]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Move TBFLAG_AM32 bits to the top
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
68970d1e 27#include "qapi/qapi-types-common.h"
9042c0e2 28
ca759f9e
AB
29/* ARM processors have a weak memory model */
30#define TCG_GUEST_DEFAULT_MO (0)
31
e24fd076
DG
32#ifdef TARGET_AARCH64
33#define KVM_HAVE_MCE_INJECTION 1
34#endif
35
b8a9e8f1
FB
36#define EXCP_UDEF 1 /* undefined instruction */
37#define EXCP_SWI 2 /* software interrupt */
38#define EXCP_PREFETCH_ABORT 3
39#define EXCP_DATA_ABORT 4
b5ff1b31
FB
40#define EXCP_IRQ 5
41#define EXCP_FIQ 6
06c949e6 42#define EXCP_BKPT 7
9ee6e8bb 43#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 44#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 45#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 46#define EXCP_HYP_TRAP 12
e0d6e6a5 47#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
48#define EXCP_VIRQ 14
49#define EXCP_VFIQ 15
19a6e31c 50#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 51#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 52#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 53#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 54#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
55#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
56#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 57/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
58
59#define ARMV7M_EXCP_RESET 1
60#define ARMV7M_EXCP_NMI 2
61#define ARMV7M_EXCP_HARD 3
62#define ARMV7M_EXCP_MEM 4
63#define ARMV7M_EXCP_BUS 5
64#define ARMV7M_EXCP_USAGE 6
1e577cc7 65#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
66#define ARMV7M_EXCP_SVC 11
67#define ARMV7M_EXCP_DEBUG 12
68#define ARMV7M_EXCP_PENDSV 14
69#define ARMV7M_EXCP_SYSTICK 15
2c0262af 70
acf94941
PM
71/* For M profile, some registers are banked secure vs non-secure;
72 * these are represented as a 2-element array where the first element
73 * is the non-secure copy and the second is the secure copy.
74 * When the CPU does not have implement the security extension then
75 * only the first element is used.
76 * This means that the copy for the current security state can be
77 * accessed via env->registerfield[env->v7m.secure] (whether the security
78 * extension is implemented or not).
79 */
4a16724f
PM
80enum {
81 M_REG_NS = 0,
82 M_REG_S = 1,
83 M_REG_NUM_BANKS = 2,
84};
acf94941 85
403946c0
RH
86/* ARM-specific interrupt pending bits. */
87#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
88#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
89#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 90
e4fe830b
PM
91/* The usual mapping for an AArch64 system register to its AArch32
92 * counterpart is for the 32 bit world to have access to the lower
93 * half only (with writes leaving the upper half untouched). It's
94 * therefore useful to be able to pass TCG the offset of the least
95 * significant half of a uint64_t struct member.
96 */
97#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 98#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 99#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
100#else
101#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 102#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
103#endif
104
136e67e9 105/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
106#define ARM_CPU_IRQ 0
107#define ARM_CPU_FIQ 1
136e67e9
EI
108#define ARM_CPU_VIRQ 2
109#define ARM_CPU_VFIQ 3
403946c0 110
aaa1f954
EI
111/* ARM-specific extra insn start words:
112 * 1: Conditional execution bits
113 * 2: Partial exception syndrome for data aborts
114 */
115#define TARGET_INSN_START_EXTRA_WORDS 2
116
117/* The 2nd extra word holding syndrome info for data aborts does not use
118 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
119 * help the sleb128 encoder do a better job.
120 * When restoring the CPU state, we shift it back up.
121 */
122#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
123#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 124
b7bcbe95
FB
125/* We currently assume float and double are IEEE single and double
126 precision respectively.
127 Doing runtime conversions is tricky because VFP registers may contain
128 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
129 s<2n> maps to the least significant half of d<n>
130 s<2n+1> maps to the most significant half of d<n>
131 */
b7bcbe95 132
200bf5b7
AB
133/**
134 * DynamicGDBXMLInfo:
135 * @desc: Contains the XML descriptions.
448d4d14
AB
136 * @num: Number of the registers in this XML seen by GDB.
137 * @data: A union with data specific to the set of registers
138 * @cpregs_keys: Array that contains the corresponding Key of
139 * a given cpreg with the same order of the cpreg
140 * in the XML description.
200bf5b7
AB
141 */
142typedef struct DynamicGDBXMLInfo {
143 char *desc;
448d4d14
AB
144 int num;
145 union {
146 struct {
147 uint32_t *keys;
148 } cpregs;
149 } data;
200bf5b7
AB
150} DynamicGDBXMLInfo;
151
55d284af
PM
152/* CPU state for each instance of a generic timer (in cp15 c14) */
153typedef struct ARMGenericTimer {
154 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 155 uint64_t ctl; /* Timer Control register */
55d284af
PM
156} ARMGenericTimer;
157
8c94b071
RH
158#define GTIMER_PHYS 0
159#define GTIMER_VIRT 1
160#define GTIMER_HYP 2
161#define GTIMER_SEC 3
162#define GTIMER_HYPVIRT 4
163#define NUM_GTIMERS 5
55d284af 164
11f136ee
FA
165typedef struct {
166 uint64_t raw_tcr;
167 uint32_t mask;
168 uint32_t base_mask;
169} TCR;
170
e9152ee9
RDC
171#define VTCR_NSW (1u << 29)
172#define VTCR_NSA (1u << 30)
173#define VSTCR_SW VTCR_NSW
174#define VSTCR_SA VTCR_NSA
175
c39c2b90
RH
176/* Define a maximum sized vector register.
177 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
178 * For 64-bit, this is a 2048-bit SVE register.
179 *
180 * Note that the mapping between S, D, and Q views of the register bank
181 * differs between AArch64 and AArch32.
182 * In AArch32:
183 * Qn = regs[n].d[1]:regs[n].d[0]
184 * Dn = regs[n / 2].d[n & 1]
185 * Sn = regs[n / 4].d[n % 4 / 2],
186 * bits 31..0 for even n, and bits 63..32 for odd n
187 * (and regs[16] to regs[31] are inaccessible)
188 * In AArch64:
189 * Zn = regs[n].d[*]
190 * Qn = regs[n].d[1]:regs[n].d[0]
191 * Dn = regs[n].d[0]
192 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 193 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
194 *
195 * This corresponds to the architecturally defined mapping between
196 * the two execution states, and means we do not need to explicitly
197 * map these registers when changing states.
198 *
199 * Align the data for use with TCG host vector operations.
200 */
201
202#ifdef TARGET_AARCH64
203# define ARM_MAX_VQ 16
0df9142d 204void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
eb94284d 205void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
206#else
207# define ARM_MAX_VQ 1
0df9142d 208static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
eb94284d 209static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
210#endif
211
212typedef struct ARMVectorReg {
213 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
214} ARMVectorReg;
215
3c7d3086 216#ifdef TARGET_AARCH64
991ad91b 217/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 218typedef struct ARMPredicateReg {
46417784 219 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 220} ARMPredicateReg;
991ad91b
RH
221
222/* In AArch32 mode, PAC keys do not exist at all. */
223typedef struct ARMPACKey {
224 uint64_t lo, hi;
225} ARMPACKey;
3c7d3086
RH
226#endif
227
3902bfc6
RH
228/* See the commentary above the TBFLAG field definitions. */
229typedef struct CPUARMTBFlags {
230 uint32_t flags;
a378206a 231 target_ulong flags2;
3902bfc6 232} CPUARMTBFlags;
c39c2b90 233
2c0262af 234typedef struct CPUARMState {
b5ff1b31 235 /* Regs for current mode. */
2c0262af 236 uint32_t regs[16];
3926cc84
AG
237
238 /* 32/64 switch only happens when taking and returning from
239 * exceptions so the overlap semantics are taken care of then
240 * instead of having a complicated union.
241 */
242 /* Regs for A64 mode. */
243 uint64_t xregs[32];
244 uint64_t pc;
d356312f
PM
245 /* PSTATE isn't an architectural register for ARMv8. However, it is
246 * convenient for us to assemble the underlying state into a 32 bit format
247 * identical to the architectural format used for the SPSR. (This is also
248 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
249 * 'pstate' register are.) Of the PSTATE bits:
250 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
251 * semantics as for AArch32, as described in the comments on each field)
252 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 253 * DAIF (exception masks) are kept in env->daif
f6e52eaa 254 * BTYPE is kept in env->btype
d356312f 255 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
256 */
257 uint32_t pstate;
258 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
259
fdd1b228 260 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 261 CPUARMTBFlags hflags;
fdd1b228 262
b90372ad 263 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 264 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
265 the whole CPSR. */
266 uint32_t uncached_cpsr;
267 uint32_t spsr;
268
269 /* Banked registers. */
28c9457d 270 uint64_t banked_spsr[8];
0b7d409d
FA
271 uint32_t banked_r13[8];
272 uint32_t banked_r14[8];
3b46e624 273
b5ff1b31
FB
274 /* These hold r8-r12. */
275 uint32_t usr_regs[5];
276 uint32_t fiq_regs[5];
3b46e624 277
2c0262af
FB
278 /* cpsr flag cache for faster execution */
279 uint32_t CF; /* 0 or 1 */
280 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
281 uint32_t NF; /* N is bit 31. All other bits are undefined. */
282 uint32_t ZF; /* Z set if zero. */
99c475ab 283 uint32_t QF; /* 0 or 1 */
9ee6e8bb 284 uint32_t GE; /* cpsr[19:16] */
b26eefb6 285 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 289
1b174238 290 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 291 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 292
b5ff1b31
FB
293 /* System control coprocessor (cp15) */
294 struct {
40f137e1 295 uint32_t c0_cpuid;
b85a1fd6
FA
296 union { /* Cache size selection */
297 struct {
298 uint64_t _unused_csselr0;
299 uint64_t csselr_ns;
300 uint64_t _unused_csselr1;
301 uint64_t csselr_s;
302 };
303 uint64_t csselr_el[4];
304 };
137feaa9
FA
305 union { /* System control register. */
306 struct {
307 uint64_t _unused_sctlr;
308 uint64_t sctlr_ns;
309 uint64_t hsctlr;
310 uint64_t sctlr_s;
311 };
312 uint64_t sctlr_el[4];
313 };
7ebd5f2e 314 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 315 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 316 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 317 uint64_t sder; /* Secure debug enable register. */
77022576 318 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
319 union { /* MMU translation table base 0. */
320 struct {
321 uint64_t _unused_ttbr0_0;
322 uint64_t ttbr0_ns;
323 uint64_t _unused_ttbr0_1;
324 uint64_t ttbr0_s;
325 };
326 uint64_t ttbr0_el[4];
327 };
328 union { /* MMU translation table base 1. */
329 struct {
330 uint64_t _unused_ttbr1_0;
331 uint64_t ttbr1_ns;
332 uint64_t _unused_ttbr1_1;
333 uint64_t ttbr1_s;
334 };
335 uint64_t ttbr1_el[4];
336 };
b698e9cf 337 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 338 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee
FA
339 /* MMU translation table base control. */
340 TCR tcr_el[4];
68e9c2fe 341 TCR vtcr_el2; /* Virtualization Translation Control. */
e9152ee9 342 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
343 uint32_t c2_data; /* MPU data cacheable bits. */
344 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
345 union { /* MMU domain access control register
346 * MPU write buffer control.
347 */
348 struct {
349 uint64_t dacr_ns;
350 uint64_t dacr_s;
351 };
352 struct {
353 uint64_t dacr32_el2;
354 };
355 };
7e09797c
PM
356 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
357 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 358 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 359 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
360 union { /* Fault status registers. */
361 struct {
362 uint64_t ifsr_ns;
363 uint64_t ifsr_s;
364 };
365 struct {
366 uint64_t ifsr32_el2;
367 };
368 };
4a7e2d73
FA
369 union {
370 struct {
371 uint64_t _unused_dfsr;
372 uint64_t dfsr_ns;
373 uint64_t hsr;
374 uint64_t dfsr_s;
375 };
376 uint64_t esr_el[4];
377 };
ce819861 378 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
379 union { /* Fault address registers. */
380 struct {
381 uint64_t _unused_far0;
382#ifdef HOST_WORDS_BIGENDIAN
383 uint32_t ifar_ns;
384 uint32_t dfar_ns;
385 uint32_t ifar_s;
386 uint32_t dfar_s;
387#else
388 uint32_t dfar_ns;
389 uint32_t ifar_ns;
390 uint32_t dfar_s;
391 uint32_t ifar_s;
392#endif
393 uint64_t _unused_far3;
394 };
395 uint64_t far_el[4];
396 };
59e05530 397 uint64_t hpfar_el2;
2a5a9abd 398 uint64_t hstr_el2;
01c097f7
FA
399 union { /* Translation result. */
400 struct {
401 uint64_t _unused_par_0;
402 uint64_t par_ns;
403 uint64_t _unused_par_1;
404 uint64_t par_s;
405 };
406 uint64_t par_el[4];
407 };
6cb0b013 408
b5ff1b31
FB
409 uint32_t c9_insn; /* Cache lockdown registers. */
410 uint32_t c9_data;
8521466b
AF
411 uint64_t c9_pmcr; /* performance monitor control register */
412 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
413 uint64_t c9_pmovsr; /* perf monitor overflow status */
414 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 415 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 416 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
417 union { /* Memory attribute redirection */
418 struct {
419#ifdef HOST_WORDS_BIGENDIAN
420 uint64_t _unused_mair_0;
421 uint32_t mair1_ns;
422 uint32_t mair0_ns;
423 uint64_t _unused_mair_1;
424 uint32_t mair1_s;
425 uint32_t mair0_s;
426#else
427 uint64_t _unused_mair_0;
428 uint32_t mair0_ns;
429 uint32_t mair1_ns;
430 uint64_t _unused_mair_1;
431 uint32_t mair0_s;
432 uint32_t mair1_s;
433#endif
434 };
435 uint64_t mair_el[4];
436 };
fb6c91ba
GB
437 union { /* vector base address register */
438 struct {
439 uint64_t _unused_vbar;
440 uint64_t vbar_ns;
441 uint64_t hvbar;
442 uint64_t vbar_s;
443 };
444 uint64_t vbar_el[4];
445 };
e89e51a1 446 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
447 struct { /* FCSE PID. */
448 uint32_t fcseidr_ns;
449 uint32_t fcseidr_s;
450 };
451 union { /* Context ID. */
452 struct {
453 uint64_t _unused_contextidr_0;
454 uint64_t contextidr_ns;
455 uint64_t _unused_contextidr_1;
456 uint64_t contextidr_s;
457 };
458 uint64_t contextidr_el[4];
459 };
460 union { /* User RW Thread register. */
461 struct {
462 uint64_t tpidrurw_ns;
463 uint64_t tpidrprw_ns;
464 uint64_t htpidr;
465 uint64_t _tpidr_el3;
466 };
467 uint64_t tpidr_el[4];
468 };
469 /* The secure banks of these registers don't map anywhere */
470 uint64_t tpidrurw_s;
471 uint64_t tpidrprw_s;
472 uint64_t tpidruro_s;
473
474 union { /* User RO Thread register. */
475 uint64_t tpidruro_ns;
476 uint64_t tpidrro_el[1];
477 };
a7adc4b7
PM
478 uint64_t c14_cntfrq; /* Counter Frequency register */
479 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 480 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 481 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 482 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 483 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
484 uint32_t c15_ticonfig; /* TI925T configuration byte. */
485 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
486 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
487 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
488 uint32_t c15_config_base_address; /* SCU base address. */
489 uint32_t c15_diagnostic; /* diagnostic register */
490 uint32_t c15_power_diagnostic;
491 uint32_t c15_power_control; /* power control */
0b45451e
PM
492 uint64_t dbgbvr[16]; /* breakpoint value registers */
493 uint64_t dbgbcr[16]; /* breakpoint control registers */
494 uint64_t dbgwvr[16]; /* watchpoint value registers */
495 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 496 uint64_t mdscr_el1;
1424ca8d 497 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 498 uint64_t mdcr_el2;
5513c3ab 499 uint64_t mdcr_el3;
5d05b9d4
AL
500 /* Stores the architectural value of the counter *the last time it was
501 * updated* by pmccntr_op_start. Accesses should always be surrounded
502 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
503 * architecturally-correct value is being read/set.
7c2cb42b 504 */
c92c0687 505 uint64_t c15_ccnt;
5d05b9d4
AL
506 /* Stores the delta between the architectural value and the underlying
507 * cycle count during normal operation. It is used to update c15_ccnt
508 * to be the correct architectural value before accesses. During
509 * accesses, c15_ccnt_delta contains the underlying count being used
510 * for the access, after which it reverts to the delta value in
511 * pmccntr_op_finish.
512 */
513 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
514 uint64_t c14_pmevcntr[31];
515 uint64_t c14_pmevcntr_delta[31];
516 uint64_t c14_pmevtyper[31];
8521466b 517 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 518 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 519 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
520 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
521 uint64_t gcr_el1;
522 uint64_t rgsr_el1;
b5ff1b31 523 } cp15;
40f137e1 524
9ee6e8bb 525 struct {
fb602cb7
PM
526 /* M profile has up to 4 stack pointers:
527 * a Main Stack Pointer and a Process Stack Pointer for each
528 * of the Secure and Non-Secure states. (If the CPU doesn't support
529 * the security extension then it has only two SPs.)
530 * In QEMU we always store the currently active SP in regs[13],
531 * and the non-active SP for the current security state in
532 * v7m.other_sp. The stack pointers for the inactive security state
533 * are stored in other_ss_msp and other_ss_psp.
534 * switch_v7m_security_state() is responsible for rearranging them
535 * when we change security state.
536 */
9ee6e8bb 537 uint32_t other_sp;
fb602cb7
PM
538 uint32_t other_ss_msp;
539 uint32_t other_ss_psp;
4a16724f
PM
540 uint32_t vecbase[M_REG_NUM_BANKS];
541 uint32_t basepri[M_REG_NUM_BANKS];
542 uint32_t control[M_REG_NUM_BANKS];
543 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
544 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
545 uint32_t hfsr; /* HardFault Status */
546 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 547 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 548 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 549 uint32_t bfar; /* BusFault Address */
bed079da 550 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 551 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 552 int exception;
4a16724f
PM
553 uint32_t primask[M_REG_NUM_BANKS];
554 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 555 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 556 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 557 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 558 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
559 uint32_t msplim[M_REG_NUM_BANKS];
560 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
561 uint32_t fpcar[M_REG_NUM_BANKS];
562 uint32_t fpccr[M_REG_NUM_BANKS];
563 uint32_t fpdscr[M_REG_NUM_BANKS];
564 uint32_t cpacr[M_REG_NUM_BANKS];
565 uint32_t nsacr;
8128c8e8 566 int ltpsize;
9ee6e8bb
PB
567 } v7m;
568
abf1172f
PM
569 /* Information associated with an exception about to be taken:
570 * code which raises an exception must set cs->exception_index and
571 * the relevant parts of this structure; the cpu_do_interrupt function
572 * will then set the guest-visible registers as part of the exception
573 * entry process.
574 */
575 struct {
576 uint32_t syndrome; /* AArch64 format syndrome register */
577 uint32_t fsr; /* AArch32 format fault status register info */
578 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 579 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
580 /* If we implement EL2 we will also need to store information
581 * about the intermediate physical address for stage 2 faults.
582 */
583 } exception;
584
202ccb6b
DG
585 /* Information associated with an SError */
586 struct {
587 uint8_t pending;
588 uint8_t has_esr;
589 uint64_t esr;
590 } serror;
591
1711bfa5
BM
592 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
593
ed89f078
PM
594 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
595 uint32_t irq_line_state;
596
fe1479c3
PB
597 /* Thumb-2 EE state. */
598 uint32_t teecr;
599 uint32_t teehbr;
600
b7bcbe95
FB
601 /* VFP coprocessor state. */
602 struct {
c39c2b90 603 ARMVectorReg zregs[32];
b7bcbe95 604
3c7d3086
RH
605#ifdef TARGET_AARCH64
606 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 607#define FFR_PRED_NUM 16
3c7d3086 608 ARMPredicateReg pregs[17];
516e246a
RH
609 /* Scratch space for aa64 sve predicate temporary. */
610 ARMPredicateReg preg_tmp;
3c7d3086
RH
611#endif
612
b7bcbe95 613 /* We store these fpcsr fields separately for convenience. */
a4d58462 614 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
615 int vec_len;
616 int vec_stride;
617
a4d58462
RH
618 uint32_t xregs[16];
619
516e246a 620 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 621 uint32_t scratch[8];
3b46e624 622
d81ce0ef
AB
623 /* There are a number of distinct float control structures:
624 *
625 * fp_status: is the "normal" fp status.
626 * fp_status_fp16: used for half-precision calculations
627 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
628 * standard_fp_status_fp16 : used for half-precision
629 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
630 *
631 * Half-precision operations are governed by a separate
632 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
633 * status structure to control this.
634 *
635 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
636 * round-to-nearest and is used by any operations (generally
637 * Neon) which the architecture defines as controlled by the
638 * standard FPSCR value rather than the FPSCR.
3a492f3a 639 *
aaae563b
PM
640 * The "standard FPSCR but for fp16 ops" is needed because
641 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
642 * using a fixed value for it.
643 *
3a492f3a
PM
644 * To avoid having to transfer exception bits around, we simply
645 * say that the FPSCR cumulative exception flags are the logical
aaae563b 646 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
647 * only thing which needs to read the exception flags being
648 * an explicit FPSCR read.
649 */
53cd6637 650 float_status fp_status;
d81ce0ef 651 float_status fp_status_f16;
3a492f3a 652 float_status standard_fp_status;
aaae563b 653 float_status standard_fp_status_f16;
5be5e8ed
RH
654
655 /* ZCR_EL[1-3] */
656 uint64_t zcr_el[4];
b7bcbe95 657 } vfp;
03d05e2d
PM
658 uint64_t exclusive_addr;
659 uint64_t exclusive_val;
660 uint64_t exclusive_high;
b7bcbe95 661
18c9b560
AZ
662 /* iwMMXt coprocessor state. */
663 struct {
664 uint64_t regs[16];
665 uint64_t val;
666
667 uint32_t cregs[16];
668 } iwmmxt;
669
991ad91b 670#ifdef TARGET_AARCH64
108b3ba8
RH
671 struct {
672 ARMPACKey apia;
673 ARMPACKey apib;
674 ARMPACKey apda;
675 ARMPACKey apdb;
676 ARMPACKey apga;
677 } keys;
991ad91b
RH
678#endif
679
ce4defa0
PB
680#if defined(CONFIG_USER_ONLY)
681 /* For usermode syscall translation. */
682 int eabi;
683#endif
684
46747d15 685 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
686 struct CPUWatchpoint *cpu_watchpoint[16];
687
1f5c00cf
AB
688 /* Fields up to this point are cleared by a CPU reset */
689 struct {} end_reset_fields;
690
e8b5fae5 691 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 692
581be094 693 /* Internal CPU feature flags. */
918f5dca 694 uint64_t features;
581be094 695
6cb0b013
PC
696 /* PMSAv7 MPU */
697 struct {
698 uint32_t *drbar;
699 uint32_t *drsr;
700 uint32_t *dracr;
4a16724f 701 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
702 } pmsav7;
703
0e1a46bb
PM
704 /* PMSAv8 MPU */
705 struct {
706 /* The PMSAv8 implementation also shares some PMSAv7 config
707 * and state:
708 * pmsav7.rnr (region number register)
709 * pmsav7_dregion (number of configured regions)
710 */
4a16724f
PM
711 uint32_t *rbar[M_REG_NUM_BANKS];
712 uint32_t *rlar[M_REG_NUM_BANKS];
713 uint32_t mair0[M_REG_NUM_BANKS];
714 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
715 } pmsav8;
716
9901c576
PM
717 /* v8M SAU */
718 struct {
719 uint32_t *rbar;
720 uint32_t *rlar;
721 uint32_t rnr;
722 uint32_t ctrl;
723 } sau;
724
983fe826 725 void *nvic;
462a8bc6 726 const struct arm_boot_info *boot_info;
d3a3e529
VK
727 /* Store GICv3CPUState to access from this struct */
728 void *gicv3state;
0e0c030c
RH
729
730#ifdef TARGET_TAGGED_ADDRESSES
731 /* Linux syscall tagged address support */
732 bool tagged_addr_enable;
733#endif
2c0262af
FB
734} CPUARMState;
735
5fda9504
TH
736static inline void set_feature(CPUARMState *env, int feature)
737{
738 env->features |= 1ULL << feature;
739}
740
741static inline void unset_feature(CPUARMState *env, int feature)
742{
743 env->features &= ~(1ULL << feature);
744}
745
bd7d00fc 746/**
08267487 747 * ARMELChangeHookFn:
bd7d00fc
PM
748 * type of a function which can be registered via arm_register_el_change_hook()
749 * to get callbacks when the CPU changes its exception level or mode.
750 */
08267487
AL
751typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
752typedef struct ARMELChangeHook ARMELChangeHook;
753struct ARMELChangeHook {
754 ARMELChangeHookFn *hook;
755 void *opaque;
756 QLIST_ENTRY(ARMELChangeHook) node;
757};
062ba099
AB
758
759/* These values map onto the return values for
760 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
761typedef enum ARMPSCIState {
d5affb0d
AJ
762 PSCI_ON = 0,
763 PSCI_OFF = 1,
062ba099
AB
764 PSCI_ON_PENDING = 2
765} ARMPSCIState;
766
962fcbf2
RH
767typedef struct ARMISARegisters ARMISARegisters;
768
74e75564
PB
769/**
770 * ARMCPU:
771 * @env: #CPUARMState
772 *
773 * An ARM CPU core.
774 */
775struct ARMCPU {
776 /*< private >*/
777 CPUState parent_obj;
778 /*< public >*/
779
5b146dc7 780 CPUNegativeOffsetState neg;
74e75564
PB
781 CPUARMState env;
782
783 /* Coprocessor information */
784 GHashTable *cp_regs;
785 /* For marshalling (mostly coprocessor) register state between the
786 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
787 * we use these arrays.
788 */
789 /* List of register indexes managed via these arrays; (full KVM style
790 * 64 bit indexes, not CPRegInfo 32 bit indexes)
791 */
792 uint64_t *cpreg_indexes;
793 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
794 uint64_t *cpreg_values;
795 /* Length of the indexes, values, reset_values arrays */
796 int32_t cpreg_array_len;
797 /* These are used only for migration: incoming data arrives in
798 * these fields and is sanity checked in post_load before copying
799 * to the working data structures above.
800 */
801 uint64_t *cpreg_vmstate_indexes;
802 uint64_t *cpreg_vmstate_values;
803 int32_t cpreg_vmstate_array_len;
804
448d4d14 805 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 806 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 807
74e75564
PB
808 /* Timers used by the generic (architected) timer */
809 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
810 /*
811 * Timer used by the PMU. Its state is restored after migration by
812 * pmu_op_finish() - it does not need other handling during migration
813 */
814 QEMUTimer *pmu_timer;
74e75564
PB
815 /* GPIO outputs for generic timer */
816 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
817 /* GPIO output for GICv3 maintenance interrupt signal */
818 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
819 /* GPIO output for the PMU interrupt */
820 qemu_irq pmu_interrupt;
74e75564
PB
821
822 /* MemoryRegion to use for secure physical accesses */
823 MemoryRegion *secure_memory;
824
8bce44a2
RH
825 /* MemoryRegion to use for allocation tag accesses */
826 MemoryRegion *tag_memory;
827 MemoryRegion *secure_tag_memory;
828
181962fd
PM
829 /* For v8M, pointer to the IDAU interface provided by board/SoC */
830 Object *idau;
831
74e75564
PB
832 /* 'compatible' string for this CPU for Linux device trees */
833 const char *dtb_compatible;
834
835 /* PSCI version for this CPU
836 * Bits[31:16] = Major Version
837 * Bits[15:0] = Minor Version
838 */
839 uint32_t psci_version;
840
062ba099
AB
841 /* Current power state, access guarded by BQL */
842 ARMPSCIState power_state;
843
c25bd18a
PM
844 /* CPU has virtualization extension */
845 bool has_el2;
74e75564
PB
846 /* CPU has security extension */
847 bool has_el3;
5c0a3819
SZ
848 /* CPU has PMU (Performance Monitor Unit) */
849 bool has_pmu;
97a28b0e
PM
850 /* CPU has VFP */
851 bool has_vfp;
852 /* CPU has Neon */
853 bool has_neon;
ea90db0a
PM
854 /* CPU has M-profile DSP extension */
855 bool has_dsp;
74e75564
PB
856
857 /* CPU has memory protection unit */
858 bool has_mpu;
859 /* PMSAv7 MPU number of supported regions */
860 uint32_t pmsav7_dregion;
9901c576
PM
861 /* v8M SAU number of supported regions */
862 uint32_t sau_sregion;
74e75564
PB
863
864 /* PSCI conduit used to invoke PSCI methods
865 * 0 - disabled, 1 - smc, 2 - hvc
866 */
867 uint32_t psci_conduit;
868
38e2a77c
PM
869 /* For v8M, initial value of the Secure VTOR */
870 uint32_t init_svtor;
871
74e75564
PB
872 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
873 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
874 */
875 uint32_t kvm_target;
876
877 /* KVM init features for this CPU */
878 uint32_t kvm_init_features[7];
879
e5ac4200
AJ
880 /* KVM CPU state */
881
882 /* KVM virtual time adjustment */
883 bool kvm_adjvtime;
884 bool kvm_vtime_dirty;
885 uint64_t kvm_vtime;
886
68970d1e
AJ
887 /* KVM steal time */
888 OnOffAuto kvm_steal_time;
889
74e75564
PB
890 /* Uniprocessor system with MP extensions */
891 bool mp_is_up;
892
c4487d76
PM
893 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
894 * and the probe failed (so we need to report the error in realize)
895 */
896 bool host_cpu_probe_failed;
897
f9a69711
AF
898 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
899 * register.
900 */
901 int32_t core_count;
902
74e75564
PB
903 /* The instance init functions for implementation-specific subclasses
904 * set these fields to specify the implementation-dependent values of
905 * various constant registers and reset values of non-constant
906 * registers.
907 * Some of these might become QOM properties eventually.
908 * Field names match the official register names as defined in the
909 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
910 * is used for reset values of non-constant registers; no reset_
911 * prefix means a constant register.
47576b94
RH
912 * Some of these registers are split out into a substructure that
913 * is shared with the translators to control the ISA.
1548a7b2
PM
914 *
915 * Note that if you add an ID register to the ARMISARegisters struct
916 * you need to also update the 32-bit and 64-bit versions of the
917 * kvm_arm_get_host_cpu_features() function to correctly populate the
918 * field by reading the value from the KVM vCPU.
74e75564 919 */
47576b94
RH
920 struct ARMISARegisters {
921 uint32_t id_isar0;
922 uint32_t id_isar1;
923 uint32_t id_isar2;
924 uint32_t id_isar3;
925 uint32_t id_isar4;
926 uint32_t id_isar5;
927 uint32_t id_isar6;
10054016
PM
928 uint32_t id_mmfr0;
929 uint32_t id_mmfr1;
930 uint32_t id_mmfr2;
931 uint32_t id_mmfr3;
932 uint32_t id_mmfr4;
8a130a7b
PM
933 uint32_t id_pfr0;
934 uint32_t id_pfr1;
1d51bc96 935 uint32_t id_pfr2;
47576b94
RH
936 uint32_t mvfr0;
937 uint32_t mvfr1;
938 uint32_t mvfr2;
a6179538 939 uint32_t id_dfr0;
4426d361 940 uint32_t dbgdidr;
47576b94
RH
941 uint64_t id_aa64isar0;
942 uint64_t id_aa64isar1;
943 uint64_t id_aa64pfr0;
944 uint64_t id_aa64pfr1;
3dc91ddb
PM
945 uint64_t id_aa64mmfr0;
946 uint64_t id_aa64mmfr1;
64761e10 947 uint64_t id_aa64mmfr2;
2a609df8
PM
948 uint64_t id_aa64dfr0;
949 uint64_t id_aa64dfr1;
47576b94 950 } isar;
e544f800 951 uint64_t midr;
74e75564
PB
952 uint32_t revidr;
953 uint32_t reset_fpsid;
a5fd319a 954 uint64_t ctr;
74e75564 955 uint32_t reset_sctlr;
cad86737
AL
956 uint64_t pmceid0;
957 uint64_t pmceid1;
74e75564 958 uint32_t id_afr0;
74e75564
PB
959 uint64_t id_aa64afr0;
960 uint64_t id_aa64afr1;
f6450bcb 961 uint64_t clidr;
74e75564
PB
962 uint64_t mp_affinity; /* MP ID without feature bits */
963 /* The elements of this array are the CCSIDR values for each cache,
964 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
965 */
957e6155 966 uint64_t ccsidr[16];
74e75564
PB
967 uint64_t reset_cbar;
968 uint32_t reset_auxcr;
969 bool reset_hivecs;
eb94284d
RH
970
971 /*
972 * Intermediate values used during property parsing.
973 * Once finalized, the values should be read from ID_AA64ISAR1.
974 */
975 bool prop_pauth;
976 bool prop_pauth_impdef;
977
74e75564
PB
978 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
979 uint32_t dcz_blocksize;
980 uint64_t rvbar;
bd7d00fc 981
e45868a3
PM
982 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
983 int gic_num_lrs; /* number of list registers */
984 int gic_vpribits; /* number of virtual priority bits */
985 int gic_vprebits; /* number of virtual preemption bits */
986
3a062d57
JB
987 /* Whether the cfgend input is high (i.e. this CPU should reset into
988 * big-endian mode). This setting isn't used directly: instead it modifies
989 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
990 * architecture version.
991 */
992 bool cfgend;
993
b5c53d1b 994 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 995 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
996
997 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
998
999 /* Used to synchronize KVM and QEMU in-kernel device levels */
1000 uint8_t device_irq_level;
adf92eab
RH
1001
1002 /* Used to set the maximum vector length the cpu will support. */
1003 uint32_t sve_max_vq;
0df9142d
AJ
1004
1005 /*
1006 * In sve_vq_map each set bit is a supported vector length of
1007 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1008 * length in quadwords.
1009 *
1010 * While processing properties during initialization, corresponding
1011 * sve_vq_init bits are set for bits in sve_vq_map that have been
1012 * set by properties.
1013 */
1014 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1015 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
1016
1017 /* Generic timer counter frequency, in Hz */
1018 uint64_t gt_cntfrq_hz;
74e75564
PB
1019};
1020
7def8754
AJ
1021unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1022
51e5ef45
MAL
1023void arm_cpu_post_init(Object *obj);
1024
46de5913
IM
1025uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1026
74e75564 1027#ifndef CONFIG_USER_ONLY
8a9358cc 1028extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1029#endif
1030
1031void arm_cpu_do_interrupt(CPUState *cpu);
1032void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1033bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1034
74e75564
PB
1035hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1036 MemTxAttrs *attrs);
1037
a010bdbe 1038int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1039int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1040
d12379c5
AB
1041/*
1042 * Helpers to dynamically generates XML descriptions of the sysregs
1043 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1044 */
32d6e32a 1045int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1046int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1047
1048/* Returns the dynamically generated XML for the gdb stub.
1049 * Returns a pointer to the XML contents for the specified XML file or NULL
1050 * if the XML name doesn't match the predefined one.
1051 */
1052const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1053
74e75564
PB
1054int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1055 int cpuid, void *opaque);
1056int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1057 int cpuid, void *opaque);
1058
1059#ifdef TARGET_AARCH64
a010bdbe 1060int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1061int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1062void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1063void aarch64_sve_change_el(CPUARMState *env, int old_el,
1064 int new_el, bool el0_a64);
87014c6b 1065void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
1066
1067/*
1068 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1069 * The byte at offset i from the start of the in-memory representation contains
1070 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1071 * lowest offsets are stored in the lowest memory addresses, then that nearly
1072 * matches QEMU's representation, which is to use an array of host-endian
1073 * uint64_t's, where the lower offsets are at the lower indices. To complete
1074 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1075 */
1076static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1077{
1078#ifdef HOST_WORDS_BIGENDIAN
1079 int i;
1080
1081 for (i = 0; i < nr; ++i) {
1082 dst[i] = bswap64(src[i]);
1083 }
1084
1085 return dst;
1086#else
1087 return src;
1088#endif
1089}
1090
0ab5953b
RH
1091#else
1092static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1093static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1094 int n, bool a)
1095{ }
87014c6b 1096static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1097#endif
778c3a06 1098
ce02049d
GB
1099void aarch64_sync_32_to_64(CPUARMState *env);
1100void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1101
ced31551
RH
1102int fp_exception_el(CPUARMState *env, int cur_el);
1103int sve_exception_el(CPUARMState *env, int cur_el);
1104uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1105
3926cc84
AG
1106static inline bool is_a64(CPUARMState *env)
1107{
1108 return env->aarch64;
1109}
1110
2c0262af
FB
1111/* you can call this signal handler from your SIGBUS and SIGSEGV
1112 signal handlers to inform the virtual CPU of exceptions. non zero
1113 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1114int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1115 void *puc);
1116
5d05b9d4
AL
1117/**
1118 * pmu_op_start/finish
ec7b4ce4
AF
1119 * @env: CPUARMState
1120 *
5d05b9d4
AL
1121 * Convert all PMU counters between their delta form (the typical mode when
1122 * they are enabled) and the guest-visible values. These two calls must
1123 * surround any action which might affect the counters.
ec7b4ce4 1124 */
5d05b9d4
AL
1125void pmu_op_start(CPUARMState *env);
1126void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1127
4e7beb0c
AL
1128/*
1129 * Called when a PMU counter is due to overflow
1130 */
1131void arm_pmu_timer_cb(void *opaque);
1132
033614c4
AL
1133/**
1134 * Functions to register as EL change hooks for PMU mode filtering
1135 */
1136void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1137void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1138
57a4a11b 1139/*
bf8d0969
AL
1140 * pmu_init
1141 * @cpu: ARMCPU
57a4a11b 1142 *
bf8d0969
AL
1143 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1144 * for the current configuration
57a4a11b 1145 */
bf8d0969 1146void pmu_init(ARMCPU *cpu);
57a4a11b 1147
76e3e1bc
PM
1148/* SCTLR bit meanings. Several bits have been reused in newer
1149 * versions of the architecture; in that case we define constants
1150 * for both old and new bit meanings. Code which tests against those
1151 * bits should probably check or otherwise arrange that the CPU
1152 * is the architectural version it expects.
1153 */
1154#define SCTLR_M (1U << 0)
1155#define SCTLR_A (1U << 1)
1156#define SCTLR_C (1U << 2)
1157#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1158#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1159#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1160#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1161#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1162#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1163#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1164#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1165#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1166#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1167#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1168#define SCTLR_ITD (1U << 7) /* v8 onward */
1169#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1170#define SCTLR_SED (1U << 8) /* v8 onward */
1171#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1172#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1173#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1174#define SCTLR_SW (1U << 10) /* v7 */
1175#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1176#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1177#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1178#define SCTLR_I (1U << 12)
b2af69d0
RH
1179#define SCTLR_V (1U << 13) /* AArch32 only */
1180#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1181#define SCTLR_RR (1U << 14) /* up to v7 */
1182#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1183#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1184#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1185#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1186#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1187#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1188#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1189#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1190#define SCTLR_nTWE (1U << 18) /* v8 onward */
1191#define SCTLR_WXN (1U << 19)
1192#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1193#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1194#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1195#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1196#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1197#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1198#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1199#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1200#define SCTLR_VE (1U << 24) /* up to v7 */
1201#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1202#define SCTLR_EE (1U << 25)
1203#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1204#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1205#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1206#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1207#define SCTLR_TRE (1U << 28) /* AArch32 only */
1208#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1209#define SCTLR_AFE (1U << 29) /* AArch32 only */
1210#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1211#define SCTLR_TE (1U << 30) /* AArch32 only */
1212#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1213#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1214#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1215#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1216#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1217#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1218#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1219#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1220#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1221#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1222#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
76e3e1bc 1223
c6f19164
GB
1224#define CPTR_TCPAC (1U << 31)
1225#define CPTR_TTA (1U << 20)
1226#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1227#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1228#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1229
187f678d
PM
1230#define MDCR_EPMAD (1U << 21)
1231#define MDCR_EDAD (1U << 20)
033614c4
AL
1232#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1233#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1234#define MDCR_SDD (1U << 16)
a8d64e73 1235#define MDCR_SPD (3U << 14)
187f678d
PM
1236#define MDCR_TDRA (1U << 11)
1237#define MDCR_TDOSA (1U << 10)
1238#define MDCR_TDA (1U << 9)
1239#define MDCR_TDE (1U << 8)
1240#define MDCR_HPME (1U << 7)
1241#define MDCR_TPM (1U << 6)
1242#define MDCR_TPMCR (1U << 5)
033614c4 1243#define MDCR_HPMN (0x1fU)
187f678d 1244
a8d64e73
PM
1245/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1246#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1247
78dbbbe4
PM
1248#define CPSR_M (0x1fU)
1249#define CPSR_T (1U << 5)
1250#define CPSR_F (1U << 6)
1251#define CPSR_I (1U << 7)
1252#define CPSR_A (1U << 8)
1253#define CPSR_E (1U << 9)
1254#define CPSR_IT_2_7 (0xfc00U)
1255#define CPSR_GE (0xfU << 16)
4051e12c 1256#define CPSR_IL (1U << 20)
dc8b1853 1257#define CPSR_DIT (1U << 21)
220f508f 1258#define CPSR_PAN (1U << 22)
f2f68a78 1259#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1260#define CPSR_J (1U << 24)
1261#define CPSR_IT_0_1 (3U << 25)
1262#define CPSR_Q (1U << 27)
1263#define CPSR_V (1U << 28)
1264#define CPSR_C (1U << 29)
1265#define CPSR_Z (1U << 30)
1266#define CPSR_N (1U << 31)
9ee6e8bb 1267#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1268#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1269
1270#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1271#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1272 | CPSR_NZCV)
9ee6e8bb 1273/* Bits writable in user mode. */
268b1b3d 1274#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1275/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1276#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1277
987ab45e
PM
1278/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1279#define XPSR_EXCP 0x1ffU
1280#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1281#define XPSR_IT_2_7 CPSR_IT_2_7
1282#define XPSR_GE CPSR_GE
1283#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1284#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1285#define XPSR_IT_0_1 CPSR_IT_0_1
1286#define XPSR_Q CPSR_Q
1287#define XPSR_V CPSR_V
1288#define XPSR_C CPSR_C
1289#define XPSR_Z CPSR_Z
1290#define XPSR_N CPSR_N
1291#define XPSR_NZCV CPSR_NZCV
1292#define XPSR_IT CPSR_IT
1293
e389be16
FA
1294#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1295#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1296#define TTBCR_PD0 (1U << 4)
1297#define TTBCR_PD1 (1U << 5)
1298#define TTBCR_EPD0 (1U << 7)
1299#define TTBCR_IRGN0 (3U << 8)
1300#define TTBCR_ORGN0 (3U << 10)
1301#define TTBCR_SH0 (3U << 12)
1302#define TTBCR_T1SZ (3U << 16)
1303#define TTBCR_A1 (1U << 22)
1304#define TTBCR_EPD1 (1U << 23)
1305#define TTBCR_IRGN1 (3U << 24)
1306#define TTBCR_ORGN1 (3U << 26)
1307#define TTBCR_SH1 (1U << 28)
1308#define TTBCR_EAE (1U << 31)
1309
d356312f
PM
1310/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1311 * Only these are valid when in AArch64 mode; in
1312 * AArch32 mode SPSRs are basically CPSR-format.
1313 */
f502cfc2 1314#define PSTATE_SP (1U)
d356312f
PM
1315#define PSTATE_M (0xFU)
1316#define PSTATE_nRW (1U << 4)
1317#define PSTATE_F (1U << 6)
1318#define PSTATE_I (1U << 7)
1319#define PSTATE_A (1U << 8)
1320#define PSTATE_D (1U << 9)
f6e52eaa 1321#define PSTATE_BTYPE (3U << 10)
f2f68a78 1322#define PSTATE_SSBS (1U << 12)
d356312f
PM
1323#define PSTATE_IL (1U << 20)
1324#define PSTATE_SS (1U << 21)
220f508f 1325#define PSTATE_PAN (1U << 22)
9eeb7a1c 1326#define PSTATE_UAO (1U << 23)
dc8b1853 1327#define PSTATE_DIT (1U << 24)
4b779ceb 1328#define PSTATE_TCO (1U << 25)
d356312f
PM
1329#define PSTATE_V (1U << 28)
1330#define PSTATE_C (1U << 29)
1331#define PSTATE_Z (1U << 30)
1332#define PSTATE_N (1U << 31)
1333#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1334#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1335#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1336/* Mode values for AArch64 */
1337#define PSTATE_MODE_EL3h 13
1338#define PSTATE_MODE_EL3t 12
1339#define PSTATE_MODE_EL2h 9
1340#define PSTATE_MODE_EL2t 8
1341#define PSTATE_MODE_EL1h 5
1342#define PSTATE_MODE_EL1t 4
1343#define PSTATE_MODE_EL0t 0
1344
de2db7ec
PM
1345/* Write a new value to v7m.exception, thus transitioning into or out
1346 * of Handler mode; this may result in a change of active stack pointer.
1347 */
1348void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1349
9e729b57
EI
1350/* Map EL and handler into a PSTATE_MODE. */
1351static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1352{
1353 return (el << 2) | handler;
1354}
1355
d356312f
PM
1356/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1357 * interprocessing, so we don't attempt to sync with the cpsr state used by
1358 * the 32 bit decoder.
1359 */
1360static inline uint32_t pstate_read(CPUARMState *env)
1361{
1362 int ZF;
1363
1364 ZF = (env->ZF == 0);
1365 return (env->NF & 0x80000000) | (ZF << 30)
1366 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1367 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1368}
1369
1370static inline void pstate_write(CPUARMState *env, uint32_t val)
1371{
1372 env->ZF = (~val) & PSTATE_Z;
1373 env->NF = val;
1374 env->CF = (val >> 29) & 1;
1375 env->VF = (val << 3) & 0x80000000;
4cc35614 1376 env->daif = val & PSTATE_DAIF;
f6e52eaa 1377 env->btype = (val >> 10) & 3;
d356312f
PM
1378 env->pstate = val & ~CACHED_PSTATE_BITS;
1379}
1380
b5ff1b31 1381/* Return the current CPSR value. */
2f4a40e5 1382uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1383
1384typedef enum CPSRWriteType {
1385 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1386 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1387 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1388 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1389} CPSRWriteType;
1390
1391/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1392void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1393 CPSRWriteType write_type);
9ee6e8bb
PB
1394
1395/* Return the current xPSR value. */
1396static inline uint32_t xpsr_read(CPUARMState *env)
1397{
1398 int ZF;
6fbe23d5
PB
1399 ZF = (env->ZF == 0);
1400 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1401 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1402 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1403 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1404 | (env->GE << 16)
9ee6e8bb 1405 | env->v7m.exception;
b5ff1b31
FB
1406}
1407
9ee6e8bb
PB
1408/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1409static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1410{
987ab45e
PM
1411 if (mask & XPSR_NZCV) {
1412 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1413 env->NF = val;
9ee6e8bb
PB
1414 env->CF = (val >> 29) & 1;
1415 env->VF = (val << 3) & 0x80000000;
1416 }
987ab45e
PM
1417 if (mask & XPSR_Q) {
1418 env->QF = ((val & XPSR_Q) != 0);
1419 }
f1e2598c
PM
1420 if (mask & XPSR_GE) {
1421 env->GE = (val & XPSR_GE) >> 16;
1422 }
04c9c81b 1423#ifndef CONFIG_USER_ONLY
987ab45e
PM
1424 if (mask & XPSR_T) {
1425 env->thumb = ((val & XPSR_T) != 0);
1426 }
1427 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1428 env->condexec_bits &= ~3;
1429 env->condexec_bits |= (val >> 25) & 3;
1430 }
987ab45e 1431 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1432 env->condexec_bits &= 3;
1433 env->condexec_bits |= (val >> 8) & 0xfc;
1434 }
987ab45e 1435 if (mask & XPSR_EXCP) {
de2db7ec
PM
1436 /* Note that this only happens on exception exit */
1437 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1438 }
04c9c81b 1439#endif
9ee6e8bb
PB
1440}
1441
f149e3e8
EI
1442#define HCR_VM (1ULL << 0)
1443#define HCR_SWIO (1ULL << 1)
1444#define HCR_PTW (1ULL << 2)
1445#define HCR_FMO (1ULL << 3)
1446#define HCR_IMO (1ULL << 4)
1447#define HCR_AMO (1ULL << 5)
1448#define HCR_VF (1ULL << 6)
1449#define HCR_VI (1ULL << 7)
1450#define HCR_VSE (1ULL << 8)
1451#define HCR_FB (1ULL << 9)
1452#define HCR_BSU_MASK (3ULL << 10)
1453#define HCR_DC (1ULL << 12)
1454#define HCR_TWI (1ULL << 13)
1455#define HCR_TWE (1ULL << 14)
1456#define HCR_TID0 (1ULL << 15)
1457#define HCR_TID1 (1ULL << 16)
1458#define HCR_TID2 (1ULL << 17)
1459#define HCR_TID3 (1ULL << 18)
1460#define HCR_TSC (1ULL << 19)
1461#define HCR_TIDCP (1ULL << 20)
1462#define HCR_TACR (1ULL << 21)
1463#define HCR_TSW (1ULL << 22)
099bf53b 1464#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1465#define HCR_TPU (1ULL << 24)
1466#define HCR_TTLB (1ULL << 25)
1467#define HCR_TVM (1ULL << 26)
1468#define HCR_TGE (1ULL << 27)
1469#define HCR_TDZ (1ULL << 28)
1470#define HCR_HCD (1ULL << 29)
1471#define HCR_TRVM (1ULL << 30)
1472#define HCR_RW (1ULL << 31)
1473#define HCR_CD (1ULL << 32)
1474#define HCR_ID (1ULL << 33)
ac656b16 1475#define HCR_E2H (1ULL << 34)
099bf53b
RH
1476#define HCR_TLOR (1ULL << 35)
1477#define HCR_TERR (1ULL << 36)
1478#define HCR_TEA (1ULL << 37)
1479#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1480/* RES0 bit 39 */
099bf53b
RH
1481#define HCR_APK (1ULL << 40)
1482#define HCR_API (1ULL << 41)
1483#define HCR_NV (1ULL << 42)
1484#define HCR_NV1 (1ULL << 43)
1485#define HCR_AT (1ULL << 44)
1486#define HCR_NV2 (1ULL << 45)
1487#define HCR_FWB (1ULL << 46)
1488#define HCR_FIEN (1ULL << 47)
e0a38bb3 1489/* RES0 bit 48 */
099bf53b
RH
1490#define HCR_TID4 (1ULL << 49)
1491#define HCR_TICAB (1ULL << 50)
e0a38bb3 1492#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1493#define HCR_TOCU (1ULL << 52)
e0a38bb3 1494#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1495#define HCR_TTLBIS (1ULL << 54)
1496#define HCR_TTLBOS (1ULL << 55)
1497#define HCR_ATA (1ULL << 56)
1498#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1499#define HCR_TID5 (1ULL << 58)
1500#define HCR_TWEDEN (1ULL << 59)
1501#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1502
9861248f
RDC
1503#define HPFAR_NS (1ULL << 63)
1504
64e0e2de
EI
1505#define SCR_NS (1U << 0)
1506#define SCR_IRQ (1U << 1)
1507#define SCR_FIQ (1U << 2)
1508#define SCR_EA (1U << 3)
1509#define SCR_FW (1U << 4)
1510#define SCR_AW (1U << 5)
1511#define SCR_NET (1U << 6)
1512#define SCR_SMD (1U << 7)
1513#define SCR_HCE (1U << 8)
1514#define SCR_SIF (1U << 9)
1515#define SCR_RW (1U << 10)
1516#define SCR_ST (1U << 11)
1517#define SCR_TWI (1U << 12)
1518#define SCR_TWE (1U << 13)
99f8f86d
RH
1519#define SCR_TLOR (1U << 14)
1520#define SCR_TERR (1U << 15)
1521#define SCR_APK (1U << 16)
1522#define SCR_API (1U << 17)
1523#define SCR_EEL2 (1U << 18)
1524#define SCR_EASE (1U << 19)
1525#define SCR_NMEA (1U << 20)
1526#define SCR_FIEN (1U << 21)
1527#define SCR_ENSCXT (1U << 25)
1528#define SCR_ATA (1U << 26)
64e0e2de 1529
01653295
PM
1530/* Return the current FPSCR value. */
1531uint32_t vfp_get_fpscr(CPUARMState *env);
1532void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1533
d81ce0ef
AB
1534/* FPCR, Floating Point Control Register
1535 * FPSR, Floating Poiht Status Register
1536 *
1537 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1538 * FPCR and FPSR. However since they still use non-overlapping bits
1539 * we store the underlying state in fpscr and just mask on read/write.
1540 */
1541#define FPSR_MASK 0xf800009f
0b62159b 1542#define FPCR_MASK 0x07ff9f00
d81ce0ef 1543
a15945d9
PM
1544#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1545#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1546#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1547#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1548#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1549#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1550#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1551#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1552#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1553#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1554#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1555#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1556#define FPCR_V (1 << 28) /* FP overflow flag */
1557#define FPCR_C (1 << 29) /* FP carry flag */
1558#define FPCR_Z (1 << 30) /* FP zero flag */
1559#define FPCR_N (1 << 31) /* FP negative flag */
1560
99c7834f
PM
1561#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1562#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1563
9542c30b
PM
1564#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1565#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1566
f903fa22
PM
1567static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1568{
1569 return vfp_get_fpscr(env) & FPSR_MASK;
1570}
1571
1572static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1573{
1574 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1575 vfp_set_fpscr(env, new_fpscr);
1576}
1577
1578static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1579{
1580 return vfp_get_fpscr(env) & FPCR_MASK;
1581}
1582
1583static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1584{
1585 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1586 vfp_set_fpscr(env, new_fpscr);
1587}
1588
b5ff1b31
FB
1589enum arm_cpu_mode {
1590 ARM_CPU_MODE_USR = 0x10,
1591 ARM_CPU_MODE_FIQ = 0x11,
1592 ARM_CPU_MODE_IRQ = 0x12,
1593 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1594 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1595 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1596 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1597 ARM_CPU_MODE_UND = 0x1b,
1598 ARM_CPU_MODE_SYS = 0x1f
1599};
1600
40f137e1
PB
1601/* VFP system registers. */
1602#define ARM_VFP_FPSID 0
1603#define ARM_VFP_FPSCR 1
a50c0f51 1604#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1605#define ARM_VFP_MVFR1 6
1606#define ARM_VFP_MVFR0 7
40f137e1
PB
1607#define ARM_VFP_FPEXC 8
1608#define ARM_VFP_FPINST 9
1609#define ARM_VFP_FPINST2 10
9542c30b
PM
1610/* These ones are M-profile only */
1611#define ARM_VFP_FPSCR_NZCVQC 2
1612#define ARM_VFP_VPR 12
1613#define ARM_VFP_P0 13
1614#define ARM_VFP_FPCXT_NS 14
1615#define ARM_VFP_FPCXT_S 15
40f137e1 1616
32a290b8
PM
1617/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1618#define QEMU_VFP_FPSCR_NZCV 0xffff
1619
18c9b560 1620/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1621#define ARM_IWMMXT_wCID 0
1622#define ARM_IWMMXT_wCon 1
1623#define ARM_IWMMXT_wCSSF 2
1624#define ARM_IWMMXT_wCASF 3
1625#define ARM_IWMMXT_wCGR0 8
1626#define ARM_IWMMXT_wCGR1 9
1627#define ARM_IWMMXT_wCGR2 10
1628#define ARM_IWMMXT_wCGR3 11
18c9b560 1629
2c4da50d
PM
1630/* V7M CCR bits */
1631FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1632FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1633FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1634FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1635FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1636FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1637FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1638FIELD(V7M_CCR, DC, 16, 1)
1639FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1640FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1641FIELD(V7M_CCR, LOB, 19, 1)
1642FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1643
24ac0fb1
PM
1644/* V7M SCR bits */
1645FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1646FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1647FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1648FIELD(V7M_SCR, SEVONPEND, 4, 1)
1649
3b2e9344
PM
1650/* V7M AIRCR bits */
1651FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1652FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1653FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1654FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1655FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1656FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1657FIELD(V7M_AIRCR, PRIS, 14, 1)
1658FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1659FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1660
2c4da50d
PM
1661/* V7M CFSR bits for MMFSR */
1662FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1663FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1664FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1665FIELD(V7M_CFSR, MSTKERR, 4, 1)
1666FIELD(V7M_CFSR, MLSPERR, 5, 1)
1667FIELD(V7M_CFSR, MMARVALID, 7, 1)
1668
1669/* V7M CFSR bits for BFSR */
1670FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1671FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1672FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1673FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1674FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1675FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1676FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1677
1678/* V7M CFSR bits for UFSR */
1679FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1680FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1681FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1682FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1683FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1684FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1685FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1686
334e8dad
PM
1687/* V7M CFSR bit masks covering all of the subregister bits */
1688FIELD(V7M_CFSR, MMFSR, 0, 8)
1689FIELD(V7M_CFSR, BFSR, 8, 8)
1690FIELD(V7M_CFSR, UFSR, 16, 16)
1691
2c4da50d
PM
1692/* V7M HFSR bits */
1693FIELD(V7M_HFSR, VECTTBL, 1, 1)
1694FIELD(V7M_HFSR, FORCED, 30, 1)
1695FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1696
1697/* V7M DFSR bits */
1698FIELD(V7M_DFSR, HALTED, 0, 1)
1699FIELD(V7M_DFSR, BKPT, 1, 1)
1700FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1701FIELD(V7M_DFSR, VCATCH, 3, 1)
1702FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1703
bed079da
PM
1704/* V7M SFSR bits */
1705FIELD(V7M_SFSR, INVEP, 0, 1)
1706FIELD(V7M_SFSR, INVIS, 1, 1)
1707FIELD(V7M_SFSR, INVER, 2, 1)
1708FIELD(V7M_SFSR, AUVIOL, 3, 1)
1709FIELD(V7M_SFSR, INVTRAN, 4, 1)
1710FIELD(V7M_SFSR, LSPERR, 5, 1)
1711FIELD(V7M_SFSR, SFARVALID, 6, 1)
1712FIELD(V7M_SFSR, LSERR, 7, 1)
1713
29c483a5
MD
1714/* v7M MPU_CTRL bits */
1715FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1716FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1717FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1718
43bbce7f
PM
1719/* v7M CLIDR bits */
1720FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1721FIELD(V7M_CLIDR, LOUIS, 21, 3)
1722FIELD(V7M_CLIDR, LOC, 24, 3)
1723FIELD(V7M_CLIDR, LOUU, 27, 3)
1724FIELD(V7M_CLIDR, ICB, 30, 2)
1725
1726FIELD(V7M_CSSELR, IND, 0, 1)
1727FIELD(V7M_CSSELR, LEVEL, 1, 3)
1728/* We use the combination of InD and Level to index into cpu->ccsidr[];
1729 * define a mask for this and check that it doesn't permit running off
1730 * the end of the array.
1731 */
1732FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1733
1734/* v7M FPCCR bits */
1735FIELD(V7M_FPCCR, LSPACT, 0, 1)
1736FIELD(V7M_FPCCR, USER, 1, 1)
1737FIELD(V7M_FPCCR, S, 2, 1)
1738FIELD(V7M_FPCCR, THREAD, 3, 1)
1739FIELD(V7M_FPCCR, HFRDY, 4, 1)
1740FIELD(V7M_FPCCR, MMRDY, 5, 1)
1741FIELD(V7M_FPCCR, BFRDY, 6, 1)
1742FIELD(V7M_FPCCR, SFRDY, 7, 1)
1743FIELD(V7M_FPCCR, MONRDY, 8, 1)
1744FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1745FIELD(V7M_FPCCR, UFRDY, 10, 1)
1746FIELD(V7M_FPCCR, RES0, 11, 15)
1747FIELD(V7M_FPCCR, TS, 26, 1)
1748FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1749FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1750FIELD(V7M_FPCCR, LSPENS, 29, 1)
1751FIELD(V7M_FPCCR, LSPEN, 30, 1)
1752FIELD(V7M_FPCCR, ASPEN, 31, 1)
1753/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1754#define R_V7M_FPCCR_BANKED_MASK \
1755 (R_V7M_FPCCR_LSPACT_MASK | \
1756 R_V7M_FPCCR_USER_MASK | \
1757 R_V7M_FPCCR_THREAD_MASK | \
1758 R_V7M_FPCCR_MMRDY_MASK | \
1759 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1760 R_V7M_FPCCR_UFRDY_MASK | \
1761 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1762
a62e62af
RH
1763/*
1764 * System register ID fields.
1765 */
2a14526a
LL
1766FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1767FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1768FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1769FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1770FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1771FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1772FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1773FIELD(CLIDR_EL1, LOUIS, 21, 3)
1774FIELD(CLIDR_EL1, LOC, 24, 3)
1775FIELD(CLIDR_EL1, LOUU, 27, 3)
1776FIELD(CLIDR_EL1, ICB, 30, 3)
1777
1778/* When FEAT_CCIDX is implemented */
1779FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1780FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1781FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1782
1783/* When FEAT_CCIDX is not implemented */
1784FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1785FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1786FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1787
1788FIELD(CTR_EL0, IMINLINE, 0, 4)
1789FIELD(CTR_EL0, L1IP, 14, 2)
1790FIELD(CTR_EL0, DMINLINE, 16, 4)
1791FIELD(CTR_EL0, ERG, 20, 4)
1792FIELD(CTR_EL0, CWG, 24, 4)
1793FIELD(CTR_EL0, IDC, 28, 1)
1794FIELD(CTR_EL0, DIC, 29, 1)
1795FIELD(CTR_EL0, TMINLINE, 32, 6)
1796
2bd5f41c
AB
1797FIELD(MIDR_EL1, REVISION, 0, 4)
1798FIELD(MIDR_EL1, PARTNUM, 4, 12)
1799FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1800FIELD(MIDR_EL1, VARIANT, 20, 4)
1801FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1802
a62e62af
RH
1803FIELD(ID_ISAR0, SWAP, 0, 4)
1804FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1805FIELD(ID_ISAR0, BITFIELD, 8, 4)
1806FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1807FIELD(ID_ISAR0, COPROC, 16, 4)
1808FIELD(ID_ISAR0, DEBUG, 20, 4)
1809FIELD(ID_ISAR0, DIVIDE, 24, 4)
1810
1811FIELD(ID_ISAR1, ENDIAN, 0, 4)
1812FIELD(ID_ISAR1, EXCEPT, 4, 4)
1813FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1814FIELD(ID_ISAR1, EXTEND, 12, 4)
1815FIELD(ID_ISAR1, IFTHEN, 16, 4)
1816FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1817FIELD(ID_ISAR1, INTERWORK, 24, 4)
1818FIELD(ID_ISAR1, JAZELLE, 28, 4)
1819
1820FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1821FIELD(ID_ISAR2, MEMHINT, 4, 4)
1822FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1823FIELD(ID_ISAR2, MULT, 12, 4)
1824FIELD(ID_ISAR2, MULTS, 16, 4)
1825FIELD(ID_ISAR2, MULTU, 20, 4)
1826FIELD(ID_ISAR2, PSR_AR, 24, 4)
1827FIELD(ID_ISAR2, REVERSAL, 28, 4)
1828
1829FIELD(ID_ISAR3, SATURATE, 0, 4)
1830FIELD(ID_ISAR3, SIMD, 4, 4)
1831FIELD(ID_ISAR3, SVC, 8, 4)
1832FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1833FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1834FIELD(ID_ISAR3, T32COPY, 20, 4)
1835FIELD(ID_ISAR3, TRUENOP, 24, 4)
1836FIELD(ID_ISAR3, T32EE, 28, 4)
1837
1838FIELD(ID_ISAR4, UNPRIV, 0, 4)
1839FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1840FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1841FIELD(ID_ISAR4, SMC, 12, 4)
1842FIELD(ID_ISAR4, BARRIER, 16, 4)
1843FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1844FIELD(ID_ISAR4, PSR_M, 24, 4)
1845FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1846
1847FIELD(ID_ISAR5, SEVL, 0, 4)
1848FIELD(ID_ISAR5, AES, 4, 4)
1849FIELD(ID_ISAR5, SHA1, 8, 4)
1850FIELD(ID_ISAR5, SHA2, 12, 4)
1851FIELD(ID_ISAR5, CRC32, 16, 4)
1852FIELD(ID_ISAR5, RDM, 24, 4)
1853FIELD(ID_ISAR5, VCMA, 28, 4)
1854
1855FIELD(ID_ISAR6, JSCVT, 0, 4)
1856FIELD(ID_ISAR6, DP, 4, 4)
1857FIELD(ID_ISAR6, FHM, 8, 4)
1858FIELD(ID_ISAR6, SB, 12, 4)
1859FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
1860FIELD(ID_ISAR6, BF16, 20, 4)
1861FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 1862
0ae0326b
PM
1863FIELD(ID_MMFR0, VMSA, 0, 4)
1864FIELD(ID_MMFR0, PMSA, 4, 4)
1865FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1866FIELD(ID_MMFR0, SHARELVL, 12, 4)
1867FIELD(ID_MMFR0, TCM, 16, 4)
1868FIELD(ID_MMFR0, AUXREG, 20, 4)
1869FIELD(ID_MMFR0, FCSE, 24, 4)
1870FIELD(ID_MMFR0, INNERSHR, 28, 4)
1871
bd78b6be
LL
1872FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1873FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1874FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1875FIELD(ID_MMFR1, L1UNISW, 12, 4)
1876FIELD(ID_MMFR1, L1HVD, 16, 4)
1877FIELD(ID_MMFR1, L1UNI, 20, 4)
1878FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1879FIELD(ID_MMFR1, BPRED, 28, 4)
1880
1881FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1882FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1883FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1884FIELD(ID_MMFR2, HVDTLB, 12, 4)
1885FIELD(ID_MMFR2, UNITLB, 16, 4)
1886FIELD(ID_MMFR2, MEMBARR, 20, 4)
1887FIELD(ID_MMFR2, WFISTALL, 24, 4)
1888FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1889
3d6ad6bb
RH
1890FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1891FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1892FIELD(ID_MMFR3, BPMAINT, 8, 4)
1893FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1894FIELD(ID_MMFR3, PAN, 16, 4)
1895FIELD(ID_MMFR3, COHWALK, 20, 4)
1896FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1897FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1898
ab638a32
RH
1899FIELD(ID_MMFR4, SPECSEI, 0, 4)
1900FIELD(ID_MMFR4, AC2, 4, 4)
1901FIELD(ID_MMFR4, XNX, 8, 4)
1902FIELD(ID_MMFR4, CNP, 12, 4)
1903FIELD(ID_MMFR4, HPDS, 16, 4)
1904FIELD(ID_MMFR4, LSM, 20, 4)
1905FIELD(ID_MMFR4, CCIDX, 24, 4)
1906FIELD(ID_MMFR4, EVT, 28, 4)
1907
bd78b6be
LL
1908FIELD(ID_MMFR5, ETS, 0, 4)
1909
46f4976f
PM
1910FIELD(ID_PFR0, STATE0, 0, 4)
1911FIELD(ID_PFR0, STATE1, 4, 4)
1912FIELD(ID_PFR0, STATE2, 8, 4)
1913FIELD(ID_PFR0, STATE3, 12, 4)
1914FIELD(ID_PFR0, CSV2, 16, 4)
1915FIELD(ID_PFR0, AMU, 20, 4)
1916FIELD(ID_PFR0, DIT, 24, 4)
1917FIELD(ID_PFR0, RAS, 28, 4)
1918
dfc523a8
PM
1919FIELD(ID_PFR1, PROGMOD, 0, 4)
1920FIELD(ID_PFR1, SECURITY, 4, 4)
1921FIELD(ID_PFR1, MPROGMOD, 8, 4)
1922FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1923FIELD(ID_PFR1, GENTIMER, 16, 4)
1924FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1925FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1926FIELD(ID_PFR1, GIC, 28, 4)
1927
bd78b6be
LL
1928FIELD(ID_PFR2, CSV3, 0, 4)
1929FIELD(ID_PFR2, SSBS, 4, 4)
1930FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1931
a62e62af
RH
1932FIELD(ID_AA64ISAR0, AES, 4, 4)
1933FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1934FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1935FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1936FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1937FIELD(ID_AA64ISAR0, RDM, 28, 4)
1938FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1939FIELD(ID_AA64ISAR0, SM3, 36, 4)
1940FIELD(ID_AA64ISAR0, SM4, 40, 4)
1941FIELD(ID_AA64ISAR0, DP, 44, 4)
1942FIELD(ID_AA64ISAR0, FHM, 48, 4)
1943FIELD(ID_AA64ISAR0, TS, 52, 4)
1944FIELD(ID_AA64ISAR0, TLB, 56, 4)
1945FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1946
1947FIELD(ID_AA64ISAR1, DPB, 0, 4)
1948FIELD(ID_AA64ISAR1, APA, 4, 4)
1949FIELD(ID_AA64ISAR1, API, 8, 4)
1950FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1951FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1952FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1953FIELD(ID_AA64ISAR1, GPA, 24, 4)
1954FIELD(ID_AA64ISAR1, GPI, 28, 4)
1955FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1956FIELD(ID_AA64ISAR1, SB, 36, 4)
1957FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
1958FIELD(ID_AA64ISAR1, BF16, 44, 4)
1959FIELD(ID_AA64ISAR1, DGH, 48, 4)
1960FIELD(ID_AA64ISAR1, I8MM, 52, 4)
a62e62af 1961
cd208a1c
RH
1962FIELD(ID_AA64PFR0, EL0, 0, 4)
1963FIELD(ID_AA64PFR0, EL1, 4, 4)
1964FIELD(ID_AA64PFR0, EL2, 8, 4)
1965FIELD(ID_AA64PFR0, EL3, 12, 4)
1966FIELD(ID_AA64PFR0, FP, 16, 4)
1967FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1968FIELD(ID_AA64PFR0, GIC, 24, 4)
1969FIELD(ID_AA64PFR0, RAS, 28, 4)
1970FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
1971FIELD(ID_AA64PFR0, SEL2, 36, 4)
1972FIELD(ID_AA64PFR0, MPAM, 40, 4)
1973FIELD(ID_AA64PFR0, AMU, 44, 4)
1974FIELD(ID_AA64PFR0, DIT, 48, 4)
1975FIELD(ID_AA64PFR0, CSV2, 56, 4)
1976FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 1977
be53b6f4 1978FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 1979FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
1980FIELD(ID_AA64PFR1, MTE, 8, 4)
1981FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 1982FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
be53b6f4 1983
3dc91ddb
PM
1984FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1985FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1986FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1987FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1988FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1989FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1990FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1991FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1992FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1993FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1994FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1995FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
1996FIELD(ID_AA64MMFR0, FGT, 56, 4)
1997FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
1998
1999FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2000FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2001FIELD(ID_AA64MMFR1, VH, 8, 4)
2002FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2003FIELD(ID_AA64MMFR1, LO, 16, 4)
2004FIELD(ID_AA64MMFR1, PAN, 20, 4)
2005FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2006FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2007FIELD(ID_AA64MMFR1, TWED, 32, 4)
2008FIELD(ID_AA64MMFR1, ETS, 36, 4)
3dc91ddb 2009
64761e10
RH
2010FIELD(ID_AA64MMFR2, CNP, 0, 4)
2011FIELD(ID_AA64MMFR2, UAO, 4, 4)
2012FIELD(ID_AA64MMFR2, LSM, 8, 4)
2013FIELD(ID_AA64MMFR2, IESB, 12, 4)
2014FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2015FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2016FIELD(ID_AA64MMFR2, NV, 24, 4)
2017FIELD(ID_AA64MMFR2, ST, 28, 4)
2018FIELD(ID_AA64MMFR2, AT, 32, 4)
2019FIELD(ID_AA64MMFR2, IDS, 36, 4)
2020FIELD(ID_AA64MMFR2, FWB, 40, 4)
2021FIELD(ID_AA64MMFR2, TTL, 48, 4)
2022FIELD(ID_AA64MMFR2, BBM, 52, 4)
2023FIELD(ID_AA64MMFR2, EVT, 56, 4)
2024FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2025
ceb2744b
PM
2026FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2027FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2028FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2029FIELD(ID_AA64DFR0, BRPS, 12, 4)
2030FIELD(ID_AA64DFR0, WRPS, 20, 4)
2031FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2032FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2033FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2034FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
00a92832 2035FIELD(ID_AA64DFR0, MTPMU, 48, 4)
ceb2744b 2036
beceb99c
AL
2037FIELD(ID_DFR0, COPDBG, 0, 4)
2038FIELD(ID_DFR0, COPSDBG, 4, 4)
2039FIELD(ID_DFR0, MMAPDBG, 8, 4)
2040FIELD(ID_DFR0, COPTRC, 12, 4)
2041FIELD(ID_DFR0, MMAPTRC, 16, 4)
2042FIELD(ID_DFR0, MPROFDBG, 20, 4)
2043FIELD(ID_DFR0, PERFMON, 24, 4)
2044FIELD(ID_DFR0, TRACEFILT, 28, 4)
2045
bd78b6be
LL
2046FIELD(ID_DFR1, MTPMU, 0, 4)
2047
88ce6c6e
PM
2048FIELD(DBGDIDR, SE_IMP, 12, 1)
2049FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2050FIELD(DBGDIDR, VERSION, 16, 4)
2051FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2052FIELD(DBGDIDR, BRPS, 24, 4)
2053FIELD(DBGDIDR, WRPS, 28, 4)
2054
602f6e42
PM
2055FIELD(MVFR0, SIMDREG, 0, 4)
2056FIELD(MVFR0, FPSP, 4, 4)
2057FIELD(MVFR0, FPDP, 8, 4)
2058FIELD(MVFR0, FPTRAP, 12, 4)
2059FIELD(MVFR0, FPDIVIDE, 16, 4)
2060FIELD(MVFR0, FPSQRT, 20, 4)
2061FIELD(MVFR0, FPSHVEC, 24, 4)
2062FIELD(MVFR0, FPROUND, 28, 4)
2063
2064FIELD(MVFR1, FPFTZ, 0, 4)
2065FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2066FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2067FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2068FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2069FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2070FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2071FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2072FIELD(MVFR1, FPHP, 24, 4)
2073FIELD(MVFR1, SIMDFMAC, 28, 4)
2074
2075FIELD(MVFR2, SIMDMISC, 0, 4)
2076FIELD(MVFR2, FPMISC, 4, 4)
2077
43bbce7f
PM
2078QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2079
ce854d7c
BC
2080/* If adding a feature bit which corresponds to a Linux ELF
2081 * HWCAP bit, remember to update the feature-bit-to-hwcap
2082 * mapping in linux-user/elfload.c:get_elf_hwcap().
2083 */
40f137e1 2084enum arm_features {
c1713132
AZ
2085 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2086 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2087 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2088 ARM_FEATURE_V6,
2089 ARM_FEATURE_V6K,
2090 ARM_FEATURE_V7,
2091 ARM_FEATURE_THUMB2,
452a0955 2092 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2093 ARM_FEATURE_NEON,
9ee6e8bb 2094 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2095 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2096 ARM_FEATURE_THUMB2EE,
be5e7a76 2097 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2098 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2099 ARM_FEATURE_V4T,
2100 ARM_FEATURE_V5,
5bc95aa2 2101 ARM_FEATURE_STRONGARM,
906879a9 2102 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2103 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2104 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2105 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2106 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2107 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2108 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2109 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2110 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2111 ARM_FEATURE_V8,
3926cc84 2112 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2113 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2114 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2115 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2116 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2117 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2118 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2119 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2120 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2121 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2122 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2123};
2124
2125static inline int arm_feature(CPUARMState *env, int feature)
2126{
918f5dca 2127 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2128}
2129
0df9142d
AJ
2130void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2131
19e0fefa
FA
2132#if !defined(CONFIG_USER_ONLY)
2133/* Return true if exception levels below EL3 are in secure state,
2134 * or would be following an exception return to that level.
2135 * Unlike arm_is_secure() (which is always a question about the
2136 * _current_ state of the CPU) this doesn't care about the current
2137 * EL or mode.
2138 */
2139static inline bool arm_is_secure_below_el3(CPUARMState *env)
2140{
2141 if (arm_feature(env, ARM_FEATURE_EL3)) {
2142 return !(env->cp15.scr_el3 & SCR_NS);
2143 } else {
6b7f0b61 2144 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2145 * defined, in which case QEMU defaults to non-secure.
2146 */
2147 return false;
2148 }
2149}
2150
71205876
PM
2151/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2152static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2153{
2154 if (arm_feature(env, ARM_FEATURE_EL3)) {
2155 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2156 /* CPU currently in AArch64 state and EL3 */
2157 return true;
2158 } else if (!is_a64(env) &&
2159 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2160 /* CPU currently in AArch32 state and monitor mode */
2161 return true;
2162 }
2163 }
71205876
PM
2164 return false;
2165}
2166
2167/* Return true if the processor is in secure state */
2168static inline bool arm_is_secure(CPUARMState *env)
2169{
2170 if (arm_is_el3_or_mon(env)) {
2171 return true;
2172 }
19e0fefa
FA
2173 return arm_is_secure_below_el3(env);
2174}
2175
f3ee5160
RDC
2176/*
2177 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2178 * This corresponds to the pseudocode EL2Enabled()
2179 */
2180static inline bool arm_is_el2_enabled(CPUARMState *env)
2181{
2182 if (arm_feature(env, ARM_FEATURE_EL2)) {
926c1b97
RDC
2183 if (arm_is_secure_below_el3(env)) {
2184 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2185 }
2186 return true;
f3ee5160
RDC
2187 }
2188 return false;
2189}
2190
19e0fefa
FA
2191#else
2192static inline bool arm_is_secure_below_el3(CPUARMState *env)
2193{
2194 return false;
2195}
2196
2197static inline bool arm_is_secure(CPUARMState *env)
2198{
2199 return false;
2200}
f3ee5160
RDC
2201
2202static inline bool arm_is_el2_enabled(CPUARMState *env)
2203{
2204 return false;
2205}
19e0fefa
FA
2206#endif
2207
f7778444
RH
2208/**
2209 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2210 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2211 * "for all purposes other than a direct read or write access of HCR_EL2."
2212 * Not included here is HCR_RW.
2213 */
2214uint64_t arm_hcr_el2_eff(CPUARMState *env);
2215
1f79ee32
PM
2216/* Return true if the specified exception level is running in AArch64 state. */
2217static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2218{
446c81ab
PM
2219 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2220 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2221 */
446c81ab
PM
2222 assert(el >= 1 && el <= 3);
2223 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2224
446c81ab
PM
2225 /* The highest exception level is always at the maximum supported
2226 * register width, and then lower levels have a register width controlled
2227 * by bits in the SCR or HCR registers.
1f79ee32 2228 */
446c81ab
PM
2229 if (el == 3) {
2230 return aa64;
2231 }
2232
926c1b97
RDC
2233 if (arm_feature(env, ARM_FEATURE_EL3) &&
2234 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2235 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2236 }
2237
2238 if (el == 2) {
2239 return aa64;
2240 }
2241
e6ef0169 2242 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2243 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2244 }
2245
2246 return aa64;
1f79ee32
PM
2247}
2248
3f342b9e
SF
2249/* Function for determing whether guest cp register reads and writes should
2250 * access the secure or non-secure bank of a cp register. When EL3 is
2251 * operating in AArch32 state, the NS-bit determines whether the secure
2252 * instance of a cp register should be used. When EL3 is AArch64 (or if
2253 * it doesn't exist at all) then there is no register banking, and all
2254 * accesses are to the non-secure version.
2255 */
2256static inline bool access_secure_reg(CPUARMState *env)
2257{
2258 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2259 !arm_el_is_aa64(env, 3) &&
2260 !(env->cp15.scr_el3 & SCR_NS));
2261
2262 return ret;
2263}
2264
ea30a4b8
FA
2265/* Macros for accessing a specified CP register bank */
2266#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2267 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2268
2269#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2270 do { \
2271 if (_secure) { \
2272 (_env)->cp15._regname##_s = (_val); \
2273 } else { \
2274 (_env)->cp15._regname##_ns = (_val); \
2275 } \
2276 } while (0)
2277
2278/* Macros for automatically accessing a specific CP register bank depending on
2279 * the current secure state of the system. These macros are not intended for
2280 * supporting instruction translation reads/writes as these are dependent
2281 * solely on the SCR.NS bit and not the mode.
2282 */
2283#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2284 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2285 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2286
2287#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2288 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2289 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2290 (_val))
2291
0442428a 2292void arm_cpu_list(void);
012a906b
GB
2293uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2294 uint32_t cur_el, bool secure);
40f137e1 2295
9ee6e8bb 2296/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2297#ifndef CONFIG_USER_ONLY
2298bool armv7m_nvic_can_take_pending_exception(void *opaque);
2299#else
2300static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2301{
2302 return true;
2303}
2304#endif
2fb50a33
PM
2305/**
2306 * armv7m_nvic_set_pending: mark the specified exception as pending
2307 * @opaque: the NVIC
2308 * @irq: the exception number to mark pending
2309 * @secure: false for non-banked exceptions or for the nonsecure
2310 * version of a banked exception, true for the secure version of a banked
2311 * exception.
2312 *
2313 * Marks the specified exception as pending. Note that we will assert()
2314 * if @secure is true and @irq does not specify one of the fixed set
2315 * of architecturally banked exceptions.
2316 */
2317void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2318/**
2319 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2320 * @opaque: the NVIC
2321 * @irq: the exception number to mark pending
2322 * @secure: false for non-banked exceptions or for the nonsecure
2323 * version of a banked exception, true for the secure version of a banked
2324 * exception.
2325 *
2326 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2327 * exceptions (exceptions generated in the course of trying to take
2328 * a different exception).
2329 */
2330void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2331/**
2332 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2333 * @opaque: the NVIC
2334 * @irq: the exception number to mark pending
2335 * @secure: false for non-banked exceptions or for the nonsecure
2336 * version of a banked exception, true for the secure version of a banked
2337 * exception.
2338 *
2339 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2340 * generated in the course of lazy stacking of FP registers.
2341 */
2342void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2343/**
2344 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2345 * exception, and whether it targets Secure state
2346 * @opaque: the NVIC
2347 * @pirq: set to pending exception number
2348 * @ptargets_secure: set to whether pending exception targets Secure
2349 *
2350 * This function writes the number of the highest priority pending
2351 * exception (the one which would be made active by
2352 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2353 * to true if the current highest priority pending exception should
2354 * be taken to Secure state, false for NS.
2355 */
2356void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2357 bool *ptargets_secure);
5cb18069
PM
2358/**
2359 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2360 * @opaque: the NVIC
2361 *
2362 * Move the current highest priority pending exception from the pending
2363 * state to the active state, and update v7m.exception to indicate that
2364 * it is the exception currently being handled.
5cb18069 2365 */
6c948518 2366void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2367/**
2368 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2369 * @opaque: the NVIC
2370 * @irq: the exception number to complete
5cb18069 2371 * @secure: true if this exception was secure
aa488fe3
PM
2372 *
2373 * Returns: -1 if the irq was not active
2374 * 1 if completing this irq brought us back to base (no active irqs)
2375 * 0 if there is still an irq active after this one was completed
2376 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2377 */
5cb18069 2378int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2379/**
2380 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2381 * @opaque: the NVIC
2382 * @irq: the exception number to mark pending
2383 * @secure: false for non-banked exceptions or for the nonsecure
2384 * version of a banked exception, true for the secure version of a banked
2385 * exception.
2386 *
2387 * Return whether an exception is "ready", i.e. whether the exception is
2388 * enabled and is configured at a priority which would allow it to
2389 * interrupt the current execution priority. This controls whether the
2390 * RDY bit for it in the FPCCR is set.
2391 */
2392bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2393/**
2394 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2395 * @opaque: the NVIC
2396 *
2397 * Returns: the raw execution priority as defined by the v8M architecture.
2398 * This is the execution priority minus the effects of AIRCR.PRIS,
2399 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2400 * (v8M ARM ARM I_PKLD.)
2401 */
2402int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2403/**
2404 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2405 * priority is negative for the specified security state.
2406 * @opaque: the NVIC
2407 * @secure: the security state to test
2408 * This corresponds to the pseudocode IsReqExecPriNeg().
2409 */
2410#ifndef CONFIG_USER_ONLY
2411bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2412#else
2413static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2414{
2415 return false;
2416}
2417#endif
9ee6e8bb 2418
4b6a83fb
PM
2419/* Interface for defining coprocessor registers.
2420 * Registers are defined in tables of arm_cp_reginfo structs
2421 * which are passed to define_arm_cp_regs().
2422 */
2423
2424/* When looking up a coprocessor register we look for it
2425 * via an integer which encodes all of:
2426 * coprocessor number
2427 * Crn, Crm, opc1, opc2 fields
2428 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2429 * or via MRRC/MCRR?)
51a79b03 2430 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2431 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2432 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2433 * For AArch64, there is no 32/64 bit size distinction;
2434 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2435 * and 4 bit CRn and CRm. The encoding patterns are chosen
2436 * to be easy to convert to and from the KVM encodings, and also
2437 * so that the hashtable can contain both AArch32 and AArch64
2438 * registers (to allow for interprocessing where we might run
2439 * 32 bit code on a 64 bit core).
4b6a83fb 2440 */
f5a0a5a5
PM
2441/* This bit is private to our hashtable cpreg; in KVM register
2442 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2443 * in the upper bits of the 64 bit ID.
2444 */
2445#define CP_REG_AA64_SHIFT 28
2446#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2447
51a79b03
PM
2448/* To enable banking of coprocessor registers depending on ns-bit we
2449 * add a bit to distinguish between secure and non-secure cpregs in the
2450 * hashtable.
2451 */
2452#define CP_REG_NS_SHIFT 29
2453#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2454
2455#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2456 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2457 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2458
f5a0a5a5
PM
2459#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2460 (CP_REG_AA64_MASK | \
2461 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2462 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2463 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2464 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2465 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2466 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2467
721fae12
PM
2468/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2469 * version used as a key for the coprocessor register hashtable
2470 */
2471static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2472{
2473 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2474 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2475 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2476 } else {
2477 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2478 cpregid |= (1 << 15);
2479 }
2480
2481 /* KVM is always non-secure so add the NS flag on AArch32 register
2482 * entries.
2483 */
2484 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2485 }
2486 return cpregid;
2487}
2488
2489/* Convert a truncated 32 bit hashtable key into the full
2490 * 64 bit KVM register ID.
2491 */
2492static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2493{
f5a0a5a5
PM
2494 uint64_t kvmid;
2495
2496 if (cpregid & CP_REG_AA64_MASK) {
2497 kvmid = cpregid & ~CP_REG_AA64_MASK;
2498 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2499 } else {
f5a0a5a5
PM
2500 kvmid = cpregid & ~(1 << 15);
2501 if (cpregid & (1 << 15)) {
2502 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2503 } else {
2504 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2505 }
721fae12
PM
2506 }
2507 return kvmid;
2508}
2509
4b6a83fb 2510/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2511 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2512 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2513 * TCG can assume the value to be constant (ie load at translate time)
2514 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2515 * indicates that the TB should not be ended after a write to this register
2516 * (the default is that the TB ends after cp writes). OVERRIDE permits
2517 * a register definition to override a previous definition for the
2518 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2519 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2520 * ALIAS indicates that this register is an alias view of some underlying
2521 * state which is also visible via another register, and that the other
b061a82b
SF
2522 * register is handling migration and reset; registers marked ALIAS will not be
2523 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2524 * NO_RAW indicates that this register has no underlying state and does not
2525 * support raw access for state saving/loading; it will not be used for either
2526 * migration or KVM state synchronization. (Typically this is for "registers"
2527 * which are actually used as instructions for cache maintenance and so on.)
2452731c 2528 * IO indicates that this register does I/O and therefore its accesses
55c812b7 2529 * need to be marked with gen_io_start() and also end the TB. In particular,
2452731c 2530 * registers which implement clocks or timers require this.
37ff584c
PM
2531 * RAISES_EXC is for when the read or write hook might raise an exception;
2532 * the generated code will synchronize the CPU state before calling the hook
2533 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2534 * NEWEL is for writes to registers that might change the exception
2535 * level - typically on older ARM chips. For those cases we need to
2536 * re-read the new el when recomputing the translation flags.
4b6a83fb 2537 */
fe03d45f
RH
2538#define ARM_CP_SPECIAL 0x0001
2539#define ARM_CP_CONST 0x0002
2540#define ARM_CP_64BIT 0x0004
2541#define ARM_CP_SUPPRESS_TB_END 0x0008
2542#define ARM_CP_OVERRIDE 0x0010
2543#define ARM_CP_ALIAS 0x0020
2544#define ARM_CP_IO 0x0040
2545#define ARM_CP_NO_RAW 0x0080
2546#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2547#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2548#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2549#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2550#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
eb821168
RH
2551#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
2552#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
2553#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
fe03d45f 2554#define ARM_CP_FPU 0x1000
490aa7f1 2555#define ARM_CP_SVE 0x2000
1f163787 2556#define ARM_CP_NO_GDB 0x4000
37ff584c 2557#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2558#define ARM_CP_NEWEL 0x10000
4b6a83fb 2559/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2560#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2561/* Mask of only the flag bits in a type field */
f80741d1 2562#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2563
f5a0a5a5
PM
2564/* Valid values for ARMCPRegInfo state field, indicating which of
2565 * the AArch32 and AArch64 execution states this register is visible in.
2566 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2567 * If the reginfo is declared to be visible in both states then a second
2568 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2569 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2570 * Note that we rely on the values of these enums as we iterate through
2571 * the various states in some places.
2572 */
2573enum {
2574 ARM_CP_STATE_AA32 = 0,
2575 ARM_CP_STATE_AA64 = 1,
2576 ARM_CP_STATE_BOTH = 2,
2577};
2578
c3e30260
FA
2579/* ARM CP register secure state flags. These flags identify security state
2580 * attributes for a given CP register entry.
2581 * The existence of both or neither secure and non-secure flags indicates that
2582 * the register has both a secure and non-secure hash entry. A single one of
2583 * these flags causes the register to only be hashed for the specified
2584 * security state.
2585 * Although definitions may have any combination of the S/NS bits, each
2586 * registered entry will only have one to identify whether the entry is secure
2587 * or non-secure.
2588 */
2589enum {
2590 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2591 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2592};
2593
4b6a83fb
PM
2594/* Return true if cptype is a valid type field. This is used to try to
2595 * catch errors where the sentinel has been accidentally left off the end
2596 * of a list of registers.
2597 */
2598static inline bool cptype_valid(int cptype)
2599{
2600 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2601 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2602 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2603}
2604
2605/* Access rights:
2606 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2607 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2608 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2609 * (ie any of the privileged modes in Secure state, or Monitor mode).
2610 * If a register is accessible in one privilege level it's always accessible
2611 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2612 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2613 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2614 * terminology a little and call this PL3.
f5a0a5a5
PM
2615 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2616 * with the ELx exception levels.
4b6a83fb
PM
2617 *
2618 * If access permissions for a register are more complex than can be
2619 * described with these bits, then use a laxer set of restrictions, and
2620 * do the more restrictive/complex check inside a helper function.
2621 */
2622#define PL3_R 0x80
2623#define PL3_W 0x40
2624#define PL2_R (0x20 | PL3_R)
2625#define PL2_W (0x10 | PL3_W)
2626#define PL1_R (0x08 | PL2_R)
2627#define PL1_W (0x04 | PL2_W)
2628#define PL0_R (0x02 | PL1_R)
2629#define PL0_W (0x01 | PL1_W)
2630
b5bd7440
AB
2631/*
2632 * For user-mode some registers are accessible to EL0 via a kernel
2633 * trap-and-emulate ABI. In this case we define the read permissions
2634 * as actually being PL0_R. However some bits of any given register
2635 * may still be masked.
2636 */
2637#ifdef CONFIG_USER_ONLY
2638#define PL0U_R PL0_R
2639#else
2640#define PL0U_R PL1_R
2641#endif
2642
4b6a83fb
PM
2643#define PL3_RW (PL3_R | PL3_W)
2644#define PL2_RW (PL2_R | PL2_W)
2645#define PL1_RW (PL1_R | PL1_W)
2646#define PL0_RW (PL0_R | PL0_W)
2647
75502672
PM
2648/* Return the highest implemented Exception Level */
2649static inline int arm_highest_el(CPUARMState *env)
2650{
2651 if (arm_feature(env, ARM_FEATURE_EL3)) {
2652 return 3;
2653 }
2654 if (arm_feature(env, ARM_FEATURE_EL2)) {
2655 return 2;
2656 }
2657 return 1;
2658}
2659
15b3f556
PM
2660/* Return true if a v7M CPU is in Handler mode */
2661static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2662{
2663 return env->v7m.exception != 0;
2664}
2665
dcbff19b
GB
2666/* Return the current Exception Level (as per ARMv8; note that this differs
2667 * from the ARMv7 Privilege Level).
2668 */
2669static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2670{
6d54ed3c 2671 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2672 return arm_v7m_is_handler_mode(env) ||
2673 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2674 }
2675
592125f8 2676 if (is_a64(env)) {
f5a0a5a5
PM
2677 return extract32(env->pstate, 2, 2);
2678 }
2679
592125f8
FA
2680 switch (env->uncached_cpsr & 0x1f) {
2681 case ARM_CPU_MODE_USR:
4b6a83fb 2682 return 0;
592125f8
FA
2683 case ARM_CPU_MODE_HYP:
2684 return 2;
2685 case ARM_CPU_MODE_MON:
2686 return 3;
2687 default:
2688 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2689 /* If EL3 is 32-bit then all secure privileged modes run in
2690 * EL3
2691 */
2692 return 3;
2693 }
2694
2695 return 1;
4b6a83fb 2696 }
4b6a83fb
PM
2697}
2698
2699typedef struct ARMCPRegInfo ARMCPRegInfo;
2700
f59df3f2
PM
2701typedef enum CPAccessResult {
2702 /* Access is permitted */
2703 CP_ACCESS_OK = 0,
2704 /* Access fails due to a configurable trap or enable which would
2705 * result in a categorized exception syndrome giving information about
2706 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2707 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2708 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2709 */
2710 CP_ACCESS_TRAP = 1,
2711 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2712 * Note that this is not a catch-all case -- the set of cases which may
2713 * result in this failure is specifically defined by the architecture.
2714 */
2715 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2716 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2717 CP_ACCESS_TRAP_EL2 = 3,
2718 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2719 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2720 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2721 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2722 /* Access fails and results in an exception syndrome for an FP access,
2723 * trapped directly to EL2 or EL3
2724 */
2725 CP_ACCESS_TRAP_FP_EL2 = 7,
2726 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2727} CPAccessResult;
2728
c4241c7d
PM
2729/* Access functions for coprocessor registers. These cannot fail and
2730 * may not raise exceptions.
2731 */
2732typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2733typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2734 uint64_t value);
f59df3f2 2735/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2736typedef CPAccessResult CPAccessFn(CPUARMState *env,
2737 const ARMCPRegInfo *opaque,
2738 bool isread);
4b6a83fb
PM
2739/* Hook function for register reset */
2740typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2741
2742#define CP_ANY 0xff
2743
2744/* Definition of an ARM coprocessor register */
2745struct ARMCPRegInfo {
2746 /* Name of register (useful mainly for debugging, need not be unique) */
2747 const char *name;
2748 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2749 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2750 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2751 * will be decoded to this register. The register read and write
2752 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2753 * used by the program, so it is possible to register a wildcard and
2754 * then behave differently on read/write if necessary.
2755 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2756 * must both be zero.
f5a0a5a5
PM
2757 * For AArch64-visible registers, opc0 is also used.
2758 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2759 * way to distinguish (for KVM's benefit) guest-visible system registers
2760 * from demuxed ones provided to preserve the "no side effects on
2761 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2762 * visible (to match KVM's encoding); cp==0 will be converted to
2763 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2764 */
2765 uint8_t cp;
2766 uint8_t crn;
2767 uint8_t crm;
f5a0a5a5 2768 uint8_t opc0;
4b6a83fb
PM
2769 uint8_t opc1;
2770 uint8_t opc2;
f5a0a5a5
PM
2771 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2772 int state;
4b6a83fb
PM
2773 /* Register type: ARM_CP_* bits/values */
2774 int type;
2775 /* Access rights: PL*_[RW] */
2776 int access;
c3e30260
FA
2777 /* Security state: ARM_CP_SECSTATE_* bits/values */
2778 int secure;
4b6a83fb
PM
2779 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2780 * this register was defined: can be used to hand data through to the
2781 * register read/write functions, since they are passed the ARMCPRegInfo*.
2782 */
2783 void *opaque;
2784 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2785 * fieldoffset is non-zero, the reset value of the register.
2786 */
2787 uint64_t resetvalue;
c3e30260
FA
2788 /* Offset of the field in CPUARMState for this register.
2789 *
2790 * This is not needed if either:
4b6a83fb
PM
2791 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2792 * 2. both readfn and writefn are specified
2793 */
2794 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2795
2796 /* Offsets of the secure and non-secure fields in CPUARMState for the
2797 * register if it is banked. These fields are only used during the static
2798 * registration of a register. During hashing the bank associated
2799 * with a given security state is copied to fieldoffset which is used from
2800 * there on out.
2801 *
2802 * It is expected that register definitions use either fieldoffset or
2803 * bank_fieldoffsets in the definition but not both. It is also expected
2804 * that both bank offsets are set when defining a banked register. This
2805 * use indicates that a register is banked.
2806 */
2807 ptrdiff_t bank_fieldoffsets[2];
2808
f59df3f2
PM
2809 /* Function for making any access checks for this register in addition to
2810 * those specified by the 'access' permissions bits. If NULL, no extra
2811 * checks required. The access check is performed at runtime, not at
2812 * translate time.
2813 */
2814 CPAccessFn *accessfn;
4b6a83fb
PM
2815 /* Function for handling reads of this register. If NULL, then reads
2816 * will be done by loading from the offset into CPUARMState specified
2817 * by fieldoffset.
2818 */
2819 CPReadFn *readfn;
2820 /* Function for handling writes of this register. If NULL, then writes
2821 * will be done by writing to the offset into CPUARMState specified
2822 * by fieldoffset.
2823 */
2824 CPWriteFn *writefn;
7023ec7e
PM
2825 /* Function for doing a "raw" read; used when we need to copy
2826 * coprocessor state to the kernel for KVM or out for
2827 * migration. This only needs to be provided if there is also a
c4241c7d 2828 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2829 */
2830 CPReadFn *raw_readfn;
2831 /* Function for doing a "raw" write; used when we need to copy KVM
2832 * kernel coprocessor state into userspace, or for inbound
2833 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2834 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2835 * or similar behaviour.
7023ec7e
PM
2836 */
2837 CPWriteFn *raw_writefn;
4b6a83fb
PM
2838 /* Function for resetting the register. If NULL, then reset will be done
2839 * by writing resetvalue to the field specified in fieldoffset. If
2840 * fieldoffset is 0 then no reset will be done.
2841 */
2842 CPResetFn *resetfn;
e2cce18f
RH
2843
2844 /*
2845 * "Original" writefn and readfn.
2846 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2847 * accessor functions of various EL1/EL0 to perform the runtime
2848 * check for which sysreg should actually be modified, and then
2849 * forwards the operation. Before overwriting the accessors,
2850 * the original function is copied here, so that accesses that
2851 * really do go to the EL1/EL0 version proceed normally.
2852 * (The corresponding EL2 register is linked via opaque.)
2853 */
2854 CPReadFn *orig_readfn;
2855 CPWriteFn *orig_writefn;
4b6a83fb
PM
2856};
2857
2858/* Macros which are lvalues for the field in CPUARMState for the
2859 * ARMCPRegInfo *ri.
2860 */
2861#define CPREG_FIELD32(env, ri) \
2862 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2863#define CPREG_FIELD64(env, ri) \
2864 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2865
2866#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2867
2868void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2869 const ARMCPRegInfo *regs, void *opaque);
2870void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2871 const ARMCPRegInfo *regs, void *opaque);
2872static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2873{
2874 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2875}
2876static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2877{
2878 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2879}
60322b39 2880const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2881
6c5c0fec
AB
2882/*
2883 * Definition of an ARM co-processor register as viewed from
2884 * userspace. This is used for presenting sanitised versions of
2885 * registers to userspace when emulating the Linux AArch64 CPU
2886 * ID/feature ABI (advertised as HWCAP_CPUID).
2887 */
2888typedef struct ARMCPRegUserSpaceInfo {
2889 /* Name of register */
2890 const char *name;
2891
d040242e
AB
2892 /* Is the name actually a glob pattern */
2893 bool is_glob;
2894
6c5c0fec
AB
2895 /* Only some bits are exported to user space */
2896 uint64_t exported_bits;
2897
2898 /* Fixed bits are applied after the mask */
2899 uint64_t fixed_bits;
2900} ARMCPRegUserSpaceInfo;
2901
2902#define REGUSERINFO_SENTINEL { .name = NULL }
2903
2904void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2905
4b6a83fb 2906/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2907void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2908 uint64_t value);
4b6a83fb 2909/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2910uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2911
f5a0a5a5
PM
2912/* CPResetFn that does nothing, for use if no reset is required even
2913 * if fieldoffset is non zero.
2914 */
2915void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2916
67ed771d
PM
2917/* Return true if this reginfo struct's field in the cpu state struct
2918 * is 64 bits wide.
2919 */
2920static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2921{
2922 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2923}
2924
dcbff19b 2925static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2926 const ARMCPRegInfo *ri, int isread)
2927{
dcbff19b 2928 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2929}
2930
49a66191
PM
2931/* Raw read of a coprocessor register (as needed for migration, etc) */
2932uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2933
721fae12
PM
2934/**
2935 * write_list_to_cpustate
2936 * @cpu: ARMCPU
2937 *
2938 * For each register listed in the ARMCPU cpreg_indexes list, write
2939 * its value from the cpreg_values list into the ARMCPUState structure.
2940 * This updates TCG's working data structures from KVM data or
2941 * from incoming migration state.
2942 *
2943 * Returns: true if all register values were updated correctly,
2944 * false if some register was unknown or could not be written.
2945 * Note that we do not stop early on failure -- we will attempt
2946 * writing all registers in the list.
2947 */
2948bool write_list_to_cpustate(ARMCPU *cpu);
2949
2950/**
2951 * write_cpustate_to_list:
2952 * @cpu: ARMCPU
b698e4ee 2953 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2954 *
2955 * For each register listed in the ARMCPU cpreg_indexes list, write
2956 * its value from the ARMCPUState structure into the cpreg_values list.
2957 * This is used to copy info from TCG's working data structures into
2958 * KVM or for outbound migration.
2959 *
b698e4ee
PM
2960 * @kvm_sync is true if we are doing this in order to sync the
2961 * register state back to KVM. In this case we will only update
2962 * values in the list if the previous list->cpustate sync actually
2963 * successfully wrote the CPU state. Otherwise we will keep the value
2964 * that is in the list.
2965 *
721fae12
PM
2966 * Returns: true if all register values were read correctly,
2967 * false if some register was unknown or could not be read.
2968 * Note that we do not stop early on failure -- we will attempt
2969 * reading all registers in the list.
2970 */
b698e4ee 2971bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2972
9ee6e8bb
PB
2973#define ARM_CPUID_TI915T 0x54029152
2974#define ARM_CPUID_TI925T 0x54029252
40f137e1 2975
ba1ba5cc
IM
2976#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2977#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2978#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2979
9467d44c 2980#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2981#define cpu_list arm_cpu_list
9467d44c 2982
c1e37810
PM
2983/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2984 *
2985 * If EL3 is 64-bit:
2986 * + NonSecure EL1 & 0 stage 1
2987 * + NonSecure EL1 & 0 stage 2
2988 * + NonSecure EL2
b9f6033c
RH
2989 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2990 * + Secure EL1 & 0
c1e37810
PM
2991 * + Secure EL3
2992 * If EL3 is 32-bit:
2993 * + NonSecure PL1 & 0 stage 1
2994 * + NonSecure PL1 & 0 stage 2
2995 * + NonSecure PL2
b9f6033c
RH
2996 * + Secure PL0
2997 * + Secure PL1
c1e37810
PM
2998 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2999 *
3000 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
3001 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3002 * because they may differ in access permissions even if the VA->PA map is
3003 * the same
c1e37810
PM
3004 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3005 * translation, which means that we have one mmu_idx that deals with two
3006 * concatenated translation regimes [this sort of combined s1+2 TLB is
3007 * architecturally permitted]
3008 * 3. we don't need to allocate an mmu_idx to translations that we won't be
3009 * handling via the TLB. The only way to do a stage 1 translation without
3010 * the immediate stage 2 translation is via the ATS or AT system insns,
3011 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
3012 * The only use of stage 2 translations is either as part of an s1+2
3013 * lookup or when loading the descriptors during a stage 1 page table walk,
3014 * and in both those cases we don't use the TLB.
c1e37810
PM
3015 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3016 * translation regimes, because they map reasonably well to each other
3017 * and they can't both be active at the same time.
b9f6033c
RH
3018 * 5. we want to be able to use the TLB for accesses done as part of a
3019 * stage1 page table walk, rather than having to walk the stage2 page
3020 * table over and over.
452ef8cb
RH
3021 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3022 * Never (PAN) bit within PSTATE.
c1e37810 3023 *
b9f6033c
RH
3024 * This gives us the following list of cases:
3025 *
3026 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3027 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 3028 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 3029 * NS EL0 EL2&0
bf05340c 3030 * NS EL2 EL2&0
452ef8cb 3031 * NS EL2 EL2&0 +PAN
c1e37810 3032 * NS EL2 (aka NS PL2)
b9f6033c
RH
3033 * S EL0 EL1&0 (aka S PL0)
3034 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 3035 * S EL1 EL1&0 +PAN
c1e37810 3036 * S EL3 (aka S PL1)
c1e37810 3037 *
bf05340c 3038 * for a total of 11 different mmu_idx.
c1e37810 3039 *
3bef7012
PM
3040 * R profile CPUs have an MPU, but can use the same set of MMU indexes
3041 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3042 * NS EL2 if we ever model a Cortex-R52).
3043 *
3044 * M profile CPUs are rather different as they do not have a true MMU.
3045 * They have the following different MMU indexes:
3046 * User
3047 * Privileged
62593718
PM
3048 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3049 * Privileged, execution priority negative (ditto)
66787c78
PM
3050 * If the CPU supports the v8M Security Extension then there are also:
3051 * Secure User
3052 * Secure Privileged
62593718
PM
3053 * Secure User, execution priority negative
3054 * Secure Privileged, execution priority negative
3bef7012 3055 *
8bd5c820
PM
3056 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3057 * are not quite the same -- different CPU types (most notably M profile
3058 * vs A/R profile) would like to use MMU indexes with different semantics,
3059 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
3060 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3061 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
3062 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3063 * the same for any particular CPU.
3064 * Variables of type ARMMUIdx are always full values, and the core
3065 * index values are in variables of type 'int'.
3066 *
c1e37810
PM
3067 * Our enumeration includes at the end some entries which are not "true"
3068 * mmu_idx values in that they don't have corresponding TLBs and are only
3069 * valid for doing slow path page table walks.
3070 *
3071 * The constant names here are patterned after the general style of the names
3072 * of the AT/ATS operations.
3073 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
3074 * For M profile we arrange them to have a bit for priv, a bit for negpri
3075 * and a bit for secure.
c1e37810 3076 */
b9f6033c
RH
3077#define ARM_MMU_IDX_A 0x10 /* A profile */
3078#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
3079#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 3080
b6ad6062
RDC
3081/* Meanings of the bits for A profile mmu idx values */
3082#define ARM_MMU_IDX_A_NS 0x8
3083
b9f6033c
RH
3084/* Meanings of the bits for M profile mmu idx values */
3085#define ARM_MMU_IDX_M_PRIV 0x1
62593718 3086#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 3087#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 3088
b9f6033c
RH
3089#define ARM_MMU_IDX_TYPE_MASK \
3090 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3091#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 3092
c1e37810 3093typedef enum ARMMMUIdx {
b9f6033c
RH
3094 /*
3095 * A-profile.
3096 */
b6ad6062
RDC
3097 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
3098 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
3099 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
3100 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
3101 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
3102 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
3103 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
3104 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
3105
3106 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3107 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3108 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3109 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3110 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3111 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3112 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
b9f6033c 3113
b9f6033c
RH
3114 /*
3115 * These are not allocated TLBs and are used only for AT system
3116 * instructions or for the first stage of an S12 page table walk.
3117 */
3118 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3119 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 3120 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b1a10c86
RDC
3121 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3122 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3123 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
3124 /*
3125 * Not allocated a TLB: used only for second stage of an S12 page
3126 * table walk, or for descriptor loads during first stage of an S1
3127 * page table walk. Note that if we ever want to have a TLB for this
3128 * then various TLB flush insns which currently are no-ops or flush
3129 * only stage 1 MMU indexes will need to change to flush stage 2.
3130 */
b1a10c86
RDC
3131 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
3132 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
3133
3134 /*
3135 * M-profile.
3136 */
25568316
RH
3137 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3138 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3139 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3140 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3141 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3142 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3143 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3144 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
3145} ARMMMUIdx;
3146
5f09a6df
RH
3147/*
3148 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
3149 * for use when calling tlb_flush_by_mmuidx() and friends.
3150 */
5f09a6df
RH
3151#define TO_CORE_BIT(NAME) \
3152 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3153
8bd5c820 3154typedef enum ARMMMUIdxBit {
5f09a6df 3155 TO_CORE_BIT(E10_0),
b9f6033c 3156 TO_CORE_BIT(E20_0),
5f09a6df 3157 TO_CORE_BIT(E10_1),
452ef8cb 3158 TO_CORE_BIT(E10_1_PAN),
5f09a6df 3159 TO_CORE_BIT(E2),
b9f6033c 3160 TO_CORE_BIT(E20_2),
452ef8cb 3161 TO_CORE_BIT(E20_2_PAN),
5f09a6df 3162 TO_CORE_BIT(SE10_0),
b6ad6062 3163 TO_CORE_BIT(SE20_0),
5f09a6df 3164 TO_CORE_BIT(SE10_1),
b6ad6062 3165 TO_CORE_BIT(SE20_2),
452ef8cb 3166 TO_CORE_BIT(SE10_1_PAN),
b6ad6062
RDC
3167 TO_CORE_BIT(SE20_2_PAN),
3168 TO_CORE_BIT(SE2),
5f09a6df 3169 TO_CORE_BIT(SE3),
5f09a6df
RH
3170
3171 TO_CORE_BIT(MUser),
3172 TO_CORE_BIT(MPriv),
3173 TO_CORE_BIT(MUserNegPri),
3174 TO_CORE_BIT(MPrivNegPri),
3175 TO_CORE_BIT(MSUser),
3176 TO_CORE_BIT(MSPriv),
3177 TO_CORE_BIT(MSUserNegPri),
3178 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3179} ARMMMUIdxBit;
3180
5f09a6df
RH
3181#undef TO_CORE_BIT
3182
f79fbf39 3183#define MMU_USER_IDX 0
c1e37810 3184
9e273ef2
PM
3185/* Indexes used when registering address spaces with cpu_address_space_init */
3186typedef enum ARMASIdx {
3187 ARMASIdx_NS = 0,
3188 ARMASIdx_S = 1,
8bce44a2
RH
3189 ARMASIdx_TagNS = 2,
3190 ARMASIdx_TagS = 3,
9e273ef2
PM
3191} ARMASIdx;
3192
533e93f1 3193/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
3194static inline int arm_debug_target_el(CPUARMState *env)
3195{
81669b8b
SF
3196 bool secure = arm_is_secure(env);
3197 bool route_to_el2 = false;
3198
e6ef0169 3199 if (arm_is_el2_enabled(env)) {
81669b8b 3200 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 3201 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
3202 }
3203
3204 if (route_to_el2) {
3205 return 2;
3206 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3207 !arm_el_is_aa64(env, 3) && secure) {
3208 return 3;
3209 } else {
3210 return 1;
3211 }
3a298203
PM
3212}
3213
43bbce7f
PM
3214static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3215{
3216 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3217 * CSSELR is RAZ/WI.
3218 */
3219 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3220}
3221
22af9025 3222/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
3223static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3224{
22af9025
AB
3225 int cur_el = arm_current_el(env);
3226 int debug_el;
3227
3228 if (cur_el == 3) {
3229 return false;
533e93f1
PM
3230 }
3231
22af9025
AB
3232 /* MDCR_EL3.SDD disables debug events from Secure state */
3233 if (arm_is_secure_below_el3(env)
3234 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3235 return false;
3a298203 3236 }
22af9025
AB
3237
3238 /*
3239 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3240 * while not masking the (D)ebug bit in DAIF.
3241 */
3242 debug_el = arm_debug_target_el(env);
3243
3244 if (cur_el == debug_el) {
3245 return extract32(env->cp15.mdscr_el1, 13, 1)
3246 && !(env->daif & PSTATE_D);
3247 }
3248
3249 /* Otherwise the debug target needs to be a higher EL */
3250 return debug_el > cur_el;
3a298203
PM
3251}
3252
3253static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3254{
533e93f1
PM
3255 int el = arm_current_el(env);
3256
3257 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3258 return aa64_generate_debug_exceptions(env);
3259 }
533e93f1
PM
3260
3261 if (arm_is_secure(env)) {
3262 int spd;
3263
3264 if (el == 0 && (env->cp15.sder & 1)) {
3265 /* SDER.SUIDEN means debug exceptions from Secure EL0
3266 * are always enabled. Otherwise they are controlled by
3267 * SDCR.SPD like those from other Secure ELs.
3268 */
3269 return true;
3270 }
3271
3272 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3273 switch (spd) {
3274 case 1:
3275 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3276 case 0:
3277 /* For 0b00 we return true if external secure invasive debug
3278 * is enabled. On real hardware this is controlled by external
3279 * signals to the core. QEMU always permits debug, and behaves
3280 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3281 */
3282 return true;
3283 case 2:
3284 return false;
3285 case 3:
3286 return true;
3287 }
3288 }
3289
3290 return el != 2;
3a298203
PM
3291}
3292
3293/* Return true if debugging exceptions are currently enabled.
3294 * This corresponds to what in ARM ARM pseudocode would be
3295 * if UsingAArch32() then
3296 * return AArch32.GenerateDebugExceptions()
3297 * else
3298 * return AArch64.GenerateDebugExceptions()
3299 * We choose to push the if() down into this function for clarity,
3300 * since the pseudocode has it at all callsites except for the one in
3301 * CheckSoftwareStep(), where it is elided because both branches would
3302 * always return the same value.
3a298203
PM
3303 */
3304static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3305{
3306 if (env->aarch64) {
3307 return aa64_generate_debug_exceptions(env);
3308 } else {
3309 return aa32_generate_debug_exceptions(env);
3310 }
3311}
3312
3313/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3314 * implicitly means this always returns false in pre-v8 CPUs.)
3315 */
3316static inline bool arm_singlestep_active(CPUARMState *env)
3317{
3318 return extract32(env->cp15.mdscr_el1, 0, 1)
3319 && arm_el_is_aa64(env, arm_debug_target_el(env))
3320 && arm_generate_debug_exceptions(env);
3321}
3322
f9fd40eb
PB
3323static inline bool arm_sctlr_b(CPUARMState *env)
3324{
3325 return
3326 /* We need not implement SCTLR.ITD in user-mode emulation, so
3327 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3328 * This lets people run BE32 binaries with "-cpu any".
3329 */
3330#ifndef CONFIG_USER_ONLY
3331 !arm_feature(env, ARM_FEATURE_V7) &&
3332#endif
3333 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3334}
3335
aaec1432 3336uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3337
8061a649
RH
3338static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3339 bool sctlr_b)
3340{
3341#ifdef CONFIG_USER_ONLY
3342 /*
3343 * In system mode, BE32 is modelled in line with the
3344 * architecture (as word-invariant big-endianness), where loads
3345 * and stores are done little endian but from addresses which
3346 * are adjusted by XORing with the appropriate constant. So the
3347 * endianness to use for the raw data access is not affected by
3348 * SCTLR.B.
3349 * In user mode, however, we model BE32 as byte-invariant
3350 * big-endianness (because user-only code cannot tell the
3351 * difference), and so we need to use a data access endianness
3352 * that depends on SCTLR.B.
3353 */
3354 if (sctlr_b) {
3355 return true;
3356 }
3357#endif
3358 /* In 32bit endianness is determined by looking at CPSR's E bit */
3359 return env->uncached_cpsr & CPSR_E;
3360}
3361
3362static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3363{
3364 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3365}
64e40755 3366
ed50ff78
PC
3367/* Return true if the processor is in big-endian mode. */
3368static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3369{
ed50ff78 3370 if (!is_a64(env)) {
8061a649 3371 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3372 } else {
3373 int cur_el = arm_current_el(env);
3374 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3375 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3376 }
ed50ff78
PC
3377}
3378
4f7c64b3 3379typedef CPUARMState CPUArchState;
2161a612 3380typedef ARMCPU ArchCPU;
4f7c64b3 3381
022c62cb 3382#include "exec/cpu-all.h"
622ed360 3383
fdd1b228 3384/*
a378206a
RH
3385 * We have more than 32-bits worth of state per TB, so we split the data
3386 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3387 * We collect these two parts in CPUARMTBFlags where they are named
3388 * flags and flags2 respectively.
fdd1b228 3389 *
a378206a
RH
3390 * The flags that are shared between all execution modes, TBFLAG_ANY,
3391 * are stored in flags. The flags that are specific to a given mode
3392 * are stores in flags2. Since cs_base is sized on the configured
3393 * address size, flags2 always has 64-bits for A64, and a minimum of
3394 * 32-bits for A32 and M32.
3395 *
3396 * The bits for 32-bit A-profile and M-profile partially overlap:
3397 *
5896f392
RH
3398 * 31 23 11 10 0
3399 * +-------------+----------+----------------+
3400 * | | | TBFLAG_A32 |
3401 * | TBFLAG_AM32 | +-----+----------+
3402 * | | |TBFLAG_M32|
3403 * +-------------+----------------+----------+
3404 * 31 23 5 4 0
79cabf1f 3405 *
fdd1b228 3406 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3407 */
aad821ac 3408FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498 3409FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
ae6eb1e9 3410FIELD(TBFLAG_ANY, PSTATE__SS, 29, 1) /* Not cached. */
506f1498
RH
3411FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3412FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3413/* Target EL if we take a floating-point-disabled exception */
506f1498 3414FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3415/* For A-profile only, target EL for debug exceptions. */
506f1498 3416FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3417
8bd587c1 3418/*
79cabf1f 3419 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3420 */
5896f392
RH
3421FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3422FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3423
79cabf1f
RH
3424/*
3425 * Bit usage when in AArch32 state, for A-profile only.
3426 */
5896f392
RH
3427FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3428FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3429/*
3430 * We store the bottom two bits of the CPAR as TB flags and handle
3431 * checks on the other bits at runtime. This shares the same bits as
3432 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3433 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3434 */
5896f392
RH
3435FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3436FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3437FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3438FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3439/*
3440 * Indicates whether cp register reads and writes by guest code should access
3441 * the secure or nonsecure bank of banked registers; note that this is not
3442 * the same thing as the current security state of the processor!
3443 */
5896f392 3444FIELD(TBFLAG_A32, NS, 10, 1)
79cabf1f
RH
3445
3446/*
3447 * Bit usage when in AArch32 state, for M-profile only.
3448 */
3449/* Handler (ie not Thread) mode */
5896f392 3450FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3451/* Whether we should generate stack-limit checks */
5896f392 3452FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3453/* Set if FPCCR.LSPACT is set */
5896f392 3454FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3455/* Set if we must create a new FP context */
5896f392 3456FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3457/* Set if FPCCR.S does not match current security state */
5896f392 3458FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
79cabf1f
RH
3459
3460/*
3461 * Bit usage when in AArch64 state
3462 */
476a4692 3463FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3464FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3465FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3466FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3467FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3468FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3469FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3470FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3471FIELD(TBFLAG_A64, ATA, 15, 1)
3472FIELD(TBFLAG_A64, TCMA, 16, 2)
3473FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3474FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
a1705768 3475
a729a46b
RH
3476/*
3477 * Helpers for using the above.
3478 */
3479#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3480 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3481#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3482 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3483#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3484 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3485#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3486 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3487#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3488 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3489
3902bfc6 3490#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3491#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3492#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3493#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3494#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3495
fb901c90
RH
3496/**
3497 * cpu_mmu_index:
3498 * @env: The cpu environment
3499 * @ifetch: True for code access, false for data access.
3500 *
3501 * Return the core mmu index for the current translation regime.
3502 * This function is used by generic TCG code paths.
3503 */
3504static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3505{
a729a46b 3506 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3507}
3508
f9fd40eb
PB
3509static inline bool bswap_code(bool sctlr_b)
3510{
3511#ifdef CONFIG_USER_ONLY
3512 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3513 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3514 * would also end up as a mixed-endian mode with BE code, LE data.
3515 */
3516 return
3517#ifdef TARGET_WORDS_BIGENDIAN
3518 1 ^
3519#endif
3520 sctlr_b;
3521#else
e334bd31
PB
3522 /* All code access in ARM is little endian, and there are no loaders
3523 * doing swaps that need to be reversed
f9fd40eb
PB
3524 */
3525 return 0;
3526#endif
3527}
3528
c3ae85fc
PB
3529#ifdef CONFIG_USER_ONLY
3530static inline bool arm_cpu_bswap_data(CPUARMState *env)
3531{
3532 return
3533#ifdef TARGET_WORDS_BIGENDIAN
3534 1 ^
3535#endif
3536 arm_cpu_data_is_big_endian(env);
3537}
3538#endif
3539
a9e01311
RH
3540void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3541 target_ulong *cs_base, uint32_t *flags);
6b917547 3542
98128601
RH
3543enum {
3544 QEMU_PSCI_CONDUIT_DISABLED = 0,
3545 QEMU_PSCI_CONDUIT_SMC = 1,
3546 QEMU_PSCI_CONDUIT_HVC = 2,
3547};
3548
017518c1
PM
3549#ifndef CONFIG_USER_ONLY
3550/* Return the address space index to use for a memory access */
3551static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3552{
3553 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3554}
5ce4ff65
PM
3555
3556/* Return the AddressSpace to use for a memory access
3557 * (which depends on whether the access is S or NS, and whether
3558 * the board gave us a separate AddressSpace for S accesses).
3559 */
3560static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3561{
3562 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3563}
017518c1
PM
3564#endif
3565
bd7d00fc 3566/**
b5c53d1b
AL
3567 * arm_register_pre_el_change_hook:
3568 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3569 * CPU changes exception level or mode. The hook function will be
3570 * passed a pointer to the ARMCPU and the opaque data pointer passed
3571 * to this function when the hook was registered.
b5c53d1b
AL
3572 *
3573 * Note that if a pre-change hook is called, any registered post-change hooks
3574 * are guaranteed to subsequently be called.
bd7d00fc 3575 */
b5c53d1b 3576void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3577 void *opaque);
b5c53d1b
AL
3578/**
3579 * arm_register_el_change_hook:
3580 * Register a hook function which will be called immediately after this
3581 * CPU changes exception level or mode. The hook function will be
3582 * passed a pointer to the ARMCPU and the opaque data pointer passed
3583 * to this function when the hook was registered.
3584 *
3585 * Note that any registered hooks registered here are guaranteed to be called
3586 * if pre-change hooks have been.
3587 */
3588void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3589 *opaque);
bd7d00fc 3590
3d74e2e9
RH
3591/**
3592 * arm_rebuild_hflags:
3593 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3594 */
3595void arm_rebuild_hflags(CPUARMState *env);
3596
9a2b5256
RH
3597/**
3598 * aa32_vfp_dreg:
3599 * Return a pointer to the Dn register within env in 32-bit mode.
3600 */
3601static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3602{
c39c2b90 3603 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3604}
3605
3606/**
3607 * aa32_vfp_qreg:
3608 * Return a pointer to the Qn register within env in 32-bit mode.
3609 */
3610static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3611{
c39c2b90 3612 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3613}
3614
3615/**
3616 * aa64_vfp_qreg:
3617 * Return a pointer to the Qn register within env in 64-bit mode.
3618 */
3619static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3620{
c39c2b90 3621 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3622}
3623
028e2a7b
RH
3624/* Shared between translate-sve.c and sve_helper.c. */
3625extern const uint64_t pred_esz_masks[4];
3626
149d3b31
RH
3627/* Helper for the macros below, validating the argument type. */
3628static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3629{
3630 return x;
3631}
3632
3633/*
3634 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3635 * Using these should be a bit more self-documenting than using the
3636 * generic target bits directly.
3637 */
3638#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3639#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3640
be5d6f48
RH
3641/*
3642 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3643 */
3644#define PAGE_BTI PAGE_TARGET_1
d109b46d 3645#define PAGE_MTE PAGE_TARGET_2
be5d6f48 3646
0e0c030c
RH
3647#ifdef TARGET_TAGGED_ADDRESSES
3648/**
3649 * cpu_untagged_addr:
3650 * @cs: CPU context
3651 * @x: tagged address
3652 *
3653 * Remove any address tag from @x. This is explicitly related to the
3654 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3655 *
3656 * There should be a better place to put this, but we need this in
3657 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3658 */
3659static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3660{
3661 ARMCPU *cpu = ARM_CPU(cs);
3662 if (cpu->env.tagged_addr_enable) {
3663 /*
3664 * TBI is enabled for userspace but not kernelspace addresses.
3665 * Only clear the tag if bit 55 is clear.
3666 */
3667 x &= sextract64(x, 0, 56);
3668 }
3669 return x;
3670}
3671#endif
3672
873b73c0
PM
3673/*
3674 * Naming convention for isar_feature functions:
3675 * Functions which test 32-bit ID registers should have _aa32_ in
3676 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3677 * _aa64_ in their name. These must only be used in code where we
3678 * know for certain that the CPU has AArch32 or AArch64 respectively
3679 * or where the correct answer for a CPU which doesn't implement that
3680 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3681 * system registers that are specific to that CPU state, for "should
3682 * we let this system register bit be set" tests where the 32-bit
3683 * flavour of the register doesn't have the bit, and so on).
3684 * Functions which simply ask "does this feature exist at all" have
3685 * _any_ in their name, and always return the logical OR of the _aa64_
3686 * and the _aa32_ function.
873b73c0
PM
3687 */
3688
962fcbf2
RH
3689/*
3690 * 32-bit feature tests via id registers.
3691 */
873b73c0 3692static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3693{
3694 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3695}
3696
873b73c0 3697static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3698{
3699 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3700}
05903f03
PM
3701
3702static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3703{
3704 /* (M-profile) low-overhead loops and branch future */
3705 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3706}
7e0cf8b4 3707
873b73c0 3708static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3709{
3710 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3711}
3712
962fcbf2
RH
3713static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3714{
3715 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3716}
3717
3718static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3719{
3720 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3721}
3722
3723static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3724{
3725 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3726}
3727
3728static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3729{
3730 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3731}
3732
3733static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3734{
3735 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3736}
3737
3738static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3739{
3740 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3741}
3742
3743static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3744{
3745 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3746}
3747
6c1f6f27
RH
3748static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3749{
3750 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3751}
3752
962fcbf2
RH
3753static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3754{
3755 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3756}
3757
87732318
RH
3758static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3759{
3760 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3761}
3762
9888bd1e
RH
3763static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3764{
3765 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3766}
3767
cb570bd3
RH
3768static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3769{
3770 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3771}
3772
46f4976f
PM
3773static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3774{
3775 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3776}
3777
dfc523a8
PM
3778static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3779{
3780 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3781}
3782
83ff3d6a
PM
3783static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3784{
3785 /*
3786 * Return true if M-profile state handling insns
3787 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3788 */
3789 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3790}
3791
5763190f
RH
3792static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3793{
dfc523a8
PM
3794 /* Sadly this is encoded differently for A-profile and M-profile */
3795 if (isar_feature_aa32_mprofile(id)) {
3796 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3797 } else {
3798 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3799 }
5763190f
RH
3800}
3801
7fbc6a40
RH
3802static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3803{
3804 /*
3805 * Return true if either VFP or SIMD is implemented.
3806 * In this case, a minimum of VFP w/ D0-D15.
3807 */
3808 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3809}
3810
0e13ba78 3811static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3812{
3813 /* Return true if D16-D31 are implemented */
b3a816f6 3814 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3815}
3816
266bd25c
PM
3817static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3818{
b3a816f6 3819 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3820}
3821
f67957e1
RH
3822static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3823{
3824 /* Return true if CPU supports single precision floating point, VFPv2 */
3825 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3826}
3827
3828static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3829{
3830 /* Return true if CPU supports single precision floating point, VFPv3 */
3831 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3832}
3833
c4ff8735 3834static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3835{
c4ff8735 3836 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3837 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3838}
3839
f67957e1
RH
3840static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3841{
3842 /* Return true if CPU supports double precision floating point, VFPv3 */
3843 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3844}
3845
7d63183f
RH
3846static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3847{
3848 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3849}
3850
602f6e42
PM
3851/*
3852 * We always set the FP and SIMD FP16 fields to indicate identical
3853 * levels of support (assuming SIMD is implemented at all), so
3854 * we only need one set of accessors.
3855 */
3856static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3857{
b3a816f6 3858 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3859}
3860
3861static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3862{
b3a816f6 3863 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3864}
3865
c52881bb
RH
3866/*
3867 * Note that this ID register field covers both VFP and Neon FMAC,
3868 * so should usually be tested in combination with some other
3869 * check that confirms the presence of whichever of VFP or Neon is
3870 * relevant, to avoid accidentally enabling a Neon feature on
3871 * a VFP-no-Neon core or vice-versa.
3872 */
3873static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3874{
3875 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3876}
3877
c0c760af
PM
3878static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3879{
b3a816f6 3880 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3881}
3882
3883static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3884{
b3a816f6 3885 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3886}
3887
3888static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3889{
b3a816f6 3890 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3891}
3892
3893static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3894{
b3a816f6 3895 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3896}
3897
0ae0326b
PM
3898static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3899{
3900 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3901}
3902
3d6ad6bb
RH
3903static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3904{
10054016 3905 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3906}
3907
3908static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3909{
10054016 3910 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3911}
3912
a6179538
PM
3913static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3914{
3915 /* 0xf means "non-standard IMPDEF PMU" */
3916 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3917 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3918}
3919
15dd1ebd
PM
3920static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3921{
3922 /* 0xf means "non-standard IMPDEF PMU" */
3923 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3924 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3925}
3926
4036b7d1
PM
3927static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3928{
3929 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3930}
3931
f6287c24
PM
3932static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3933{
3934 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3935}
3936
957e6155
PM
3937static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3938{
3939 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3940}
3941
ce3125be
PM
3942static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3943{
3944 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3945}
3946
dc8b1853
RC
3947static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3948{
3949 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3950}
3951
f2f68a78
RC
3952static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3953{
3954 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3955}
3956
962fcbf2
RH
3957/*
3958 * 64-bit feature tests via id registers.
3959 */
3960static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3961{
3962 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3963}
3964
3965static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3966{
3967 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3968}
3969
3970static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3971{
3972 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3973}
3974
3975static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3976{
3977 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3978}
3979
3980static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3981{
3982 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3983}
3984
3985static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3986{
3987 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3988}
3989
3990static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3991{
3992 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3993}
3994
3995static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3996{
3997 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3998}
3999
4000static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4001{
4002 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4003}
4004
4005static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4006{
4007 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4008}
4009
4010static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4011{
4012 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4013}
4014
4015static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4016{
4017 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4018}
4019
0caa5af8
RH
4020static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4021{
4022 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4023}
4024
b89d9c98
RH
4025static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4026{
4027 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4028}
4029
5ef84f11
RH
4030static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4031{
4032 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4033}
4034
de390645
RH
4035static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4036{
4037 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4038}
4039
6c1f6f27
RH
4040static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4041{
4042 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4043}
4044
962fcbf2
RH
4045static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4046{
4047 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4048}
4049
991ad91b
RH
4050static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4051{
4052 /*
283fc52a
RH
4053 * Return true if any form of pauth is enabled, as this
4054 * predicate controls migration of the 128-bit keys.
991ad91b
RH
4055 */
4056 return (id->id_aa64isar1 &
4057 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4058 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4059 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4060 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4061}
4062
283fc52a
RH
4063static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4064{
4065 /*
4066 * Return true if pauth is enabled with the architected QARMA algorithm.
4067 * QEMU will always set APA+GPA to the same value.
4068 */
4069 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4070}
4071
9888bd1e
RH
4072static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4073{
4074 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4075}
4076
cb570bd3
RH
4077static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4078{
4079 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4080}
4081
6bea2563
RH
4082static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4083{
4084 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4085}
4086
0d57b499
BM
4087static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4088{
4089 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4090}
4091
4092static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4093{
4094 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4095}
4096
7d63183f
RH
4097static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4098{
4099 /* We always set the AdvSIMD and FP fields identically. */
4100 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4101}
4102
5763190f
RH
4103static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4104{
4105 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
4106 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4107}
4108
0f8d06f1
RH
4109static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4110{
4111 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4112}
4113
10d0ef3e
MN
4114static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4115{
4116 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4117}
4118
cd208a1c
RH
4119static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4120{
4121 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4122}
4123
5ca192df
RDC
4124static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4125{
4126 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4127}
4128
8fc2ea21
RH
4129static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4130{
4131 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4132}
4133
2d7137c1
RH
4134static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4135{
4136 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4137}
4138
3d6ad6bb
RH
4139static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4140{
4141 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4142}
4143
4144static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4145{
4146 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4147}
4148
9eeb7a1c
RH
4149static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4150{
4151 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4152}
4153
c36c65ea
RDC
4154static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4155{
4156 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4157}
4158
be53b6f4
RH
4159static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4160{
4161 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4162}
4163
c7fd0baa
RH
4164static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4165{
4166 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4167}
4168
4169static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4170{
4171 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4172}
4173
2a609df8
PM
4174static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4175{
4176 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4177 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4178}
4179
15dd1ebd
PM
4180static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4181{
54117b90
PM
4182 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4183 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4184}
4185
2677cf9f
PM
4186static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4187{
4188 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4189}
4190
a1229109
PM
4191static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4192{
4193 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4194}
4195
957e6155
PM
4196static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4197{
4198 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4199}
4200
ce3125be
PM
4201static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4202{
4203 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4204}
4205
dc8b1853
RC
4206static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4207{
4208 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4209}
4210
f2f68a78
RC
4211static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4212{
4213 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4214}
4215
6e61f839
PM
4216/*
4217 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4218 */
4219static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4220{
4221 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4222}
4223
22e57073
PM
4224static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4225{
4226 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4227}
4228
2a609df8
PM
4229static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4230{
4231 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4232}
4233
15dd1ebd
PM
4234static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4235{
4236 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4237}
4238
957e6155
PM
4239static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4240{
4241 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4242}
4243
ce3125be
PM
4244static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4245{
4246 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4247}
4248
962fcbf2
RH
4249/*
4250 * Forward to the above feature tests given an ARMCPU pointer.
4251 */
4252#define cpu_isar_feature(name, cpu) \
4253 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4254
2c0262af 4255#endif