]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Don't warn about exception return with PC low bit set for v8M
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
6b4c305c 42#include "fpu/softfloat.h"
53cd6637 43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 53#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 54#define EXCP_HYP_TRAP 12
e0d6e6a5 55#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
56#define EXCP_VIRQ 14
57#define EXCP_VFIQ 15
19a6e31c 58#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 59#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 60#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
2c4a7cc5 61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
62
63#define ARMV7M_EXCP_RESET 1
64#define ARMV7M_EXCP_NMI 2
65#define ARMV7M_EXCP_HARD 3
66#define ARMV7M_EXCP_MEM 4
67#define ARMV7M_EXCP_BUS 5
68#define ARMV7M_EXCP_USAGE 6
1e577cc7 69#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
70#define ARMV7M_EXCP_SVC 11
71#define ARMV7M_EXCP_DEBUG 12
72#define ARMV7M_EXCP_PENDSV 14
73#define ARMV7M_EXCP_SYSTICK 15
2c0262af 74
acf94941
PM
75/* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
4a16724f
PM
84enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88};
acf94941 89
403946c0
RH
90/* ARM-specific interrupt pending bits. */
91#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
92#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
101#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
c1e37810 115#define NB_MMU_MODES 7
aaa1f954
EI
116/* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120#define TARGET_INSN_START_EXTRA_WORDS 2
121
122/* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 129
b7bcbe95
FB
130/* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
b7bcbe95 137
55d284af
PM
138/* CPU state for each instance of a generic timer (in cp15 c14) */
139typedef struct ARMGenericTimer {
140 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 141 uint64_t ctl; /* Timer Control register */
55d284af
PM
142} ARMGenericTimer;
143
144#define GTIMER_PHYS 0
145#define GTIMER_VIRT 1
b0e66d95 146#define GTIMER_HYP 2
b4d3978c
PM
147#define GTIMER_SEC 3
148#define NUM_GTIMERS 4
55d284af 149
11f136ee
FA
150typedef struct {
151 uint64_t raw_tcr;
152 uint32_t mask;
153 uint32_t base_mask;
154} TCR;
155
2c0262af 156typedef struct CPUARMState {
b5ff1b31 157 /* Regs for current mode. */
2c0262af 158 uint32_t regs[16];
3926cc84
AG
159
160 /* 32/64 switch only happens when taking and returning from
161 * exceptions so the overlap semantics are taken care of then
162 * instead of having a complicated union.
163 */
164 /* Regs for A64 mode. */
165 uint64_t xregs[32];
166 uint64_t pc;
d356312f
PM
167 /* PSTATE isn't an architectural register for ARMv8. However, it is
168 * convenient for us to assemble the underlying state into a 32 bit format
169 * identical to the architectural format used for the SPSR. (This is also
170 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
171 * 'pstate' register are.) Of the PSTATE bits:
172 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
173 * semantics as for AArch32, as described in the comments on each field)
174 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 175 * DAIF (exception masks) are kept in env->daif
d356312f 176 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
177 */
178 uint32_t pstate;
179 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
180
b90372ad 181 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 182 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
183 the whole CPSR. */
184 uint32_t uncached_cpsr;
185 uint32_t spsr;
186
187 /* Banked registers. */
28c9457d 188 uint64_t banked_spsr[8];
0b7d409d
FA
189 uint32_t banked_r13[8];
190 uint32_t banked_r14[8];
3b46e624 191
b5ff1b31
FB
192 /* These hold r8-r12. */
193 uint32_t usr_regs[5];
194 uint32_t fiq_regs[5];
3b46e624 195
2c0262af
FB
196 /* cpsr flag cache for faster execution */
197 uint32_t CF; /* 0 or 1 */
198 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
199 uint32_t NF; /* N is bit 31. All other bits are undefined. */
200 uint32_t ZF; /* Z set if zero. */
99c475ab 201 uint32_t QF; /* 0 or 1 */
9ee6e8bb 202 uint32_t GE; /* cpsr[19:16] */
b26eefb6 203 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 204 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 205 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 206
1b174238 207 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 208 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 209
b5ff1b31
FB
210 /* System control coprocessor (cp15) */
211 struct {
40f137e1 212 uint32_t c0_cpuid;
b85a1fd6
FA
213 union { /* Cache size selection */
214 struct {
215 uint64_t _unused_csselr0;
216 uint64_t csselr_ns;
217 uint64_t _unused_csselr1;
218 uint64_t csselr_s;
219 };
220 uint64_t csselr_el[4];
221 };
137feaa9
FA
222 union { /* System control register. */
223 struct {
224 uint64_t _unused_sctlr;
225 uint64_t sctlr_ns;
226 uint64_t hsctlr;
227 uint64_t sctlr_s;
228 };
229 uint64_t sctlr_el[4];
230 };
7ebd5f2e 231 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 232 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 233 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 234 uint64_t sder; /* Secure debug enable register. */
77022576 235 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
236 union { /* MMU translation table base 0. */
237 struct {
238 uint64_t _unused_ttbr0_0;
239 uint64_t ttbr0_ns;
240 uint64_t _unused_ttbr0_1;
241 uint64_t ttbr0_s;
242 };
243 uint64_t ttbr0_el[4];
244 };
245 union { /* MMU translation table base 1. */
246 struct {
247 uint64_t _unused_ttbr1_0;
248 uint64_t ttbr1_ns;
249 uint64_t _unused_ttbr1_1;
250 uint64_t ttbr1_s;
251 };
252 uint64_t ttbr1_el[4];
253 };
b698e9cf 254 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
255 /* MMU translation table base control. */
256 TCR tcr_el[4];
68e9c2fe 257 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
258 uint32_t c2_data; /* MPU data cacheable bits. */
259 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
260 union { /* MMU domain access control register
261 * MPU write buffer control.
262 */
263 struct {
264 uint64_t dacr_ns;
265 uint64_t dacr_s;
266 };
267 struct {
268 uint64_t dacr32_el2;
269 };
270 };
7e09797c
PM
271 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
272 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 273 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 274 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
275 union { /* Fault status registers. */
276 struct {
277 uint64_t ifsr_ns;
278 uint64_t ifsr_s;
279 };
280 struct {
281 uint64_t ifsr32_el2;
282 };
283 };
4a7e2d73
FA
284 union {
285 struct {
286 uint64_t _unused_dfsr;
287 uint64_t dfsr_ns;
288 uint64_t hsr;
289 uint64_t dfsr_s;
290 };
291 uint64_t esr_el[4];
292 };
ce819861 293 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
294 union { /* Fault address registers. */
295 struct {
296 uint64_t _unused_far0;
297#ifdef HOST_WORDS_BIGENDIAN
298 uint32_t ifar_ns;
299 uint32_t dfar_ns;
300 uint32_t ifar_s;
301 uint32_t dfar_s;
302#else
303 uint32_t dfar_ns;
304 uint32_t ifar_ns;
305 uint32_t dfar_s;
306 uint32_t ifar_s;
307#endif
308 uint64_t _unused_far3;
309 };
310 uint64_t far_el[4];
311 };
59e05530 312 uint64_t hpfar_el2;
2a5a9abd 313 uint64_t hstr_el2;
01c097f7
FA
314 union { /* Translation result. */
315 struct {
316 uint64_t _unused_par_0;
317 uint64_t par_ns;
318 uint64_t _unused_par_1;
319 uint64_t par_s;
320 };
321 uint64_t par_el[4];
322 };
6cb0b013 323
b5ff1b31
FB
324 uint32_t c9_insn; /* Cache lockdown registers. */
325 uint32_t c9_data;
8521466b
AF
326 uint64_t c9_pmcr; /* performance monitor control register */
327 uint64_t c9_pmcnten; /* perf monitor counter enables */
74594c9d 328 uint32_t c9_pmovsr; /* perf monitor overflow status */
74594c9d 329 uint32_t c9_pmuserenr; /* perf monitor user enable */
6b040780 330 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 331 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
332 union { /* Memory attribute redirection */
333 struct {
334#ifdef HOST_WORDS_BIGENDIAN
335 uint64_t _unused_mair_0;
336 uint32_t mair1_ns;
337 uint32_t mair0_ns;
338 uint64_t _unused_mair_1;
339 uint32_t mair1_s;
340 uint32_t mair0_s;
341#else
342 uint64_t _unused_mair_0;
343 uint32_t mair0_ns;
344 uint32_t mair1_ns;
345 uint64_t _unused_mair_1;
346 uint32_t mair0_s;
347 uint32_t mair1_s;
348#endif
349 };
350 uint64_t mair_el[4];
351 };
fb6c91ba
GB
352 union { /* vector base address register */
353 struct {
354 uint64_t _unused_vbar;
355 uint64_t vbar_ns;
356 uint64_t hvbar;
357 uint64_t vbar_s;
358 };
359 uint64_t vbar_el[4];
360 };
e89e51a1 361 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
362 struct { /* FCSE PID. */
363 uint32_t fcseidr_ns;
364 uint32_t fcseidr_s;
365 };
366 union { /* Context ID. */
367 struct {
368 uint64_t _unused_contextidr_0;
369 uint64_t contextidr_ns;
370 uint64_t _unused_contextidr_1;
371 uint64_t contextidr_s;
372 };
373 uint64_t contextidr_el[4];
374 };
375 union { /* User RW Thread register. */
376 struct {
377 uint64_t tpidrurw_ns;
378 uint64_t tpidrprw_ns;
379 uint64_t htpidr;
380 uint64_t _tpidr_el3;
381 };
382 uint64_t tpidr_el[4];
383 };
384 /* The secure banks of these registers don't map anywhere */
385 uint64_t tpidrurw_s;
386 uint64_t tpidrprw_s;
387 uint64_t tpidruro_s;
388
389 union { /* User RO Thread register. */
390 uint64_t tpidruro_ns;
391 uint64_t tpidrro_el[1];
392 };
a7adc4b7
PM
393 uint64_t c14_cntfrq; /* Counter Frequency register */
394 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 395 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 396 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 397 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 398 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
399 uint32_t c15_ticonfig; /* TI925T configuration byte. */
400 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
401 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
402 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
403 uint32_t c15_config_base_address; /* SCU base address. */
404 uint32_t c15_diagnostic; /* diagnostic register */
405 uint32_t c15_power_diagnostic;
406 uint32_t c15_power_control; /* power control */
0b45451e
PM
407 uint64_t dbgbvr[16]; /* breakpoint value registers */
408 uint64_t dbgbcr[16]; /* breakpoint control registers */
409 uint64_t dbgwvr[16]; /* watchpoint value registers */
410 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 411 uint64_t mdscr_el1;
1424ca8d 412 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 413 uint64_t mdcr_el2;
5513c3ab 414 uint64_t mdcr_el3;
7c2cb42b
AF
415 /* If the counter is enabled, this stores the last time the counter
416 * was reset. Otherwise it stores the counter value
417 */
c92c0687 418 uint64_t c15_ccnt;
8521466b 419 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 420 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 421 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 422 } cp15;
40f137e1 423
9ee6e8bb 424 struct {
fb602cb7
PM
425 /* M profile has up to 4 stack pointers:
426 * a Main Stack Pointer and a Process Stack Pointer for each
427 * of the Secure and Non-Secure states. (If the CPU doesn't support
428 * the security extension then it has only two SPs.)
429 * In QEMU we always store the currently active SP in regs[13],
430 * and the non-active SP for the current security state in
431 * v7m.other_sp. The stack pointers for the inactive security state
432 * are stored in other_ss_msp and other_ss_psp.
433 * switch_v7m_security_state() is responsible for rearranging them
434 * when we change security state.
435 */
9ee6e8bb 436 uint32_t other_sp;
fb602cb7
PM
437 uint32_t other_ss_msp;
438 uint32_t other_ss_psp;
4a16724f
PM
439 uint32_t vecbase[M_REG_NUM_BANKS];
440 uint32_t basepri[M_REG_NUM_BANKS];
441 uint32_t control[M_REG_NUM_BANKS];
442 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
443 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
444 uint32_t hfsr; /* HardFault Status */
445 uint32_t dfsr; /* Debug Fault Status Register */
4a16724f 446 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 447 uint32_t bfar; /* BusFault Address */
4a16724f 448 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 449 int exception;
4a16724f
PM
450 uint32_t primask[M_REG_NUM_BANKS];
451 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 452 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 453 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
9ee6e8bb
PB
454 } v7m;
455
abf1172f
PM
456 /* Information associated with an exception about to be taken:
457 * code which raises an exception must set cs->exception_index and
458 * the relevant parts of this structure; the cpu_do_interrupt function
459 * will then set the guest-visible registers as part of the exception
460 * entry process.
461 */
462 struct {
463 uint32_t syndrome; /* AArch64 format syndrome register */
464 uint32_t fsr; /* AArch32 format fault status register info */
465 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 466 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
467 /* If we implement EL2 we will also need to store information
468 * about the intermediate physical address for stage 2 faults.
469 */
470 } exception;
471
fe1479c3
PB
472 /* Thumb-2 EE state. */
473 uint32_t teecr;
474 uint32_t teehbr;
475
b7bcbe95
FB
476 /* VFP coprocessor state. */
477 struct {
3926cc84
AG
478 /* VFP/Neon register state. Note that the mapping between S, D and Q
479 * views of the register bank differs between AArch64 and AArch32:
480 * In AArch32:
481 * Qn = regs[2n+1]:regs[2n]
482 * Dn = regs[n]
483 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
484 * (and regs[32] to regs[63] are inaccessible)
485 * In AArch64:
486 * Qn = regs[2n+1]:regs[2n]
487 * Dn = regs[2n]
488 * Sn = regs[2n] bits 31..0
489 * This corresponds to the architecturally defined mapping between
490 * the two execution states, and means we do not need to explicitly
491 * map these registers when changing states.
492 */
493 float64 regs[64];
b7bcbe95 494
40f137e1 495 uint32_t xregs[16];
b7bcbe95
FB
496 /* We store these fpcsr fields separately for convenience. */
497 int vec_len;
498 int vec_stride;
499
9ee6e8bb
PB
500 /* scratch space when Tn are not sufficient. */
501 uint32_t scratch[8];
3b46e624 502
3a492f3a
PM
503 /* fp_status is the "normal" fp status. standard_fp_status retains
504 * values corresponding to the ARM "Standard FPSCR Value", ie
505 * default-NaN, flush-to-zero, round-to-nearest and is used by
506 * any operations (generally Neon) which the architecture defines
507 * as controlled by the standard FPSCR value rather than the FPSCR.
508 *
509 * To avoid having to transfer exception bits around, we simply
510 * say that the FPSCR cumulative exception flags are the logical
511 * OR of the flags in the two fp statuses. This relies on the
512 * only thing which needs to read the exception flags being
513 * an explicit FPSCR read.
514 */
53cd6637 515 float_status fp_status;
3a492f3a 516 float_status standard_fp_status;
b7bcbe95 517 } vfp;
03d05e2d
PM
518 uint64_t exclusive_addr;
519 uint64_t exclusive_val;
520 uint64_t exclusive_high;
b7bcbe95 521
18c9b560
AZ
522 /* iwMMXt coprocessor state. */
523 struct {
524 uint64_t regs[16];
525 uint64_t val;
526
527 uint32_t cregs[16];
528 } iwmmxt;
529
ce4defa0
PB
530#if defined(CONFIG_USER_ONLY)
531 /* For usermode syscall translation. */
532 int eabi;
533#endif
534
46747d15 535 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
536 struct CPUWatchpoint *cpu_watchpoint[16];
537
1f5c00cf
AB
538 /* Fields up to this point are cleared by a CPU reset */
539 struct {} end_reset_fields;
540
a316d335
FB
541 CPU_COMMON
542
1f5c00cf 543 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 544
581be094 545 /* Internal CPU feature flags. */
918f5dca 546 uint64_t features;
581be094 547
6cb0b013
PC
548 /* PMSAv7 MPU */
549 struct {
550 uint32_t *drbar;
551 uint32_t *drsr;
552 uint32_t *dracr;
4a16724f 553 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
554 } pmsav7;
555
0e1a46bb
PM
556 /* PMSAv8 MPU */
557 struct {
558 /* The PMSAv8 implementation also shares some PMSAv7 config
559 * and state:
560 * pmsav7.rnr (region number register)
561 * pmsav7_dregion (number of configured regions)
562 */
4a16724f
PM
563 uint32_t *rbar[M_REG_NUM_BANKS];
564 uint32_t *rlar[M_REG_NUM_BANKS];
565 uint32_t mair0[M_REG_NUM_BANKS];
566 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
567 } pmsav8;
568
983fe826 569 void *nvic;
462a8bc6 570 const struct arm_boot_info *boot_info;
d3a3e529
VK
571 /* Store GICv3CPUState to access from this struct */
572 void *gicv3state;
2c0262af
FB
573} CPUARMState;
574
bd7d00fc
PM
575/**
576 * ARMELChangeHook:
577 * type of a function which can be registered via arm_register_el_change_hook()
578 * to get callbacks when the CPU changes its exception level or mode.
579 */
580typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
581
062ba099
AB
582
583/* These values map onto the return values for
584 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
585typedef enum ARMPSCIState {
d5affb0d
AJ
586 PSCI_ON = 0,
587 PSCI_OFF = 1,
062ba099
AB
588 PSCI_ON_PENDING = 2
589} ARMPSCIState;
590
74e75564
PB
591/**
592 * ARMCPU:
593 * @env: #CPUARMState
594 *
595 * An ARM CPU core.
596 */
597struct ARMCPU {
598 /*< private >*/
599 CPUState parent_obj;
600 /*< public >*/
601
602 CPUARMState env;
603
604 /* Coprocessor information */
605 GHashTable *cp_regs;
606 /* For marshalling (mostly coprocessor) register state between the
607 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
608 * we use these arrays.
609 */
610 /* List of register indexes managed via these arrays; (full KVM style
611 * 64 bit indexes, not CPRegInfo 32 bit indexes)
612 */
613 uint64_t *cpreg_indexes;
614 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
615 uint64_t *cpreg_values;
616 /* Length of the indexes, values, reset_values arrays */
617 int32_t cpreg_array_len;
618 /* These are used only for migration: incoming data arrives in
619 * these fields and is sanity checked in post_load before copying
620 * to the working data structures above.
621 */
622 uint64_t *cpreg_vmstate_indexes;
623 uint64_t *cpreg_vmstate_values;
624 int32_t cpreg_vmstate_array_len;
625
626 /* Timers used by the generic (architected) timer */
627 QEMUTimer *gt_timer[NUM_GTIMERS];
628 /* GPIO outputs for generic timer */
629 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
630 /* GPIO output for GICv3 maintenance interrupt signal */
631 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
632 /* GPIO output for the PMU interrupt */
633 qemu_irq pmu_interrupt;
74e75564
PB
634
635 /* MemoryRegion to use for secure physical accesses */
636 MemoryRegion *secure_memory;
637
638 /* 'compatible' string for this CPU for Linux device trees */
639 const char *dtb_compatible;
640
641 /* PSCI version for this CPU
642 * Bits[31:16] = Major Version
643 * Bits[15:0] = Minor Version
644 */
645 uint32_t psci_version;
646
647 /* Should CPU start in PSCI powered-off state? */
648 bool start_powered_off;
062ba099
AB
649
650 /* Current power state, access guarded by BQL */
651 ARMPSCIState power_state;
652
c25bd18a
PM
653 /* CPU has virtualization extension */
654 bool has_el2;
74e75564
PB
655 /* CPU has security extension */
656 bool has_el3;
5c0a3819
SZ
657 /* CPU has PMU (Performance Monitor Unit) */
658 bool has_pmu;
74e75564
PB
659
660 /* CPU has memory protection unit */
661 bool has_mpu;
662 /* PMSAv7 MPU number of supported regions */
663 uint32_t pmsav7_dregion;
664
665 /* PSCI conduit used to invoke PSCI methods
666 * 0 - disabled, 1 - smc, 2 - hvc
667 */
668 uint32_t psci_conduit;
669
670 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
671 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
672 */
673 uint32_t kvm_target;
674
675 /* KVM init features for this CPU */
676 uint32_t kvm_init_features[7];
677
678 /* Uniprocessor system with MP extensions */
679 bool mp_is_up;
680
681 /* The instance init functions for implementation-specific subclasses
682 * set these fields to specify the implementation-dependent values of
683 * various constant registers and reset values of non-constant
684 * registers.
685 * Some of these might become QOM properties eventually.
686 * Field names match the official register names as defined in the
687 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
688 * is used for reset values of non-constant registers; no reset_
689 * prefix means a constant register.
690 */
691 uint32_t midr;
692 uint32_t revidr;
693 uint32_t reset_fpsid;
694 uint32_t mvfr0;
695 uint32_t mvfr1;
696 uint32_t mvfr2;
697 uint32_t ctr;
698 uint32_t reset_sctlr;
699 uint32_t id_pfr0;
700 uint32_t id_pfr1;
701 uint32_t id_dfr0;
702 uint32_t pmceid0;
703 uint32_t pmceid1;
704 uint32_t id_afr0;
705 uint32_t id_mmfr0;
706 uint32_t id_mmfr1;
707 uint32_t id_mmfr2;
708 uint32_t id_mmfr3;
709 uint32_t id_mmfr4;
710 uint32_t id_isar0;
711 uint32_t id_isar1;
712 uint32_t id_isar2;
713 uint32_t id_isar3;
714 uint32_t id_isar4;
715 uint32_t id_isar5;
716 uint64_t id_aa64pfr0;
717 uint64_t id_aa64pfr1;
718 uint64_t id_aa64dfr0;
719 uint64_t id_aa64dfr1;
720 uint64_t id_aa64afr0;
721 uint64_t id_aa64afr1;
722 uint64_t id_aa64isar0;
723 uint64_t id_aa64isar1;
724 uint64_t id_aa64mmfr0;
725 uint64_t id_aa64mmfr1;
726 uint32_t dbgdidr;
727 uint32_t clidr;
728 uint64_t mp_affinity; /* MP ID without feature bits */
729 /* The elements of this array are the CCSIDR values for each cache,
730 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
731 */
732 uint32_t ccsidr[16];
733 uint64_t reset_cbar;
734 uint32_t reset_auxcr;
735 bool reset_hivecs;
736 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
737 uint32_t dcz_blocksize;
738 uint64_t rvbar;
bd7d00fc 739
e45868a3
PM
740 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
741 int gic_num_lrs; /* number of list registers */
742 int gic_vpribits; /* number of virtual priority bits */
743 int gic_vprebits; /* number of virtual preemption bits */
744
3a062d57
JB
745 /* Whether the cfgend input is high (i.e. this CPU should reset into
746 * big-endian mode). This setting isn't used directly: instead it modifies
747 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
748 * architecture version.
749 */
750 bool cfgend;
751
bd7d00fc
PM
752 ARMELChangeHook *el_change_hook;
753 void *el_change_hook_opaque;
15f8b142
IM
754
755 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
756
757 /* Used to synchronize KVM and QEMU in-kernel device levels */
758 uint8_t device_irq_level;
74e75564
PB
759};
760
761static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
762{
763 return container_of(env, ARMCPU, env);
764}
765
46de5913
IM
766uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
767
74e75564
PB
768#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
769
770#define ENV_OFFSET offsetof(ARMCPU, env)
771
772#ifndef CONFIG_USER_ONLY
773extern const struct VMStateDescription vmstate_arm_cpu;
774#endif
775
776void arm_cpu_do_interrupt(CPUState *cpu);
777void arm_v7m_cpu_do_interrupt(CPUState *cpu);
778bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
779
780void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
781 int flags);
782
783hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
784 MemTxAttrs *attrs);
785
786int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
787int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
788
789int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
790 int cpuid, void *opaque);
791int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
792 int cpuid, void *opaque);
793
794#ifdef TARGET_AARCH64
795int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
796int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
797#endif
778c3a06 798
faacc041 799target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
800void aarch64_sync_32_to_64(CPUARMState *env);
801void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 802
3926cc84
AG
803static inline bool is_a64(CPUARMState *env)
804{
805 return env->aarch64;
806}
807
2c0262af
FB
808/* you can call this signal handler from your SIGBUS and SIGSEGV
809 signal handlers to inform the virtual CPU of exceptions. non zero
810 is returned if the signal was handled by the virtual CPU. */
5fafdf24 811int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
812 void *puc);
813
ec7b4ce4
AF
814/**
815 * pmccntr_sync
816 * @env: CPUARMState
817 *
818 * Synchronises the counter in the PMCCNTR. This must always be called twice,
819 * once before any action that might affect the timer and again afterwards.
820 * The function is used to swap the state of the register if required.
821 * This only happens when not in user mode (!CONFIG_USER_ONLY)
822 */
823void pmccntr_sync(CPUARMState *env);
824
76e3e1bc
PM
825/* SCTLR bit meanings. Several bits have been reused in newer
826 * versions of the architecture; in that case we define constants
827 * for both old and new bit meanings. Code which tests against those
828 * bits should probably check or otherwise arrange that the CPU
829 * is the architectural version it expects.
830 */
831#define SCTLR_M (1U << 0)
832#define SCTLR_A (1U << 1)
833#define SCTLR_C (1U << 2)
834#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
835#define SCTLR_SA (1U << 3)
836#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
837#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
838#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
839#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
840#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
841#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
842#define SCTLR_ITD (1U << 7) /* v8 onward */
843#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
844#define SCTLR_SED (1U << 8) /* v8 onward */
845#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
846#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
847#define SCTLR_F (1U << 10) /* up to v6 */
848#define SCTLR_SW (1U << 10) /* v7 onward */
849#define SCTLR_Z (1U << 11)
850#define SCTLR_I (1U << 12)
851#define SCTLR_V (1U << 13)
852#define SCTLR_RR (1U << 14) /* up to v7 */
853#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
854#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
855#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
856#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
857#define SCTLR_nTWI (1U << 16) /* v8 onward */
858#define SCTLR_HA (1U << 17)
f6bda88f 859#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
860#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
861#define SCTLR_nTWE (1U << 18) /* v8 onward */
862#define SCTLR_WXN (1U << 19)
863#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
864#define SCTLR_UWXN (1U << 20) /* v7 onward */
865#define SCTLR_FI (1U << 21)
866#define SCTLR_U (1U << 22)
867#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
868#define SCTLR_VE (1U << 24) /* up to v7 */
869#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
870#define SCTLR_EE (1U << 25)
871#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
872#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
873#define SCTLR_NMFI (1U << 27)
874#define SCTLR_TRE (1U << 28)
875#define SCTLR_AFE (1U << 29)
876#define SCTLR_TE (1U << 30)
877
c6f19164
GB
878#define CPTR_TCPAC (1U << 31)
879#define CPTR_TTA (1U << 20)
880#define CPTR_TFP (1U << 10)
881
187f678d
PM
882#define MDCR_EPMAD (1U << 21)
883#define MDCR_EDAD (1U << 20)
884#define MDCR_SPME (1U << 17)
885#define MDCR_SDD (1U << 16)
a8d64e73 886#define MDCR_SPD (3U << 14)
187f678d
PM
887#define MDCR_TDRA (1U << 11)
888#define MDCR_TDOSA (1U << 10)
889#define MDCR_TDA (1U << 9)
890#define MDCR_TDE (1U << 8)
891#define MDCR_HPME (1U << 7)
892#define MDCR_TPM (1U << 6)
893#define MDCR_TPMCR (1U << 5)
894
a8d64e73
PM
895/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
896#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
897
78dbbbe4
PM
898#define CPSR_M (0x1fU)
899#define CPSR_T (1U << 5)
900#define CPSR_F (1U << 6)
901#define CPSR_I (1U << 7)
902#define CPSR_A (1U << 8)
903#define CPSR_E (1U << 9)
904#define CPSR_IT_2_7 (0xfc00U)
905#define CPSR_GE (0xfU << 16)
4051e12c
PM
906#define CPSR_IL (1U << 20)
907/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
908 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
909 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
910 * where it is live state but not accessible to the AArch32 code.
911 */
912#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
913#define CPSR_J (1U << 24)
914#define CPSR_IT_0_1 (3U << 25)
915#define CPSR_Q (1U << 27)
916#define CPSR_V (1U << 28)
917#define CPSR_C (1U << 29)
918#define CPSR_Z (1U << 30)
919#define CPSR_N (1U << 31)
9ee6e8bb 920#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 921#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
922
923#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
924#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
925 | CPSR_NZCV)
9ee6e8bb
PB
926/* Bits writable in user mode. */
927#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
928/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
929#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
930/* Mask of bits which may be set by exception return copying them from SPSR */
931#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 932
987ab45e
PM
933/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
934#define XPSR_EXCP 0x1ffU
935#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
936#define XPSR_IT_2_7 CPSR_IT_2_7
937#define XPSR_GE CPSR_GE
938#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
939#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
940#define XPSR_IT_0_1 CPSR_IT_0_1
941#define XPSR_Q CPSR_Q
942#define XPSR_V CPSR_V
943#define XPSR_C CPSR_C
944#define XPSR_Z CPSR_Z
945#define XPSR_N CPSR_N
946#define XPSR_NZCV CPSR_NZCV
947#define XPSR_IT CPSR_IT
948
e389be16
FA
949#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
950#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
951#define TTBCR_PD0 (1U << 4)
952#define TTBCR_PD1 (1U << 5)
953#define TTBCR_EPD0 (1U << 7)
954#define TTBCR_IRGN0 (3U << 8)
955#define TTBCR_ORGN0 (3U << 10)
956#define TTBCR_SH0 (3U << 12)
957#define TTBCR_T1SZ (3U << 16)
958#define TTBCR_A1 (1U << 22)
959#define TTBCR_EPD1 (1U << 23)
960#define TTBCR_IRGN1 (3U << 24)
961#define TTBCR_ORGN1 (3U << 26)
962#define TTBCR_SH1 (1U << 28)
963#define TTBCR_EAE (1U << 31)
964
d356312f
PM
965/* Bit definitions for ARMv8 SPSR (PSTATE) format.
966 * Only these are valid when in AArch64 mode; in
967 * AArch32 mode SPSRs are basically CPSR-format.
968 */
f502cfc2 969#define PSTATE_SP (1U)
d356312f
PM
970#define PSTATE_M (0xFU)
971#define PSTATE_nRW (1U << 4)
972#define PSTATE_F (1U << 6)
973#define PSTATE_I (1U << 7)
974#define PSTATE_A (1U << 8)
975#define PSTATE_D (1U << 9)
976#define PSTATE_IL (1U << 20)
977#define PSTATE_SS (1U << 21)
978#define PSTATE_V (1U << 28)
979#define PSTATE_C (1U << 29)
980#define PSTATE_Z (1U << 30)
981#define PSTATE_N (1U << 31)
982#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
983#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
984#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
985/* Mode values for AArch64 */
986#define PSTATE_MODE_EL3h 13
987#define PSTATE_MODE_EL3t 12
988#define PSTATE_MODE_EL2h 9
989#define PSTATE_MODE_EL2t 8
990#define PSTATE_MODE_EL1h 5
991#define PSTATE_MODE_EL1t 4
992#define PSTATE_MODE_EL0t 0
993
de2db7ec
PM
994/* Write a new value to v7m.exception, thus transitioning into or out
995 * of Handler mode; this may result in a change of active stack pointer.
996 */
997void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
998
9e729b57
EI
999/* Map EL and handler into a PSTATE_MODE. */
1000static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1001{
1002 return (el << 2) | handler;
1003}
1004
d356312f
PM
1005/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1006 * interprocessing, so we don't attempt to sync with the cpsr state used by
1007 * the 32 bit decoder.
1008 */
1009static inline uint32_t pstate_read(CPUARMState *env)
1010{
1011 int ZF;
1012
1013 ZF = (env->ZF == 0);
1014 return (env->NF & 0x80000000) | (ZF << 30)
1015 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1016 | env->pstate | env->daif;
d356312f
PM
1017}
1018
1019static inline void pstate_write(CPUARMState *env, uint32_t val)
1020{
1021 env->ZF = (~val) & PSTATE_Z;
1022 env->NF = val;
1023 env->CF = (val >> 29) & 1;
1024 env->VF = (val << 3) & 0x80000000;
4cc35614 1025 env->daif = val & PSTATE_DAIF;
d356312f
PM
1026 env->pstate = val & ~CACHED_PSTATE_BITS;
1027}
1028
b5ff1b31 1029/* Return the current CPSR value. */
2f4a40e5 1030uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1031
1032typedef enum CPSRWriteType {
1033 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1034 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1035 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1036 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1037} CPSRWriteType;
1038
1039/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1040void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1041 CPSRWriteType write_type);
9ee6e8bb
PB
1042
1043/* Return the current xPSR value. */
1044static inline uint32_t xpsr_read(CPUARMState *env)
1045{
1046 int ZF;
6fbe23d5
PB
1047 ZF = (env->ZF == 0);
1048 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1049 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1050 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1051 | ((env->condexec_bits & 0xfc) << 8)
1052 | env->v7m.exception;
b5ff1b31
FB
1053}
1054
9ee6e8bb
PB
1055/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1056static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1057{
987ab45e
PM
1058 if (mask & XPSR_NZCV) {
1059 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1060 env->NF = val;
9ee6e8bb
PB
1061 env->CF = (val >> 29) & 1;
1062 env->VF = (val << 3) & 0x80000000;
1063 }
987ab45e
PM
1064 if (mask & XPSR_Q) {
1065 env->QF = ((val & XPSR_Q) != 0);
1066 }
1067 if (mask & XPSR_T) {
1068 env->thumb = ((val & XPSR_T) != 0);
1069 }
1070 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1071 env->condexec_bits &= ~3;
1072 env->condexec_bits |= (val >> 25) & 3;
1073 }
987ab45e 1074 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1075 env->condexec_bits &= 3;
1076 env->condexec_bits |= (val >> 8) & 0xfc;
1077 }
987ab45e 1078 if (mask & XPSR_EXCP) {
de2db7ec
PM
1079 /* Note that this only happens on exception exit */
1080 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1081 }
1082}
1083
f149e3e8
EI
1084#define HCR_VM (1ULL << 0)
1085#define HCR_SWIO (1ULL << 1)
1086#define HCR_PTW (1ULL << 2)
1087#define HCR_FMO (1ULL << 3)
1088#define HCR_IMO (1ULL << 4)
1089#define HCR_AMO (1ULL << 5)
1090#define HCR_VF (1ULL << 6)
1091#define HCR_VI (1ULL << 7)
1092#define HCR_VSE (1ULL << 8)
1093#define HCR_FB (1ULL << 9)
1094#define HCR_BSU_MASK (3ULL << 10)
1095#define HCR_DC (1ULL << 12)
1096#define HCR_TWI (1ULL << 13)
1097#define HCR_TWE (1ULL << 14)
1098#define HCR_TID0 (1ULL << 15)
1099#define HCR_TID1 (1ULL << 16)
1100#define HCR_TID2 (1ULL << 17)
1101#define HCR_TID3 (1ULL << 18)
1102#define HCR_TSC (1ULL << 19)
1103#define HCR_TIDCP (1ULL << 20)
1104#define HCR_TACR (1ULL << 21)
1105#define HCR_TSW (1ULL << 22)
1106#define HCR_TPC (1ULL << 23)
1107#define HCR_TPU (1ULL << 24)
1108#define HCR_TTLB (1ULL << 25)
1109#define HCR_TVM (1ULL << 26)
1110#define HCR_TGE (1ULL << 27)
1111#define HCR_TDZ (1ULL << 28)
1112#define HCR_HCD (1ULL << 29)
1113#define HCR_TRVM (1ULL << 30)
1114#define HCR_RW (1ULL << 31)
1115#define HCR_CD (1ULL << 32)
1116#define HCR_ID (1ULL << 33)
1117#define HCR_MASK ((1ULL << 34) - 1)
1118
64e0e2de
EI
1119#define SCR_NS (1U << 0)
1120#define SCR_IRQ (1U << 1)
1121#define SCR_FIQ (1U << 2)
1122#define SCR_EA (1U << 3)
1123#define SCR_FW (1U << 4)
1124#define SCR_AW (1U << 5)
1125#define SCR_NET (1U << 6)
1126#define SCR_SMD (1U << 7)
1127#define SCR_HCE (1U << 8)
1128#define SCR_SIF (1U << 9)
1129#define SCR_RW (1U << 10)
1130#define SCR_ST (1U << 11)
1131#define SCR_TWI (1U << 12)
1132#define SCR_TWE (1U << 13)
1133#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1134#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1135
01653295
PM
1136/* Return the current FPSCR value. */
1137uint32_t vfp_get_fpscr(CPUARMState *env);
1138void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1139
f903fa22
PM
1140/* For A64 the FPSCR is split into two logically distinct registers,
1141 * FPCR and FPSR. However since they still use non-overlapping bits
1142 * we store the underlying state in fpscr and just mask on read/write.
1143 */
1144#define FPSR_MASK 0xf800009f
1145#define FPCR_MASK 0x07f79f00
1146static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1147{
1148 return vfp_get_fpscr(env) & FPSR_MASK;
1149}
1150
1151static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1152{
1153 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1154 vfp_set_fpscr(env, new_fpscr);
1155}
1156
1157static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1158{
1159 return vfp_get_fpscr(env) & FPCR_MASK;
1160}
1161
1162static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1163{
1164 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1165 vfp_set_fpscr(env, new_fpscr);
1166}
1167
b5ff1b31
FB
1168enum arm_cpu_mode {
1169 ARM_CPU_MODE_USR = 0x10,
1170 ARM_CPU_MODE_FIQ = 0x11,
1171 ARM_CPU_MODE_IRQ = 0x12,
1172 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1173 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1174 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1175 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1176 ARM_CPU_MODE_UND = 0x1b,
1177 ARM_CPU_MODE_SYS = 0x1f
1178};
1179
40f137e1
PB
1180/* VFP system registers. */
1181#define ARM_VFP_FPSID 0
1182#define ARM_VFP_FPSCR 1
a50c0f51 1183#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1184#define ARM_VFP_MVFR1 6
1185#define ARM_VFP_MVFR0 7
40f137e1
PB
1186#define ARM_VFP_FPEXC 8
1187#define ARM_VFP_FPINST 9
1188#define ARM_VFP_FPINST2 10
1189
18c9b560
AZ
1190/* iwMMXt coprocessor control registers. */
1191#define ARM_IWMMXT_wCID 0
1192#define ARM_IWMMXT_wCon 1
1193#define ARM_IWMMXT_wCSSF 2
1194#define ARM_IWMMXT_wCASF 3
1195#define ARM_IWMMXT_wCGR0 8
1196#define ARM_IWMMXT_wCGR1 9
1197#define ARM_IWMMXT_wCGR2 10
1198#define ARM_IWMMXT_wCGR3 11
1199
2c4da50d
PM
1200/* V7M CCR bits */
1201FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1202FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1203FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1204FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1205FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1206FIELD(V7M_CCR, STKALIGN, 9, 1)
1207FIELD(V7M_CCR, DC, 16, 1)
1208FIELD(V7M_CCR, IC, 17, 1)
1209
3b2e9344
PM
1210/* V7M AIRCR bits */
1211FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1212FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1213FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1214FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1215FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1216FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1217FIELD(V7M_AIRCR, PRIS, 14, 1)
1218FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1219FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1220
2c4da50d
PM
1221/* V7M CFSR bits for MMFSR */
1222FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1223FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1224FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1225FIELD(V7M_CFSR, MSTKERR, 4, 1)
1226FIELD(V7M_CFSR, MLSPERR, 5, 1)
1227FIELD(V7M_CFSR, MMARVALID, 7, 1)
1228
1229/* V7M CFSR bits for BFSR */
1230FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1231FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1232FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1233FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1234FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1235FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1236FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1237
1238/* V7M CFSR bits for UFSR */
1239FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1240FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1241FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1242FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1243FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1244FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1245
334e8dad
PM
1246/* V7M CFSR bit masks covering all of the subregister bits */
1247FIELD(V7M_CFSR, MMFSR, 0, 8)
1248FIELD(V7M_CFSR, BFSR, 8, 8)
1249FIELD(V7M_CFSR, UFSR, 16, 16)
1250
2c4da50d
PM
1251/* V7M HFSR bits */
1252FIELD(V7M_HFSR, VECTTBL, 1, 1)
1253FIELD(V7M_HFSR, FORCED, 30, 1)
1254FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1255
1256/* V7M DFSR bits */
1257FIELD(V7M_DFSR, HALTED, 0, 1)
1258FIELD(V7M_DFSR, BKPT, 1, 1)
1259FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1260FIELD(V7M_DFSR, VCATCH, 3, 1)
1261FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1262
29c483a5
MD
1263/* v7M MPU_CTRL bits */
1264FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1265FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1266FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1267
ce854d7c
BC
1268/* If adding a feature bit which corresponds to a Linux ELF
1269 * HWCAP bit, remember to update the feature-bit-to-hwcap
1270 * mapping in linux-user/elfload.c:get_elf_hwcap().
1271 */
40f137e1
PB
1272enum arm_features {
1273 ARM_FEATURE_VFP,
c1713132
AZ
1274 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1275 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1276 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1277 ARM_FEATURE_V6,
1278 ARM_FEATURE_V6K,
1279 ARM_FEATURE_V7,
1280 ARM_FEATURE_THUMB2,
452a0955 1281 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1282 ARM_FEATURE_VFP3,
60011498 1283 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1284 ARM_FEATURE_NEON,
47789990 1285 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 1286 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1287 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1288 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
1289 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1290 ARM_FEATURE_V4T,
1291 ARM_FEATURE_V5,
5bc95aa2 1292 ARM_FEATURE_STRONGARM,
906879a9 1293 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 1294 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 1295 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1296 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1297 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1298 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1299 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1300 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1301 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1302 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1303 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1304 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1305 ARM_FEATURE_V8,
3926cc84 1306 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 1307 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 1308 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1309 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1310 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1311 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1312 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
1313 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1314 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 1315 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 1316 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1317 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1318 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1319 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
c99a55d3 1320 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
40f137e1
PB
1321};
1322
1323static inline int arm_feature(CPUARMState *env, int feature)
1324{
918f5dca 1325 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1326}
1327
19e0fefa
FA
1328#if !defined(CONFIG_USER_ONLY)
1329/* Return true if exception levels below EL3 are in secure state,
1330 * or would be following an exception return to that level.
1331 * Unlike arm_is_secure() (which is always a question about the
1332 * _current_ state of the CPU) this doesn't care about the current
1333 * EL or mode.
1334 */
1335static inline bool arm_is_secure_below_el3(CPUARMState *env)
1336{
1337 if (arm_feature(env, ARM_FEATURE_EL3)) {
1338 return !(env->cp15.scr_el3 & SCR_NS);
1339 } else {
6b7f0b61 1340 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1341 * defined, in which case QEMU defaults to non-secure.
1342 */
1343 return false;
1344 }
1345}
1346
71205876
PM
1347/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1348static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1349{
1350 if (arm_feature(env, ARM_FEATURE_EL3)) {
1351 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1352 /* CPU currently in AArch64 state and EL3 */
1353 return true;
1354 } else if (!is_a64(env) &&
1355 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1356 /* CPU currently in AArch32 state and monitor mode */
1357 return true;
1358 }
1359 }
71205876
PM
1360 return false;
1361}
1362
1363/* Return true if the processor is in secure state */
1364static inline bool arm_is_secure(CPUARMState *env)
1365{
1366 if (arm_is_el3_or_mon(env)) {
1367 return true;
1368 }
19e0fefa
FA
1369 return arm_is_secure_below_el3(env);
1370}
1371
1372#else
1373static inline bool arm_is_secure_below_el3(CPUARMState *env)
1374{
1375 return false;
1376}
1377
1378static inline bool arm_is_secure(CPUARMState *env)
1379{
1380 return false;
1381}
1382#endif
1383
1f79ee32
PM
1384/* Return true if the specified exception level is running in AArch64 state. */
1385static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1386{
446c81ab
PM
1387 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1388 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1389 */
446c81ab
PM
1390 assert(el >= 1 && el <= 3);
1391 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1392
446c81ab
PM
1393 /* The highest exception level is always at the maximum supported
1394 * register width, and then lower levels have a register width controlled
1395 * by bits in the SCR or HCR registers.
1f79ee32 1396 */
446c81ab
PM
1397 if (el == 3) {
1398 return aa64;
1399 }
1400
1401 if (arm_feature(env, ARM_FEATURE_EL3)) {
1402 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1403 }
1404
1405 if (el == 2) {
1406 return aa64;
1407 }
1408
1409 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1410 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1411 }
1412
1413 return aa64;
1f79ee32
PM
1414}
1415
3f342b9e
SF
1416/* Function for determing whether guest cp register reads and writes should
1417 * access the secure or non-secure bank of a cp register. When EL3 is
1418 * operating in AArch32 state, the NS-bit determines whether the secure
1419 * instance of a cp register should be used. When EL3 is AArch64 (or if
1420 * it doesn't exist at all) then there is no register banking, and all
1421 * accesses are to the non-secure version.
1422 */
1423static inline bool access_secure_reg(CPUARMState *env)
1424{
1425 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1426 !arm_el_is_aa64(env, 3) &&
1427 !(env->cp15.scr_el3 & SCR_NS));
1428
1429 return ret;
1430}
1431
ea30a4b8
FA
1432/* Macros for accessing a specified CP register bank */
1433#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1434 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1435
1436#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1437 do { \
1438 if (_secure) { \
1439 (_env)->cp15._regname##_s = (_val); \
1440 } else { \
1441 (_env)->cp15._regname##_ns = (_val); \
1442 } \
1443 } while (0)
1444
1445/* Macros for automatically accessing a specific CP register bank depending on
1446 * the current secure state of the system. These macros are not intended for
1447 * supporting instruction translation reads/writes as these are dependent
1448 * solely on the SCR.NS bit and not the mode.
1449 */
1450#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1451 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1452 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1453
1454#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1455 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1456 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1457 (_val))
1458
9a78eead 1459void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1460uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1461 uint32_t cur_el, bool secure);
40f137e1 1462
9ee6e8bb 1463/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1464#ifndef CONFIG_USER_ONLY
1465bool armv7m_nvic_can_take_pending_exception(void *opaque);
1466#else
1467static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1468{
1469 return true;
1470}
1471#endif
2fb50a33
PM
1472/**
1473 * armv7m_nvic_set_pending: mark the specified exception as pending
1474 * @opaque: the NVIC
1475 * @irq: the exception number to mark pending
1476 * @secure: false for non-banked exceptions or for the nonsecure
1477 * version of a banked exception, true for the secure version of a banked
1478 * exception.
1479 *
1480 * Marks the specified exception as pending. Note that we will assert()
1481 * if @secure is true and @irq does not specify one of the fixed set
1482 * of architecturally banked exceptions.
1483 */
1484void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5cb18069
PM
1485/**
1486 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1487 * @opaque: the NVIC
1488 *
1489 * Move the current highest priority pending exception from the pending
1490 * state to the active state, and update v7m.exception to indicate that
1491 * it is the exception currently being handled.
1492 *
1493 * Returns: true if exception should be taken to Secure state, false for NS
1494 */
1495bool armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1496/**
1497 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1498 * @opaque: the NVIC
1499 * @irq: the exception number to complete
5cb18069 1500 * @secure: true if this exception was secure
aa488fe3
PM
1501 *
1502 * Returns: -1 if the irq was not active
1503 * 1 if completing this irq brought us back to base (no active irqs)
1504 * 0 if there is still an irq active after this one was completed
1505 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1506 */
5cb18069 1507int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1508/**
1509 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1510 * @opaque: the NVIC
1511 *
1512 * Returns: the raw execution priority as defined by the v8M architecture.
1513 * This is the execution priority minus the effects of AIRCR.PRIS,
1514 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1515 * (v8M ARM ARM I_PKLD.)
1516 */
1517int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
1518/**
1519 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1520 * priority is negative for the specified security state.
1521 * @opaque: the NVIC
1522 * @secure: the security state to test
1523 * This corresponds to the pseudocode IsReqExecPriNeg().
1524 */
1525#ifndef CONFIG_USER_ONLY
1526bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1527#else
1528static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1529{
1530 return false;
1531}
1532#endif
9ee6e8bb 1533
4b6a83fb
PM
1534/* Interface for defining coprocessor registers.
1535 * Registers are defined in tables of arm_cp_reginfo structs
1536 * which are passed to define_arm_cp_regs().
1537 */
1538
1539/* When looking up a coprocessor register we look for it
1540 * via an integer which encodes all of:
1541 * coprocessor number
1542 * Crn, Crm, opc1, opc2 fields
1543 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1544 * or via MRRC/MCRR?)
51a79b03 1545 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1546 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1547 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1548 * For AArch64, there is no 32/64 bit size distinction;
1549 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1550 * and 4 bit CRn and CRm. The encoding patterns are chosen
1551 * to be easy to convert to and from the KVM encodings, and also
1552 * so that the hashtable can contain both AArch32 and AArch64
1553 * registers (to allow for interprocessing where we might run
1554 * 32 bit code on a 64 bit core).
4b6a83fb 1555 */
f5a0a5a5
PM
1556/* This bit is private to our hashtable cpreg; in KVM register
1557 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1558 * in the upper bits of the 64 bit ID.
1559 */
1560#define CP_REG_AA64_SHIFT 28
1561#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1562
51a79b03
PM
1563/* To enable banking of coprocessor registers depending on ns-bit we
1564 * add a bit to distinguish between secure and non-secure cpregs in the
1565 * hashtable.
1566 */
1567#define CP_REG_NS_SHIFT 29
1568#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1569
1570#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1571 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1572 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1573
f5a0a5a5
PM
1574#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1575 (CP_REG_AA64_MASK | \
1576 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1577 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1578 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1579 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1580 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1581 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1582
721fae12
PM
1583/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1584 * version used as a key for the coprocessor register hashtable
1585 */
1586static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1587{
1588 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1589 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1590 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1591 } else {
1592 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1593 cpregid |= (1 << 15);
1594 }
1595
1596 /* KVM is always non-secure so add the NS flag on AArch32 register
1597 * entries.
1598 */
1599 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1600 }
1601 return cpregid;
1602}
1603
1604/* Convert a truncated 32 bit hashtable key into the full
1605 * 64 bit KVM register ID.
1606 */
1607static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1608{
f5a0a5a5
PM
1609 uint64_t kvmid;
1610
1611 if (cpregid & CP_REG_AA64_MASK) {
1612 kvmid = cpregid & ~CP_REG_AA64_MASK;
1613 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1614 } else {
f5a0a5a5
PM
1615 kvmid = cpregid & ~(1 << 15);
1616 if (cpregid & (1 << 15)) {
1617 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1618 } else {
1619 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1620 }
721fae12
PM
1621 }
1622 return kvmid;
1623}
1624
4b6a83fb
PM
1625/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1626 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1627 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1628 * TCG can assume the value to be constant (ie load at translate time)
1629 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1630 * indicates that the TB should not be ended after a write to this register
1631 * (the default is that the TB ends after cp writes). OVERRIDE permits
1632 * a register definition to override a previous definition for the
1633 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1634 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1635 * ALIAS indicates that this register is an alias view of some underlying
1636 * state which is also visible via another register, and that the other
b061a82b
SF
1637 * register is handling migration and reset; registers marked ALIAS will not be
1638 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1639 * NO_RAW indicates that this register has no underlying state and does not
1640 * support raw access for state saving/loading; it will not be used for either
1641 * migration or KVM state synchronization. (Typically this is for "registers"
1642 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1643 * IO indicates that this register does I/O and therefore its accesses
1644 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1645 * registers which implement clocks or timers require this.
4b6a83fb
PM
1646 */
1647#define ARM_CP_SPECIAL 1
1648#define ARM_CP_CONST 2
1649#define ARM_CP_64BIT 4
1650#define ARM_CP_SUPPRESS_TB_END 8
1651#define ARM_CP_OVERRIDE 16
7a0e58fa 1652#define ARM_CP_ALIAS 32
2452731c 1653#define ARM_CP_IO 64
7a0e58fa 1654#define ARM_CP_NO_RAW 128
4b6a83fb
PM
1655#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1656#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 1657#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98 1658#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
aca3f40b
PM
1659#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1660#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
4b6a83fb
PM
1661/* Used only as a terminator for ARMCPRegInfo lists */
1662#define ARM_CP_SENTINEL 0xffff
1663/* Mask of only the flag bits in a type field */
7a0e58fa 1664#define ARM_CP_FLAG_MASK 0xff
4b6a83fb 1665
f5a0a5a5
PM
1666/* Valid values for ARMCPRegInfo state field, indicating which of
1667 * the AArch32 and AArch64 execution states this register is visible in.
1668 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1669 * If the reginfo is declared to be visible in both states then a second
1670 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1671 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1672 * Note that we rely on the values of these enums as we iterate through
1673 * the various states in some places.
1674 */
1675enum {
1676 ARM_CP_STATE_AA32 = 0,
1677 ARM_CP_STATE_AA64 = 1,
1678 ARM_CP_STATE_BOTH = 2,
1679};
1680
c3e30260
FA
1681/* ARM CP register secure state flags. These flags identify security state
1682 * attributes for a given CP register entry.
1683 * The existence of both or neither secure and non-secure flags indicates that
1684 * the register has both a secure and non-secure hash entry. A single one of
1685 * these flags causes the register to only be hashed for the specified
1686 * security state.
1687 * Although definitions may have any combination of the S/NS bits, each
1688 * registered entry will only have one to identify whether the entry is secure
1689 * or non-secure.
1690 */
1691enum {
1692 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1693 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1694};
1695
4b6a83fb
PM
1696/* Return true if cptype is a valid type field. This is used to try to
1697 * catch errors where the sentinel has been accidentally left off the end
1698 * of a list of registers.
1699 */
1700static inline bool cptype_valid(int cptype)
1701{
1702 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1703 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 1704 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
1705}
1706
1707/* Access rights:
1708 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1709 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1710 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1711 * (ie any of the privileged modes in Secure state, or Monitor mode).
1712 * If a register is accessible in one privilege level it's always accessible
1713 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1714 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1715 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1716 * terminology a little and call this PL3.
f5a0a5a5
PM
1717 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1718 * with the ELx exception levels.
4b6a83fb
PM
1719 *
1720 * If access permissions for a register are more complex than can be
1721 * described with these bits, then use a laxer set of restrictions, and
1722 * do the more restrictive/complex check inside a helper function.
1723 */
1724#define PL3_R 0x80
1725#define PL3_W 0x40
1726#define PL2_R (0x20 | PL3_R)
1727#define PL2_W (0x10 | PL3_W)
1728#define PL1_R (0x08 | PL2_R)
1729#define PL1_W (0x04 | PL2_W)
1730#define PL0_R (0x02 | PL1_R)
1731#define PL0_W (0x01 | PL1_W)
1732
1733#define PL3_RW (PL3_R | PL3_W)
1734#define PL2_RW (PL2_R | PL2_W)
1735#define PL1_RW (PL1_R | PL1_W)
1736#define PL0_RW (PL0_R | PL0_W)
1737
75502672
PM
1738/* Return the highest implemented Exception Level */
1739static inline int arm_highest_el(CPUARMState *env)
1740{
1741 if (arm_feature(env, ARM_FEATURE_EL3)) {
1742 return 3;
1743 }
1744 if (arm_feature(env, ARM_FEATURE_EL2)) {
1745 return 2;
1746 }
1747 return 1;
1748}
1749
15b3f556
PM
1750/* Return true if a v7M CPU is in Handler mode */
1751static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1752{
1753 return env->v7m.exception != 0;
1754}
1755
dcbff19b
GB
1756/* Return the current Exception Level (as per ARMv8; note that this differs
1757 * from the ARMv7 Privilege Level).
1758 */
1759static inline int arm_current_el(CPUARMState *env)
4b6a83fb 1760{
6d54ed3c 1761 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
1762 return arm_v7m_is_handler_mode(env) ||
1763 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
1764 }
1765
592125f8 1766 if (is_a64(env)) {
f5a0a5a5
PM
1767 return extract32(env->pstate, 2, 2);
1768 }
1769
592125f8
FA
1770 switch (env->uncached_cpsr & 0x1f) {
1771 case ARM_CPU_MODE_USR:
4b6a83fb 1772 return 0;
592125f8
FA
1773 case ARM_CPU_MODE_HYP:
1774 return 2;
1775 case ARM_CPU_MODE_MON:
1776 return 3;
1777 default:
1778 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1779 /* If EL3 is 32-bit then all secure privileged modes run in
1780 * EL3
1781 */
1782 return 3;
1783 }
1784
1785 return 1;
4b6a83fb 1786 }
4b6a83fb
PM
1787}
1788
1789typedef struct ARMCPRegInfo ARMCPRegInfo;
1790
f59df3f2
PM
1791typedef enum CPAccessResult {
1792 /* Access is permitted */
1793 CP_ACCESS_OK = 0,
1794 /* Access fails due to a configurable trap or enable which would
1795 * result in a categorized exception syndrome giving information about
1796 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
1797 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1798 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
1799 */
1800 CP_ACCESS_TRAP = 1,
1801 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1802 * Note that this is not a catch-all case -- the set of cases which may
1803 * result in this failure is specifically defined by the architecture.
1804 */
1805 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
1806 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1807 CP_ACCESS_TRAP_EL2 = 3,
1808 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
1809 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1810 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1811 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
1812 /* Access fails and results in an exception syndrome for an FP access,
1813 * trapped directly to EL2 or EL3
1814 */
1815 CP_ACCESS_TRAP_FP_EL2 = 7,
1816 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
1817} CPAccessResult;
1818
c4241c7d
PM
1819/* Access functions for coprocessor registers. These cannot fail and
1820 * may not raise exceptions.
1821 */
1822typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1823typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1824 uint64_t value);
f59df3f2 1825/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
1826typedef CPAccessResult CPAccessFn(CPUARMState *env,
1827 const ARMCPRegInfo *opaque,
1828 bool isread);
4b6a83fb
PM
1829/* Hook function for register reset */
1830typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1831
1832#define CP_ANY 0xff
1833
1834/* Definition of an ARM coprocessor register */
1835struct ARMCPRegInfo {
1836 /* Name of register (useful mainly for debugging, need not be unique) */
1837 const char *name;
1838 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1839 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1840 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1841 * will be decoded to this register. The register read and write
1842 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1843 * used by the program, so it is possible to register a wildcard and
1844 * then behave differently on read/write if necessary.
1845 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1846 * must both be zero.
f5a0a5a5
PM
1847 * For AArch64-visible registers, opc0 is also used.
1848 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1849 * way to distinguish (for KVM's benefit) guest-visible system registers
1850 * from demuxed ones provided to preserve the "no side effects on
1851 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1852 * visible (to match KVM's encoding); cp==0 will be converted to
1853 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
1854 */
1855 uint8_t cp;
1856 uint8_t crn;
1857 uint8_t crm;
f5a0a5a5 1858 uint8_t opc0;
4b6a83fb
PM
1859 uint8_t opc1;
1860 uint8_t opc2;
f5a0a5a5
PM
1861 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1862 int state;
4b6a83fb
PM
1863 /* Register type: ARM_CP_* bits/values */
1864 int type;
1865 /* Access rights: PL*_[RW] */
1866 int access;
c3e30260
FA
1867 /* Security state: ARM_CP_SECSTATE_* bits/values */
1868 int secure;
4b6a83fb
PM
1869 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1870 * this register was defined: can be used to hand data through to the
1871 * register read/write functions, since they are passed the ARMCPRegInfo*.
1872 */
1873 void *opaque;
1874 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1875 * fieldoffset is non-zero, the reset value of the register.
1876 */
1877 uint64_t resetvalue;
c3e30260
FA
1878 /* Offset of the field in CPUARMState for this register.
1879 *
1880 * This is not needed if either:
4b6a83fb
PM
1881 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1882 * 2. both readfn and writefn are specified
1883 */
1884 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
1885
1886 /* Offsets of the secure and non-secure fields in CPUARMState for the
1887 * register if it is banked. These fields are only used during the static
1888 * registration of a register. During hashing the bank associated
1889 * with a given security state is copied to fieldoffset which is used from
1890 * there on out.
1891 *
1892 * It is expected that register definitions use either fieldoffset or
1893 * bank_fieldoffsets in the definition but not both. It is also expected
1894 * that both bank offsets are set when defining a banked register. This
1895 * use indicates that a register is banked.
1896 */
1897 ptrdiff_t bank_fieldoffsets[2];
1898
f59df3f2
PM
1899 /* Function for making any access checks for this register in addition to
1900 * those specified by the 'access' permissions bits. If NULL, no extra
1901 * checks required. The access check is performed at runtime, not at
1902 * translate time.
1903 */
1904 CPAccessFn *accessfn;
4b6a83fb
PM
1905 /* Function for handling reads of this register. If NULL, then reads
1906 * will be done by loading from the offset into CPUARMState specified
1907 * by fieldoffset.
1908 */
1909 CPReadFn *readfn;
1910 /* Function for handling writes of this register. If NULL, then writes
1911 * will be done by writing to the offset into CPUARMState specified
1912 * by fieldoffset.
1913 */
1914 CPWriteFn *writefn;
7023ec7e
PM
1915 /* Function for doing a "raw" read; used when we need to copy
1916 * coprocessor state to the kernel for KVM or out for
1917 * migration. This only needs to be provided if there is also a
c4241c7d 1918 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
1919 */
1920 CPReadFn *raw_readfn;
1921 /* Function for doing a "raw" write; used when we need to copy KVM
1922 * kernel coprocessor state into userspace, or for inbound
1923 * migration. This only needs to be provided if there is also a
c4241c7d
PM
1924 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1925 * or similar behaviour.
7023ec7e
PM
1926 */
1927 CPWriteFn *raw_writefn;
4b6a83fb
PM
1928 /* Function for resetting the register. If NULL, then reset will be done
1929 * by writing resetvalue to the field specified in fieldoffset. If
1930 * fieldoffset is 0 then no reset will be done.
1931 */
1932 CPResetFn *resetfn;
1933};
1934
1935/* Macros which are lvalues for the field in CPUARMState for the
1936 * ARMCPRegInfo *ri.
1937 */
1938#define CPREG_FIELD32(env, ri) \
1939 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1940#define CPREG_FIELD64(env, ri) \
1941 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1942
1943#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1944
1945void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1946 const ARMCPRegInfo *regs, void *opaque);
1947void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1948 const ARMCPRegInfo *regs, void *opaque);
1949static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1950{
1951 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1952}
1953static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1954{
1955 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1956}
60322b39 1957const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
1958
1959/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
1960void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1961 uint64_t value);
4b6a83fb 1962/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 1963uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 1964
f5a0a5a5
PM
1965/* CPResetFn that does nothing, for use if no reset is required even
1966 * if fieldoffset is non zero.
1967 */
1968void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1969
67ed771d
PM
1970/* Return true if this reginfo struct's field in the cpu state struct
1971 * is 64 bits wide.
1972 */
1973static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1974{
1975 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1976}
1977
dcbff19b 1978static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
1979 const ARMCPRegInfo *ri, int isread)
1980{
dcbff19b 1981 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
1982}
1983
49a66191
PM
1984/* Raw read of a coprocessor register (as needed for migration, etc) */
1985uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1986
721fae12
PM
1987/**
1988 * write_list_to_cpustate
1989 * @cpu: ARMCPU
1990 *
1991 * For each register listed in the ARMCPU cpreg_indexes list, write
1992 * its value from the cpreg_values list into the ARMCPUState structure.
1993 * This updates TCG's working data structures from KVM data or
1994 * from incoming migration state.
1995 *
1996 * Returns: true if all register values were updated correctly,
1997 * false if some register was unknown or could not be written.
1998 * Note that we do not stop early on failure -- we will attempt
1999 * writing all registers in the list.
2000 */
2001bool write_list_to_cpustate(ARMCPU *cpu);
2002
2003/**
2004 * write_cpustate_to_list:
2005 * @cpu: ARMCPU
2006 *
2007 * For each register listed in the ARMCPU cpreg_indexes list, write
2008 * its value from the ARMCPUState structure into the cpreg_values list.
2009 * This is used to copy info from TCG's working data structures into
2010 * KVM or for outbound migration.
2011 *
2012 * Returns: true if all register values were read correctly,
2013 * false if some register was unknown or could not be read.
2014 * Note that we do not stop early on failure -- we will attempt
2015 * reading all registers in the list.
2016 */
2017bool write_cpustate_to_list(ARMCPU *cpu);
2018
9ee6e8bb
PB
2019#define ARM_CPUID_TI915T 0x54029152
2020#define ARM_CPUID_TI925T 0x54029252
40f137e1 2021
b5ff1b31 2022#if defined(CONFIG_USER_ONLY)
2c0262af 2023#define TARGET_PAGE_BITS 12
b5ff1b31 2024#else
e97da98f
PM
2025/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2026 * have to support 1K tiny pages.
2027 */
2028#define TARGET_PAGE_BITS_VARY
2029#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2030#endif
9467d44c 2031
3926cc84
AG
2032#if defined(TARGET_AARCH64)
2033# define TARGET_PHYS_ADDR_SPACE_BITS 48
2034# define TARGET_VIRT_ADDR_SPACE_BITS 64
2035#else
2036# define TARGET_PHYS_ADDR_SPACE_BITS 40
2037# define TARGET_VIRT_ADDR_SPACE_BITS 32
2038#endif
52705890 2039
012a906b
GB
2040static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2041 unsigned int target_el)
043b7f8d
EI
2042{
2043 CPUARMState *env = cs->env_ptr;
dcbff19b 2044 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2045 bool secure = arm_is_secure(env);
57e3a0c7
GB
2046 bool pstate_unmasked;
2047 int8_t unmasked = 0;
2048
2049 /* Don't take exceptions if they target a lower EL.
2050 * This check should catch any exceptions that would not be taken but left
2051 * pending.
2052 */
dfafd090
EI
2053 if (cur_el > target_el) {
2054 return false;
2055 }
043b7f8d
EI
2056
2057 switch (excp_idx) {
2058 case EXCP_FIQ:
57e3a0c7
GB
2059 pstate_unmasked = !(env->daif & PSTATE_F);
2060 break;
2061
043b7f8d 2062 case EXCP_IRQ:
57e3a0c7
GB
2063 pstate_unmasked = !(env->daif & PSTATE_I);
2064 break;
2065
136e67e9 2066 case EXCP_VFIQ:
9fae24f5 2067 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
136e67e9
EI
2068 /* VFIQs are only taken when hypervized and non-secure. */
2069 return false;
2070 }
2071 return !(env->daif & PSTATE_F);
2072 case EXCP_VIRQ:
9fae24f5 2073 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
136e67e9
EI
2074 /* VIRQs are only taken when hypervized and non-secure. */
2075 return false;
2076 }
b5c633c5 2077 return !(env->daif & PSTATE_I);
043b7f8d
EI
2078 default:
2079 g_assert_not_reached();
2080 }
57e3a0c7
GB
2081
2082 /* Use the target EL, current execution state and SCR/HCR settings to
2083 * determine whether the corresponding CPSR bit is used to mask the
2084 * interrupt.
2085 */
2086 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2087 /* Exceptions targeting a higher EL may not be maskable */
2088 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2089 /* 64-bit masking rules are simple: exceptions to EL3
2090 * can't be masked, and exceptions to EL2 can only be
2091 * masked from Secure state. The HCR and SCR settings
2092 * don't affect the masking logic, only the interrupt routing.
2093 */
2094 if (target_el == 3 || !secure) {
2095 unmasked = 1;
2096 }
2097 } else {
2098 /* The old 32-bit-only environment has a more complicated
2099 * masking setup. HCR and SCR bits not only affect interrupt
2100 * routing but also change the behaviour of masking.
2101 */
2102 bool hcr, scr;
2103
2104 switch (excp_idx) {
2105 case EXCP_FIQ:
2106 /* If FIQs are routed to EL3 or EL2 then there are cases where
2107 * we override the CPSR.F in determining if the exception is
2108 * masked or not. If neither of these are set then we fall back
2109 * to the CPSR.F setting otherwise we further assess the state
2110 * below.
2111 */
2112 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2113 scr = (env->cp15.scr_el3 & SCR_FIQ);
2114
2115 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2116 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2117 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2118 * when non-secure but only when FIQs are only routed to EL3.
2119 */
2120 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2121 break;
2122 case EXCP_IRQ:
2123 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2124 * we may override the CPSR.I masking when in non-secure state.
2125 * The SCR.IRQ setting has already been taken into consideration
2126 * when setting the target EL, so it does not have a further
2127 * affect here.
2128 */
2129 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2130 scr = false;
2131 break;
2132 default:
2133 g_assert_not_reached();
2134 }
2135
2136 if ((scr || hcr) && !secure) {
2137 unmasked = 1;
2138 }
57e3a0c7
GB
2139 }
2140 }
2141
2142 /* The PSTATE bits only mask the interrupt if we have not overriden the
2143 * ability above.
2144 */
2145 return unmasked || pstate_unmasked;
043b7f8d
EI
2146}
2147
701e3c78 2148#define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
ad37ad5b 2149
ba1ba5cc
IM
2150#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2151#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2152
9467d44c 2153#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2154#define cpu_list arm_cpu_list
9467d44c 2155
c1e37810
PM
2156/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2157 *
2158 * If EL3 is 64-bit:
2159 * + NonSecure EL1 & 0 stage 1
2160 * + NonSecure EL1 & 0 stage 2
2161 * + NonSecure EL2
2162 * + Secure EL1 & EL0
2163 * + Secure EL3
2164 * If EL3 is 32-bit:
2165 * + NonSecure PL1 & 0 stage 1
2166 * + NonSecure PL1 & 0 stage 2
2167 * + NonSecure PL2
2168 * + Secure PL0 & PL1
2169 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2170 *
2171 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2172 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2173 * may differ in access permissions even if the VA->PA map is the same
2174 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2175 * translation, which means that we have one mmu_idx that deals with two
2176 * concatenated translation regimes [this sort of combined s1+2 TLB is
2177 * architecturally permitted]
2178 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2179 * handling via the TLB. The only way to do a stage 1 translation without
2180 * the immediate stage 2 translation is via the ATS or AT system insns,
2181 * which can be slow-pathed and always do a page table walk.
2182 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2183 * translation regimes, because they map reasonably well to each other
2184 * and they can't both be active at the same time.
2185 * This gives us the following list of mmu_idx values:
2186 *
2187 * NS EL0 (aka NS PL0) stage 1+2
2188 * NS EL1 (aka NS PL1) stage 1+2
2189 * NS EL2 (aka NS PL2)
2190 * S EL3 (aka S PL1)
2191 * S EL0 (aka S PL0)
2192 * S EL1 (not used if EL3 is 32 bit)
2193 * NS EL0+1 stage 2
2194 *
2195 * (The last of these is an mmu_idx because we want to be able to use the TLB
2196 * for the accesses done as part of a stage 1 page table walk, rather than
2197 * having to walk the stage 2 page table over and over.)
2198 *
3bef7012
PM
2199 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2200 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2201 * NS EL2 if we ever model a Cortex-R52).
2202 *
2203 * M profile CPUs are rather different as they do not have a true MMU.
2204 * They have the following different MMU indexes:
2205 * User
2206 * Privileged
2207 * Execution priority negative (this is like privileged, but the
2208 * MPU HFNMIENA bit means that it may have different access permission
2209 * check results to normal privileged code, so can't share a TLB).
66787c78
PM
2210 * If the CPU supports the v8M Security Extension then there are also:
2211 * Secure User
2212 * Secure Privileged
2213 * Secure, execution priority negative
3bef7012 2214 *
8bd5c820
PM
2215 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2216 * are not quite the same -- different CPU types (most notably M profile
2217 * vs A/R profile) would like to use MMU indexes with different semantics,
2218 * but since we don't ever need to use all of those in a single CPU we
2219 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2220 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2221 * the same for any particular CPU.
2222 * Variables of type ARMMUIdx are always full values, and the core
2223 * index values are in variables of type 'int'.
2224 *
c1e37810
PM
2225 * Our enumeration includes at the end some entries which are not "true"
2226 * mmu_idx values in that they don't have corresponding TLBs and are only
2227 * valid for doing slow path page table walks.
2228 *
2229 * The constant names here are patterned after the general style of the names
2230 * of the AT/ATS operations.
2231 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2232 */
e7b921c2 2233#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2234#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2235#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820
PM
2236
2237#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2238#define ARM_MMU_IDX_COREIDX_MASK 0x7
2239
c1e37810 2240typedef enum ARMMMUIdx {
8bd5c820
PM
2241 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2242 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2243 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2244 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2245 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2246 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2247 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2248 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2249 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
3bef7012 2250 ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
66787c78
PM
2251 ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M,
2252 ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M,
2253 ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M,
c1e37810
PM
2254 /* Indexes below here don't have TLBs and are used only for AT system
2255 * instructions or for the first stage of an S12 page table walk.
2256 */
8bd5c820
PM
2257 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2258 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2259} ARMMMUIdx;
2260
8bd5c820
PM
2261/* Bit macros for the core-mmu-index values for each index,
2262 * for use when calling tlb_flush_by_mmuidx() and friends.
2263 */
2264typedef enum ARMMMUIdxBit {
2265 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2266 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2267 ARMMMUIdxBit_S1E2 = 1 << 2,
2268 ARMMMUIdxBit_S1E3 = 1 << 3,
2269 ARMMMUIdxBit_S1SE0 = 1 << 4,
2270 ARMMMUIdxBit_S1SE1 = 1 << 5,
2271 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2272 ARMMMUIdxBit_MUser = 1 << 0,
2273 ARMMMUIdxBit_MPriv = 1 << 1,
3bef7012 2274 ARMMMUIdxBit_MNegPri = 1 << 2,
66787c78
PM
2275 ARMMMUIdxBit_MSUser = 1 << 3,
2276 ARMMMUIdxBit_MSPriv = 1 << 4,
2277 ARMMMUIdxBit_MSNegPri = 1 << 5,
8bd5c820
PM
2278} ARMMMUIdxBit;
2279
f79fbf39 2280#define MMU_USER_IDX 0
c1e37810 2281
8bd5c820
PM
2282static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2283{
2284 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2285}
2286
2287static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2288{
e7b921c2
PM
2289 if (arm_feature(env, ARM_FEATURE_M)) {
2290 return mmu_idx | ARM_MMU_IDX_M;
2291 } else {
2292 return mmu_idx | ARM_MMU_IDX_A;
2293 }
8bd5c820
PM
2294}
2295
c1e37810
PM
2296/* Return the exception level we're running at if this is our mmu_idx */
2297static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2298{
8bd5c820
PM
2299 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2300 case ARM_MMU_IDX_A:
2301 return mmu_idx & 3;
e7b921c2 2302 case ARM_MMU_IDX_M:
66787c78
PM
2303 return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser)
2304 ? 0 : 1;
8bd5c820
PM
2305 default:
2306 g_assert_not_reached();
2307 }
c1e37810
PM
2308}
2309
2310/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 2311static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
2312{
2313 int el = arm_current_el(env);
2314
e7b921c2
PM
2315 if (arm_feature(env, ARM_FEATURE_M)) {
2316 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2317
5d479199 2318 if (armv7m_nvic_neg_prio_requested(env->nvic, env->v7m.secure)) {
66787c78
PM
2319 mmu_idx = ARMMMUIdx_MNegPri;
2320 }
2321
2322 if (env->v7m.secure) {
2323 mmu_idx += ARMMMUIdx_MSUser;
3bef7012
PM
2324 }
2325
e7b921c2
PM
2326 return arm_to_core_mmu_idx(mmu_idx);
2327 }
2328
c1e37810 2329 if (el < 2 && arm_is_secure_below_el3(env)) {
8bd5c820 2330 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
c1e37810
PM
2331 }
2332 return el;
6ebbf390
JM
2333}
2334
9e273ef2
PM
2335/* Indexes used when registering address spaces with cpu_address_space_init */
2336typedef enum ARMASIdx {
2337 ARMASIdx_NS = 0,
2338 ARMASIdx_S = 1,
2339} ARMASIdx;
2340
533e93f1 2341/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2342static inline int arm_debug_target_el(CPUARMState *env)
2343{
81669b8b
SF
2344 bool secure = arm_is_secure(env);
2345 bool route_to_el2 = false;
2346
2347 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2348 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2349 env->cp15.mdcr_el2 & (1 << 8);
2350 }
2351
2352 if (route_to_el2) {
2353 return 2;
2354 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2355 !arm_el_is_aa64(env, 3) && secure) {
2356 return 3;
2357 } else {
2358 return 1;
2359 }
3a298203
PM
2360}
2361
2362static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2363{
533e93f1
PM
2364 if (arm_is_secure(env)) {
2365 /* MDCR_EL3.SDD disables debug events from Secure state */
2366 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2367 || arm_current_el(env) == 3) {
2368 return false;
2369 }
2370 }
2371
dcbff19b 2372 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
2373 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2374 || (env->daif & PSTATE_D)) {
2375 return false;
2376 }
2377 }
2378 return true;
2379}
2380
2381static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2382{
533e93f1
PM
2383 int el = arm_current_el(env);
2384
2385 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2386 return aa64_generate_debug_exceptions(env);
2387 }
533e93f1
PM
2388
2389 if (arm_is_secure(env)) {
2390 int spd;
2391
2392 if (el == 0 && (env->cp15.sder & 1)) {
2393 /* SDER.SUIDEN means debug exceptions from Secure EL0
2394 * are always enabled. Otherwise they are controlled by
2395 * SDCR.SPD like those from other Secure ELs.
2396 */
2397 return true;
2398 }
2399
2400 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2401 switch (spd) {
2402 case 1:
2403 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2404 case 0:
2405 /* For 0b00 we return true if external secure invasive debug
2406 * is enabled. On real hardware this is controlled by external
2407 * signals to the core. QEMU always permits debug, and behaves
2408 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2409 */
2410 return true;
2411 case 2:
2412 return false;
2413 case 3:
2414 return true;
2415 }
2416 }
2417
2418 return el != 2;
3a298203
PM
2419}
2420
2421/* Return true if debugging exceptions are currently enabled.
2422 * This corresponds to what in ARM ARM pseudocode would be
2423 * if UsingAArch32() then
2424 * return AArch32.GenerateDebugExceptions()
2425 * else
2426 * return AArch64.GenerateDebugExceptions()
2427 * We choose to push the if() down into this function for clarity,
2428 * since the pseudocode has it at all callsites except for the one in
2429 * CheckSoftwareStep(), where it is elided because both branches would
2430 * always return the same value.
2431 *
2432 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2433 * don't yet implement those exception levels or their associated trap bits.
2434 */
2435static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2436{
2437 if (env->aarch64) {
2438 return aa64_generate_debug_exceptions(env);
2439 } else {
2440 return aa32_generate_debug_exceptions(env);
2441 }
2442}
2443
2444/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2445 * implicitly means this always returns false in pre-v8 CPUs.)
2446 */
2447static inline bool arm_singlestep_active(CPUARMState *env)
2448{
2449 return extract32(env->cp15.mdscr_el1, 0, 1)
2450 && arm_el_is_aa64(env, arm_debug_target_el(env))
2451 && arm_generate_debug_exceptions(env);
2452}
2453
f9fd40eb
PB
2454static inline bool arm_sctlr_b(CPUARMState *env)
2455{
2456 return
2457 /* We need not implement SCTLR.ITD in user-mode emulation, so
2458 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2459 * This lets people run BE32 binaries with "-cpu any".
2460 */
2461#ifndef CONFIG_USER_ONLY
2462 !arm_feature(env, ARM_FEATURE_V7) &&
2463#endif
2464 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2465}
2466
ed50ff78
PC
2467/* Return true if the processor is in big-endian mode. */
2468static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2469{
2470 int cur_el;
2471
2472 /* In 32bit endianness is determined by looking at CPSR's E bit */
2473 if (!is_a64(env)) {
b2e62d9a
PC
2474 return
2475#ifdef CONFIG_USER_ONLY
2476 /* In system mode, BE32 is modelled in line with the
2477 * architecture (as word-invariant big-endianness), where loads
2478 * and stores are done little endian but from addresses which
2479 * are adjusted by XORing with the appropriate constant. So the
2480 * endianness to use for the raw data access is not affected by
2481 * SCTLR.B.
2482 * In user mode, however, we model BE32 as byte-invariant
2483 * big-endianness (because user-only code cannot tell the
2484 * difference), and so we need to use a data access endianness
2485 * that depends on SCTLR.B.
2486 */
2487 arm_sctlr_b(env) ||
2488#endif
2489 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2490 }
2491
2492 cur_el = arm_current_el(env);
2493
2494 if (cur_el == 0) {
2495 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2496 }
2497
2498 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2499}
2500
022c62cb 2501#include "exec/cpu-all.h"
622ed360 2502
3926cc84
AG
2503/* Bit usage in the TB flags field: bit 31 indicates whether we are
2504 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2505 * We put flags which are shared between 32 and 64 bit mode at the top
2506 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
2507 */
2508#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2509#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2510#define ARM_TBFLAG_MMUIDX_SHIFT 28
2511#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2512#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2513#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2514#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2515#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2516/* Target EL if we take a floating-point-disabled exception */
2517#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2518#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
2519
2520/* Bit usage when in AArch32 state: */
a1705768
PM
2521#define ARM_TBFLAG_THUMB_SHIFT 0
2522#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2523#define ARM_TBFLAG_VECLEN_SHIFT 1
2524#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2525#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2526#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2527#define ARM_TBFLAG_VFPEN_SHIFT 7
2528#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2529#define ARM_TBFLAG_CONDEXEC_SHIFT 8
2530#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2531#define ARM_TBFLAG_SCTLR_B_SHIFT 16
2532#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2533/* We store the bottom two bits of the CPAR as TB flags and handle
2534 * checks on the other bits at runtime
2535 */
647f767b 2536#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 2537#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2538/* Indicates whether cp register reads and writes by guest code should access
2539 * the secure or nonsecure bank of banked registers; note that this is not
2540 * the same thing as the current security state of the processor!
2541 */
647f767b 2542#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 2543#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2544#define ARM_TBFLAG_BE_DATA_SHIFT 20
2545#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2546/* For M profile only, Handler (ie not Thread) mode */
2547#define ARM_TBFLAG_HANDLER_SHIFT 21
2548#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
3926cc84 2549
86fb3fa4
TH
2550/* Bit usage when in AArch64 state */
2551#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2552#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2553#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2554#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
a1705768
PM
2555
2556/* some convenience accessor macros */
3926cc84
AG
2557#define ARM_TBFLAG_AARCH64_STATE(F) \
2558 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2559#define ARM_TBFLAG_MMUIDX(F) \
2560 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2561#define ARM_TBFLAG_SS_ACTIVE(F) \
2562 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2563#define ARM_TBFLAG_PSTATE_SS(F) \
2564 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2565#define ARM_TBFLAG_FPEXC_EL(F) \
2566 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
2567#define ARM_TBFLAG_THUMB(F) \
2568 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2569#define ARM_TBFLAG_VECLEN(F) \
2570 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2571#define ARM_TBFLAG_VECSTRIDE(F) \
2572 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2573#define ARM_TBFLAG_VFPEN(F) \
2574 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2575#define ARM_TBFLAG_CONDEXEC(F) \
2576 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2577#define ARM_TBFLAG_SCTLR_B(F) \
2578 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2579#define ARM_TBFLAG_XSCALE_CPAR(F) \
2580 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2581#define ARM_TBFLAG_NS(F) \
2582 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2583#define ARM_TBFLAG_BE_DATA(F) \
2584 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2585#define ARM_TBFLAG_HANDLER(F) \
2586 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
86fb3fa4
TH
2587#define ARM_TBFLAG_TBI0(F) \
2588 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2589#define ARM_TBFLAG_TBI1(F) \
2590 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
a1705768 2591
f9fd40eb
PB
2592static inline bool bswap_code(bool sctlr_b)
2593{
2594#ifdef CONFIG_USER_ONLY
2595 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2596 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2597 * would also end up as a mixed-endian mode with BE code, LE data.
2598 */
2599 return
2600#ifdef TARGET_WORDS_BIGENDIAN
2601 1 ^
2602#endif
2603 sctlr_b;
2604#else
e334bd31
PB
2605 /* All code access in ARM is little endian, and there are no loaders
2606 * doing swaps that need to be reversed
f9fd40eb
PB
2607 */
2608 return 0;
2609#endif
2610}
2611
9dbbc748
GB
2612/* Return the exception level to which FP-disabled exceptions should
2613 * be taken, or 0 if FP is enabled.
2614 */
2615static inline int fp_exception_el(CPUARMState *env)
6b917547 2616{
ed1f13d6 2617 int fpen;
9dbbc748 2618 int cur_el = arm_current_el(env);
ed1f13d6 2619
9dbbc748
GB
2620 /* CPACR and the CPTR registers don't exist before v6, so FP is
2621 * always accessible
2622 */
2623 if (!arm_feature(env, ARM_FEATURE_V6)) {
2624 return 0;
2625 }
2626
2627 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2628 * 0, 2 : trap EL0 and EL1/PL1 accesses
2629 * 1 : trap only EL0 accesses
2630 * 3 : trap no accesses
2631 */
2632 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2633 switch (fpen) {
2634 case 0:
2635 case 2:
2636 if (cur_el == 0 || cur_el == 1) {
2637 /* Trap to PL1, which might be EL1 or EL3 */
2638 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2639 return 3;
2640 }
2641 return 1;
2642 }
2643 if (cur_el == 3 && !is_a64(env)) {
2644 /* Secure PL1 running at EL3 */
2645 return 3;
2646 }
2647 break;
2648 case 1:
2649 if (cur_el == 0) {
2650 return 1;
2651 }
2652 break;
2653 case 3:
2654 break;
2655 }
2656
2657 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2658 * check because zero bits in the registers mean "don't trap".
2659 */
2660
2661 /* CPTR_EL2 : present in v7VE or v8 */
2662 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2663 && !arm_is_secure_below_el3(env)) {
2664 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2665 return 2;
2666 }
2667
2668 /* CPTR_EL3 : present in v8 */
2669 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2670 /* Trap all FP ops to EL3 */
2671 return 3;
ed1f13d6 2672 }
8c6afa6a 2673
9dbbc748
GB
2674 return 0;
2675}
2676
c3ae85fc
PB
2677#ifdef CONFIG_USER_ONLY
2678static inline bool arm_cpu_bswap_data(CPUARMState *env)
2679{
2680 return
2681#ifdef TARGET_WORDS_BIGENDIAN
2682 1 ^
2683#endif
2684 arm_cpu_data_is_big_endian(env);
2685}
2686#endif
2687
86fb3fa4
TH
2688#ifndef CONFIG_USER_ONLY
2689/**
2690 * arm_regime_tbi0:
2691 * @env: CPUARMState
2692 * @mmu_idx: MMU index indicating required translation regime
2693 *
2694 * Extracts the TBI0 value from the appropriate TCR for the current EL
2695 *
2696 * Returns: the TBI0 value.
2697 */
2698uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2699
2700/**
2701 * arm_regime_tbi1:
2702 * @env: CPUARMState
2703 * @mmu_idx: MMU index indicating required translation regime
2704 *
2705 * Extracts the TBI1 value from the appropriate TCR for the current EL
2706 *
2707 * Returns: the TBI1 value.
2708 */
2709uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2710#else
2711/* We can't handle tagged addresses properly in user-only mode */
2712static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2713{
2714 return 0;
2715}
2716
2717static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2718{
2719 return 0;
2720}
2721#endif
2722
9dbbc748 2723static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
89fee74a 2724 target_ulong *cs_base, uint32_t *flags)
9dbbc748 2725{
8bd5c820 2726 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
3926cc84
AG
2727 if (is_a64(env)) {
2728 *pc = env->pc;
c1e37810 2729 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
86fb3fa4
TH
2730 /* Get control bits for tagged addresses */
2731 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2732 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
05ed9a99 2733 } else {
3926cc84
AG
2734 *pc = env->regs[15];
2735 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2736 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2737 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2738 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb 2739 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
3f342b9e
SF
2740 if (!(access_secure_reg(env))) {
2741 *flags |= ARM_TBFLAG_NS_MASK;
2742 }
2c7ffc41
PM
2743 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2744 || arm_el_is_aa64(env, 1)) {
3926cc84
AG
2745 *flags |= ARM_TBFLAG_VFPEN_MASK;
2746 }
c0f4af17
PM
2747 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2748 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
a1705768 2749 }
3926cc84 2750
8bd5c820 2751 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
86fb3fa4 2752
3cf6a0fc
PM
2753 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2754 * states defined in the ARM ARM for software singlestep:
2755 * SS_ACTIVE PSTATE.SS State
2756 * 0 x Inactive (the TB flag for SS is always 0)
2757 * 1 0 Active-pending
2758 * 1 1 Active-not-pending
2759 */
2760 if (arm_singlestep_active(env)) {
2761 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2762 if (is_a64(env)) {
2763 if (env->pstate & PSTATE_SS) {
2764 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2765 }
2766 } else {
2767 if (env->uncached_cpsr & PSTATE_SS) {
2768 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2769 }
2770 }
2771 }
91cca2cd
PC
2772 if (arm_cpu_data_is_big_endian(env)) {
2773 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2774 }
9dbbc748 2775 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
c1e37810 2776
15b3f556 2777 if (arm_v7m_is_handler_mode(env)) {
064c379c
PM
2778 *flags |= ARM_TBFLAG_HANDLER_MASK;
2779 }
2780
3926cc84 2781 *cs_base = 0;
6b917547
AL
2782}
2783
98128601
RH
2784enum {
2785 QEMU_PSCI_CONDUIT_DISABLED = 0,
2786 QEMU_PSCI_CONDUIT_SMC = 1,
2787 QEMU_PSCI_CONDUIT_HVC = 2,
2788};
2789
017518c1
PM
2790#ifndef CONFIG_USER_ONLY
2791/* Return the address space index to use for a memory access */
2792static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2793{
2794 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2795}
5ce4ff65
PM
2796
2797/* Return the AddressSpace to use for a memory access
2798 * (which depends on whether the access is S or NS, and whether
2799 * the board gave us a separate AddressSpace for S accesses).
2800 */
2801static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2802{
2803 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2804}
017518c1
PM
2805#endif
2806
bd7d00fc
PM
2807/**
2808 * arm_register_el_change_hook:
2809 * Register a hook function which will be called back whenever this
2810 * CPU changes exception level or mode. The hook function will be
2811 * passed a pointer to the ARMCPU and the opaque data pointer passed
2812 * to this function when the hook was registered.
2813 *
2814 * Note that we currently only support registering a single hook function,
2815 * and will assert if this function is called twice.
2816 * This facility is intended for the use of the GICv3 emulation.
2817 */
2818void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2819 void *opaque);
2820
2821/**
2822 * arm_get_el_change_hook_opaque:
2823 * Return the opaque data that will be used by the el_change_hook
2824 * for this CPU.
2825 */
2826static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2827{
2828 return cpu->el_change_hook_opaque;
2829}
2830
2c0262af 2831#endif