 2)
2410FIELD(GPCCR, GPC, 16, 1)
2411FIELD(GPCCR, GPCP, 17, 1)
2412FIELD(GPCCR, L0GPTSZ, 20, 4)
2413
2414FIELD(MFAR, FPA, 12, 40)
2415FIELD(MFAR, NSE, 62, 1)
2416FIELD(MFAR, NS, 63, 1)
2417
43bbce7f
PM
2418QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2419
ce854d7c
BC
2420/* If adding a feature bit which corresponds to a Linux ELF
2421 * HWCAP bit, remember to update the feature-bit-to-hwcap
2422 * mapping in linux-user/elfload.c:get_elf_hwcap().
2423 */
40f137e1 2424enum arm_features {
c1713132
AZ
2425 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2426 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2427 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2428 ARM_FEATURE_V6,
2429 ARM_FEATURE_V6K,
2430 ARM_FEATURE_V7,
2431 ARM_FEATURE_THUMB2,
452a0955 2432 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2433 ARM_FEATURE_NEON,
9ee6e8bb 2434 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2435 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2436 ARM_FEATURE_THUMB2EE,
be5e7a76 2437 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2438 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2439 ARM_FEATURE_V4T,
2440 ARM_FEATURE_V5,
5bc95aa2 2441 ARM_FEATURE_STRONGARM,
906879a9 2442 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2443 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2444 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2445 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2446 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2447 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2448 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2449 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2450 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2451 ARM_FEATURE_V8,
3926cc84 2452 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2453 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2454 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2455 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2456 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2457 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2458 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2459 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2460 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2461 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2462 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2463};
2464
2465static inline int arm_feature(CPUARMState *env, int feature)
2466{
918f5dca 2467 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2468}
2469
0df9142d
AJ
2470void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2471
fcc7404e 2472/*
5d28ac0c
RH
2473 * ARM v9 security states.
2474 * The ordering of the enumeration corresponds to the low 2 bits
2475 * of the GPI value, and (except for Root) the concat of NSE:NS.
2476 */
2477
2478typedef enum ARMSecuritySpace {
2479 ARMSS_Secure = 0,
2480 ARMSS_NonSecure = 1,
2481 ARMSS_Root = 2,
2482 ARMSS_Realm = 3,
2483} ARMSecuritySpace;
2484
2485/* Return true if @space is secure, in the pre-v9 sense. */
2486static inline bool arm_space_is_secure(ARMSecuritySpace space)
2487{
2488 return space == ARMSS_Secure || space == ARMSS_Root;
2489}
2490
2491/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2492static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2493{
2494 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2495}
2496
2497#if !defined(CONFIG_USER_ONLY)
2498/**
2499 * arm_security_space_below_el3:
2500 * @env: cpu context
2501 *
2502 * Return the security space of exception levels below EL3, following
2503 * an exception return to those levels. Unlike arm_security_space,
2504 * this doesn't care about the current EL.
2505 */
2506ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2507
2508/**
2509 * arm_is_secure_below_el3:
2510 * @env: cpu context
2511 *
fcc7404e 2512 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2513 * or would be following an exception return to those levels.
19e0fefa
FA
2514 */
2515static inline bool arm_is_secure_below_el3(CPUARMState *env)
2516{
5d28ac0c
RH
2517 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2518 return ss == ARMSS_Secure;
19e0fefa
FA
2519}
2520
71205876
PM
2521/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2522static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2523{
fcc7404e 2524 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2525 if (arm_feature(env, ARM_FEATURE_EL3)) {
2526 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2527 /* CPU currently in AArch64 state and EL3 */
2528 return true;
2529 } else if (!is_a64(env) &&
2530 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2531 /* CPU currently in AArch32 state and monitor mode */
2532 return true;
2533 }
2534 }
71205876
PM
2535 return false;
2536}
2537
5d28ac0c
RH
2538/**
2539 * arm_security_space:
2540 * @env: cpu context
2541 *
2542 * Return the current security space of the cpu.
2543 */
2544ARMSecuritySpace arm_security_space(CPUARMState *env);
2545
2546/**
2547 * arm_is_secure:
2548 * @env: cpu context
2549 *
2550 * Return true if the processor is in secure state.
2551 */
71205876
PM
2552static inline bool arm_is_secure(CPUARMState *env)
2553{
5d28ac0c 2554 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2555}
2556
f3ee5160
RDC
2557/*
2558 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
4477020d 2559 * This corresponds to the pseudocode EL2Enabled().
f3ee5160 2560 */
4477020d
PM
2561static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2562 ARMSecuritySpace space)
b74c0443 2563{
4477020d 2564 assert(space != ARMSS_Root);
b74c0443 2565 return arm_feature(env, ARM_FEATURE_EL2)
4477020d 2566 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
b74c0443
RH
2567}
2568
f3ee5160
RDC
2569static inline bool arm_is_el2_enabled(CPUARMState *env)
2570{
4477020d 2571 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
f3ee5160
RDC
2572}
2573
19e0fefa 2574#else
5d28ac0c
RH
2575static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2576{
2577 return ARMSS_NonSecure;
2578}
2579
19e0fefa
FA
2580static inline bool arm_is_secure_below_el3(CPUARMState *env)
2581{
2582 return false;
2583}
2584
5d28ac0c
RH
2585static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2586{
2587 return ARMSS_NonSecure;
2588}
2589
19e0fefa
FA
2590static inline bool arm_is_secure(CPUARMState *env)
2591{
2592 return false;
2593}
f3ee5160 2594
4477020d
PM
2595static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2596 ARMSecuritySpace space)
b74c0443
RH
2597{
2598 return false;
2599}
2600
f3ee5160
RDC
2601static inline bool arm_is_el2_enabled(CPUARMState *env)
2602{
2603 return false;
2604}
19e0fefa
FA
2605#endif
2606
f7778444
RH
2607/**
2608 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2609 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2610 * "for all purposes other than a direct read or write access of HCR_EL2."
2611 * Not included here is HCR_RW.
2612 */
2d12bb96 2613uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
f7778444 2614uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2615uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2616
1f79ee32
PM
2617/* Return true if the specified exception level is running in AArch64 state. */
2618static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2619{
446c81ab
PM
2620 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2621 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2622 */
446c81ab
PM
2623 assert(el >= 1 && el <= 3);
2624 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2625
446c81ab
PM
2626 /* The highest exception level is always at the maximum supported
2627 * register width, and then lower levels have a register width controlled
2628 * by bits in the SCR or HCR registers.
1f79ee32 2629 */
446c81ab
PM
2630 if (el == 3) {
2631 return aa64;
2632 }
2633
926c1b97
RDC
2634 if (arm_feature(env, ARM_FEATURE_EL3) &&
2635 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2636 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2637 }
2638
2639 if (el == 2) {
2640 return aa64;
2641 }
2642
e6ef0169 2643 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2644 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2645 }
2646
2647 return aa64;
1f79ee32
PM
2648}
2649
673d8215 2650/* Function for determining whether guest cp register reads and writes should
3f342b9e
SF
2651 * access the secure or non-secure bank of a cp register. When EL3 is
2652 * operating in AArch32 state, the NS-bit determines whether the secure
2653 * instance of a cp register should be used. When EL3 is AArch64 (or if
2654 * it doesn't exist at all) then there is no register banking, and all
2655 * accesses are to the non-secure version.
2656 */
2657static inline bool access_secure_reg(CPUARMState *env)
2658{
2659 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2660 !arm_el_is_aa64(env, 3) &&
2661 !(env->cp15.scr_el3 & SCR_NS));
2662
2663 return ret;
2664}
2665
ea30a4b8
FA
2666/* Macros for accessing a specified CP register bank */
2667#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2668 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2669
2670#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2671 do { \
2672 if (_secure) { \
2673 (_env)->cp15._regname##_s = (_val); \
2674 } else { \
2675 (_env)->cp15._regname##_ns = (_val); \
2676 } \
2677 } while (0)
2678
2679/* Macros for automatically accessing a specific CP register bank depending on
2680 * the current secure state of the system. These macros are not intended for
2681 * supporting instruction translation reads/writes as these are dependent
2682 * solely on the SCR.NS bit and not the mode.
2683 */
2684#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2685 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2686 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2687
2688#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2689 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2690 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2691 (_val))
2692
0442428a 2693void arm_cpu_list(void);
012a906b
GB
2694uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2695 uint32_t cur_el, bool secure);
40f137e1 2696
75502672
PM
2697/* Return the highest implemented Exception Level */
2698static inline int arm_highest_el(CPUARMState *env)
2699{
2700 if (arm_feature(env, ARM_FEATURE_EL3)) {
2701 return 3;
2702 }
2703 if (arm_feature(env, ARM_FEATURE_EL2)) {
2704 return 2;
2705 }
2706 return 1;
2707}
2708
15b3f556
PM
2709/* Return true if a v7M CPU is in Handler mode */
2710static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2711{
2712 return env->v7m.exception != 0;
2713}
2714
dcbff19b
GB
2715/* Return the current Exception Level (as per ARMv8; note that this differs
2716 * from the ARMv7 Privilege Level).
2717 */
2718static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2719{
6d54ed3c 2720 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2721 return arm_v7m_is_handler_mode(env) ||
2722 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2723 }
2724
592125f8 2725 if (is_a64(env)) {
f5a0a5a5
PM
2726 return extract32(env->pstate, 2, 2);
2727 }
2728
592125f8
FA
2729 switch (env->uncached_cpsr & 0x1f) {
2730 case ARM_CPU_MODE_USR:
4b6a83fb 2731 return 0;
592125f8
FA
2732 case ARM_CPU_MODE_HYP:
2733 return 2;
2734 case ARM_CPU_MODE_MON:
2735 return 3;
2736 default:
2737 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2738 /* If EL3 is 32-bit then all secure privileged modes run in
2739 * EL3
2740 */
2741 return 3;
2742 }
2743
2744 return 1;
4b6a83fb 2745 }
4b6a83fb
PM
2746}
2747
721fae12
PM
2748/**
2749 * write_list_to_cpustate
2750 * @cpu: ARMCPU
2751 *
2752 * For each register listed in the ARMCPU cpreg_indexes list, write
2753 * its value from the cpreg_values list into the ARMCPUState structure.
2754 * This updates TCG's working data structures from KVM data or
2755 * from incoming migration state.
2756 *
2757 * Returns: true if all register values were updated correctly,
2758 * false if some register was unknown or could not be written.
2759 * Note that we do not stop early on failure -- we will attempt
2760 * writing all registers in the list.
2761 */
2762bool write_list_to_cpustate(ARMCPU *cpu);
2763
2764/**
2765 * write_cpustate_to_list:
2766 * @cpu: ARMCPU
b698e4ee 2767 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2768 *
2769 * For each register listed in the ARMCPU cpreg_indexes list, write
2770 * its value from the ARMCPUState structure into the cpreg_values list.
2771 * This is used to copy info from TCG's working data structures into
2772 * KVM or for outbound migration.
2773 *
b698e4ee
PM
2774 * @kvm_sync is true if we are doing this in order to sync the
2775 * register state back to KVM. In this case we will only update
2776 * values in the list if the previous list->cpustate sync actually
2777 * successfully wrote the CPU state. Otherwise we will keep the value
2778 * that is in the list.
2779 *
721fae12
PM
2780 * Returns: true if all register values were read correctly,
2781 * false if some register was unknown or could not be read.
2782 * Note that we do not stop early on failure -- we will attempt
2783 * reading all registers in the list.
2784 */
b698e4ee 2785bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2786
9ee6e8bb
PB
2787#define ARM_CPUID_TI915T 0x54029152
2788#define ARM_CPUID_TI925T 0x54029252
40f137e1 2789
ba1ba5cc
IM
2790#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2791#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2792#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2793
585df85e
PM
2794#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2795
c732abe2 2796#define cpu_list arm_cpu_list
9467d44c 2797
c1e37810
PM
2798/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2799 *
2800 * If EL3 is 64-bit:
2801 * + NonSecure EL1 & 0 stage 1
2802 * + NonSecure EL1 & 0 stage 2
2803 * + NonSecure EL2
b9f6033c
RH
2804 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2805 * + Secure EL1 & 0
c1e37810
PM
2806 * + Secure EL3
2807 * If EL3 is 32-bit:
2808 * + NonSecure PL1 & 0 stage 1
2809 * + NonSecure PL1 & 0 stage 2
2810 * + NonSecure PL2
b9f6033c
RH
2811 * + Secure PL0
2812 * + Secure PL1
c1e37810
PM
2813 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2814 *
2815 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2816 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2817 * because they may differ in access permissions even if the VA->PA map is
2818 * the same
c1e37810
PM
2819 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2820 * translation, which means that we have one mmu_idx that deals with two
2821 * concatenated translation regimes [this sort of combined s1+2 TLB is
2822 * architecturally permitted]
2823 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2824 * handling via the TLB. The only way to do a stage 1 translation without
2825 * the immediate stage 2 translation is via the ATS or AT system insns,
2826 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2827 * The only use of stage 2 translations is either as part of an s1+2
2828 * lookup or when loading the descriptors during a stage 1 page table walk,
2829 * and in both those cases we don't use the TLB.
c1e37810
PM
2830 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2831 * translation regimes, because they map reasonably well to each other
2832 * and they can't both be active at the same time.
b9f6033c
RH
2833 * 5. we want to be able to use the TLB for accesses done as part of a
2834 * stage1 page table walk, rather than having to walk the stage2 page
2835 * table over and over.
452ef8cb
RH
2836 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2837 * Never (PAN) bit within PSTATE.
d902ae75
RH
2838 * 7. we fold together the secure and non-secure regimes for A-profile,
2839 * because there are no banked system registers for aarch64, so the
2840 * process of switching between secure and non-secure is
2841 * already heavyweight.
c1e37810 2842 *
b9f6033c
RH
2843 * This gives us the following list of cases:
2844 *
d902ae75
RH
2845 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2846 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2847 * EL1 EL1&0 stage 1+2 +PAN
2848 * EL0 EL2&0
2849 * EL2 EL2&0
2850 * EL2 EL2&0 +PAN
2851 * EL2 (aka NS PL2)
2852 * EL3 (aka S PL1)
a1ce3084 2853 * Physical (NS & S)
575a94af 2854 * Stage2 (NS & S)
c1e37810 2855 *
575a94af 2856 * for a total of 12 different mmu_idx.
c1e37810 2857 *
3bef7012 2858 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2859 * as A profile. They only need to distinguish EL0 and EL1 (and
2860 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2861 *
2862 * M profile CPUs are rather different as they do not have a true MMU.
2863 * They have the following different MMU indexes:
2864 * User
2865 * Privileged
62593718
PM
2866 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2867 * Privileged, execution priority negative (ditto)
66787c78
PM
2868 * If the CPU supports the v8M Security Extension then there are also:
2869 * Secure User
2870 * Secure Privileged
62593718
PM
2871 * Secure User, execution priority negative
2872 * Secure Privileged, execution priority negative
3bef7012 2873 *
8bd5c820
PM
2874 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2875 * are not quite the same -- different CPU types (most notably M profile
2876 * vs A/R profile) would like to use MMU indexes with different semantics,
2877 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2878 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2879 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2880 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2881 * the same for any particular CPU.
2882 * Variables of type ARMMUIdx are always full values, and the core
2883 * index values are in variables of type 'int'.
2884 *
c1e37810
PM
2885 * Our enumeration includes at the end some entries which are not "true"
2886 * mmu_idx values in that they don't have corresponding TLBs and are only
2887 * valid for doing slow path page table walks.
2888 *
2889 * The constant names here are patterned after the general style of the names
2890 * of the AT/ATS operations.
2891 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2892 * For M profile we arrange them to have a bit for priv, a bit for negpri
2893 * and a bit for secure.
c1e37810 2894 */
b9f6033c
RH
2895#define ARM_MMU_IDX_A 0x10 /* A profile */
2896#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2897#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2898
b9f6033c
RH
2899/* Meanings of the bits for M profile mmu idx values */
2900#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2901#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2902#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2903
b9f6033c
RH
2904#define ARM_MMU_IDX_TYPE_MASK \
2905 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2906#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2907
c1e37810 2908typedef enum ARMMMUIdx {
b9f6033c
RH
2909 /*
2910 * A-profile.
2911 */
d902ae75
RH
2912 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2913 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2914 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2915 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2916 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2917 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2918 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2919 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2920
575a94af
RH
2921 /*
2922 * Used for second stage of an S12 page table walk, or for descriptor
2923 * loads during first stage of an S1 page table walk. Note that both
2924 * are in use simultaneously for SecureEL2: the security state for
2925 * the S2 ptw is selected by the NS bit from the S1 ptw.
2926 */
d38fa967
RH
2927 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2928 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2929
2930 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2931 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2932 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2933 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2934 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2935
b9f6033c
RH
2936 /*
2937 * These are not allocated TLBs and are used only for AT system
2938 * instructions or for the first stage of an S12 page table walk.
2939 */
2940 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2941 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2942 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2943
2944 /*
2945 * M-profile.
2946 */
25568316
RH
2947 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2948 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2949 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2950 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2951 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2952 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2953 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2954 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2955} ARMMMUIdx;
2956
5f09a6df
RH
2957/*
2958 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2959 * for use when calling tlb_flush_by_mmuidx() and friends.
2960 */
5f09a6df
RH
2961#define TO_CORE_BIT(NAME) \
2962 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2963
8bd5c820 2964typedef enum ARMMMUIdxBit {
5f09a6df 2965 TO_CORE_BIT(E10_0),
b9f6033c 2966 TO_CORE_BIT(E20_0),
5f09a6df 2967 TO_CORE_BIT(E10_1),
452ef8cb 2968 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2969 TO_CORE_BIT(E2),
b9f6033c 2970 TO_CORE_BIT(E20_2),
452ef8cb 2971 TO_CORE_BIT(E20_2_PAN),
d902ae75 2972 TO_CORE_BIT(E3),
575a94af
RH
2973 TO_CORE_BIT(Stage2),
2974 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2975
2976 TO_CORE_BIT(MUser),
2977 TO_CORE_BIT(MPriv),
2978 TO_CORE_BIT(MUserNegPri),
2979 TO_CORE_BIT(MPrivNegPri),
2980 TO_CORE_BIT(MSUser),
2981 TO_CORE_BIT(MSPriv),
2982 TO_CORE_BIT(MSUserNegPri),
2983 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2984} ARMMMUIdxBit;
2985
5f09a6df
RH
2986#undef TO_CORE_BIT
2987
f79fbf39 2988#define MMU_USER_IDX 0
c1e37810 2989
9e273ef2
PM
2990/* Indexes used when registering address spaces with cpu_address_space_init */
2991typedef enum ARMASIdx {
2992 ARMASIdx_NS = 0,
2993 ARMASIdx_S = 1,
8bce44a2
RH
2994 ARMASIdx_TagNS = 2,
2995 ARMASIdx_TagS = 3,
9e273ef2
PM
2996} ARMASIdx;
2997
bb5cc2c8
RH
2998static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2999{
3000 /* Assert the relative order of the physical mmu indexes. */
3001 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3002 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3003 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3004 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3005
3006 return ARMMMUIdx_Phys_S + space;
3007}
3008
3009static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3010{
3011 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3012 return idx - ARMMMUIdx_Phys_S;
3013}
3014
43bbce7f
PM
3015static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3016{
3017 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3018 * CSSELR is RAZ/WI.
3019 */
3020 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3021}
3022
f9fd40eb
PB
3023static inline bool arm_sctlr_b(CPUARMState *env)
3024{
3025 return
3026 /* We need not implement SCTLR.ITD in user-mode emulation, so
3027 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3028 * This lets people run BE32 binaries with "-cpu any".
3029 */
3030#ifndef CONFIG_USER_ONLY
3031 !arm_feature(env, ARM_FEATURE_V7) &&
3032#endif
3033 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3034}
3035
aaec1432 3036uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3037
8061a649
RH
3038static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3039 bool sctlr_b)
3040{
3041#ifdef CONFIG_USER_ONLY
3042 /*
3043 * In system mode, BE32 is modelled in line with the
3044 * architecture (as word-invariant big-endianness), where loads
3045 * and stores are done little endian but from addresses which
3046 * are adjusted by XORing with the appropriate constant. So the
3047 * endianness to use for the raw data access is not affected by
3048 * SCTLR.B.
3049 * In user mode, however, we model BE32 as byte-invariant
3050 * big-endianness (because user-only code cannot tell the
3051 * difference), and so we need to use a data access endianness
3052 * that depends on SCTLR.B.
3053 */
3054 if (sctlr_b) {
3055 return true;
3056 }
3057#endif
3058 /* In 32bit endianness is determined by looking at CPSR's E bit */
3059 return env->uncached_cpsr & CPSR_E;
3060}
3061
3062static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3063{
3064 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3065}
64e40755 3066
ed50ff78
PC
3067/* Return true if the processor is in big-endian mode. */
3068static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3069{
ed50ff78 3070 if (!is_a64(env)) {
8061a649 3071 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3072 } else {
3073 int cur_el = arm_current_el(env);
3074 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3075 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3076 }
ed50ff78
PC
3077}
3078
022c62cb 3079#include "exec/cpu-all.h"
622ed360 3080
fdd1b228 3081/*
a378206a
RH
3082 * We have more than 32-bits worth of state per TB, so we split the data
3083 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3084 * We collect these two parts in CPUARMTBFlags where they are named
3085 * flags and flags2 respectively.
fdd1b228 3086 *
a378206a
RH
3087 * The flags that are shared between all execution modes, TBFLAG_ANY,
3088 * are stored in flags. The flags that are specific to a given mode
3089 * are stores in flags2. Since cs_base is sized on the configured
3090 * address size, flags2 always has 64-bits for A64, and a minimum of
3091 * 32-bits for A32 and M32.
3092 *
3093 * The bits for 32-bit A-profile and M-profile partially overlap:
3094 *
5896f392
RH
3095 * 31 23 11 10 0
3096 * +-------------+----------+----------------+
3097 * | | | TBFLAG_A32 |
3098 * | TBFLAG_AM32 | +-----+----------+
3099 * | | |TBFLAG_M32|
3100 * +-------------+----------------+----------+
26702213 3101 * 31 23 6 5 0
79cabf1f 3102 *
fdd1b228 3103 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3104 */
eee81d41
RH
3105FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3106FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3107FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3108FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3109FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3110/* Target EL if we take a floating-point-disabled exception */
eee81d41 3111FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3112/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3113FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3114FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3115FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3116FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3117
8bd587c1 3118/*
79cabf1f 3119 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3120 */
5896f392
RH
3121FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3122FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3123
79cabf1f
RH
3124/*
3125 * Bit usage when in AArch32 state, for A-profile only.
3126 */
5896f392
RH
3127FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3128FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3129/*
3130 * We store the bottom two bits of the CPAR as TB flags and handle
3131 * checks on the other bits at runtime. This shares the same bits as
3132 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3133 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3134 */
5896f392
RH
3135FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3136FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3137FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3138FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3139/*
3140 * Indicates whether cp register reads and writes by guest code should access
3141 * the secure or nonsecure bank of banked registers; note that this is not
3142 * the same thing as the current security state of the processor!
3143 */
5896f392 3144FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3145/*
3146 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3147 * This requires an SME trap from AArch32 mode when using NEON.
3148 */
3149FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3150
3151/*
3152 * Bit usage when in AArch32 state, for M-profile only.
3153 */
3154/* Handler (ie not Thread) mode */
5896f392 3155FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3156/* Whether we should generate stack-limit checks */
5896f392 3157FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3158/* Set if FPCCR.LSPACT is set */
5896f392 3159FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3160/* Set if we must create a new FP context */
5896f392 3161FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3162/* Set if FPCCR.S does not match current security state */
5896f392 3163FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3164/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3165FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3166/* Set if in secure mode */
3167FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3168
3169/*
3170 * Bit usage when in AArch64 state
3171 */
476a4692 3172FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3173FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3174/* The current vector length, either NVL or SVL. */
3175FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3176FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3177FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3178FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3179FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3180FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3181FIELD(TBFLAG_A64, ATA, 15, 1)
3182FIELD(TBFLAG_A64, TCMA, 16, 2)
3183FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3184FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3185FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3186FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3187FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3188FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3189/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3190FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
5572f755 3191FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
83f624d9 3192FIELD(TBFLAG_A64, NAA, 30, 1)
179e9a3b 3193FIELD(TBFLAG_A64, ATA0, 31, 1)
a1705768 3194
a729a46b
RH
3195/*
3196 * Helpers for using the above.
3197 */
3198#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3199 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3200#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3201 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3202#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3203 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3204#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3205 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3206#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3207 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3208
3902bfc6 3209#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3210#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3211#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3212#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3213#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3214
fb901c90
RH
3215/**
3216 * cpu_mmu_index:
3217 * @env: The cpu environment
3218 * @ifetch: True for code access, false for data access.
3219 *
3220 * Return the core mmu index for the current translation regime.
3221 * This function is used by generic TCG code paths.
3222 */
3223static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3224{
a729a46b 3225 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3226}
3227
8b599e5c
RH
3228/**
3229 * sve_vq
3230 * @env: the cpu context
3231 *
3232 * Return the VL cached within env->hflags, in units of quadwords.
3233 */
3234static inline int sve_vq(CPUARMState *env)
3235{
3236 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3237}
3238
5d7953ad
RH
3239/**
3240 * sme_vq
3241 * @env: the cpu context
3242 *
3243 * Return the SVL cached within env->hflags, in units of quadwords.
3244 */
3245static inline int sme_vq(CPUARMState *env)
3246{
3247 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3248}
3249
f9fd40eb
PB
3250static inline bool bswap_code(bool sctlr_b)
3251{
3252#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3253 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3254 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3255 * would also end up as a mixed-endian mode with BE code, LE data.
3256 */
ded625e7 3257 return TARGET_BIG_ENDIAN ^ sctlr_b;
f9fd40eb 3258#else
e334bd31
PB
3259 /* All code access in ARM is little endian, and there are no loaders
3260 * doing swaps that need to be reversed
f9fd40eb
PB
3261 */
3262 return 0;
3263#endif
3264}
3265
c3ae85fc
PB
3266#ifdef CONFIG_USER_ONLY
3267static inline bool arm_cpu_bswap_data(CPUARMState *env)
3268{
ded625e7 3269 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
c3ae85fc
PB
3270}
3271#endif
3272
bb5de525
AJ
3273void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3274 uint64_t *cs_base, uint32_t *flags);
6b917547 3275
98128601
RH
3276enum {
3277 QEMU_PSCI_CONDUIT_DISABLED = 0,
3278 QEMU_PSCI_CONDUIT_SMC = 1,
3279 QEMU_PSCI_CONDUIT_HVC = 2,
3280};
3281
017518c1
PM
3282#ifndef CONFIG_USER_ONLY
3283/* Return the address space index to use for a memory access */
3284static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3285{
3286 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3287}
5ce4ff65
PM
3288
3289/* Return the AddressSpace to use for a memory access
3290 * (which depends on whether the access is S or NS, and whether
3291 * the board gave us a separate AddressSpace for S accesses).
3292 */
3293static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3294{
3295 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3296}
017518c1
PM
3297#endif
3298
bd7d00fc 3299/**
b5c53d1b
AL
3300 * arm_register_pre_el_change_hook:
3301 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3302 * CPU changes exception level or mode. The hook function will be
3303 * passed a pointer to the ARMCPU and the opaque data pointer passed
3304 * to this function when the hook was registered.
b5c53d1b
AL
3305 *
3306 * Note that if a pre-change hook is called, any registered post-change hooks
3307 * are guaranteed to subsequently be called.
bd7d00fc 3308 */
b5c53d1b 3309void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3310 void *opaque);
b5c53d1b
AL
3311/**
3312 * arm_register_el_change_hook:
3313 * Register a hook function which will be called immediately after this
3314 * CPU changes exception level or mode. The hook function will be
3315 * passed a pointer to the ARMCPU and the opaque data pointer passed
3316 * to this function when the hook was registered.
3317 *
3318 * Note that any registered hooks registered here are guaranteed to be called
3319 * if pre-change hooks have been.
3320 */
3321void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3322 *opaque);
bd7d00fc 3323
3d74e2e9
RH
3324/**
3325 * arm_rebuild_hflags:
3326 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3327 */
3328void arm_rebuild_hflags(CPUARMState *env);
3329
9a2b5256
RH
3330/**
3331 * aa32_vfp_dreg:
3332 * Return a pointer to the Dn register within env in 32-bit mode.
3333 */
3334static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3335{
c39c2b90 3336 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3337}
3338
3339/**
3340 * aa32_vfp_qreg:
3341 * Return a pointer to the Qn register within env in 32-bit mode.
3342 */
3343static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3344{
c39c2b90 3345 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3346}
3347
3348/**
3349 * aa64_vfp_qreg:
3350 * Return a pointer to the Qn register within env in 64-bit mode.
3351 */
3352static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3353{
c39c2b90 3354 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3355}
3356
028e2a7b 3357/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3358extern const uint64_t pred_esz_masks[5];
028e2a7b 3359
be5d6f48
RH
3360/*
3361 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3362 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3363 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3364 */
7f2cf760
RH
3365#define PAGE_BTI PAGE_TARGET_1
3366#define PAGE_MTE PAGE_TARGET_2
3367#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3368
50d4c8c1
RH
3369/* We associate one allocation tag per 16 bytes, the minimum. */
3370#define LOG2_TAG_GRANULE 4
3371#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3372
3373#ifdef CONFIG_USER_ONLY
3374#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3375#endif
3376
0e0c030c
RH
3377#ifdef TARGET_TAGGED_ADDRESSES
3378/**
3379 * cpu_untagged_addr:
3380 * @cs: CPU context
3381 * @x: tagged address
3382 *
3383 * Remove any address tag from @x. This is explicitly related to the
3384 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3385 *
3386 * There should be a better place to put this, but we need this in
3387 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3388 */
3389static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3390{
3391 ARMCPU *cpu = ARM_CPU(cs);
3392 if (cpu->env.tagged_addr_enable) {
3393 /*
3394 * TBI is enabled for userspace but not kernelspace addresses.
3395 * Only clear the tag if bit 55 is clear.
3396 */
3397 x &= sextract64(x, 0, 56);
3398 }
3399 return x;
3400}
3401#endif
3402
2c0262af 3403#endif