]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
hw/arm/xilinx_zynq: Use the ARRAY_SIZE macro
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086
RH
204/* In AArch32 mode, predicate registers do not exist at all. */
205#ifdef TARGET_AARCH64
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
209#endif
210
c39c2b90 211
2c0262af 212typedef struct CPUARMState {
b5ff1b31 213 /* Regs for current mode. */
2c0262af 214 uint32_t regs[16];
3926cc84
AG
215
216 /* 32/64 switch only happens when taking and returning from
217 * exceptions so the overlap semantics are taken care of then
218 * instead of having a complicated union.
219 */
220 /* Regs for A64 mode. */
221 uint64_t xregs[32];
222 uint64_t pc;
d356312f
PM
223 /* PSTATE isn't an architectural register for ARMv8. However, it is
224 * convenient for us to assemble the underlying state into a 32 bit format
225 * identical to the architectural format used for the SPSR. (This is also
226 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
227 * 'pstate' register are.) Of the PSTATE bits:
228 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
229 * semantics as for AArch32, as described in the comments on each field)
230 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 231 * DAIF (exception masks) are kept in env->daif
d356312f 232 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
233 */
234 uint32_t pstate;
235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236
b90372ad 237 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 238 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
239 the whole CPSR. */
240 uint32_t uncached_cpsr;
241 uint32_t spsr;
242
243 /* Banked registers. */
28c9457d 244 uint64_t banked_spsr[8];
0b7d409d
FA
245 uint32_t banked_r13[8];
246 uint32_t banked_r14[8];
3b46e624 247
b5ff1b31
FB
248 /* These hold r8-r12. */
249 uint32_t usr_regs[5];
250 uint32_t fiq_regs[5];
3b46e624 251
2c0262af
FB
252 /* cpsr flag cache for faster execution */
253 uint32_t CF; /* 0 or 1 */
254 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
255 uint32_t NF; /* N is bit 31. All other bits are undefined. */
256 uint32_t ZF; /* Z set if zero. */
99c475ab 257 uint32_t QF; /* 0 or 1 */
9ee6e8bb 258 uint32_t GE; /* cpsr[19:16] */
b26eefb6 259 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 261 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 262
1b174238 263 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 264 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 265
b5ff1b31
FB
266 /* System control coprocessor (cp15) */
267 struct {
40f137e1 268 uint32_t c0_cpuid;
b85a1fd6
FA
269 union { /* Cache size selection */
270 struct {
271 uint64_t _unused_csselr0;
272 uint64_t csselr_ns;
273 uint64_t _unused_csselr1;
274 uint64_t csselr_s;
275 };
276 uint64_t csselr_el[4];
277 };
137feaa9
FA
278 union { /* System control register. */
279 struct {
280 uint64_t _unused_sctlr;
281 uint64_t sctlr_ns;
282 uint64_t hsctlr;
283 uint64_t sctlr_s;
284 };
285 uint64_t sctlr_el[4];
286 };
7ebd5f2e 287 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 288 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 289 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 290 uint64_t sder; /* Secure debug enable register. */
77022576 291 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
292 union { /* MMU translation table base 0. */
293 struct {
294 uint64_t _unused_ttbr0_0;
295 uint64_t ttbr0_ns;
296 uint64_t _unused_ttbr0_1;
297 uint64_t ttbr0_s;
298 };
299 uint64_t ttbr0_el[4];
300 };
301 union { /* MMU translation table base 1. */
302 struct {
303 uint64_t _unused_ttbr1_0;
304 uint64_t ttbr1_ns;
305 uint64_t _unused_ttbr1_1;
306 uint64_t ttbr1_s;
307 };
308 uint64_t ttbr1_el[4];
309 };
b698e9cf 310 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
311 /* MMU translation table base control. */
312 TCR tcr_el[4];
68e9c2fe 313 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
314 uint32_t c2_data; /* MPU data cacheable bits. */
315 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
316 union { /* MMU domain access control register
317 * MPU write buffer control.
318 */
319 struct {
320 uint64_t dacr_ns;
321 uint64_t dacr_s;
322 };
323 struct {
324 uint64_t dacr32_el2;
325 };
326 };
7e09797c
PM
327 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
328 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 329 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 330 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
331 union { /* Fault status registers. */
332 struct {
333 uint64_t ifsr_ns;
334 uint64_t ifsr_s;
335 };
336 struct {
337 uint64_t ifsr32_el2;
338 };
339 };
4a7e2d73
FA
340 union {
341 struct {
342 uint64_t _unused_dfsr;
343 uint64_t dfsr_ns;
344 uint64_t hsr;
345 uint64_t dfsr_s;
346 };
347 uint64_t esr_el[4];
348 };
ce819861 349 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
350 union { /* Fault address registers. */
351 struct {
352 uint64_t _unused_far0;
353#ifdef HOST_WORDS_BIGENDIAN
354 uint32_t ifar_ns;
355 uint32_t dfar_ns;
356 uint32_t ifar_s;
357 uint32_t dfar_s;
358#else
359 uint32_t dfar_ns;
360 uint32_t ifar_ns;
361 uint32_t dfar_s;
362 uint32_t ifar_s;
363#endif
364 uint64_t _unused_far3;
365 };
366 uint64_t far_el[4];
367 };
59e05530 368 uint64_t hpfar_el2;
2a5a9abd 369 uint64_t hstr_el2;
01c097f7
FA
370 union { /* Translation result. */
371 struct {
372 uint64_t _unused_par_0;
373 uint64_t par_ns;
374 uint64_t _unused_par_1;
375 uint64_t par_s;
376 };
377 uint64_t par_el[4];
378 };
6cb0b013 379
b5ff1b31
FB
380 uint32_t c9_insn; /* Cache lockdown registers. */
381 uint32_t c9_data;
8521466b
AF
382 uint64_t c9_pmcr; /* performance monitor control register */
383 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
384 uint64_t c9_pmovsr; /* perf monitor overflow status */
385 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 386 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 387 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
388 union { /* Memory attribute redirection */
389 struct {
390#ifdef HOST_WORDS_BIGENDIAN
391 uint64_t _unused_mair_0;
392 uint32_t mair1_ns;
393 uint32_t mair0_ns;
394 uint64_t _unused_mair_1;
395 uint32_t mair1_s;
396 uint32_t mair0_s;
397#else
398 uint64_t _unused_mair_0;
399 uint32_t mair0_ns;
400 uint32_t mair1_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair0_s;
403 uint32_t mair1_s;
404#endif
405 };
406 uint64_t mair_el[4];
407 };
fb6c91ba
GB
408 union { /* vector base address register */
409 struct {
410 uint64_t _unused_vbar;
411 uint64_t vbar_ns;
412 uint64_t hvbar;
413 uint64_t vbar_s;
414 };
415 uint64_t vbar_el[4];
416 };
e89e51a1 417 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
418 struct { /* FCSE PID. */
419 uint32_t fcseidr_ns;
420 uint32_t fcseidr_s;
421 };
422 union { /* Context ID. */
423 struct {
424 uint64_t _unused_contextidr_0;
425 uint64_t contextidr_ns;
426 uint64_t _unused_contextidr_1;
427 uint64_t contextidr_s;
428 };
429 uint64_t contextidr_el[4];
430 };
431 union { /* User RW Thread register. */
432 struct {
433 uint64_t tpidrurw_ns;
434 uint64_t tpidrprw_ns;
435 uint64_t htpidr;
436 uint64_t _tpidr_el3;
437 };
438 uint64_t tpidr_el[4];
439 };
440 /* The secure banks of these registers don't map anywhere */
441 uint64_t tpidrurw_s;
442 uint64_t tpidrprw_s;
443 uint64_t tpidruro_s;
444
445 union { /* User RO Thread register. */
446 uint64_t tpidruro_ns;
447 uint64_t tpidrro_el[1];
448 };
a7adc4b7
PM
449 uint64_t c14_cntfrq; /* Counter Frequency register */
450 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 451 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 452 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 453 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 454 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
455 uint32_t c15_ticonfig; /* TI925T configuration byte. */
456 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
457 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
458 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
459 uint32_t c15_config_base_address; /* SCU base address. */
460 uint32_t c15_diagnostic; /* diagnostic register */
461 uint32_t c15_power_diagnostic;
462 uint32_t c15_power_control; /* power control */
0b45451e
PM
463 uint64_t dbgbvr[16]; /* breakpoint value registers */
464 uint64_t dbgbcr[16]; /* breakpoint control registers */
465 uint64_t dbgwvr[16]; /* watchpoint value registers */
466 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 467 uint64_t mdscr_el1;
1424ca8d 468 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 469 uint64_t mdcr_el2;
5513c3ab 470 uint64_t mdcr_el3;
7c2cb42b
AF
471 /* If the counter is enabled, this stores the last time the counter
472 * was reset. Otherwise it stores the counter value
473 */
c92c0687 474 uint64_t c15_ccnt;
8521466b 475 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 476 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 477 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 478 } cp15;
40f137e1 479
9ee6e8bb 480 struct {
fb602cb7
PM
481 /* M profile has up to 4 stack pointers:
482 * a Main Stack Pointer and a Process Stack Pointer for each
483 * of the Secure and Non-Secure states. (If the CPU doesn't support
484 * the security extension then it has only two SPs.)
485 * In QEMU we always store the currently active SP in regs[13],
486 * and the non-active SP for the current security state in
487 * v7m.other_sp. The stack pointers for the inactive security state
488 * are stored in other_ss_msp and other_ss_psp.
489 * switch_v7m_security_state() is responsible for rearranging them
490 * when we change security state.
491 */
9ee6e8bb 492 uint32_t other_sp;
fb602cb7
PM
493 uint32_t other_ss_msp;
494 uint32_t other_ss_psp;
4a16724f
PM
495 uint32_t vecbase[M_REG_NUM_BANKS];
496 uint32_t basepri[M_REG_NUM_BANKS];
497 uint32_t control[M_REG_NUM_BANKS];
498 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
499 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
500 uint32_t hfsr; /* HardFault Status */
501 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 502 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 503 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 504 uint32_t bfar; /* BusFault Address */
bed079da 505 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 506 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 507 int exception;
4a16724f
PM
508 uint32_t primask[M_REG_NUM_BANKS];
509 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 510 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 511 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 512 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 513 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
514 uint32_t msplim[M_REG_NUM_BANKS];
515 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
516 } v7m;
517
abf1172f
PM
518 /* Information associated with an exception about to be taken:
519 * code which raises an exception must set cs->exception_index and
520 * the relevant parts of this structure; the cpu_do_interrupt function
521 * will then set the guest-visible registers as part of the exception
522 * entry process.
523 */
524 struct {
525 uint32_t syndrome; /* AArch64 format syndrome register */
526 uint32_t fsr; /* AArch32 format fault status register info */
527 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 528 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
529 /* If we implement EL2 we will also need to store information
530 * about the intermediate physical address for stage 2 faults.
531 */
532 } exception;
533
202ccb6b
DG
534 /* Information associated with an SError */
535 struct {
536 uint8_t pending;
537 uint8_t has_esr;
538 uint64_t esr;
539 } serror;
540
fe1479c3
PB
541 /* Thumb-2 EE state. */
542 uint32_t teecr;
543 uint32_t teehbr;
544
b7bcbe95
FB
545 /* VFP coprocessor state. */
546 struct {
c39c2b90 547 ARMVectorReg zregs[32];
b7bcbe95 548
3c7d3086
RH
549#ifdef TARGET_AARCH64
550 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 551#define FFR_PRED_NUM 16
3c7d3086 552 ARMPredicateReg pregs[17];
516e246a
RH
553 /* Scratch space for aa64 sve predicate temporary. */
554 ARMPredicateReg preg_tmp;
3c7d3086
RH
555#endif
556
40f137e1 557 uint32_t xregs[16];
b7bcbe95
FB
558 /* We store these fpcsr fields separately for convenience. */
559 int vec_len;
560 int vec_stride;
561
516e246a 562 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 563 uint32_t scratch[8];
3b46e624 564
d81ce0ef
AB
565 /* There are a number of distinct float control structures:
566 *
567 * fp_status: is the "normal" fp status.
568 * fp_status_fp16: used for half-precision calculations
569 * standard_fp_status : the ARM "Standard FPSCR Value"
570 *
571 * Half-precision operations are governed by a separate
572 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
573 * status structure to control this.
574 *
575 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
576 * round-to-nearest and is used by any operations (generally
577 * Neon) which the architecture defines as controlled by the
578 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
579 *
580 * To avoid having to transfer exception bits around, we simply
581 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 582 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
583 * only thing which needs to read the exception flags being
584 * an explicit FPSCR read.
585 */
53cd6637 586 float_status fp_status;
d81ce0ef 587 float_status fp_status_f16;
3a492f3a 588 float_status standard_fp_status;
5be5e8ed
RH
589
590 /* ZCR_EL[1-3] */
591 uint64_t zcr_el[4];
b7bcbe95 592 } vfp;
03d05e2d
PM
593 uint64_t exclusive_addr;
594 uint64_t exclusive_val;
595 uint64_t exclusive_high;
b7bcbe95 596
18c9b560
AZ
597 /* iwMMXt coprocessor state. */
598 struct {
599 uint64_t regs[16];
600 uint64_t val;
601
602 uint32_t cregs[16];
603 } iwmmxt;
604
ce4defa0
PB
605#if defined(CONFIG_USER_ONLY)
606 /* For usermode syscall translation. */
607 int eabi;
608#endif
609
46747d15 610 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
611 struct CPUWatchpoint *cpu_watchpoint[16];
612
1f5c00cf
AB
613 /* Fields up to this point are cleared by a CPU reset */
614 struct {} end_reset_fields;
615
a316d335
FB
616 CPU_COMMON
617
1f5c00cf 618 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 619
581be094 620 /* Internal CPU feature flags. */
918f5dca 621 uint64_t features;
581be094 622
6cb0b013
PC
623 /* PMSAv7 MPU */
624 struct {
625 uint32_t *drbar;
626 uint32_t *drsr;
627 uint32_t *dracr;
4a16724f 628 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
629 } pmsav7;
630
0e1a46bb
PM
631 /* PMSAv8 MPU */
632 struct {
633 /* The PMSAv8 implementation also shares some PMSAv7 config
634 * and state:
635 * pmsav7.rnr (region number register)
636 * pmsav7_dregion (number of configured regions)
637 */
4a16724f
PM
638 uint32_t *rbar[M_REG_NUM_BANKS];
639 uint32_t *rlar[M_REG_NUM_BANKS];
640 uint32_t mair0[M_REG_NUM_BANKS];
641 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
642 } pmsav8;
643
9901c576
PM
644 /* v8M SAU */
645 struct {
646 uint32_t *rbar;
647 uint32_t *rlar;
648 uint32_t rnr;
649 uint32_t ctrl;
650 } sau;
651
983fe826 652 void *nvic;
462a8bc6 653 const struct arm_boot_info *boot_info;
d3a3e529
VK
654 /* Store GICv3CPUState to access from this struct */
655 void *gicv3state;
2c0262af
FB
656} CPUARMState;
657
bd7d00fc 658/**
08267487 659 * ARMELChangeHookFn:
bd7d00fc
PM
660 * type of a function which can be registered via arm_register_el_change_hook()
661 * to get callbacks when the CPU changes its exception level or mode.
662 */
08267487
AL
663typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
664typedef struct ARMELChangeHook ARMELChangeHook;
665struct ARMELChangeHook {
666 ARMELChangeHookFn *hook;
667 void *opaque;
668 QLIST_ENTRY(ARMELChangeHook) node;
669};
062ba099
AB
670
671/* These values map onto the return values for
672 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
673typedef enum ARMPSCIState {
d5affb0d
AJ
674 PSCI_ON = 0,
675 PSCI_OFF = 1,
062ba099
AB
676 PSCI_ON_PENDING = 2
677} ARMPSCIState;
678
962fcbf2
RH
679typedef struct ARMISARegisters ARMISARegisters;
680
74e75564
PB
681/**
682 * ARMCPU:
683 * @env: #CPUARMState
684 *
685 * An ARM CPU core.
686 */
687struct ARMCPU {
688 /*< private >*/
689 CPUState parent_obj;
690 /*< public >*/
691
692 CPUARMState env;
693
694 /* Coprocessor information */
695 GHashTable *cp_regs;
696 /* For marshalling (mostly coprocessor) register state between the
697 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
698 * we use these arrays.
699 */
700 /* List of register indexes managed via these arrays; (full KVM style
701 * 64 bit indexes, not CPRegInfo 32 bit indexes)
702 */
703 uint64_t *cpreg_indexes;
704 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
705 uint64_t *cpreg_values;
706 /* Length of the indexes, values, reset_values arrays */
707 int32_t cpreg_array_len;
708 /* These are used only for migration: incoming data arrives in
709 * these fields and is sanity checked in post_load before copying
710 * to the working data structures above.
711 */
712 uint64_t *cpreg_vmstate_indexes;
713 uint64_t *cpreg_vmstate_values;
714 int32_t cpreg_vmstate_array_len;
715
200bf5b7
AB
716 DynamicGDBXMLInfo dyn_xml;
717
74e75564
PB
718 /* Timers used by the generic (architected) timer */
719 QEMUTimer *gt_timer[NUM_GTIMERS];
720 /* GPIO outputs for generic timer */
721 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
722 /* GPIO output for GICv3 maintenance interrupt signal */
723 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
724 /* GPIO output for the PMU interrupt */
725 qemu_irq pmu_interrupt;
74e75564
PB
726
727 /* MemoryRegion to use for secure physical accesses */
728 MemoryRegion *secure_memory;
729
181962fd
PM
730 /* For v8M, pointer to the IDAU interface provided by board/SoC */
731 Object *idau;
732
74e75564
PB
733 /* 'compatible' string for this CPU for Linux device trees */
734 const char *dtb_compatible;
735
736 /* PSCI version for this CPU
737 * Bits[31:16] = Major Version
738 * Bits[15:0] = Minor Version
739 */
740 uint32_t psci_version;
741
742 /* Should CPU start in PSCI powered-off state? */
743 bool start_powered_off;
062ba099
AB
744
745 /* Current power state, access guarded by BQL */
746 ARMPSCIState power_state;
747
c25bd18a
PM
748 /* CPU has virtualization extension */
749 bool has_el2;
74e75564
PB
750 /* CPU has security extension */
751 bool has_el3;
5c0a3819
SZ
752 /* CPU has PMU (Performance Monitor Unit) */
753 bool has_pmu;
74e75564
PB
754
755 /* CPU has memory protection unit */
756 bool has_mpu;
757 /* PMSAv7 MPU number of supported regions */
758 uint32_t pmsav7_dregion;
9901c576
PM
759 /* v8M SAU number of supported regions */
760 uint32_t sau_sregion;
74e75564
PB
761
762 /* PSCI conduit used to invoke PSCI methods
763 * 0 - disabled, 1 - smc, 2 - hvc
764 */
765 uint32_t psci_conduit;
766
38e2a77c
PM
767 /* For v8M, initial value of the Secure VTOR */
768 uint32_t init_svtor;
769
74e75564
PB
770 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
771 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
772 */
773 uint32_t kvm_target;
774
775 /* KVM init features for this CPU */
776 uint32_t kvm_init_features[7];
777
778 /* Uniprocessor system with MP extensions */
779 bool mp_is_up;
780
c4487d76
PM
781 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
782 * and the probe failed (so we need to report the error in realize)
783 */
784 bool host_cpu_probe_failed;
785
f9a69711
AF
786 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
787 * register.
788 */
789 int32_t core_count;
790
74e75564
PB
791 /* The instance init functions for implementation-specific subclasses
792 * set these fields to specify the implementation-dependent values of
793 * various constant registers and reset values of non-constant
794 * registers.
795 * Some of these might become QOM properties eventually.
796 * Field names match the official register names as defined in the
797 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
798 * is used for reset values of non-constant registers; no reset_
799 * prefix means a constant register.
47576b94
RH
800 * Some of these registers are split out into a substructure that
801 * is shared with the translators to control the ISA.
74e75564 802 */
47576b94
RH
803 struct ARMISARegisters {
804 uint32_t id_isar0;
805 uint32_t id_isar1;
806 uint32_t id_isar2;
807 uint32_t id_isar3;
808 uint32_t id_isar4;
809 uint32_t id_isar5;
810 uint32_t id_isar6;
811 uint32_t mvfr0;
812 uint32_t mvfr1;
813 uint32_t mvfr2;
814 uint64_t id_aa64isar0;
815 uint64_t id_aa64isar1;
816 uint64_t id_aa64pfr0;
817 uint64_t id_aa64pfr1;
818 } isar;
74e75564
PB
819 uint32_t midr;
820 uint32_t revidr;
821 uint32_t reset_fpsid;
74e75564
PB
822 uint32_t ctr;
823 uint32_t reset_sctlr;
824 uint32_t id_pfr0;
825 uint32_t id_pfr1;
826 uint32_t id_dfr0;
827 uint32_t pmceid0;
828 uint32_t pmceid1;
829 uint32_t id_afr0;
830 uint32_t id_mmfr0;
831 uint32_t id_mmfr1;
832 uint32_t id_mmfr2;
833 uint32_t id_mmfr3;
834 uint32_t id_mmfr4;
74e75564
PB
835 uint64_t id_aa64dfr0;
836 uint64_t id_aa64dfr1;
837 uint64_t id_aa64afr0;
838 uint64_t id_aa64afr1;
74e75564
PB
839 uint64_t id_aa64mmfr0;
840 uint64_t id_aa64mmfr1;
841 uint32_t dbgdidr;
842 uint32_t clidr;
843 uint64_t mp_affinity; /* MP ID without feature bits */
844 /* The elements of this array are the CCSIDR values for each cache,
845 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
846 */
847 uint32_t ccsidr[16];
848 uint64_t reset_cbar;
849 uint32_t reset_auxcr;
850 bool reset_hivecs;
851 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
852 uint32_t dcz_blocksize;
853 uint64_t rvbar;
bd7d00fc 854
e45868a3
PM
855 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
856 int gic_num_lrs; /* number of list registers */
857 int gic_vpribits; /* number of virtual priority bits */
858 int gic_vprebits; /* number of virtual preemption bits */
859
3a062d57
JB
860 /* Whether the cfgend input is high (i.e. this CPU should reset into
861 * big-endian mode). This setting isn't used directly: instead it modifies
862 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
863 * architecture version.
864 */
865 bool cfgend;
866
b5c53d1b 867 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 868 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
869
870 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
871
872 /* Used to synchronize KVM and QEMU in-kernel device levels */
873 uint8_t device_irq_level;
adf92eab
RH
874
875 /* Used to set the maximum vector length the cpu will support. */
876 uint32_t sve_max_vq;
74e75564
PB
877};
878
879static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
880{
881 return container_of(env, ARMCPU, env);
882}
883
46de5913
IM
884uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
885
74e75564
PB
886#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
887
888#define ENV_OFFSET offsetof(ARMCPU, env)
889
890#ifndef CONFIG_USER_ONLY
891extern const struct VMStateDescription vmstate_arm_cpu;
892#endif
893
894void arm_cpu_do_interrupt(CPUState *cpu);
895void arm_v7m_cpu_do_interrupt(CPUState *cpu);
896bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
897
898void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
899 int flags);
900
901hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
902 MemTxAttrs *attrs);
903
904int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
905int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
906
200bf5b7
AB
907/* Dynamically generates for gdb stub an XML description of the sysregs from
908 * the cp_regs hashtable. Returns the registered sysregs number.
909 */
910int arm_gen_dynamic_xml(CPUState *cpu);
911
912/* Returns the dynamically generated XML for the gdb stub.
913 * Returns a pointer to the XML contents for the specified XML file or NULL
914 * if the XML name doesn't match the predefined one.
915 */
916const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
917
74e75564
PB
918int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
919 int cpuid, void *opaque);
920int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
921 int cpuid, void *opaque);
922
923#ifdef TARGET_AARCH64
924int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
925int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 926void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
927void aarch64_sve_change_el(CPUARMState *env, int old_el,
928 int new_el, bool el0_a64);
0ab5953b
RH
929#else
930static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
931static inline void aarch64_sve_change_el(CPUARMState *env, int o,
932 int n, bool a)
933{ }
74e75564 934#endif
778c3a06 935
faacc041 936target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
937void aarch64_sync_32_to_64(CPUARMState *env);
938void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 939
ced31551
RH
940int fp_exception_el(CPUARMState *env, int cur_el);
941int sve_exception_el(CPUARMState *env, int cur_el);
942uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
943
3926cc84
AG
944static inline bool is_a64(CPUARMState *env)
945{
946 return env->aarch64;
947}
948
2c0262af
FB
949/* you can call this signal handler from your SIGBUS and SIGSEGV
950 signal handlers to inform the virtual CPU of exceptions. non zero
951 is returned if the signal was handled by the virtual CPU. */
5fafdf24 952int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
953 void *puc);
954
ec7b4ce4
AF
955/**
956 * pmccntr_sync
957 * @env: CPUARMState
958 *
959 * Synchronises the counter in the PMCCNTR. This must always be called twice,
960 * once before any action that might affect the timer and again afterwards.
961 * The function is used to swap the state of the register if required.
962 * This only happens when not in user mode (!CONFIG_USER_ONLY)
963 */
964void pmccntr_sync(CPUARMState *env);
965
76e3e1bc
PM
966/* SCTLR bit meanings. Several bits have been reused in newer
967 * versions of the architecture; in that case we define constants
968 * for both old and new bit meanings. Code which tests against those
969 * bits should probably check or otherwise arrange that the CPU
970 * is the architectural version it expects.
971 */
972#define SCTLR_M (1U << 0)
973#define SCTLR_A (1U << 1)
974#define SCTLR_C (1U << 2)
975#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
976#define SCTLR_SA (1U << 3)
977#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
978#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
979#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
980#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
981#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
982#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
983#define SCTLR_ITD (1U << 7) /* v8 onward */
984#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
985#define SCTLR_SED (1U << 8) /* v8 onward */
986#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
987#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
988#define SCTLR_F (1U << 10) /* up to v6 */
989#define SCTLR_SW (1U << 10) /* v7 onward */
990#define SCTLR_Z (1U << 11)
991#define SCTLR_I (1U << 12)
992#define SCTLR_V (1U << 13)
993#define SCTLR_RR (1U << 14) /* up to v7 */
994#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
995#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
996#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
997#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
998#define SCTLR_nTWI (1U << 16) /* v8 onward */
999#define SCTLR_HA (1U << 17)
f6bda88f 1000#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1001#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1002#define SCTLR_nTWE (1U << 18) /* v8 onward */
1003#define SCTLR_WXN (1U << 19)
1004#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1005#define SCTLR_UWXN (1U << 20) /* v7 onward */
1006#define SCTLR_FI (1U << 21)
1007#define SCTLR_U (1U << 22)
1008#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1009#define SCTLR_VE (1U << 24) /* up to v7 */
1010#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1011#define SCTLR_EE (1U << 25)
1012#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1013#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1014#define SCTLR_NMFI (1U << 27)
1015#define SCTLR_TRE (1U << 28)
1016#define SCTLR_AFE (1U << 29)
1017#define SCTLR_TE (1U << 30)
1018
c6f19164
GB
1019#define CPTR_TCPAC (1U << 31)
1020#define CPTR_TTA (1U << 20)
1021#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1022#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1023#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1024
187f678d
PM
1025#define MDCR_EPMAD (1U << 21)
1026#define MDCR_EDAD (1U << 20)
1027#define MDCR_SPME (1U << 17)
1028#define MDCR_SDD (1U << 16)
a8d64e73 1029#define MDCR_SPD (3U << 14)
187f678d
PM
1030#define MDCR_TDRA (1U << 11)
1031#define MDCR_TDOSA (1U << 10)
1032#define MDCR_TDA (1U << 9)
1033#define MDCR_TDE (1U << 8)
1034#define MDCR_HPME (1U << 7)
1035#define MDCR_TPM (1U << 6)
1036#define MDCR_TPMCR (1U << 5)
1037
a8d64e73
PM
1038/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1039#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1040
78dbbbe4
PM
1041#define CPSR_M (0x1fU)
1042#define CPSR_T (1U << 5)
1043#define CPSR_F (1U << 6)
1044#define CPSR_I (1U << 7)
1045#define CPSR_A (1U << 8)
1046#define CPSR_E (1U << 9)
1047#define CPSR_IT_2_7 (0xfc00U)
1048#define CPSR_GE (0xfU << 16)
4051e12c
PM
1049#define CPSR_IL (1U << 20)
1050/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1051 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1052 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1053 * where it is live state but not accessible to the AArch32 code.
1054 */
1055#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1056#define CPSR_J (1U << 24)
1057#define CPSR_IT_0_1 (3U << 25)
1058#define CPSR_Q (1U << 27)
1059#define CPSR_V (1U << 28)
1060#define CPSR_C (1U << 29)
1061#define CPSR_Z (1U << 30)
1062#define CPSR_N (1U << 31)
9ee6e8bb 1063#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1064#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1065
1066#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1067#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1068 | CPSR_NZCV)
9ee6e8bb
PB
1069/* Bits writable in user mode. */
1070#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1071/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1072#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1073/* Mask of bits which may be set by exception return copying them from SPSR */
1074#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1075
987ab45e
PM
1076/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1077#define XPSR_EXCP 0x1ffU
1078#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1079#define XPSR_IT_2_7 CPSR_IT_2_7
1080#define XPSR_GE CPSR_GE
1081#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1082#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1083#define XPSR_IT_0_1 CPSR_IT_0_1
1084#define XPSR_Q CPSR_Q
1085#define XPSR_V CPSR_V
1086#define XPSR_C CPSR_C
1087#define XPSR_Z CPSR_Z
1088#define XPSR_N CPSR_N
1089#define XPSR_NZCV CPSR_NZCV
1090#define XPSR_IT CPSR_IT
1091
e389be16
FA
1092#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1093#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1094#define TTBCR_PD0 (1U << 4)
1095#define TTBCR_PD1 (1U << 5)
1096#define TTBCR_EPD0 (1U << 7)
1097#define TTBCR_IRGN0 (3U << 8)
1098#define TTBCR_ORGN0 (3U << 10)
1099#define TTBCR_SH0 (3U << 12)
1100#define TTBCR_T1SZ (3U << 16)
1101#define TTBCR_A1 (1U << 22)
1102#define TTBCR_EPD1 (1U << 23)
1103#define TTBCR_IRGN1 (3U << 24)
1104#define TTBCR_ORGN1 (3U << 26)
1105#define TTBCR_SH1 (1U << 28)
1106#define TTBCR_EAE (1U << 31)
1107
d356312f
PM
1108/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1109 * Only these are valid when in AArch64 mode; in
1110 * AArch32 mode SPSRs are basically CPSR-format.
1111 */
f502cfc2 1112#define PSTATE_SP (1U)
d356312f
PM
1113#define PSTATE_M (0xFU)
1114#define PSTATE_nRW (1U << 4)
1115#define PSTATE_F (1U << 6)
1116#define PSTATE_I (1U << 7)
1117#define PSTATE_A (1U << 8)
1118#define PSTATE_D (1U << 9)
1119#define PSTATE_IL (1U << 20)
1120#define PSTATE_SS (1U << 21)
1121#define PSTATE_V (1U << 28)
1122#define PSTATE_C (1U << 29)
1123#define PSTATE_Z (1U << 30)
1124#define PSTATE_N (1U << 31)
1125#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
1126#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1127#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
1128/* Mode values for AArch64 */
1129#define PSTATE_MODE_EL3h 13
1130#define PSTATE_MODE_EL3t 12
1131#define PSTATE_MODE_EL2h 9
1132#define PSTATE_MODE_EL2t 8
1133#define PSTATE_MODE_EL1h 5
1134#define PSTATE_MODE_EL1t 4
1135#define PSTATE_MODE_EL0t 0
1136
de2db7ec
PM
1137/* Write a new value to v7m.exception, thus transitioning into or out
1138 * of Handler mode; this may result in a change of active stack pointer.
1139 */
1140void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1141
9e729b57
EI
1142/* Map EL and handler into a PSTATE_MODE. */
1143static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1144{
1145 return (el << 2) | handler;
1146}
1147
d356312f
PM
1148/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1149 * interprocessing, so we don't attempt to sync with the cpsr state used by
1150 * the 32 bit decoder.
1151 */
1152static inline uint32_t pstate_read(CPUARMState *env)
1153{
1154 int ZF;
1155
1156 ZF = (env->ZF == 0);
1157 return (env->NF & 0x80000000) | (ZF << 30)
1158 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1159 | env->pstate | env->daif;
d356312f
PM
1160}
1161
1162static inline void pstate_write(CPUARMState *env, uint32_t val)
1163{
1164 env->ZF = (~val) & PSTATE_Z;
1165 env->NF = val;
1166 env->CF = (val >> 29) & 1;
1167 env->VF = (val << 3) & 0x80000000;
4cc35614 1168 env->daif = val & PSTATE_DAIF;
d356312f
PM
1169 env->pstate = val & ~CACHED_PSTATE_BITS;
1170}
1171
b5ff1b31 1172/* Return the current CPSR value. */
2f4a40e5 1173uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1174
1175typedef enum CPSRWriteType {
1176 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1177 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1178 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1179 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1180} CPSRWriteType;
1181
1182/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1183void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1184 CPSRWriteType write_type);
9ee6e8bb
PB
1185
1186/* Return the current xPSR value. */
1187static inline uint32_t xpsr_read(CPUARMState *env)
1188{
1189 int ZF;
6fbe23d5
PB
1190 ZF = (env->ZF == 0);
1191 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1192 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1193 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1194 | ((env->condexec_bits & 0xfc) << 8)
1195 | env->v7m.exception;
b5ff1b31
FB
1196}
1197
9ee6e8bb
PB
1198/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1199static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1200{
987ab45e
PM
1201 if (mask & XPSR_NZCV) {
1202 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1203 env->NF = val;
9ee6e8bb
PB
1204 env->CF = (val >> 29) & 1;
1205 env->VF = (val << 3) & 0x80000000;
1206 }
987ab45e
PM
1207 if (mask & XPSR_Q) {
1208 env->QF = ((val & XPSR_Q) != 0);
1209 }
1210 if (mask & XPSR_T) {
1211 env->thumb = ((val & XPSR_T) != 0);
1212 }
1213 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1214 env->condexec_bits &= ~3;
1215 env->condexec_bits |= (val >> 25) & 3;
1216 }
987ab45e 1217 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1218 env->condexec_bits &= 3;
1219 env->condexec_bits |= (val >> 8) & 0xfc;
1220 }
987ab45e 1221 if (mask & XPSR_EXCP) {
de2db7ec
PM
1222 /* Note that this only happens on exception exit */
1223 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1224 }
1225}
1226
f149e3e8
EI
1227#define HCR_VM (1ULL << 0)
1228#define HCR_SWIO (1ULL << 1)
1229#define HCR_PTW (1ULL << 2)
1230#define HCR_FMO (1ULL << 3)
1231#define HCR_IMO (1ULL << 4)
1232#define HCR_AMO (1ULL << 5)
1233#define HCR_VF (1ULL << 6)
1234#define HCR_VI (1ULL << 7)
1235#define HCR_VSE (1ULL << 8)
1236#define HCR_FB (1ULL << 9)
1237#define HCR_BSU_MASK (3ULL << 10)
1238#define HCR_DC (1ULL << 12)
1239#define HCR_TWI (1ULL << 13)
1240#define HCR_TWE (1ULL << 14)
1241#define HCR_TID0 (1ULL << 15)
1242#define HCR_TID1 (1ULL << 16)
1243#define HCR_TID2 (1ULL << 17)
1244#define HCR_TID3 (1ULL << 18)
1245#define HCR_TSC (1ULL << 19)
1246#define HCR_TIDCP (1ULL << 20)
1247#define HCR_TACR (1ULL << 21)
1248#define HCR_TSW (1ULL << 22)
1249#define HCR_TPC (1ULL << 23)
1250#define HCR_TPU (1ULL << 24)
1251#define HCR_TTLB (1ULL << 25)
1252#define HCR_TVM (1ULL << 26)
1253#define HCR_TGE (1ULL << 27)
1254#define HCR_TDZ (1ULL << 28)
1255#define HCR_HCD (1ULL << 29)
1256#define HCR_TRVM (1ULL << 30)
1257#define HCR_RW (1ULL << 31)
1258#define HCR_CD (1ULL << 32)
1259#define HCR_ID (1ULL << 33)
ac656b16
PM
1260#define HCR_E2H (1ULL << 34)
1261/*
1262 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1263 * HCR_MASK and then clear it again if the feature bit is not set in
1264 * hcr_write().
1265 */
f149e3e8
EI
1266#define HCR_MASK ((1ULL << 34) - 1)
1267
64e0e2de
EI
1268#define SCR_NS (1U << 0)
1269#define SCR_IRQ (1U << 1)
1270#define SCR_FIQ (1U << 2)
1271#define SCR_EA (1U << 3)
1272#define SCR_FW (1U << 4)
1273#define SCR_AW (1U << 5)
1274#define SCR_NET (1U << 6)
1275#define SCR_SMD (1U << 7)
1276#define SCR_HCE (1U << 8)
1277#define SCR_SIF (1U << 9)
1278#define SCR_RW (1U << 10)
1279#define SCR_ST (1U << 11)
1280#define SCR_TWI (1U << 12)
1281#define SCR_TWE (1U << 13)
1282#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1283#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1284
01653295
PM
1285/* Return the current FPSCR value. */
1286uint32_t vfp_get_fpscr(CPUARMState *env);
1287void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1288
d81ce0ef
AB
1289/* FPCR, Floating Point Control Register
1290 * FPSR, Floating Poiht Status Register
1291 *
1292 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1293 * FPCR and FPSR. However since they still use non-overlapping bits
1294 * we store the underlying state in fpscr and just mask on read/write.
1295 */
1296#define FPSR_MASK 0xf800009f
0b62159b 1297#define FPCR_MASK 0x07ff9f00
d81ce0ef
AB
1298
1299#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1300#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1301#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1302
f903fa22
PM
1303static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1304{
1305 return vfp_get_fpscr(env) & FPSR_MASK;
1306}
1307
1308static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1309{
1310 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1311 vfp_set_fpscr(env, new_fpscr);
1312}
1313
1314static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1315{
1316 return vfp_get_fpscr(env) & FPCR_MASK;
1317}
1318
1319static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1320{
1321 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1322 vfp_set_fpscr(env, new_fpscr);
1323}
1324
b5ff1b31
FB
1325enum arm_cpu_mode {
1326 ARM_CPU_MODE_USR = 0x10,
1327 ARM_CPU_MODE_FIQ = 0x11,
1328 ARM_CPU_MODE_IRQ = 0x12,
1329 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1330 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1331 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1332 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1333 ARM_CPU_MODE_UND = 0x1b,
1334 ARM_CPU_MODE_SYS = 0x1f
1335};
1336
40f137e1
PB
1337/* VFP system registers. */
1338#define ARM_VFP_FPSID 0
1339#define ARM_VFP_FPSCR 1
a50c0f51 1340#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1341#define ARM_VFP_MVFR1 6
1342#define ARM_VFP_MVFR0 7
40f137e1
PB
1343#define ARM_VFP_FPEXC 8
1344#define ARM_VFP_FPINST 9
1345#define ARM_VFP_FPINST2 10
1346
18c9b560 1347/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1348#define ARM_IWMMXT_wCID 0
1349#define ARM_IWMMXT_wCon 1
1350#define ARM_IWMMXT_wCSSF 2
1351#define ARM_IWMMXT_wCASF 3
1352#define ARM_IWMMXT_wCGR0 8
1353#define ARM_IWMMXT_wCGR1 9
1354#define ARM_IWMMXT_wCGR2 10
1355#define ARM_IWMMXT_wCGR3 11
18c9b560 1356
2c4da50d
PM
1357/* V7M CCR bits */
1358FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1359FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1360FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1361FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1362FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1363FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1364FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1365FIELD(V7M_CCR, DC, 16, 1)
1366FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1367FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1368
24ac0fb1
PM
1369/* V7M SCR bits */
1370FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1371FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1372FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1373FIELD(V7M_SCR, SEVONPEND, 4, 1)
1374
3b2e9344
PM
1375/* V7M AIRCR bits */
1376FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1377FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1378FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1379FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1380FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1381FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1382FIELD(V7M_AIRCR, PRIS, 14, 1)
1383FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1384FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1385
2c4da50d
PM
1386/* V7M CFSR bits for MMFSR */
1387FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1388FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1389FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1390FIELD(V7M_CFSR, MSTKERR, 4, 1)
1391FIELD(V7M_CFSR, MLSPERR, 5, 1)
1392FIELD(V7M_CFSR, MMARVALID, 7, 1)
1393
1394/* V7M CFSR bits for BFSR */
1395FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1396FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1397FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1398FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1399FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1400FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1401FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1402
1403/* V7M CFSR bits for UFSR */
1404FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1405FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1406FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1407FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1408FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1409FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1410FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1411
334e8dad
PM
1412/* V7M CFSR bit masks covering all of the subregister bits */
1413FIELD(V7M_CFSR, MMFSR, 0, 8)
1414FIELD(V7M_CFSR, BFSR, 8, 8)
1415FIELD(V7M_CFSR, UFSR, 16, 16)
1416
2c4da50d
PM
1417/* V7M HFSR bits */
1418FIELD(V7M_HFSR, VECTTBL, 1, 1)
1419FIELD(V7M_HFSR, FORCED, 30, 1)
1420FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1421
1422/* V7M DFSR bits */
1423FIELD(V7M_DFSR, HALTED, 0, 1)
1424FIELD(V7M_DFSR, BKPT, 1, 1)
1425FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1426FIELD(V7M_DFSR, VCATCH, 3, 1)
1427FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1428
bed079da
PM
1429/* V7M SFSR bits */
1430FIELD(V7M_SFSR, INVEP, 0, 1)
1431FIELD(V7M_SFSR, INVIS, 1, 1)
1432FIELD(V7M_SFSR, INVER, 2, 1)
1433FIELD(V7M_SFSR, AUVIOL, 3, 1)
1434FIELD(V7M_SFSR, INVTRAN, 4, 1)
1435FIELD(V7M_SFSR, LSPERR, 5, 1)
1436FIELD(V7M_SFSR, SFARVALID, 6, 1)
1437FIELD(V7M_SFSR, LSERR, 7, 1)
1438
29c483a5
MD
1439/* v7M MPU_CTRL bits */
1440FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1441FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1442FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1443
43bbce7f
PM
1444/* v7M CLIDR bits */
1445FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1446FIELD(V7M_CLIDR, LOUIS, 21, 3)
1447FIELD(V7M_CLIDR, LOC, 24, 3)
1448FIELD(V7M_CLIDR, LOUU, 27, 3)
1449FIELD(V7M_CLIDR, ICB, 30, 2)
1450
1451FIELD(V7M_CSSELR, IND, 0, 1)
1452FIELD(V7M_CSSELR, LEVEL, 1, 3)
1453/* We use the combination of InD and Level to index into cpu->ccsidr[];
1454 * define a mask for this and check that it doesn't permit running off
1455 * the end of the array.
1456 */
1457FIELD(V7M_CSSELR, INDEX, 0, 4)
1458
a62e62af
RH
1459/*
1460 * System register ID fields.
1461 */
1462FIELD(ID_ISAR0, SWAP, 0, 4)
1463FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1464FIELD(ID_ISAR0, BITFIELD, 8, 4)
1465FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1466FIELD(ID_ISAR0, COPROC, 16, 4)
1467FIELD(ID_ISAR0, DEBUG, 20, 4)
1468FIELD(ID_ISAR0, DIVIDE, 24, 4)
1469
1470FIELD(ID_ISAR1, ENDIAN, 0, 4)
1471FIELD(ID_ISAR1, EXCEPT, 4, 4)
1472FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1473FIELD(ID_ISAR1, EXTEND, 12, 4)
1474FIELD(ID_ISAR1, IFTHEN, 16, 4)
1475FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1476FIELD(ID_ISAR1, INTERWORK, 24, 4)
1477FIELD(ID_ISAR1, JAZELLE, 28, 4)
1478
1479FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1480FIELD(ID_ISAR2, MEMHINT, 4, 4)
1481FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1482FIELD(ID_ISAR2, MULT, 12, 4)
1483FIELD(ID_ISAR2, MULTS, 16, 4)
1484FIELD(ID_ISAR2, MULTU, 20, 4)
1485FIELD(ID_ISAR2, PSR_AR, 24, 4)
1486FIELD(ID_ISAR2, REVERSAL, 28, 4)
1487
1488FIELD(ID_ISAR3, SATURATE, 0, 4)
1489FIELD(ID_ISAR3, SIMD, 4, 4)
1490FIELD(ID_ISAR3, SVC, 8, 4)
1491FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1492FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1493FIELD(ID_ISAR3, T32COPY, 20, 4)
1494FIELD(ID_ISAR3, TRUENOP, 24, 4)
1495FIELD(ID_ISAR3, T32EE, 28, 4)
1496
1497FIELD(ID_ISAR4, UNPRIV, 0, 4)
1498FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1499FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1500FIELD(ID_ISAR4, SMC, 12, 4)
1501FIELD(ID_ISAR4, BARRIER, 16, 4)
1502FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1503FIELD(ID_ISAR4, PSR_M, 24, 4)
1504FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1505
1506FIELD(ID_ISAR5, SEVL, 0, 4)
1507FIELD(ID_ISAR5, AES, 4, 4)
1508FIELD(ID_ISAR5, SHA1, 8, 4)
1509FIELD(ID_ISAR5, SHA2, 12, 4)
1510FIELD(ID_ISAR5, CRC32, 16, 4)
1511FIELD(ID_ISAR5, RDM, 24, 4)
1512FIELD(ID_ISAR5, VCMA, 28, 4)
1513
1514FIELD(ID_ISAR6, JSCVT, 0, 4)
1515FIELD(ID_ISAR6, DP, 4, 4)
1516FIELD(ID_ISAR6, FHM, 8, 4)
1517FIELD(ID_ISAR6, SB, 12, 4)
1518FIELD(ID_ISAR6, SPECRES, 16, 4)
1519
1520FIELD(ID_AA64ISAR0, AES, 4, 4)
1521FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1522FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1523FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1524FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1525FIELD(ID_AA64ISAR0, RDM, 28, 4)
1526FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1527FIELD(ID_AA64ISAR0, SM3, 36, 4)
1528FIELD(ID_AA64ISAR0, SM4, 40, 4)
1529FIELD(ID_AA64ISAR0, DP, 44, 4)
1530FIELD(ID_AA64ISAR0, FHM, 48, 4)
1531FIELD(ID_AA64ISAR0, TS, 52, 4)
1532FIELD(ID_AA64ISAR0, TLB, 56, 4)
1533FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1534
1535FIELD(ID_AA64ISAR1, DPB, 0, 4)
1536FIELD(ID_AA64ISAR1, APA, 4, 4)
1537FIELD(ID_AA64ISAR1, API, 8, 4)
1538FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1539FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1540FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1541FIELD(ID_AA64ISAR1, GPA, 24, 4)
1542FIELD(ID_AA64ISAR1, GPI, 28, 4)
1543FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1544FIELD(ID_AA64ISAR1, SB, 36, 4)
1545FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1546
cd208a1c
RH
1547FIELD(ID_AA64PFR0, EL0, 0, 4)
1548FIELD(ID_AA64PFR0, EL1, 4, 4)
1549FIELD(ID_AA64PFR0, EL2, 8, 4)
1550FIELD(ID_AA64PFR0, EL3, 12, 4)
1551FIELD(ID_AA64PFR0, FP, 16, 4)
1552FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1553FIELD(ID_AA64PFR0, GIC, 24, 4)
1554FIELD(ID_AA64PFR0, RAS, 28, 4)
1555FIELD(ID_AA64PFR0, SVE, 32, 4)
1556
43bbce7f
PM
1557QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1558
ce854d7c
BC
1559/* If adding a feature bit which corresponds to a Linux ELF
1560 * HWCAP bit, remember to update the feature-bit-to-hwcap
1561 * mapping in linux-user/elfload.c:get_elf_hwcap().
1562 */
40f137e1
PB
1563enum arm_features {
1564 ARM_FEATURE_VFP,
c1713132
AZ
1565 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1566 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1567 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1568 ARM_FEATURE_V6,
1569 ARM_FEATURE_V6K,
1570 ARM_FEATURE_V7,
1571 ARM_FEATURE_THUMB2,
452a0955 1572 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1573 ARM_FEATURE_VFP3,
60011498 1574 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1575 ARM_FEATURE_NEON,
9ee6e8bb 1576 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1577 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1578 ARM_FEATURE_THUMB2EE,
be5e7a76 1579 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1580 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1581 ARM_FEATURE_V4T,
1582 ARM_FEATURE_V5,
5bc95aa2 1583 ARM_FEATURE_STRONGARM,
906879a9 1584 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1585 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1586 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1587 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1588 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1589 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1590 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1591 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1592 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1593 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1594 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1595 ARM_FEATURE_V8,
3926cc84 1596 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1597 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1598 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1599 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1600 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1601 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1602 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1603 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1604 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1605 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1606 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1607};
1608
1609static inline int arm_feature(CPUARMState *env, int feature)
1610{
918f5dca 1611 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1612}
1613
19e0fefa
FA
1614#if !defined(CONFIG_USER_ONLY)
1615/* Return true if exception levels below EL3 are in secure state,
1616 * or would be following an exception return to that level.
1617 * Unlike arm_is_secure() (which is always a question about the
1618 * _current_ state of the CPU) this doesn't care about the current
1619 * EL or mode.
1620 */
1621static inline bool arm_is_secure_below_el3(CPUARMState *env)
1622{
1623 if (arm_feature(env, ARM_FEATURE_EL3)) {
1624 return !(env->cp15.scr_el3 & SCR_NS);
1625 } else {
6b7f0b61 1626 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1627 * defined, in which case QEMU defaults to non-secure.
1628 */
1629 return false;
1630 }
1631}
1632
71205876
PM
1633/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1634static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1635{
1636 if (arm_feature(env, ARM_FEATURE_EL3)) {
1637 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1638 /* CPU currently in AArch64 state and EL3 */
1639 return true;
1640 } else if (!is_a64(env) &&
1641 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1642 /* CPU currently in AArch32 state and monitor mode */
1643 return true;
1644 }
1645 }
71205876
PM
1646 return false;
1647}
1648
1649/* Return true if the processor is in secure state */
1650static inline bool arm_is_secure(CPUARMState *env)
1651{
1652 if (arm_is_el3_or_mon(env)) {
1653 return true;
1654 }
19e0fefa
FA
1655 return arm_is_secure_below_el3(env);
1656}
1657
1658#else
1659static inline bool arm_is_secure_below_el3(CPUARMState *env)
1660{
1661 return false;
1662}
1663
1664static inline bool arm_is_secure(CPUARMState *env)
1665{
1666 return false;
1667}
1668#endif
1669
1f79ee32
PM
1670/* Return true if the specified exception level is running in AArch64 state. */
1671static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1672{
446c81ab
PM
1673 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1674 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1675 */
446c81ab
PM
1676 assert(el >= 1 && el <= 3);
1677 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1678
446c81ab
PM
1679 /* The highest exception level is always at the maximum supported
1680 * register width, and then lower levels have a register width controlled
1681 * by bits in the SCR or HCR registers.
1f79ee32 1682 */
446c81ab
PM
1683 if (el == 3) {
1684 return aa64;
1685 }
1686
1687 if (arm_feature(env, ARM_FEATURE_EL3)) {
1688 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1689 }
1690
1691 if (el == 2) {
1692 return aa64;
1693 }
1694
1695 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1696 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1697 }
1698
1699 return aa64;
1f79ee32
PM
1700}
1701
3f342b9e
SF
1702/* Function for determing whether guest cp register reads and writes should
1703 * access the secure or non-secure bank of a cp register. When EL3 is
1704 * operating in AArch32 state, the NS-bit determines whether the secure
1705 * instance of a cp register should be used. When EL3 is AArch64 (or if
1706 * it doesn't exist at all) then there is no register banking, and all
1707 * accesses are to the non-secure version.
1708 */
1709static inline bool access_secure_reg(CPUARMState *env)
1710{
1711 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1712 !arm_el_is_aa64(env, 3) &&
1713 !(env->cp15.scr_el3 & SCR_NS));
1714
1715 return ret;
1716}
1717
ea30a4b8
FA
1718/* Macros for accessing a specified CP register bank */
1719#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1720 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1721
1722#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1723 do { \
1724 if (_secure) { \
1725 (_env)->cp15._regname##_s = (_val); \
1726 } else { \
1727 (_env)->cp15._regname##_ns = (_val); \
1728 } \
1729 } while (0)
1730
1731/* Macros for automatically accessing a specific CP register bank depending on
1732 * the current secure state of the system. These macros are not intended for
1733 * supporting instruction translation reads/writes as these are dependent
1734 * solely on the SCR.NS bit and not the mode.
1735 */
1736#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1737 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1738 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1739
1740#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1741 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1742 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1743 (_val))
1744
9a78eead 1745void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1746uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1747 uint32_t cur_el, bool secure);
40f137e1 1748
9ee6e8bb 1749/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1750#ifndef CONFIG_USER_ONLY
1751bool armv7m_nvic_can_take_pending_exception(void *opaque);
1752#else
1753static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1754{
1755 return true;
1756}
1757#endif
2fb50a33
PM
1758/**
1759 * armv7m_nvic_set_pending: mark the specified exception as pending
1760 * @opaque: the NVIC
1761 * @irq: the exception number to mark pending
1762 * @secure: false for non-banked exceptions or for the nonsecure
1763 * version of a banked exception, true for the secure version of a banked
1764 * exception.
1765 *
1766 * Marks the specified exception as pending. Note that we will assert()
1767 * if @secure is true and @irq does not specify one of the fixed set
1768 * of architecturally banked exceptions.
1769 */
1770void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1771/**
1772 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1773 * @opaque: the NVIC
1774 * @irq: the exception number to mark pending
1775 * @secure: false for non-banked exceptions or for the nonsecure
1776 * version of a banked exception, true for the secure version of a banked
1777 * exception.
1778 *
1779 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1780 * exceptions (exceptions generated in the course of trying to take
1781 * a different exception).
1782 */
1783void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1784/**
1785 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1786 * exception, and whether it targets Secure state
1787 * @opaque: the NVIC
1788 * @pirq: set to pending exception number
1789 * @ptargets_secure: set to whether pending exception targets Secure
1790 *
1791 * This function writes the number of the highest priority pending
1792 * exception (the one which would be made active by
1793 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1794 * to true if the current highest priority pending exception should
1795 * be taken to Secure state, false for NS.
1796 */
1797void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1798 bool *ptargets_secure);
5cb18069
PM
1799/**
1800 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1801 * @opaque: the NVIC
1802 *
1803 * Move the current highest priority pending exception from the pending
1804 * state to the active state, and update v7m.exception to indicate that
1805 * it is the exception currently being handled.
5cb18069 1806 */
6c948518 1807void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1808/**
1809 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1810 * @opaque: the NVIC
1811 * @irq: the exception number to complete
5cb18069 1812 * @secure: true if this exception was secure
aa488fe3
PM
1813 *
1814 * Returns: -1 if the irq was not active
1815 * 1 if completing this irq brought us back to base (no active irqs)
1816 * 0 if there is still an irq active after this one was completed
1817 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1818 */
5cb18069 1819int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1820/**
1821 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1822 * @opaque: the NVIC
1823 *
1824 * Returns: the raw execution priority as defined by the v8M architecture.
1825 * This is the execution priority minus the effects of AIRCR.PRIS,
1826 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1827 * (v8M ARM ARM I_PKLD.)
1828 */
1829int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
1830/**
1831 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1832 * priority is negative for the specified security state.
1833 * @opaque: the NVIC
1834 * @secure: the security state to test
1835 * This corresponds to the pseudocode IsReqExecPriNeg().
1836 */
1837#ifndef CONFIG_USER_ONLY
1838bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1839#else
1840static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1841{
1842 return false;
1843}
1844#endif
9ee6e8bb 1845
4b6a83fb
PM
1846/* Interface for defining coprocessor registers.
1847 * Registers are defined in tables of arm_cp_reginfo structs
1848 * which are passed to define_arm_cp_regs().
1849 */
1850
1851/* When looking up a coprocessor register we look for it
1852 * via an integer which encodes all of:
1853 * coprocessor number
1854 * Crn, Crm, opc1, opc2 fields
1855 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1856 * or via MRRC/MCRR?)
51a79b03 1857 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1858 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1859 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1860 * For AArch64, there is no 32/64 bit size distinction;
1861 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1862 * and 4 bit CRn and CRm. The encoding patterns are chosen
1863 * to be easy to convert to and from the KVM encodings, and also
1864 * so that the hashtable can contain both AArch32 and AArch64
1865 * registers (to allow for interprocessing where we might run
1866 * 32 bit code on a 64 bit core).
4b6a83fb 1867 */
f5a0a5a5
PM
1868/* This bit is private to our hashtable cpreg; in KVM register
1869 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1870 * in the upper bits of the 64 bit ID.
1871 */
1872#define CP_REG_AA64_SHIFT 28
1873#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1874
51a79b03
PM
1875/* To enable banking of coprocessor registers depending on ns-bit we
1876 * add a bit to distinguish between secure and non-secure cpregs in the
1877 * hashtable.
1878 */
1879#define CP_REG_NS_SHIFT 29
1880#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1881
1882#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1883 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1884 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1885
f5a0a5a5
PM
1886#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1887 (CP_REG_AA64_MASK | \
1888 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1889 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1890 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1891 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1892 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1893 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1894
721fae12
PM
1895/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1896 * version used as a key for the coprocessor register hashtable
1897 */
1898static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1899{
1900 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1901 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1902 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1903 } else {
1904 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1905 cpregid |= (1 << 15);
1906 }
1907
1908 /* KVM is always non-secure so add the NS flag on AArch32 register
1909 * entries.
1910 */
1911 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1912 }
1913 return cpregid;
1914}
1915
1916/* Convert a truncated 32 bit hashtable key into the full
1917 * 64 bit KVM register ID.
1918 */
1919static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1920{
f5a0a5a5
PM
1921 uint64_t kvmid;
1922
1923 if (cpregid & CP_REG_AA64_MASK) {
1924 kvmid = cpregid & ~CP_REG_AA64_MASK;
1925 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1926 } else {
f5a0a5a5
PM
1927 kvmid = cpregid & ~(1 << 15);
1928 if (cpregid & (1 << 15)) {
1929 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1930 } else {
1931 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1932 }
721fae12
PM
1933 }
1934 return kvmid;
1935}
1936
4b6a83fb 1937/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 1938 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
1939 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1940 * TCG can assume the value to be constant (ie load at translate time)
1941 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1942 * indicates that the TB should not be ended after a write to this register
1943 * (the default is that the TB ends after cp writes). OVERRIDE permits
1944 * a register definition to override a previous definition for the
1945 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1946 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1947 * ALIAS indicates that this register is an alias view of some underlying
1948 * state which is also visible via another register, and that the other
b061a82b
SF
1949 * register is handling migration and reset; registers marked ALIAS will not be
1950 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1951 * NO_RAW indicates that this register has no underlying state and does not
1952 * support raw access for state saving/loading; it will not be used for either
1953 * migration or KVM state synchronization. (Typically this is for "registers"
1954 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1955 * IO indicates that this register does I/O and therefore its accesses
1956 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1957 * registers which implement clocks or timers require this.
4b6a83fb 1958 */
fe03d45f
RH
1959#define ARM_CP_SPECIAL 0x0001
1960#define ARM_CP_CONST 0x0002
1961#define ARM_CP_64BIT 0x0004
1962#define ARM_CP_SUPPRESS_TB_END 0x0008
1963#define ARM_CP_OVERRIDE 0x0010
1964#define ARM_CP_ALIAS 0x0020
1965#define ARM_CP_IO 0x0040
1966#define ARM_CP_NO_RAW 0x0080
1967#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1968#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1969#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1970#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1971#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1972#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1973#define ARM_CP_FPU 0x1000
490aa7f1 1974#define ARM_CP_SVE 0x2000
1f163787 1975#define ARM_CP_NO_GDB 0x4000
4b6a83fb 1976/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 1977#define ARM_CP_SENTINEL 0xffff
4b6a83fb 1978/* Mask of only the flag bits in a type field */
1f163787 1979#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 1980
f5a0a5a5
PM
1981/* Valid values for ARMCPRegInfo state field, indicating which of
1982 * the AArch32 and AArch64 execution states this register is visible in.
1983 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1984 * If the reginfo is declared to be visible in both states then a second
1985 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1986 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1987 * Note that we rely on the values of these enums as we iterate through
1988 * the various states in some places.
1989 */
1990enum {
1991 ARM_CP_STATE_AA32 = 0,
1992 ARM_CP_STATE_AA64 = 1,
1993 ARM_CP_STATE_BOTH = 2,
1994};
1995
c3e30260
FA
1996/* ARM CP register secure state flags. These flags identify security state
1997 * attributes for a given CP register entry.
1998 * The existence of both or neither secure and non-secure flags indicates that
1999 * the register has both a secure and non-secure hash entry. A single one of
2000 * these flags causes the register to only be hashed for the specified
2001 * security state.
2002 * Although definitions may have any combination of the S/NS bits, each
2003 * registered entry will only have one to identify whether the entry is secure
2004 * or non-secure.
2005 */
2006enum {
2007 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2008 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2009};
2010
4b6a83fb
PM
2011/* Return true if cptype is a valid type field. This is used to try to
2012 * catch errors where the sentinel has been accidentally left off the end
2013 * of a list of registers.
2014 */
2015static inline bool cptype_valid(int cptype)
2016{
2017 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2018 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2019 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2020}
2021
2022/* Access rights:
2023 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2024 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2025 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2026 * (ie any of the privileged modes in Secure state, or Monitor mode).
2027 * If a register is accessible in one privilege level it's always accessible
2028 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2029 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2030 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2031 * terminology a little and call this PL3.
f5a0a5a5
PM
2032 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2033 * with the ELx exception levels.
4b6a83fb
PM
2034 *
2035 * If access permissions for a register are more complex than can be
2036 * described with these bits, then use a laxer set of restrictions, and
2037 * do the more restrictive/complex check inside a helper function.
2038 */
2039#define PL3_R 0x80
2040#define PL3_W 0x40
2041#define PL2_R (0x20 | PL3_R)
2042#define PL2_W (0x10 | PL3_W)
2043#define PL1_R (0x08 | PL2_R)
2044#define PL1_W (0x04 | PL2_W)
2045#define PL0_R (0x02 | PL1_R)
2046#define PL0_W (0x01 | PL1_W)
2047
2048#define PL3_RW (PL3_R | PL3_W)
2049#define PL2_RW (PL2_R | PL2_W)
2050#define PL1_RW (PL1_R | PL1_W)
2051#define PL0_RW (PL0_R | PL0_W)
2052
75502672
PM
2053/* Return the highest implemented Exception Level */
2054static inline int arm_highest_el(CPUARMState *env)
2055{
2056 if (arm_feature(env, ARM_FEATURE_EL3)) {
2057 return 3;
2058 }
2059 if (arm_feature(env, ARM_FEATURE_EL2)) {
2060 return 2;
2061 }
2062 return 1;
2063}
2064
15b3f556
PM
2065/* Return true if a v7M CPU is in Handler mode */
2066static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2067{
2068 return env->v7m.exception != 0;
2069}
2070
dcbff19b
GB
2071/* Return the current Exception Level (as per ARMv8; note that this differs
2072 * from the ARMv7 Privilege Level).
2073 */
2074static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2075{
6d54ed3c 2076 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2077 return arm_v7m_is_handler_mode(env) ||
2078 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2079 }
2080
592125f8 2081 if (is_a64(env)) {
f5a0a5a5
PM
2082 return extract32(env->pstate, 2, 2);
2083 }
2084
592125f8
FA
2085 switch (env->uncached_cpsr & 0x1f) {
2086 case ARM_CPU_MODE_USR:
4b6a83fb 2087 return 0;
592125f8
FA
2088 case ARM_CPU_MODE_HYP:
2089 return 2;
2090 case ARM_CPU_MODE_MON:
2091 return 3;
2092 default:
2093 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2094 /* If EL3 is 32-bit then all secure privileged modes run in
2095 * EL3
2096 */
2097 return 3;
2098 }
2099
2100 return 1;
4b6a83fb 2101 }
4b6a83fb
PM
2102}
2103
2104typedef struct ARMCPRegInfo ARMCPRegInfo;
2105
f59df3f2
PM
2106typedef enum CPAccessResult {
2107 /* Access is permitted */
2108 CP_ACCESS_OK = 0,
2109 /* Access fails due to a configurable trap or enable which would
2110 * result in a categorized exception syndrome giving information about
2111 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2112 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2113 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2114 */
2115 CP_ACCESS_TRAP = 1,
2116 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2117 * Note that this is not a catch-all case -- the set of cases which may
2118 * result in this failure is specifically defined by the architecture.
2119 */
2120 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2121 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2122 CP_ACCESS_TRAP_EL2 = 3,
2123 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2124 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2125 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2126 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2127 /* Access fails and results in an exception syndrome for an FP access,
2128 * trapped directly to EL2 or EL3
2129 */
2130 CP_ACCESS_TRAP_FP_EL2 = 7,
2131 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2132} CPAccessResult;
2133
c4241c7d
PM
2134/* Access functions for coprocessor registers. These cannot fail and
2135 * may not raise exceptions.
2136 */
2137typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2138typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2139 uint64_t value);
f59df3f2 2140/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2141typedef CPAccessResult CPAccessFn(CPUARMState *env,
2142 const ARMCPRegInfo *opaque,
2143 bool isread);
4b6a83fb
PM
2144/* Hook function for register reset */
2145typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2146
2147#define CP_ANY 0xff
2148
2149/* Definition of an ARM coprocessor register */
2150struct ARMCPRegInfo {
2151 /* Name of register (useful mainly for debugging, need not be unique) */
2152 const char *name;
2153 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2154 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2155 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2156 * will be decoded to this register. The register read and write
2157 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2158 * used by the program, so it is possible to register a wildcard and
2159 * then behave differently on read/write if necessary.
2160 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2161 * must both be zero.
f5a0a5a5
PM
2162 * For AArch64-visible registers, opc0 is also used.
2163 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2164 * way to distinguish (for KVM's benefit) guest-visible system registers
2165 * from demuxed ones provided to preserve the "no side effects on
2166 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2167 * visible (to match KVM's encoding); cp==0 will be converted to
2168 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2169 */
2170 uint8_t cp;
2171 uint8_t crn;
2172 uint8_t crm;
f5a0a5a5 2173 uint8_t opc0;
4b6a83fb
PM
2174 uint8_t opc1;
2175 uint8_t opc2;
f5a0a5a5
PM
2176 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2177 int state;
4b6a83fb
PM
2178 /* Register type: ARM_CP_* bits/values */
2179 int type;
2180 /* Access rights: PL*_[RW] */
2181 int access;
c3e30260
FA
2182 /* Security state: ARM_CP_SECSTATE_* bits/values */
2183 int secure;
4b6a83fb
PM
2184 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2185 * this register was defined: can be used to hand data through to the
2186 * register read/write functions, since they are passed the ARMCPRegInfo*.
2187 */
2188 void *opaque;
2189 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2190 * fieldoffset is non-zero, the reset value of the register.
2191 */
2192 uint64_t resetvalue;
c3e30260
FA
2193 /* Offset of the field in CPUARMState for this register.
2194 *
2195 * This is not needed if either:
4b6a83fb
PM
2196 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2197 * 2. both readfn and writefn are specified
2198 */
2199 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2200
2201 /* Offsets of the secure and non-secure fields in CPUARMState for the
2202 * register if it is banked. These fields are only used during the static
2203 * registration of a register. During hashing the bank associated
2204 * with a given security state is copied to fieldoffset which is used from
2205 * there on out.
2206 *
2207 * It is expected that register definitions use either fieldoffset or
2208 * bank_fieldoffsets in the definition but not both. It is also expected
2209 * that both bank offsets are set when defining a banked register. This
2210 * use indicates that a register is banked.
2211 */
2212 ptrdiff_t bank_fieldoffsets[2];
2213
f59df3f2
PM
2214 /* Function for making any access checks for this register in addition to
2215 * those specified by the 'access' permissions bits. If NULL, no extra
2216 * checks required. The access check is performed at runtime, not at
2217 * translate time.
2218 */
2219 CPAccessFn *accessfn;
4b6a83fb
PM
2220 /* Function for handling reads of this register. If NULL, then reads
2221 * will be done by loading from the offset into CPUARMState specified
2222 * by fieldoffset.
2223 */
2224 CPReadFn *readfn;
2225 /* Function for handling writes of this register. If NULL, then writes
2226 * will be done by writing to the offset into CPUARMState specified
2227 * by fieldoffset.
2228 */
2229 CPWriteFn *writefn;
7023ec7e
PM
2230 /* Function for doing a "raw" read; used when we need to copy
2231 * coprocessor state to the kernel for KVM or out for
2232 * migration. This only needs to be provided if there is also a
c4241c7d 2233 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2234 */
2235 CPReadFn *raw_readfn;
2236 /* Function for doing a "raw" write; used when we need to copy KVM
2237 * kernel coprocessor state into userspace, or for inbound
2238 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2239 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2240 * or similar behaviour.
7023ec7e
PM
2241 */
2242 CPWriteFn *raw_writefn;
4b6a83fb
PM
2243 /* Function for resetting the register. If NULL, then reset will be done
2244 * by writing resetvalue to the field specified in fieldoffset. If
2245 * fieldoffset is 0 then no reset will be done.
2246 */
2247 CPResetFn *resetfn;
2248};
2249
2250/* Macros which are lvalues for the field in CPUARMState for the
2251 * ARMCPRegInfo *ri.
2252 */
2253#define CPREG_FIELD32(env, ri) \
2254 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2255#define CPREG_FIELD64(env, ri) \
2256 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2257
2258#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2259
2260void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2261 const ARMCPRegInfo *regs, void *opaque);
2262void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2263 const ARMCPRegInfo *regs, void *opaque);
2264static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2265{
2266 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2267}
2268static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2269{
2270 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2271}
60322b39 2272const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2273
2274/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2275void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2276 uint64_t value);
4b6a83fb 2277/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2278uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2279
f5a0a5a5
PM
2280/* CPResetFn that does nothing, for use if no reset is required even
2281 * if fieldoffset is non zero.
2282 */
2283void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2284
67ed771d
PM
2285/* Return true if this reginfo struct's field in the cpu state struct
2286 * is 64 bits wide.
2287 */
2288static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2289{
2290 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2291}
2292
dcbff19b 2293static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2294 const ARMCPRegInfo *ri, int isread)
2295{
dcbff19b 2296 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2297}
2298
49a66191
PM
2299/* Raw read of a coprocessor register (as needed for migration, etc) */
2300uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2301
721fae12
PM
2302/**
2303 * write_list_to_cpustate
2304 * @cpu: ARMCPU
2305 *
2306 * For each register listed in the ARMCPU cpreg_indexes list, write
2307 * its value from the cpreg_values list into the ARMCPUState structure.
2308 * This updates TCG's working data structures from KVM data or
2309 * from incoming migration state.
2310 *
2311 * Returns: true if all register values were updated correctly,
2312 * false if some register was unknown or could not be written.
2313 * Note that we do not stop early on failure -- we will attempt
2314 * writing all registers in the list.
2315 */
2316bool write_list_to_cpustate(ARMCPU *cpu);
2317
2318/**
2319 * write_cpustate_to_list:
2320 * @cpu: ARMCPU
2321 *
2322 * For each register listed in the ARMCPU cpreg_indexes list, write
2323 * its value from the ARMCPUState structure into the cpreg_values list.
2324 * This is used to copy info from TCG's working data structures into
2325 * KVM or for outbound migration.
2326 *
2327 * Returns: true if all register values were read correctly,
2328 * false if some register was unknown or could not be read.
2329 * Note that we do not stop early on failure -- we will attempt
2330 * reading all registers in the list.
2331 */
2332bool write_cpustate_to_list(ARMCPU *cpu);
2333
9ee6e8bb
PB
2334#define ARM_CPUID_TI915T 0x54029152
2335#define ARM_CPUID_TI925T 0x54029252
40f137e1 2336
b5ff1b31 2337#if defined(CONFIG_USER_ONLY)
2c0262af 2338#define TARGET_PAGE_BITS 12
b5ff1b31 2339#else
e97da98f
PM
2340/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2341 * have to support 1K tiny pages.
2342 */
2343#define TARGET_PAGE_BITS_VARY
2344#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2345#endif
9467d44c 2346
3926cc84
AG
2347#if defined(TARGET_AARCH64)
2348# define TARGET_PHYS_ADDR_SPACE_BITS 48
2349# define TARGET_VIRT_ADDR_SPACE_BITS 64
2350#else
2351# define TARGET_PHYS_ADDR_SPACE_BITS 40
2352# define TARGET_VIRT_ADDR_SPACE_BITS 32
2353#endif
52705890 2354
ac656b16
PM
2355/**
2356 * arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
2357 * Depending on the values of HCR_EL2.E2H and TGE, this may be
2358 * "behaves as 1 for all purposes other than direct read/write" or
2359 * "behaves as 0 for all purposes other than direct read/write"
2360 */
2361static inline bool arm_hcr_el2_imo(CPUARMState *env)
2362{
2363 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2364 case HCR_TGE:
2365 return true;
2366 case HCR_TGE | HCR_E2H:
2367 return false;
2368 default:
2369 return env->cp15.hcr_el2 & HCR_IMO;
2370 }
2371}
2372
2373/**
2374 * arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
2375 */
2376static inline bool arm_hcr_el2_fmo(CPUARMState *env)
2377{
2378 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2379 case HCR_TGE:
2380 return true;
2381 case HCR_TGE | HCR_E2H:
2382 return false;
2383 default:
2384 return env->cp15.hcr_el2 & HCR_FMO;
2385 }
2386}
2387
2388/**
2389 * arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
2390 */
2391static inline bool arm_hcr_el2_amo(CPUARMState *env)
2392{
2393 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2394 case HCR_TGE:
2395 return true;
2396 case HCR_TGE | HCR_E2H:
2397 return false;
2398 default:
2399 return env->cp15.hcr_el2 & HCR_AMO;
2400 }
2401}
2402
012a906b
GB
2403static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2404 unsigned int target_el)
043b7f8d
EI
2405{
2406 CPUARMState *env = cs->env_ptr;
dcbff19b 2407 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2408 bool secure = arm_is_secure(env);
57e3a0c7
GB
2409 bool pstate_unmasked;
2410 int8_t unmasked = 0;
2411
2412 /* Don't take exceptions if they target a lower EL.
2413 * This check should catch any exceptions that would not be taken but left
2414 * pending.
2415 */
dfafd090
EI
2416 if (cur_el > target_el) {
2417 return false;
2418 }
043b7f8d
EI
2419
2420 switch (excp_idx) {
2421 case EXCP_FIQ:
57e3a0c7
GB
2422 pstate_unmasked = !(env->daif & PSTATE_F);
2423 break;
2424
043b7f8d 2425 case EXCP_IRQ:
57e3a0c7
GB
2426 pstate_unmasked = !(env->daif & PSTATE_I);
2427 break;
2428
136e67e9 2429 case EXCP_VFIQ:
ac656b16 2430 if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2431 /* VFIQs are only taken when hypervized and non-secure. */
2432 return false;
2433 }
2434 return !(env->daif & PSTATE_F);
2435 case EXCP_VIRQ:
ac656b16 2436 if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2437 /* VIRQs are only taken when hypervized and non-secure. */
2438 return false;
2439 }
b5c633c5 2440 return !(env->daif & PSTATE_I);
043b7f8d
EI
2441 default:
2442 g_assert_not_reached();
2443 }
57e3a0c7
GB
2444
2445 /* Use the target EL, current execution state and SCR/HCR settings to
2446 * determine whether the corresponding CPSR bit is used to mask the
2447 * interrupt.
2448 */
2449 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2450 /* Exceptions targeting a higher EL may not be maskable */
2451 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2452 /* 64-bit masking rules are simple: exceptions to EL3
2453 * can't be masked, and exceptions to EL2 can only be
2454 * masked from Secure state. The HCR and SCR settings
2455 * don't affect the masking logic, only the interrupt routing.
2456 */
2457 if (target_el == 3 || !secure) {
2458 unmasked = 1;
2459 }
2460 } else {
2461 /* The old 32-bit-only environment has a more complicated
2462 * masking setup. HCR and SCR bits not only affect interrupt
2463 * routing but also change the behaviour of masking.
2464 */
2465 bool hcr, scr;
2466
2467 switch (excp_idx) {
2468 case EXCP_FIQ:
2469 /* If FIQs are routed to EL3 or EL2 then there are cases where
2470 * we override the CPSR.F in determining if the exception is
2471 * masked or not. If neither of these are set then we fall back
2472 * to the CPSR.F setting otherwise we further assess the state
2473 * below.
2474 */
ac656b16 2475 hcr = arm_hcr_el2_fmo(env);
7cd6de3b
PM
2476 scr = (env->cp15.scr_el3 & SCR_FIQ);
2477
2478 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2479 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2480 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2481 * when non-secure but only when FIQs are only routed to EL3.
2482 */
2483 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2484 break;
2485 case EXCP_IRQ:
2486 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2487 * we may override the CPSR.I masking when in non-secure state.
2488 * The SCR.IRQ setting has already been taken into consideration
2489 * when setting the target EL, so it does not have a further
2490 * affect here.
2491 */
ac656b16 2492 hcr = arm_hcr_el2_imo(env);
7cd6de3b
PM
2493 scr = false;
2494 break;
2495 default:
2496 g_assert_not_reached();
2497 }
2498
2499 if ((scr || hcr) && !secure) {
2500 unmasked = 1;
2501 }
57e3a0c7
GB
2502 }
2503 }
2504
2505 /* The PSTATE bits only mask the interrupt if we have not overriden the
2506 * ability above.
2507 */
2508 return unmasked || pstate_unmasked;
043b7f8d
EI
2509}
2510
ba1ba5cc
IM
2511#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2512#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2513#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2514
9467d44c 2515#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2516#define cpu_list arm_cpu_list
9467d44c 2517
c1e37810
PM
2518/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2519 *
2520 * If EL3 is 64-bit:
2521 * + NonSecure EL1 & 0 stage 1
2522 * + NonSecure EL1 & 0 stage 2
2523 * + NonSecure EL2
2524 * + Secure EL1 & EL0
2525 * + Secure EL3
2526 * If EL3 is 32-bit:
2527 * + NonSecure PL1 & 0 stage 1
2528 * + NonSecure PL1 & 0 stage 2
2529 * + NonSecure PL2
2530 * + Secure PL0 & PL1
2531 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2532 *
2533 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2534 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2535 * may differ in access permissions even if the VA->PA map is the same
2536 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2537 * translation, which means that we have one mmu_idx that deals with two
2538 * concatenated translation regimes [this sort of combined s1+2 TLB is
2539 * architecturally permitted]
2540 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2541 * handling via the TLB. The only way to do a stage 1 translation without
2542 * the immediate stage 2 translation is via the ATS or AT system insns,
2543 * which can be slow-pathed and always do a page table walk.
2544 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2545 * translation regimes, because they map reasonably well to each other
2546 * and they can't both be active at the same time.
2547 * This gives us the following list of mmu_idx values:
2548 *
2549 * NS EL0 (aka NS PL0) stage 1+2
2550 * NS EL1 (aka NS PL1) stage 1+2
2551 * NS EL2 (aka NS PL2)
2552 * S EL3 (aka S PL1)
2553 * S EL0 (aka S PL0)
2554 * S EL1 (not used if EL3 is 32 bit)
2555 * NS EL0+1 stage 2
2556 *
2557 * (The last of these is an mmu_idx because we want to be able to use the TLB
2558 * for the accesses done as part of a stage 1 page table walk, rather than
2559 * having to walk the stage 2 page table over and over.)
2560 *
3bef7012
PM
2561 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2562 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2563 * NS EL2 if we ever model a Cortex-R52).
2564 *
2565 * M profile CPUs are rather different as they do not have a true MMU.
2566 * They have the following different MMU indexes:
2567 * User
2568 * Privileged
62593718
PM
2569 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2570 * Privileged, execution priority negative (ditto)
66787c78
PM
2571 * If the CPU supports the v8M Security Extension then there are also:
2572 * Secure User
2573 * Secure Privileged
62593718
PM
2574 * Secure User, execution priority negative
2575 * Secure Privileged, execution priority negative
3bef7012 2576 *
8bd5c820
PM
2577 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2578 * are not quite the same -- different CPU types (most notably M profile
2579 * vs A/R profile) would like to use MMU indexes with different semantics,
2580 * but since we don't ever need to use all of those in a single CPU we
2581 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2582 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2583 * the same for any particular CPU.
2584 * Variables of type ARMMUIdx are always full values, and the core
2585 * index values are in variables of type 'int'.
2586 *
c1e37810
PM
2587 * Our enumeration includes at the end some entries which are not "true"
2588 * mmu_idx values in that they don't have corresponding TLBs and are only
2589 * valid for doing slow path page table walks.
2590 *
2591 * The constant names here are patterned after the general style of the names
2592 * of the AT/ATS operations.
2593 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2594 * For M profile we arrange them to have a bit for priv, a bit for negpri
2595 * and a bit for secure.
c1e37810 2596 */
e7b921c2 2597#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2598#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2599#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2600
62593718
PM
2601/* meanings of the bits for M profile mmu idx values */
2602#define ARM_MMU_IDX_M_PRIV 0x1
2603#define ARM_MMU_IDX_M_NEGPRI 0x2
2604#define ARM_MMU_IDX_M_S 0x4
2605
8bd5c820
PM
2606#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2607#define ARM_MMU_IDX_COREIDX_MASK 0x7
2608
c1e37810 2609typedef enum ARMMMUIdx {
8bd5c820
PM
2610 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2611 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2612 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2613 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2614 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2615 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2616 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2617 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2618 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2619 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2620 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2621 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2622 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2623 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2624 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2625 /* Indexes below here don't have TLBs and are used only for AT system
2626 * instructions or for the first stage of an S12 page table walk.
2627 */
8bd5c820
PM
2628 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2629 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2630} ARMMMUIdx;
2631
8bd5c820
PM
2632/* Bit macros for the core-mmu-index values for each index,
2633 * for use when calling tlb_flush_by_mmuidx() and friends.
2634 */
2635typedef enum ARMMMUIdxBit {
2636 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2637 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2638 ARMMMUIdxBit_S1E2 = 1 << 2,
2639 ARMMMUIdxBit_S1E3 = 1 << 3,
2640 ARMMMUIdxBit_S1SE0 = 1 << 4,
2641 ARMMMUIdxBit_S1SE1 = 1 << 5,
2642 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2643 ARMMMUIdxBit_MUser = 1 << 0,
2644 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2645 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2646 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2647 ARMMMUIdxBit_MSUser = 1 << 4,
2648 ARMMMUIdxBit_MSPriv = 1 << 5,
2649 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2650 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2651} ARMMMUIdxBit;
2652
f79fbf39 2653#define MMU_USER_IDX 0
c1e37810 2654
8bd5c820
PM
2655static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2656{
2657 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2658}
2659
2660static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2661{
e7b921c2
PM
2662 if (arm_feature(env, ARM_FEATURE_M)) {
2663 return mmu_idx | ARM_MMU_IDX_M;
2664 } else {
2665 return mmu_idx | ARM_MMU_IDX_A;
2666 }
8bd5c820
PM
2667}
2668
c1e37810
PM
2669/* Return the exception level we're running at if this is our mmu_idx */
2670static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2671{
8bd5c820
PM
2672 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2673 case ARM_MMU_IDX_A:
2674 return mmu_idx & 3;
e7b921c2 2675 case ARM_MMU_IDX_M:
62593718 2676 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2677 default:
2678 g_assert_not_reached();
2679 }
c1e37810
PM
2680}
2681
ec8e3340
PM
2682/* Return the MMU index for a v7M CPU in the specified security and
2683 * privilege state
2684 */
2685static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2686 bool secstate,
2687 bool priv)
b81ac0eb 2688{
62593718 2689 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
b81ac0eb 2690
ec8e3340 2691 if (priv) {
62593718 2692 mmu_idx |= ARM_MMU_IDX_M_PRIV;
b81ac0eb
PM
2693 }
2694
2695 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
62593718
PM
2696 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2697 }
2698
2699 if (secstate) {
2700 mmu_idx |= ARM_MMU_IDX_M_S;
b81ac0eb
PM
2701 }
2702
2703 return mmu_idx;
2704}
2705
ec8e3340
PM
2706/* Return the MMU index for a v7M CPU in the specified security state */
2707static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2708 bool secstate)
2709{
2710 bool priv = arm_current_el(env) != 0;
2711
2712 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2713}
2714
c1e37810 2715/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 2716static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
2717{
2718 int el = arm_current_el(env);
2719
e7b921c2 2720 if (arm_feature(env, ARM_FEATURE_M)) {
b81ac0eb 2721 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
3bef7012 2722
e7b921c2
PM
2723 return arm_to_core_mmu_idx(mmu_idx);
2724 }
2725
c1e37810 2726 if (el < 2 && arm_is_secure_below_el3(env)) {
8bd5c820 2727 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
c1e37810
PM
2728 }
2729 return el;
6ebbf390
JM
2730}
2731
9e273ef2
PM
2732/* Indexes used when registering address spaces with cpu_address_space_init */
2733typedef enum ARMASIdx {
2734 ARMASIdx_NS = 0,
2735 ARMASIdx_S = 1,
2736} ARMASIdx;
2737
533e93f1 2738/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2739static inline int arm_debug_target_el(CPUARMState *env)
2740{
81669b8b
SF
2741 bool secure = arm_is_secure(env);
2742 bool route_to_el2 = false;
2743
2744 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2745 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2746 env->cp15.mdcr_el2 & (1 << 8);
2747 }
2748
2749 if (route_to_el2) {
2750 return 2;
2751 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2752 !arm_el_is_aa64(env, 3) && secure) {
2753 return 3;
2754 } else {
2755 return 1;
2756 }
3a298203
PM
2757}
2758
43bbce7f
PM
2759static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2760{
2761 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2762 * CSSELR is RAZ/WI.
2763 */
2764 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2765}
2766
3a298203
PM
2767static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2768{
533e93f1
PM
2769 if (arm_is_secure(env)) {
2770 /* MDCR_EL3.SDD disables debug events from Secure state */
2771 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2772 || arm_current_el(env) == 3) {
2773 return false;
2774 }
2775 }
2776
dcbff19b 2777 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
2778 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2779 || (env->daif & PSTATE_D)) {
2780 return false;
2781 }
2782 }
2783 return true;
2784}
2785
2786static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2787{
533e93f1
PM
2788 int el = arm_current_el(env);
2789
2790 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2791 return aa64_generate_debug_exceptions(env);
2792 }
533e93f1
PM
2793
2794 if (arm_is_secure(env)) {
2795 int spd;
2796
2797 if (el == 0 && (env->cp15.sder & 1)) {
2798 /* SDER.SUIDEN means debug exceptions from Secure EL0
2799 * are always enabled. Otherwise they are controlled by
2800 * SDCR.SPD like those from other Secure ELs.
2801 */
2802 return true;
2803 }
2804
2805 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2806 switch (spd) {
2807 case 1:
2808 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2809 case 0:
2810 /* For 0b00 we return true if external secure invasive debug
2811 * is enabled. On real hardware this is controlled by external
2812 * signals to the core. QEMU always permits debug, and behaves
2813 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2814 */
2815 return true;
2816 case 2:
2817 return false;
2818 case 3:
2819 return true;
2820 }
2821 }
2822
2823 return el != 2;
3a298203
PM
2824}
2825
2826/* Return true if debugging exceptions are currently enabled.
2827 * This corresponds to what in ARM ARM pseudocode would be
2828 * if UsingAArch32() then
2829 * return AArch32.GenerateDebugExceptions()
2830 * else
2831 * return AArch64.GenerateDebugExceptions()
2832 * We choose to push the if() down into this function for clarity,
2833 * since the pseudocode has it at all callsites except for the one in
2834 * CheckSoftwareStep(), where it is elided because both branches would
2835 * always return the same value.
2836 *
2837 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2838 * don't yet implement those exception levels or their associated trap bits.
2839 */
2840static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2841{
2842 if (env->aarch64) {
2843 return aa64_generate_debug_exceptions(env);
2844 } else {
2845 return aa32_generate_debug_exceptions(env);
2846 }
2847}
2848
2849/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2850 * implicitly means this always returns false in pre-v8 CPUs.)
2851 */
2852static inline bool arm_singlestep_active(CPUARMState *env)
2853{
2854 return extract32(env->cp15.mdscr_el1, 0, 1)
2855 && arm_el_is_aa64(env, arm_debug_target_el(env))
2856 && arm_generate_debug_exceptions(env);
2857}
2858
f9fd40eb
PB
2859static inline bool arm_sctlr_b(CPUARMState *env)
2860{
2861 return
2862 /* We need not implement SCTLR.ITD in user-mode emulation, so
2863 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2864 * This lets people run BE32 binaries with "-cpu any".
2865 */
2866#ifndef CONFIG_USER_ONLY
2867 !arm_feature(env, ARM_FEATURE_V7) &&
2868#endif
2869 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2870}
2871
ed50ff78
PC
2872/* Return true if the processor is in big-endian mode. */
2873static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2874{
2875 int cur_el;
2876
2877 /* In 32bit endianness is determined by looking at CPSR's E bit */
2878 if (!is_a64(env)) {
b2e62d9a
PC
2879 return
2880#ifdef CONFIG_USER_ONLY
2881 /* In system mode, BE32 is modelled in line with the
2882 * architecture (as word-invariant big-endianness), where loads
2883 * and stores are done little endian but from addresses which
2884 * are adjusted by XORing with the appropriate constant. So the
2885 * endianness to use for the raw data access is not affected by
2886 * SCTLR.B.
2887 * In user mode, however, we model BE32 as byte-invariant
2888 * big-endianness (because user-only code cannot tell the
2889 * difference), and so we need to use a data access endianness
2890 * that depends on SCTLR.B.
2891 */
2892 arm_sctlr_b(env) ||
2893#endif
2894 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2895 }
2896
2897 cur_el = arm_current_el(env);
2898
2899 if (cur_el == 0) {
2900 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2901 }
2902
2903 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2904}
2905
022c62cb 2906#include "exec/cpu-all.h"
622ed360 2907
3926cc84
AG
2908/* Bit usage in the TB flags field: bit 31 indicates whether we are
2909 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2910 * We put flags which are shared between 32 and 64 bit mode at the top
2911 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
2912 */
2913#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2914#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2915#define ARM_TBFLAG_MMUIDX_SHIFT 28
2916#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2917#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2918#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2919#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2920#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2921/* Target EL if we take a floating-point-disabled exception */
2922#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2923#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
2924
2925/* Bit usage when in AArch32 state: */
a1705768
PM
2926#define ARM_TBFLAG_THUMB_SHIFT 0
2927#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2928#define ARM_TBFLAG_VECLEN_SHIFT 1
2929#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2930#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2931#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2932#define ARM_TBFLAG_VFPEN_SHIFT 7
2933#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2934#define ARM_TBFLAG_CONDEXEC_SHIFT 8
2935#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2936#define ARM_TBFLAG_SCTLR_B_SHIFT 16
2937#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2938/* We store the bottom two bits of the CPAR as TB flags and handle
2939 * checks on the other bits at runtime
2940 */
647f767b 2941#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 2942#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2943/* Indicates whether cp register reads and writes by guest code should access
2944 * the secure or nonsecure bank of banked registers; note that this is not
2945 * the same thing as the current security state of the processor!
2946 */
647f767b 2947#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 2948#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2949#define ARM_TBFLAG_BE_DATA_SHIFT 20
2950#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2951/* For M profile only, Handler (ie not Thread) mode */
2952#define ARM_TBFLAG_HANDLER_SHIFT 21
2953#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
4730fb85
PM
2954/* For M profile only, whether we should generate stack-limit checks */
2955#define ARM_TBFLAG_STACKCHECK_SHIFT 22
2956#define ARM_TBFLAG_STACKCHECK_MASK (1 << ARM_TBFLAG_STACKCHECK_SHIFT)
3926cc84 2957
86fb3fa4
TH
2958/* Bit usage when in AArch64 state */
2959#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2960#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2961#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2962#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
2963#define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2964#define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2965#define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2966#define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768
PM
2967
2968/* some convenience accessor macros */
3926cc84
AG
2969#define ARM_TBFLAG_AARCH64_STATE(F) \
2970 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2971#define ARM_TBFLAG_MMUIDX(F) \
2972 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2973#define ARM_TBFLAG_SS_ACTIVE(F) \
2974 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2975#define ARM_TBFLAG_PSTATE_SS(F) \
2976 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2977#define ARM_TBFLAG_FPEXC_EL(F) \
2978 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
2979#define ARM_TBFLAG_THUMB(F) \
2980 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2981#define ARM_TBFLAG_VECLEN(F) \
2982 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2983#define ARM_TBFLAG_VECSTRIDE(F) \
2984 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2985#define ARM_TBFLAG_VFPEN(F) \
2986 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2987#define ARM_TBFLAG_CONDEXEC(F) \
2988 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2989#define ARM_TBFLAG_SCTLR_B(F) \
2990 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2991#define ARM_TBFLAG_XSCALE_CPAR(F) \
2992 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2993#define ARM_TBFLAG_NS(F) \
2994 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2995#define ARM_TBFLAG_BE_DATA(F) \
2996 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2997#define ARM_TBFLAG_HANDLER(F) \
2998 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
4730fb85
PM
2999#define ARM_TBFLAG_STACKCHECK(F) \
3000 (((F) & ARM_TBFLAG_STACKCHECK_MASK) >> ARM_TBFLAG_STACKCHECK_SHIFT)
86fb3fa4
TH
3001#define ARM_TBFLAG_TBI0(F) \
3002 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
3003#define ARM_TBFLAG_TBI1(F) \
3004 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
3005#define ARM_TBFLAG_SVEEXC_EL(F) \
3006 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
3007#define ARM_TBFLAG_ZCR_LEN(F) \
3008 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768 3009
f9fd40eb
PB
3010static inline bool bswap_code(bool sctlr_b)
3011{
3012#ifdef CONFIG_USER_ONLY
3013 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3014 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3015 * would also end up as a mixed-endian mode with BE code, LE data.
3016 */
3017 return
3018#ifdef TARGET_WORDS_BIGENDIAN
3019 1 ^
3020#endif
3021 sctlr_b;
3022#else
e334bd31
PB
3023 /* All code access in ARM is little endian, and there are no loaders
3024 * doing swaps that need to be reversed
f9fd40eb
PB
3025 */
3026 return 0;
3027#endif
3028}
3029
c3ae85fc
PB
3030#ifdef CONFIG_USER_ONLY
3031static inline bool arm_cpu_bswap_data(CPUARMState *env)
3032{
3033 return
3034#ifdef TARGET_WORDS_BIGENDIAN
3035 1 ^
3036#endif
3037 arm_cpu_data_is_big_endian(env);
3038}
3039#endif
3040
86fb3fa4
TH
3041#ifndef CONFIG_USER_ONLY
3042/**
3043 * arm_regime_tbi0:
3044 * @env: CPUARMState
3045 * @mmu_idx: MMU index indicating required translation regime
3046 *
3047 * Extracts the TBI0 value from the appropriate TCR for the current EL
3048 *
3049 * Returns: the TBI0 value.
3050 */
3051uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
3052
3053/**
3054 * arm_regime_tbi1:
3055 * @env: CPUARMState
3056 * @mmu_idx: MMU index indicating required translation regime
3057 *
3058 * Extracts the TBI1 value from the appropriate TCR for the current EL
3059 *
3060 * Returns: the TBI1 value.
3061 */
3062uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
3063#else
3064/* We can't handle tagged addresses properly in user-only mode */
3065static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
3066{
3067 return 0;
3068}
3069
3070static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
3071{
3072 return 0;
3073}
3074#endif
3075
a9e01311
RH
3076void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3077 target_ulong *cs_base, uint32_t *flags);
6b917547 3078
98128601
RH
3079enum {
3080 QEMU_PSCI_CONDUIT_DISABLED = 0,
3081 QEMU_PSCI_CONDUIT_SMC = 1,
3082 QEMU_PSCI_CONDUIT_HVC = 2,
3083};
3084
017518c1
PM
3085#ifndef CONFIG_USER_ONLY
3086/* Return the address space index to use for a memory access */
3087static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3088{
3089 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3090}
5ce4ff65
PM
3091
3092/* Return the AddressSpace to use for a memory access
3093 * (which depends on whether the access is S or NS, and whether
3094 * the board gave us a separate AddressSpace for S accesses).
3095 */
3096static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3097{
3098 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3099}
017518c1
PM
3100#endif
3101
bd7d00fc 3102/**
b5c53d1b
AL
3103 * arm_register_pre_el_change_hook:
3104 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3105 * CPU changes exception level or mode. The hook function will be
3106 * passed a pointer to the ARMCPU and the opaque data pointer passed
3107 * to this function when the hook was registered.
b5c53d1b
AL
3108 *
3109 * Note that if a pre-change hook is called, any registered post-change hooks
3110 * are guaranteed to subsequently be called.
bd7d00fc 3111 */
b5c53d1b 3112void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3113 void *opaque);
b5c53d1b
AL
3114/**
3115 * arm_register_el_change_hook:
3116 * Register a hook function which will be called immediately after this
3117 * CPU changes exception level or mode. The hook function will be
3118 * passed a pointer to the ARMCPU and the opaque data pointer passed
3119 * to this function when the hook was registered.
3120 *
3121 * Note that any registered hooks registered here are guaranteed to be called
3122 * if pre-change hooks have been.
3123 */
3124void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3125 *opaque);
bd7d00fc 3126
9a2b5256
RH
3127/**
3128 * aa32_vfp_dreg:
3129 * Return a pointer to the Dn register within env in 32-bit mode.
3130 */
3131static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3132{
c39c2b90 3133 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3134}
3135
3136/**
3137 * aa32_vfp_qreg:
3138 * Return a pointer to the Qn register within env in 32-bit mode.
3139 */
3140static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3141{
c39c2b90 3142 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3143}
3144
3145/**
3146 * aa64_vfp_qreg:
3147 * Return a pointer to the Qn register within env in 64-bit mode.
3148 */
3149static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3150{
c39c2b90 3151 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3152}
3153
028e2a7b
RH
3154/* Shared between translate-sve.c and sve_helper.c. */
3155extern const uint64_t pred_esz_masks[4];
3156
962fcbf2
RH
3157/*
3158 * 32-bit feature tests via id registers.
3159 */
7e0cf8b4
RH
3160static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3161{
3162 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3163}
3164
3165static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3166{
3167 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3168}
3169
09cbd501
RH
3170static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3171{
3172 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3173}
3174
962fcbf2
RH
3175static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3176{
3177 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3178}
3179
3180static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3181{
3182 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3183}
3184
3185static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3186{
3187 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3188}
3189
3190static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3191{
3192 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3193}
3194
3195static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3196{
3197 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3198}
3199
3200static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3201{
3202 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3203}
3204
3205static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3206{
3207 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3208}
3209
3210static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3211{
3212 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3213}
3214
5763190f
RH
3215static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3216{
3217 /*
3218 * This is a placeholder for use by VCMA until the rest of
3219 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3220 * At which point we can properly set and check MVFR1.FPHP.
3221 */
3222 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3223}
3224
962fcbf2
RH
3225/*
3226 * 64-bit feature tests via id registers.
3227 */
3228static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3229{
3230 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3231}
3232
3233static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3234{
3235 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3236}
3237
3238static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3239{
3240 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3241}
3242
3243static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3244{
3245 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3246}
3247
3248static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3249{
3250 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3251}
3252
3253static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3254{
3255 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3256}
3257
3258static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3259{
3260 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3261}
3262
3263static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3264{
3265 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3266}
3267
3268static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3269{
3270 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3271}
3272
3273static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3274{
3275 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3276}
3277
3278static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3279{
3280 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3281}
3282
3283static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3284{
3285 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3286}
3287
3288static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3289{
3290 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3291}
3292
5763190f
RH
3293static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3294{
3295 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3296 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3297}
3298
cd208a1c
RH
3299static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3300{
3301 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3302}
3303
962fcbf2
RH
3304/*
3305 * Forward to the above feature tests given an ARMCPU pointer.
3306 */
3307#define cpu_isar_feature(name, cpu) \
3308 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3309
2c0262af 3310#endif