]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: V8M should not imply V7VE
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086
RH
204/* In AArch32 mode, predicate registers do not exist at all. */
205#ifdef TARGET_AARCH64
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
209#endif
210
c39c2b90 211
2c0262af 212typedef struct CPUARMState {
b5ff1b31 213 /* Regs for current mode. */
2c0262af 214 uint32_t regs[16];
3926cc84
AG
215
216 /* 32/64 switch only happens when taking and returning from
217 * exceptions so the overlap semantics are taken care of then
218 * instead of having a complicated union.
219 */
220 /* Regs for A64 mode. */
221 uint64_t xregs[32];
222 uint64_t pc;
d356312f
PM
223 /* PSTATE isn't an architectural register for ARMv8. However, it is
224 * convenient for us to assemble the underlying state into a 32 bit format
225 * identical to the architectural format used for the SPSR. (This is also
226 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
227 * 'pstate' register are.) Of the PSTATE bits:
228 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
229 * semantics as for AArch32, as described in the comments on each field)
230 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 231 * DAIF (exception masks) are kept in env->daif
d356312f 232 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
233 */
234 uint32_t pstate;
235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236
b90372ad 237 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 238 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
239 the whole CPSR. */
240 uint32_t uncached_cpsr;
241 uint32_t spsr;
242
243 /* Banked registers. */
28c9457d 244 uint64_t banked_spsr[8];
0b7d409d
FA
245 uint32_t banked_r13[8];
246 uint32_t banked_r14[8];
3b46e624 247
b5ff1b31
FB
248 /* These hold r8-r12. */
249 uint32_t usr_regs[5];
250 uint32_t fiq_regs[5];
3b46e624 251
2c0262af
FB
252 /* cpsr flag cache for faster execution */
253 uint32_t CF; /* 0 or 1 */
254 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
255 uint32_t NF; /* N is bit 31. All other bits are undefined. */
256 uint32_t ZF; /* Z set if zero. */
99c475ab 257 uint32_t QF; /* 0 or 1 */
9ee6e8bb 258 uint32_t GE; /* cpsr[19:16] */
b26eefb6 259 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 261 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 262
1b174238 263 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 264 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 265
b5ff1b31
FB
266 /* System control coprocessor (cp15) */
267 struct {
40f137e1 268 uint32_t c0_cpuid;
b85a1fd6
FA
269 union { /* Cache size selection */
270 struct {
271 uint64_t _unused_csselr0;
272 uint64_t csselr_ns;
273 uint64_t _unused_csselr1;
274 uint64_t csselr_s;
275 };
276 uint64_t csselr_el[4];
277 };
137feaa9
FA
278 union { /* System control register. */
279 struct {
280 uint64_t _unused_sctlr;
281 uint64_t sctlr_ns;
282 uint64_t hsctlr;
283 uint64_t sctlr_s;
284 };
285 uint64_t sctlr_el[4];
286 };
7ebd5f2e 287 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 288 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 289 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 290 uint64_t sder; /* Secure debug enable register. */
77022576 291 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
292 union { /* MMU translation table base 0. */
293 struct {
294 uint64_t _unused_ttbr0_0;
295 uint64_t ttbr0_ns;
296 uint64_t _unused_ttbr0_1;
297 uint64_t ttbr0_s;
298 };
299 uint64_t ttbr0_el[4];
300 };
301 union { /* MMU translation table base 1. */
302 struct {
303 uint64_t _unused_ttbr1_0;
304 uint64_t ttbr1_ns;
305 uint64_t _unused_ttbr1_1;
306 uint64_t ttbr1_s;
307 };
308 uint64_t ttbr1_el[4];
309 };
b698e9cf 310 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
311 /* MMU translation table base control. */
312 TCR tcr_el[4];
68e9c2fe 313 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
314 uint32_t c2_data; /* MPU data cacheable bits. */
315 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
316 union { /* MMU domain access control register
317 * MPU write buffer control.
318 */
319 struct {
320 uint64_t dacr_ns;
321 uint64_t dacr_s;
322 };
323 struct {
324 uint64_t dacr32_el2;
325 };
326 };
7e09797c
PM
327 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
328 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 329 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 330 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
331 union { /* Fault status registers. */
332 struct {
333 uint64_t ifsr_ns;
334 uint64_t ifsr_s;
335 };
336 struct {
337 uint64_t ifsr32_el2;
338 };
339 };
4a7e2d73
FA
340 union {
341 struct {
342 uint64_t _unused_dfsr;
343 uint64_t dfsr_ns;
344 uint64_t hsr;
345 uint64_t dfsr_s;
346 };
347 uint64_t esr_el[4];
348 };
ce819861 349 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
350 union { /* Fault address registers. */
351 struct {
352 uint64_t _unused_far0;
353#ifdef HOST_WORDS_BIGENDIAN
354 uint32_t ifar_ns;
355 uint32_t dfar_ns;
356 uint32_t ifar_s;
357 uint32_t dfar_s;
358#else
359 uint32_t dfar_ns;
360 uint32_t ifar_ns;
361 uint32_t dfar_s;
362 uint32_t ifar_s;
363#endif
364 uint64_t _unused_far3;
365 };
366 uint64_t far_el[4];
367 };
59e05530 368 uint64_t hpfar_el2;
2a5a9abd 369 uint64_t hstr_el2;
01c097f7
FA
370 union { /* Translation result. */
371 struct {
372 uint64_t _unused_par_0;
373 uint64_t par_ns;
374 uint64_t _unused_par_1;
375 uint64_t par_s;
376 };
377 uint64_t par_el[4];
378 };
6cb0b013 379
b5ff1b31
FB
380 uint32_t c9_insn; /* Cache lockdown registers. */
381 uint32_t c9_data;
8521466b
AF
382 uint64_t c9_pmcr; /* performance monitor control register */
383 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
384 uint64_t c9_pmovsr; /* perf monitor overflow status */
385 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 386 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 387 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
388 union { /* Memory attribute redirection */
389 struct {
390#ifdef HOST_WORDS_BIGENDIAN
391 uint64_t _unused_mair_0;
392 uint32_t mair1_ns;
393 uint32_t mair0_ns;
394 uint64_t _unused_mair_1;
395 uint32_t mair1_s;
396 uint32_t mair0_s;
397#else
398 uint64_t _unused_mair_0;
399 uint32_t mair0_ns;
400 uint32_t mair1_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair0_s;
403 uint32_t mair1_s;
404#endif
405 };
406 uint64_t mair_el[4];
407 };
fb6c91ba
GB
408 union { /* vector base address register */
409 struct {
410 uint64_t _unused_vbar;
411 uint64_t vbar_ns;
412 uint64_t hvbar;
413 uint64_t vbar_s;
414 };
415 uint64_t vbar_el[4];
416 };
e89e51a1 417 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
418 struct { /* FCSE PID. */
419 uint32_t fcseidr_ns;
420 uint32_t fcseidr_s;
421 };
422 union { /* Context ID. */
423 struct {
424 uint64_t _unused_contextidr_0;
425 uint64_t contextidr_ns;
426 uint64_t _unused_contextidr_1;
427 uint64_t contextidr_s;
428 };
429 uint64_t contextidr_el[4];
430 };
431 union { /* User RW Thread register. */
432 struct {
433 uint64_t tpidrurw_ns;
434 uint64_t tpidrprw_ns;
435 uint64_t htpidr;
436 uint64_t _tpidr_el3;
437 };
438 uint64_t tpidr_el[4];
439 };
440 /* The secure banks of these registers don't map anywhere */
441 uint64_t tpidrurw_s;
442 uint64_t tpidrprw_s;
443 uint64_t tpidruro_s;
444
445 union { /* User RO Thread register. */
446 uint64_t tpidruro_ns;
447 uint64_t tpidrro_el[1];
448 };
a7adc4b7
PM
449 uint64_t c14_cntfrq; /* Counter Frequency register */
450 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 451 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 452 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 453 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 454 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
455 uint32_t c15_ticonfig; /* TI925T configuration byte. */
456 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
457 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
458 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
459 uint32_t c15_config_base_address; /* SCU base address. */
460 uint32_t c15_diagnostic; /* diagnostic register */
461 uint32_t c15_power_diagnostic;
462 uint32_t c15_power_control; /* power control */
0b45451e
PM
463 uint64_t dbgbvr[16]; /* breakpoint value registers */
464 uint64_t dbgbcr[16]; /* breakpoint control registers */
465 uint64_t dbgwvr[16]; /* watchpoint value registers */
466 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 467 uint64_t mdscr_el1;
1424ca8d 468 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 469 uint64_t mdcr_el2;
5513c3ab 470 uint64_t mdcr_el3;
7c2cb42b
AF
471 /* If the counter is enabled, this stores the last time the counter
472 * was reset. Otherwise it stores the counter value
473 */
c92c0687 474 uint64_t c15_ccnt;
8521466b 475 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 476 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 477 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 478 } cp15;
40f137e1 479
9ee6e8bb 480 struct {
fb602cb7
PM
481 /* M profile has up to 4 stack pointers:
482 * a Main Stack Pointer and a Process Stack Pointer for each
483 * of the Secure and Non-Secure states. (If the CPU doesn't support
484 * the security extension then it has only two SPs.)
485 * In QEMU we always store the currently active SP in regs[13],
486 * and the non-active SP for the current security state in
487 * v7m.other_sp. The stack pointers for the inactive security state
488 * are stored in other_ss_msp and other_ss_psp.
489 * switch_v7m_security_state() is responsible for rearranging them
490 * when we change security state.
491 */
9ee6e8bb 492 uint32_t other_sp;
fb602cb7
PM
493 uint32_t other_ss_msp;
494 uint32_t other_ss_psp;
4a16724f
PM
495 uint32_t vecbase[M_REG_NUM_BANKS];
496 uint32_t basepri[M_REG_NUM_BANKS];
497 uint32_t control[M_REG_NUM_BANKS];
498 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
499 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
500 uint32_t hfsr; /* HardFault Status */
501 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 502 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 503 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 504 uint32_t bfar; /* BusFault Address */
bed079da 505 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 506 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 507 int exception;
4a16724f
PM
508 uint32_t primask[M_REG_NUM_BANKS];
509 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 510 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 511 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 512 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 513 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
514 uint32_t msplim[M_REG_NUM_BANKS];
515 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
516 } v7m;
517
abf1172f
PM
518 /* Information associated with an exception about to be taken:
519 * code which raises an exception must set cs->exception_index and
520 * the relevant parts of this structure; the cpu_do_interrupt function
521 * will then set the guest-visible registers as part of the exception
522 * entry process.
523 */
524 struct {
525 uint32_t syndrome; /* AArch64 format syndrome register */
526 uint32_t fsr; /* AArch32 format fault status register info */
527 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 528 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
529 /* If we implement EL2 we will also need to store information
530 * about the intermediate physical address for stage 2 faults.
531 */
532 } exception;
533
202ccb6b
DG
534 /* Information associated with an SError */
535 struct {
536 uint8_t pending;
537 uint8_t has_esr;
538 uint64_t esr;
539 } serror;
540
fe1479c3
PB
541 /* Thumb-2 EE state. */
542 uint32_t teecr;
543 uint32_t teehbr;
544
b7bcbe95
FB
545 /* VFP coprocessor state. */
546 struct {
c39c2b90 547 ARMVectorReg zregs[32];
b7bcbe95 548
3c7d3086
RH
549#ifdef TARGET_AARCH64
550 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 551#define FFR_PRED_NUM 16
3c7d3086 552 ARMPredicateReg pregs[17];
516e246a
RH
553 /* Scratch space for aa64 sve predicate temporary. */
554 ARMPredicateReg preg_tmp;
3c7d3086
RH
555#endif
556
40f137e1 557 uint32_t xregs[16];
b7bcbe95
FB
558 /* We store these fpcsr fields separately for convenience. */
559 int vec_len;
560 int vec_stride;
561
516e246a 562 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 563 uint32_t scratch[8];
3b46e624 564
d81ce0ef
AB
565 /* There are a number of distinct float control structures:
566 *
567 * fp_status: is the "normal" fp status.
568 * fp_status_fp16: used for half-precision calculations
569 * standard_fp_status : the ARM "Standard FPSCR Value"
570 *
571 * Half-precision operations are governed by a separate
572 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
573 * status structure to control this.
574 *
575 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
576 * round-to-nearest and is used by any operations (generally
577 * Neon) which the architecture defines as controlled by the
578 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
579 *
580 * To avoid having to transfer exception bits around, we simply
581 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 582 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
583 * only thing which needs to read the exception flags being
584 * an explicit FPSCR read.
585 */
53cd6637 586 float_status fp_status;
d81ce0ef 587 float_status fp_status_f16;
3a492f3a 588 float_status standard_fp_status;
5be5e8ed
RH
589
590 /* ZCR_EL[1-3] */
591 uint64_t zcr_el[4];
b7bcbe95 592 } vfp;
03d05e2d
PM
593 uint64_t exclusive_addr;
594 uint64_t exclusive_val;
595 uint64_t exclusive_high;
b7bcbe95 596
18c9b560
AZ
597 /* iwMMXt coprocessor state. */
598 struct {
599 uint64_t regs[16];
600 uint64_t val;
601
602 uint32_t cregs[16];
603 } iwmmxt;
604
ce4defa0
PB
605#if defined(CONFIG_USER_ONLY)
606 /* For usermode syscall translation. */
607 int eabi;
608#endif
609
46747d15 610 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
611 struct CPUWatchpoint *cpu_watchpoint[16];
612
1f5c00cf
AB
613 /* Fields up to this point are cleared by a CPU reset */
614 struct {} end_reset_fields;
615
a316d335
FB
616 CPU_COMMON
617
1f5c00cf 618 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 619
581be094 620 /* Internal CPU feature flags. */
918f5dca 621 uint64_t features;
581be094 622
6cb0b013
PC
623 /* PMSAv7 MPU */
624 struct {
625 uint32_t *drbar;
626 uint32_t *drsr;
627 uint32_t *dracr;
4a16724f 628 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
629 } pmsav7;
630
0e1a46bb
PM
631 /* PMSAv8 MPU */
632 struct {
633 /* The PMSAv8 implementation also shares some PMSAv7 config
634 * and state:
635 * pmsav7.rnr (region number register)
636 * pmsav7_dregion (number of configured regions)
637 */
4a16724f
PM
638 uint32_t *rbar[M_REG_NUM_BANKS];
639 uint32_t *rlar[M_REG_NUM_BANKS];
640 uint32_t mair0[M_REG_NUM_BANKS];
641 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
642 } pmsav8;
643
9901c576
PM
644 /* v8M SAU */
645 struct {
646 uint32_t *rbar;
647 uint32_t *rlar;
648 uint32_t rnr;
649 uint32_t ctrl;
650 } sau;
651
983fe826 652 void *nvic;
462a8bc6 653 const struct arm_boot_info *boot_info;
d3a3e529
VK
654 /* Store GICv3CPUState to access from this struct */
655 void *gicv3state;
2c0262af
FB
656} CPUARMState;
657
bd7d00fc 658/**
08267487 659 * ARMELChangeHookFn:
bd7d00fc
PM
660 * type of a function which can be registered via arm_register_el_change_hook()
661 * to get callbacks when the CPU changes its exception level or mode.
662 */
08267487
AL
663typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
664typedef struct ARMELChangeHook ARMELChangeHook;
665struct ARMELChangeHook {
666 ARMELChangeHookFn *hook;
667 void *opaque;
668 QLIST_ENTRY(ARMELChangeHook) node;
669};
062ba099
AB
670
671/* These values map onto the return values for
672 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
673typedef enum ARMPSCIState {
d5affb0d
AJ
674 PSCI_ON = 0,
675 PSCI_OFF = 1,
062ba099
AB
676 PSCI_ON_PENDING = 2
677} ARMPSCIState;
678
74e75564
PB
679/**
680 * ARMCPU:
681 * @env: #CPUARMState
682 *
683 * An ARM CPU core.
684 */
685struct ARMCPU {
686 /*< private >*/
687 CPUState parent_obj;
688 /*< public >*/
689
690 CPUARMState env;
691
692 /* Coprocessor information */
693 GHashTable *cp_regs;
694 /* For marshalling (mostly coprocessor) register state between the
695 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
696 * we use these arrays.
697 */
698 /* List of register indexes managed via these arrays; (full KVM style
699 * 64 bit indexes, not CPRegInfo 32 bit indexes)
700 */
701 uint64_t *cpreg_indexes;
702 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
703 uint64_t *cpreg_values;
704 /* Length of the indexes, values, reset_values arrays */
705 int32_t cpreg_array_len;
706 /* These are used only for migration: incoming data arrives in
707 * these fields and is sanity checked in post_load before copying
708 * to the working data structures above.
709 */
710 uint64_t *cpreg_vmstate_indexes;
711 uint64_t *cpreg_vmstate_values;
712 int32_t cpreg_vmstate_array_len;
713
200bf5b7
AB
714 DynamicGDBXMLInfo dyn_xml;
715
74e75564
PB
716 /* Timers used by the generic (architected) timer */
717 QEMUTimer *gt_timer[NUM_GTIMERS];
718 /* GPIO outputs for generic timer */
719 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
720 /* GPIO output for GICv3 maintenance interrupt signal */
721 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
722 /* GPIO output for the PMU interrupt */
723 qemu_irq pmu_interrupt;
74e75564
PB
724
725 /* MemoryRegion to use for secure physical accesses */
726 MemoryRegion *secure_memory;
727
181962fd
PM
728 /* For v8M, pointer to the IDAU interface provided by board/SoC */
729 Object *idau;
730
74e75564
PB
731 /* 'compatible' string for this CPU for Linux device trees */
732 const char *dtb_compatible;
733
734 /* PSCI version for this CPU
735 * Bits[31:16] = Major Version
736 * Bits[15:0] = Minor Version
737 */
738 uint32_t psci_version;
739
740 /* Should CPU start in PSCI powered-off state? */
741 bool start_powered_off;
062ba099
AB
742
743 /* Current power state, access guarded by BQL */
744 ARMPSCIState power_state;
745
c25bd18a
PM
746 /* CPU has virtualization extension */
747 bool has_el2;
74e75564
PB
748 /* CPU has security extension */
749 bool has_el3;
5c0a3819
SZ
750 /* CPU has PMU (Performance Monitor Unit) */
751 bool has_pmu;
74e75564
PB
752
753 /* CPU has memory protection unit */
754 bool has_mpu;
755 /* PMSAv7 MPU number of supported regions */
756 uint32_t pmsav7_dregion;
9901c576
PM
757 /* v8M SAU number of supported regions */
758 uint32_t sau_sregion;
74e75564
PB
759
760 /* PSCI conduit used to invoke PSCI methods
761 * 0 - disabled, 1 - smc, 2 - hvc
762 */
763 uint32_t psci_conduit;
764
38e2a77c
PM
765 /* For v8M, initial value of the Secure VTOR */
766 uint32_t init_svtor;
767
74e75564
PB
768 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
769 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
770 */
771 uint32_t kvm_target;
772
773 /* KVM init features for this CPU */
774 uint32_t kvm_init_features[7];
775
776 /* Uniprocessor system with MP extensions */
777 bool mp_is_up;
778
c4487d76
PM
779 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
780 * and the probe failed (so we need to report the error in realize)
781 */
782 bool host_cpu_probe_failed;
783
f9a69711
AF
784 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
785 * register.
786 */
787 int32_t core_count;
788
74e75564
PB
789 /* The instance init functions for implementation-specific subclasses
790 * set these fields to specify the implementation-dependent values of
791 * various constant registers and reset values of non-constant
792 * registers.
793 * Some of these might become QOM properties eventually.
794 * Field names match the official register names as defined in the
795 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
796 * is used for reset values of non-constant registers; no reset_
797 * prefix means a constant register.
47576b94
RH
798 * Some of these registers are split out into a substructure that
799 * is shared with the translators to control the ISA.
74e75564 800 */
47576b94
RH
801 struct ARMISARegisters {
802 uint32_t id_isar0;
803 uint32_t id_isar1;
804 uint32_t id_isar2;
805 uint32_t id_isar3;
806 uint32_t id_isar4;
807 uint32_t id_isar5;
808 uint32_t id_isar6;
809 uint32_t mvfr0;
810 uint32_t mvfr1;
811 uint32_t mvfr2;
812 uint64_t id_aa64isar0;
813 uint64_t id_aa64isar1;
814 uint64_t id_aa64pfr0;
815 uint64_t id_aa64pfr1;
816 } isar;
74e75564
PB
817 uint32_t midr;
818 uint32_t revidr;
819 uint32_t reset_fpsid;
74e75564
PB
820 uint32_t ctr;
821 uint32_t reset_sctlr;
822 uint32_t id_pfr0;
823 uint32_t id_pfr1;
824 uint32_t id_dfr0;
825 uint32_t pmceid0;
826 uint32_t pmceid1;
827 uint32_t id_afr0;
828 uint32_t id_mmfr0;
829 uint32_t id_mmfr1;
830 uint32_t id_mmfr2;
831 uint32_t id_mmfr3;
832 uint32_t id_mmfr4;
74e75564
PB
833 uint64_t id_aa64dfr0;
834 uint64_t id_aa64dfr1;
835 uint64_t id_aa64afr0;
836 uint64_t id_aa64afr1;
74e75564
PB
837 uint64_t id_aa64mmfr0;
838 uint64_t id_aa64mmfr1;
839 uint32_t dbgdidr;
840 uint32_t clidr;
841 uint64_t mp_affinity; /* MP ID without feature bits */
842 /* The elements of this array are the CCSIDR values for each cache,
843 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
844 */
845 uint32_t ccsidr[16];
846 uint64_t reset_cbar;
847 uint32_t reset_auxcr;
848 bool reset_hivecs;
849 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
850 uint32_t dcz_blocksize;
851 uint64_t rvbar;
bd7d00fc 852
e45868a3
PM
853 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
854 int gic_num_lrs; /* number of list registers */
855 int gic_vpribits; /* number of virtual priority bits */
856 int gic_vprebits; /* number of virtual preemption bits */
857
3a062d57
JB
858 /* Whether the cfgend input is high (i.e. this CPU should reset into
859 * big-endian mode). This setting isn't used directly: instead it modifies
860 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
861 * architecture version.
862 */
863 bool cfgend;
864
b5c53d1b 865 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 866 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
867
868 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
869
870 /* Used to synchronize KVM and QEMU in-kernel device levels */
871 uint8_t device_irq_level;
adf92eab
RH
872
873 /* Used to set the maximum vector length the cpu will support. */
874 uint32_t sve_max_vq;
74e75564
PB
875};
876
877static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
878{
879 return container_of(env, ARMCPU, env);
880}
881
46de5913
IM
882uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
883
74e75564
PB
884#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
885
886#define ENV_OFFSET offsetof(ARMCPU, env)
887
888#ifndef CONFIG_USER_ONLY
889extern const struct VMStateDescription vmstate_arm_cpu;
890#endif
891
892void arm_cpu_do_interrupt(CPUState *cpu);
893void arm_v7m_cpu_do_interrupt(CPUState *cpu);
894bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
895
896void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
897 int flags);
898
899hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
900 MemTxAttrs *attrs);
901
902int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
903int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
904
200bf5b7
AB
905/* Dynamically generates for gdb stub an XML description of the sysregs from
906 * the cp_regs hashtable. Returns the registered sysregs number.
907 */
908int arm_gen_dynamic_xml(CPUState *cpu);
909
910/* Returns the dynamically generated XML for the gdb stub.
911 * Returns a pointer to the XML contents for the specified XML file or NULL
912 * if the XML name doesn't match the predefined one.
913 */
914const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
915
74e75564
PB
916int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
917 int cpuid, void *opaque);
918int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
919 int cpuid, void *opaque);
920
921#ifdef TARGET_AARCH64
922int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
923int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 924void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
925void aarch64_sve_change_el(CPUARMState *env, int old_el,
926 int new_el, bool el0_a64);
0ab5953b
RH
927#else
928static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
929static inline void aarch64_sve_change_el(CPUARMState *env, int o,
930 int n, bool a)
931{ }
74e75564 932#endif
778c3a06 933
faacc041 934target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
935void aarch64_sync_32_to_64(CPUARMState *env);
936void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 937
ced31551
RH
938int fp_exception_el(CPUARMState *env, int cur_el);
939int sve_exception_el(CPUARMState *env, int cur_el);
940uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
941
3926cc84
AG
942static inline bool is_a64(CPUARMState *env)
943{
944 return env->aarch64;
945}
946
2c0262af
FB
947/* you can call this signal handler from your SIGBUS and SIGSEGV
948 signal handlers to inform the virtual CPU of exceptions. non zero
949 is returned if the signal was handled by the virtual CPU. */
5fafdf24 950int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
951 void *puc);
952
ec7b4ce4
AF
953/**
954 * pmccntr_sync
955 * @env: CPUARMState
956 *
957 * Synchronises the counter in the PMCCNTR. This must always be called twice,
958 * once before any action that might affect the timer and again afterwards.
959 * The function is used to swap the state of the register if required.
960 * This only happens when not in user mode (!CONFIG_USER_ONLY)
961 */
962void pmccntr_sync(CPUARMState *env);
963
76e3e1bc
PM
964/* SCTLR bit meanings. Several bits have been reused in newer
965 * versions of the architecture; in that case we define constants
966 * for both old and new bit meanings. Code which tests against those
967 * bits should probably check or otherwise arrange that the CPU
968 * is the architectural version it expects.
969 */
970#define SCTLR_M (1U << 0)
971#define SCTLR_A (1U << 1)
972#define SCTLR_C (1U << 2)
973#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
974#define SCTLR_SA (1U << 3)
975#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
976#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
977#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
978#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
979#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
980#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
981#define SCTLR_ITD (1U << 7) /* v8 onward */
982#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
983#define SCTLR_SED (1U << 8) /* v8 onward */
984#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
985#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
986#define SCTLR_F (1U << 10) /* up to v6 */
987#define SCTLR_SW (1U << 10) /* v7 onward */
988#define SCTLR_Z (1U << 11)
989#define SCTLR_I (1U << 12)
990#define SCTLR_V (1U << 13)
991#define SCTLR_RR (1U << 14) /* up to v7 */
992#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
993#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
994#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
995#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
996#define SCTLR_nTWI (1U << 16) /* v8 onward */
997#define SCTLR_HA (1U << 17)
f6bda88f 998#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
999#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1000#define SCTLR_nTWE (1U << 18) /* v8 onward */
1001#define SCTLR_WXN (1U << 19)
1002#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1003#define SCTLR_UWXN (1U << 20) /* v7 onward */
1004#define SCTLR_FI (1U << 21)
1005#define SCTLR_U (1U << 22)
1006#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1007#define SCTLR_VE (1U << 24) /* up to v7 */
1008#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1009#define SCTLR_EE (1U << 25)
1010#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1011#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1012#define SCTLR_NMFI (1U << 27)
1013#define SCTLR_TRE (1U << 28)
1014#define SCTLR_AFE (1U << 29)
1015#define SCTLR_TE (1U << 30)
1016
c6f19164
GB
1017#define CPTR_TCPAC (1U << 31)
1018#define CPTR_TTA (1U << 20)
1019#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1020#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1021#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1022
187f678d
PM
1023#define MDCR_EPMAD (1U << 21)
1024#define MDCR_EDAD (1U << 20)
1025#define MDCR_SPME (1U << 17)
1026#define MDCR_SDD (1U << 16)
a8d64e73 1027#define MDCR_SPD (3U << 14)
187f678d
PM
1028#define MDCR_TDRA (1U << 11)
1029#define MDCR_TDOSA (1U << 10)
1030#define MDCR_TDA (1U << 9)
1031#define MDCR_TDE (1U << 8)
1032#define MDCR_HPME (1U << 7)
1033#define MDCR_TPM (1U << 6)
1034#define MDCR_TPMCR (1U << 5)
1035
a8d64e73
PM
1036/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1037#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1038
78dbbbe4
PM
1039#define CPSR_M (0x1fU)
1040#define CPSR_T (1U << 5)
1041#define CPSR_F (1U << 6)
1042#define CPSR_I (1U << 7)
1043#define CPSR_A (1U << 8)
1044#define CPSR_E (1U << 9)
1045#define CPSR_IT_2_7 (0xfc00U)
1046#define CPSR_GE (0xfU << 16)
4051e12c
PM
1047#define CPSR_IL (1U << 20)
1048/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1049 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1050 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1051 * where it is live state but not accessible to the AArch32 code.
1052 */
1053#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1054#define CPSR_J (1U << 24)
1055#define CPSR_IT_0_1 (3U << 25)
1056#define CPSR_Q (1U << 27)
1057#define CPSR_V (1U << 28)
1058#define CPSR_C (1U << 29)
1059#define CPSR_Z (1U << 30)
1060#define CPSR_N (1U << 31)
9ee6e8bb 1061#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1062#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1063
1064#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1065#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1066 | CPSR_NZCV)
9ee6e8bb
PB
1067/* Bits writable in user mode. */
1068#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1069/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1070#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1071/* Mask of bits which may be set by exception return copying them from SPSR */
1072#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1073
987ab45e
PM
1074/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1075#define XPSR_EXCP 0x1ffU
1076#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1077#define XPSR_IT_2_7 CPSR_IT_2_7
1078#define XPSR_GE CPSR_GE
1079#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1080#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1081#define XPSR_IT_0_1 CPSR_IT_0_1
1082#define XPSR_Q CPSR_Q
1083#define XPSR_V CPSR_V
1084#define XPSR_C CPSR_C
1085#define XPSR_Z CPSR_Z
1086#define XPSR_N CPSR_N
1087#define XPSR_NZCV CPSR_NZCV
1088#define XPSR_IT CPSR_IT
1089
e389be16
FA
1090#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1091#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1092#define TTBCR_PD0 (1U << 4)
1093#define TTBCR_PD1 (1U << 5)
1094#define TTBCR_EPD0 (1U << 7)
1095#define TTBCR_IRGN0 (3U << 8)
1096#define TTBCR_ORGN0 (3U << 10)
1097#define TTBCR_SH0 (3U << 12)
1098#define TTBCR_T1SZ (3U << 16)
1099#define TTBCR_A1 (1U << 22)
1100#define TTBCR_EPD1 (1U << 23)
1101#define TTBCR_IRGN1 (3U << 24)
1102#define TTBCR_ORGN1 (3U << 26)
1103#define TTBCR_SH1 (1U << 28)
1104#define TTBCR_EAE (1U << 31)
1105
d356312f
PM
1106/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1107 * Only these are valid when in AArch64 mode; in
1108 * AArch32 mode SPSRs are basically CPSR-format.
1109 */
f502cfc2 1110#define PSTATE_SP (1U)
d356312f
PM
1111#define PSTATE_M (0xFU)
1112#define PSTATE_nRW (1U << 4)
1113#define PSTATE_F (1U << 6)
1114#define PSTATE_I (1U << 7)
1115#define PSTATE_A (1U << 8)
1116#define PSTATE_D (1U << 9)
1117#define PSTATE_IL (1U << 20)
1118#define PSTATE_SS (1U << 21)
1119#define PSTATE_V (1U << 28)
1120#define PSTATE_C (1U << 29)
1121#define PSTATE_Z (1U << 30)
1122#define PSTATE_N (1U << 31)
1123#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
1124#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1125#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
1126/* Mode values for AArch64 */
1127#define PSTATE_MODE_EL3h 13
1128#define PSTATE_MODE_EL3t 12
1129#define PSTATE_MODE_EL2h 9
1130#define PSTATE_MODE_EL2t 8
1131#define PSTATE_MODE_EL1h 5
1132#define PSTATE_MODE_EL1t 4
1133#define PSTATE_MODE_EL0t 0
1134
de2db7ec
PM
1135/* Write a new value to v7m.exception, thus transitioning into or out
1136 * of Handler mode; this may result in a change of active stack pointer.
1137 */
1138void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1139
9e729b57
EI
1140/* Map EL and handler into a PSTATE_MODE. */
1141static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1142{
1143 return (el << 2) | handler;
1144}
1145
d356312f
PM
1146/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1147 * interprocessing, so we don't attempt to sync with the cpsr state used by
1148 * the 32 bit decoder.
1149 */
1150static inline uint32_t pstate_read(CPUARMState *env)
1151{
1152 int ZF;
1153
1154 ZF = (env->ZF == 0);
1155 return (env->NF & 0x80000000) | (ZF << 30)
1156 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1157 | env->pstate | env->daif;
d356312f
PM
1158}
1159
1160static inline void pstate_write(CPUARMState *env, uint32_t val)
1161{
1162 env->ZF = (~val) & PSTATE_Z;
1163 env->NF = val;
1164 env->CF = (val >> 29) & 1;
1165 env->VF = (val << 3) & 0x80000000;
4cc35614 1166 env->daif = val & PSTATE_DAIF;
d356312f
PM
1167 env->pstate = val & ~CACHED_PSTATE_BITS;
1168}
1169
b5ff1b31 1170/* Return the current CPSR value. */
2f4a40e5 1171uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1172
1173typedef enum CPSRWriteType {
1174 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1175 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1176 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1177 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1178} CPSRWriteType;
1179
1180/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1181void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1182 CPSRWriteType write_type);
9ee6e8bb
PB
1183
1184/* Return the current xPSR value. */
1185static inline uint32_t xpsr_read(CPUARMState *env)
1186{
1187 int ZF;
6fbe23d5
PB
1188 ZF = (env->ZF == 0);
1189 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1190 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1191 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1192 | ((env->condexec_bits & 0xfc) << 8)
1193 | env->v7m.exception;
b5ff1b31
FB
1194}
1195
9ee6e8bb
PB
1196/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1197static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1198{
987ab45e
PM
1199 if (mask & XPSR_NZCV) {
1200 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1201 env->NF = val;
9ee6e8bb
PB
1202 env->CF = (val >> 29) & 1;
1203 env->VF = (val << 3) & 0x80000000;
1204 }
987ab45e
PM
1205 if (mask & XPSR_Q) {
1206 env->QF = ((val & XPSR_Q) != 0);
1207 }
1208 if (mask & XPSR_T) {
1209 env->thumb = ((val & XPSR_T) != 0);
1210 }
1211 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1212 env->condexec_bits &= ~3;
1213 env->condexec_bits |= (val >> 25) & 3;
1214 }
987ab45e 1215 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1216 env->condexec_bits &= 3;
1217 env->condexec_bits |= (val >> 8) & 0xfc;
1218 }
987ab45e 1219 if (mask & XPSR_EXCP) {
de2db7ec
PM
1220 /* Note that this only happens on exception exit */
1221 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1222 }
1223}
1224
f149e3e8
EI
1225#define HCR_VM (1ULL << 0)
1226#define HCR_SWIO (1ULL << 1)
1227#define HCR_PTW (1ULL << 2)
1228#define HCR_FMO (1ULL << 3)
1229#define HCR_IMO (1ULL << 4)
1230#define HCR_AMO (1ULL << 5)
1231#define HCR_VF (1ULL << 6)
1232#define HCR_VI (1ULL << 7)
1233#define HCR_VSE (1ULL << 8)
1234#define HCR_FB (1ULL << 9)
1235#define HCR_BSU_MASK (3ULL << 10)
1236#define HCR_DC (1ULL << 12)
1237#define HCR_TWI (1ULL << 13)
1238#define HCR_TWE (1ULL << 14)
1239#define HCR_TID0 (1ULL << 15)
1240#define HCR_TID1 (1ULL << 16)
1241#define HCR_TID2 (1ULL << 17)
1242#define HCR_TID3 (1ULL << 18)
1243#define HCR_TSC (1ULL << 19)
1244#define HCR_TIDCP (1ULL << 20)
1245#define HCR_TACR (1ULL << 21)
1246#define HCR_TSW (1ULL << 22)
1247#define HCR_TPC (1ULL << 23)
1248#define HCR_TPU (1ULL << 24)
1249#define HCR_TTLB (1ULL << 25)
1250#define HCR_TVM (1ULL << 26)
1251#define HCR_TGE (1ULL << 27)
1252#define HCR_TDZ (1ULL << 28)
1253#define HCR_HCD (1ULL << 29)
1254#define HCR_TRVM (1ULL << 30)
1255#define HCR_RW (1ULL << 31)
1256#define HCR_CD (1ULL << 32)
1257#define HCR_ID (1ULL << 33)
ac656b16
PM
1258#define HCR_E2H (1ULL << 34)
1259/*
1260 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1261 * HCR_MASK and then clear it again if the feature bit is not set in
1262 * hcr_write().
1263 */
f149e3e8
EI
1264#define HCR_MASK ((1ULL << 34) - 1)
1265
64e0e2de
EI
1266#define SCR_NS (1U << 0)
1267#define SCR_IRQ (1U << 1)
1268#define SCR_FIQ (1U << 2)
1269#define SCR_EA (1U << 3)
1270#define SCR_FW (1U << 4)
1271#define SCR_AW (1U << 5)
1272#define SCR_NET (1U << 6)
1273#define SCR_SMD (1U << 7)
1274#define SCR_HCE (1U << 8)
1275#define SCR_SIF (1U << 9)
1276#define SCR_RW (1U << 10)
1277#define SCR_ST (1U << 11)
1278#define SCR_TWI (1U << 12)
1279#define SCR_TWE (1U << 13)
1280#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1281#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1282
01653295
PM
1283/* Return the current FPSCR value. */
1284uint32_t vfp_get_fpscr(CPUARMState *env);
1285void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1286
d81ce0ef
AB
1287/* FPCR, Floating Point Control Register
1288 * FPSR, Floating Poiht Status Register
1289 *
1290 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1291 * FPCR and FPSR. However since they still use non-overlapping bits
1292 * we store the underlying state in fpscr and just mask on read/write.
1293 */
1294#define FPSR_MASK 0xf800009f
0b62159b 1295#define FPCR_MASK 0x07ff9f00
d81ce0ef
AB
1296
1297#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1298#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1299#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1300
f903fa22
PM
1301static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1302{
1303 return vfp_get_fpscr(env) & FPSR_MASK;
1304}
1305
1306static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1307{
1308 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1309 vfp_set_fpscr(env, new_fpscr);
1310}
1311
1312static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1313{
1314 return vfp_get_fpscr(env) & FPCR_MASK;
1315}
1316
1317static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1318{
1319 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1320 vfp_set_fpscr(env, new_fpscr);
1321}
1322
b5ff1b31
FB
1323enum arm_cpu_mode {
1324 ARM_CPU_MODE_USR = 0x10,
1325 ARM_CPU_MODE_FIQ = 0x11,
1326 ARM_CPU_MODE_IRQ = 0x12,
1327 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1328 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1329 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1330 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1331 ARM_CPU_MODE_UND = 0x1b,
1332 ARM_CPU_MODE_SYS = 0x1f
1333};
1334
40f137e1
PB
1335/* VFP system registers. */
1336#define ARM_VFP_FPSID 0
1337#define ARM_VFP_FPSCR 1
a50c0f51 1338#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1339#define ARM_VFP_MVFR1 6
1340#define ARM_VFP_MVFR0 7
40f137e1
PB
1341#define ARM_VFP_FPEXC 8
1342#define ARM_VFP_FPINST 9
1343#define ARM_VFP_FPINST2 10
1344
18c9b560 1345/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1346#define ARM_IWMMXT_wCID 0
1347#define ARM_IWMMXT_wCon 1
1348#define ARM_IWMMXT_wCSSF 2
1349#define ARM_IWMMXT_wCASF 3
1350#define ARM_IWMMXT_wCGR0 8
1351#define ARM_IWMMXT_wCGR1 9
1352#define ARM_IWMMXT_wCGR2 10
1353#define ARM_IWMMXT_wCGR3 11
18c9b560 1354
2c4da50d
PM
1355/* V7M CCR bits */
1356FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1357FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1358FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1359FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1360FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1361FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1362FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1363FIELD(V7M_CCR, DC, 16, 1)
1364FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1365FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1366
24ac0fb1
PM
1367/* V7M SCR bits */
1368FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1369FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1370FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1371FIELD(V7M_SCR, SEVONPEND, 4, 1)
1372
3b2e9344
PM
1373/* V7M AIRCR bits */
1374FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1375FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1376FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1377FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1378FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1379FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1380FIELD(V7M_AIRCR, PRIS, 14, 1)
1381FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1382FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1383
2c4da50d
PM
1384/* V7M CFSR bits for MMFSR */
1385FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1386FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1387FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1388FIELD(V7M_CFSR, MSTKERR, 4, 1)
1389FIELD(V7M_CFSR, MLSPERR, 5, 1)
1390FIELD(V7M_CFSR, MMARVALID, 7, 1)
1391
1392/* V7M CFSR bits for BFSR */
1393FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1394FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1395FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1396FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1397FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1398FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1399FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1400
1401/* V7M CFSR bits for UFSR */
1402FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1403FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1404FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1405FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1406FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1407FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1408FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1409
334e8dad
PM
1410/* V7M CFSR bit masks covering all of the subregister bits */
1411FIELD(V7M_CFSR, MMFSR, 0, 8)
1412FIELD(V7M_CFSR, BFSR, 8, 8)
1413FIELD(V7M_CFSR, UFSR, 16, 16)
1414
2c4da50d
PM
1415/* V7M HFSR bits */
1416FIELD(V7M_HFSR, VECTTBL, 1, 1)
1417FIELD(V7M_HFSR, FORCED, 30, 1)
1418FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1419
1420/* V7M DFSR bits */
1421FIELD(V7M_DFSR, HALTED, 0, 1)
1422FIELD(V7M_DFSR, BKPT, 1, 1)
1423FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1424FIELD(V7M_DFSR, VCATCH, 3, 1)
1425FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1426
bed079da
PM
1427/* V7M SFSR bits */
1428FIELD(V7M_SFSR, INVEP, 0, 1)
1429FIELD(V7M_SFSR, INVIS, 1, 1)
1430FIELD(V7M_SFSR, INVER, 2, 1)
1431FIELD(V7M_SFSR, AUVIOL, 3, 1)
1432FIELD(V7M_SFSR, INVTRAN, 4, 1)
1433FIELD(V7M_SFSR, LSPERR, 5, 1)
1434FIELD(V7M_SFSR, SFARVALID, 6, 1)
1435FIELD(V7M_SFSR, LSERR, 7, 1)
1436
29c483a5
MD
1437/* v7M MPU_CTRL bits */
1438FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1439FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1440FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1441
43bbce7f
PM
1442/* v7M CLIDR bits */
1443FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1444FIELD(V7M_CLIDR, LOUIS, 21, 3)
1445FIELD(V7M_CLIDR, LOC, 24, 3)
1446FIELD(V7M_CLIDR, LOUU, 27, 3)
1447FIELD(V7M_CLIDR, ICB, 30, 2)
1448
1449FIELD(V7M_CSSELR, IND, 0, 1)
1450FIELD(V7M_CSSELR, LEVEL, 1, 3)
1451/* We use the combination of InD and Level to index into cpu->ccsidr[];
1452 * define a mask for this and check that it doesn't permit running off
1453 * the end of the array.
1454 */
1455FIELD(V7M_CSSELR, INDEX, 0, 4)
1456
a62e62af
RH
1457/*
1458 * System register ID fields.
1459 */
1460FIELD(ID_ISAR0, SWAP, 0, 4)
1461FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1462FIELD(ID_ISAR0, BITFIELD, 8, 4)
1463FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1464FIELD(ID_ISAR0, COPROC, 16, 4)
1465FIELD(ID_ISAR0, DEBUG, 20, 4)
1466FIELD(ID_ISAR0, DIVIDE, 24, 4)
1467
1468FIELD(ID_ISAR1, ENDIAN, 0, 4)
1469FIELD(ID_ISAR1, EXCEPT, 4, 4)
1470FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1471FIELD(ID_ISAR1, EXTEND, 12, 4)
1472FIELD(ID_ISAR1, IFTHEN, 16, 4)
1473FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1474FIELD(ID_ISAR1, INTERWORK, 24, 4)
1475FIELD(ID_ISAR1, JAZELLE, 28, 4)
1476
1477FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1478FIELD(ID_ISAR2, MEMHINT, 4, 4)
1479FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1480FIELD(ID_ISAR2, MULT, 12, 4)
1481FIELD(ID_ISAR2, MULTS, 16, 4)
1482FIELD(ID_ISAR2, MULTU, 20, 4)
1483FIELD(ID_ISAR2, PSR_AR, 24, 4)
1484FIELD(ID_ISAR2, REVERSAL, 28, 4)
1485
1486FIELD(ID_ISAR3, SATURATE, 0, 4)
1487FIELD(ID_ISAR3, SIMD, 4, 4)
1488FIELD(ID_ISAR3, SVC, 8, 4)
1489FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1490FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1491FIELD(ID_ISAR3, T32COPY, 20, 4)
1492FIELD(ID_ISAR3, TRUENOP, 24, 4)
1493FIELD(ID_ISAR3, T32EE, 28, 4)
1494
1495FIELD(ID_ISAR4, UNPRIV, 0, 4)
1496FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1497FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1498FIELD(ID_ISAR4, SMC, 12, 4)
1499FIELD(ID_ISAR4, BARRIER, 16, 4)
1500FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1501FIELD(ID_ISAR4, PSR_M, 24, 4)
1502FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1503
1504FIELD(ID_ISAR5, SEVL, 0, 4)
1505FIELD(ID_ISAR5, AES, 4, 4)
1506FIELD(ID_ISAR5, SHA1, 8, 4)
1507FIELD(ID_ISAR5, SHA2, 12, 4)
1508FIELD(ID_ISAR5, CRC32, 16, 4)
1509FIELD(ID_ISAR5, RDM, 24, 4)
1510FIELD(ID_ISAR5, VCMA, 28, 4)
1511
1512FIELD(ID_ISAR6, JSCVT, 0, 4)
1513FIELD(ID_ISAR6, DP, 4, 4)
1514FIELD(ID_ISAR6, FHM, 8, 4)
1515FIELD(ID_ISAR6, SB, 12, 4)
1516FIELD(ID_ISAR6, SPECRES, 16, 4)
1517
1518FIELD(ID_AA64ISAR0, AES, 4, 4)
1519FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1520FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1521FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1522FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1523FIELD(ID_AA64ISAR0, RDM, 28, 4)
1524FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1525FIELD(ID_AA64ISAR0, SM3, 36, 4)
1526FIELD(ID_AA64ISAR0, SM4, 40, 4)
1527FIELD(ID_AA64ISAR0, DP, 44, 4)
1528FIELD(ID_AA64ISAR0, FHM, 48, 4)
1529FIELD(ID_AA64ISAR0, TS, 52, 4)
1530FIELD(ID_AA64ISAR0, TLB, 56, 4)
1531FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1532
1533FIELD(ID_AA64ISAR1, DPB, 0, 4)
1534FIELD(ID_AA64ISAR1, APA, 4, 4)
1535FIELD(ID_AA64ISAR1, API, 8, 4)
1536FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1537FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1538FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1539FIELD(ID_AA64ISAR1, GPA, 24, 4)
1540FIELD(ID_AA64ISAR1, GPI, 28, 4)
1541FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1542FIELD(ID_AA64ISAR1, SB, 36, 4)
1543FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1544
43bbce7f
PM
1545QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1546
ce854d7c
BC
1547/* If adding a feature bit which corresponds to a Linux ELF
1548 * HWCAP bit, remember to update the feature-bit-to-hwcap
1549 * mapping in linux-user/elfload.c:get_elf_hwcap().
1550 */
40f137e1
PB
1551enum arm_features {
1552 ARM_FEATURE_VFP,
c1713132
AZ
1553 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1554 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1555 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1556 ARM_FEATURE_V6,
1557 ARM_FEATURE_V6K,
1558 ARM_FEATURE_V7,
1559 ARM_FEATURE_THUMB2,
452a0955 1560 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1561 ARM_FEATURE_VFP3,
60011498 1562 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1563 ARM_FEATURE_NEON,
47789990 1564 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 1565 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1566 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1567 ARM_FEATURE_THUMB2EE,
be5e7a76 1568 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1569 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1570 ARM_FEATURE_V4T,
1571 ARM_FEATURE_V5,
5bc95aa2 1572 ARM_FEATURE_STRONGARM,
906879a9 1573 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 1574 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 1575 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1576 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1577 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1578 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1579 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1580 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1581 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1582 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1583 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1584 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1585 ARM_FEATURE_V8,
3926cc84 1586 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 1587 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 1588 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1589 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1590 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1591 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1592 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
1593 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1594 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 1595 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 1596 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1597 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1598 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1599 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
c99a55d3 1600 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
0d0a16c6 1601 ARM_FEATURE_SVE, /* has Scalable Vector Extension */
90b827d1 1602 ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
cd270ade 1603 ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
80d6f4c6 1604 ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
b6577bcd 1605 ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
68412d2e 1606 ARM_FEATURE_V8_ATOMICS, /* ARMv8.1-Atomics feature */
1dc81c15 1607 ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
26c470a7 1608 ARM_FEATURE_V8_DOTPROD, /* implements v8.2 simd dot product */
6ad4d618 1609 ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
0438f037 1610 ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions. */
cc2ae7c9 1611 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1612};
1613
1614static inline int arm_feature(CPUARMState *env, int feature)
1615{
918f5dca 1616 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1617}
1618
19e0fefa
FA
1619#if !defined(CONFIG_USER_ONLY)
1620/* Return true if exception levels below EL3 are in secure state,
1621 * or would be following an exception return to that level.
1622 * Unlike arm_is_secure() (which is always a question about the
1623 * _current_ state of the CPU) this doesn't care about the current
1624 * EL or mode.
1625 */
1626static inline bool arm_is_secure_below_el3(CPUARMState *env)
1627{
1628 if (arm_feature(env, ARM_FEATURE_EL3)) {
1629 return !(env->cp15.scr_el3 & SCR_NS);
1630 } else {
6b7f0b61 1631 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1632 * defined, in which case QEMU defaults to non-secure.
1633 */
1634 return false;
1635 }
1636}
1637
71205876
PM
1638/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1639static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1640{
1641 if (arm_feature(env, ARM_FEATURE_EL3)) {
1642 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1643 /* CPU currently in AArch64 state and EL3 */
1644 return true;
1645 } else if (!is_a64(env) &&
1646 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1647 /* CPU currently in AArch32 state and monitor mode */
1648 return true;
1649 }
1650 }
71205876
PM
1651 return false;
1652}
1653
1654/* Return true if the processor is in secure state */
1655static inline bool arm_is_secure(CPUARMState *env)
1656{
1657 if (arm_is_el3_or_mon(env)) {
1658 return true;
1659 }
19e0fefa
FA
1660 return arm_is_secure_below_el3(env);
1661}
1662
1663#else
1664static inline bool arm_is_secure_below_el3(CPUARMState *env)
1665{
1666 return false;
1667}
1668
1669static inline bool arm_is_secure(CPUARMState *env)
1670{
1671 return false;
1672}
1673#endif
1674
1f79ee32
PM
1675/* Return true if the specified exception level is running in AArch64 state. */
1676static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1677{
446c81ab
PM
1678 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1679 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1680 */
446c81ab
PM
1681 assert(el >= 1 && el <= 3);
1682 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1683
446c81ab
PM
1684 /* The highest exception level is always at the maximum supported
1685 * register width, and then lower levels have a register width controlled
1686 * by bits in the SCR or HCR registers.
1f79ee32 1687 */
446c81ab
PM
1688 if (el == 3) {
1689 return aa64;
1690 }
1691
1692 if (arm_feature(env, ARM_FEATURE_EL3)) {
1693 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1694 }
1695
1696 if (el == 2) {
1697 return aa64;
1698 }
1699
1700 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1701 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1702 }
1703
1704 return aa64;
1f79ee32
PM
1705}
1706
3f342b9e
SF
1707/* Function for determing whether guest cp register reads and writes should
1708 * access the secure or non-secure bank of a cp register. When EL3 is
1709 * operating in AArch32 state, the NS-bit determines whether the secure
1710 * instance of a cp register should be used. When EL3 is AArch64 (or if
1711 * it doesn't exist at all) then there is no register banking, and all
1712 * accesses are to the non-secure version.
1713 */
1714static inline bool access_secure_reg(CPUARMState *env)
1715{
1716 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1717 !arm_el_is_aa64(env, 3) &&
1718 !(env->cp15.scr_el3 & SCR_NS));
1719
1720 return ret;
1721}
1722
ea30a4b8
FA
1723/* Macros for accessing a specified CP register bank */
1724#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1725 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1726
1727#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1728 do { \
1729 if (_secure) { \
1730 (_env)->cp15._regname##_s = (_val); \
1731 } else { \
1732 (_env)->cp15._regname##_ns = (_val); \
1733 } \
1734 } while (0)
1735
1736/* Macros for automatically accessing a specific CP register bank depending on
1737 * the current secure state of the system. These macros are not intended for
1738 * supporting instruction translation reads/writes as these are dependent
1739 * solely on the SCR.NS bit and not the mode.
1740 */
1741#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1742 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1743 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1744
1745#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1746 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1747 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1748 (_val))
1749
9a78eead 1750void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1751uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1752 uint32_t cur_el, bool secure);
40f137e1 1753
9ee6e8bb 1754/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1755#ifndef CONFIG_USER_ONLY
1756bool armv7m_nvic_can_take_pending_exception(void *opaque);
1757#else
1758static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1759{
1760 return true;
1761}
1762#endif
2fb50a33
PM
1763/**
1764 * armv7m_nvic_set_pending: mark the specified exception as pending
1765 * @opaque: the NVIC
1766 * @irq: the exception number to mark pending
1767 * @secure: false for non-banked exceptions or for the nonsecure
1768 * version of a banked exception, true for the secure version of a banked
1769 * exception.
1770 *
1771 * Marks the specified exception as pending. Note that we will assert()
1772 * if @secure is true and @irq does not specify one of the fixed set
1773 * of architecturally banked exceptions.
1774 */
1775void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1776/**
1777 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1778 * @opaque: the NVIC
1779 * @irq: the exception number to mark pending
1780 * @secure: false for non-banked exceptions or for the nonsecure
1781 * version of a banked exception, true for the secure version of a banked
1782 * exception.
1783 *
1784 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1785 * exceptions (exceptions generated in the course of trying to take
1786 * a different exception).
1787 */
1788void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1789/**
1790 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1791 * exception, and whether it targets Secure state
1792 * @opaque: the NVIC
1793 * @pirq: set to pending exception number
1794 * @ptargets_secure: set to whether pending exception targets Secure
1795 *
1796 * This function writes the number of the highest priority pending
1797 * exception (the one which would be made active by
1798 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1799 * to true if the current highest priority pending exception should
1800 * be taken to Secure state, false for NS.
1801 */
1802void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1803 bool *ptargets_secure);
5cb18069
PM
1804/**
1805 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1806 * @opaque: the NVIC
1807 *
1808 * Move the current highest priority pending exception from the pending
1809 * state to the active state, and update v7m.exception to indicate that
1810 * it is the exception currently being handled.
5cb18069 1811 */
6c948518 1812void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1813/**
1814 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1815 * @opaque: the NVIC
1816 * @irq: the exception number to complete
5cb18069 1817 * @secure: true if this exception was secure
aa488fe3
PM
1818 *
1819 * Returns: -1 if the irq was not active
1820 * 1 if completing this irq brought us back to base (no active irqs)
1821 * 0 if there is still an irq active after this one was completed
1822 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1823 */
5cb18069 1824int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1825/**
1826 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1827 * @opaque: the NVIC
1828 *
1829 * Returns: the raw execution priority as defined by the v8M architecture.
1830 * This is the execution priority minus the effects of AIRCR.PRIS,
1831 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1832 * (v8M ARM ARM I_PKLD.)
1833 */
1834int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
1835/**
1836 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1837 * priority is negative for the specified security state.
1838 * @opaque: the NVIC
1839 * @secure: the security state to test
1840 * This corresponds to the pseudocode IsReqExecPriNeg().
1841 */
1842#ifndef CONFIG_USER_ONLY
1843bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1844#else
1845static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1846{
1847 return false;
1848}
1849#endif
9ee6e8bb 1850
4b6a83fb
PM
1851/* Interface for defining coprocessor registers.
1852 * Registers are defined in tables of arm_cp_reginfo structs
1853 * which are passed to define_arm_cp_regs().
1854 */
1855
1856/* When looking up a coprocessor register we look for it
1857 * via an integer which encodes all of:
1858 * coprocessor number
1859 * Crn, Crm, opc1, opc2 fields
1860 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1861 * or via MRRC/MCRR?)
51a79b03 1862 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1863 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1864 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1865 * For AArch64, there is no 32/64 bit size distinction;
1866 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1867 * and 4 bit CRn and CRm. The encoding patterns are chosen
1868 * to be easy to convert to and from the KVM encodings, and also
1869 * so that the hashtable can contain both AArch32 and AArch64
1870 * registers (to allow for interprocessing where we might run
1871 * 32 bit code on a 64 bit core).
4b6a83fb 1872 */
f5a0a5a5
PM
1873/* This bit is private to our hashtable cpreg; in KVM register
1874 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1875 * in the upper bits of the 64 bit ID.
1876 */
1877#define CP_REG_AA64_SHIFT 28
1878#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1879
51a79b03
PM
1880/* To enable banking of coprocessor registers depending on ns-bit we
1881 * add a bit to distinguish between secure and non-secure cpregs in the
1882 * hashtable.
1883 */
1884#define CP_REG_NS_SHIFT 29
1885#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1886
1887#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1888 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1889 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1890
f5a0a5a5
PM
1891#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1892 (CP_REG_AA64_MASK | \
1893 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1894 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1895 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1896 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1897 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1898 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1899
721fae12
PM
1900/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1901 * version used as a key for the coprocessor register hashtable
1902 */
1903static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1904{
1905 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1906 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1907 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1908 } else {
1909 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1910 cpregid |= (1 << 15);
1911 }
1912
1913 /* KVM is always non-secure so add the NS flag on AArch32 register
1914 * entries.
1915 */
1916 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1917 }
1918 return cpregid;
1919}
1920
1921/* Convert a truncated 32 bit hashtable key into the full
1922 * 64 bit KVM register ID.
1923 */
1924static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1925{
f5a0a5a5
PM
1926 uint64_t kvmid;
1927
1928 if (cpregid & CP_REG_AA64_MASK) {
1929 kvmid = cpregid & ~CP_REG_AA64_MASK;
1930 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1931 } else {
f5a0a5a5
PM
1932 kvmid = cpregid & ~(1 << 15);
1933 if (cpregid & (1 << 15)) {
1934 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1935 } else {
1936 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1937 }
721fae12
PM
1938 }
1939 return kvmid;
1940}
1941
4b6a83fb 1942/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 1943 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
1944 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1945 * TCG can assume the value to be constant (ie load at translate time)
1946 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1947 * indicates that the TB should not be ended after a write to this register
1948 * (the default is that the TB ends after cp writes). OVERRIDE permits
1949 * a register definition to override a previous definition for the
1950 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1951 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1952 * ALIAS indicates that this register is an alias view of some underlying
1953 * state which is also visible via another register, and that the other
b061a82b
SF
1954 * register is handling migration and reset; registers marked ALIAS will not be
1955 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1956 * NO_RAW indicates that this register has no underlying state and does not
1957 * support raw access for state saving/loading; it will not be used for either
1958 * migration or KVM state synchronization. (Typically this is for "registers"
1959 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1960 * IO indicates that this register does I/O and therefore its accesses
1961 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1962 * registers which implement clocks or timers require this.
4b6a83fb 1963 */
fe03d45f
RH
1964#define ARM_CP_SPECIAL 0x0001
1965#define ARM_CP_CONST 0x0002
1966#define ARM_CP_64BIT 0x0004
1967#define ARM_CP_SUPPRESS_TB_END 0x0008
1968#define ARM_CP_OVERRIDE 0x0010
1969#define ARM_CP_ALIAS 0x0020
1970#define ARM_CP_IO 0x0040
1971#define ARM_CP_NO_RAW 0x0080
1972#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1973#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1974#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1975#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1976#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1977#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1978#define ARM_CP_FPU 0x1000
490aa7f1 1979#define ARM_CP_SVE 0x2000
1f163787 1980#define ARM_CP_NO_GDB 0x4000
4b6a83fb 1981/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 1982#define ARM_CP_SENTINEL 0xffff
4b6a83fb 1983/* Mask of only the flag bits in a type field */
1f163787 1984#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 1985
f5a0a5a5
PM
1986/* Valid values for ARMCPRegInfo state field, indicating which of
1987 * the AArch32 and AArch64 execution states this register is visible in.
1988 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1989 * If the reginfo is declared to be visible in both states then a second
1990 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1991 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1992 * Note that we rely on the values of these enums as we iterate through
1993 * the various states in some places.
1994 */
1995enum {
1996 ARM_CP_STATE_AA32 = 0,
1997 ARM_CP_STATE_AA64 = 1,
1998 ARM_CP_STATE_BOTH = 2,
1999};
2000
c3e30260
FA
2001/* ARM CP register secure state flags. These flags identify security state
2002 * attributes for a given CP register entry.
2003 * The existence of both or neither secure and non-secure flags indicates that
2004 * the register has both a secure and non-secure hash entry. A single one of
2005 * these flags causes the register to only be hashed for the specified
2006 * security state.
2007 * Although definitions may have any combination of the S/NS bits, each
2008 * registered entry will only have one to identify whether the entry is secure
2009 * or non-secure.
2010 */
2011enum {
2012 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2013 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2014};
2015
4b6a83fb
PM
2016/* Return true if cptype is a valid type field. This is used to try to
2017 * catch errors where the sentinel has been accidentally left off the end
2018 * of a list of registers.
2019 */
2020static inline bool cptype_valid(int cptype)
2021{
2022 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2023 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2024 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2025}
2026
2027/* Access rights:
2028 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2029 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2030 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2031 * (ie any of the privileged modes in Secure state, or Monitor mode).
2032 * If a register is accessible in one privilege level it's always accessible
2033 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2034 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2035 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2036 * terminology a little and call this PL3.
f5a0a5a5
PM
2037 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2038 * with the ELx exception levels.
4b6a83fb
PM
2039 *
2040 * If access permissions for a register are more complex than can be
2041 * described with these bits, then use a laxer set of restrictions, and
2042 * do the more restrictive/complex check inside a helper function.
2043 */
2044#define PL3_R 0x80
2045#define PL3_W 0x40
2046#define PL2_R (0x20 | PL3_R)
2047#define PL2_W (0x10 | PL3_W)
2048#define PL1_R (0x08 | PL2_R)
2049#define PL1_W (0x04 | PL2_W)
2050#define PL0_R (0x02 | PL1_R)
2051#define PL0_W (0x01 | PL1_W)
2052
2053#define PL3_RW (PL3_R | PL3_W)
2054#define PL2_RW (PL2_R | PL2_W)
2055#define PL1_RW (PL1_R | PL1_W)
2056#define PL0_RW (PL0_R | PL0_W)
2057
75502672
PM
2058/* Return the highest implemented Exception Level */
2059static inline int arm_highest_el(CPUARMState *env)
2060{
2061 if (arm_feature(env, ARM_FEATURE_EL3)) {
2062 return 3;
2063 }
2064 if (arm_feature(env, ARM_FEATURE_EL2)) {
2065 return 2;
2066 }
2067 return 1;
2068}
2069
15b3f556
PM
2070/* Return true if a v7M CPU is in Handler mode */
2071static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2072{
2073 return env->v7m.exception != 0;
2074}
2075
dcbff19b
GB
2076/* Return the current Exception Level (as per ARMv8; note that this differs
2077 * from the ARMv7 Privilege Level).
2078 */
2079static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2080{
6d54ed3c 2081 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2082 return arm_v7m_is_handler_mode(env) ||
2083 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2084 }
2085
592125f8 2086 if (is_a64(env)) {
f5a0a5a5
PM
2087 return extract32(env->pstate, 2, 2);
2088 }
2089
592125f8
FA
2090 switch (env->uncached_cpsr & 0x1f) {
2091 case ARM_CPU_MODE_USR:
4b6a83fb 2092 return 0;
592125f8
FA
2093 case ARM_CPU_MODE_HYP:
2094 return 2;
2095 case ARM_CPU_MODE_MON:
2096 return 3;
2097 default:
2098 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2099 /* If EL3 is 32-bit then all secure privileged modes run in
2100 * EL3
2101 */
2102 return 3;
2103 }
2104
2105 return 1;
4b6a83fb 2106 }
4b6a83fb
PM
2107}
2108
2109typedef struct ARMCPRegInfo ARMCPRegInfo;
2110
f59df3f2
PM
2111typedef enum CPAccessResult {
2112 /* Access is permitted */
2113 CP_ACCESS_OK = 0,
2114 /* Access fails due to a configurable trap or enable which would
2115 * result in a categorized exception syndrome giving information about
2116 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2117 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2118 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2119 */
2120 CP_ACCESS_TRAP = 1,
2121 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2122 * Note that this is not a catch-all case -- the set of cases which may
2123 * result in this failure is specifically defined by the architecture.
2124 */
2125 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2126 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2127 CP_ACCESS_TRAP_EL2 = 3,
2128 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2129 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2130 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2131 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2132 /* Access fails and results in an exception syndrome for an FP access,
2133 * trapped directly to EL2 or EL3
2134 */
2135 CP_ACCESS_TRAP_FP_EL2 = 7,
2136 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2137} CPAccessResult;
2138
c4241c7d
PM
2139/* Access functions for coprocessor registers. These cannot fail and
2140 * may not raise exceptions.
2141 */
2142typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2143typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2144 uint64_t value);
f59df3f2 2145/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2146typedef CPAccessResult CPAccessFn(CPUARMState *env,
2147 const ARMCPRegInfo *opaque,
2148 bool isread);
4b6a83fb
PM
2149/* Hook function for register reset */
2150typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2151
2152#define CP_ANY 0xff
2153
2154/* Definition of an ARM coprocessor register */
2155struct ARMCPRegInfo {
2156 /* Name of register (useful mainly for debugging, need not be unique) */
2157 const char *name;
2158 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2159 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2160 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2161 * will be decoded to this register. The register read and write
2162 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2163 * used by the program, so it is possible to register a wildcard and
2164 * then behave differently on read/write if necessary.
2165 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2166 * must both be zero.
f5a0a5a5
PM
2167 * For AArch64-visible registers, opc0 is also used.
2168 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2169 * way to distinguish (for KVM's benefit) guest-visible system registers
2170 * from demuxed ones provided to preserve the "no side effects on
2171 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2172 * visible (to match KVM's encoding); cp==0 will be converted to
2173 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2174 */
2175 uint8_t cp;
2176 uint8_t crn;
2177 uint8_t crm;
f5a0a5a5 2178 uint8_t opc0;
4b6a83fb
PM
2179 uint8_t opc1;
2180 uint8_t opc2;
f5a0a5a5
PM
2181 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2182 int state;
4b6a83fb
PM
2183 /* Register type: ARM_CP_* bits/values */
2184 int type;
2185 /* Access rights: PL*_[RW] */
2186 int access;
c3e30260
FA
2187 /* Security state: ARM_CP_SECSTATE_* bits/values */
2188 int secure;
4b6a83fb
PM
2189 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2190 * this register was defined: can be used to hand data through to the
2191 * register read/write functions, since they are passed the ARMCPRegInfo*.
2192 */
2193 void *opaque;
2194 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2195 * fieldoffset is non-zero, the reset value of the register.
2196 */
2197 uint64_t resetvalue;
c3e30260
FA
2198 /* Offset of the field in CPUARMState for this register.
2199 *
2200 * This is not needed if either:
4b6a83fb
PM
2201 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2202 * 2. both readfn and writefn are specified
2203 */
2204 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2205
2206 /* Offsets of the secure and non-secure fields in CPUARMState for the
2207 * register if it is banked. These fields are only used during the static
2208 * registration of a register. During hashing the bank associated
2209 * with a given security state is copied to fieldoffset which is used from
2210 * there on out.
2211 *
2212 * It is expected that register definitions use either fieldoffset or
2213 * bank_fieldoffsets in the definition but not both. It is also expected
2214 * that both bank offsets are set when defining a banked register. This
2215 * use indicates that a register is banked.
2216 */
2217 ptrdiff_t bank_fieldoffsets[2];
2218
f59df3f2
PM
2219 /* Function for making any access checks for this register in addition to
2220 * those specified by the 'access' permissions bits. If NULL, no extra
2221 * checks required. The access check is performed at runtime, not at
2222 * translate time.
2223 */
2224 CPAccessFn *accessfn;
4b6a83fb
PM
2225 /* Function for handling reads of this register. If NULL, then reads
2226 * will be done by loading from the offset into CPUARMState specified
2227 * by fieldoffset.
2228 */
2229 CPReadFn *readfn;
2230 /* Function for handling writes of this register. If NULL, then writes
2231 * will be done by writing to the offset into CPUARMState specified
2232 * by fieldoffset.
2233 */
2234 CPWriteFn *writefn;
7023ec7e
PM
2235 /* Function for doing a "raw" read; used when we need to copy
2236 * coprocessor state to the kernel for KVM or out for
2237 * migration. This only needs to be provided if there is also a
c4241c7d 2238 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2239 */
2240 CPReadFn *raw_readfn;
2241 /* Function for doing a "raw" write; used when we need to copy KVM
2242 * kernel coprocessor state into userspace, or for inbound
2243 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2244 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2245 * or similar behaviour.
7023ec7e
PM
2246 */
2247 CPWriteFn *raw_writefn;
4b6a83fb
PM
2248 /* Function for resetting the register. If NULL, then reset will be done
2249 * by writing resetvalue to the field specified in fieldoffset. If
2250 * fieldoffset is 0 then no reset will be done.
2251 */
2252 CPResetFn *resetfn;
2253};
2254
2255/* Macros which are lvalues for the field in CPUARMState for the
2256 * ARMCPRegInfo *ri.
2257 */
2258#define CPREG_FIELD32(env, ri) \
2259 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2260#define CPREG_FIELD64(env, ri) \
2261 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2262
2263#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2264
2265void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2266 const ARMCPRegInfo *regs, void *opaque);
2267void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2268 const ARMCPRegInfo *regs, void *opaque);
2269static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2270{
2271 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2272}
2273static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2274{
2275 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2276}
60322b39 2277const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2278
2279/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2280void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2281 uint64_t value);
4b6a83fb 2282/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2283uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2284
f5a0a5a5
PM
2285/* CPResetFn that does nothing, for use if no reset is required even
2286 * if fieldoffset is non zero.
2287 */
2288void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2289
67ed771d
PM
2290/* Return true if this reginfo struct's field in the cpu state struct
2291 * is 64 bits wide.
2292 */
2293static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2294{
2295 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2296}
2297
dcbff19b 2298static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2299 const ARMCPRegInfo *ri, int isread)
2300{
dcbff19b 2301 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2302}
2303
49a66191
PM
2304/* Raw read of a coprocessor register (as needed for migration, etc) */
2305uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2306
721fae12
PM
2307/**
2308 * write_list_to_cpustate
2309 * @cpu: ARMCPU
2310 *
2311 * For each register listed in the ARMCPU cpreg_indexes list, write
2312 * its value from the cpreg_values list into the ARMCPUState structure.
2313 * This updates TCG's working data structures from KVM data or
2314 * from incoming migration state.
2315 *
2316 * Returns: true if all register values were updated correctly,
2317 * false if some register was unknown or could not be written.
2318 * Note that we do not stop early on failure -- we will attempt
2319 * writing all registers in the list.
2320 */
2321bool write_list_to_cpustate(ARMCPU *cpu);
2322
2323/**
2324 * write_cpustate_to_list:
2325 * @cpu: ARMCPU
2326 *
2327 * For each register listed in the ARMCPU cpreg_indexes list, write
2328 * its value from the ARMCPUState structure into the cpreg_values list.
2329 * This is used to copy info from TCG's working data structures into
2330 * KVM or for outbound migration.
2331 *
2332 * Returns: true if all register values were read correctly,
2333 * false if some register was unknown or could not be read.
2334 * Note that we do not stop early on failure -- we will attempt
2335 * reading all registers in the list.
2336 */
2337bool write_cpustate_to_list(ARMCPU *cpu);
2338
9ee6e8bb
PB
2339#define ARM_CPUID_TI915T 0x54029152
2340#define ARM_CPUID_TI925T 0x54029252
40f137e1 2341
b5ff1b31 2342#if defined(CONFIG_USER_ONLY)
2c0262af 2343#define TARGET_PAGE_BITS 12
b5ff1b31 2344#else
e97da98f
PM
2345/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2346 * have to support 1K tiny pages.
2347 */
2348#define TARGET_PAGE_BITS_VARY
2349#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2350#endif
9467d44c 2351
3926cc84
AG
2352#if defined(TARGET_AARCH64)
2353# define TARGET_PHYS_ADDR_SPACE_BITS 48
2354# define TARGET_VIRT_ADDR_SPACE_BITS 64
2355#else
2356# define TARGET_PHYS_ADDR_SPACE_BITS 40
2357# define TARGET_VIRT_ADDR_SPACE_BITS 32
2358#endif
52705890 2359
ac656b16
PM
2360/**
2361 * arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
2362 * Depending on the values of HCR_EL2.E2H and TGE, this may be
2363 * "behaves as 1 for all purposes other than direct read/write" or
2364 * "behaves as 0 for all purposes other than direct read/write"
2365 */
2366static inline bool arm_hcr_el2_imo(CPUARMState *env)
2367{
2368 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2369 case HCR_TGE:
2370 return true;
2371 case HCR_TGE | HCR_E2H:
2372 return false;
2373 default:
2374 return env->cp15.hcr_el2 & HCR_IMO;
2375 }
2376}
2377
2378/**
2379 * arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
2380 */
2381static inline bool arm_hcr_el2_fmo(CPUARMState *env)
2382{
2383 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2384 case HCR_TGE:
2385 return true;
2386 case HCR_TGE | HCR_E2H:
2387 return false;
2388 default:
2389 return env->cp15.hcr_el2 & HCR_FMO;
2390 }
2391}
2392
2393/**
2394 * arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
2395 */
2396static inline bool arm_hcr_el2_amo(CPUARMState *env)
2397{
2398 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2399 case HCR_TGE:
2400 return true;
2401 case HCR_TGE | HCR_E2H:
2402 return false;
2403 default:
2404 return env->cp15.hcr_el2 & HCR_AMO;
2405 }
2406}
2407
012a906b
GB
2408static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2409 unsigned int target_el)
043b7f8d
EI
2410{
2411 CPUARMState *env = cs->env_ptr;
dcbff19b 2412 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2413 bool secure = arm_is_secure(env);
57e3a0c7
GB
2414 bool pstate_unmasked;
2415 int8_t unmasked = 0;
2416
2417 /* Don't take exceptions if they target a lower EL.
2418 * This check should catch any exceptions that would not be taken but left
2419 * pending.
2420 */
dfafd090
EI
2421 if (cur_el > target_el) {
2422 return false;
2423 }
043b7f8d
EI
2424
2425 switch (excp_idx) {
2426 case EXCP_FIQ:
57e3a0c7
GB
2427 pstate_unmasked = !(env->daif & PSTATE_F);
2428 break;
2429
043b7f8d 2430 case EXCP_IRQ:
57e3a0c7
GB
2431 pstate_unmasked = !(env->daif & PSTATE_I);
2432 break;
2433
136e67e9 2434 case EXCP_VFIQ:
ac656b16 2435 if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2436 /* VFIQs are only taken when hypervized and non-secure. */
2437 return false;
2438 }
2439 return !(env->daif & PSTATE_F);
2440 case EXCP_VIRQ:
ac656b16 2441 if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2442 /* VIRQs are only taken when hypervized and non-secure. */
2443 return false;
2444 }
b5c633c5 2445 return !(env->daif & PSTATE_I);
043b7f8d
EI
2446 default:
2447 g_assert_not_reached();
2448 }
57e3a0c7
GB
2449
2450 /* Use the target EL, current execution state and SCR/HCR settings to
2451 * determine whether the corresponding CPSR bit is used to mask the
2452 * interrupt.
2453 */
2454 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2455 /* Exceptions targeting a higher EL may not be maskable */
2456 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2457 /* 64-bit masking rules are simple: exceptions to EL3
2458 * can't be masked, and exceptions to EL2 can only be
2459 * masked from Secure state. The HCR and SCR settings
2460 * don't affect the masking logic, only the interrupt routing.
2461 */
2462 if (target_el == 3 || !secure) {
2463 unmasked = 1;
2464 }
2465 } else {
2466 /* The old 32-bit-only environment has a more complicated
2467 * masking setup. HCR and SCR bits not only affect interrupt
2468 * routing but also change the behaviour of masking.
2469 */
2470 bool hcr, scr;
2471
2472 switch (excp_idx) {
2473 case EXCP_FIQ:
2474 /* If FIQs are routed to EL3 or EL2 then there are cases where
2475 * we override the CPSR.F in determining if the exception is
2476 * masked or not. If neither of these are set then we fall back
2477 * to the CPSR.F setting otherwise we further assess the state
2478 * below.
2479 */
ac656b16 2480 hcr = arm_hcr_el2_fmo(env);
7cd6de3b
PM
2481 scr = (env->cp15.scr_el3 & SCR_FIQ);
2482
2483 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2484 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2485 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2486 * when non-secure but only when FIQs are only routed to EL3.
2487 */
2488 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2489 break;
2490 case EXCP_IRQ:
2491 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2492 * we may override the CPSR.I masking when in non-secure state.
2493 * The SCR.IRQ setting has already been taken into consideration
2494 * when setting the target EL, so it does not have a further
2495 * affect here.
2496 */
ac656b16 2497 hcr = arm_hcr_el2_imo(env);
7cd6de3b
PM
2498 scr = false;
2499 break;
2500 default:
2501 g_assert_not_reached();
2502 }
2503
2504 if ((scr || hcr) && !secure) {
2505 unmasked = 1;
2506 }
57e3a0c7
GB
2507 }
2508 }
2509
2510 /* The PSTATE bits only mask the interrupt if we have not overriden the
2511 * ability above.
2512 */
2513 return unmasked || pstate_unmasked;
043b7f8d
EI
2514}
2515
ba1ba5cc
IM
2516#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2517#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2518#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2519
9467d44c 2520#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2521#define cpu_list arm_cpu_list
9467d44c 2522
c1e37810
PM
2523/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2524 *
2525 * If EL3 is 64-bit:
2526 * + NonSecure EL1 & 0 stage 1
2527 * + NonSecure EL1 & 0 stage 2
2528 * + NonSecure EL2
2529 * + Secure EL1 & EL0
2530 * + Secure EL3
2531 * If EL3 is 32-bit:
2532 * + NonSecure PL1 & 0 stage 1
2533 * + NonSecure PL1 & 0 stage 2
2534 * + NonSecure PL2
2535 * + Secure PL0 & PL1
2536 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2537 *
2538 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2539 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2540 * may differ in access permissions even if the VA->PA map is the same
2541 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2542 * translation, which means that we have one mmu_idx that deals with two
2543 * concatenated translation regimes [this sort of combined s1+2 TLB is
2544 * architecturally permitted]
2545 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2546 * handling via the TLB. The only way to do a stage 1 translation without
2547 * the immediate stage 2 translation is via the ATS or AT system insns,
2548 * which can be slow-pathed and always do a page table walk.
2549 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2550 * translation regimes, because they map reasonably well to each other
2551 * and they can't both be active at the same time.
2552 * This gives us the following list of mmu_idx values:
2553 *
2554 * NS EL0 (aka NS PL0) stage 1+2
2555 * NS EL1 (aka NS PL1) stage 1+2
2556 * NS EL2 (aka NS PL2)
2557 * S EL3 (aka S PL1)
2558 * S EL0 (aka S PL0)
2559 * S EL1 (not used if EL3 is 32 bit)
2560 * NS EL0+1 stage 2
2561 *
2562 * (The last of these is an mmu_idx because we want to be able to use the TLB
2563 * for the accesses done as part of a stage 1 page table walk, rather than
2564 * having to walk the stage 2 page table over and over.)
2565 *
3bef7012
PM
2566 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2567 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2568 * NS EL2 if we ever model a Cortex-R52).
2569 *
2570 * M profile CPUs are rather different as they do not have a true MMU.
2571 * They have the following different MMU indexes:
2572 * User
2573 * Privileged
62593718
PM
2574 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2575 * Privileged, execution priority negative (ditto)
66787c78
PM
2576 * If the CPU supports the v8M Security Extension then there are also:
2577 * Secure User
2578 * Secure Privileged
62593718
PM
2579 * Secure User, execution priority negative
2580 * Secure Privileged, execution priority negative
3bef7012 2581 *
8bd5c820
PM
2582 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2583 * are not quite the same -- different CPU types (most notably M profile
2584 * vs A/R profile) would like to use MMU indexes with different semantics,
2585 * but since we don't ever need to use all of those in a single CPU we
2586 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2587 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2588 * the same for any particular CPU.
2589 * Variables of type ARMMUIdx are always full values, and the core
2590 * index values are in variables of type 'int'.
2591 *
c1e37810
PM
2592 * Our enumeration includes at the end some entries which are not "true"
2593 * mmu_idx values in that they don't have corresponding TLBs and are only
2594 * valid for doing slow path page table walks.
2595 *
2596 * The constant names here are patterned after the general style of the names
2597 * of the AT/ATS operations.
2598 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2599 * For M profile we arrange them to have a bit for priv, a bit for negpri
2600 * and a bit for secure.
c1e37810 2601 */
e7b921c2 2602#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2603#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2604#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2605
62593718
PM
2606/* meanings of the bits for M profile mmu idx values */
2607#define ARM_MMU_IDX_M_PRIV 0x1
2608#define ARM_MMU_IDX_M_NEGPRI 0x2
2609#define ARM_MMU_IDX_M_S 0x4
2610
8bd5c820
PM
2611#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2612#define ARM_MMU_IDX_COREIDX_MASK 0x7
2613
c1e37810 2614typedef enum ARMMMUIdx {
8bd5c820
PM
2615 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2616 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2617 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2618 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2619 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2620 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2621 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2622 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2623 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2624 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2625 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2626 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2627 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2628 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2629 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2630 /* Indexes below here don't have TLBs and are used only for AT system
2631 * instructions or for the first stage of an S12 page table walk.
2632 */
8bd5c820
PM
2633 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2634 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2635} ARMMMUIdx;
2636
8bd5c820
PM
2637/* Bit macros for the core-mmu-index values for each index,
2638 * for use when calling tlb_flush_by_mmuidx() and friends.
2639 */
2640typedef enum ARMMMUIdxBit {
2641 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2642 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2643 ARMMMUIdxBit_S1E2 = 1 << 2,
2644 ARMMMUIdxBit_S1E3 = 1 << 3,
2645 ARMMMUIdxBit_S1SE0 = 1 << 4,
2646 ARMMMUIdxBit_S1SE1 = 1 << 5,
2647 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2648 ARMMMUIdxBit_MUser = 1 << 0,
2649 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2650 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2651 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2652 ARMMMUIdxBit_MSUser = 1 << 4,
2653 ARMMMUIdxBit_MSPriv = 1 << 5,
2654 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2655 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2656} ARMMMUIdxBit;
2657
f79fbf39 2658#define MMU_USER_IDX 0
c1e37810 2659
8bd5c820
PM
2660static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2661{
2662 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2663}
2664
2665static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2666{
e7b921c2
PM
2667 if (arm_feature(env, ARM_FEATURE_M)) {
2668 return mmu_idx | ARM_MMU_IDX_M;
2669 } else {
2670 return mmu_idx | ARM_MMU_IDX_A;
2671 }
8bd5c820
PM
2672}
2673
c1e37810
PM
2674/* Return the exception level we're running at if this is our mmu_idx */
2675static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2676{
8bd5c820
PM
2677 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2678 case ARM_MMU_IDX_A:
2679 return mmu_idx & 3;
e7b921c2 2680 case ARM_MMU_IDX_M:
62593718 2681 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2682 default:
2683 g_assert_not_reached();
2684 }
c1e37810
PM
2685}
2686
ec8e3340
PM
2687/* Return the MMU index for a v7M CPU in the specified security and
2688 * privilege state
2689 */
2690static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2691 bool secstate,
2692 bool priv)
b81ac0eb 2693{
62593718 2694 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
b81ac0eb 2695
ec8e3340 2696 if (priv) {
62593718 2697 mmu_idx |= ARM_MMU_IDX_M_PRIV;
b81ac0eb
PM
2698 }
2699
2700 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
62593718
PM
2701 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2702 }
2703
2704 if (secstate) {
2705 mmu_idx |= ARM_MMU_IDX_M_S;
b81ac0eb
PM
2706 }
2707
2708 return mmu_idx;
2709}
2710
ec8e3340
PM
2711/* Return the MMU index for a v7M CPU in the specified security state */
2712static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2713 bool secstate)
2714{
2715 bool priv = arm_current_el(env) != 0;
2716
2717 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2718}
2719
c1e37810 2720/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 2721static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
2722{
2723 int el = arm_current_el(env);
2724
e7b921c2 2725 if (arm_feature(env, ARM_FEATURE_M)) {
b81ac0eb 2726 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
3bef7012 2727
e7b921c2
PM
2728 return arm_to_core_mmu_idx(mmu_idx);
2729 }
2730
c1e37810 2731 if (el < 2 && arm_is_secure_below_el3(env)) {
8bd5c820 2732 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
c1e37810
PM
2733 }
2734 return el;
6ebbf390
JM
2735}
2736
9e273ef2
PM
2737/* Indexes used when registering address spaces with cpu_address_space_init */
2738typedef enum ARMASIdx {
2739 ARMASIdx_NS = 0,
2740 ARMASIdx_S = 1,
2741} ARMASIdx;
2742
533e93f1 2743/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2744static inline int arm_debug_target_el(CPUARMState *env)
2745{
81669b8b
SF
2746 bool secure = arm_is_secure(env);
2747 bool route_to_el2 = false;
2748
2749 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2750 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2751 env->cp15.mdcr_el2 & (1 << 8);
2752 }
2753
2754 if (route_to_el2) {
2755 return 2;
2756 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2757 !arm_el_is_aa64(env, 3) && secure) {
2758 return 3;
2759 } else {
2760 return 1;
2761 }
3a298203
PM
2762}
2763
43bbce7f
PM
2764static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2765{
2766 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2767 * CSSELR is RAZ/WI.
2768 */
2769 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2770}
2771
3a298203
PM
2772static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2773{
533e93f1
PM
2774 if (arm_is_secure(env)) {
2775 /* MDCR_EL3.SDD disables debug events from Secure state */
2776 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2777 || arm_current_el(env) == 3) {
2778 return false;
2779 }
2780 }
2781
dcbff19b 2782 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
2783 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2784 || (env->daif & PSTATE_D)) {
2785 return false;
2786 }
2787 }
2788 return true;
2789}
2790
2791static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2792{
533e93f1
PM
2793 int el = arm_current_el(env);
2794
2795 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2796 return aa64_generate_debug_exceptions(env);
2797 }
533e93f1
PM
2798
2799 if (arm_is_secure(env)) {
2800 int spd;
2801
2802 if (el == 0 && (env->cp15.sder & 1)) {
2803 /* SDER.SUIDEN means debug exceptions from Secure EL0
2804 * are always enabled. Otherwise they are controlled by
2805 * SDCR.SPD like those from other Secure ELs.
2806 */
2807 return true;
2808 }
2809
2810 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2811 switch (spd) {
2812 case 1:
2813 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2814 case 0:
2815 /* For 0b00 we return true if external secure invasive debug
2816 * is enabled. On real hardware this is controlled by external
2817 * signals to the core. QEMU always permits debug, and behaves
2818 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2819 */
2820 return true;
2821 case 2:
2822 return false;
2823 case 3:
2824 return true;
2825 }
2826 }
2827
2828 return el != 2;
3a298203
PM
2829}
2830
2831/* Return true if debugging exceptions are currently enabled.
2832 * This corresponds to what in ARM ARM pseudocode would be
2833 * if UsingAArch32() then
2834 * return AArch32.GenerateDebugExceptions()
2835 * else
2836 * return AArch64.GenerateDebugExceptions()
2837 * We choose to push the if() down into this function for clarity,
2838 * since the pseudocode has it at all callsites except for the one in
2839 * CheckSoftwareStep(), where it is elided because both branches would
2840 * always return the same value.
2841 *
2842 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2843 * don't yet implement those exception levels or their associated trap bits.
2844 */
2845static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2846{
2847 if (env->aarch64) {
2848 return aa64_generate_debug_exceptions(env);
2849 } else {
2850 return aa32_generate_debug_exceptions(env);
2851 }
2852}
2853
2854/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2855 * implicitly means this always returns false in pre-v8 CPUs.)
2856 */
2857static inline bool arm_singlestep_active(CPUARMState *env)
2858{
2859 return extract32(env->cp15.mdscr_el1, 0, 1)
2860 && arm_el_is_aa64(env, arm_debug_target_el(env))
2861 && arm_generate_debug_exceptions(env);
2862}
2863
f9fd40eb
PB
2864static inline bool arm_sctlr_b(CPUARMState *env)
2865{
2866 return
2867 /* We need not implement SCTLR.ITD in user-mode emulation, so
2868 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2869 * This lets people run BE32 binaries with "-cpu any".
2870 */
2871#ifndef CONFIG_USER_ONLY
2872 !arm_feature(env, ARM_FEATURE_V7) &&
2873#endif
2874 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2875}
2876
ed50ff78
PC
2877/* Return true if the processor is in big-endian mode. */
2878static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2879{
2880 int cur_el;
2881
2882 /* In 32bit endianness is determined by looking at CPSR's E bit */
2883 if (!is_a64(env)) {
b2e62d9a
PC
2884 return
2885#ifdef CONFIG_USER_ONLY
2886 /* In system mode, BE32 is modelled in line with the
2887 * architecture (as word-invariant big-endianness), where loads
2888 * and stores are done little endian but from addresses which
2889 * are adjusted by XORing with the appropriate constant. So the
2890 * endianness to use for the raw data access is not affected by
2891 * SCTLR.B.
2892 * In user mode, however, we model BE32 as byte-invariant
2893 * big-endianness (because user-only code cannot tell the
2894 * difference), and so we need to use a data access endianness
2895 * that depends on SCTLR.B.
2896 */
2897 arm_sctlr_b(env) ||
2898#endif
2899 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2900 }
2901
2902 cur_el = arm_current_el(env);
2903
2904 if (cur_el == 0) {
2905 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2906 }
2907
2908 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2909}
2910
022c62cb 2911#include "exec/cpu-all.h"
622ed360 2912
3926cc84
AG
2913/* Bit usage in the TB flags field: bit 31 indicates whether we are
2914 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2915 * We put flags which are shared between 32 and 64 bit mode at the top
2916 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
2917 */
2918#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2919#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2920#define ARM_TBFLAG_MMUIDX_SHIFT 28
2921#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2922#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2923#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2924#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2925#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2926/* Target EL if we take a floating-point-disabled exception */
2927#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2928#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
2929
2930/* Bit usage when in AArch32 state: */
a1705768
PM
2931#define ARM_TBFLAG_THUMB_SHIFT 0
2932#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2933#define ARM_TBFLAG_VECLEN_SHIFT 1
2934#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2935#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2936#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2937#define ARM_TBFLAG_VFPEN_SHIFT 7
2938#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2939#define ARM_TBFLAG_CONDEXEC_SHIFT 8
2940#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2941#define ARM_TBFLAG_SCTLR_B_SHIFT 16
2942#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2943/* We store the bottom two bits of the CPAR as TB flags and handle
2944 * checks on the other bits at runtime
2945 */
647f767b 2946#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 2947#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2948/* Indicates whether cp register reads and writes by guest code should access
2949 * the secure or nonsecure bank of banked registers; note that this is not
2950 * the same thing as the current security state of the processor!
2951 */
647f767b 2952#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 2953#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2954#define ARM_TBFLAG_BE_DATA_SHIFT 20
2955#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2956/* For M profile only, Handler (ie not Thread) mode */
2957#define ARM_TBFLAG_HANDLER_SHIFT 21
2958#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
4730fb85
PM
2959/* For M profile only, whether we should generate stack-limit checks */
2960#define ARM_TBFLAG_STACKCHECK_SHIFT 22
2961#define ARM_TBFLAG_STACKCHECK_MASK (1 << ARM_TBFLAG_STACKCHECK_SHIFT)
3926cc84 2962
86fb3fa4
TH
2963/* Bit usage when in AArch64 state */
2964#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2965#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2966#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2967#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
2968#define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2969#define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2970#define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2971#define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768
PM
2972
2973/* some convenience accessor macros */
3926cc84
AG
2974#define ARM_TBFLAG_AARCH64_STATE(F) \
2975 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2976#define ARM_TBFLAG_MMUIDX(F) \
2977 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2978#define ARM_TBFLAG_SS_ACTIVE(F) \
2979 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2980#define ARM_TBFLAG_PSTATE_SS(F) \
2981 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2982#define ARM_TBFLAG_FPEXC_EL(F) \
2983 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
2984#define ARM_TBFLAG_THUMB(F) \
2985 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2986#define ARM_TBFLAG_VECLEN(F) \
2987 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2988#define ARM_TBFLAG_VECSTRIDE(F) \
2989 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2990#define ARM_TBFLAG_VFPEN(F) \
2991 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2992#define ARM_TBFLAG_CONDEXEC(F) \
2993 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2994#define ARM_TBFLAG_SCTLR_B(F) \
2995 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2996#define ARM_TBFLAG_XSCALE_CPAR(F) \
2997 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2998#define ARM_TBFLAG_NS(F) \
2999 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
3000#define ARM_TBFLAG_BE_DATA(F) \
3001 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
3002#define ARM_TBFLAG_HANDLER(F) \
3003 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
4730fb85
PM
3004#define ARM_TBFLAG_STACKCHECK(F) \
3005 (((F) & ARM_TBFLAG_STACKCHECK_MASK) >> ARM_TBFLAG_STACKCHECK_SHIFT)
86fb3fa4
TH
3006#define ARM_TBFLAG_TBI0(F) \
3007 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
3008#define ARM_TBFLAG_TBI1(F) \
3009 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
3010#define ARM_TBFLAG_SVEEXC_EL(F) \
3011 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
3012#define ARM_TBFLAG_ZCR_LEN(F) \
3013 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768 3014
f9fd40eb
PB
3015static inline bool bswap_code(bool sctlr_b)
3016{
3017#ifdef CONFIG_USER_ONLY
3018 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3019 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3020 * would also end up as a mixed-endian mode with BE code, LE data.
3021 */
3022 return
3023#ifdef TARGET_WORDS_BIGENDIAN
3024 1 ^
3025#endif
3026 sctlr_b;
3027#else
e334bd31
PB
3028 /* All code access in ARM is little endian, and there are no loaders
3029 * doing swaps that need to be reversed
f9fd40eb
PB
3030 */
3031 return 0;
3032#endif
3033}
3034
c3ae85fc
PB
3035#ifdef CONFIG_USER_ONLY
3036static inline bool arm_cpu_bswap_data(CPUARMState *env)
3037{
3038 return
3039#ifdef TARGET_WORDS_BIGENDIAN
3040 1 ^
3041#endif
3042 arm_cpu_data_is_big_endian(env);
3043}
3044#endif
3045
86fb3fa4
TH
3046#ifndef CONFIG_USER_ONLY
3047/**
3048 * arm_regime_tbi0:
3049 * @env: CPUARMState
3050 * @mmu_idx: MMU index indicating required translation regime
3051 *
3052 * Extracts the TBI0 value from the appropriate TCR for the current EL
3053 *
3054 * Returns: the TBI0 value.
3055 */
3056uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
3057
3058/**
3059 * arm_regime_tbi1:
3060 * @env: CPUARMState
3061 * @mmu_idx: MMU index indicating required translation regime
3062 *
3063 * Extracts the TBI1 value from the appropriate TCR for the current EL
3064 *
3065 * Returns: the TBI1 value.
3066 */
3067uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
3068#else
3069/* We can't handle tagged addresses properly in user-only mode */
3070static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
3071{
3072 return 0;
3073}
3074
3075static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
3076{
3077 return 0;
3078}
3079#endif
3080
a9e01311
RH
3081void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3082 target_ulong *cs_base, uint32_t *flags);
6b917547 3083
98128601
RH
3084enum {
3085 QEMU_PSCI_CONDUIT_DISABLED = 0,
3086 QEMU_PSCI_CONDUIT_SMC = 1,
3087 QEMU_PSCI_CONDUIT_HVC = 2,
3088};
3089
017518c1
PM
3090#ifndef CONFIG_USER_ONLY
3091/* Return the address space index to use for a memory access */
3092static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3093{
3094 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3095}
5ce4ff65
PM
3096
3097/* Return the AddressSpace to use for a memory access
3098 * (which depends on whether the access is S or NS, and whether
3099 * the board gave us a separate AddressSpace for S accesses).
3100 */
3101static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3102{
3103 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3104}
017518c1
PM
3105#endif
3106
bd7d00fc 3107/**
b5c53d1b
AL
3108 * arm_register_pre_el_change_hook:
3109 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3110 * CPU changes exception level or mode. The hook function will be
3111 * passed a pointer to the ARMCPU and the opaque data pointer passed
3112 * to this function when the hook was registered.
b5c53d1b
AL
3113 *
3114 * Note that if a pre-change hook is called, any registered post-change hooks
3115 * are guaranteed to subsequently be called.
bd7d00fc 3116 */
b5c53d1b 3117void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3118 void *opaque);
b5c53d1b
AL
3119/**
3120 * arm_register_el_change_hook:
3121 * Register a hook function which will be called immediately after this
3122 * CPU changes exception level or mode. The hook function will be
3123 * passed a pointer to the ARMCPU and the opaque data pointer passed
3124 * to this function when the hook was registered.
3125 *
3126 * Note that any registered hooks registered here are guaranteed to be called
3127 * if pre-change hooks have been.
3128 */
3129void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3130 *opaque);
bd7d00fc 3131
9a2b5256
RH
3132/**
3133 * aa32_vfp_dreg:
3134 * Return a pointer to the Dn register within env in 32-bit mode.
3135 */
3136static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3137{
c39c2b90 3138 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3139}
3140
3141/**
3142 * aa32_vfp_qreg:
3143 * Return a pointer to the Qn register within env in 32-bit mode.
3144 */
3145static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3146{
c39c2b90 3147 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3148}
3149
3150/**
3151 * aa64_vfp_qreg:
3152 * Return a pointer to the Qn register within env in 64-bit mode.
3153 */
3154static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3155{
c39c2b90 3156 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3157}
3158
028e2a7b
RH
3159/* Shared between translate-sve.c and sve_helper.c. */
3160extern const uint64_t pred_esz_masks[4];
3161
2c0262af 3162#endif