]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: factor MDCR_EL2 common handling
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
68970d1e 27#include "qapi/qapi-types-common.h"
9042c0e2 28
ca759f9e
AB
29/* ARM processors have a weak memory model */
30#define TCG_GUEST_DEFAULT_MO (0)
31
e24fd076
DG
32#ifdef TARGET_AARCH64
33#define KVM_HAVE_MCE_INJECTION 1
34#endif
35
b8a9e8f1
FB
36#define EXCP_UDEF 1 /* undefined instruction */
37#define EXCP_SWI 2 /* software interrupt */
38#define EXCP_PREFETCH_ABORT 3
39#define EXCP_DATA_ABORT 4
b5ff1b31
FB
40#define EXCP_IRQ 5
41#define EXCP_FIQ 6
06c949e6 42#define EXCP_BKPT 7
9ee6e8bb 43#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 44#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 45#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 46#define EXCP_HYP_TRAP 12
e0d6e6a5 47#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
48#define EXCP_VIRQ 14
49#define EXCP_VFIQ 15
19a6e31c 50#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 51#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 52#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 53#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 54#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
55#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
56#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 57/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
58
59#define ARMV7M_EXCP_RESET 1
60#define ARMV7M_EXCP_NMI 2
61#define ARMV7M_EXCP_HARD 3
62#define ARMV7M_EXCP_MEM 4
63#define ARMV7M_EXCP_BUS 5
64#define ARMV7M_EXCP_USAGE 6
1e577cc7 65#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
66#define ARMV7M_EXCP_SVC 11
67#define ARMV7M_EXCP_DEBUG 12
68#define ARMV7M_EXCP_PENDSV 14
69#define ARMV7M_EXCP_SYSTICK 15
2c0262af 70
acf94941
PM
71/* For M profile, some registers are banked secure vs non-secure;
72 * these are represented as a 2-element array where the first element
73 * is the non-secure copy and the second is the secure copy.
74 * When the CPU does not have implement the security extension then
75 * only the first element is used.
76 * This means that the copy for the current security state can be
77 * accessed via env->registerfield[env->v7m.secure] (whether the security
78 * extension is implemented or not).
79 */
4a16724f
PM
80enum {
81 M_REG_NS = 0,
82 M_REG_S = 1,
83 M_REG_NUM_BANKS = 2,
84};
acf94941 85
403946c0
RH
86/* ARM-specific interrupt pending bits. */
87#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
88#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
89#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 90
e4fe830b
PM
91/* The usual mapping for an AArch64 system register to its AArch32
92 * counterpart is for the 32 bit world to have access to the lower
93 * half only (with writes leaving the upper half untouched). It's
94 * therefore useful to be able to pass TCG the offset of the least
95 * significant half of a uint64_t struct member.
96 */
97#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 98#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 99#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
100#else
101#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 102#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
103#endif
104
136e67e9 105/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
106#define ARM_CPU_IRQ 0
107#define ARM_CPU_FIQ 1
136e67e9
EI
108#define ARM_CPU_VIRQ 2
109#define ARM_CPU_VFIQ 3
403946c0 110
aaa1f954
EI
111/* ARM-specific extra insn start words:
112 * 1: Conditional execution bits
113 * 2: Partial exception syndrome for data aborts
114 */
115#define TARGET_INSN_START_EXTRA_WORDS 2
116
117/* The 2nd extra word holding syndrome info for data aborts does not use
118 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
119 * help the sleb128 encoder do a better job.
120 * When restoring the CPU state, we shift it back up.
121 */
122#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
123#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 124
b7bcbe95
FB
125/* We currently assume float and double are IEEE single and double
126 precision respectively.
127 Doing runtime conversions is tricky because VFP registers may contain
128 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
129 s<2n> maps to the least significant half of d<n>
130 s<2n+1> maps to the most significant half of d<n>
131 */
b7bcbe95 132
200bf5b7
AB
133/**
134 * DynamicGDBXMLInfo:
135 * @desc: Contains the XML descriptions.
448d4d14
AB
136 * @num: Number of the registers in this XML seen by GDB.
137 * @data: A union with data specific to the set of registers
138 * @cpregs_keys: Array that contains the corresponding Key of
139 * a given cpreg with the same order of the cpreg
140 * in the XML description.
200bf5b7
AB
141 */
142typedef struct DynamicGDBXMLInfo {
143 char *desc;
448d4d14
AB
144 int num;
145 union {
146 struct {
147 uint32_t *keys;
148 } cpregs;
149 } data;
200bf5b7
AB
150} DynamicGDBXMLInfo;
151
55d284af
PM
152/* CPU state for each instance of a generic timer (in cp15 c14) */
153typedef struct ARMGenericTimer {
154 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 155 uint64_t ctl; /* Timer Control register */
55d284af
PM
156} ARMGenericTimer;
157
8c94b071
RH
158#define GTIMER_PHYS 0
159#define GTIMER_VIRT 1
160#define GTIMER_HYP 2
161#define GTIMER_SEC 3
162#define GTIMER_HYPVIRT 4
163#define NUM_GTIMERS 5
55d284af 164
11f136ee
FA
165typedef struct {
166 uint64_t raw_tcr;
167 uint32_t mask;
168 uint32_t base_mask;
169} TCR;
170
c39c2b90
RH
171/* Define a maximum sized vector register.
172 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
173 * For 64-bit, this is a 2048-bit SVE register.
174 *
175 * Note that the mapping between S, D, and Q views of the register bank
176 * differs between AArch64 and AArch32.
177 * In AArch32:
178 * Qn = regs[n].d[1]:regs[n].d[0]
179 * Dn = regs[n / 2].d[n & 1]
180 * Sn = regs[n / 4].d[n % 4 / 2],
181 * bits 31..0 for even n, and bits 63..32 for odd n
182 * (and regs[16] to regs[31] are inaccessible)
183 * In AArch64:
184 * Zn = regs[n].d[*]
185 * Qn = regs[n].d[1]:regs[n].d[0]
186 * Dn = regs[n].d[0]
187 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 188 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
189 *
190 * This corresponds to the architecturally defined mapping between
191 * the two execution states, and means we do not need to explicitly
192 * map these registers when changing states.
193 *
194 * Align the data for use with TCG host vector operations.
195 */
196
197#ifdef TARGET_AARCH64
198# define ARM_MAX_VQ 16
0df9142d 199void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
eb94284d 200void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
201#else
202# define ARM_MAX_VQ 1
0df9142d 203static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
eb94284d 204static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
205#endif
206
207typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209} ARMVectorReg;
210
3c7d3086 211#ifdef TARGET_AARCH64
991ad91b 212/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 213typedef struct ARMPredicateReg {
46417784 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 215} ARMPredicateReg;
991ad91b
RH
216
217/* In AArch32 mode, PAC keys do not exist at all. */
218typedef struct ARMPACKey {
219 uint64_t lo, hi;
220} ARMPACKey;
3c7d3086
RH
221#endif
222
c39c2b90 223
2c0262af 224typedef struct CPUARMState {
b5ff1b31 225 /* Regs for current mode. */
2c0262af 226 uint32_t regs[16];
3926cc84
AG
227
228 /* 32/64 switch only happens when taking and returning from
229 * exceptions so the overlap semantics are taken care of then
230 * instead of having a complicated union.
231 */
232 /* Regs for A64 mode. */
233 uint64_t xregs[32];
234 uint64_t pc;
d356312f
PM
235 /* PSTATE isn't an architectural register for ARMv8. However, it is
236 * convenient for us to assemble the underlying state into a 32 bit format
237 * identical to the architectural format used for the SPSR. (This is also
238 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
239 * 'pstate' register are.) Of the PSTATE bits:
240 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
241 * semantics as for AArch32, as described in the comments on each field)
242 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 243 * DAIF (exception masks) are kept in env->daif
f6e52eaa 244 * BTYPE is kept in env->btype
d356312f 245 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
246 */
247 uint32_t pstate;
248 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
249
fdd1b228
RH
250 /* Cached TBFLAGS state. See below for which bits are included. */
251 uint32_t hflags;
252
b90372ad 253 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 254 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
255 the whole CPSR. */
256 uint32_t uncached_cpsr;
257 uint32_t spsr;
258
259 /* Banked registers. */
28c9457d 260 uint64_t banked_spsr[8];
0b7d409d
FA
261 uint32_t banked_r13[8];
262 uint32_t banked_r14[8];
3b46e624 263
b5ff1b31
FB
264 /* These hold r8-r12. */
265 uint32_t usr_regs[5];
266 uint32_t fiq_regs[5];
3b46e624 267
2c0262af
FB
268 /* cpsr flag cache for faster execution */
269 uint32_t CF; /* 0 or 1 */
270 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
271 uint32_t NF; /* N is bit 31. All other bits are undefined. */
272 uint32_t ZF; /* Z set if zero. */
99c475ab 273 uint32_t QF; /* 0 or 1 */
9ee6e8bb 274 uint32_t GE; /* cpsr[19:16] */
b26eefb6 275 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 276 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 277 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 278 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 279
1b174238 280 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 281 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 282
b5ff1b31
FB
283 /* System control coprocessor (cp15) */
284 struct {
40f137e1 285 uint32_t c0_cpuid;
b85a1fd6
FA
286 union { /* Cache size selection */
287 struct {
288 uint64_t _unused_csselr0;
289 uint64_t csselr_ns;
290 uint64_t _unused_csselr1;
291 uint64_t csselr_s;
292 };
293 uint64_t csselr_el[4];
294 };
137feaa9
FA
295 union { /* System control register. */
296 struct {
297 uint64_t _unused_sctlr;
298 uint64_t sctlr_ns;
299 uint64_t hsctlr;
300 uint64_t sctlr_s;
301 };
302 uint64_t sctlr_el[4];
303 };
7ebd5f2e 304 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 305 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 306 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 307 uint64_t sder; /* Secure debug enable register. */
77022576 308 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
309 union { /* MMU translation table base 0. */
310 struct {
311 uint64_t _unused_ttbr0_0;
312 uint64_t ttbr0_ns;
313 uint64_t _unused_ttbr0_1;
314 uint64_t ttbr0_s;
315 };
316 uint64_t ttbr0_el[4];
317 };
318 union { /* MMU translation table base 1. */
319 struct {
320 uint64_t _unused_ttbr1_0;
321 uint64_t ttbr1_ns;
322 uint64_t _unused_ttbr1_1;
323 uint64_t ttbr1_s;
324 };
325 uint64_t ttbr1_el[4];
326 };
b698e9cf 327 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
328 /* MMU translation table base control. */
329 TCR tcr_el[4];
68e9c2fe 330 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
331 uint32_t c2_data; /* MPU data cacheable bits. */
332 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
333 union { /* MMU domain access control register
334 * MPU write buffer control.
335 */
336 struct {
337 uint64_t dacr_ns;
338 uint64_t dacr_s;
339 };
340 struct {
341 uint64_t dacr32_el2;
342 };
343 };
7e09797c
PM
344 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
345 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 346 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 347 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
348 union { /* Fault status registers. */
349 struct {
350 uint64_t ifsr_ns;
351 uint64_t ifsr_s;
352 };
353 struct {
354 uint64_t ifsr32_el2;
355 };
356 };
4a7e2d73
FA
357 union {
358 struct {
359 uint64_t _unused_dfsr;
360 uint64_t dfsr_ns;
361 uint64_t hsr;
362 uint64_t dfsr_s;
363 };
364 uint64_t esr_el[4];
365 };
ce819861 366 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
367 union { /* Fault address registers. */
368 struct {
369 uint64_t _unused_far0;
370#ifdef HOST_WORDS_BIGENDIAN
371 uint32_t ifar_ns;
372 uint32_t dfar_ns;
373 uint32_t ifar_s;
374 uint32_t dfar_s;
375#else
376 uint32_t dfar_ns;
377 uint32_t ifar_ns;
378 uint32_t dfar_s;
379 uint32_t ifar_s;
380#endif
381 uint64_t _unused_far3;
382 };
383 uint64_t far_el[4];
384 };
59e05530 385 uint64_t hpfar_el2;
2a5a9abd 386 uint64_t hstr_el2;
01c097f7
FA
387 union { /* Translation result. */
388 struct {
389 uint64_t _unused_par_0;
390 uint64_t par_ns;
391 uint64_t _unused_par_1;
392 uint64_t par_s;
393 };
394 uint64_t par_el[4];
395 };
6cb0b013 396
b5ff1b31
FB
397 uint32_t c9_insn; /* Cache lockdown registers. */
398 uint32_t c9_data;
8521466b
AF
399 uint64_t c9_pmcr; /* performance monitor control register */
400 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
401 uint64_t c9_pmovsr; /* perf monitor overflow status */
402 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 403 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 404 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
405 union { /* Memory attribute redirection */
406 struct {
407#ifdef HOST_WORDS_BIGENDIAN
408 uint64_t _unused_mair_0;
409 uint32_t mair1_ns;
410 uint32_t mair0_ns;
411 uint64_t _unused_mair_1;
412 uint32_t mair1_s;
413 uint32_t mair0_s;
414#else
415 uint64_t _unused_mair_0;
416 uint32_t mair0_ns;
417 uint32_t mair1_ns;
418 uint64_t _unused_mair_1;
419 uint32_t mair0_s;
420 uint32_t mair1_s;
421#endif
422 };
423 uint64_t mair_el[4];
424 };
fb6c91ba
GB
425 union { /* vector base address register */
426 struct {
427 uint64_t _unused_vbar;
428 uint64_t vbar_ns;
429 uint64_t hvbar;
430 uint64_t vbar_s;
431 };
432 uint64_t vbar_el[4];
433 };
e89e51a1 434 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
435 struct { /* FCSE PID. */
436 uint32_t fcseidr_ns;
437 uint32_t fcseidr_s;
438 };
439 union { /* Context ID. */
440 struct {
441 uint64_t _unused_contextidr_0;
442 uint64_t contextidr_ns;
443 uint64_t _unused_contextidr_1;
444 uint64_t contextidr_s;
445 };
446 uint64_t contextidr_el[4];
447 };
448 union { /* User RW Thread register. */
449 struct {
450 uint64_t tpidrurw_ns;
451 uint64_t tpidrprw_ns;
452 uint64_t htpidr;
453 uint64_t _tpidr_el3;
454 };
455 uint64_t tpidr_el[4];
456 };
457 /* The secure banks of these registers don't map anywhere */
458 uint64_t tpidrurw_s;
459 uint64_t tpidrprw_s;
460 uint64_t tpidruro_s;
461
462 union { /* User RO Thread register. */
463 uint64_t tpidruro_ns;
464 uint64_t tpidrro_el[1];
465 };
a7adc4b7
PM
466 uint64_t c14_cntfrq; /* Counter Frequency register */
467 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 468 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 469 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 470 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 471 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
472 uint32_t c15_ticonfig; /* TI925T configuration byte. */
473 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
474 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
475 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
476 uint32_t c15_config_base_address; /* SCU base address. */
477 uint32_t c15_diagnostic; /* diagnostic register */
478 uint32_t c15_power_diagnostic;
479 uint32_t c15_power_control; /* power control */
0b45451e
PM
480 uint64_t dbgbvr[16]; /* breakpoint value registers */
481 uint64_t dbgbcr[16]; /* breakpoint control registers */
482 uint64_t dbgwvr[16]; /* watchpoint value registers */
483 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 484 uint64_t mdscr_el1;
1424ca8d 485 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 486 uint64_t mdcr_el2;
5513c3ab 487 uint64_t mdcr_el3;
5d05b9d4
AL
488 /* Stores the architectural value of the counter *the last time it was
489 * updated* by pmccntr_op_start. Accesses should always be surrounded
490 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
491 * architecturally-correct value is being read/set.
7c2cb42b 492 */
c92c0687 493 uint64_t c15_ccnt;
5d05b9d4
AL
494 /* Stores the delta between the architectural value and the underlying
495 * cycle count during normal operation. It is used to update c15_ccnt
496 * to be the correct architectural value before accesses. During
497 * accesses, c15_ccnt_delta contains the underlying count being used
498 * for the access, after which it reverts to the delta value in
499 * pmccntr_op_finish.
500 */
501 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
502 uint64_t c14_pmevcntr[31];
503 uint64_t c14_pmevcntr_delta[31];
504 uint64_t c14_pmevtyper[31];
8521466b 505 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 506 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 507 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
508 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
509 uint64_t gcr_el1;
510 uint64_t rgsr_el1;
b5ff1b31 511 } cp15;
40f137e1 512
9ee6e8bb 513 struct {
fb602cb7
PM
514 /* M profile has up to 4 stack pointers:
515 * a Main Stack Pointer and a Process Stack Pointer for each
516 * of the Secure and Non-Secure states. (If the CPU doesn't support
517 * the security extension then it has only two SPs.)
518 * In QEMU we always store the currently active SP in regs[13],
519 * and the non-active SP for the current security state in
520 * v7m.other_sp. The stack pointers for the inactive security state
521 * are stored in other_ss_msp and other_ss_psp.
522 * switch_v7m_security_state() is responsible for rearranging them
523 * when we change security state.
524 */
9ee6e8bb 525 uint32_t other_sp;
fb602cb7
PM
526 uint32_t other_ss_msp;
527 uint32_t other_ss_psp;
4a16724f
PM
528 uint32_t vecbase[M_REG_NUM_BANKS];
529 uint32_t basepri[M_REG_NUM_BANKS];
530 uint32_t control[M_REG_NUM_BANKS];
531 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
532 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
533 uint32_t hfsr; /* HardFault Status */
534 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 535 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 536 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 537 uint32_t bfar; /* BusFault Address */
bed079da 538 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 539 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 540 int exception;
4a16724f
PM
541 uint32_t primask[M_REG_NUM_BANKS];
542 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 543 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 544 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 545 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 546 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
547 uint32_t msplim[M_REG_NUM_BANKS];
548 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
549 uint32_t fpcar[M_REG_NUM_BANKS];
550 uint32_t fpccr[M_REG_NUM_BANKS];
551 uint32_t fpdscr[M_REG_NUM_BANKS];
552 uint32_t cpacr[M_REG_NUM_BANKS];
553 uint32_t nsacr;
8128c8e8 554 int ltpsize;
9ee6e8bb
PB
555 } v7m;
556
abf1172f
PM
557 /* Information associated with an exception about to be taken:
558 * code which raises an exception must set cs->exception_index and
559 * the relevant parts of this structure; the cpu_do_interrupt function
560 * will then set the guest-visible registers as part of the exception
561 * entry process.
562 */
563 struct {
564 uint32_t syndrome; /* AArch64 format syndrome register */
565 uint32_t fsr; /* AArch32 format fault status register info */
566 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 567 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
568 /* If we implement EL2 we will also need to store information
569 * about the intermediate physical address for stage 2 faults.
570 */
571 } exception;
572
202ccb6b
DG
573 /* Information associated with an SError */
574 struct {
575 uint8_t pending;
576 uint8_t has_esr;
577 uint64_t esr;
578 } serror;
579
1711bfa5
BM
580 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
581
ed89f078
PM
582 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
583 uint32_t irq_line_state;
584
fe1479c3
PB
585 /* Thumb-2 EE state. */
586 uint32_t teecr;
587 uint32_t teehbr;
588
b7bcbe95
FB
589 /* VFP coprocessor state. */
590 struct {
c39c2b90 591 ARMVectorReg zregs[32];
b7bcbe95 592
3c7d3086
RH
593#ifdef TARGET_AARCH64
594 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 595#define FFR_PRED_NUM 16
3c7d3086 596 ARMPredicateReg pregs[17];
516e246a
RH
597 /* Scratch space for aa64 sve predicate temporary. */
598 ARMPredicateReg preg_tmp;
3c7d3086
RH
599#endif
600
b7bcbe95 601 /* We store these fpcsr fields separately for convenience. */
a4d58462 602 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
603 int vec_len;
604 int vec_stride;
605
a4d58462
RH
606 uint32_t xregs[16];
607
516e246a 608 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 609 uint32_t scratch[8];
3b46e624 610
d81ce0ef
AB
611 /* There are a number of distinct float control structures:
612 *
613 * fp_status: is the "normal" fp status.
614 * fp_status_fp16: used for half-precision calculations
615 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
616 * standard_fp_status_fp16 : used for half-precision
617 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
618 *
619 * Half-precision operations are governed by a separate
620 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
621 * status structure to control this.
622 *
623 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
624 * round-to-nearest and is used by any operations (generally
625 * Neon) which the architecture defines as controlled by the
626 * standard FPSCR value rather than the FPSCR.
3a492f3a 627 *
aaae563b
PM
628 * The "standard FPSCR but for fp16 ops" is needed because
629 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
630 * using a fixed value for it.
631 *
3a492f3a
PM
632 * To avoid having to transfer exception bits around, we simply
633 * say that the FPSCR cumulative exception flags are the logical
aaae563b 634 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
635 * only thing which needs to read the exception flags being
636 * an explicit FPSCR read.
637 */
53cd6637 638 float_status fp_status;
d81ce0ef 639 float_status fp_status_f16;
3a492f3a 640 float_status standard_fp_status;
aaae563b 641 float_status standard_fp_status_f16;
5be5e8ed
RH
642
643 /* ZCR_EL[1-3] */
644 uint64_t zcr_el[4];
b7bcbe95 645 } vfp;
03d05e2d
PM
646 uint64_t exclusive_addr;
647 uint64_t exclusive_val;
648 uint64_t exclusive_high;
b7bcbe95 649
18c9b560
AZ
650 /* iwMMXt coprocessor state. */
651 struct {
652 uint64_t regs[16];
653 uint64_t val;
654
655 uint32_t cregs[16];
656 } iwmmxt;
657
991ad91b 658#ifdef TARGET_AARCH64
108b3ba8
RH
659 struct {
660 ARMPACKey apia;
661 ARMPACKey apib;
662 ARMPACKey apda;
663 ARMPACKey apdb;
664 ARMPACKey apga;
665 } keys;
991ad91b
RH
666#endif
667
ce4defa0
PB
668#if defined(CONFIG_USER_ONLY)
669 /* For usermode syscall translation. */
670 int eabi;
671#endif
672
46747d15 673 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
674 struct CPUWatchpoint *cpu_watchpoint[16];
675
1f5c00cf
AB
676 /* Fields up to this point are cleared by a CPU reset */
677 struct {} end_reset_fields;
678
e8b5fae5 679 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 680
581be094 681 /* Internal CPU feature flags. */
918f5dca 682 uint64_t features;
581be094 683
6cb0b013
PC
684 /* PMSAv7 MPU */
685 struct {
686 uint32_t *drbar;
687 uint32_t *drsr;
688 uint32_t *dracr;
4a16724f 689 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
690 } pmsav7;
691
0e1a46bb
PM
692 /* PMSAv8 MPU */
693 struct {
694 /* The PMSAv8 implementation also shares some PMSAv7 config
695 * and state:
696 * pmsav7.rnr (region number register)
697 * pmsav7_dregion (number of configured regions)
698 */
4a16724f
PM
699 uint32_t *rbar[M_REG_NUM_BANKS];
700 uint32_t *rlar[M_REG_NUM_BANKS];
701 uint32_t mair0[M_REG_NUM_BANKS];
702 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
703 } pmsav8;
704
9901c576
PM
705 /* v8M SAU */
706 struct {
707 uint32_t *rbar;
708 uint32_t *rlar;
709 uint32_t rnr;
710 uint32_t ctrl;
711 } sau;
712
983fe826 713 void *nvic;
462a8bc6 714 const struct arm_boot_info *boot_info;
d3a3e529
VK
715 /* Store GICv3CPUState to access from this struct */
716 void *gicv3state;
2c0262af
FB
717} CPUARMState;
718
5fda9504
TH
719static inline void set_feature(CPUARMState *env, int feature)
720{
721 env->features |= 1ULL << feature;
722}
723
724static inline void unset_feature(CPUARMState *env, int feature)
725{
726 env->features &= ~(1ULL << feature);
727}
728
bd7d00fc 729/**
08267487 730 * ARMELChangeHookFn:
bd7d00fc
PM
731 * type of a function which can be registered via arm_register_el_change_hook()
732 * to get callbacks when the CPU changes its exception level or mode.
733 */
08267487
AL
734typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
735typedef struct ARMELChangeHook ARMELChangeHook;
736struct ARMELChangeHook {
737 ARMELChangeHookFn *hook;
738 void *opaque;
739 QLIST_ENTRY(ARMELChangeHook) node;
740};
062ba099
AB
741
742/* These values map onto the return values for
743 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
744typedef enum ARMPSCIState {
d5affb0d
AJ
745 PSCI_ON = 0,
746 PSCI_OFF = 1,
062ba099
AB
747 PSCI_ON_PENDING = 2
748} ARMPSCIState;
749
962fcbf2
RH
750typedef struct ARMISARegisters ARMISARegisters;
751
74e75564
PB
752/**
753 * ARMCPU:
754 * @env: #CPUARMState
755 *
756 * An ARM CPU core.
757 */
758struct ARMCPU {
759 /*< private >*/
760 CPUState parent_obj;
761 /*< public >*/
762
5b146dc7 763 CPUNegativeOffsetState neg;
74e75564
PB
764 CPUARMState env;
765
766 /* Coprocessor information */
767 GHashTable *cp_regs;
768 /* For marshalling (mostly coprocessor) register state between the
769 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
770 * we use these arrays.
771 */
772 /* List of register indexes managed via these arrays; (full KVM style
773 * 64 bit indexes, not CPRegInfo 32 bit indexes)
774 */
775 uint64_t *cpreg_indexes;
776 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
777 uint64_t *cpreg_values;
778 /* Length of the indexes, values, reset_values arrays */
779 int32_t cpreg_array_len;
780 /* These are used only for migration: incoming data arrives in
781 * these fields and is sanity checked in post_load before copying
782 * to the working data structures above.
783 */
784 uint64_t *cpreg_vmstate_indexes;
785 uint64_t *cpreg_vmstate_values;
786 int32_t cpreg_vmstate_array_len;
787
448d4d14 788 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 789 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 790
74e75564
PB
791 /* Timers used by the generic (architected) timer */
792 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
793 /*
794 * Timer used by the PMU. Its state is restored after migration by
795 * pmu_op_finish() - it does not need other handling during migration
796 */
797 QEMUTimer *pmu_timer;
74e75564
PB
798 /* GPIO outputs for generic timer */
799 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
800 /* GPIO output for GICv3 maintenance interrupt signal */
801 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
802 /* GPIO output for the PMU interrupt */
803 qemu_irq pmu_interrupt;
74e75564
PB
804
805 /* MemoryRegion to use for secure physical accesses */
806 MemoryRegion *secure_memory;
807
8bce44a2
RH
808 /* MemoryRegion to use for allocation tag accesses */
809 MemoryRegion *tag_memory;
810 MemoryRegion *secure_tag_memory;
811
181962fd
PM
812 /* For v8M, pointer to the IDAU interface provided by board/SoC */
813 Object *idau;
814
74e75564
PB
815 /* 'compatible' string for this CPU for Linux device trees */
816 const char *dtb_compatible;
817
818 /* PSCI version for this CPU
819 * Bits[31:16] = Major Version
820 * Bits[15:0] = Minor Version
821 */
822 uint32_t psci_version;
823
062ba099
AB
824 /* Current power state, access guarded by BQL */
825 ARMPSCIState power_state;
826
c25bd18a
PM
827 /* CPU has virtualization extension */
828 bool has_el2;
74e75564
PB
829 /* CPU has security extension */
830 bool has_el3;
5c0a3819
SZ
831 /* CPU has PMU (Performance Monitor Unit) */
832 bool has_pmu;
97a28b0e
PM
833 /* CPU has VFP */
834 bool has_vfp;
835 /* CPU has Neon */
836 bool has_neon;
ea90db0a
PM
837 /* CPU has M-profile DSP extension */
838 bool has_dsp;
74e75564
PB
839
840 /* CPU has memory protection unit */
841 bool has_mpu;
842 /* PMSAv7 MPU number of supported regions */
843 uint32_t pmsav7_dregion;
9901c576
PM
844 /* v8M SAU number of supported regions */
845 uint32_t sau_sregion;
74e75564
PB
846
847 /* PSCI conduit used to invoke PSCI methods
848 * 0 - disabled, 1 - smc, 2 - hvc
849 */
850 uint32_t psci_conduit;
851
38e2a77c
PM
852 /* For v8M, initial value of the Secure VTOR */
853 uint32_t init_svtor;
854
74e75564
PB
855 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
856 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
857 */
858 uint32_t kvm_target;
859
860 /* KVM init features for this CPU */
861 uint32_t kvm_init_features[7];
862
e5ac4200
AJ
863 /* KVM CPU state */
864
865 /* KVM virtual time adjustment */
866 bool kvm_adjvtime;
867 bool kvm_vtime_dirty;
868 uint64_t kvm_vtime;
869
68970d1e
AJ
870 /* KVM steal time */
871 OnOffAuto kvm_steal_time;
872
74e75564
PB
873 /* Uniprocessor system with MP extensions */
874 bool mp_is_up;
875
c4487d76
PM
876 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
877 * and the probe failed (so we need to report the error in realize)
878 */
879 bool host_cpu_probe_failed;
880
f9a69711
AF
881 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
882 * register.
883 */
884 int32_t core_count;
885
74e75564
PB
886 /* The instance init functions for implementation-specific subclasses
887 * set these fields to specify the implementation-dependent values of
888 * various constant registers and reset values of non-constant
889 * registers.
890 * Some of these might become QOM properties eventually.
891 * Field names match the official register names as defined in the
892 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
893 * is used for reset values of non-constant registers; no reset_
894 * prefix means a constant register.
47576b94
RH
895 * Some of these registers are split out into a substructure that
896 * is shared with the translators to control the ISA.
1548a7b2
PM
897 *
898 * Note that if you add an ID register to the ARMISARegisters struct
899 * you need to also update the 32-bit and 64-bit versions of the
900 * kvm_arm_get_host_cpu_features() function to correctly populate the
901 * field by reading the value from the KVM vCPU.
74e75564 902 */
47576b94
RH
903 struct ARMISARegisters {
904 uint32_t id_isar0;
905 uint32_t id_isar1;
906 uint32_t id_isar2;
907 uint32_t id_isar3;
908 uint32_t id_isar4;
909 uint32_t id_isar5;
910 uint32_t id_isar6;
10054016
PM
911 uint32_t id_mmfr0;
912 uint32_t id_mmfr1;
913 uint32_t id_mmfr2;
914 uint32_t id_mmfr3;
915 uint32_t id_mmfr4;
8a130a7b
PM
916 uint32_t id_pfr0;
917 uint32_t id_pfr1;
47576b94
RH
918 uint32_t mvfr0;
919 uint32_t mvfr1;
920 uint32_t mvfr2;
a6179538 921 uint32_t id_dfr0;
4426d361 922 uint32_t dbgdidr;
47576b94
RH
923 uint64_t id_aa64isar0;
924 uint64_t id_aa64isar1;
925 uint64_t id_aa64pfr0;
926 uint64_t id_aa64pfr1;
3dc91ddb
PM
927 uint64_t id_aa64mmfr0;
928 uint64_t id_aa64mmfr1;
64761e10 929 uint64_t id_aa64mmfr2;
2a609df8
PM
930 uint64_t id_aa64dfr0;
931 uint64_t id_aa64dfr1;
47576b94 932 } isar;
e544f800 933 uint64_t midr;
74e75564
PB
934 uint32_t revidr;
935 uint32_t reset_fpsid;
a5fd319a 936 uint64_t ctr;
74e75564 937 uint32_t reset_sctlr;
cad86737
AL
938 uint64_t pmceid0;
939 uint64_t pmceid1;
74e75564 940 uint32_t id_afr0;
74e75564
PB
941 uint64_t id_aa64afr0;
942 uint64_t id_aa64afr1;
f6450bcb 943 uint64_t clidr;
74e75564
PB
944 uint64_t mp_affinity; /* MP ID without feature bits */
945 /* The elements of this array are the CCSIDR values for each cache,
946 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
947 */
957e6155 948 uint64_t ccsidr[16];
74e75564
PB
949 uint64_t reset_cbar;
950 uint32_t reset_auxcr;
951 bool reset_hivecs;
eb94284d
RH
952
953 /*
954 * Intermediate values used during property parsing.
955 * Once finalized, the values should be read from ID_AA64ISAR1.
956 */
957 bool prop_pauth;
958 bool prop_pauth_impdef;
959
74e75564
PB
960 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
961 uint32_t dcz_blocksize;
962 uint64_t rvbar;
bd7d00fc 963
e45868a3
PM
964 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
965 int gic_num_lrs; /* number of list registers */
966 int gic_vpribits; /* number of virtual priority bits */
967 int gic_vprebits; /* number of virtual preemption bits */
968
3a062d57
JB
969 /* Whether the cfgend input is high (i.e. this CPU should reset into
970 * big-endian mode). This setting isn't used directly: instead it modifies
971 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
972 * architecture version.
973 */
974 bool cfgend;
975
b5c53d1b 976 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 977 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
978
979 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
980
981 /* Used to synchronize KVM and QEMU in-kernel device levels */
982 uint8_t device_irq_level;
adf92eab
RH
983
984 /* Used to set the maximum vector length the cpu will support. */
985 uint32_t sve_max_vq;
0df9142d
AJ
986
987 /*
988 * In sve_vq_map each set bit is a supported vector length of
989 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
990 * length in quadwords.
991 *
992 * While processing properties during initialization, corresponding
993 * sve_vq_init bits are set for bits in sve_vq_map that have been
994 * set by properties.
995 */
996 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
997 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
998
999 /* Generic timer counter frequency, in Hz */
1000 uint64_t gt_cntfrq_hz;
74e75564
PB
1001};
1002
7def8754
AJ
1003unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1004
51e5ef45
MAL
1005void arm_cpu_post_init(Object *obj);
1006
46de5913
IM
1007uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1008
74e75564 1009#ifndef CONFIG_USER_ONLY
8a9358cc 1010extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1011#endif
1012
1013void arm_cpu_do_interrupt(CPUState *cpu);
1014void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1015bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1016
74e75564
PB
1017hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1018 MemTxAttrs *attrs);
1019
a010bdbe 1020int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1021int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1022
d12379c5
AB
1023/*
1024 * Helpers to dynamically generates XML descriptions of the sysregs
1025 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1026 */
32d6e32a 1027int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1028int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1029
1030/* Returns the dynamically generated XML for the gdb stub.
1031 * Returns a pointer to the XML contents for the specified XML file or NULL
1032 * if the XML name doesn't match the predefined one.
1033 */
1034const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1035
74e75564
PB
1036int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1037 int cpuid, void *opaque);
1038int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1039 int cpuid, void *opaque);
1040
1041#ifdef TARGET_AARCH64
a010bdbe 1042int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1043int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1044void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1045void aarch64_sve_change_el(CPUARMState *env, int old_el,
1046 int new_el, bool el0_a64);
87014c6b 1047void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
1048
1049/*
1050 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1051 * The byte at offset i from the start of the in-memory representation contains
1052 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1053 * lowest offsets are stored in the lowest memory addresses, then that nearly
1054 * matches QEMU's representation, which is to use an array of host-endian
1055 * uint64_t's, where the lower offsets are at the lower indices. To complete
1056 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1057 */
1058static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1059{
1060#ifdef HOST_WORDS_BIGENDIAN
1061 int i;
1062
1063 for (i = 0; i < nr; ++i) {
1064 dst[i] = bswap64(src[i]);
1065 }
1066
1067 return dst;
1068#else
1069 return src;
1070#endif
1071}
1072
0ab5953b
RH
1073#else
1074static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1075static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1076 int n, bool a)
1077{ }
87014c6b 1078static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1079#endif
778c3a06 1080
ce02049d
GB
1081void aarch64_sync_32_to_64(CPUARMState *env);
1082void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1083
ced31551
RH
1084int fp_exception_el(CPUARMState *env, int cur_el);
1085int sve_exception_el(CPUARMState *env, int cur_el);
1086uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1087
3926cc84
AG
1088static inline bool is_a64(CPUARMState *env)
1089{
1090 return env->aarch64;
1091}
1092
2c0262af
FB
1093/* you can call this signal handler from your SIGBUS and SIGSEGV
1094 signal handlers to inform the virtual CPU of exceptions. non zero
1095 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1096int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1097 void *puc);
1098
5d05b9d4
AL
1099/**
1100 * pmu_op_start/finish
ec7b4ce4
AF
1101 * @env: CPUARMState
1102 *
5d05b9d4
AL
1103 * Convert all PMU counters between their delta form (the typical mode when
1104 * they are enabled) and the guest-visible values. These two calls must
1105 * surround any action which might affect the counters.
ec7b4ce4 1106 */
5d05b9d4
AL
1107void pmu_op_start(CPUARMState *env);
1108void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1109
4e7beb0c
AL
1110/*
1111 * Called when a PMU counter is due to overflow
1112 */
1113void arm_pmu_timer_cb(void *opaque);
1114
033614c4
AL
1115/**
1116 * Functions to register as EL change hooks for PMU mode filtering
1117 */
1118void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1119void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1120
57a4a11b 1121/*
bf8d0969
AL
1122 * pmu_init
1123 * @cpu: ARMCPU
57a4a11b 1124 *
bf8d0969
AL
1125 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1126 * for the current configuration
57a4a11b 1127 */
bf8d0969 1128void pmu_init(ARMCPU *cpu);
57a4a11b 1129
76e3e1bc
PM
1130/* SCTLR bit meanings. Several bits have been reused in newer
1131 * versions of the architecture; in that case we define constants
1132 * for both old and new bit meanings. Code which tests against those
1133 * bits should probably check or otherwise arrange that the CPU
1134 * is the architectural version it expects.
1135 */
1136#define SCTLR_M (1U << 0)
1137#define SCTLR_A (1U << 1)
1138#define SCTLR_C (1U << 2)
1139#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1140#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1141#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1142#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1143#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1144#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1145#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1146#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1147#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1148#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1149#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1150#define SCTLR_ITD (1U << 7) /* v8 onward */
1151#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1152#define SCTLR_SED (1U << 8) /* v8 onward */
1153#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1154#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1155#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1156#define SCTLR_SW (1U << 10) /* v7 */
1157#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1158#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1159#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1160#define SCTLR_I (1U << 12)
b2af69d0
RH
1161#define SCTLR_V (1U << 13) /* AArch32 only */
1162#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1163#define SCTLR_RR (1U << 14) /* up to v7 */
1164#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1165#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1166#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1167#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1168#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1169#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1170#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1171#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1172#define SCTLR_nTWE (1U << 18) /* v8 onward */
1173#define SCTLR_WXN (1U << 19)
1174#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1175#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1176#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1177#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1178#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1179#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1180#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1181#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1182#define SCTLR_VE (1U << 24) /* up to v7 */
1183#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1184#define SCTLR_EE (1U << 25)
1185#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1186#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1187#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1188#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1189#define SCTLR_TRE (1U << 28) /* AArch32 only */
1190#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1191#define SCTLR_AFE (1U << 29) /* AArch32 only */
1192#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1193#define SCTLR_TE (1U << 30) /* AArch32 only */
1194#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1195#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1196#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1197#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1198#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1199#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1200#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1201#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1202#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1203#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1204
c6f19164
GB
1205#define CPTR_TCPAC (1U << 31)
1206#define CPTR_TTA (1U << 20)
1207#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1208#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1209#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1210
187f678d
PM
1211#define MDCR_EPMAD (1U << 21)
1212#define MDCR_EDAD (1U << 20)
033614c4
AL
1213#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1214#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1215#define MDCR_SDD (1U << 16)
a8d64e73 1216#define MDCR_SPD (3U << 14)
187f678d
PM
1217#define MDCR_TDRA (1U << 11)
1218#define MDCR_TDOSA (1U << 10)
1219#define MDCR_TDA (1U << 9)
1220#define MDCR_TDE (1U << 8)
1221#define MDCR_HPME (1U << 7)
1222#define MDCR_TPM (1U << 6)
1223#define MDCR_TPMCR (1U << 5)
033614c4 1224#define MDCR_HPMN (0x1fU)
187f678d 1225
a8d64e73
PM
1226/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1227#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1228
78dbbbe4
PM
1229#define CPSR_M (0x1fU)
1230#define CPSR_T (1U << 5)
1231#define CPSR_F (1U << 6)
1232#define CPSR_I (1U << 7)
1233#define CPSR_A (1U << 8)
1234#define CPSR_E (1U << 9)
1235#define CPSR_IT_2_7 (0xfc00U)
1236#define CPSR_GE (0xfU << 16)
4051e12c 1237#define CPSR_IL (1U << 20)
220f508f 1238#define CPSR_PAN (1U << 22)
78dbbbe4
PM
1239#define CPSR_J (1U << 24)
1240#define CPSR_IT_0_1 (3U << 25)
1241#define CPSR_Q (1U << 27)
1242#define CPSR_V (1U << 28)
1243#define CPSR_C (1U << 29)
1244#define CPSR_Z (1U << 30)
1245#define CPSR_N (1U << 31)
9ee6e8bb 1246#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1247#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1248
1249#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1250#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1251 | CPSR_NZCV)
9ee6e8bb 1252/* Bits writable in user mode. */
268b1b3d 1253#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1254/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1255#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1256
987ab45e
PM
1257/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1258#define XPSR_EXCP 0x1ffU
1259#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1260#define XPSR_IT_2_7 CPSR_IT_2_7
1261#define XPSR_GE CPSR_GE
1262#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1263#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1264#define XPSR_IT_0_1 CPSR_IT_0_1
1265#define XPSR_Q CPSR_Q
1266#define XPSR_V CPSR_V
1267#define XPSR_C CPSR_C
1268#define XPSR_Z CPSR_Z
1269#define XPSR_N CPSR_N
1270#define XPSR_NZCV CPSR_NZCV
1271#define XPSR_IT CPSR_IT
1272
e389be16
FA
1273#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1274#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1275#define TTBCR_PD0 (1U << 4)
1276#define TTBCR_PD1 (1U << 5)
1277#define TTBCR_EPD0 (1U << 7)
1278#define TTBCR_IRGN0 (3U << 8)
1279#define TTBCR_ORGN0 (3U << 10)
1280#define TTBCR_SH0 (3U << 12)
1281#define TTBCR_T1SZ (3U << 16)
1282#define TTBCR_A1 (1U << 22)
1283#define TTBCR_EPD1 (1U << 23)
1284#define TTBCR_IRGN1 (3U << 24)
1285#define TTBCR_ORGN1 (3U << 26)
1286#define TTBCR_SH1 (1U << 28)
1287#define TTBCR_EAE (1U << 31)
1288
d356312f
PM
1289/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1290 * Only these are valid when in AArch64 mode; in
1291 * AArch32 mode SPSRs are basically CPSR-format.
1292 */
f502cfc2 1293#define PSTATE_SP (1U)
d356312f
PM
1294#define PSTATE_M (0xFU)
1295#define PSTATE_nRW (1U << 4)
1296#define PSTATE_F (1U << 6)
1297#define PSTATE_I (1U << 7)
1298#define PSTATE_A (1U << 8)
1299#define PSTATE_D (1U << 9)
f6e52eaa 1300#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1301#define PSTATE_IL (1U << 20)
1302#define PSTATE_SS (1U << 21)
220f508f 1303#define PSTATE_PAN (1U << 22)
9eeb7a1c 1304#define PSTATE_UAO (1U << 23)
4b779ceb 1305#define PSTATE_TCO (1U << 25)
d356312f
PM
1306#define PSTATE_V (1U << 28)
1307#define PSTATE_C (1U << 29)
1308#define PSTATE_Z (1U << 30)
1309#define PSTATE_N (1U << 31)
1310#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1311#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1312#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1313/* Mode values for AArch64 */
1314#define PSTATE_MODE_EL3h 13
1315#define PSTATE_MODE_EL3t 12
1316#define PSTATE_MODE_EL2h 9
1317#define PSTATE_MODE_EL2t 8
1318#define PSTATE_MODE_EL1h 5
1319#define PSTATE_MODE_EL1t 4
1320#define PSTATE_MODE_EL0t 0
1321
de2db7ec
PM
1322/* Write a new value to v7m.exception, thus transitioning into or out
1323 * of Handler mode; this may result in a change of active stack pointer.
1324 */
1325void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1326
9e729b57
EI
1327/* Map EL and handler into a PSTATE_MODE. */
1328static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1329{
1330 return (el << 2) | handler;
1331}
1332
d356312f
PM
1333/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1334 * interprocessing, so we don't attempt to sync with the cpsr state used by
1335 * the 32 bit decoder.
1336 */
1337static inline uint32_t pstate_read(CPUARMState *env)
1338{
1339 int ZF;
1340
1341 ZF = (env->ZF == 0);
1342 return (env->NF & 0x80000000) | (ZF << 30)
1343 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1344 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1345}
1346
1347static inline void pstate_write(CPUARMState *env, uint32_t val)
1348{
1349 env->ZF = (~val) & PSTATE_Z;
1350 env->NF = val;
1351 env->CF = (val >> 29) & 1;
1352 env->VF = (val << 3) & 0x80000000;
4cc35614 1353 env->daif = val & PSTATE_DAIF;
f6e52eaa 1354 env->btype = (val >> 10) & 3;
d356312f
PM
1355 env->pstate = val & ~CACHED_PSTATE_BITS;
1356}
1357
b5ff1b31 1358/* Return the current CPSR value. */
2f4a40e5 1359uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1360
1361typedef enum CPSRWriteType {
1362 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1363 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1364 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1365 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1366} CPSRWriteType;
1367
1368/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1369void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1370 CPSRWriteType write_type);
9ee6e8bb
PB
1371
1372/* Return the current xPSR value. */
1373static inline uint32_t xpsr_read(CPUARMState *env)
1374{
1375 int ZF;
6fbe23d5
PB
1376 ZF = (env->ZF == 0);
1377 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1378 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1379 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1380 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1381 | (env->GE << 16)
9ee6e8bb 1382 | env->v7m.exception;
b5ff1b31
FB
1383}
1384
9ee6e8bb
PB
1385/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1386static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1387{
987ab45e
PM
1388 if (mask & XPSR_NZCV) {
1389 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1390 env->NF = val;
9ee6e8bb
PB
1391 env->CF = (val >> 29) & 1;
1392 env->VF = (val << 3) & 0x80000000;
1393 }
987ab45e
PM
1394 if (mask & XPSR_Q) {
1395 env->QF = ((val & XPSR_Q) != 0);
1396 }
f1e2598c
PM
1397 if (mask & XPSR_GE) {
1398 env->GE = (val & XPSR_GE) >> 16;
1399 }
04c9c81b 1400#ifndef CONFIG_USER_ONLY
987ab45e
PM
1401 if (mask & XPSR_T) {
1402 env->thumb = ((val & XPSR_T) != 0);
1403 }
1404 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1405 env->condexec_bits &= ~3;
1406 env->condexec_bits |= (val >> 25) & 3;
1407 }
987ab45e 1408 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1409 env->condexec_bits &= 3;
1410 env->condexec_bits |= (val >> 8) & 0xfc;
1411 }
987ab45e 1412 if (mask & XPSR_EXCP) {
de2db7ec
PM
1413 /* Note that this only happens on exception exit */
1414 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1415 }
04c9c81b 1416#endif
9ee6e8bb
PB
1417}
1418
f149e3e8
EI
1419#define HCR_VM (1ULL << 0)
1420#define HCR_SWIO (1ULL << 1)
1421#define HCR_PTW (1ULL << 2)
1422#define HCR_FMO (1ULL << 3)
1423#define HCR_IMO (1ULL << 4)
1424#define HCR_AMO (1ULL << 5)
1425#define HCR_VF (1ULL << 6)
1426#define HCR_VI (1ULL << 7)
1427#define HCR_VSE (1ULL << 8)
1428#define HCR_FB (1ULL << 9)
1429#define HCR_BSU_MASK (3ULL << 10)
1430#define HCR_DC (1ULL << 12)
1431#define HCR_TWI (1ULL << 13)
1432#define HCR_TWE (1ULL << 14)
1433#define HCR_TID0 (1ULL << 15)
1434#define HCR_TID1 (1ULL << 16)
1435#define HCR_TID2 (1ULL << 17)
1436#define HCR_TID3 (1ULL << 18)
1437#define HCR_TSC (1ULL << 19)
1438#define HCR_TIDCP (1ULL << 20)
1439#define HCR_TACR (1ULL << 21)
1440#define HCR_TSW (1ULL << 22)
099bf53b 1441#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1442#define HCR_TPU (1ULL << 24)
1443#define HCR_TTLB (1ULL << 25)
1444#define HCR_TVM (1ULL << 26)
1445#define HCR_TGE (1ULL << 27)
1446#define HCR_TDZ (1ULL << 28)
1447#define HCR_HCD (1ULL << 29)
1448#define HCR_TRVM (1ULL << 30)
1449#define HCR_RW (1ULL << 31)
1450#define HCR_CD (1ULL << 32)
1451#define HCR_ID (1ULL << 33)
ac656b16 1452#define HCR_E2H (1ULL << 34)
099bf53b
RH
1453#define HCR_TLOR (1ULL << 35)
1454#define HCR_TERR (1ULL << 36)
1455#define HCR_TEA (1ULL << 37)
1456#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1457/* RES0 bit 39 */
099bf53b
RH
1458#define HCR_APK (1ULL << 40)
1459#define HCR_API (1ULL << 41)
1460#define HCR_NV (1ULL << 42)
1461#define HCR_NV1 (1ULL << 43)
1462#define HCR_AT (1ULL << 44)
1463#define HCR_NV2 (1ULL << 45)
1464#define HCR_FWB (1ULL << 46)
1465#define HCR_FIEN (1ULL << 47)
e0a38bb3 1466/* RES0 bit 48 */
099bf53b
RH
1467#define HCR_TID4 (1ULL << 49)
1468#define HCR_TICAB (1ULL << 50)
e0a38bb3 1469#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1470#define HCR_TOCU (1ULL << 52)
e0a38bb3 1471#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1472#define HCR_TTLBIS (1ULL << 54)
1473#define HCR_TTLBOS (1ULL << 55)
1474#define HCR_ATA (1ULL << 56)
1475#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1476#define HCR_TID5 (1ULL << 58)
1477#define HCR_TWEDEN (1ULL << 59)
1478#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1479
64e0e2de
EI
1480#define SCR_NS (1U << 0)
1481#define SCR_IRQ (1U << 1)
1482#define SCR_FIQ (1U << 2)
1483#define SCR_EA (1U << 3)
1484#define SCR_FW (1U << 4)
1485#define SCR_AW (1U << 5)
1486#define SCR_NET (1U << 6)
1487#define SCR_SMD (1U << 7)
1488#define SCR_HCE (1U << 8)
1489#define SCR_SIF (1U << 9)
1490#define SCR_RW (1U << 10)
1491#define SCR_ST (1U << 11)
1492#define SCR_TWI (1U << 12)
1493#define SCR_TWE (1U << 13)
99f8f86d
RH
1494#define SCR_TLOR (1U << 14)
1495#define SCR_TERR (1U << 15)
1496#define SCR_APK (1U << 16)
1497#define SCR_API (1U << 17)
1498#define SCR_EEL2 (1U << 18)
1499#define SCR_EASE (1U << 19)
1500#define SCR_NMEA (1U << 20)
1501#define SCR_FIEN (1U << 21)
1502#define SCR_ENSCXT (1U << 25)
1503#define SCR_ATA (1U << 26)
64e0e2de 1504
01653295
PM
1505/* Return the current FPSCR value. */
1506uint32_t vfp_get_fpscr(CPUARMState *env);
1507void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1508
d81ce0ef
AB
1509/* FPCR, Floating Point Control Register
1510 * FPSR, Floating Poiht Status Register
1511 *
1512 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1513 * FPCR and FPSR. However since they still use non-overlapping bits
1514 * we store the underlying state in fpscr and just mask on read/write.
1515 */
1516#define FPSR_MASK 0xf800009f
0b62159b 1517#define FPCR_MASK 0x07ff9f00
d81ce0ef 1518
a15945d9
PM
1519#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1520#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1521#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1522#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1523#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1524#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1525#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1526#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1527#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1528#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1529#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1530#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1531#define FPCR_V (1 << 28) /* FP overflow flag */
1532#define FPCR_C (1 << 29) /* FP carry flag */
1533#define FPCR_Z (1 << 30) /* FP zero flag */
1534#define FPCR_N (1 << 31) /* FP negative flag */
1535
99c7834f
PM
1536#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1537#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1538
9542c30b
PM
1539#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1540#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1541
f903fa22
PM
1542static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1543{
1544 return vfp_get_fpscr(env) & FPSR_MASK;
1545}
1546
1547static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1548{
1549 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1550 vfp_set_fpscr(env, new_fpscr);
1551}
1552
1553static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1554{
1555 return vfp_get_fpscr(env) & FPCR_MASK;
1556}
1557
1558static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1559{
1560 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1561 vfp_set_fpscr(env, new_fpscr);
1562}
1563
b5ff1b31
FB
1564enum arm_cpu_mode {
1565 ARM_CPU_MODE_USR = 0x10,
1566 ARM_CPU_MODE_FIQ = 0x11,
1567 ARM_CPU_MODE_IRQ = 0x12,
1568 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1569 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1570 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1571 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1572 ARM_CPU_MODE_UND = 0x1b,
1573 ARM_CPU_MODE_SYS = 0x1f
1574};
1575
40f137e1
PB
1576/* VFP system registers. */
1577#define ARM_VFP_FPSID 0
1578#define ARM_VFP_FPSCR 1
a50c0f51 1579#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1580#define ARM_VFP_MVFR1 6
1581#define ARM_VFP_MVFR0 7
40f137e1
PB
1582#define ARM_VFP_FPEXC 8
1583#define ARM_VFP_FPINST 9
1584#define ARM_VFP_FPINST2 10
9542c30b
PM
1585/* These ones are M-profile only */
1586#define ARM_VFP_FPSCR_NZCVQC 2
1587#define ARM_VFP_VPR 12
1588#define ARM_VFP_P0 13
1589#define ARM_VFP_FPCXT_NS 14
1590#define ARM_VFP_FPCXT_S 15
40f137e1 1591
32a290b8
PM
1592/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1593#define QEMU_VFP_FPSCR_NZCV 0xffff
1594
18c9b560 1595/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1596#define ARM_IWMMXT_wCID 0
1597#define ARM_IWMMXT_wCon 1
1598#define ARM_IWMMXT_wCSSF 2
1599#define ARM_IWMMXT_wCASF 3
1600#define ARM_IWMMXT_wCGR0 8
1601#define ARM_IWMMXT_wCGR1 9
1602#define ARM_IWMMXT_wCGR2 10
1603#define ARM_IWMMXT_wCGR3 11
18c9b560 1604
2c4da50d
PM
1605/* V7M CCR bits */
1606FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1607FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1608FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1609FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1610FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1611FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1612FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1613FIELD(V7M_CCR, DC, 16, 1)
1614FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1615FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1616FIELD(V7M_CCR, LOB, 19, 1)
1617FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1618
24ac0fb1
PM
1619/* V7M SCR bits */
1620FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1621FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1622FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1623FIELD(V7M_SCR, SEVONPEND, 4, 1)
1624
3b2e9344
PM
1625/* V7M AIRCR bits */
1626FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1627FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1628FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1629FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1630FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1631FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1632FIELD(V7M_AIRCR, PRIS, 14, 1)
1633FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1634FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1635
2c4da50d
PM
1636/* V7M CFSR bits for MMFSR */
1637FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1638FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1639FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1640FIELD(V7M_CFSR, MSTKERR, 4, 1)
1641FIELD(V7M_CFSR, MLSPERR, 5, 1)
1642FIELD(V7M_CFSR, MMARVALID, 7, 1)
1643
1644/* V7M CFSR bits for BFSR */
1645FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1646FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1647FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1648FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1649FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1650FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1651FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1652
1653/* V7M CFSR bits for UFSR */
1654FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1655FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1656FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1657FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1658FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1659FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1660FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1661
334e8dad
PM
1662/* V7M CFSR bit masks covering all of the subregister bits */
1663FIELD(V7M_CFSR, MMFSR, 0, 8)
1664FIELD(V7M_CFSR, BFSR, 8, 8)
1665FIELD(V7M_CFSR, UFSR, 16, 16)
1666
2c4da50d
PM
1667/* V7M HFSR bits */
1668FIELD(V7M_HFSR, VECTTBL, 1, 1)
1669FIELD(V7M_HFSR, FORCED, 30, 1)
1670FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1671
1672/* V7M DFSR bits */
1673FIELD(V7M_DFSR, HALTED, 0, 1)
1674FIELD(V7M_DFSR, BKPT, 1, 1)
1675FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1676FIELD(V7M_DFSR, VCATCH, 3, 1)
1677FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1678
bed079da
PM
1679/* V7M SFSR bits */
1680FIELD(V7M_SFSR, INVEP, 0, 1)
1681FIELD(V7M_SFSR, INVIS, 1, 1)
1682FIELD(V7M_SFSR, INVER, 2, 1)
1683FIELD(V7M_SFSR, AUVIOL, 3, 1)
1684FIELD(V7M_SFSR, INVTRAN, 4, 1)
1685FIELD(V7M_SFSR, LSPERR, 5, 1)
1686FIELD(V7M_SFSR, SFARVALID, 6, 1)
1687FIELD(V7M_SFSR, LSERR, 7, 1)
1688
29c483a5
MD
1689/* v7M MPU_CTRL bits */
1690FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1691FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1692FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1693
43bbce7f
PM
1694/* v7M CLIDR bits */
1695FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1696FIELD(V7M_CLIDR, LOUIS, 21, 3)
1697FIELD(V7M_CLIDR, LOC, 24, 3)
1698FIELD(V7M_CLIDR, LOUU, 27, 3)
1699FIELD(V7M_CLIDR, ICB, 30, 2)
1700
1701FIELD(V7M_CSSELR, IND, 0, 1)
1702FIELD(V7M_CSSELR, LEVEL, 1, 3)
1703/* We use the combination of InD and Level to index into cpu->ccsidr[];
1704 * define a mask for this and check that it doesn't permit running off
1705 * the end of the array.
1706 */
1707FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1708
1709/* v7M FPCCR bits */
1710FIELD(V7M_FPCCR, LSPACT, 0, 1)
1711FIELD(V7M_FPCCR, USER, 1, 1)
1712FIELD(V7M_FPCCR, S, 2, 1)
1713FIELD(V7M_FPCCR, THREAD, 3, 1)
1714FIELD(V7M_FPCCR, HFRDY, 4, 1)
1715FIELD(V7M_FPCCR, MMRDY, 5, 1)
1716FIELD(V7M_FPCCR, BFRDY, 6, 1)
1717FIELD(V7M_FPCCR, SFRDY, 7, 1)
1718FIELD(V7M_FPCCR, MONRDY, 8, 1)
1719FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1720FIELD(V7M_FPCCR, UFRDY, 10, 1)
1721FIELD(V7M_FPCCR, RES0, 11, 15)
1722FIELD(V7M_FPCCR, TS, 26, 1)
1723FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1724FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1725FIELD(V7M_FPCCR, LSPENS, 29, 1)
1726FIELD(V7M_FPCCR, LSPEN, 30, 1)
1727FIELD(V7M_FPCCR, ASPEN, 31, 1)
1728/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1729#define R_V7M_FPCCR_BANKED_MASK \
1730 (R_V7M_FPCCR_LSPACT_MASK | \
1731 R_V7M_FPCCR_USER_MASK | \
1732 R_V7M_FPCCR_THREAD_MASK | \
1733 R_V7M_FPCCR_MMRDY_MASK | \
1734 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1735 R_V7M_FPCCR_UFRDY_MASK | \
1736 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1737
a62e62af
RH
1738/*
1739 * System register ID fields.
1740 */
2a14526a
LL
1741FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1742FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1743FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1744FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1745FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1746FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1747FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1748FIELD(CLIDR_EL1, LOUIS, 21, 3)
1749FIELD(CLIDR_EL1, LOC, 24, 3)
1750FIELD(CLIDR_EL1, LOUU, 27, 3)
1751FIELD(CLIDR_EL1, ICB, 30, 3)
1752
1753/* When FEAT_CCIDX is implemented */
1754FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1755FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1756FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1757
1758/* When FEAT_CCIDX is not implemented */
1759FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1760FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1761FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1762
1763FIELD(CTR_EL0, IMINLINE, 0, 4)
1764FIELD(CTR_EL0, L1IP, 14, 2)
1765FIELD(CTR_EL0, DMINLINE, 16, 4)
1766FIELD(CTR_EL0, ERG, 20, 4)
1767FIELD(CTR_EL0, CWG, 24, 4)
1768FIELD(CTR_EL0, IDC, 28, 1)
1769FIELD(CTR_EL0, DIC, 29, 1)
1770FIELD(CTR_EL0, TMINLINE, 32, 6)
1771
2bd5f41c
AB
1772FIELD(MIDR_EL1, REVISION, 0, 4)
1773FIELD(MIDR_EL1, PARTNUM, 4, 12)
1774FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1775FIELD(MIDR_EL1, VARIANT, 20, 4)
1776FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1777
a62e62af
RH
1778FIELD(ID_ISAR0, SWAP, 0, 4)
1779FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1780FIELD(ID_ISAR0, BITFIELD, 8, 4)
1781FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1782FIELD(ID_ISAR0, COPROC, 16, 4)
1783FIELD(ID_ISAR0, DEBUG, 20, 4)
1784FIELD(ID_ISAR0, DIVIDE, 24, 4)
1785
1786FIELD(ID_ISAR1, ENDIAN, 0, 4)
1787FIELD(ID_ISAR1, EXCEPT, 4, 4)
1788FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1789FIELD(ID_ISAR1, EXTEND, 12, 4)
1790FIELD(ID_ISAR1, IFTHEN, 16, 4)
1791FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1792FIELD(ID_ISAR1, INTERWORK, 24, 4)
1793FIELD(ID_ISAR1, JAZELLE, 28, 4)
1794
1795FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1796FIELD(ID_ISAR2, MEMHINT, 4, 4)
1797FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1798FIELD(ID_ISAR2, MULT, 12, 4)
1799FIELD(ID_ISAR2, MULTS, 16, 4)
1800FIELD(ID_ISAR2, MULTU, 20, 4)
1801FIELD(ID_ISAR2, PSR_AR, 24, 4)
1802FIELD(ID_ISAR2, REVERSAL, 28, 4)
1803
1804FIELD(ID_ISAR3, SATURATE, 0, 4)
1805FIELD(ID_ISAR3, SIMD, 4, 4)
1806FIELD(ID_ISAR3, SVC, 8, 4)
1807FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1808FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1809FIELD(ID_ISAR3, T32COPY, 20, 4)
1810FIELD(ID_ISAR3, TRUENOP, 24, 4)
1811FIELD(ID_ISAR3, T32EE, 28, 4)
1812
1813FIELD(ID_ISAR4, UNPRIV, 0, 4)
1814FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1815FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1816FIELD(ID_ISAR4, SMC, 12, 4)
1817FIELD(ID_ISAR4, BARRIER, 16, 4)
1818FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1819FIELD(ID_ISAR4, PSR_M, 24, 4)
1820FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1821
1822FIELD(ID_ISAR5, SEVL, 0, 4)
1823FIELD(ID_ISAR5, AES, 4, 4)
1824FIELD(ID_ISAR5, SHA1, 8, 4)
1825FIELD(ID_ISAR5, SHA2, 12, 4)
1826FIELD(ID_ISAR5, CRC32, 16, 4)
1827FIELD(ID_ISAR5, RDM, 24, 4)
1828FIELD(ID_ISAR5, VCMA, 28, 4)
1829
1830FIELD(ID_ISAR6, JSCVT, 0, 4)
1831FIELD(ID_ISAR6, DP, 4, 4)
1832FIELD(ID_ISAR6, FHM, 8, 4)
1833FIELD(ID_ISAR6, SB, 12, 4)
1834FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
1835FIELD(ID_ISAR6, BF16, 20, 4)
1836FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 1837
0ae0326b
PM
1838FIELD(ID_MMFR0, VMSA, 0, 4)
1839FIELD(ID_MMFR0, PMSA, 4, 4)
1840FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1841FIELD(ID_MMFR0, SHARELVL, 12, 4)
1842FIELD(ID_MMFR0, TCM, 16, 4)
1843FIELD(ID_MMFR0, AUXREG, 20, 4)
1844FIELD(ID_MMFR0, FCSE, 24, 4)
1845FIELD(ID_MMFR0, INNERSHR, 28, 4)
1846
bd78b6be
LL
1847FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1848FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1849FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1850FIELD(ID_MMFR1, L1UNISW, 12, 4)
1851FIELD(ID_MMFR1, L1HVD, 16, 4)
1852FIELD(ID_MMFR1, L1UNI, 20, 4)
1853FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1854FIELD(ID_MMFR1, BPRED, 28, 4)
1855
1856FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1857FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1858FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1859FIELD(ID_MMFR2, HVDTLB, 12, 4)
1860FIELD(ID_MMFR2, UNITLB, 16, 4)
1861FIELD(ID_MMFR2, MEMBARR, 20, 4)
1862FIELD(ID_MMFR2, WFISTALL, 24, 4)
1863FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1864
3d6ad6bb
RH
1865FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1866FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1867FIELD(ID_MMFR3, BPMAINT, 8, 4)
1868FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1869FIELD(ID_MMFR3, PAN, 16, 4)
1870FIELD(ID_MMFR3, COHWALK, 20, 4)
1871FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1872FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1873
ab638a32
RH
1874FIELD(ID_MMFR4, SPECSEI, 0, 4)
1875FIELD(ID_MMFR4, AC2, 4, 4)
1876FIELD(ID_MMFR4, XNX, 8, 4)
1877FIELD(ID_MMFR4, CNP, 12, 4)
1878FIELD(ID_MMFR4, HPDS, 16, 4)
1879FIELD(ID_MMFR4, LSM, 20, 4)
1880FIELD(ID_MMFR4, CCIDX, 24, 4)
1881FIELD(ID_MMFR4, EVT, 28, 4)
1882
bd78b6be
LL
1883FIELD(ID_MMFR5, ETS, 0, 4)
1884
46f4976f
PM
1885FIELD(ID_PFR0, STATE0, 0, 4)
1886FIELD(ID_PFR0, STATE1, 4, 4)
1887FIELD(ID_PFR0, STATE2, 8, 4)
1888FIELD(ID_PFR0, STATE3, 12, 4)
1889FIELD(ID_PFR0, CSV2, 16, 4)
1890FIELD(ID_PFR0, AMU, 20, 4)
1891FIELD(ID_PFR0, DIT, 24, 4)
1892FIELD(ID_PFR0, RAS, 28, 4)
1893
dfc523a8
PM
1894FIELD(ID_PFR1, PROGMOD, 0, 4)
1895FIELD(ID_PFR1, SECURITY, 4, 4)
1896FIELD(ID_PFR1, MPROGMOD, 8, 4)
1897FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1898FIELD(ID_PFR1, GENTIMER, 16, 4)
1899FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1900FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1901FIELD(ID_PFR1, GIC, 28, 4)
1902
bd78b6be
LL
1903FIELD(ID_PFR2, CSV3, 0, 4)
1904FIELD(ID_PFR2, SSBS, 4, 4)
1905FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1906
a62e62af
RH
1907FIELD(ID_AA64ISAR0, AES, 4, 4)
1908FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1909FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1910FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1911FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1912FIELD(ID_AA64ISAR0, RDM, 28, 4)
1913FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1914FIELD(ID_AA64ISAR0, SM3, 36, 4)
1915FIELD(ID_AA64ISAR0, SM4, 40, 4)
1916FIELD(ID_AA64ISAR0, DP, 44, 4)
1917FIELD(ID_AA64ISAR0, FHM, 48, 4)
1918FIELD(ID_AA64ISAR0, TS, 52, 4)
1919FIELD(ID_AA64ISAR0, TLB, 56, 4)
1920FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1921
1922FIELD(ID_AA64ISAR1, DPB, 0, 4)
1923FIELD(ID_AA64ISAR1, APA, 4, 4)
1924FIELD(ID_AA64ISAR1, API, 8, 4)
1925FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1926FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1927FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1928FIELD(ID_AA64ISAR1, GPA, 24, 4)
1929FIELD(ID_AA64ISAR1, GPI, 28, 4)
1930FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1931FIELD(ID_AA64ISAR1, SB, 36, 4)
1932FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
1933FIELD(ID_AA64ISAR1, BF16, 44, 4)
1934FIELD(ID_AA64ISAR1, DGH, 48, 4)
1935FIELD(ID_AA64ISAR1, I8MM, 52, 4)
a62e62af 1936
cd208a1c
RH
1937FIELD(ID_AA64PFR0, EL0, 0, 4)
1938FIELD(ID_AA64PFR0, EL1, 4, 4)
1939FIELD(ID_AA64PFR0, EL2, 8, 4)
1940FIELD(ID_AA64PFR0, EL3, 12, 4)
1941FIELD(ID_AA64PFR0, FP, 16, 4)
1942FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1943FIELD(ID_AA64PFR0, GIC, 24, 4)
1944FIELD(ID_AA64PFR0, RAS, 28, 4)
1945FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
1946FIELD(ID_AA64PFR0, SEL2, 36, 4)
1947FIELD(ID_AA64PFR0, MPAM, 40, 4)
1948FIELD(ID_AA64PFR0, AMU, 44, 4)
1949FIELD(ID_AA64PFR0, DIT, 48, 4)
1950FIELD(ID_AA64PFR0, CSV2, 56, 4)
1951FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 1952
be53b6f4 1953FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 1954FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
1955FIELD(ID_AA64PFR1, MTE, 8, 4)
1956FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 1957FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
be53b6f4 1958
3dc91ddb
PM
1959FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1960FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1961FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1962FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1963FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1964FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1965FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1966FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1967FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1968FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1969FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1970FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
1971FIELD(ID_AA64MMFR0, FGT, 56, 4)
1972FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
1973
1974FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1975FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1976FIELD(ID_AA64MMFR1, VH, 8, 4)
1977FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1978FIELD(ID_AA64MMFR1, LO, 16, 4)
1979FIELD(ID_AA64MMFR1, PAN, 20, 4)
1980FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1981FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
1982FIELD(ID_AA64MMFR1, TWED, 32, 4)
1983FIELD(ID_AA64MMFR1, ETS, 36, 4)
3dc91ddb 1984
64761e10
RH
1985FIELD(ID_AA64MMFR2, CNP, 0, 4)
1986FIELD(ID_AA64MMFR2, UAO, 4, 4)
1987FIELD(ID_AA64MMFR2, LSM, 8, 4)
1988FIELD(ID_AA64MMFR2, IESB, 12, 4)
1989FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1990FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1991FIELD(ID_AA64MMFR2, NV, 24, 4)
1992FIELD(ID_AA64MMFR2, ST, 28, 4)
1993FIELD(ID_AA64MMFR2, AT, 32, 4)
1994FIELD(ID_AA64MMFR2, IDS, 36, 4)
1995FIELD(ID_AA64MMFR2, FWB, 40, 4)
1996FIELD(ID_AA64MMFR2, TTL, 48, 4)
1997FIELD(ID_AA64MMFR2, BBM, 52, 4)
1998FIELD(ID_AA64MMFR2, EVT, 56, 4)
1999FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2000
ceb2744b
PM
2001FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2002FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2003FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2004FIELD(ID_AA64DFR0, BRPS, 12, 4)
2005FIELD(ID_AA64DFR0, WRPS, 20, 4)
2006FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2007FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2008FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2009FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
00a92832 2010FIELD(ID_AA64DFR0, MTPMU, 48, 4)
ceb2744b 2011
beceb99c
AL
2012FIELD(ID_DFR0, COPDBG, 0, 4)
2013FIELD(ID_DFR0, COPSDBG, 4, 4)
2014FIELD(ID_DFR0, MMAPDBG, 8, 4)
2015FIELD(ID_DFR0, COPTRC, 12, 4)
2016FIELD(ID_DFR0, MMAPTRC, 16, 4)
2017FIELD(ID_DFR0, MPROFDBG, 20, 4)
2018FIELD(ID_DFR0, PERFMON, 24, 4)
2019FIELD(ID_DFR0, TRACEFILT, 28, 4)
2020
bd78b6be
LL
2021FIELD(ID_DFR1, MTPMU, 0, 4)
2022
88ce6c6e
PM
2023FIELD(DBGDIDR, SE_IMP, 12, 1)
2024FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2025FIELD(DBGDIDR, VERSION, 16, 4)
2026FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2027FIELD(DBGDIDR, BRPS, 24, 4)
2028FIELD(DBGDIDR, WRPS, 28, 4)
2029
602f6e42
PM
2030FIELD(MVFR0, SIMDREG, 0, 4)
2031FIELD(MVFR0, FPSP, 4, 4)
2032FIELD(MVFR0, FPDP, 8, 4)
2033FIELD(MVFR0, FPTRAP, 12, 4)
2034FIELD(MVFR0, FPDIVIDE, 16, 4)
2035FIELD(MVFR0, FPSQRT, 20, 4)
2036FIELD(MVFR0, FPSHVEC, 24, 4)
2037FIELD(MVFR0, FPROUND, 28, 4)
2038
2039FIELD(MVFR1, FPFTZ, 0, 4)
2040FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2041FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2042FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2043FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2044FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2045FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2046FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2047FIELD(MVFR1, FPHP, 24, 4)
2048FIELD(MVFR1, SIMDFMAC, 28, 4)
2049
2050FIELD(MVFR2, SIMDMISC, 0, 4)
2051FIELD(MVFR2, FPMISC, 4, 4)
2052
43bbce7f
PM
2053QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2054
ce854d7c
BC
2055/* If adding a feature bit which corresponds to a Linux ELF
2056 * HWCAP bit, remember to update the feature-bit-to-hwcap
2057 * mapping in linux-user/elfload.c:get_elf_hwcap().
2058 */
40f137e1 2059enum arm_features {
c1713132
AZ
2060 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2061 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2062 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2063 ARM_FEATURE_V6,
2064 ARM_FEATURE_V6K,
2065 ARM_FEATURE_V7,
2066 ARM_FEATURE_THUMB2,
452a0955 2067 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2068 ARM_FEATURE_NEON,
9ee6e8bb 2069 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2070 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2071 ARM_FEATURE_THUMB2EE,
be5e7a76 2072 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2073 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2074 ARM_FEATURE_V4T,
2075 ARM_FEATURE_V5,
5bc95aa2 2076 ARM_FEATURE_STRONGARM,
906879a9 2077 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2078 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2079 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2080 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2081 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2082 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2083 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2084 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2085 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2086 ARM_FEATURE_V8,
3926cc84 2087 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2088 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2089 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2090 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2091 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2092 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2093 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2094 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2095 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2096 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2097 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2098};
2099
2100static inline int arm_feature(CPUARMState *env, int feature)
2101{
918f5dca 2102 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2103}
2104
0df9142d
AJ
2105void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2106
19e0fefa
FA
2107#if !defined(CONFIG_USER_ONLY)
2108/* Return true if exception levels below EL3 are in secure state,
2109 * or would be following an exception return to that level.
2110 * Unlike arm_is_secure() (which is always a question about the
2111 * _current_ state of the CPU) this doesn't care about the current
2112 * EL or mode.
2113 */
2114static inline bool arm_is_secure_below_el3(CPUARMState *env)
2115{
2116 if (arm_feature(env, ARM_FEATURE_EL3)) {
2117 return !(env->cp15.scr_el3 & SCR_NS);
2118 } else {
6b7f0b61 2119 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2120 * defined, in which case QEMU defaults to non-secure.
2121 */
2122 return false;
2123 }
2124}
2125
71205876
PM
2126/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2127static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2128{
2129 if (arm_feature(env, ARM_FEATURE_EL3)) {
2130 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2131 /* CPU currently in AArch64 state and EL3 */
2132 return true;
2133 } else if (!is_a64(env) &&
2134 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2135 /* CPU currently in AArch32 state and monitor mode */
2136 return true;
2137 }
2138 }
71205876
PM
2139 return false;
2140}
2141
2142/* Return true if the processor is in secure state */
2143static inline bool arm_is_secure(CPUARMState *env)
2144{
2145 if (arm_is_el3_or_mon(env)) {
2146 return true;
2147 }
19e0fefa
FA
2148 return arm_is_secure_below_el3(env);
2149}
2150
f3ee5160
RDC
2151/*
2152 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2153 * This corresponds to the pseudocode EL2Enabled()
2154 */
2155static inline bool arm_is_el2_enabled(CPUARMState *env)
2156{
2157 if (arm_feature(env, ARM_FEATURE_EL2)) {
2158 return !arm_is_secure_below_el3(env);
2159 }
2160 return false;
2161}
2162
19e0fefa
FA
2163#else
2164static inline bool arm_is_secure_below_el3(CPUARMState *env)
2165{
2166 return false;
2167}
2168
2169static inline bool arm_is_secure(CPUARMState *env)
2170{
2171 return false;
2172}
f3ee5160
RDC
2173
2174static inline bool arm_is_el2_enabled(CPUARMState *env)
2175{
2176 return false;
2177}
19e0fefa
FA
2178#endif
2179
f7778444
RH
2180/**
2181 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2182 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2183 * "for all purposes other than a direct read or write access of HCR_EL2."
2184 * Not included here is HCR_RW.
2185 */
2186uint64_t arm_hcr_el2_eff(CPUARMState *env);
2187
1f79ee32
PM
2188/* Return true if the specified exception level is running in AArch64 state. */
2189static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2190{
446c81ab
PM
2191 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2192 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2193 */
446c81ab
PM
2194 assert(el >= 1 && el <= 3);
2195 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2196
446c81ab
PM
2197 /* The highest exception level is always at the maximum supported
2198 * register width, and then lower levels have a register width controlled
2199 * by bits in the SCR or HCR registers.
1f79ee32 2200 */
446c81ab
PM
2201 if (el == 3) {
2202 return aa64;
2203 }
2204
2205 if (arm_feature(env, ARM_FEATURE_EL3)) {
2206 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2207 }
2208
2209 if (el == 2) {
2210 return aa64;
2211 }
2212
e6ef0169 2213 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2214 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2215 }
2216
2217 return aa64;
1f79ee32
PM
2218}
2219
3f342b9e
SF
2220/* Function for determing whether guest cp register reads and writes should
2221 * access the secure or non-secure bank of a cp register. When EL3 is
2222 * operating in AArch32 state, the NS-bit determines whether the secure
2223 * instance of a cp register should be used. When EL3 is AArch64 (or if
2224 * it doesn't exist at all) then there is no register banking, and all
2225 * accesses are to the non-secure version.
2226 */
2227static inline bool access_secure_reg(CPUARMState *env)
2228{
2229 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2230 !arm_el_is_aa64(env, 3) &&
2231 !(env->cp15.scr_el3 & SCR_NS));
2232
2233 return ret;
2234}
2235
ea30a4b8
FA
2236/* Macros for accessing a specified CP register bank */
2237#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2238 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2239
2240#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2241 do { \
2242 if (_secure) { \
2243 (_env)->cp15._regname##_s = (_val); \
2244 } else { \
2245 (_env)->cp15._regname##_ns = (_val); \
2246 } \
2247 } while (0)
2248
2249/* Macros for automatically accessing a specific CP register bank depending on
2250 * the current secure state of the system. These macros are not intended for
2251 * supporting instruction translation reads/writes as these are dependent
2252 * solely on the SCR.NS bit and not the mode.
2253 */
2254#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2255 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2256 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2257
2258#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2259 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2260 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2261 (_val))
2262
0442428a 2263void arm_cpu_list(void);
012a906b
GB
2264uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2265 uint32_t cur_el, bool secure);
40f137e1 2266
9ee6e8bb 2267/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2268#ifndef CONFIG_USER_ONLY
2269bool armv7m_nvic_can_take_pending_exception(void *opaque);
2270#else
2271static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2272{
2273 return true;
2274}
2275#endif
2fb50a33
PM
2276/**
2277 * armv7m_nvic_set_pending: mark the specified exception as pending
2278 * @opaque: the NVIC
2279 * @irq: the exception number to mark pending
2280 * @secure: false for non-banked exceptions or for the nonsecure
2281 * version of a banked exception, true for the secure version of a banked
2282 * exception.
2283 *
2284 * Marks the specified exception as pending. Note that we will assert()
2285 * if @secure is true and @irq does not specify one of the fixed set
2286 * of architecturally banked exceptions.
2287 */
2288void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2289/**
2290 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2291 * @opaque: the NVIC
2292 * @irq: the exception number to mark pending
2293 * @secure: false for non-banked exceptions or for the nonsecure
2294 * version of a banked exception, true for the secure version of a banked
2295 * exception.
2296 *
2297 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2298 * exceptions (exceptions generated in the course of trying to take
2299 * a different exception).
2300 */
2301void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2302/**
2303 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2304 * @opaque: the NVIC
2305 * @irq: the exception number to mark pending
2306 * @secure: false for non-banked exceptions or for the nonsecure
2307 * version of a banked exception, true for the secure version of a banked
2308 * exception.
2309 *
2310 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2311 * generated in the course of lazy stacking of FP registers.
2312 */
2313void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2314/**
2315 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2316 * exception, and whether it targets Secure state
2317 * @opaque: the NVIC
2318 * @pirq: set to pending exception number
2319 * @ptargets_secure: set to whether pending exception targets Secure
2320 *
2321 * This function writes the number of the highest priority pending
2322 * exception (the one which would be made active by
2323 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2324 * to true if the current highest priority pending exception should
2325 * be taken to Secure state, false for NS.
2326 */
2327void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2328 bool *ptargets_secure);
5cb18069
PM
2329/**
2330 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2331 * @opaque: the NVIC
2332 *
2333 * Move the current highest priority pending exception from the pending
2334 * state to the active state, and update v7m.exception to indicate that
2335 * it is the exception currently being handled.
5cb18069 2336 */
6c948518 2337void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2338/**
2339 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2340 * @opaque: the NVIC
2341 * @irq: the exception number to complete
5cb18069 2342 * @secure: true if this exception was secure
aa488fe3
PM
2343 *
2344 * Returns: -1 if the irq was not active
2345 * 1 if completing this irq brought us back to base (no active irqs)
2346 * 0 if there is still an irq active after this one was completed
2347 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2348 */
5cb18069 2349int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2350/**
2351 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2352 * @opaque: the NVIC
2353 * @irq: the exception number to mark pending
2354 * @secure: false for non-banked exceptions or for the nonsecure
2355 * version of a banked exception, true for the secure version of a banked
2356 * exception.
2357 *
2358 * Return whether an exception is "ready", i.e. whether the exception is
2359 * enabled and is configured at a priority which would allow it to
2360 * interrupt the current execution priority. This controls whether the
2361 * RDY bit for it in the FPCCR is set.
2362 */
2363bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2364/**
2365 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2366 * @opaque: the NVIC
2367 *
2368 * Returns: the raw execution priority as defined by the v8M architecture.
2369 * This is the execution priority minus the effects of AIRCR.PRIS,
2370 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2371 * (v8M ARM ARM I_PKLD.)
2372 */
2373int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2374/**
2375 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2376 * priority is negative for the specified security state.
2377 * @opaque: the NVIC
2378 * @secure: the security state to test
2379 * This corresponds to the pseudocode IsReqExecPriNeg().
2380 */
2381#ifndef CONFIG_USER_ONLY
2382bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2383#else
2384static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2385{
2386 return false;
2387}
2388#endif
9ee6e8bb 2389
4b6a83fb
PM
2390/* Interface for defining coprocessor registers.
2391 * Registers are defined in tables of arm_cp_reginfo structs
2392 * which are passed to define_arm_cp_regs().
2393 */
2394
2395/* When looking up a coprocessor register we look for it
2396 * via an integer which encodes all of:
2397 * coprocessor number
2398 * Crn, Crm, opc1, opc2 fields
2399 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2400 * or via MRRC/MCRR?)
51a79b03 2401 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2402 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2403 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2404 * For AArch64, there is no 32/64 bit size distinction;
2405 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2406 * and 4 bit CRn and CRm. The encoding patterns are chosen
2407 * to be easy to convert to and from the KVM encodings, and also
2408 * so that the hashtable can contain both AArch32 and AArch64
2409 * registers (to allow for interprocessing where we might run
2410 * 32 bit code on a 64 bit core).
4b6a83fb 2411 */
f5a0a5a5
PM
2412/* This bit is private to our hashtable cpreg; in KVM register
2413 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2414 * in the upper bits of the 64 bit ID.
2415 */
2416#define CP_REG_AA64_SHIFT 28
2417#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2418
51a79b03
PM
2419/* To enable banking of coprocessor registers depending on ns-bit we
2420 * add a bit to distinguish between secure and non-secure cpregs in the
2421 * hashtable.
2422 */
2423#define CP_REG_NS_SHIFT 29
2424#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2425
2426#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2427 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2428 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2429
f5a0a5a5
PM
2430#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2431 (CP_REG_AA64_MASK | \
2432 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2433 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2434 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2435 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2436 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2437 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2438
721fae12
PM
2439/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2440 * version used as a key for the coprocessor register hashtable
2441 */
2442static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2443{
2444 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2445 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2446 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2447 } else {
2448 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2449 cpregid |= (1 << 15);
2450 }
2451
2452 /* KVM is always non-secure so add the NS flag on AArch32 register
2453 * entries.
2454 */
2455 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2456 }
2457 return cpregid;
2458}
2459
2460/* Convert a truncated 32 bit hashtable key into the full
2461 * 64 bit KVM register ID.
2462 */
2463static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2464{
f5a0a5a5
PM
2465 uint64_t kvmid;
2466
2467 if (cpregid & CP_REG_AA64_MASK) {
2468 kvmid = cpregid & ~CP_REG_AA64_MASK;
2469 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2470 } else {
f5a0a5a5
PM
2471 kvmid = cpregid & ~(1 << 15);
2472 if (cpregid & (1 << 15)) {
2473 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2474 } else {
2475 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2476 }
721fae12
PM
2477 }
2478 return kvmid;
2479}
2480
4b6a83fb 2481/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2482 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2483 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2484 * TCG can assume the value to be constant (ie load at translate time)
2485 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2486 * indicates that the TB should not be ended after a write to this register
2487 * (the default is that the TB ends after cp writes). OVERRIDE permits
2488 * a register definition to override a previous definition for the
2489 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2490 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2491 * ALIAS indicates that this register is an alias view of some underlying
2492 * state which is also visible via another register, and that the other
b061a82b
SF
2493 * register is handling migration and reset; registers marked ALIAS will not be
2494 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2495 * NO_RAW indicates that this register has no underlying state and does not
2496 * support raw access for state saving/loading; it will not be used for either
2497 * migration or KVM state synchronization. (Typically this is for "registers"
2498 * which are actually used as instructions for cache maintenance and so on.)
2452731c 2499 * IO indicates that this register does I/O and therefore its accesses
55c812b7 2500 * need to be marked with gen_io_start() and also end the TB. In particular,
2452731c 2501 * registers which implement clocks or timers require this.
37ff584c
PM
2502 * RAISES_EXC is for when the read or write hook might raise an exception;
2503 * the generated code will synchronize the CPU state before calling the hook
2504 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2505 * NEWEL is for writes to registers that might change the exception
2506 * level - typically on older ARM chips. For those cases we need to
2507 * re-read the new el when recomputing the translation flags.
4b6a83fb 2508 */
fe03d45f
RH
2509#define ARM_CP_SPECIAL 0x0001
2510#define ARM_CP_CONST 0x0002
2511#define ARM_CP_64BIT 0x0004
2512#define ARM_CP_SUPPRESS_TB_END 0x0008
2513#define ARM_CP_OVERRIDE 0x0010
2514#define ARM_CP_ALIAS 0x0020
2515#define ARM_CP_IO 0x0040
2516#define ARM_CP_NO_RAW 0x0080
2517#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2518#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2519#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2520#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2521#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
eb821168
RH
2522#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
2523#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
2524#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
fe03d45f 2525#define ARM_CP_FPU 0x1000
490aa7f1 2526#define ARM_CP_SVE 0x2000
1f163787 2527#define ARM_CP_NO_GDB 0x4000
37ff584c 2528#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2529#define ARM_CP_NEWEL 0x10000
4b6a83fb 2530/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2531#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2532/* Mask of only the flag bits in a type field */
f80741d1 2533#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2534
f5a0a5a5
PM
2535/* Valid values for ARMCPRegInfo state field, indicating which of
2536 * the AArch32 and AArch64 execution states this register is visible in.
2537 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2538 * If the reginfo is declared to be visible in both states then a second
2539 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2540 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2541 * Note that we rely on the values of these enums as we iterate through
2542 * the various states in some places.
2543 */
2544enum {
2545 ARM_CP_STATE_AA32 = 0,
2546 ARM_CP_STATE_AA64 = 1,
2547 ARM_CP_STATE_BOTH = 2,
2548};
2549
c3e30260
FA
2550/* ARM CP register secure state flags. These flags identify security state
2551 * attributes for a given CP register entry.
2552 * The existence of both or neither secure and non-secure flags indicates that
2553 * the register has both a secure and non-secure hash entry. A single one of
2554 * these flags causes the register to only be hashed for the specified
2555 * security state.
2556 * Although definitions may have any combination of the S/NS bits, each
2557 * registered entry will only have one to identify whether the entry is secure
2558 * or non-secure.
2559 */
2560enum {
2561 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2562 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2563};
2564
4b6a83fb
PM
2565/* Return true if cptype is a valid type field. This is used to try to
2566 * catch errors where the sentinel has been accidentally left off the end
2567 * of a list of registers.
2568 */
2569static inline bool cptype_valid(int cptype)
2570{
2571 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2572 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2573 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2574}
2575
2576/* Access rights:
2577 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2578 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2579 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2580 * (ie any of the privileged modes in Secure state, or Monitor mode).
2581 * If a register is accessible in one privilege level it's always accessible
2582 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2583 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2584 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2585 * terminology a little and call this PL3.
f5a0a5a5
PM
2586 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2587 * with the ELx exception levels.
4b6a83fb
PM
2588 *
2589 * If access permissions for a register are more complex than can be
2590 * described with these bits, then use a laxer set of restrictions, and
2591 * do the more restrictive/complex check inside a helper function.
2592 */
2593#define PL3_R 0x80
2594#define PL3_W 0x40
2595#define PL2_R (0x20 | PL3_R)
2596#define PL2_W (0x10 | PL3_W)
2597#define PL1_R (0x08 | PL2_R)
2598#define PL1_W (0x04 | PL2_W)
2599#define PL0_R (0x02 | PL1_R)
2600#define PL0_W (0x01 | PL1_W)
2601
b5bd7440
AB
2602/*
2603 * For user-mode some registers are accessible to EL0 via a kernel
2604 * trap-and-emulate ABI. In this case we define the read permissions
2605 * as actually being PL0_R. However some bits of any given register
2606 * may still be masked.
2607 */
2608#ifdef CONFIG_USER_ONLY
2609#define PL0U_R PL0_R
2610#else
2611#define PL0U_R PL1_R
2612#endif
2613
4b6a83fb
PM
2614#define PL3_RW (PL3_R | PL3_W)
2615#define PL2_RW (PL2_R | PL2_W)
2616#define PL1_RW (PL1_R | PL1_W)
2617#define PL0_RW (PL0_R | PL0_W)
2618
75502672
PM
2619/* Return the highest implemented Exception Level */
2620static inline int arm_highest_el(CPUARMState *env)
2621{
2622 if (arm_feature(env, ARM_FEATURE_EL3)) {
2623 return 3;
2624 }
2625 if (arm_feature(env, ARM_FEATURE_EL2)) {
2626 return 2;
2627 }
2628 return 1;
2629}
2630
15b3f556
PM
2631/* Return true if a v7M CPU is in Handler mode */
2632static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2633{
2634 return env->v7m.exception != 0;
2635}
2636
dcbff19b
GB
2637/* Return the current Exception Level (as per ARMv8; note that this differs
2638 * from the ARMv7 Privilege Level).
2639 */
2640static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2641{
6d54ed3c 2642 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2643 return arm_v7m_is_handler_mode(env) ||
2644 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2645 }
2646
592125f8 2647 if (is_a64(env)) {
f5a0a5a5
PM
2648 return extract32(env->pstate, 2, 2);
2649 }
2650
592125f8
FA
2651 switch (env->uncached_cpsr & 0x1f) {
2652 case ARM_CPU_MODE_USR:
4b6a83fb 2653 return 0;
592125f8
FA
2654 case ARM_CPU_MODE_HYP:
2655 return 2;
2656 case ARM_CPU_MODE_MON:
2657 return 3;
2658 default:
2659 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2660 /* If EL3 is 32-bit then all secure privileged modes run in
2661 * EL3
2662 */
2663 return 3;
2664 }
2665
2666 return 1;
4b6a83fb 2667 }
4b6a83fb
PM
2668}
2669
2670typedef struct ARMCPRegInfo ARMCPRegInfo;
2671
f59df3f2
PM
2672typedef enum CPAccessResult {
2673 /* Access is permitted */
2674 CP_ACCESS_OK = 0,
2675 /* Access fails due to a configurable trap or enable which would
2676 * result in a categorized exception syndrome giving information about
2677 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2678 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2679 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2680 */
2681 CP_ACCESS_TRAP = 1,
2682 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2683 * Note that this is not a catch-all case -- the set of cases which may
2684 * result in this failure is specifically defined by the architecture.
2685 */
2686 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2687 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2688 CP_ACCESS_TRAP_EL2 = 3,
2689 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2690 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2691 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2692 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2693 /* Access fails and results in an exception syndrome for an FP access,
2694 * trapped directly to EL2 or EL3
2695 */
2696 CP_ACCESS_TRAP_FP_EL2 = 7,
2697 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2698} CPAccessResult;
2699
c4241c7d
PM
2700/* Access functions for coprocessor registers. These cannot fail and
2701 * may not raise exceptions.
2702 */
2703typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2704typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2705 uint64_t value);
f59df3f2 2706/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2707typedef CPAccessResult CPAccessFn(CPUARMState *env,
2708 const ARMCPRegInfo *opaque,
2709 bool isread);
4b6a83fb
PM
2710/* Hook function for register reset */
2711typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2712
2713#define CP_ANY 0xff
2714
2715/* Definition of an ARM coprocessor register */
2716struct ARMCPRegInfo {
2717 /* Name of register (useful mainly for debugging, need not be unique) */
2718 const char *name;
2719 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2720 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2721 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2722 * will be decoded to this register. The register read and write
2723 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2724 * used by the program, so it is possible to register a wildcard and
2725 * then behave differently on read/write if necessary.
2726 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2727 * must both be zero.
f5a0a5a5
PM
2728 * For AArch64-visible registers, opc0 is also used.
2729 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2730 * way to distinguish (for KVM's benefit) guest-visible system registers
2731 * from demuxed ones provided to preserve the "no side effects on
2732 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2733 * visible (to match KVM's encoding); cp==0 will be converted to
2734 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2735 */
2736 uint8_t cp;
2737 uint8_t crn;
2738 uint8_t crm;
f5a0a5a5 2739 uint8_t opc0;
4b6a83fb
PM
2740 uint8_t opc1;
2741 uint8_t opc2;
f5a0a5a5
PM
2742 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2743 int state;
4b6a83fb
PM
2744 /* Register type: ARM_CP_* bits/values */
2745 int type;
2746 /* Access rights: PL*_[RW] */
2747 int access;
c3e30260
FA
2748 /* Security state: ARM_CP_SECSTATE_* bits/values */
2749 int secure;
4b6a83fb
PM
2750 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2751 * this register was defined: can be used to hand data through to the
2752 * register read/write functions, since they are passed the ARMCPRegInfo*.
2753 */
2754 void *opaque;
2755 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2756 * fieldoffset is non-zero, the reset value of the register.
2757 */
2758 uint64_t resetvalue;
c3e30260
FA
2759 /* Offset of the field in CPUARMState for this register.
2760 *
2761 * This is not needed if either:
4b6a83fb
PM
2762 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2763 * 2. both readfn and writefn are specified
2764 */
2765 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2766
2767 /* Offsets of the secure and non-secure fields in CPUARMState for the
2768 * register if it is banked. These fields are only used during the static
2769 * registration of a register. During hashing the bank associated
2770 * with a given security state is copied to fieldoffset which is used from
2771 * there on out.
2772 *
2773 * It is expected that register definitions use either fieldoffset or
2774 * bank_fieldoffsets in the definition but not both. It is also expected
2775 * that both bank offsets are set when defining a banked register. This
2776 * use indicates that a register is banked.
2777 */
2778 ptrdiff_t bank_fieldoffsets[2];
2779
f59df3f2
PM
2780 /* Function for making any access checks for this register in addition to
2781 * those specified by the 'access' permissions bits. If NULL, no extra
2782 * checks required. The access check is performed at runtime, not at
2783 * translate time.
2784 */
2785 CPAccessFn *accessfn;
4b6a83fb
PM
2786 /* Function for handling reads of this register. If NULL, then reads
2787 * will be done by loading from the offset into CPUARMState specified
2788 * by fieldoffset.
2789 */
2790 CPReadFn *readfn;
2791 /* Function for handling writes of this register. If NULL, then writes
2792 * will be done by writing to the offset into CPUARMState specified
2793 * by fieldoffset.
2794 */
2795 CPWriteFn *writefn;
7023ec7e
PM
2796 /* Function for doing a "raw" read; used when we need to copy
2797 * coprocessor state to the kernel for KVM or out for
2798 * migration. This only needs to be provided if there is also a
c4241c7d 2799 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2800 */
2801 CPReadFn *raw_readfn;
2802 /* Function for doing a "raw" write; used when we need to copy KVM
2803 * kernel coprocessor state into userspace, or for inbound
2804 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2805 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2806 * or similar behaviour.
7023ec7e
PM
2807 */
2808 CPWriteFn *raw_writefn;
4b6a83fb
PM
2809 /* Function for resetting the register. If NULL, then reset will be done
2810 * by writing resetvalue to the field specified in fieldoffset. If
2811 * fieldoffset is 0 then no reset will be done.
2812 */
2813 CPResetFn *resetfn;
e2cce18f
RH
2814
2815 /*
2816 * "Original" writefn and readfn.
2817 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2818 * accessor functions of various EL1/EL0 to perform the runtime
2819 * check for which sysreg should actually be modified, and then
2820 * forwards the operation. Before overwriting the accessors,
2821 * the original function is copied here, so that accesses that
2822 * really do go to the EL1/EL0 version proceed normally.
2823 * (The corresponding EL2 register is linked via opaque.)
2824 */
2825 CPReadFn *orig_readfn;
2826 CPWriteFn *orig_writefn;
4b6a83fb
PM
2827};
2828
2829/* Macros which are lvalues for the field in CPUARMState for the
2830 * ARMCPRegInfo *ri.
2831 */
2832#define CPREG_FIELD32(env, ri) \
2833 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2834#define CPREG_FIELD64(env, ri) \
2835 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2836
2837#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2838
2839void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2840 const ARMCPRegInfo *regs, void *opaque);
2841void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2842 const ARMCPRegInfo *regs, void *opaque);
2843static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2844{
2845 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2846}
2847static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2848{
2849 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2850}
60322b39 2851const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2852
6c5c0fec
AB
2853/*
2854 * Definition of an ARM co-processor register as viewed from
2855 * userspace. This is used for presenting sanitised versions of
2856 * registers to userspace when emulating the Linux AArch64 CPU
2857 * ID/feature ABI (advertised as HWCAP_CPUID).
2858 */
2859typedef struct ARMCPRegUserSpaceInfo {
2860 /* Name of register */
2861 const char *name;
2862
d040242e
AB
2863 /* Is the name actually a glob pattern */
2864 bool is_glob;
2865
6c5c0fec
AB
2866 /* Only some bits are exported to user space */
2867 uint64_t exported_bits;
2868
2869 /* Fixed bits are applied after the mask */
2870 uint64_t fixed_bits;
2871} ARMCPRegUserSpaceInfo;
2872
2873#define REGUSERINFO_SENTINEL { .name = NULL }
2874
2875void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2876
4b6a83fb 2877/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2878void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2879 uint64_t value);
4b6a83fb 2880/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2881uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2882
f5a0a5a5
PM
2883/* CPResetFn that does nothing, for use if no reset is required even
2884 * if fieldoffset is non zero.
2885 */
2886void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2887
67ed771d
PM
2888/* Return true if this reginfo struct's field in the cpu state struct
2889 * is 64 bits wide.
2890 */
2891static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2892{
2893 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2894}
2895
dcbff19b 2896static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2897 const ARMCPRegInfo *ri, int isread)
2898{
dcbff19b 2899 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2900}
2901
49a66191
PM
2902/* Raw read of a coprocessor register (as needed for migration, etc) */
2903uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2904
721fae12
PM
2905/**
2906 * write_list_to_cpustate
2907 * @cpu: ARMCPU
2908 *
2909 * For each register listed in the ARMCPU cpreg_indexes list, write
2910 * its value from the cpreg_values list into the ARMCPUState structure.
2911 * This updates TCG's working data structures from KVM data or
2912 * from incoming migration state.
2913 *
2914 * Returns: true if all register values were updated correctly,
2915 * false if some register was unknown or could not be written.
2916 * Note that we do not stop early on failure -- we will attempt
2917 * writing all registers in the list.
2918 */
2919bool write_list_to_cpustate(ARMCPU *cpu);
2920
2921/**
2922 * write_cpustate_to_list:
2923 * @cpu: ARMCPU
b698e4ee 2924 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2925 *
2926 * For each register listed in the ARMCPU cpreg_indexes list, write
2927 * its value from the ARMCPUState structure into the cpreg_values list.
2928 * This is used to copy info from TCG's working data structures into
2929 * KVM or for outbound migration.
2930 *
b698e4ee
PM
2931 * @kvm_sync is true if we are doing this in order to sync the
2932 * register state back to KVM. In this case we will only update
2933 * values in the list if the previous list->cpustate sync actually
2934 * successfully wrote the CPU state. Otherwise we will keep the value
2935 * that is in the list.
2936 *
721fae12
PM
2937 * Returns: true if all register values were read correctly,
2938 * false if some register was unknown or could not be read.
2939 * Note that we do not stop early on failure -- we will attempt
2940 * reading all registers in the list.
2941 */
b698e4ee 2942bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2943
9ee6e8bb
PB
2944#define ARM_CPUID_TI915T 0x54029152
2945#define ARM_CPUID_TI925T 0x54029252
40f137e1 2946
ba1ba5cc
IM
2947#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2948#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2949#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2950
9467d44c 2951#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2952#define cpu_list arm_cpu_list
9467d44c 2953
c1e37810
PM
2954/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2955 *
2956 * If EL3 is 64-bit:
2957 * + NonSecure EL1 & 0 stage 1
2958 * + NonSecure EL1 & 0 stage 2
2959 * + NonSecure EL2
b9f6033c
RH
2960 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2961 * + Secure EL1 & 0
c1e37810
PM
2962 * + Secure EL3
2963 * If EL3 is 32-bit:
2964 * + NonSecure PL1 & 0 stage 1
2965 * + NonSecure PL1 & 0 stage 2
2966 * + NonSecure PL2
b9f6033c
RH
2967 * + Secure PL0
2968 * + Secure PL1
c1e37810
PM
2969 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2970 *
2971 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2972 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2973 * because they may differ in access permissions even if the VA->PA map is
2974 * the same
c1e37810
PM
2975 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2976 * translation, which means that we have one mmu_idx that deals with two
2977 * concatenated translation regimes [this sort of combined s1+2 TLB is
2978 * architecturally permitted]
2979 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2980 * handling via the TLB. The only way to do a stage 1 translation without
2981 * the immediate stage 2 translation is via the ATS or AT system insns,
2982 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2983 * The only use of stage 2 translations is either as part of an s1+2
2984 * lookup or when loading the descriptors during a stage 1 page table walk,
2985 * and in both those cases we don't use the TLB.
c1e37810
PM
2986 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2987 * translation regimes, because they map reasonably well to each other
2988 * and they can't both be active at the same time.
b9f6033c
RH
2989 * 5. we want to be able to use the TLB for accesses done as part of a
2990 * stage1 page table walk, rather than having to walk the stage2 page
2991 * table over and over.
452ef8cb
RH
2992 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2993 * Never (PAN) bit within PSTATE.
c1e37810 2994 *
b9f6033c
RH
2995 * This gives us the following list of cases:
2996 *
2997 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2998 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2999 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 3000 * NS EL0 EL2&0
bf05340c 3001 * NS EL2 EL2&0
452ef8cb 3002 * NS EL2 EL2&0 +PAN
c1e37810 3003 * NS EL2 (aka NS PL2)
b9f6033c
RH
3004 * S EL0 EL1&0 (aka S PL0)
3005 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 3006 * S EL1 EL1&0 +PAN
c1e37810 3007 * S EL3 (aka S PL1)
c1e37810 3008 *
bf05340c 3009 * for a total of 11 different mmu_idx.
c1e37810 3010 *
3bef7012
PM
3011 * R profile CPUs have an MPU, but can use the same set of MMU indexes
3012 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3013 * NS EL2 if we ever model a Cortex-R52).
3014 *
3015 * M profile CPUs are rather different as they do not have a true MMU.
3016 * They have the following different MMU indexes:
3017 * User
3018 * Privileged
62593718
PM
3019 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3020 * Privileged, execution priority negative (ditto)
66787c78
PM
3021 * If the CPU supports the v8M Security Extension then there are also:
3022 * Secure User
3023 * Secure Privileged
62593718
PM
3024 * Secure User, execution priority negative
3025 * Secure Privileged, execution priority negative
3bef7012 3026 *
8bd5c820
PM
3027 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3028 * are not quite the same -- different CPU types (most notably M profile
3029 * vs A/R profile) would like to use MMU indexes with different semantics,
3030 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
3031 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3032 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
3033 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3034 * the same for any particular CPU.
3035 * Variables of type ARMMUIdx are always full values, and the core
3036 * index values are in variables of type 'int'.
3037 *
c1e37810
PM
3038 * Our enumeration includes at the end some entries which are not "true"
3039 * mmu_idx values in that they don't have corresponding TLBs and are only
3040 * valid for doing slow path page table walks.
3041 *
3042 * The constant names here are patterned after the general style of the names
3043 * of the AT/ATS operations.
3044 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
3045 * For M profile we arrange them to have a bit for priv, a bit for negpri
3046 * and a bit for secure.
c1e37810 3047 */
b9f6033c
RH
3048#define ARM_MMU_IDX_A 0x10 /* A profile */
3049#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
3050#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 3051
b9f6033c
RH
3052/* Meanings of the bits for M profile mmu idx values */
3053#define ARM_MMU_IDX_M_PRIV 0x1
62593718 3054#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 3055#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 3056
b9f6033c
RH
3057#define ARM_MMU_IDX_TYPE_MASK \
3058 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3059#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 3060
c1e37810 3061typedef enum ARMMMUIdx {
b9f6033c
RH
3062 /*
3063 * A-profile.
3064 */
452ef8cb
RH
3065 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
3066 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
b9f6033c 3067
452ef8cb
RH
3068 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
3069 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
b9f6033c 3070
452ef8cb
RH
3071 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
3072 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
3073 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
b9f6033c 3074
452ef8cb
RH
3075 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
3076 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
3077 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
3078 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
b9f6033c 3079
b9f6033c
RH
3080 /*
3081 * These are not allocated TLBs and are used only for AT system
3082 * instructions or for the first stage of an S12 page table walk.
3083 */
3084 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3085 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 3086 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
3087 /*
3088 * Not allocated a TLB: used only for second stage of an S12 page
3089 * table walk, or for descriptor loads during first stage of an S1
3090 * page table walk. Note that if we ever want to have a TLB for this
3091 * then various TLB flush insns which currently are no-ops or flush
3092 * only stage 1 MMU indexes will need to change to flush stage 2.
3093 */
3094 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
3095
3096 /*
3097 * M-profile.
3098 */
25568316
RH
3099 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3100 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3101 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3102 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3103 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3104 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3105 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3106 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
3107} ARMMMUIdx;
3108
5f09a6df
RH
3109/*
3110 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
3111 * for use when calling tlb_flush_by_mmuidx() and friends.
3112 */
5f09a6df
RH
3113#define TO_CORE_BIT(NAME) \
3114 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3115
8bd5c820 3116typedef enum ARMMMUIdxBit {
5f09a6df 3117 TO_CORE_BIT(E10_0),
b9f6033c 3118 TO_CORE_BIT(E20_0),
5f09a6df 3119 TO_CORE_BIT(E10_1),
452ef8cb 3120 TO_CORE_BIT(E10_1_PAN),
5f09a6df 3121 TO_CORE_BIT(E2),
b9f6033c 3122 TO_CORE_BIT(E20_2),
452ef8cb 3123 TO_CORE_BIT(E20_2_PAN),
5f09a6df
RH
3124 TO_CORE_BIT(SE10_0),
3125 TO_CORE_BIT(SE10_1),
452ef8cb 3126 TO_CORE_BIT(SE10_1_PAN),
5f09a6df 3127 TO_CORE_BIT(SE3),
5f09a6df
RH
3128
3129 TO_CORE_BIT(MUser),
3130 TO_CORE_BIT(MPriv),
3131 TO_CORE_BIT(MUserNegPri),
3132 TO_CORE_BIT(MPrivNegPri),
3133 TO_CORE_BIT(MSUser),
3134 TO_CORE_BIT(MSPriv),
3135 TO_CORE_BIT(MSUserNegPri),
3136 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3137} ARMMMUIdxBit;
3138
5f09a6df
RH
3139#undef TO_CORE_BIT
3140
f79fbf39 3141#define MMU_USER_IDX 0
c1e37810 3142
9e273ef2
PM
3143/* Indexes used when registering address spaces with cpu_address_space_init */
3144typedef enum ARMASIdx {
3145 ARMASIdx_NS = 0,
3146 ARMASIdx_S = 1,
8bce44a2
RH
3147 ARMASIdx_TagNS = 2,
3148 ARMASIdx_TagS = 3,
9e273ef2
PM
3149} ARMASIdx;
3150
533e93f1 3151/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
3152static inline int arm_debug_target_el(CPUARMState *env)
3153{
81669b8b
SF
3154 bool secure = arm_is_secure(env);
3155 bool route_to_el2 = false;
3156
e6ef0169 3157 if (arm_is_el2_enabled(env)) {
81669b8b 3158 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 3159 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
3160 }
3161
3162 if (route_to_el2) {
3163 return 2;
3164 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3165 !arm_el_is_aa64(env, 3) && secure) {
3166 return 3;
3167 } else {
3168 return 1;
3169 }
3a298203
PM
3170}
3171
43bbce7f
PM
3172static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3173{
3174 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3175 * CSSELR is RAZ/WI.
3176 */
3177 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3178}
3179
22af9025 3180/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
3181static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3182{
22af9025
AB
3183 int cur_el = arm_current_el(env);
3184 int debug_el;
3185
3186 if (cur_el == 3) {
3187 return false;
533e93f1
PM
3188 }
3189
22af9025
AB
3190 /* MDCR_EL3.SDD disables debug events from Secure state */
3191 if (arm_is_secure_below_el3(env)
3192 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3193 return false;
3a298203 3194 }
22af9025
AB
3195
3196 /*
3197 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3198 * while not masking the (D)ebug bit in DAIF.
3199 */
3200 debug_el = arm_debug_target_el(env);
3201
3202 if (cur_el == debug_el) {
3203 return extract32(env->cp15.mdscr_el1, 13, 1)
3204 && !(env->daif & PSTATE_D);
3205 }
3206
3207 /* Otherwise the debug target needs to be a higher EL */
3208 return debug_el > cur_el;
3a298203
PM
3209}
3210
3211static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3212{
533e93f1
PM
3213 int el = arm_current_el(env);
3214
3215 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3216 return aa64_generate_debug_exceptions(env);
3217 }
533e93f1
PM
3218
3219 if (arm_is_secure(env)) {
3220 int spd;
3221
3222 if (el == 0 && (env->cp15.sder & 1)) {
3223 /* SDER.SUIDEN means debug exceptions from Secure EL0
3224 * are always enabled. Otherwise they are controlled by
3225 * SDCR.SPD like those from other Secure ELs.
3226 */
3227 return true;
3228 }
3229
3230 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3231 switch (spd) {
3232 case 1:
3233 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3234 case 0:
3235 /* For 0b00 we return true if external secure invasive debug
3236 * is enabled. On real hardware this is controlled by external
3237 * signals to the core. QEMU always permits debug, and behaves
3238 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3239 */
3240 return true;
3241 case 2:
3242 return false;
3243 case 3:
3244 return true;
3245 }
3246 }
3247
3248 return el != 2;
3a298203
PM
3249}
3250
3251/* Return true if debugging exceptions are currently enabled.
3252 * This corresponds to what in ARM ARM pseudocode would be
3253 * if UsingAArch32() then
3254 * return AArch32.GenerateDebugExceptions()
3255 * else
3256 * return AArch64.GenerateDebugExceptions()
3257 * We choose to push the if() down into this function for clarity,
3258 * since the pseudocode has it at all callsites except for the one in
3259 * CheckSoftwareStep(), where it is elided because both branches would
3260 * always return the same value.
3a298203
PM
3261 */
3262static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3263{
3264 if (env->aarch64) {
3265 return aa64_generate_debug_exceptions(env);
3266 } else {
3267 return aa32_generate_debug_exceptions(env);
3268 }
3269}
3270
3271/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3272 * implicitly means this always returns false in pre-v8 CPUs.)
3273 */
3274static inline bool arm_singlestep_active(CPUARMState *env)
3275{
3276 return extract32(env->cp15.mdscr_el1, 0, 1)
3277 && arm_el_is_aa64(env, arm_debug_target_el(env))
3278 && arm_generate_debug_exceptions(env);
3279}
3280
f9fd40eb
PB
3281static inline bool arm_sctlr_b(CPUARMState *env)
3282{
3283 return
3284 /* We need not implement SCTLR.ITD in user-mode emulation, so
3285 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3286 * This lets people run BE32 binaries with "-cpu any".
3287 */
3288#ifndef CONFIG_USER_ONLY
3289 !arm_feature(env, ARM_FEATURE_V7) &&
3290#endif
3291 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3292}
3293
aaec1432 3294uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3295
8061a649
RH
3296static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3297 bool sctlr_b)
3298{
3299#ifdef CONFIG_USER_ONLY
3300 /*
3301 * In system mode, BE32 is modelled in line with the
3302 * architecture (as word-invariant big-endianness), where loads
3303 * and stores are done little endian but from addresses which
3304 * are adjusted by XORing with the appropriate constant. So the
3305 * endianness to use for the raw data access is not affected by
3306 * SCTLR.B.
3307 * In user mode, however, we model BE32 as byte-invariant
3308 * big-endianness (because user-only code cannot tell the
3309 * difference), and so we need to use a data access endianness
3310 * that depends on SCTLR.B.
3311 */
3312 if (sctlr_b) {
3313 return true;
3314 }
3315#endif
3316 /* In 32bit endianness is determined by looking at CPSR's E bit */
3317 return env->uncached_cpsr & CPSR_E;
3318}
3319
3320static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3321{
3322 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3323}
64e40755 3324
ed50ff78
PC
3325/* Return true if the processor is in big-endian mode. */
3326static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3327{
ed50ff78 3328 if (!is_a64(env)) {
8061a649 3329 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3330 } else {
3331 int cur_el = arm_current_el(env);
3332 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3333 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3334 }
ed50ff78
PC
3335}
3336
4f7c64b3 3337typedef CPUARMState CPUArchState;
2161a612 3338typedef ARMCPU ArchCPU;
4f7c64b3 3339
022c62cb 3340#include "exec/cpu-all.h"
622ed360 3341
fdd1b228
RH
3342/*
3343 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3344 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3345 * We put flags which are shared between 32 and 64 bit mode at the top
3346 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3347 *
506f1498 3348 * 31 20 18 14 9 0
79cabf1f
RH
3349 * +--------------+-----+-----+----------+--------------+
3350 * | | | TBFLAG_A32 | |
3351 * | | +-----+----------+ TBFLAG_AM32 |
3352 * | TBFLAG_ANY | |TBFLAG_M32| |
81ae05fa
RH
3353 * | +-----------+----------+--------------|
3354 * | | TBFLAG_A64 |
3355 * +--------------+-------------------------------------+
3356 * 31 20 0
79cabf1f 3357 *
fdd1b228 3358 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3359 */
aad821ac 3360FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3361FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3362FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3363FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3364FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3365/* Target EL if we take a floating-point-disabled exception */
506f1498 3366FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3367/* For A-profile only, target EL for debug exceptions. */
506f1498 3368FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3369
8bd587c1 3370/*
79cabf1f 3371 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3372 */
79cabf1f
RH
3373FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3374FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3375
79cabf1f
RH
3376/*
3377 * Bit usage when in AArch32 state, for A-profile only.
3378 */
3379FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3380FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3381/*
3382 * We store the bottom two bits of the CPAR as TB flags and handle
3383 * checks on the other bits at runtime. This shares the same bits as
3384 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3385 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3386 */
79cabf1f
RH
3387FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3388FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3389FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3390FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3391/*
3392 * Indicates whether cp register reads and writes by guest code should access
3393 * the secure or nonsecure bank of banked registers; note that this is not
3394 * the same thing as the current security state of the processor!
3395 */
79cabf1f
RH
3396FIELD(TBFLAG_A32, NS, 17, 1)
3397
3398/*
3399 * Bit usage when in AArch32 state, for M-profile only.
3400 */
3401/* Handler (ie not Thread) mode */
3402FIELD(TBFLAG_M32, HANDLER, 9, 1)
3403/* Whether we should generate stack-limit checks */
3404FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3405/* Set if FPCCR.LSPACT is set */
3406FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3407/* Set if we must create a new FP context */
3408FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3409/* Set if FPCCR.S does not match current security state */
3410FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3411
3412/*
3413 * Bit usage when in AArch64 state
3414 */
476a4692 3415FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3416FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3417FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3418FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3419FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3420FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3421FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3422FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3423FIELD(TBFLAG_A64, ATA, 15, 1)
3424FIELD(TBFLAG_A64, TCMA, 16, 2)
3425FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3426FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
a1705768 3427
fb901c90
RH
3428/**
3429 * cpu_mmu_index:
3430 * @env: The cpu environment
3431 * @ifetch: True for code access, false for data access.
3432 *
3433 * Return the core mmu index for the current translation regime.
3434 * This function is used by generic TCG code paths.
3435 */
3436static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3437{
3438 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3439}
3440
f9fd40eb
PB
3441static inline bool bswap_code(bool sctlr_b)
3442{
3443#ifdef CONFIG_USER_ONLY
3444 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3445 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3446 * would also end up as a mixed-endian mode with BE code, LE data.
3447 */
3448 return
3449#ifdef TARGET_WORDS_BIGENDIAN
3450 1 ^
3451#endif
3452 sctlr_b;
3453#else
e334bd31
PB
3454 /* All code access in ARM is little endian, and there are no loaders
3455 * doing swaps that need to be reversed
f9fd40eb
PB
3456 */
3457 return 0;
3458#endif
3459}
3460
c3ae85fc
PB
3461#ifdef CONFIG_USER_ONLY
3462static inline bool arm_cpu_bswap_data(CPUARMState *env)
3463{
3464 return
3465#ifdef TARGET_WORDS_BIGENDIAN
3466 1 ^
3467#endif
3468 arm_cpu_data_is_big_endian(env);
3469}
3470#endif
3471
a9e01311
RH
3472void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3473 target_ulong *cs_base, uint32_t *flags);
6b917547 3474
98128601
RH
3475enum {
3476 QEMU_PSCI_CONDUIT_DISABLED = 0,
3477 QEMU_PSCI_CONDUIT_SMC = 1,
3478 QEMU_PSCI_CONDUIT_HVC = 2,
3479};
3480
017518c1
PM
3481#ifndef CONFIG_USER_ONLY
3482/* Return the address space index to use for a memory access */
3483static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3484{
3485 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3486}
5ce4ff65
PM
3487
3488/* Return the AddressSpace to use for a memory access
3489 * (which depends on whether the access is S or NS, and whether
3490 * the board gave us a separate AddressSpace for S accesses).
3491 */
3492static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3493{
3494 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3495}
017518c1
PM
3496#endif
3497
bd7d00fc 3498/**
b5c53d1b
AL
3499 * arm_register_pre_el_change_hook:
3500 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3501 * CPU changes exception level or mode. The hook function will be
3502 * passed a pointer to the ARMCPU and the opaque data pointer passed
3503 * to this function when the hook was registered.
b5c53d1b
AL
3504 *
3505 * Note that if a pre-change hook is called, any registered post-change hooks
3506 * are guaranteed to subsequently be called.
bd7d00fc 3507 */
b5c53d1b 3508void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3509 void *opaque);
b5c53d1b
AL
3510/**
3511 * arm_register_el_change_hook:
3512 * Register a hook function which will be called immediately after this
3513 * CPU changes exception level or mode. The hook function will be
3514 * passed a pointer to the ARMCPU and the opaque data pointer passed
3515 * to this function when the hook was registered.
3516 *
3517 * Note that any registered hooks registered here are guaranteed to be called
3518 * if pre-change hooks have been.
3519 */
3520void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3521 *opaque);
bd7d00fc 3522
3d74e2e9
RH
3523/**
3524 * arm_rebuild_hflags:
3525 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3526 */
3527void arm_rebuild_hflags(CPUARMState *env);
3528
9a2b5256
RH
3529/**
3530 * aa32_vfp_dreg:
3531 * Return a pointer to the Dn register within env in 32-bit mode.
3532 */
3533static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3534{
c39c2b90 3535 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3536}
3537
3538/**
3539 * aa32_vfp_qreg:
3540 * Return a pointer to the Qn register within env in 32-bit mode.
3541 */
3542static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3543{
c39c2b90 3544 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3545}
3546
3547/**
3548 * aa64_vfp_qreg:
3549 * Return a pointer to the Qn register within env in 64-bit mode.
3550 */
3551static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3552{
c39c2b90 3553 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3554}
3555
028e2a7b
RH
3556/* Shared between translate-sve.c and sve_helper.c. */
3557extern const uint64_t pred_esz_masks[4];
3558
149d3b31
RH
3559/* Helper for the macros below, validating the argument type. */
3560static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3561{
3562 return x;
3563}
3564
3565/*
3566 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3567 * Using these should be a bit more self-documenting than using the
3568 * generic target bits directly.
3569 */
3570#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3571#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3572
be5d6f48
RH
3573/*
3574 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3575 */
3576#define PAGE_BTI PAGE_TARGET_1
3577
873b73c0
PM
3578/*
3579 * Naming convention for isar_feature functions:
3580 * Functions which test 32-bit ID registers should have _aa32_ in
3581 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3582 * _aa64_ in their name. These must only be used in code where we
3583 * know for certain that the CPU has AArch32 or AArch64 respectively
3584 * or where the correct answer for a CPU which doesn't implement that
3585 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3586 * system registers that are specific to that CPU state, for "should
3587 * we let this system register bit be set" tests where the 32-bit
3588 * flavour of the register doesn't have the bit, and so on).
3589 * Functions which simply ask "does this feature exist at all" have
3590 * _any_ in their name, and always return the logical OR of the _aa64_
3591 * and the _aa32_ function.
873b73c0
PM
3592 */
3593
962fcbf2
RH
3594/*
3595 * 32-bit feature tests via id registers.
3596 */
873b73c0 3597static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3598{
3599 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3600}
3601
873b73c0 3602static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3603{
3604 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3605}
05903f03
PM
3606
3607static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3608{
3609 /* (M-profile) low-overhead loops and branch future */
3610 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3611}
7e0cf8b4 3612
873b73c0 3613static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3614{
3615 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3616}
3617
962fcbf2
RH
3618static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3619{
3620 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3621}
3622
3623static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3624{
3625 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3626}
3627
3628static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3629{
3630 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3631}
3632
3633static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3634{
3635 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3636}
3637
3638static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3639{
3640 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3641}
3642
3643static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3644{
3645 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3646}
3647
3648static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3649{
3650 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3651}
3652
6c1f6f27
RH
3653static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3654{
3655 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3656}
3657
962fcbf2
RH
3658static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3659{
3660 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3661}
3662
87732318
RH
3663static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3664{
3665 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3666}
3667
9888bd1e
RH
3668static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3669{
3670 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3671}
3672
cb570bd3
RH
3673static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3674{
3675 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3676}
3677
46f4976f
PM
3678static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3679{
3680 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3681}
3682
dfc523a8
PM
3683static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3684{
3685 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3686}
3687
83ff3d6a
PM
3688static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3689{
3690 /*
3691 * Return true if M-profile state handling insns
3692 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3693 */
3694 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3695}
3696
5763190f
RH
3697static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3698{
dfc523a8
PM
3699 /* Sadly this is encoded differently for A-profile and M-profile */
3700 if (isar_feature_aa32_mprofile(id)) {
3701 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3702 } else {
3703 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3704 }
5763190f
RH
3705}
3706
7fbc6a40
RH
3707static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3708{
3709 /*
3710 * Return true if either VFP or SIMD is implemented.
3711 * In this case, a minimum of VFP w/ D0-D15.
3712 */
3713 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3714}
3715
0e13ba78 3716static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3717{
3718 /* Return true if D16-D31 are implemented */
b3a816f6 3719 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3720}
3721
266bd25c
PM
3722static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3723{
b3a816f6 3724 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3725}
3726
f67957e1
RH
3727static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3728{
3729 /* Return true if CPU supports single precision floating point, VFPv2 */
3730 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3731}
3732
3733static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3734{
3735 /* Return true if CPU supports single precision floating point, VFPv3 */
3736 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3737}
3738
c4ff8735 3739static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3740{
c4ff8735 3741 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3742 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3743}
3744
f67957e1
RH
3745static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3746{
3747 /* Return true if CPU supports double precision floating point, VFPv3 */
3748 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3749}
3750
7d63183f
RH
3751static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3752{
3753 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3754}
3755
602f6e42
PM
3756/*
3757 * We always set the FP and SIMD FP16 fields to indicate identical
3758 * levels of support (assuming SIMD is implemented at all), so
3759 * we only need one set of accessors.
3760 */
3761static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3762{
b3a816f6 3763 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3764}
3765
3766static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3767{
b3a816f6 3768 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3769}
3770
c52881bb
RH
3771/*
3772 * Note that this ID register field covers both VFP and Neon FMAC,
3773 * so should usually be tested in combination with some other
3774 * check that confirms the presence of whichever of VFP or Neon is
3775 * relevant, to avoid accidentally enabling a Neon feature on
3776 * a VFP-no-Neon core or vice-versa.
3777 */
3778static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3779{
3780 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3781}
3782
c0c760af
PM
3783static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3784{
b3a816f6 3785 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3786}
3787
3788static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3789{
b3a816f6 3790 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3791}
3792
3793static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3794{
b3a816f6 3795 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3796}
3797
3798static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3799{
b3a816f6 3800 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3801}
3802
0ae0326b
PM
3803static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3804{
3805 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3806}
3807
3d6ad6bb
RH
3808static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3809{
10054016 3810 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3811}
3812
3813static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3814{
10054016 3815 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3816}
3817
a6179538
PM
3818static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3819{
3820 /* 0xf means "non-standard IMPDEF PMU" */
3821 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3822 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3823}
3824
15dd1ebd
PM
3825static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3826{
3827 /* 0xf means "non-standard IMPDEF PMU" */
3828 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3829 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3830}
3831
4036b7d1
PM
3832static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3833{
3834 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3835}
3836
f6287c24
PM
3837static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3838{
3839 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3840}
3841
957e6155
PM
3842static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3843{
3844 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3845}
3846
ce3125be
PM
3847static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3848{
3849 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3850}
3851
962fcbf2
RH
3852/*
3853 * 64-bit feature tests via id registers.
3854 */
3855static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3856{
3857 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3858}
3859
3860static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3861{
3862 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3863}
3864
3865static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3866{
3867 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3868}
3869
3870static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3871{
3872 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3873}
3874
3875static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3876{
3877 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3878}
3879
3880static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3881{
3882 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3883}
3884
3885static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3886{
3887 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3888}
3889
3890static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3891{
3892 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3893}
3894
3895static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3896{
3897 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3898}
3899
3900static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3901{
3902 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3903}
3904
3905static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3906{
3907 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3908}
3909
3910static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3911{
3912 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3913}
3914
0caa5af8
RH
3915static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3916{
3917 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3918}
3919
b89d9c98
RH
3920static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3921{
3922 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3923}
3924
5ef84f11
RH
3925static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3926{
3927 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3928}
3929
de390645
RH
3930static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3931{
3932 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3933}
3934
6c1f6f27
RH
3935static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3936{
3937 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3938}
3939
962fcbf2
RH
3940static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3941{
3942 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3943}
3944
991ad91b
RH
3945static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3946{
3947 /*
283fc52a
RH
3948 * Return true if any form of pauth is enabled, as this
3949 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3950 */
3951 return (id->id_aa64isar1 &
3952 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3953 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3954 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3955 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3956}
3957
283fc52a
RH
3958static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3959{
3960 /*
3961 * Return true if pauth is enabled with the architected QARMA algorithm.
3962 * QEMU will always set APA+GPA to the same value.
3963 */
3964 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3965}
3966
9888bd1e
RH
3967static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3968{
3969 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3970}
3971
cb570bd3
RH
3972static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3973{
3974 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3975}
3976
6bea2563
RH
3977static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3978{
3979 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3980}
3981
0d57b499
BM
3982static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3983{
3984 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3985}
3986
3987static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3988{
3989 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3990}
3991
7d63183f
RH
3992static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3993{
3994 /* We always set the AdvSIMD and FP fields identically. */
3995 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3996}
3997
5763190f
RH
3998static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3999{
4000 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
4001 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4002}
4003
0f8d06f1
RH
4004static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4005{
4006 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4007}
4008
cd208a1c
RH
4009static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4010{
4011 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4012}
4013
8fc2ea21
RH
4014static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4015{
4016 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4017}
4018
2d7137c1
RH
4019static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4020{
4021 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4022}
4023
3d6ad6bb
RH
4024static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4025{
4026 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4027}
4028
4029static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4030{
4031 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4032}
4033
9eeb7a1c
RH
4034static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4035{
4036 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4037}
4038
c36c65ea
RDC
4039static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4040{
4041 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4042}
4043
be53b6f4
RH
4044static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4045{
4046 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4047}
4048
c7fd0baa
RH
4049static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4050{
4051 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4052}
4053
4054static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4055{
4056 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4057}
4058
2a609df8
PM
4059static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4060{
4061 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4062 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4063}
4064
15dd1ebd
PM
4065static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4066{
54117b90
PM
4067 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4068 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4069}
4070
2677cf9f
PM
4071static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4072{
4073 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4074}
4075
a1229109
PM
4076static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4077{
4078 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4079}
4080
957e6155
PM
4081static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4082{
4083 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4084}
4085
ce3125be
PM
4086static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4087{
4088 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4089}
4090
6e61f839
PM
4091/*
4092 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4093 */
4094static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4095{
4096 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4097}
4098
22e57073
PM
4099static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4100{
4101 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4102}
4103
2a609df8
PM
4104static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4105{
4106 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4107}
4108
15dd1ebd
PM
4109static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4110{
4111 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4112}
4113
957e6155
PM
4114static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4115{
4116 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4117}
4118
ce3125be
PM
4119static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4120{
4121 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4122}
4123
962fcbf2
RH
4124/*
4125 * Forward to the above feature tests given an ARMCPU pointer.
4126 */
4127#define cpu_isar_feature(name, cpu) \
4128 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4129
2c0262af 4130#endif