]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Cache the Tagged bit for a page in MemTxAttrs
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
e24fd076
DG
31#ifdef TARGET_AARCH64
32#define KVM_HAVE_MCE_INJECTION 1
33#endif
34
b8a9e8f1
FB
35#define EXCP_UDEF 1 /* undefined instruction */
36#define EXCP_SWI 2 /* software interrupt */
37#define EXCP_PREFETCH_ABORT 3
38#define EXCP_DATA_ABORT 4
b5ff1b31
FB
39#define EXCP_IRQ 5
40#define EXCP_FIQ 6
06c949e6 41#define EXCP_BKPT 7
9ee6e8bb 42#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 43#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 44#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 45#define EXCP_HYP_TRAP 12
e0d6e6a5 46#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
47#define EXCP_VIRQ 14
48#define EXCP_VFIQ 15
19a6e31c 49#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 50#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 51#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 52#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 53#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
54#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
55#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 56/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
57
58#define ARMV7M_EXCP_RESET 1
59#define ARMV7M_EXCP_NMI 2
60#define ARMV7M_EXCP_HARD 3
61#define ARMV7M_EXCP_MEM 4
62#define ARMV7M_EXCP_BUS 5
63#define ARMV7M_EXCP_USAGE 6
1e577cc7 64#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
65#define ARMV7M_EXCP_SVC 11
66#define ARMV7M_EXCP_DEBUG 12
67#define ARMV7M_EXCP_PENDSV 14
68#define ARMV7M_EXCP_SYSTICK 15
2c0262af 69
acf94941
PM
70/* For M profile, some registers are banked secure vs non-secure;
71 * these are represented as a 2-element array where the first element
72 * is the non-secure copy and the second is the secure copy.
73 * When the CPU does not have implement the security extension then
74 * only the first element is used.
75 * This means that the copy for the current security state can be
76 * accessed via env->registerfield[env->v7m.secure] (whether the security
77 * extension is implemented or not).
78 */
4a16724f
PM
79enum {
80 M_REG_NS = 0,
81 M_REG_S = 1,
82 M_REG_NUM_BANKS = 2,
83};
acf94941 84
403946c0
RH
85/* ARM-specific interrupt pending bits. */
86#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
87#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
88#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 89
e4fe830b
PM
90/* The usual mapping for an AArch64 system register to its AArch32
91 * counterpart is for the 32 bit world to have access to the lower
92 * half only (with writes leaving the upper half untouched). It's
93 * therefore useful to be able to pass TCG the offset of the least
94 * significant half of a uint64_t struct member.
95 */
96#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 97#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 98#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
99#else
100#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 101#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
102#endif
103
136e67e9 104/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
105#define ARM_CPU_IRQ 0
106#define ARM_CPU_FIQ 1
136e67e9
EI
107#define ARM_CPU_VIRQ 2
108#define ARM_CPU_VFIQ 3
403946c0 109
aaa1f954
EI
110/* ARM-specific extra insn start words:
111 * 1: Conditional execution bits
112 * 2: Partial exception syndrome for data aborts
113 */
114#define TARGET_INSN_START_EXTRA_WORDS 2
115
116/* The 2nd extra word holding syndrome info for data aborts does not use
117 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
118 * help the sleb128 encoder do a better job.
119 * When restoring the CPU state, we shift it back up.
120 */
121#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
122#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 123
b7bcbe95
FB
124/* We currently assume float and double are IEEE single and double
125 precision respectively.
126 Doing runtime conversions is tricky because VFP registers may contain
127 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
128 s<2n> maps to the least significant half of d<n>
129 s<2n+1> maps to the most significant half of d<n>
130 */
b7bcbe95 131
200bf5b7
AB
132/**
133 * DynamicGDBXMLInfo:
134 * @desc: Contains the XML descriptions.
448d4d14
AB
135 * @num: Number of the registers in this XML seen by GDB.
136 * @data: A union with data specific to the set of registers
137 * @cpregs_keys: Array that contains the corresponding Key of
138 * a given cpreg with the same order of the cpreg
139 * in the XML description.
200bf5b7
AB
140 */
141typedef struct DynamicGDBXMLInfo {
142 char *desc;
448d4d14
AB
143 int num;
144 union {
145 struct {
146 uint32_t *keys;
147 } cpregs;
148 } data;
200bf5b7
AB
149} DynamicGDBXMLInfo;
150
55d284af
PM
151/* CPU state for each instance of a generic timer (in cp15 c14) */
152typedef struct ARMGenericTimer {
153 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 154 uint64_t ctl; /* Timer Control register */
55d284af
PM
155} ARMGenericTimer;
156
8c94b071
RH
157#define GTIMER_PHYS 0
158#define GTIMER_VIRT 1
159#define GTIMER_HYP 2
160#define GTIMER_SEC 3
161#define GTIMER_HYPVIRT 4
162#define NUM_GTIMERS 5
55d284af 163
11f136ee
FA
164typedef struct {
165 uint64_t raw_tcr;
166 uint32_t mask;
167 uint32_t base_mask;
168} TCR;
169
c39c2b90
RH
170/* Define a maximum sized vector register.
171 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
172 * For 64-bit, this is a 2048-bit SVE register.
173 *
174 * Note that the mapping between S, D, and Q views of the register bank
175 * differs between AArch64 and AArch32.
176 * In AArch32:
177 * Qn = regs[n].d[1]:regs[n].d[0]
178 * Dn = regs[n / 2].d[n & 1]
179 * Sn = regs[n / 4].d[n % 4 / 2],
180 * bits 31..0 for even n, and bits 63..32 for odd n
181 * (and regs[16] to regs[31] are inaccessible)
182 * In AArch64:
183 * Zn = regs[n].d[*]
184 * Qn = regs[n].d[1]:regs[n].d[0]
185 * Dn = regs[n].d[0]
186 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 187 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
188 *
189 * This corresponds to the architecturally defined mapping between
190 * the two execution states, and means we do not need to explicitly
191 * map these registers when changing states.
192 *
193 * Align the data for use with TCG host vector operations.
194 */
195
196#ifdef TARGET_AARCH64
197# define ARM_MAX_VQ 16
0df9142d 198void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
199#else
200# define ARM_MAX_VQ 1
0df9142d 201static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
202#endif
203
204typedef struct ARMVectorReg {
205 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
206} ARMVectorReg;
207
3c7d3086 208#ifdef TARGET_AARCH64
991ad91b 209/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 210typedef struct ARMPredicateReg {
46417784 211 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 212} ARMPredicateReg;
991ad91b
RH
213
214/* In AArch32 mode, PAC keys do not exist at all. */
215typedef struct ARMPACKey {
216 uint64_t lo, hi;
217} ARMPACKey;
3c7d3086
RH
218#endif
219
c39c2b90 220
2c0262af 221typedef struct CPUARMState {
b5ff1b31 222 /* Regs for current mode. */
2c0262af 223 uint32_t regs[16];
3926cc84
AG
224
225 /* 32/64 switch only happens when taking and returning from
226 * exceptions so the overlap semantics are taken care of then
227 * instead of having a complicated union.
228 */
229 /* Regs for A64 mode. */
230 uint64_t xregs[32];
231 uint64_t pc;
d356312f
PM
232 /* PSTATE isn't an architectural register for ARMv8. However, it is
233 * convenient for us to assemble the underlying state into a 32 bit format
234 * identical to the architectural format used for the SPSR. (This is also
235 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
236 * 'pstate' register are.) Of the PSTATE bits:
237 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
238 * semantics as for AArch32, as described in the comments on each field)
239 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 240 * DAIF (exception masks) are kept in env->daif
f6e52eaa 241 * BTYPE is kept in env->btype
d356312f 242 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
243 */
244 uint32_t pstate;
245 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
246
fdd1b228
RH
247 /* Cached TBFLAGS state. See below for which bits are included. */
248 uint32_t hflags;
249
b90372ad 250 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 251 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
252 the whole CPSR. */
253 uint32_t uncached_cpsr;
254 uint32_t spsr;
255
256 /* Banked registers. */
28c9457d 257 uint64_t banked_spsr[8];
0b7d409d
FA
258 uint32_t banked_r13[8];
259 uint32_t banked_r14[8];
3b46e624 260
b5ff1b31
FB
261 /* These hold r8-r12. */
262 uint32_t usr_regs[5];
263 uint32_t fiq_regs[5];
3b46e624 264
2c0262af
FB
265 /* cpsr flag cache for faster execution */
266 uint32_t CF; /* 0 or 1 */
267 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
268 uint32_t NF; /* N is bit 31. All other bits are undefined. */
269 uint32_t ZF; /* Z set if zero. */
99c475ab 270 uint32_t QF; /* 0 or 1 */
9ee6e8bb 271 uint32_t GE; /* cpsr[19:16] */
b26eefb6 272 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 273 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 274 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 275 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 276
1b174238 277 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 278 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 279
b5ff1b31
FB
280 /* System control coprocessor (cp15) */
281 struct {
40f137e1 282 uint32_t c0_cpuid;
b85a1fd6
FA
283 union { /* Cache size selection */
284 struct {
285 uint64_t _unused_csselr0;
286 uint64_t csselr_ns;
287 uint64_t _unused_csselr1;
288 uint64_t csselr_s;
289 };
290 uint64_t csselr_el[4];
291 };
137feaa9
FA
292 union { /* System control register. */
293 struct {
294 uint64_t _unused_sctlr;
295 uint64_t sctlr_ns;
296 uint64_t hsctlr;
297 uint64_t sctlr_s;
298 };
299 uint64_t sctlr_el[4];
300 };
7ebd5f2e 301 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 302 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 303 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 304 uint64_t sder; /* Secure debug enable register. */
77022576 305 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
306 union { /* MMU translation table base 0. */
307 struct {
308 uint64_t _unused_ttbr0_0;
309 uint64_t ttbr0_ns;
310 uint64_t _unused_ttbr0_1;
311 uint64_t ttbr0_s;
312 };
313 uint64_t ttbr0_el[4];
314 };
315 union { /* MMU translation table base 1. */
316 struct {
317 uint64_t _unused_ttbr1_0;
318 uint64_t ttbr1_ns;
319 uint64_t _unused_ttbr1_1;
320 uint64_t ttbr1_s;
321 };
322 uint64_t ttbr1_el[4];
323 };
b698e9cf 324 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
325 /* MMU translation table base control. */
326 TCR tcr_el[4];
68e9c2fe 327 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
328 uint32_t c2_data; /* MPU data cacheable bits. */
329 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
330 union { /* MMU domain access control register
331 * MPU write buffer control.
332 */
333 struct {
334 uint64_t dacr_ns;
335 uint64_t dacr_s;
336 };
337 struct {
338 uint64_t dacr32_el2;
339 };
340 };
7e09797c
PM
341 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
342 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 343 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 344 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
345 union { /* Fault status registers. */
346 struct {
347 uint64_t ifsr_ns;
348 uint64_t ifsr_s;
349 };
350 struct {
351 uint64_t ifsr32_el2;
352 };
353 };
4a7e2d73
FA
354 union {
355 struct {
356 uint64_t _unused_dfsr;
357 uint64_t dfsr_ns;
358 uint64_t hsr;
359 uint64_t dfsr_s;
360 };
361 uint64_t esr_el[4];
362 };
ce819861 363 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
364 union { /* Fault address registers. */
365 struct {
366 uint64_t _unused_far0;
367#ifdef HOST_WORDS_BIGENDIAN
368 uint32_t ifar_ns;
369 uint32_t dfar_ns;
370 uint32_t ifar_s;
371 uint32_t dfar_s;
372#else
373 uint32_t dfar_ns;
374 uint32_t ifar_ns;
375 uint32_t dfar_s;
376 uint32_t ifar_s;
377#endif
378 uint64_t _unused_far3;
379 };
380 uint64_t far_el[4];
381 };
59e05530 382 uint64_t hpfar_el2;
2a5a9abd 383 uint64_t hstr_el2;
01c097f7
FA
384 union { /* Translation result. */
385 struct {
386 uint64_t _unused_par_0;
387 uint64_t par_ns;
388 uint64_t _unused_par_1;
389 uint64_t par_s;
390 };
391 uint64_t par_el[4];
392 };
6cb0b013 393
b5ff1b31
FB
394 uint32_t c9_insn; /* Cache lockdown registers. */
395 uint32_t c9_data;
8521466b
AF
396 uint64_t c9_pmcr; /* performance monitor control register */
397 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
398 uint64_t c9_pmovsr; /* perf monitor overflow status */
399 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 400 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 401 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
402 union { /* Memory attribute redirection */
403 struct {
404#ifdef HOST_WORDS_BIGENDIAN
405 uint64_t _unused_mair_0;
406 uint32_t mair1_ns;
407 uint32_t mair0_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair1_s;
410 uint32_t mair0_s;
411#else
412 uint64_t _unused_mair_0;
413 uint32_t mair0_ns;
414 uint32_t mair1_ns;
415 uint64_t _unused_mair_1;
416 uint32_t mair0_s;
417 uint32_t mair1_s;
418#endif
419 };
420 uint64_t mair_el[4];
421 };
fb6c91ba
GB
422 union { /* vector base address register */
423 struct {
424 uint64_t _unused_vbar;
425 uint64_t vbar_ns;
426 uint64_t hvbar;
427 uint64_t vbar_s;
428 };
429 uint64_t vbar_el[4];
430 };
e89e51a1 431 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
432 struct { /* FCSE PID. */
433 uint32_t fcseidr_ns;
434 uint32_t fcseidr_s;
435 };
436 union { /* Context ID. */
437 struct {
438 uint64_t _unused_contextidr_0;
439 uint64_t contextidr_ns;
440 uint64_t _unused_contextidr_1;
441 uint64_t contextidr_s;
442 };
443 uint64_t contextidr_el[4];
444 };
445 union { /* User RW Thread register. */
446 struct {
447 uint64_t tpidrurw_ns;
448 uint64_t tpidrprw_ns;
449 uint64_t htpidr;
450 uint64_t _tpidr_el3;
451 };
452 uint64_t tpidr_el[4];
453 };
454 /* The secure banks of these registers don't map anywhere */
455 uint64_t tpidrurw_s;
456 uint64_t tpidrprw_s;
457 uint64_t tpidruro_s;
458
459 union { /* User RO Thread register. */
460 uint64_t tpidruro_ns;
461 uint64_t tpidrro_el[1];
462 };
a7adc4b7
PM
463 uint64_t c14_cntfrq; /* Counter Frequency register */
464 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 465 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 466 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 467 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 468 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
469 uint32_t c15_ticonfig; /* TI925T configuration byte. */
470 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
471 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
472 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
473 uint32_t c15_config_base_address; /* SCU base address. */
474 uint32_t c15_diagnostic; /* diagnostic register */
475 uint32_t c15_power_diagnostic;
476 uint32_t c15_power_control; /* power control */
0b45451e
PM
477 uint64_t dbgbvr[16]; /* breakpoint value registers */
478 uint64_t dbgbcr[16]; /* breakpoint control registers */
479 uint64_t dbgwvr[16]; /* watchpoint value registers */
480 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 481 uint64_t mdscr_el1;
1424ca8d 482 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 483 uint64_t mdcr_el2;
5513c3ab 484 uint64_t mdcr_el3;
5d05b9d4
AL
485 /* Stores the architectural value of the counter *the last time it was
486 * updated* by pmccntr_op_start. Accesses should always be surrounded
487 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
488 * architecturally-correct value is being read/set.
7c2cb42b 489 */
c92c0687 490 uint64_t c15_ccnt;
5d05b9d4
AL
491 /* Stores the delta between the architectural value and the underlying
492 * cycle count during normal operation. It is used to update c15_ccnt
493 * to be the correct architectural value before accesses. During
494 * accesses, c15_ccnt_delta contains the underlying count being used
495 * for the access, after which it reverts to the delta value in
496 * pmccntr_op_finish.
497 */
498 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
499 uint64_t c14_pmevcntr[31];
500 uint64_t c14_pmevcntr_delta[31];
501 uint64_t c14_pmevtyper[31];
8521466b 502 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 503 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 504 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
505 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
506 uint64_t gcr_el1;
507 uint64_t rgsr_el1;
b5ff1b31 508 } cp15;
40f137e1 509
9ee6e8bb 510 struct {
fb602cb7
PM
511 /* M profile has up to 4 stack pointers:
512 * a Main Stack Pointer and a Process Stack Pointer for each
513 * of the Secure and Non-Secure states. (If the CPU doesn't support
514 * the security extension then it has only two SPs.)
515 * In QEMU we always store the currently active SP in regs[13],
516 * and the non-active SP for the current security state in
517 * v7m.other_sp. The stack pointers for the inactive security state
518 * are stored in other_ss_msp and other_ss_psp.
519 * switch_v7m_security_state() is responsible for rearranging them
520 * when we change security state.
521 */
9ee6e8bb 522 uint32_t other_sp;
fb602cb7
PM
523 uint32_t other_ss_msp;
524 uint32_t other_ss_psp;
4a16724f
PM
525 uint32_t vecbase[M_REG_NUM_BANKS];
526 uint32_t basepri[M_REG_NUM_BANKS];
527 uint32_t control[M_REG_NUM_BANKS];
528 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
529 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
530 uint32_t hfsr; /* HardFault Status */
531 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 532 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 533 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 534 uint32_t bfar; /* BusFault Address */
bed079da 535 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 536 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 537 int exception;
4a16724f
PM
538 uint32_t primask[M_REG_NUM_BANKS];
539 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 540 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 541 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 542 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 543 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
544 uint32_t msplim[M_REG_NUM_BANKS];
545 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
546 uint32_t fpcar[M_REG_NUM_BANKS];
547 uint32_t fpccr[M_REG_NUM_BANKS];
548 uint32_t fpdscr[M_REG_NUM_BANKS];
549 uint32_t cpacr[M_REG_NUM_BANKS];
550 uint32_t nsacr;
9ee6e8bb
PB
551 } v7m;
552
abf1172f
PM
553 /* Information associated with an exception about to be taken:
554 * code which raises an exception must set cs->exception_index and
555 * the relevant parts of this structure; the cpu_do_interrupt function
556 * will then set the guest-visible registers as part of the exception
557 * entry process.
558 */
559 struct {
560 uint32_t syndrome; /* AArch64 format syndrome register */
561 uint32_t fsr; /* AArch32 format fault status register info */
562 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 563 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
564 /* If we implement EL2 we will also need to store information
565 * about the intermediate physical address for stage 2 faults.
566 */
567 } exception;
568
202ccb6b
DG
569 /* Information associated with an SError */
570 struct {
571 uint8_t pending;
572 uint8_t has_esr;
573 uint64_t esr;
574 } serror;
575
ed89f078
PM
576 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
577 uint32_t irq_line_state;
578
fe1479c3
PB
579 /* Thumb-2 EE state. */
580 uint32_t teecr;
581 uint32_t teehbr;
582
b7bcbe95
FB
583 /* VFP coprocessor state. */
584 struct {
c39c2b90 585 ARMVectorReg zregs[32];
b7bcbe95 586
3c7d3086
RH
587#ifdef TARGET_AARCH64
588 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 589#define FFR_PRED_NUM 16
3c7d3086 590 ARMPredicateReg pregs[17];
516e246a
RH
591 /* Scratch space for aa64 sve predicate temporary. */
592 ARMPredicateReg preg_tmp;
3c7d3086
RH
593#endif
594
b7bcbe95 595 /* We store these fpcsr fields separately for convenience. */
a4d58462 596 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
597 int vec_len;
598 int vec_stride;
599
a4d58462
RH
600 uint32_t xregs[16];
601
516e246a 602 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 603 uint32_t scratch[8];
3b46e624 604
d81ce0ef
AB
605 /* There are a number of distinct float control structures:
606 *
607 * fp_status: is the "normal" fp status.
608 * fp_status_fp16: used for half-precision calculations
609 * standard_fp_status : the ARM "Standard FPSCR Value"
610 *
611 * Half-precision operations are governed by a separate
612 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
613 * status structure to control this.
614 *
615 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
616 * round-to-nearest and is used by any operations (generally
617 * Neon) which the architecture defines as controlled by the
618 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
619 *
620 * To avoid having to transfer exception bits around, we simply
621 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 622 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
623 * only thing which needs to read the exception flags being
624 * an explicit FPSCR read.
625 */
53cd6637 626 float_status fp_status;
d81ce0ef 627 float_status fp_status_f16;
3a492f3a 628 float_status standard_fp_status;
5be5e8ed
RH
629
630 /* ZCR_EL[1-3] */
631 uint64_t zcr_el[4];
b7bcbe95 632 } vfp;
03d05e2d
PM
633 uint64_t exclusive_addr;
634 uint64_t exclusive_val;
635 uint64_t exclusive_high;
b7bcbe95 636
18c9b560
AZ
637 /* iwMMXt coprocessor state. */
638 struct {
639 uint64_t regs[16];
640 uint64_t val;
641
642 uint32_t cregs[16];
643 } iwmmxt;
644
991ad91b 645#ifdef TARGET_AARCH64
108b3ba8
RH
646 struct {
647 ARMPACKey apia;
648 ARMPACKey apib;
649 ARMPACKey apda;
650 ARMPACKey apdb;
651 ARMPACKey apga;
652 } keys;
991ad91b
RH
653#endif
654
ce4defa0
PB
655#if defined(CONFIG_USER_ONLY)
656 /* For usermode syscall translation. */
657 int eabi;
658#endif
659
46747d15 660 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
661 struct CPUWatchpoint *cpu_watchpoint[16];
662
1f5c00cf
AB
663 /* Fields up to this point are cleared by a CPU reset */
664 struct {} end_reset_fields;
665
e8b5fae5 666 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 667
581be094 668 /* Internal CPU feature flags. */
918f5dca 669 uint64_t features;
581be094 670
6cb0b013
PC
671 /* PMSAv7 MPU */
672 struct {
673 uint32_t *drbar;
674 uint32_t *drsr;
675 uint32_t *dracr;
4a16724f 676 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
677 } pmsav7;
678
0e1a46bb
PM
679 /* PMSAv8 MPU */
680 struct {
681 /* The PMSAv8 implementation also shares some PMSAv7 config
682 * and state:
683 * pmsav7.rnr (region number register)
684 * pmsav7_dregion (number of configured regions)
685 */
4a16724f
PM
686 uint32_t *rbar[M_REG_NUM_BANKS];
687 uint32_t *rlar[M_REG_NUM_BANKS];
688 uint32_t mair0[M_REG_NUM_BANKS];
689 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
690 } pmsav8;
691
9901c576
PM
692 /* v8M SAU */
693 struct {
694 uint32_t *rbar;
695 uint32_t *rlar;
696 uint32_t rnr;
697 uint32_t ctrl;
698 } sau;
699
983fe826 700 void *nvic;
462a8bc6 701 const struct arm_boot_info *boot_info;
d3a3e529
VK
702 /* Store GICv3CPUState to access from this struct */
703 void *gicv3state;
2c0262af
FB
704} CPUARMState;
705
5fda9504
TH
706static inline void set_feature(CPUARMState *env, int feature)
707{
708 env->features |= 1ULL << feature;
709}
710
711static inline void unset_feature(CPUARMState *env, int feature)
712{
713 env->features &= ~(1ULL << feature);
714}
715
bd7d00fc 716/**
08267487 717 * ARMELChangeHookFn:
bd7d00fc
PM
718 * type of a function which can be registered via arm_register_el_change_hook()
719 * to get callbacks when the CPU changes its exception level or mode.
720 */
08267487
AL
721typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
722typedef struct ARMELChangeHook ARMELChangeHook;
723struct ARMELChangeHook {
724 ARMELChangeHookFn *hook;
725 void *opaque;
726 QLIST_ENTRY(ARMELChangeHook) node;
727};
062ba099
AB
728
729/* These values map onto the return values for
730 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
731typedef enum ARMPSCIState {
d5affb0d
AJ
732 PSCI_ON = 0,
733 PSCI_OFF = 1,
062ba099
AB
734 PSCI_ON_PENDING = 2
735} ARMPSCIState;
736
962fcbf2
RH
737typedef struct ARMISARegisters ARMISARegisters;
738
74e75564
PB
739/**
740 * ARMCPU:
741 * @env: #CPUARMState
742 *
743 * An ARM CPU core.
744 */
745struct ARMCPU {
746 /*< private >*/
747 CPUState parent_obj;
748 /*< public >*/
749
5b146dc7 750 CPUNegativeOffsetState neg;
74e75564
PB
751 CPUARMState env;
752
753 /* Coprocessor information */
754 GHashTable *cp_regs;
755 /* For marshalling (mostly coprocessor) register state between the
756 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
757 * we use these arrays.
758 */
759 /* List of register indexes managed via these arrays; (full KVM style
760 * 64 bit indexes, not CPRegInfo 32 bit indexes)
761 */
762 uint64_t *cpreg_indexes;
763 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
764 uint64_t *cpreg_values;
765 /* Length of the indexes, values, reset_values arrays */
766 int32_t cpreg_array_len;
767 /* These are used only for migration: incoming data arrives in
768 * these fields and is sanity checked in post_load before copying
769 * to the working data structures above.
770 */
771 uint64_t *cpreg_vmstate_indexes;
772 uint64_t *cpreg_vmstate_values;
773 int32_t cpreg_vmstate_array_len;
774
448d4d14 775 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 776 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 777
74e75564
PB
778 /* Timers used by the generic (architected) timer */
779 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
780 /*
781 * Timer used by the PMU. Its state is restored after migration by
782 * pmu_op_finish() - it does not need other handling during migration
783 */
784 QEMUTimer *pmu_timer;
74e75564
PB
785 /* GPIO outputs for generic timer */
786 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
787 /* GPIO output for GICv3 maintenance interrupt signal */
788 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
789 /* GPIO output for the PMU interrupt */
790 qemu_irq pmu_interrupt;
74e75564
PB
791
792 /* MemoryRegion to use for secure physical accesses */
793 MemoryRegion *secure_memory;
794
181962fd
PM
795 /* For v8M, pointer to the IDAU interface provided by board/SoC */
796 Object *idau;
797
74e75564
PB
798 /* 'compatible' string for this CPU for Linux device trees */
799 const char *dtb_compatible;
800
801 /* PSCI version for this CPU
802 * Bits[31:16] = Major Version
803 * Bits[15:0] = Minor Version
804 */
805 uint32_t psci_version;
806
807 /* Should CPU start in PSCI powered-off state? */
808 bool start_powered_off;
062ba099
AB
809
810 /* Current power state, access guarded by BQL */
811 ARMPSCIState power_state;
812
c25bd18a
PM
813 /* CPU has virtualization extension */
814 bool has_el2;
74e75564
PB
815 /* CPU has security extension */
816 bool has_el3;
5c0a3819
SZ
817 /* CPU has PMU (Performance Monitor Unit) */
818 bool has_pmu;
97a28b0e
PM
819 /* CPU has VFP */
820 bool has_vfp;
821 /* CPU has Neon */
822 bool has_neon;
ea90db0a
PM
823 /* CPU has M-profile DSP extension */
824 bool has_dsp;
74e75564
PB
825
826 /* CPU has memory protection unit */
827 bool has_mpu;
828 /* PMSAv7 MPU number of supported regions */
829 uint32_t pmsav7_dregion;
9901c576
PM
830 /* v8M SAU number of supported regions */
831 uint32_t sau_sregion;
74e75564
PB
832
833 /* PSCI conduit used to invoke PSCI methods
834 * 0 - disabled, 1 - smc, 2 - hvc
835 */
836 uint32_t psci_conduit;
837
38e2a77c
PM
838 /* For v8M, initial value of the Secure VTOR */
839 uint32_t init_svtor;
840
74e75564
PB
841 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
842 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
843 */
844 uint32_t kvm_target;
845
846 /* KVM init features for this CPU */
847 uint32_t kvm_init_features[7];
848
e5ac4200
AJ
849 /* KVM CPU state */
850
851 /* KVM virtual time adjustment */
852 bool kvm_adjvtime;
853 bool kvm_vtime_dirty;
854 uint64_t kvm_vtime;
855
74e75564
PB
856 /* Uniprocessor system with MP extensions */
857 bool mp_is_up;
858
c4487d76
PM
859 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
860 * and the probe failed (so we need to report the error in realize)
861 */
862 bool host_cpu_probe_failed;
863
f9a69711
AF
864 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
865 * register.
866 */
867 int32_t core_count;
868
74e75564
PB
869 /* The instance init functions for implementation-specific subclasses
870 * set these fields to specify the implementation-dependent values of
871 * various constant registers and reset values of non-constant
872 * registers.
873 * Some of these might become QOM properties eventually.
874 * Field names match the official register names as defined in the
875 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
876 * is used for reset values of non-constant registers; no reset_
877 * prefix means a constant register.
47576b94
RH
878 * Some of these registers are split out into a substructure that
879 * is shared with the translators to control the ISA.
1548a7b2
PM
880 *
881 * Note that if you add an ID register to the ARMISARegisters struct
882 * you need to also update the 32-bit and 64-bit versions of the
883 * kvm_arm_get_host_cpu_features() function to correctly populate the
884 * field by reading the value from the KVM vCPU.
74e75564 885 */
47576b94
RH
886 struct ARMISARegisters {
887 uint32_t id_isar0;
888 uint32_t id_isar1;
889 uint32_t id_isar2;
890 uint32_t id_isar3;
891 uint32_t id_isar4;
892 uint32_t id_isar5;
893 uint32_t id_isar6;
10054016
PM
894 uint32_t id_mmfr0;
895 uint32_t id_mmfr1;
896 uint32_t id_mmfr2;
897 uint32_t id_mmfr3;
898 uint32_t id_mmfr4;
47576b94
RH
899 uint32_t mvfr0;
900 uint32_t mvfr1;
901 uint32_t mvfr2;
a6179538 902 uint32_t id_dfr0;
4426d361 903 uint32_t dbgdidr;
47576b94
RH
904 uint64_t id_aa64isar0;
905 uint64_t id_aa64isar1;
906 uint64_t id_aa64pfr0;
907 uint64_t id_aa64pfr1;
3dc91ddb
PM
908 uint64_t id_aa64mmfr0;
909 uint64_t id_aa64mmfr1;
64761e10 910 uint64_t id_aa64mmfr2;
2a609df8
PM
911 uint64_t id_aa64dfr0;
912 uint64_t id_aa64dfr1;
47576b94 913 } isar;
e544f800 914 uint64_t midr;
74e75564
PB
915 uint32_t revidr;
916 uint32_t reset_fpsid;
74e75564
PB
917 uint32_t ctr;
918 uint32_t reset_sctlr;
919 uint32_t id_pfr0;
920 uint32_t id_pfr1;
cad86737
AL
921 uint64_t pmceid0;
922 uint64_t pmceid1;
74e75564 923 uint32_t id_afr0;
74e75564
PB
924 uint64_t id_aa64afr0;
925 uint64_t id_aa64afr1;
74e75564
PB
926 uint32_t clidr;
927 uint64_t mp_affinity; /* MP ID without feature bits */
928 /* The elements of this array are the CCSIDR values for each cache,
929 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
930 */
957e6155 931 uint64_t ccsidr[16];
74e75564
PB
932 uint64_t reset_cbar;
933 uint32_t reset_auxcr;
934 bool reset_hivecs;
935 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
936 uint32_t dcz_blocksize;
937 uint64_t rvbar;
bd7d00fc 938
e45868a3
PM
939 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
940 int gic_num_lrs; /* number of list registers */
941 int gic_vpribits; /* number of virtual priority bits */
942 int gic_vprebits; /* number of virtual preemption bits */
943
3a062d57
JB
944 /* Whether the cfgend input is high (i.e. this CPU should reset into
945 * big-endian mode). This setting isn't used directly: instead it modifies
946 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
947 * architecture version.
948 */
949 bool cfgend;
950
b5c53d1b 951 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 952 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
953
954 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
955
956 /* Used to synchronize KVM and QEMU in-kernel device levels */
957 uint8_t device_irq_level;
adf92eab
RH
958
959 /* Used to set the maximum vector length the cpu will support. */
960 uint32_t sve_max_vq;
0df9142d
AJ
961
962 /*
963 * In sve_vq_map each set bit is a supported vector length of
964 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
965 * length in quadwords.
966 *
967 * While processing properties during initialization, corresponding
968 * sve_vq_init bits are set for bits in sve_vq_map that have been
969 * set by properties.
970 */
971 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
972 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
973
974 /* Generic timer counter frequency, in Hz */
975 uint64_t gt_cntfrq_hz;
74e75564
PB
976};
977
7def8754
AJ
978unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
979
51e5ef45
MAL
980void arm_cpu_post_init(Object *obj);
981
46de5913
IM
982uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
983
74e75564 984#ifndef CONFIG_USER_ONLY
8a9358cc 985extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
986#endif
987
988void arm_cpu_do_interrupt(CPUState *cpu);
989void arm_v7m_cpu_do_interrupt(CPUState *cpu);
990bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
991
74e75564
PB
992hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
993 MemTxAttrs *attrs);
994
a010bdbe 995int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
996int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
997
d12379c5
AB
998/*
999 * Helpers to dynamically generates XML descriptions of the sysregs
1000 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1001 */
32d6e32a 1002int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1003int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1004
1005/* Returns the dynamically generated XML for the gdb stub.
1006 * Returns a pointer to the XML contents for the specified XML file or NULL
1007 * if the XML name doesn't match the predefined one.
1008 */
1009const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1010
74e75564
PB
1011int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1012 int cpuid, void *opaque);
1013int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1014 int cpuid, void *opaque);
1015
1016#ifdef TARGET_AARCH64
a010bdbe 1017int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1018int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1019void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1020void aarch64_sve_change_el(CPUARMState *env, int old_el,
1021 int new_el, bool el0_a64);
87014c6b 1022void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
1023
1024/*
1025 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1026 * The byte at offset i from the start of the in-memory representation contains
1027 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1028 * lowest offsets are stored in the lowest memory addresses, then that nearly
1029 * matches QEMU's representation, which is to use an array of host-endian
1030 * uint64_t's, where the lower offsets are at the lower indices. To complete
1031 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1032 */
1033static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1034{
1035#ifdef HOST_WORDS_BIGENDIAN
1036 int i;
1037
1038 for (i = 0; i < nr; ++i) {
1039 dst[i] = bswap64(src[i]);
1040 }
1041
1042 return dst;
1043#else
1044 return src;
1045#endif
1046}
1047
0ab5953b
RH
1048#else
1049static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1050static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1051 int n, bool a)
1052{ }
87014c6b 1053static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1054#endif
778c3a06 1055
91f78c58
PMD
1056#if !defined(CONFIG_TCG)
1057static inline target_ulong do_arm_semihosting(CPUARMState *env)
1058{
1059 g_assert_not_reached();
1060}
1061#else
faacc041 1062target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 1063#endif
ce02049d
GB
1064void aarch64_sync_32_to_64(CPUARMState *env);
1065void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1066
ced31551
RH
1067int fp_exception_el(CPUARMState *env, int cur_el);
1068int sve_exception_el(CPUARMState *env, int cur_el);
1069uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1070
3926cc84
AG
1071static inline bool is_a64(CPUARMState *env)
1072{
1073 return env->aarch64;
1074}
1075
2c0262af
FB
1076/* you can call this signal handler from your SIGBUS and SIGSEGV
1077 signal handlers to inform the virtual CPU of exceptions. non zero
1078 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1079int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1080 void *puc);
1081
5d05b9d4
AL
1082/**
1083 * pmu_op_start/finish
ec7b4ce4
AF
1084 * @env: CPUARMState
1085 *
5d05b9d4
AL
1086 * Convert all PMU counters between their delta form (the typical mode when
1087 * they are enabled) and the guest-visible values. These two calls must
1088 * surround any action which might affect the counters.
ec7b4ce4 1089 */
5d05b9d4
AL
1090void pmu_op_start(CPUARMState *env);
1091void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1092
4e7beb0c
AL
1093/*
1094 * Called when a PMU counter is due to overflow
1095 */
1096void arm_pmu_timer_cb(void *opaque);
1097
033614c4
AL
1098/**
1099 * Functions to register as EL change hooks for PMU mode filtering
1100 */
1101void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1102void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1103
57a4a11b 1104/*
bf8d0969
AL
1105 * pmu_init
1106 * @cpu: ARMCPU
57a4a11b 1107 *
bf8d0969
AL
1108 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1109 * for the current configuration
57a4a11b 1110 */
bf8d0969 1111void pmu_init(ARMCPU *cpu);
57a4a11b 1112
76e3e1bc
PM
1113/* SCTLR bit meanings. Several bits have been reused in newer
1114 * versions of the architecture; in that case we define constants
1115 * for both old and new bit meanings. Code which tests against those
1116 * bits should probably check or otherwise arrange that the CPU
1117 * is the architectural version it expects.
1118 */
1119#define SCTLR_M (1U << 0)
1120#define SCTLR_A (1U << 1)
1121#define SCTLR_C (1U << 2)
1122#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1123#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1124#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1125#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1126#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1127#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1128#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1129#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1130#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1131#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1132#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1133#define SCTLR_ITD (1U << 7) /* v8 onward */
1134#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1135#define SCTLR_SED (1U << 8) /* v8 onward */
1136#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1137#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1138#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1139#define SCTLR_SW (1U << 10) /* v7 */
1140#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1141#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1142#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1143#define SCTLR_I (1U << 12)
b2af69d0
RH
1144#define SCTLR_V (1U << 13) /* AArch32 only */
1145#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1146#define SCTLR_RR (1U << 14) /* up to v7 */
1147#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1148#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1149#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1150#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1151#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1152#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1153#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1154#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1155#define SCTLR_nTWE (1U << 18) /* v8 onward */
1156#define SCTLR_WXN (1U << 19)
1157#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1158#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1159#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1160#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1161#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1162#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1163#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1164#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1165#define SCTLR_VE (1U << 24) /* up to v7 */
1166#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1167#define SCTLR_EE (1U << 25)
1168#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1169#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1170#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1171#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1172#define SCTLR_TRE (1U << 28) /* AArch32 only */
1173#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1174#define SCTLR_AFE (1U << 29) /* AArch32 only */
1175#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1176#define SCTLR_TE (1U << 30) /* AArch32 only */
1177#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1178#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1179#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1180#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1181#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1182#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1183#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1184#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1185#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1186#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1187
c6f19164
GB
1188#define CPTR_TCPAC (1U << 31)
1189#define CPTR_TTA (1U << 20)
1190#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1191#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1192#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1193
187f678d
PM
1194#define MDCR_EPMAD (1U << 21)
1195#define MDCR_EDAD (1U << 20)
033614c4
AL
1196#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1197#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1198#define MDCR_SDD (1U << 16)
a8d64e73 1199#define MDCR_SPD (3U << 14)
187f678d
PM
1200#define MDCR_TDRA (1U << 11)
1201#define MDCR_TDOSA (1U << 10)
1202#define MDCR_TDA (1U << 9)
1203#define MDCR_TDE (1U << 8)
1204#define MDCR_HPME (1U << 7)
1205#define MDCR_TPM (1U << 6)
1206#define MDCR_TPMCR (1U << 5)
033614c4 1207#define MDCR_HPMN (0x1fU)
187f678d 1208
a8d64e73
PM
1209/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1210#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1211
78dbbbe4
PM
1212#define CPSR_M (0x1fU)
1213#define CPSR_T (1U << 5)
1214#define CPSR_F (1U << 6)
1215#define CPSR_I (1U << 7)
1216#define CPSR_A (1U << 8)
1217#define CPSR_E (1U << 9)
1218#define CPSR_IT_2_7 (0xfc00U)
1219#define CPSR_GE (0xfU << 16)
4051e12c 1220#define CPSR_IL (1U << 20)
220f508f 1221#define CPSR_PAN (1U << 22)
78dbbbe4
PM
1222#define CPSR_J (1U << 24)
1223#define CPSR_IT_0_1 (3U << 25)
1224#define CPSR_Q (1U << 27)
1225#define CPSR_V (1U << 28)
1226#define CPSR_C (1U << 29)
1227#define CPSR_Z (1U << 30)
1228#define CPSR_N (1U << 31)
9ee6e8bb 1229#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1230#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1231
1232#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1233#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1234 | CPSR_NZCV)
9ee6e8bb 1235/* Bits writable in user mode. */
268b1b3d 1236#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1237/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1238#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1239
987ab45e
PM
1240/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1241#define XPSR_EXCP 0x1ffU
1242#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1243#define XPSR_IT_2_7 CPSR_IT_2_7
1244#define XPSR_GE CPSR_GE
1245#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1246#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1247#define XPSR_IT_0_1 CPSR_IT_0_1
1248#define XPSR_Q CPSR_Q
1249#define XPSR_V CPSR_V
1250#define XPSR_C CPSR_C
1251#define XPSR_Z CPSR_Z
1252#define XPSR_N CPSR_N
1253#define XPSR_NZCV CPSR_NZCV
1254#define XPSR_IT CPSR_IT
1255
e389be16
FA
1256#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1257#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1258#define TTBCR_PD0 (1U << 4)
1259#define TTBCR_PD1 (1U << 5)
1260#define TTBCR_EPD0 (1U << 7)
1261#define TTBCR_IRGN0 (3U << 8)
1262#define TTBCR_ORGN0 (3U << 10)
1263#define TTBCR_SH0 (3U << 12)
1264#define TTBCR_T1SZ (3U << 16)
1265#define TTBCR_A1 (1U << 22)
1266#define TTBCR_EPD1 (1U << 23)
1267#define TTBCR_IRGN1 (3U << 24)
1268#define TTBCR_ORGN1 (3U << 26)
1269#define TTBCR_SH1 (1U << 28)
1270#define TTBCR_EAE (1U << 31)
1271
d356312f
PM
1272/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1273 * Only these are valid when in AArch64 mode; in
1274 * AArch32 mode SPSRs are basically CPSR-format.
1275 */
f502cfc2 1276#define PSTATE_SP (1U)
d356312f
PM
1277#define PSTATE_M (0xFU)
1278#define PSTATE_nRW (1U << 4)
1279#define PSTATE_F (1U << 6)
1280#define PSTATE_I (1U << 7)
1281#define PSTATE_A (1U << 8)
1282#define PSTATE_D (1U << 9)
f6e52eaa 1283#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1284#define PSTATE_IL (1U << 20)
1285#define PSTATE_SS (1U << 21)
220f508f 1286#define PSTATE_PAN (1U << 22)
9eeb7a1c 1287#define PSTATE_UAO (1U << 23)
4b779ceb 1288#define PSTATE_TCO (1U << 25)
d356312f
PM
1289#define PSTATE_V (1U << 28)
1290#define PSTATE_C (1U << 29)
1291#define PSTATE_Z (1U << 30)
1292#define PSTATE_N (1U << 31)
1293#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1294#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1295#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1296/* Mode values for AArch64 */
1297#define PSTATE_MODE_EL3h 13
1298#define PSTATE_MODE_EL3t 12
1299#define PSTATE_MODE_EL2h 9
1300#define PSTATE_MODE_EL2t 8
1301#define PSTATE_MODE_EL1h 5
1302#define PSTATE_MODE_EL1t 4
1303#define PSTATE_MODE_EL0t 0
1304
de2db7ec
PM
1305/* Write a new value to v7m.exception, thus transitioning into or out
1306 * of Handler mode; this may result in a change of active stack pointer.
1307 */
1308void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1309
9e729b57
EI
1310/* Map EL and handler into a PSTATE_MODE. */
1311static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1312{
1313 return (el << 2) | handler;
1314}
1315
d356312f
PM
1316/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1317 * interprocessing, so we don't attempt to sync with the cpsr state used by
1318 * the 32 bit decoder.
1319 */
1320static inline uint32_t pstate_read(CPUARMState *env)
1321{
1322 int ZF;
1323
1324 ZF = (env->ZF == 0);
1325 return (env->NF & 0x80000000) | (ZF << 30)
1326 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1327 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1328}
1329
1330static inline void pstate_write(CPUARMState *env, uint32_t val)
1331{
1332 env->ZF = (~val) & PSTATE_Z;
1333 env->NF = val;
1334 env->CF = (val >> 29) & 1;
1335 env->VF = (val << 3) & 0x80000000;
4cc35614 1336 env->daif = val & PSTATE_DAIF;
f6e52eaa 1337 env->btype = (val >> 10) & 3;
d356312f
PM
1338 env->pstate = val & ~CACHED_PSTATE_BITS;
1339}
1340
b5ff1b31 1341/* Return the current CPSR value. */
2f4a40e5 1342uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1343
1344typedef enum CPSRWriteType {
1345 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1346 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1347 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1348 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1349} CPSRWriteType;
1350
1351/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1352void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1353 CPSRWriteType write_type);
9ee6e8bb
PB
1354
1355/* Return the current xPSR value. */
1356static inline uint32_t xpsr_read(CPUARMState *env)
1357{
1358 int ZF;
6fbe23d5
PB
1359 ZF = (env->ZF == 0);
1360 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1361 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1362 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1363 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1364 | (env->GE << 16)
9ee6e8bb 1365 | env->v7m.exception;
b5ff1b31
FB
1366}
1367
9ee6e8bb
PB
1368/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1369static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1370{
987ab45e
PM
1371 if (mask & XPSR_NZCV) {
1372 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1373 env->NF = val;
9ee6e8bb
PB
1374 env->CF = (val >> 29) & 1;
1375 env->VF = (val << 3) & 0x80000000;
1376 }
987ab45e
PM
1377 if (mask & XPSR_Q) {
1378 env->QF = ((val & XPSR_Q) != 0);
1379 }
f1e2598c
PM
1380 if (mask & XPSR_GE) {
1381 env->GE = (val & XPSR_GE) >> 16;
1382 }
04c9c81b 1383#ifndef CONFIG_USER_ONLY
987ab45e
PM
1384 if (mask & XPSR_T) {
1385 env->thumb = ((val & XPSR_T) != 0);
1386 }
1387 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1388 env->condexec_bits &= ~3;
1389 env->condexec_bits |= (val >> 25) & 3;
1390 }
987ab45e 1391 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1392 env->condexec_bits &= 3;
1393 env->condexec_bits |= (val >> 8) & 0xfc;
1394 }
987ab45e 1395 if (mask & XPSR_EXCP) {
de2db7ec
PM
1396 /* Note that this only happens on exception exit */
1397 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1398 }
04c9c81b 1399#endif
9ee6e8bb
PB
1400}
1401
f149e3e8
EI
1402#define HCR_VM (1ULL << 0)
1403#define HCR_SWIO (1ULL << 1)
1404#define HCR_PTW (1ULL << 2)
1405#define HCR_FMO (1ULL << 3)
1406#define HCR_IMO (1ULL << 4)
1407#define HCR_AMO (1ULL << 5)
1408#define HCR_VF (1ULL << 6)
1409#define HCR_VI (1ULL << 7)
1410#define HCR_VSE (1ULL << 8)
1411#define HCR_FB (1ULL << 9)
1412#define HCR_BSU_MASK (3ULL << 10)
1413#define HCR_DC (1ULL << 12)
1414#define HCR_TWI (1ULL << 13)
1415#define HCR_TWE (1ULL << 14)
1416#define HCR_TID0 (1ULL << 15)
1417#define HCR_TID1 (1ULL << 16)
1418#define HCR_TID2 (1ULL << 17)
1419#define HCR_TID3 (1ULL << 18)
1420#define HCR_TSC (1ULL << 19)
1421#define HCR_TIDCP (1ULL << 20)
1422#define HCR_TACR (1ULL << 21)
1423#define HCR_TSW (1ULL << 22)
099bf53b 1424#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1425#define HCR_TPU (1ULL << 24)
1426#define HCR_TTLB (1ULL << 25)
1427#define HCR_TVM (1ULL << 26)
1428#define HCR_TGE (1ULL << 27)
1429#define HCR_TDZ (1ULL << 28)
1430#define HCR_HCD (1ULL << 29)
1431#define HCR_TRVM (1ULL << 30)
1432#define HCR_RW (1ULL << 31)
1433#define HCR_CD (1ULL << 32)
1434#define HCR_ID (1ULL << 33)
ac656b16 1435#define HCR_E2H (1ULL << 34)
099bf53b
RH
1436#define HCR_TLOR (1ULL << 35)
1437#define HCR_TERR (1ULL << 36)
1438#define HCR_TEA (1ULL << 37)
1439#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1440/* RES0 bit 39 */
099bf53b
RH
1441#define HCR_APK (1ULL << 40)
1442#define HCR_API (1ULL << 41)
1443#define HCR_NV (1ULL << 42)
1444#define HCR_NV1 (1ULL << 43)
1445#define HCR_AT (1ULL << 44)
1446#define HCR_NV2 (1ULL << 45)
1447#define HCR_FWB (1ULL << 46)
1448#define HCR_FIEN (1ULL << 47)
e0a38bb3 1449/* RES0 bit 48 */
099bf53b
RH
1450#define HCR_TID4 (1ULL << 49)
1451#define HCR_TICAB (1ULL << 50)
e0a38bb3 1452#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1453#define HCR_TOCU (1ULL << 52)
e0a38bb3 1454#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1455#define HCR_TTLBIS (1ULL << 54)
1456#define HCR_TTLBOS (1ULL << 55)
1457#define HCR_ATA (1ULL << 56)
1458#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1459#define HCR_TID5 (1ULL << 58)
1460#define HCR_TWEDEN (1ULL << 59)
1461#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1462
64e0e2de
EI
1463#define SCR_NS (1U << 0)
1464#define SCR_IRQ (1U << 1)
1465#define SCR_FIQ (1U << 2)
1466#define SCR_EA (1U << 3)
1467#define SCR_FW (1U << 4)
1468#define SCR_AW (1U << 5)
1469#define SCR_NET (1U << 6)
1470#define SCR_SMD (1U << 7)
1471#define SCR_HCE (1U << 8)
1472#define SCR_SIF (1U << 9)
1473#define SCR_RW (1U << 10)
1474#define SCR_ST (1U << 11)
1475#define SCR_TWI (1U << 12)
1476#define SCR_TWE (1U << 13)
99f8f86d
RH
1477#define SCR_TLOR (1U << 14)
1478#define SCR_TERR (1U << 15)
1479#define SCR_APK (1U << 16)
1480#define SCR_API (1U << 17)
1481#define SCR_EEL2 (1U << 18)
1482#define SCR_EASE (1U << 19)
1483#define SCR_NMEA (1U << 20)
1484#define SCR_FIEN (1U << 21)
1485#define SCR_ENSCXT (1U << 25)
1486#define SCR_ATA (1U << 26)
64e0e2de 1487
01653295
PM
1488/* Return the current FPSCR value. */
1489uint32_t vfp_get_fpscr(CPUARMState *env);
1490void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1491
d81ce0ef
AB
1492/* FPCR, Floating Point Control Register
1493 * FPSR, Floating Poiht Status Register
1494 *
1495 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1496 * FPCR and FPSR. However since they still use non-overlapping bits
1497 * we store the underlying state in fpscr and just mask on read/write.
1498 */
1499#define FPSR_MASK 0xf800009f
0b62159b 1500#define FPCR_MASK 0x07ff9f00
d81ce0ef 1501
a15945d9
PM
1502#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1503#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1504#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1505#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1506#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1507#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1508#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1509#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1510#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1511#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1512
f903fa22
PM
1513static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1514{
1515 return vfp_get_fpscr(env) & FPSR_MASK;
1516}
1517
1518static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1519{
1520 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1521 vfp_set_fpscr(env, new_fpscr);
1522}
1523
1524static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1525{
1526 return vfp_get_fpscr(env) & FPCR_MASK;
1527}
1528
1529static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1530{
1531 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1532 vfp_set_fpscr(env, new_fpscr);
1533}
1534
b5ff1b31
FB
1535enum arm_cpu_mode {
1536 ARM_CPU_MODE_USR = 0x10,
1537 ARM_CPU_MODE_FIQ = 0x11,
1538 ARM_CPU_MODE_IRQ = 0x12,
1539 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1540 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1541 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1542 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1543 ARM_CPU_MODE_UND = 0x1b,
1544 ARM_CPU_MODE_SYS = 0x1f
1545};
1546
40f137e1
PB
1547/* VFP system registers. */
1548#define ARM_VFP_FPSID 0
1549#define ARM_VFP_FPSCR 1
a50c0f51 1550#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1551#define ARM_VFP_MVFR1 6
1552#define ARM_VFP_MVFR0 7
40f137e1
PB
1553#define ARM_VFP_FPEXC 8
1554#define ARM_VFP_FPINST 9
1555#define ARM_VFP_FPINST2 10
1556
18c9b560 1557/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1558#define ARM_IWMMXT_wCID 0
1559#define ARM_IWMMXT_wCon 1
1560#define ARM_IWMMXT_wCSSF 2
1561#define ARM_IWMMXT_wCASF 3
1562#define ARM_IWMMXT_wCGR0 8
1563#define ARM_IWMMXT_wCGR1 9
1564#define ARM_IWMMXT_wCGR2 10
1565#define ARM_IWMMXT_wCGR3 11
18c9b560 1566
2c4da50d
PM
1567/* V7M CCR bits */
1568FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1569FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1570FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1571FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1572FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1573FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1574FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1575FIELD(V7M_CCR, DC, 16, 1)
1576FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1577FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1578
24ac0fb1
PM
1579/* V7M SCR bits */
1580FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1581FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1582FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1583FIELD(V7M_SCR, SEVONPEND, 4, 1)
1584
3b2e9344
PM
1585/* V7M AIRCR bits */
1586FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1587FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1588FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1589FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1590FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1591FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1592FIELD(V7M_AIRCR, PRIS, 14, 1)
1593FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1594FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1595
2c4da50d
PM
1596/* V7M CFSR bits for MMFSR */
1597FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1598FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1599FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1600FIELD(V7M_CFSR, MSTKERR, 4, 1)
1601FIELD(V7M_CFSR, MLSPERR, 5, 1)
1602FIELD(V7M_CFSR, MMARVALID, 7, 1)
1603
1604/* V7M CFSR bits for BFSR */
1605FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1606FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1607FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1608FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1609FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1610FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1611FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1612
1613/* V7M CFSR bits for UFSR */
1614FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1615FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1616FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1617FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1618FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1619FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1620FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1621
334e8dad
PM
1622/* V7M CFSR bit masks covering all of the subregister bits */
1623FIELD(V7M_CFSR, MMFSR, 0, 8)
1624FIELD(V7M_CFSR, BFSR, 8, 8)
1625FIELD(V7M_CFSR, UFSR, 16, 16)
1626
2c4da50d
PM
1627/* V7M HFSR bits */
1628FIELD(V7M_HFSR, VECTTBL, 1, 1)
1629FIELD(V7M_HFSR, FORCED, 30, 1)
1630FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1631
1632/* V7M DFSR bits */
1633FIELD(V7M_DFSR, HALTED, 0, 1)
1634FIELD(V7M_DFSR, BKPT, 1, 1)
1635FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1636FIELD(V7M_DFSR, VCATCH, 3, 1)
1637FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1638
bed079da
PM
1639/* V7M SFSR bits */
1640FIELD(V7M_SFSR, INVEP, 0, 1)
1641FIELD(V7M_SFSR, INVIS, 1, 1)
1642FIELD(V7M_SFSR, INVER, 2, 1)
1643FIELD(V7M_SFSR, AUVIOL, 3, 1)
1644FIELD(V7M_SFSR, INVTRAN, 4, 1)
1645FIELD(V7M_SFSR, LSPERR, 5, 1)
1646FIELD(V7M_SFSR, SFARVALID, 6, 1)
1647FIELD(V7M_SFSR, LSERR, 7, 1)
1648
29c483a5
MD
1649/* v7M MPU_CTRL bits */
1650FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1651FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1652FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1653
43bbce7f
PM
1654/* v7M CLIDR bits */
1655FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1656FIELD(V7M_CLIDR, LOUIS, 21, 3)
1657FIELD(V7M_CLIDR, LOC, 24, 3)
1658FIELD(V7M_CLIDR, LOUU, 27, 3)
1659FIELD(V7M_CLIDR, ICB, 30, 2)
1660
1661FIELD(V7M_CSSELR, IND, 0, 1)
1662FIELD(V7M_CSSELR, LEVEL, 1, 3)
1663/* We use the combination of InD and Level to index into cpu->ccsidr[];
1664 * define a mask for this and check that it doesn't permit running off
1665 * the end of the array.
1666 */
1667FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1668
1669/* v7M FPCCR bits */
1670FIELD(V7M_FPCCR, LSPACT, 0, 1)
1671FIELD(V7M_FPCCR, USER, 1, 1)
1672FIELD(V7M_FPCCR, S, 2, 1)
1673FIELD(V7M_FPCCR, THREAD, 3, 1)
1674FIELD(V7M_FPCCR, HFRDY, 4, 1)
1675FIELD(V7M_FPCCR, MMRDY, 5, 1)
1676FIELD(V7M_FPCCR, BFRDY, 6, 1)
1677FIELD(V7M_FPCCR, SFRDY, 7, 1)
1678FIELD(V7M_FPCCR, MONRDY, 8, 1)
1679FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1680FIELD(V7M_FPCCR, UFRDY, 10, 1)
1681FIELD(V7M_FPCCR, RES0, 11, 15)
1682FIELD(V7M_FPCCR, TS, 26, 1)
1683FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1684FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1685FIELD(V7M_FPCCR, LSPENS, 29, 1)
1686FIELD(V7M_FPCCR, LSPEN, 30, 1)
1687FIELD(V7M_FPCCR, ASPEN, 31, 1)
1688/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1689#define R_V7M_FPCCR_BANKED_MASK \
1690 (R_V7M_FPCCR_LSPACT_MASK | \
1691 R_V7M_FPCCR_USER_MASK | \
1692 R_V7M_FPCCR_THREAD_MASK | \
1693 R_V7M_FPCCR_MMRDY_MASK | \
1694 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1695 R_V7M_FPCCR_UFRDY_MASK | \
1696 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1697
a62e62af
RH
1698/*
1699 * System register ID fields.
1700 */
2bd5f41c
AB
1701FIELD(MIDR_EL1, REVISION, 0, 4)
1702FIELD(MIDR_EL1, PARTNUM, 4, 12)
1703FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1704FIELD(MIDR_EL1, VARIANT, 20, 4)
1705FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1706
a62e62af
RH
1707FIELD(ID_ISAR0, SWAP, 0, 4)
1708FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1709FIELD(ID_ISAR0, BITFIELD, 8, 4)
1710FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1711FIELD(ID_ISAR0, COPROC, 16, 4)
1712FIELD(ID_ISAR0, DEBUG, 20, 4)
1713FIELD(ID_ISAR0, DIVIDE, 24, 4)
1714
1715FIELD(ID_ISAR1, ENDIAN, 0, 4)
1716FIELD(ID_ISAR1, EXCEPT, 4, 4)
1717FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1718FIELD(ID_ISAR1, EXTEND, 12, 4)
1719FIELD(ID_ISAR1, IFTHEN, 16, 4)
1720FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1721FIELD(ID_ISAR1, INTERWORK, 24, 4)
1722FIELD(ID_ISAR1, JAZELLE, 28, 4)
1723
1724FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1725FIELD(ID_ISAR2, MEMHINT, 4, 4)
1726FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1727FIELD(ID_ISAR2, MULT, 12, 4)
1728FIELD(ID_ISAR2, MULTS, 16, 4)
1729FIELD(ID_ISAR2, MULTU, 20, 4)
1730FIELD(ID_ISAR2, PSR_AR, 24, 4)
1731FIELD(ID_ISAR2, REVERSAL, 28, 4)
1732
1733FIELD(ID_ISAR3, SATURATE, 0, 4)
1734FIELD(ID_ISAR3, SIMD, 4, 4)
1735FIELD(ID_ISAR3, SVC, 8, 4)
1736FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1737FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1738FIELD(ID_ISAR3, T32COPY, 20, 4)
1739FIELD(ID_ISAR3, TRUENOP, 24, 4)
1740FIELD(ID_ISAR3, T32EE, 28, 4)
1741
1742FIELD(ID_ISAR4, UNPRIV, 0, 4)
1743FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1744FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1745FIELD(ID_ISAR4, SMC, 12, 4)
1746FIELD(ID_ISAR4, BARRIER, 16, 4)
1747FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1748FIELD(ID_ISAR4, PSR_M, 24, 4)
1749FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1750
1751FIELD(ID_ISAR5, SEVL, 0, 4)
1752FIELD(ID_ISAR5, AES, 4, 4)
1753FIELD(ID_ISAR5, SHA1, 8, 4)
1754FIELD(ID_ISAR5, SHA2, 12, 4)
1755FIELD(ID_ISAR5, CRC32, 16, 4)
1756FIELD(ID_ISAR5, RDM, 24, 4)
1757FIELD(ID_ISAR5, VCMA, 28, 4)
1758
1759FIELD(ID_ISAR6, JSCVT, 0, 4)
1760FIELD(ID_ISAR6, DP, 4, 4)
1761FIELD(ID_ISAR6, FHM, 8, 4)
1762FIELD(ID_ISAR6, SB, 12, 4)
1763FIELD(ID_ISAR6, SPECRES, 16, 4)
1764
3d6ad6bb
RH
1765FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1766FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1767FIELD(ID_MMFR3, BPMAINT, 8, 4)
1768FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1769FIELD(ID_MMFR3, PAN, 16, 4)
1770FIELD(ID_MMFR3, COHWALK, 20, 4)
1771FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1772FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1773
ab638a32
RH
1774FIELD(ID_MMFR4, SPECSEI, 0, 4)
1775FIELD(ID_MMFR4, AC2, 4, 4)
1776FIELD(ID_MMFR4, XNX, 8, 4)
1777FIELD(ID_MMFR4, CNP, 12, 4)
1778FIELD(ID_MMFR4, HPDS, 16, 4)
1779FIELD(ID_MMFR4, LSM, 20, 4)
1780FIELD(ID_MMFR4, CCIDX, 24, 4)
1781FIELD(ID_MMFR4, EVT, 28, 4)
1782
a62e62af
RH
1783FIELD(ID_AA64ISAR0, AES, 4, 4)
1784FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1785FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1786FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1787FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1788FIELD(ID_AA64ISAR0, RDM, 28, 4)
1789FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1790FIELD(ID_AA64ISAR0, SM3, 36, 4)
1791FIELD(ID_AA64ISAR0, SM4, 40, 4)
1792FIELD(ID_AA64ISAR0, DP, 44, 4)
1793FIELD(ID_AA64ISAR0, FHM, 48, 4)
1794FIELD(ID_AA64ISAR0, TS, 52, 4)
1795FIELD(ID_AA64ISAR0, TLB, 56, 4)
1796FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1797
1798FIELD(ID_AA64ISAR1, DPB, 0, 4)
1799FIELD(ID_AA64ISAR1, APA, 4, 4)
1800FIELD(ID_AA64ISAR1, API, 8, 4)
1801FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1802FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1803FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1804FIELD(ID_AA64ISAR1, GPA, 24, 4)
1805FIELD(ID_AA64ISAR1, GPI, 28, 4)
1806FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1807FIELD(ID_AA64ISAR1, SB, 36, 4)
1808FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1809
cd208a1c
RH
1810FIELD(ID_AA64PFR0, EL0, 0, 4)
1811FIELD(ID_AA64PFR0, EL1, 4, 4)
1812FIELD(ID_AA64PFR0, EL2, 8, 4)
1813FIELD(ID_AA64PFR0, EL3, 12, 4)
1814FIELD(ID_AA64PFR0, FP, 16, 4)
1815FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1816FIELD(ID_AA64PFR0, GIC, 24, 4)
1817FIELD(ID_AA64PFR0, RAS, 28, 4)
1818FIELD(ID_AA64PFR0, SVE, 32, 4)
1819
be53b6f4
RH
1820FIELD(ID_AA64PFR1, BT, 0, 4)
1821FIELD(ID_AA64PFR1, SBSS, 4, 4)
1822FIELD(ID_AA64PFR1, MTE, 8, 4)
1823FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1824
3dc91ddb
PM
1825FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1826FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1827FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1828FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1829FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1830FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1831FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1832FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1833FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1834FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1835FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1836FIELD(ID_AA64MMFR0, EXS, 44, 4)
1837
1838FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1839FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1840FIELD(ID_AA64MMFR1, VH, 8, 4)
1841FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1842FIELD(ID_AA64MMFR1, LO, 16, 4)
1843FIELD(ID_AA64MMFR1, PAN, 20, 4)
1844FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1845FIELD(ID_AA64MMFR1, XNX, 28, 4)
1846
64761e10
RH
1847FIELD(ID_AA64MMFR2, CNP, 0, 4)
1848FIELD(ID_AA64MMFR2, UAO, 4, 4)
1849FIELD(ID_AA64MMFR2, LSM, 8, 4)
1850FIELD(ID_AA64MMFR2, IESB, 12, 4)
1851FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1852FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1853FIELD(ID_AA64MMFR2, NV, 24, 4)
1854FIELD(ID_AA64MMFR2, ST, 28, 4)
1855FIELD(ID_AA64MMFR2, AT, 32, 4)
1856FIELD(ID_AA64MMFR2, IDS, 36, 4)
1857FIELD(ID_AA64MMFR2, FWB, 40, 4)
1858FIELD(ID_AA64MMFR2, TTL, 48, 4)
1859FIELD(ID_AA64MMFR2, BBM, 52, 4)
1860FIELD(ID_AA64MMFR2, EVT, 56, 4)
1861FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1862
ceb2744b
PM
1863FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1864FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1865FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1866FIELD(ID_AA64DFR0, BRPS, 12, 4)
1867FIELD(ID_AA64DFR0, WRPS, 20, 4)
1868FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1869FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1870FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1871FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1872
beceb99c
AL
1873FIELD(ID_DFR0, COPDBG, 0, 4)
1874FIELD(ID_DFR0, COPSDBG, 4, 4)
1875FIELD(ID_DFR0, MMAPDBG, 8, 4)
1876FIELD(ID_DFR0, COPTRC, 12, 4)
1877FIELD(ID_DFR0, MMAPTRC, 16, 4)
1878FIELD(ID_DFR0, MPROFDBG, 20, 4)
1879FIELD(ID_DFR0, PERFMON, 24, 4)
1880FIELD(ID_DFR0, TRACEFILT, 28, 4)
1881
88ce6c6e
PM
1882FIELD(DBGDIDR, SE_IMP, 12, 1)
1883FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1884FIELD(DBGDIDR, VERSION, 16, 4)
1885FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1886FIELD(DBGDIDR, BRPS, 24, 4)
1887FIELD(DBGDIDR, WRPS, 28, 4)
1888
602f6e42
PM
1889FIELD(MVFR0, SIMDREG, 0, 4)
1890FIELD(MVFR0, FPSP, 4, 4)
1891FIELD(MVFR0, FPDP, 8, 4)
1892FIELD(MVFR0, FPTRAP, 12, 4)
1893FIELD(MVFR0, FPDIVIDE, 16, 4)
1894FIELD(MVFR0, FPSQRT, 20, 4)
1895FIELD(MVFR0, FPSHVEC, 24, 4)
1896FIELD(MVFR0, FPROUND, 28, 4)
1897
1898FIELD(MVFR1, FPFTZ, 0, 4)
1899FIELD(MVFR1, FPDNAN, 4, 4)
1900FIELD(MVFR1, SIMDLS, 8, 4)
1901FIELD(MVFR1, SIMDINT, 12, 4)
1902FIELD(MVFR1, SIMDSP, 16, 4)
1903FIELD(MVFR1, SIMDHP, 20, 4)
1904FIELD(MVFR1, FPHP, 24, 4)
1905FIELD(MVFR1, SIMDFMAC, 28, 4)
1906
1907FIELD(MVFR2, SIMDMISC, 0, 4)
1908FIELD(MVFR2, FPMISC, 4, 4)
1909
43bbce7f
PM
1910QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1911
ce854d7c
BC
1912/* If adding a feature bit which corresponds to a Linux ELF
1913 * HWCAP bit, remember to update the feature-bit-to-hwcap
1914 * mapping in linux-user/elfload.c:get_elf_hwcap().
1915 */
40f137e1 1916enum arm_features {
c1713132
AZ
1917 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1918 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1919 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1920 ARM_FEATURE_V6,
1921 ARM_FEATURE_V6K,
1922 ARM_FEATURE_V7,
1923 ARM_FEATURE_THUMB2,
452a0955 1924 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1925 ARM_FEATURE_NEON,
9ee6e8bb 1926 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1927 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1928 ARM_FEATURE_THUMB2EE,
be5e7a76 1929 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1930 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1931 ARM_FEATURE_V4T,
1932 ARM_FEATURE_V5,
5bc95aa2 1933 ARM_FEATURE_STRONGARM,
906879a9 1934 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 1935 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1936 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1937 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1938 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1939 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1940 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1941 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1942 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1943 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1944 ARM_FEATURE_V8,
3926cc84 1945 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1946 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1947 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1948 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1949 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1950 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1951 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1952 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1953 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1954 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1955 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1956};
1957
1958static inline int arm_feature(CPUARMState *env, int feature)
1959{
918f5dca 1960 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1961}
1962
0df9142d
AJ
1963void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1964
19e0fefa
FA
1965#if !defined(CONFIG_USER_ONLY)
1966/* Return true if exception levels below EL3 are in secure state,
1967 * or would be following an exception return to that level.
1968 * Unlike arm_is_secure() (which is always a question about the
1969 * _current_ state of the CPU) this doesn't care about the current
1970 * EL or mode.
1971 */
1972static inline bool arm_is_secure_below_el3(CPUARMState *env)
1973{
1974 if (arm_feature(env, ARM_FEATURE_EL3)) {
1975 return !(env->cp15.scr_el3 & SCR_NS);
1976 } else {
6b7f0b61 1977 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1978 * defined, in which case QEMU defaults to non-secure.
1979 */
1980 return false;
1981 }
1982}
1983
71205876
PM
1984/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1985static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1986{
1987 if (arm_feature(env, ARM_FEATURE_EL3)) {
1988 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1989 /* CPU currently in AArch64 state and EL3 */
1990 return true;
1991 } else if (!is_a64(env) &&
1992 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1993 /* CPU currently in AArch32 state and monitor mode */
1994 return true;
1995 }
1996 }
71205876
PM
1997 return false;
1998}
1999
2000/* Return true if the processor is in secure state */
2001static inline bool arm_is_secure(CPUARMState *env)
2002{
2003 if (arm_is_el3_or_mon(env)) {
2004 return true;
2005 }
19e0fefa
FA
2006 return arm_is_secure_below_el3(env);
2007}
2008
2009#else
2010static inline bool arm_is_secure_below_el3(CPUARMState *env)
2011{
2012 return false;
2013}
2014
2015static inline bool arm_is_secure(CPUARMState *env)
2016{
2017 return false;
2018}
2019#endif
2020
f7778444
RH
2021/**
2022 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2023 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2024 * "for all purposes other than a direct read or write access of HCR_EL2."
2025 * Not included here is HCR_RW.
2026 */
2027uint64_t arm_hcr_el2_eff(CPUARMState *env);
2028
1f79ee32
PM
2029/* Return true if the specified exception level is running in AArch64 state. */
2030static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2031{
446c81ab
PM
2032 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2033 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2034 */
446c81ab
PM
2035 assert(el >= 1 && el <= 3);
2036 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2037
446c81ab
PM
2038 /* The highest exception level is always at the maximum supported
2039 * register width, and then lower levels have a register width controlled
2040 * by bits in the SCR or HCR registers.
1f79ee32 2041 */
446c81ab
PM
2042 if (el == 3) {
2043 return aa64;
2044 }
2045
2046 if (arm_feature(env, ARM_FEATURE_EL3)) {
2047 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2048 }
2049
2050 if (el == 2) {
2051 return aa64;
2052 }
2053
2054 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2055 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2056 }
2057
2058 return aa64;
1f79ee32
PM
2059}
2060
3f342b9e
SF
2061/* Function for determing whether guest cp register reads and writes should
2062 * access the secure or non-secure bank of a cp register. When EL3 is
2063 * operating in AArch32 state, the NS-bit determines whether the secure
2064 * instance of a cp register should be used. When EL3 is AArch64 (or if
2065 * it doesn't exist at all) then there is no register banking, and all
2066 * accesses are to the non-secure version.
2067 */
2068static inline bool access_secure_reg(CPUARMState *env)
2069{
2070 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2071 !arm_el_is_aa64(env, 3) &&
2072 !(env->cp15.scr_el3 & SCR_NS));
2073
2074 return ret;
2075}
2076
ea30a4b8
FA
2077/* Macros for accessing a specified CP register bank */
2078#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2079 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2080
2081#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2082 do { \
2083 if (_secure) { \
2084 (_env)->cp15._regname##_s = (_val); \
2085 } else { \
2086 (_env)->cp15._regname##_ns = (_val); \
2087 } \
2088 } while (0)
2089
2090/* Macros for automatically accessing a specific CP register bank depending on
2091 * the current secure state of the system. These macros are not intended for
2092 * supporting instruction translation reads/writes as these are dependent
2093 * solely on the SCR.NS bit and not the mode.
2094 */
2095#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2096 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2097 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2098
2099#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2100 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2101 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2102 (_val))
2103
0442428a 2104void arm_cpu_list(void);
012a906b
GB
2105uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2106 uint32_t cur_el, bool secure);
40f137e1 2107
9ee6e8bb 2108/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2109#ifndef CONFIG_USER_ONLY
2110bool armv7m_nvic_can_take_pending_exception(void *opaque);
2111#else
2112static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2113{
2114 return true;
2115}
2116#endif
2fb50a33
PM
2117/**
2118 * armv7m_nvic_set_pending: mark the specified exception as pending
2119 * @opaque: the NVIC
2120 * @irq: the exception number to mark pending
2121 * @secure: false for non-banked exceptions or for the nonsecure
2122 * version of a banked exception, true for the secure version of a banked
2123 * exception.
2124 *
2125 * Marks the specified exception as pending. Note that we will assert()
2126 * if @secure is true and @irq does not specify one of the fixed set
2127 * of architecturally banked exceptions.
2128 */
2129void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2130/**
2131 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2132 * @opaque: the NVIC
2133 * @irq: the exception number to mark pending
2134 * @secure: false for non-banked exceptions or for the nonsecure
2135 * version of a banked exception, true for the secure version of a banked
2136 * exception.
2137 *
2138 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2139 * exceptions (exceptions generated in the course of trying to take
2140 * a different exception).
2141 */
2142void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2143/**
2144 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2145 * @opaque: the NVIC
2146 * @irq: the exception number to mark pending
2147 * @secure: false for non-banked exceptions or for the nonsecure
2148 * version of a banked exception, true for the secure version of a banked
2149 * exception.
2150 *
2151 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2152 * generated in the course of lazy stacking of FP registers.
2153 */
2154void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2155/**
2156 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2157 * exception, and whether it targets Secure state
2158 * @opaque: the NVIC
2159 * @pirq: set to pending exception number
2160 * @ptargets_secure: set to whether pending exception targets Secure
2161 *
2162 * This function writes the number of the highest priority pending
2163 * exception (the one which would be made active by
2164 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2165 * to true if the current highest priority pending exception should
2166 * be taken to Secure state, false for NS.
2167 */
2168void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2169 bool *ptargets_secure);
5cb18069
PM
2170/**
2171 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2172 * @opaque: the NVIC
2173 *
2174 * Move the current highest priority pending exception from the pending
2175 * state to the active state, and update v7m.exception to indicate that
2176 * it is the exception currently being handled.
5cb18069 2177 */
6c948518 2178void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2179/**
2180 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2181 * @opaque: the NVIC
2182 * @irq: the exception number to complete
5cb18069 2183 * @secure: true if this exception was secure
aa488fe3
PM
2184 *
2185 * Returns: -1 if the irq was not active
2186 * 1 if completing this irq brought us back to base (no active irqs)
2187 * 0 if there is still an irq active after this one was completed
2188 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2189 */
5cb18069 2190int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2191/**
2192 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2193 * @opaque: the NVIC
2194 * @irq: the exception number to mark pending
2195 * @secure: false for non-banked exceptions or for the nonsecure
2196 * version of a banked exception, true for the secure version of a banked
2197 * exception.
2198 *
2199 * Return whether an exception is "ready", i.e. whether the exception is
2200 * enabled and is configured at a priority which would allow it to
2201 * interrupt the current execution priority. This controls whether the
2202 * RDY bit for it in the FPCCR is set.
2203 */
2204bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2205/**
2206 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2207 * @opaque: the NVIC
2208 *
2209 * Returns: the raw execution priority as defined by the v8M architecture.
2210 * This is the execution priority minus the effects of AIRCR.PRIS,
2211 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2212 * (v8M ARM ARM I_PKLD.)
2213 */
2214int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2215/**
2216 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2217 * priority is negative for the specified security state.
2218 * @opaque: the NVIC
2219 * @secure: the security state to test
2220 * This corresponds to the pseudocode IsReqExecPriNeg().
2221 */
2222#ifndef CONFIG_USER_ONLY
2223bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2224#else
2225static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2226{
2227 return false;
2228}
2229#endif
9ee6e8bb 2230
4b6a83fb
PM
2231/* Interface for defining coprocessor registers.
2232 * Registers are defined in tables of arm_cp_reginfo structs
2233 * which are passed to define_arm_cp_regs().
2234 */
2235
2236/* When looking up a coprocessor register we look for it
2237 * via an integer which encodes all of:
2238 * coprocessor number
2239 * Crn, Crm, opc1, opc2 fields
2240 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2241 * or via MRRC/MCRR?)
51a79b03 2242 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2243 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2244 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2245 * For AArch64, there is no 32/64 bit size distinction;
2246 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2247 * and 4 bit CRn and CRm. The encoding patterns are chosen
2248 * to be easy to convert to and from the KVM encodings, and also
2249 * so that the hashtable can contain both AArch32 and AArch64
2250 * registers (to allow for interprocessing where we might run
2251 * 32 bit code on a 64 bit core).
4b6a83fb 2252 */
f5a0a5a5
PM
2253/* This bit is private to our hashtable cpreg; in KVM register
2254 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2255 * in the upper bits of the 64 bit ID.
2256 */
2257#define CP_REG_AA64_SHIFT 28
2258#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2259
51a79b03
PM
2260/* To enable banking of coprocessor registers depending on ns-bit we
2261 * add a bit to distinguish between secure and non-secure cpregs in the
2262 * hashtable.
2263 */
2264#define CP_REG_NS_SHIFT 29
2265#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2266
2267#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2268 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2269 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2270
f5a0a5a5
PM
2271#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2272 (CP_REG_AA64_MASK | \
2273 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2274 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2275 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2276 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2277 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2278 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2279
721fae12
PM
2280/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2281 * version used as a key for the coprocessor register hashtable
2282 */
2283static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2284{
2285 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2286 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2287 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2288 } else {
2289 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2290 cpregid |= (1 << 15);
2291 }
2292
2293 /* KVM is always non-secure so add the NS flag on AArch32 register
2294 * entries.
2295 */
2296 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2297 }
2298 return cpregid;
2299}
2300
2301/* Convert a truncated 32 bit hashtable key into the full
2302 * 64 bit KVM register ID.
2303 */
2304static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2305{
f5a0a5a5
PM
2306 uint64_t kvmid;
2307
2308 if (cpregid & CP_REG_AA64_MASK) {
2309 kvmid = cpregid & ~CP_REG_AA64_MASK;
2310 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2311 } else {
f5a0a5a5
PM
2312 kvmid = cpregid & ~(1 << 15);
2313 if (cpregid & (1 << 15)) {
2314 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2315 } else {
2316 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2317 }
721fae12
PM
2318 }
2319 return kvmid;
2320}
2321
4b6a83fb 2322/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2323 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2324 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2325 * TCG can assume the value to be constant (ie load at translate time)
2326 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2327 * indicates that the TB should not be ended after a write to this register
2328 * (the default is that the TB ends after cp writes). OVERRIDE permits
2329 * a register definition to override a previous definition for the
2330 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2331 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2332 * ALIAS indicates that this register is an alias view of some underlying
2333 * state which is also visible via another register, and that the other
b061a82b
SF
2334 * register is handling migration and reset; registers marked ALIAS will not be
2335 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2336 * NO_RAW indicates that this register has no underlying state and does not
2337 * support raw access for state saving/loading; it will not be used for either
2338 * migration or KVM state synchronization. (Typically this is for "registers"
2339 * which are actually used as instructions for cache maintenance and so on.)
2452731c 2340 * IO indicates that this register does I/O and therefore its accesses
55c812b7 2341 * need to be marked with gen_io_start() and also end the TB. In particular,
2452731c 2342 * registers which implement clocks or timers require this.
37ff584c
PM
2343 * RAISES_EXC is for when the read or write hook might raise an exception;
2344 * the generated code will synchronize the CPU state before calling the hook
2345 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2346 * NEWEL is for writes to registers that might change the exception
2347 * level - typically on older ARM chips. For those cases we need to
2348 * re-read the new el when recomputing the translation flags.
4b6a83fb 2349 */
fe03d45f
RH
2350#define ARM_CP_SPECIAL 0x0001
2351#define ARM_CP_CONST 0x0002
2352#define ARM_CP_64BIT 0x0004
2353#define ARM_CP_SUPPRESS_TB_END 0x0008
2354#define ARM_CP_OVERRIDE 0x0010
2355#define ARM_CP_ALIAS 0x0020
2356#define ARM_CP_IO 0x0040
2357#define ARM_CP_NO_RAW 0x0080
2358#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2359#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2360#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2361#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2362#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
eb821168
RH
2363#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
2364#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
2365#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
fe03d45f 2366#define ARM_CP_FPU 0x1000
490aa7f1 2367#define ARM_CP_SVE 0x2000
1f163787 2368#define ARM_CP_NO_GDB 0x4000
37ff584c 2369#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2370#define ARM_CP_NEWEL 0x10000
4b6a83fb 2371/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2372#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2373/* Mask of only the flag bits in a type field */
f80741d1 2374#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2375
f5a0a5a5
PM
2376/* Valid values for ARMCPRegInfo state field, indicating which of
2377 * the AArch32 and AArch64 execution states this register is visible in.
2378 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2379 * If the reginfo is declared to be visible in both states then a second
2380 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2381 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2382 * Note that we rely on the values of these enums as we iterate through
2383 * the various states in some places.
2384 */
2385enum {
2386 ARM_CP_STATE_AA32 = 0,
2387 ARM_CP_STATE_AA64 = 1,
2388 ARM_CP_STATE_BOTH = 2,
2389};
2390
c3e30260
FA
2391/* ARM CP register secure state flags. These flags identify security state
2392 * attributes for a given CP register entry.
2393 * The existence of both or neither secure and non-secure flags indicates that
2394 * the register has both a secure and non-secure hash entry. A single one of
2395 * these flags causes the register to only be hashed for the specified
2396 * security state.
2397 * Although definitions may have any combination of the S/NS bits, each
2398 * registered entry will only have one to identify whether the entry is secure
2399 * or non-secure.
2400 */
2401enum {
2402 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2403 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2404};
2405
4b6a83fb
PM
2406/* Return true if cptype is a valid type field. This is used to try to
2407 * catch errors where the sentinel has been accidentally left off the end
2408 * of a list of registers.
2409 */
2410static inline bool cptype_valid(int cptype)
2411{
2412 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2413 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2414 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2415}
2416
2417/* Access rights:
2418 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2419 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2420 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2421 * (ie any of the privileged modes in Secure state, or Monitor mode).
2422 * If a register is accessible in one privilege level it's always accessible
2423 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2424 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2425 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2426 * terminology a little and call this PL3.
f5a0a5a5
PM
2427 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2428 * with the ELx exception levels.
4b6a83fb
PM
2429 *
2430 * If access permissions for a register are more complex than can be
2431 * described with these bits, then use a laxer set of restrictions, and
2432 * do the more restrictive/complex check inside a helper function.
2433 */
2434#define PL3_R 0x80
2435#define PL3_W 0x40
2436#define PL2_R (0x20 | PL3_R)
2437#define PL2_W (0x10 | PL3_W)
2438#define PL1_R (0x08 | PL2_R)
2439#define PL1_W (0x04 | PL2_W)
2440#define PL0_R (0x02 | PL1_R)
2441#define PL0_W (0x01 | PL1_W)
2442
b5bd7440
AB
2443/*
2444 * For user-mode some registers are accessible to EL0 via a kernel
2445 * trap-and-emulate ABI. In this case we define the read permissions
2446 * as actually being PL0_R. However some bits of any given register
2447 * may still be masked.
2448 */
2449#ifdef CONFIG_USER_ONLY
2450#define PL0U_R PL0_R
2451#else
2452#define PL0U_R PL1_R
2453#endif
2454
4b6a83fb
PM
2455#define PL3_RW (PL3_R | PL3_W)
2456#define PL2_RW (PL2_R | PL2_W)
2457#define PL1_RW (PL1_R | PL1_W)
2458#define PL0_RW (PL0_R | PL0_W)
2459
75502672
PM
2460/* Return the highest implemented Exception Level */
2461static inline int arm_highest_el(CPUARMState *env)
2462{
2463 if (arm_feature(env, ARM_FEATURE_EL3)) {
2464 return 3;
2465 }
2466 if (arm_feature(env, ARM_FEATURE_EL2)) {
2467 return 2;
2468 }
2469 return 1;
2470}
2471
15b3f556
PM
2472/* Return true if a v7M CPU is in Handler mode */
2473static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2474{
2475 return env->v7m.exception != 0;
2476}
2477
dcbff19b
GB
2478/* Return the current Exception Level (as per ARMv8; note that this differs
2479 * from the ARMv7 Privilege Level).
2480 */
2481static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2482{
6d54ed3c 2483 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2484 return arm_v7m_is_handler_mode(env) ||
2485 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2486 }
2487
592125f8 2488 if (is_a64(env)) {
f5a0a5a5
PM
2489 return extract32(env->pstate, 2, 2);
2490 }
2491
592125f8
FA
2492 switch (env->uncached_cpsr & 0x1f) {
2493 case ARM_CPU_MODE_USR:
4b6a83fb 2494 return 0;
592125f8
FA
2495 case ARM_CPU_MODE_HYP:
2496 return 2;
2497 case ARM_CPU_MODE_MON:
2498 return 3;
2499 default:
2500 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2501 /* If EL3 is 32-bit then all secure privileged modes run in
2502 * EL3
2503 */
2504 return 3;
2505 }
2506
2507 return 1;
4b6a83fb 2508 }
4b6a83fb
PM
2509}
2510
2511typedef struct ARMCPRegInfo ARMCPRegInfo;
2512
f59df3f2
PM
2513typedef enum CPAccessResult {
2514 /* Access is permitted */
2515 CP_ACCESS_OK = 0,
2516 /* Access fails due to a configurable trap or enable which would
2517 * result in a categorized exception syndrome giving information about
2518 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2519 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2520 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2521 */
2522 CP_ACCESS_TRAP = 1,
2523 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2524 * Note that this is not a catch-all case -- the set of cases which may
2525 * result in this failure is specifically defined by the architecture.
2526 */
2527 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2528 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2529 CP_ACCESS_TRAP_EL2 = 3,
2530 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2531 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2532 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2533 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2534 /* Access fails and results in an exception syndrome for an FP access,
2535 * trapped directly to EL2 or EL3
2536 */
2537 CP_ACCESS_TRAP_FP_EL2 = 7,
2538 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2539} CPAccessResult;
2540
c4241c7d
PM
2541/* Access functions for coprocessor registers. These cannot fail and
2542 * may not raise exceptions.
2543 */
2544typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2545typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2546 uint64_t value);
f59df3f2 2547/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2548typedef CPAccessResult CPAccessFn(CPUARMState *env,
2549 const ARMCPRegInfo *opaque,
2550 bool isread);
4b6a83fb
PM
2551/* Hook function for register reset */
2552typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2553
2554#define CP_ANY 0xff
2555
2556/* Definition of an ARM coprocessor register */
2557struct ARMCPRegInfo {
2558 /* Name of register (useful mainly for debugging, need not be unique) */
2559 const char *name;
2560 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2561 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2562 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2563 * will be decoded to this register. The register read and write
2564 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2565 * used by the program, so it is possible to register a wildcard and
2566 * then behave differently on read/write if necessary.
2567 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2568 * must both be zero.
f5a0a5a5
PM
2569 * For AArch64-visible registers, opc0 is also used.
2570 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2571 * way to distinguish (for KVM's benefit) guest-visible system registers
2572 * from demuxed ones provided to preserve the "no side effects on
2573 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2574 * visible (to match KVM's encoding); cp==0 will be converted to
2575 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2576 */
2577 uint8_t cp;
2578 uint8_t crn;
2579 uint8_t crm;
f5a0a5a5 2580 uint8_t opc0;
4b6a83fb
PM
2581 uint8_t opc1;
2582 uint8_t opc2;
f5a0a5a5
PM
2583 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2584 int state;
4b6a83fb
PM
2585 /* Register type: ARM_CP_* bits/values */
2586 int type;
2587 /* Access rights: PL*_[RW] */
2588 int access;
c3e30260
FA
2589 /* Security state: ARM_CP_SECSTATE_* bits/values */
2590 int secure;
4b6a83fb
PM
2591 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2592 * this register was defined: can be used to hand data through to the
2593 * register read/write functions, since they are passed the ARMCPRegInfo*.
2594 */
2595 void *opaque;
2596 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2597 * fieldoffset is non-zero, the reset value of the register.
2598 */
2599 uint64_t resetvalue;
c3e30260
FA
2600 /* Offset of the field in CPUARMState for this register.
2601 *
2602 * This is not needed if either:
4b6a83fb
PM
2603 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2604 * 2. both readfn and writefn are specified
2605 */
2606 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2607
2608 /* Offsets of the secure and non-secure fields in CPUARMState for the
2609 * register if it is banked. These fields are only used during the static
2610 * registration of a register. During hashing the bank associated
2611 * with a given security state is copied to fieldoffset which is used from
2612 * there on out.
2613 *
2614 * It is expected that register definitions use either fieldoffset or
2615 * bank_fieldoffsets in the definition but not both. It is also expected
2616 * that both bank offsets are set when defining a banked register. This
2617 * use indicates that a register is banked.
2618 */
2619 ptrdiff_t bank_fieldoffsets[2];
2620
f59df3f2
PM
2621 /* Function for making any access checks for this register in addition to
2622 * those specified by the 'access' permissions bits. If NULL, no extra
2623 * checks required. The access check is performed at runtime, not at
2624 * translate time.
2625 */
2626 CPAccessFn *accessfn;
4b6a83fb
PM
2627 /* Function for handling reads of this register. If NULL, then reads
2628 * will be done by loading from the offset into CPUARMState specified
2629 * by fieldoffset.
2630 */
2631 CPReadFn *readfn;
2632 /* Function for handling writes of this register. If NULL, then writes
2633 * will be done by writing to the offset into CPUARMState specified
2634 * by fieldoffset.
2635 */
2636 CPWriteFn *writefn;
7023ec7e
PM
2637 /* Function for doing a "raw" read; used when we need to copy
2638 * coprocessor state to the kernel for KVM or out for
2639 * migration. This only needs to be provided if there is also a
c4241c7d 2640 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2641 */
2642 CPReadFn *raw_readfn;
2643 /* Function for doing a "raw" write; used when we need to copy KVM
2644 * kernel coprocessor state into userspace, or for inbound
2645 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2646 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2647 * or similar behaviour.
7023ec7e
PM
2648 */
2649 CPWriteFn *raw_writefn;
4b6a83fb
PM
2650 /* Function for resetting the register. If NULL, then reset will be done
2651 * by writing resetvalue to the field specified in fieldoffset. If
2652 * fieldoffset is 0 then no reset will be done.
2653 */
2654 CPResetFn *resetfn;
e2cce18f
RH
2655
2656 /*
2657 * "Original" writefn and readfn.
2658 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2659 * accessor functions of various EL1/EL0 to perform the runtime
2660 * check for which sysreg should actually be modified, and then
2661 * forwards the operation. Before overwriting the accessors,
2662 * the original function is copied here, so that accesses that
2663 * really do go to the EL1/EL0 version proceed normally.
2664 * (The corresponding EL2 register is linked via opaque.)
2665 */
2666 CPReadFn *orig_readfn;
2667 CPWriteFn *orig_writefn;
4b6a83fb
PM
2668};
2669
2670/* Macros which are lvalues for the field in CPUARMState for the
2671 * ARMCPRegInfo *ri.
2672 */
2673#define CPREG_FIELD32(env, ri) \
2674 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2675#define CPREG_FIELD64(env, ri) \
2676 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2677
2678#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2679
2680void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2681 const ARMCPRegInfo *regs, void *opaque);
2682void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2683 const ARMCPRegInfo *regs, void *opaque);
2684static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2685{
2686 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2687}
2688static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2689{
2690 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2691}
60322b39 2692const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2693
6c5c0fec
AB
2694/*
2695 * Definition of an ARM co-processor register as viewed from
2696 * userspace. This is used for presenting sanitised versions of
2697 * registers to userspace when emulating the Linux AArch64 CPU
2698 * ID/feature ABI (advertised as HWCAP_CPUID).
2699 */
2700typedef struct ARMCPRegUserSpaceInfo {
2701 /* Name of register */
2702 const char *name;
2703
d040242e
AB
2704 /* Is the name actually a glob pattern */
2705 bool is_glob;
2706
6c5c0fec
AB
2707 /* Only some bits are exported to user space */
2708 uint64_t exported_bits;
2709
2710 /* Fixed bits are applied after the mask */
2711 uint64_t fixed_bits;
2712} ARMCPRegUserSpaceInfo;
2713
2714#define REGUSERINFO_SENTINEL { .name = NULL }
2715
2716void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2717
4b6a83fb 2718/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2719void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2720 uint64_t value);
4b6a83fb 2721/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2722uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2723
f5a0a5a5
PM
2724/* CPResetFn that does nothing, for use if no reset is required even
2725 * if fieldoffset is non zero.
2726 */
2727void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2728
67ed771d
PM
2729/* Return true if this reginfo struct's field in the cpu state struct
2730 * is 64 bits wide.
2731 */
2732static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2733{
2734 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2735}
2736
dcbff19b 2737static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2738 const ARMCPRegInfo *ri, int isread)
2739{
dcbff19b 2740 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2741}
2742
49a66191
PM
2743/* Raw read of a coprocessor register (as needed for migration, etc) */
2744uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2745
721fae12
PM
2746/**
2747 * write_list_to_cpustate
2748 * @cpu: ARMCPU
2749 *
2750 * For each register listed in the ARMCPU cpreg_indexes list, write
2751 * its value from the cpreg_values list into the ARMCPUState structure.
2752 * This updates TCG's working data structures from KVM data or
2753 * from incoming migration state.
2754 *
2755 * Returns: true if all register values were updated correctly,
2756 * false if some register was unknown or could not be written.
2757 * Note that we do not stop early on failure -- we will attempt
2758 * writing all registers in the list.
2759 */
2760bool write_list_to_cpustate(ARMCPU *cpu);
2761
2762/**
2763 * write_cpustate_to_list:
2764 * @cpu: ARMCPU
b698e4ee 2765 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2766 *
2767 * For each register listed in the ARMCPU cpreg_indexes list, write
2768 * its value from the ARMCPUState structure into the cpreg_values list.
2769 * This is used to copy info from TCG's working data structures into
2770 * KVM or for outbound migration.
2771 *
b698e4ee
PM
2772 * @kvm_sync is true if we are doing this in order to sync the
2773 * register state back to KVM. In this case we will only update
2774 * values in the list if the previous list->cpustate sync actually
2775 * successfully wrote the CPU state. Otherwise we will keep the value
2776 * that is in the list.
2777 *
721fae12
PM
2778 * Returns: true if all register values were read correctly,
2779 * false if some register was unknown or could not be read.
2780 * Note that we do not stop early on failure -- we will attempt
2781 * reading all registers in the list.
2782 */
b698e4ee 2783bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2784
9ee6e8bb
PB
2785#define ARM_CPUID_TI915T 0x54029152
2786#define ARM_CPUID_TI925T 0x54029252
40f137e1 2787
ba1ba5cc
IM
2788#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2789#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2790#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2791
9467d44c 2792#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2793#define cpu_list arm_cpu_list
9467d44c 2794
c1e37810
PM
2795/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2796 *
2797 * If EL3 is 64-bit:
2798 * + NonSecure EL1 & 0 stage 1
2799 * + NonSecure EL1 & 0 stage 2
2800 * + NonSecure EL2
b9f6033c
RH
2801 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2802 * + Secure EL1 & 0
c1e37810
PM
2803 * + Secure EL3
2804 * If EL3 is 32-bit:
2805 * + NonSecure PL1 & 0 stage 1
2806 * + NonSecure PL1 & 0 stage 2
2807 * + NonSecure PL2
b9f6033c
RH
2808 * + Secure PL0
2809 * + Secure PL1
c1e37810
PM
2810 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2811 *
2812 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2813 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2814 * because they may differ in access permissions even if the VA->PA map is
2815 * the same
c1e37810
PM
2816 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2817 * translation, which means that we have one mmu_idx that deals with two
2818 * concatenated translation regimes [this sort of combined s1+2 TLB is
2819 * architecturally permitted]
2820 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2821 * handling via the TLB. The only way to do a stage 1 translation without
2822 * the immediate stage 2 translation is via the ATS or AT system insns,
2823 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2824 * The only use of stage 2 translations is either as part of an s1+2
2825 * lookup or when loading the descriptors during a stage 1 page table walk,
2826 * and in both those cases we don't use the TLB.
c1e37810
PM
2827 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2828 * translation regimes, because they map reasonably well to each other
2829 * and they can't both be active at the same time.
b9f6033c
RH
2830 * 5. we want to be able to use the TLB for accesses done as part of a
2831 * stage1 page table walk, rather than having to walk the stage2 page
2832 * table over and over.
452ef8cb
RH
2833 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2834 * Never (PAN) bit within PSTATE.
c1e37810 2835 *
b9f6033c
RH
2836 * This gives us the following list of cases:
2837 *
2838 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2839 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2840 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2841 * NS EL0 EL2&0
bf05340c 2842 * NS EL2 EL2&0
452ef8cb 2843 * NS EL2 EL2&0 +PAN
c1e37810 2844 * NS EL2 (aka NS PL2)
b9f6033c
RH
2845 * S EL0 EL1&0 (aka S PL0)
2846 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2847 * S EL1 EL1&0 +PAN
c1e37810 2848 * S EL3 (aka S PL1)
c1e37810 2849 *
bf05340c 2850 * for a total of 11 different mmu_idx.
c1e37810 2851 *
3bef7012
PM
2852 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2853 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2854 * NS EL2 if we ever model a Cortex-R52).
2855 *
2856 * M profile CPUs are rather different as they do not have a true MMU.
2857 * They have the following different MMU indexes:
2858 * User
2859 * Privileged
62593718
PM
2860 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2861 * Privileged, execution priority negative (ditto)
66787c78
PM
2862 * If the CPU supports the v8M Security Extension then there are also:
2863 * Secure User
2864 * Secure Privileged
62593718
PM
2865 * Secure User, execution priority negative
2866 * Secure Privileged, execution priority negative
3bef7012 2867 *
8bd5c820
PM
2868 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2869 * are not quite the same -- different CPU types (most notably M profile
2870 * vs A/R profile) would like to use MMU indexes with different semantics,
2871 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2872 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2873 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2874 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2875 * the same for any particular CPU.
2876 * Variables of type ARMMUIdx are always full values, and the core
2877 * index values are in variables of type 'int'.
2878 *
c1e37810
PM
2879 * Our enumeration includes at the end some entries which are not "true"
2880 * mmu_idx values in that they don't have corresponding TLBs and are only
2881 * valid for doing slow path page table walks.
2882 *
2883 * The constant names here are patterned after the general style of the names
2884 * of the AT/ATS operations.
2885 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2886 * For M profile we arrange them to have a bit for priv, a bit for negpri
2887 * and a bit for secure.
c1e37810 2888 */
b9f6033c
RH
2889#define ARM_MMU_IDX_A 0x10 /* A profile */
2890#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2891#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2892
b9f6033c
RH
2893/* Meanings of the bits for M profile mmu idx values */
2894#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2895#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2896#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2897
b9f6033c
RH
2898#define ARM_MMU_IDX_TYPE_MASK \
2899 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2900#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2901
c1e37810 2902typedef enum ARMMMUIdx {
b9f6033c
RH
2903 /*
2904 * A-profile.
2905 */
452ef8cb
RH
2906 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2907 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
b9f6033c 2908
452ef8cb
RH
2909 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2910 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
b9f6033c 2911
452ef8cb
RH
2912 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
2913 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
2914 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
b9f6033c 2915
452ef8cb
RH
2916 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
2917 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
2918 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2919 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
b9f6033c 2920
b9f6033c
RH
2921 /*
2922 * These are not allocated TLBs and are used only for AT system
2923 * instructions or for the first stage of an S12 page table walk.
2924 */
2925 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2926 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2927 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2928 /*
2929 * Not allocated a TLB: used only for second stage of an S12 page
2930 * table walk, or for descriptor loads during first stage of an S1
2931 * page table walk. Note that if we ever want to have a TLB for this
2932 * then various TLB flush insns which currently are no-ops or flush
2933 * only stage 1 MMU indexes will need to change to flush stage 2.
2934 */
2935 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2936
2937 /*
2938 * M-profile.
2939 */
25568316
RH
2940 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2941 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2942 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2943 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2944 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2945 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2946 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2947 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2948} ARMMMUIdx;
2949
5f09a6df
RH
2950/*
2951 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2952 * for use when calling tlb_flush_by_mmuidx() and friends.
2953 */
5f09a6df
RH
2954#define TO_CORE_BIT(NAME) \
2955 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2956
8bd5c820 2957typedef enum ARMMMUIdxBit {
5f09a6df 2958 TO_CORE_BIT(E10_0),
b9f6033c 2959 TO_CORE_BIT(E20_0),
5f09a6df 2960 TO_CORE_BIT(E10_1),
452ef8cb 2961 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2962 TO_CORE_BIT(E2),
b9f6033c 2963 TO_CORE_BIT(E20_2),
452ef8cb 2964 TO_CORE_BIT(E20_2_PAN),
5f09a6df
RH
2965 TO_CORE_BIT(SE10_0),
2966 TO_CORE_BIT(SE10_1),
452ef8cb 2967 TO_CORE_BIT(SE10_1_PAN),
5f09a6df 2968 TO_CORE_BIT(SE3),
5f09a6df
RH
2969
2970 TO_CORE_BIT(MUser),
2971 TO_CORE_BIT(MPriv),
2972 TO_CORE_BIT(MUserNegPri),
2973 TO_CORE_BIT(MPrivNegPri),
2974 TO_CORE_BIT(MSUser),
2975 TO_CORE_BIT(MSPriv),
2976 TO_CORE_BIT(MSUserNegPri),
2977 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2978} ARMMMUIdxBit;
2979
5f09a6df
RH
2980#undef TO_CORE_BIT
2981
f79fbf39 2982#define MMU_USER_IDX 0
c1e37810 2983
9e273ef2
PM
2984/* Indexes used when registering address spaces with cpu_address_space_init */
2985typedef enum ARMASIdx {
2986 ARMASIdx_NS = 0,
2987 ARMASIdx_S = 1,
2988} ARMASIdx;
2989
533e93f1 2990/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2991static inline int arm_debug_target_el(CPUARMState *env)
2992{
81669b8b
SF
2993 bool secure = arm_is_secure(env);
2994 bool route_to_el2 = false;
2995
2996 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2997 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2998 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2999 }
3000
3001 if (route_to_el2) {
3002 return 2;
3003 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3004 !arm_el_is_aa64(env, 3) && secure) {
3005 return 3;
3006 } else {
3007 return 1;
3008 }
3a298203
PM
3009}
3010
43bbce7f
PM
3011static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3012{
3013 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3014 * CSSELR is RAZ/WI.
3015 */
3016 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3017}
3018
22af9025 3019/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
3020static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3021{
22af9025
AB
3022 int cur_el = arm_current_el(env);
3023 int debug_el;
3024
3025 if (cur_el == 3) {
3026 return false;
533e93f1
PM
3027 }
3028
22af9025
AB
3029 /* MDCR_EL3.SDD disables debug events from Secure state */
3030 if (arm_is_secure_below_el3(env)
3031 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3032 return false;
3a298203 3033 }
22af9025
AB
3034
3035 /*
3036 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3037 * while not masking the (D)ebug bit in DAIF.
3038 */
3039 debug_el = arm_debug_target_el(env);
3040
3041 if (cur_el == debug_el) {
3042 return extract32(env->cp15.mdscr_el1, 13, 1)
3043 && !(env->daif & PSTATE_D);
3044 }
3045
3046 /* Otherwise the debug target needs to be a higher EL */
3047 return debug_el > cur_el;
3a298203
PM
3048}
3049
3050static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3051{
533e93f1
PM
3052 int el = arm_current_el(env);
3053
3054 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3055 return aa64_generate_debug_exceptions(env);
3056 }
533e93f1
PM
3057
3058 if (arm_is_secure(env)) {
3059 int spd;
3060
3061 if (el == 0 && (env->cp15.sder & 1)) {
3062 /* SDER.SUIDEN means debug exceptions from Secure EL0
3063 * are always enabled. Otherwise they are controlled by
3064 * SDCR.SPD like those from other Secure ELs.
3065 */
3066 return true;
3067 }
3068
3069 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3070 switch (spd) {
3071 case 1:
3072 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3073 case 0:
3074 /* For 0b00 we return true if external secure invasive debug
3075 * is enabled. On real hardware this is controlled by external
3076 * signals to the core. QEMU always permits debug, and behaves
3077 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3078 */
3079 return true;
3080 case 2:
3081 return false;
3082 case 3:
3083 return true;
3084 }
3085 }
3086
3087 return el != 2;
3a298203
PM
3088}
3089
3090/* Return true if debugging exceptions are currently enabled.
3091 * This corresponds to what in ARM ARM pseudocode would be
3092 * if UsingAArch32() then
3093 * return AArch32.GenerateDebugExceptions()
3094 * else
3095 * return AArch64.GenerateDebugExceptions()
3096 * We choose to push the if() down into this function for clarity,
3097 * since the pseudocode has it at all callsites except for the one in
3098 * CheckSoftwareStep(), where it is elided because both branches would
3099 * always return the same value.
3a298203
PM
3100 */
3101static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3102{
3103 if (env->aarch64) {
3104 return aa64_generate_debug_exceptions(env);
3105 } else {
3106 return aa32_generate_debug_exceptions(env);
3107 }
3108}
3109
3110/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3111 * implicitly means this always returns false in pre-v8 CPUs.)
3112 */
3113static inline bool arm_singlestep_active(CPUARMState *env)
3114{
3115 return extract32(env->cp15.mdscr_el1, 0, 1)
3116 && arm_el_is_aa64(env, arm_debug_target_el(env))
3117 && arm_generate_debug_exceptions(env);
3118}
3119
f9fd40eb
PB
3120static inline bool arm_sctlr_b(CPUARMState *env)
3121{
3122 return
3123 /* We need not implement SCTLR.ITD in user-mode emulation, so
3124 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3125 * This lets people run BE32 binaries with "-cpu any".
3126 */
3127#ifndef CONFIG_USER_ONLY
3128 !arm_feature(env, ARM_FEATURE_V7) &&
3129#endif
3130 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3131}
3132
aaec1432 3133uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3134
8061a649
RH
3135static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3136 bool sctlr_b)
3137{
3138#ifdef CONFIG_USER_ONLY
3139 /*
3140 * In system mode, BE32 is modelled in line with the
3141 * architecture (as word-invariant big-endianness), where loads
3142 * and stores are done little endian but from addresses which
3143 * are adjusted by XORing with the appropriate constant. So the
3144 * endianness to use for the raw data access is not affected by
3145 * SCTLR.B.
3146 * In user mode, however, we model BE32 as byte-invariant
3147 * big-endianness (because user-only code cannot tell the
3148 * difference), and so we need to use a data access endianness
3149 * that depends on SCTLR.B.
3150 */
3151 if (sctlr_b) {
3152 return true;
3153 }
3154#endif
3155 /* In 32bit endianness is determined by looking at CPSR's E bit */
3156 return env->uncached_cpsr & CPSR_E;
3157}
3158
3159static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3160{
3161 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3162}
64e40755 3163
ed50ff78
PC
3164/* Return true if the processor is in big-endian mode. */
3165static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3166{
ed50ff78 3167 if (!is_a64(env)) {
8061a649 3168 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3169 } else {
3170 int cur_el = arm_current_el(env);
3171 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3172 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3173 }
ed50ff78
PC
3174}
3175
4f7c64b3 3176typedef CPUARMState CPUArchState;
2161a612 3177typedef ARMCPU ArchCPU;
4f7c64b3 3178
022c62cb 3179#include "exec/cpu-all.h"
622ed360 3180
fdd1b228
RH
3181/*
3182 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3183 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3184 * We put flags which are shared between 32 and 64 bit mode at the top
3185 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3186 *
506f1498 3187 * 31 20 18 14 9 0
79cabf1f
RH
3188 * +--------------+-----+-----+----------+--------------+
3189 * | | | TBFLAG_A32 | |
3190 * | | +-----+----------+ TBFLAG_AM32 |
3191 * | TBFLAG_ANY | |TBFLAG_M32| |
81ae05fa
RH
3192 * | +-----------+----------+--------------|
3193 * | | TBFLAG_A64 |
3194 * +--------------+-------------------------------------+
3195 * 31 20 0
79cabf1f 3196 *
fdd1b228 3197 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3198 */
aad821ac 3199FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3200FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3201FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3202FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3203FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3204/* Target EL if we take a floating-point-disabled exception */
506f1498 3205FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3206/* For A-profile only, target EL for debug exceptions. */
506f1498 3207FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3208
8bd587c1 3209/*
79cabf1f 3210 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3211 */
79cabf1f
RH
3212FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3213FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3214
79cabf1f
RH
3215/*
3216 * Bit usage when in AArch32 state, for A-profile only.
3217 */
3218FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3219FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3220/*
3221 * We store the bottom two bits of the CPAR as TB flags and handle
3222 * checks on the other bits at runtime. This shares the same bits as
3223 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3224 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3225 */
79cabf1f
RH
3226FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3227FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3228FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3229FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3230/*
3231 * Indicates whether cp register reads and writes by guest code should access
3232 * the secure or nonsecure bank of banked registers; note that this is not
3233 * the same thing as the current security state of the processor!
3234 */
79cabf1f
RH
3235FIELD(TBFLAG_A32, NS, 17, 1)
3236
3237/*
3238 * Bit usage when in AArch32 state, for M-profile only.
3239 */
3240/* Handler (ie not Thread) mode */
3241FIELD(TBFLAG_M32, HANDLER, 9, 1)
3242/* Whether we should generate stack-limit checks */
3243FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3244/* Set if FPCCR.LSPACT is set */
3245FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3246/* Set if we must create a new FP context */
3247FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3248/* Set if FPCCR.S does not match current security state */
3249FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3250
3251/*
3252 * Bit usage when in AArch64 state
3253 */
476a4692 3254FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3255FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3256FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3257FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3258FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3259FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3260FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3261FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3262FIELD(TBFLAG_A64, ATA, 15, 1)
3263FIELD(TBFLAG_A64, TCMA, 16, 2)
3264FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3265FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
a1705768 3266
fb901c90
RH
3267/**
3268 * cpu_mmu_index:
3269 * @env: The cpu environment
3270 * @ifetch: True for code access, false for data access.
3271 *
3272 * Return the core mmu index for the current translation regime.
3273 * This function is used by generic TCG code paths.
3274 */
3275static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3276{
3277 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3278}
3279
f9fd40eb
PB
3280static inline bool bswap_code(bool sctlr_b)
3281{
3282#ifdef CONFIG_USER_ONLY
3283 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3284 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3285 * would also end up as a mixed-endian mode with BE code, LE data.
3286 */
3287 return
3288#ifdef TARGET_WORDS_BIGENDIAN
3289 1 ^
3290#endif
3291 sctlr_b;
3292#else
e334bd31
PB
3293 /* All code access in ARM is little endian, and there are no loaders
3294 * doing swaps that need to be reversed
f9fd40eb
PB
3295 */
3296 return 0;
3297#endif
3298}
3299
c3ae85fc
PB
3300#ifdef CONFIG_USER_ONLY
3301static inline bool arm_cpu_bswap_data(CPUARMState *env)
3302{
3303 return
3304#ifdef TARGET_WORDS_BIGENDIAN
3305 1 ^
3306#endif
3307 arm_cpu_data_is_big_endian(env);
3308}
3309#endif
3310
a9e01311
RH
3311void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3312 target_ulong *cs_base, uint32_t *flags);
6b917547 3313
98128601
RH
3314enum {
3315 QEMU_PSCI_CONDUIT_DISABLED = 0,
3316 QEMU_PSCI_CONDUIT_SMC = 1,
3317 QEMU_PSCI_CONDUIT_HVC = 2,
3318};
3319
017518c1
PM
3320#ifndef CONFIG_USER_ONLY
3321/* Return the address space index to use for a memory access */
3322static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3323{
3324 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3325}
5ce4ff65
PM
3326
3327/* Return the AddressSpace to use for a memory access
3328 * (which depends on whether the access is S or NS, and whether
3329 * the board gave us a separate AddressSpace for S accesses).
3330 */
3331static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3332{
3333 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3334}
017518c1
PM
3335#endif
3336
bd7d00fc 3337/**
b5c53d1b
AL
3338 * arm_register_pre_el_change_hook:
3339 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3340 * CPU changes exception level or mode. The hook function will be
3341 * passed a pointer to the ARMCPU and the opaque data pointer passed
3342 * to this function when the hook was registered.
b5c53d1b
AL
3343 *
3344 * Note that if a pre-change hook is called, any registered post-change hooks
3345 * are guaranteed to subsequently be called.
bd7d00fc 3346 */
b5c53d1b 3347void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3348 void *opaque);
b5c53d1b
AL
3349/**
3350 * arm_register_el_change_hook:
3351 * Register a hook function which will be called immediately after this
3352 * CPU changes exception level or mode. The hook function will be
3353 * passed a pointer to the ARMCPU and the opaque data pointer passed
3354 * to this function when the hook was registered.
3355 *
3356 * Note that any registered hooks registered here are guaranteed to be called
3357 * if pre-change hooks have been.
3358 */
3359void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3360 *opaque);
bd7d00fc 3361
3d74e2e9
RH
3362/**
3363 * arm_rebuild_hflags:
3364 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3365 */
3366void arm_rebuild_hflags(CPUARMState *env);
3367
9a2b5256
RH
3368/**
3369 * aa32_vfp_dreg:
3370 * Return a pointer to the Dn register within env in 32-bit mode.
3371 */
3372static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3373{
c39c2b90 3374 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3375}
3376
3377/**
3378 * aa32_vfp_qreg:
3379 * Return a pointer to the Qn register within env in 32-bit mode.
3380 */
3381static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3382{
c39c2b90 3383 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3384}
3385
3386/**
3387 * aa64_vfp_qreg:
3388 * Return a pointer to the Qn register within env in 64-bit mode.
3389 */
3390static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3391{
c39c2b90 3392 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3393}
3394
028e2a7b
RH
3395/* Shared between translate-sve.c and sve_helper.c. */
3396extern const uint64_t pred_esz_masks[4];
3397
149d3b31
RH
3398/* Helper for the macros below, validating the argument type. */
3399static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3400{
3401 return x;
3402}
3403
3404/*
3405 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3406 * Using these should be a bit more self-documenting than using the
3407 * generic target bits directly.
3408 */
3409#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3410#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3411
873b73c0
PM
3412/*
3413 * Naming convention for isar_feature functions:
3414 * Functions which test 32-bit ID registers should have _aa32_ in
3415 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3416 * _aa64_ in their name. These must only be used in code where we
3417 * know for certain that the CPU has AArch32 or AArch64 respectively
3418 * or where the correct answer for a CPU which doesn't implement that
3419 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3420 * system registers that are specific to that CPU state, for "should
3421 * we let this system register bit be set" tests where the 32-bit
3422 * flavour of the register doesn't have the bit, and so on).
3423 * Functions which simply ask "does this feature exist at all" have
3424 * _any_ in their name, and always return the logical OR of the _aa64_
3425 * and the _aa32_ function.
873b73c0
PM
3426 */
3427
962fcbf2
RH
3428/*
3429 * 32-bit feature tests via id registers.
3430 */
873b73c0 3431static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3432{
3433 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3434}
3435
873b73c0 3436static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3437{
3438 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3439}
3440
873b73c0 3441static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3442{
3443 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3444}
3445
962fcbf2
RH
3446static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3447{
3448 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3449}
3450
3451static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3452{
3453 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3454}
3455
3456static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3457{
3458 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3459}
3460
3461static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3462{
3463 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3464}
3465
3466static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3467{
3468 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3469}
3470
3471static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3472{
3473 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3474}
3475
3476static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3477{
3478 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3479}
3480
6c1f6f27
RH
3481static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3482{
3483 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3484}
3485
962fcbf2
RH
3486static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3487{
3488 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3489}
3490
87732318
RH
3491static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3492{
3493 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3494}
3495
9888bd1e
RH
3496static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3497{
3498 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3499}
3500
cb570bd3
RH
3501static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3502{
3503 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3504}
3505
5763190f
RH
3506static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3507{
3508 /*
3509 * This is a placeholder for use by VCMA until the rest of
3510 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3511 * At which point we can properly set and check MVFR1.FPHP.
3512 */
3513 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3514}
3515
7fbc6a40
RH
3516static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3517{
3518 /*
3519 * Return true if either VFP or SIMD is implemented.
3520 * In this case, a minimum of VFP w/ D0-D15.
3521 */
3522 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3523}
3524
0e13ba78 3525static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3526{
3527 /* Return true if D16-D31 are implemented */
b3a816f6 3528 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3529}
3530
266bd25c
PM
3531static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3532{
b3a816f6 3533 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3534}
3535
f67957e1
RH
3536static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3537{
3538 /* Return true if CPU supports single precision floating point, VFPv2 */
3539 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3540}
3541
3542static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3543{
3544 /* Return true if CPU supports single precision floating point, VFPv3 */
3545 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3546}
3547
c4ff8735 3548static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3549{
c4ff8735 3550 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3551 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3552}
3553
f67957e1
RH
3554static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3555{
3556 /* Return true if CPU supports double precision floating point, VFPv3 */
3557 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3558}
3559
7d63183f
RH
3560static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3561{
3562 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3563}
3564
602f6e42
PM
3565/*
3566 * We always set the FP and SIMD FP16 fields to indicate identical
3567 * levels of support (assuming SIMD is implemented at all), so
3568 * we only need one set of accessors.
3569 */
3570static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3571{
b3a816f6 3572 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3573}
3574
3575static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3576{
b3a816f6 3577 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3578}
3579
c52881bb
RH
3580/*
3581 * Note that this ID register field covers both VFP and Neon FMAC,
3582 * so should usually be tested in combination with some other
3583 * check that confirms the presence of whichever of VFP or Neon is
3584 * relevant, to avoid accidentally enabling a Neon feature on
3585 * a VFP-no-Neon core or vice-versa.
3586 */
3587static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3588{
3589 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3590}
3591
c0c760af
PM
3592static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3593{
b3a816f6 3594 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3595}
3596
3597static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3598{
b3a816f6 3599 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3600}
3601
3602static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3603{
b3a816f6 3604 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3605}
3606
3607static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3608{
b3a816f6 3609 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3610}
3611
3d6ad6bb
RH
3612static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3613{
10054016 3614 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3615}
3616
3617static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3618{
10054016 3619 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3620}
3621
a6179538
PM
3622static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3623{
3624 /* 0xf means "non-standard IMPDEF PMU" */
3625 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3626 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3627}
3628
15dd1ebd
PM
3629static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3630{
3631 /* 0xf means "non-standard IMPDEF PMU" */
3632 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3633 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3634}
3635
4036b7d1
PM
3636static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3637{
3638 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3639}
3640
f6287c24
PM
3641static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3642{
3643 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3644}
3645
957e6155
PM
3646static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3647{
3648 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3649}
3650
ce3125be
PM
3651static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3652{
3653 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3654}
3655
962fcbf2
RH
3656/*
3657 * 64-bit feature tests via id registers.
3658 */
3659static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3660{
3661 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3662}
3663
3664static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3665{
3666 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3667}
3668
3669static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3670{
3671 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3672}
3673
3674static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3675{
3676 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3677}
3678
3679static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3680{
3681 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3682}
3683
3684static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3685{
3686 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3687}
3688
3689static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3690{
3691 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3692}
3693
3694static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3695{
3696 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3697}
3698
3699static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3700{
3701 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3702}
3703
3704static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3705{
3706 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3707}
3708
3709static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3710{
3711 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3712}
3713
3714static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3715{
3716 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3717}
3718
0caa5af8
RH
3719static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3720{
3721 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3722}
3723
b89d9c98
RH
3724static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3725{
3726 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3727}
3728
5ef84f11
RH
3729static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3730{
3731 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3732}
3733
de390645
RH
3734static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3735{
3736 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3737}
3738
6c1f6f27
RH
3739static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3740{
3741 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3742}
3743
962fcbf2
RH
3744static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3745{
3746 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3747}
3748
991ad91b
RH
3749static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3750{
3751 /*
3752 * Note that while QEMU will only implement the architected algorithm
3753 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3754 * defined algorithms, and thus API+GPI, and this predicate controls
3755 * migration of the 128-bit keys.
3756 */
3757 return (id->id_aa64isar1 &
3758 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3759 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3760 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3761 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3762}
3763
9888bd1e
RH
3764static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3765{
3766 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3767}
3768
cb570bd3
RH
3769static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3770{
3771 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3772}
3773
6bea2563
RH
3774static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3775{
3776 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3777}
3778
0d57b499
BM
3779static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3780{
3781 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3782}
3783
3784static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3785{
3786 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3787}
3788
7d63183f
RH
3789static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3790{
3791 /* We always set the AdvSIMD and FP fields identically. */
3792 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3793}
3794
5763190f
RH
3795static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3796{
3797 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3798 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3799}
3800
0f8d06f1
RH
3801static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3802{
3803 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3804}
3805
cd208a1c
RH
3806static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3807{
3808 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3809}
3810
8fc2ea21
RH
3811static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3812{
3813 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3814}
3815
2d7137c1
RH
3816static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3817{
3818 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3819}
3820
3d6ad6bb
RH
3821static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3822{
3823 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3824}
3825
3826static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3827{
3828 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3829}
3830
9eeb7a1c
RH
3831static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3832{
3833 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3834}
3835
be53b6f4
RH
3836static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3837{
3838 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3839}
3840
c7fd0baa
RH
3841static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3842{
3843 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3844}
3845
3846static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3847{
3848 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3849}
3850
2a609df8
PM
3851static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3852{
3853 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3854 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3855}
3856
15dd1ebd
PM
3857static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3858{
54117b90
PM
3859 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3860 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3861}
3862
2677cf9f
PM
3863static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3864{
3865 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3866}
3867
a1229109
PM
3868static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3869{
3870 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3871}
3872
957e6155
PM
3873static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3874{
3875 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3876}
3877
ce3125be
PM
3878static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3879{
3880 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3881}
3882
6e61f839
PM
3883/*
3884 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3885 */
3886static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3887{
3888 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3889}
3890
22e57073
PM
3891static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3892{
3893 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3894}
3895
2a609df8
PM
3896static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3897{
3898 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3899}
3900
15dd1ebd
PM
3901static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3902{
3903 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3904}
3905
957e6155
PM
3906static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3907{
3908 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3909}
3910
ce3125be
PM
3911static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3912{
3913 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3914}
3915
962fcbf2
RH
3916/*
3917 * Forward to the above feature tests given an ARMCPU pointer.
3918 */
3919#define cpu_isar_feature(name, cpu) \
3920 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3921
2c0262af 3922#endif