]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Implement ARMv8.3-JSConv
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086 204#ifdef TARGET_AARCH64
991ad91b 205/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
991ad91b
RH
209
210/* In AArch32 mode, PAC keys do not exist at all. */
211typedef struct ARMPACKey {
212 uint64_t lo, hi;
213} ARMPACKey;
3c7d3086
RH
214#endif
215
c39c2b90 216
2c0262af 217typedef struct CPUARMState {
b5ff1b31 218 /* Regs for current mode. */
2c0262af 219 uint32_t regs[16];
3926cc84
AG
220
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
224 */
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
d356312f
PM
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 236 * DAIF (exception masks) are kept in env->daif
f6e52eaa 237 * BTYPE is kept in env->btype
d356312f 238 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
239 */
240 uint32_t pstate;
241 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242
b90372ad 243 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 244 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
245 the whole CPSR. */
246 uint32_t uncached_cpsr;
247 uint32_t spsr;
248
249 /* Banked registers. */
28c9457d 250 uint64_t banked_spsr[8];
0b7d409d
FA
251 uint32_t banked_r13[8];
252 uint32_t banked_r14[8];
3b46e624 253
b5ff1b31
FB
254 /* These hold r8-r12. */
255 uint32_t usr_regs[5];
256 uint32_t fiq_regs[5];
3b46e624 257
2c0262af
FB
258 /* cpsr flag cache for faster execution */
259 uint32_t CF; /* 0 or 1 */
260 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
261 uint32_t NF; /* N is bit 31. All other bits are undefined. */
262 uint32_t ZF; /* Z set if zero. */
99c475ab 263 uint32_t QF; /* 0 or 1 */
9ee6e8bb 264 uint32_t GE; /* cpsr[19:16] */
b26eefb6 265 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 266 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 267 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 268 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 269
1b174238 270 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 271 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 272
b5ff1b31
FB
273 /* System control coprocessor (cp15) */
274 struct {
40f137e1 275 uint32_t c0_cpuid;
b85a1fd6
FA
276 union { /* Cache size selection */
277 struct {
278 uint64_t _unused_csselr0;
279 uint64_t csselr_ns;
280 uint64_t _unused_csselr1;
281 uint64_t csselr_s;
282 };
283 uint64_t csselr_el[4];
284 };
137feaa9
FA
285 union { /* System control register. */
286 struct {
287 uint64_t _unused_sctlr;
288 uint64_t sctlr_ns;
289 uint64_t hsctlr;
290 uint64_t sctlr_s;
291 };
292 uint64_t sctlr_el[4];
293 };
7ebd5f2e 294 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 295 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 296 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 297 uint64_t sder; /* Secure debug enable register. */
77022576 298 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
299 union { /* MMU translation table base 0. */
300 struct {
301 uint64_t _unused_ttbr0_0;
302 uint64_t ttbr0_ns;
303 uint64_t _unused_ttbr0_1;
304 uint64_t ttbr0_s;
305 };
306 uint64_t ttbr0_el[4];
307 };
308 union { /* MMU translation table base 1. */
309 struct {
310 uint64_t _unused_ttbr1_0;
311 uint64_t ttbr1_ns;
312 uint64_t _unused_ttbr1_1;
313 uint64_t ttbr1_s;
314 };
315 uint64_t ttbr1_el[4];
316 };
b698e9cf 317 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
318 /* MMU translation table base control. */
319 TCR tcr_el[4];
68e9c2fe 320 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
321 uint32_t c2_data; /* MPU data cacheable bits. */
322 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
323 union { /* MMU domain access control register
324 * MPU write buffer control.
325 */
326 struct {
327 uint64_t dacr_ns;
328 uint64_t dacr_s;
329 };
330 struct {
331 uint64_t dacr32_el2;
332 };
333 };
7e09797c
PM
334 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
335 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 336 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 337 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
338 union { /* Fault status registers. */
339 struct {
340 uint64_t ifsr_ns;
341 uint64_t ifsr_s;
342 };
343 struct {
344 uint64_t ifsr32_el2;
345 };
346 };
4a7e2d73
FA
347 union {
348 struct {
349 uint64_t _unused_dfsr;
350 uint64_t dfsr_ns;
351 uint64_t hsr;
352 uint64_t dfsr_s;
353 };
354 uint64_t esr_el[4];
355 };
ce819861 356 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
357 union { /* Fault address registers. */
358 struct {
359 uint64_t _unused_far0;
360#ifdef HOST_WORDS_BIGENDIAN
361 uint32_t ifar_ns;
362 uint32_t dfar_ns;
363 uint32_t ifar_s;
364 uint32_t dfar_s;
365#else
366 uint32_t dfar_ns;
367 uint32_t ifar_ns;
368 uint32_t dfar_s;
369 uint32_t ifar_s;
370#endif
371 uint64_t _unused_far3;
372 };
373 uint64_t far_el[4];
374 };
59e05530 375 uint64_t hpfar_el2;
2a5a9abd 376 uint64_t hstr_el2;
01c097f7
FA
377 union { /* Translation result. */
378 struct {
379 uint64_t _unused_par_0;
380 uint64_t par_ns;
381 uint64_t _unused_par_1;
382 uint64_t par_s;
383 };
384 uint64_t par_el[4];
385 };
6cb0b013 386
b5ff1b31
FB
387 uint32_t c9_insn; /* Cache lockdown registers. */
388 uint32_t c9_data;
8521466b
AF
389 uint64_t c9_pmcr; /* performance monitor control register */
390 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
391 uint64_t c9_pmovsr; /* perf monitor overflow status */
392 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 393 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 394 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
395 union { /* Memory attribute redirection */
396 struct {
397#ifdef HOST_WORDS_BIGENDIAN
398 uint64_t _unused_mair_0;
399 uint32_t mair1_ns;
400 uint32_t mair0_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair1_s;
403 uint32_t mair0_s;
404#else
405 uint64_t _unused_mair_0;
406 uint32_t mair0_ns;
407 uint32_t mair1_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair0_s;
410 uint32_t mair1_s;
411#endif
412 };
413 uint64_t mair_el[4];
414 };
fb6c91ba
GB
415 union { /* vector base address register */
416 struct {
417 uint64_t _unused_vbar;
418 uint64_t vbar_ns;
419 uint64_t hvbar;
420 uint64_t vbar_s;
421 };
422 uint64_t vbar_el[4];
423 };
e89e51a1 424 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
425 struct { /* FCSE PID. */
426 uint32_t fcseidr_ns;
427 uint32_t fcseidr_s;
428 };
429 union { /* Context ID. */
430 struct {
431 uint64_t _unused_contextidr_0;
432 uint64_t contextidr_ns;
433 uint64_t _unused_contextidr_1;
434 uint64_t contextidr_s;
435 };
436 uint64_t contextidr_el[4];
437 };
438 union { /* User RW Thread register. */
439 struct {
440 uint64_t tpidrurw_ns;
441 uint64_t tpidrprw_ns;
442 uint64_t htpidr;
443 uint64_t _tpidr_el3;
444 };
445 uint64_t tpidr_el[4];
446 };
447 /* The secure banks of these registers don't map anywhere */
448 uint64_t tpidrurw_s;
449 uint64_t tpidrprw_s;
450 uint64_t tpidruro_s;
451
452 union { /* User RO Thread register. */
453 uint64_t tpidruro_ns;
454 uint64_t tpidrro_el[1];
455 };
a7adc4b7
PM
456 uint64_t c14_cntfrq; /* Counter Frequency register */
457 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 458 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 459 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 460 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 461 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
462 uint32_t c15_ticonfig; /* TI925T configuration byte. */
463 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
464 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
465 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
466 uint32_t c15_config_base_address; /* SCU base address. */
467 uint32_t c15_diagnostic; /* diagnostic register */
468 uint32_t c15_power_diagnostic;
469 uint32_t c15_power_control; /* power control */
0b45451e
PM
470 uint64_t dbgbvr[16]; /* breakpoint value registers */
471 uint64_t dbgbcr[16]; /* breakpoint control registers */
472 uint64_t dbgwvr[16]; /* watchpoint value registers */
473 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 474 uint64_t mdscr_el1;
1424ca8d 475 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 476 uint64_t mdcr_el2;
5513c3ab 477 uint64_t mdcr_el3;
5d05b9d4
AL
478 /* Stores the architectural value of the counter *the last time it was
479 * updated* by pmccntr_op_start. Accesses should always be surrounded
480 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
481 * architecturally-correct value is being read/set.
7c2cb42b 482 */
c92c0687 483 uint64_t c15_ccnt;
5d05b9d4
AL
484 /* Stores the delta between the architectural value and the underlying
485 * cycle count during normal operation. It is used to update c15_ccnt
486 * to be the correct architectural value before accesses. During
487 * accesses, c15_ccnt_delta contains the underlying count being used
488 * for the access, after which it reverts to the delta value in
489 * pmccntr_op_finish.
490 */
491 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
492 uint64_t c14_pmevcntr[31];
493 uint64_t c14_pmevcntr_delta[31];
494 uint64_t c14_pmevtyper[31];
8521466b 495 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 496 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 497 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 498 } cp15;
40f137e1 499
9ee6e8bb 500 struct {
fb602cb7
PM
501 /* M profile has up to 4 stack pointers:
502 * a Main Stack Pointer and a Process Stack Pointer for each
503 * of the Secure and Non-Secure states. (If the CPU doesn't support
504 * the security extension then it has only two SPs.)
505 * In QEMU we always store the currently active SP in regs[13],
506 * and the non-active SP for the current security state in
507 * v7m.other_sp. The stack pointers for the inactive security state
508 * are stored in other_ss_msp and other_ss_psp.
509 * switch_v7m_security_state() is responsible for rearranging them
510 * when we change security state.
511 */
9ee6e8bb 512 uint32_t other_sp;
fb602cb7
PM
513 uint32_t other_ss_msp;
514 uint32_t other_ss_psp;
4a16724f
PM
515 uint32_t vecbase[M_REG_NUM_BANKS];
516 uint32_t basepri[M_REG_NUM_BANKS];
517 uint32_t control[M_REG_NUM_BANKS];
518 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
519 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
520 uint32_t hfsr; /* HardFault Status */
521 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 522 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 523 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 524 uint32_t bfar; /* BusFault Address */
bed079da 525 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 526 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 527 int exception;
4a16724f
PM
528 uint32_t primask[M_REG_NUM_BANKS];
529 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 530 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 531 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 532 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 533 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
534 uint32_t msplim[M_REG_NUM_BANKS];
535 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
536 } v7m;
537
abf1172f
PM
538 /* Information associated with an exception about to be taken:
539 * code which raises an exception must set cs->exception_index and
540 * the relevant parts of this structure; the cpu_do_interrupt function
541 * will then set the guest-visible registers as part of the exception
542 * entry process.
543 */
544 struct {
545 uint32_t syndrome; /* AArch64 format syndrome register */
546 uint32_t fsr; /* AArch32 format fault status register info */
547 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 548 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
549 /* If we implement EL2 we will also need to store information
550 * about the intermediate physical address for stage 2 faults.
551 */
552 } exception;
553
202ccb6b
DG
554 /* Information associated with an SError */
555 struct {
556 uint8_t pending;
557 uint8_t has_esr;
558 uint64_t esr;
559 } serror;
560
ed89f078
PM
561 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
562 uint32_t irq_line_state;
563
fe1479c3
PB
564 /* Thumb-2 EE state. */
565 uint32_t teecr;
566 uint32_t teehbr;
567
b7bcbe95
FB
568 /* VFP coprocessor state. */
569 struct {
c39c2b90 570 ARMVectorReg zregs[32];
b7bcbe95 571
3c7d3086
RH
572#ifdef TARGET_AARCH64
573 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 574#define FFR_PRED_NUM 16
3c7d3086 575 ARMPredicateReg pregs[17];
516e246a
RH
576 /* Scratch space for aa64 sve predicate temporary. */
577 ARMPredicateReg preg_tmp;
3c7d3086
RH
578#endif
579
b7bcbe95 580 /* We store these fpcsr fields separately for convenience. */
a4d58462 581 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
582 int vec_len;
583 int vec_stride;
584
a4d58462
RH
585 uint32_t xregs[16];
586
516e246a 587 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 588 uint32_t scratch[8];
3b46e624 589
d81ce0ef
AB
590 /* There are a number of distinct float control structures:
591 *
592 * fp_status: is the "normal" fp status.
593 * fp_status_fp16: used for half-precision calculations
594 * standard_fp_status : the ARM "Standard FPSCR Value"
595 *
596 * Half-precision operations are governed by a separate
597 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
598 * status structure to control this.
599 *
600 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
601 * round-to-nearest and is used by any operations (generally
602 * Neon) which the architecture defines as controlled by the
603 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
604 *
605 * To avoid having to transfer exception bits around, we simply
606 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 607 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
608 * only thing which needs to read the exception flags being
609 * an explicit FPSCR read.
610 */
53cd6637 611 float_status fp_status;
d81ce0ef 612 float_status fp_status_f16;
3a492f3a 613 float_status standard_fp_status;
5be5e8ed
RH
614
615 /* ZCR_EL[1-3] */
616 uint64_t zcr_el[4];
b7bcbe95 617 } vfp;
03d05e2d
PM
618 uint64_t exclusive_addr;
619 uint64_t exclusive_val;
620 uint64_t exclusive_high;
b7bcbe95 621
18c9b560
AZ
622 /* iwMMXt coprocessor state. */
623 struct {
624 uint64_t regs[16];
625 uint64_t val;
626
627 uint32_t cregs[16];
628 } iwmmxt;
629
991ad91b
RH
630#ifdef TARGET_AARCH64
631 ARMPACKey apia_key;
632 ARMPACKey apib_key;
633 ARMPACKey apda_key;
634 ARMPACKey apdb_key;
635 ARMPACKey apga_key;
636#endif
637
ce4defa0
PB
638#if defined(CONFIG_USER_ONLY)
639 /* For usermode syscall translation. */
640 int eabi;
641#endif
642
46747d15 643 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
644 struct CPUWatchpoint *cpu_watchpoint[16];
645
1f5c00cf
AB
646 /* Fields up to this point are cleared by a CPU reset */
647 struct {} end_reset_fields;
648
a316d335
FB
649 CPU_COMMON
650
1f5c00cf 651 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 652
581be094 653 /* Internal CPU feature flags. */
918f5dca 654 uint64_t features;
581be094 655
6cb0b013
PC
656 /* PMSAv7 MPU */
657 struct {
658 uint32_t *drbar;
659 uint32_t *drsr;
660 uint32_t *dracr;
4a16724f 661 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
662 } pmsav7;
663
0e1a46bb
PM
664 /* PMSAv8 MPU */
665 struct {
666 /* The PMSAv8 implementation also shares some PMSAv7 config
667 * and state:
668 * pmsav7.rnr (region number register)
669 * pmsav7_dregion (number of configured regions)
670 */
4a16724f
PM
671 uint32_t *rbar[M_REG_NUM_BANKS];
672 uint32_t *rlar[M_REG_NUM_BANKS];
673 uint32_t mair0[M_REG_NUM_BANKS];
674 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
675 } pmsav8;
676
9901c576
PM
677 /* v8M SAU */
678 struct {
679 uint32_t *rbar;
680 uint32_t *rlar;
681 uint32_t rnr;
682 uint32_t ctrl;
683 } sau;
684
983fe826 685 void *nvic;
462a8bc6 686 const struct arm_boot_info *boot_info;
d3a3e529
VK
687 /* Store GICv3CPUState to access from this struct */
688 void *gicv3state;
2c0262af
FB
689} CPUARMState;
690
bd7d00fc 691/**
08267487 692 * ARMELChangeHookFn:
bd7d00fc
PM
693 * type of a function which can be registered via arm_register_el_change_hook()
694 * to get callbacks when the CPU changes its exception level or mode.
695 */
08267487
AL
696typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
697typedef struct ARMELChangeHook ARMELChangeHook;
698struct ARMELChangeHook {
699 ARMELChangeHookFn *hook;
700 void *opaque;
701 QLIST_ENTRY(ARMELChangeHook) node;
702};
062ba099
AB
703
704/* These values map onto the return values for
705 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
706typedef enum ARMPSCIState {
d5affb0d
AJ
707 PSCI_ON = 0,
708 PSCI_OFF = 1,
062ba099
AB
709 PSCI_ON_PENDING = 2
710} ARMPSCIState;
711
962fcbf2
RH
712typedef struct ARMISARegisters ARMISARegisters;
713
74e75564
PB
714/**
715 * ARMCPU:
716 * @env: #CPUARMState
717 *
718 * An ARM CPU core.
719 */
720struct ARMCPU {
721 /*< private >*/
722 CPUState parent_obj;
723 /*< public >*/
724
725 CPUARMState env;
726
727 /* Coprocessor information */
728 GHashTable *cp_regs;
729 /* For marshalling (mostly coprocessor) register state between the
730 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
731 * we use these arrays.
732 */
733 /* List of register indexes managed via these arrays; (full KVM style
734 * 64 bit indexes, not CPRegInfo 32 bit indexes)
735 */
736 uint64_t *cpreg_indexes;
737 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
738 uint64_t *cpreg_values;
739 /* Length of the indexes, values, reset_values arrays */
740 int32_t cpreg_array_len;
741 /* These are used only for migration: incoming data arrives in
742 * these fields and is sanity checked in post_load before copying
743 * to the working data structures above.
744 */
745 uint64_t *cpreg_vmstate_indexes;
746 uint64_t *cpreg_vmstate_values;
747 int32_t cpreg_vmstate_array_len;
748
200bf5b7
AB
749 DynamicGDBXMLInfo dyn_xml;
750
74e75564
PB
751 /* Timers used by the generic (architected) timer */
752 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
753 /*
754 * Timer used by the PMU. Its state is restored after migration by
755 * pmu_op_finish() - it does not need other handling during migration
756 */
757 QEMUTimer *pmu_timer;
74e75564
PB
758 /* GPIO outputs for generic timer */
759 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
760 /* GPIO output for GICv3 maintenance interrupt signal */
761 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
762 /* GPIO output for the PMU interrupt */
763 qemu_irq pmu_interrupt;
74e75564
PB
764
765 /* MemoryRegion to use for secure physical accesses */
766 MemoryRegion *secure_memory;
767
181962fd
PM
768 /* For v8M, pointer to the IDAU interface provided by board/SoC */
769 Object *idau;
770
74e75564
PB
771 /* 'compatible' string for this CPU for Linux device trees */
772 const char *dtb_compatible;
773
774 /* PSCI version for this CPU
775 * Bits[31:16] = Major Version
776 * Bits[15:0] = Minor Version
777 */
778 uint32_t psci_version;
779
780 /* Should CPU start in PSCI powered-off state? */
781 bool start_powered_off;
062ba099
AB
782
783 /* Current power state, access guarded by BQL */
784 ARMPSCIState power_state;
785
c25bd18a
PM
786 /* CPU has virtualization extension */
787 bool has_el2;
74e75564
PB
788 /* CPU has security extension */
789 bool has_el3;
5c0a3819
SZ
790 /* CPU has PMU (Performance Monitor Unit) */
791 bool has_pmu;
74e75564
PB
792
793 /* CPU has memory protection unit */
794 bool has_mpu;
795 /* PMSAv7 MPU number of supported regions */
796 uint32_t pmsav7_dregion;
9901c576
PM
797 /* v8M SAU number of supported regions */
798 uint32_t sau_sregion;
74e75564
PB
799
800 /* PSCI conduit used to invoke PSCI methods
801 * 0 - disabled, 1 - smc, 2 - hvc
802 */
803 uint32_t psci_conduit;
804
38e2a77c
PM
805 /* For v8M, initial value of the Secure VTOR */
806 uint32_t init_svtor;
807
74e75564
PB
808 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
809 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
810 */
811 uint32_t kvm_target;
812
813 /* KVM init features for this CPU */
814 uint32_t kvm_init_features[7];
815
816 /* Uniprocessor system with MP extensions */
817 bool mp_is_up;
818
c4487d76
PM
819 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
820 * and the probe failed (so we need to report the error in realize)
821 */
822 bool host_cpu_probe_failed;
823
f9a69711
AF
824 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
825 * register.
826 */
827 int32_t core_count;
828
74e75564
PB
829 /* The instance init functions for implementation-specific subclasses
830 * set these fields to specify the implementation-dependent values of
831 * various constant registers and reset values of non-constant
832 * registers.
833 * Some of these might become QOM properties eventually.
834 * Field names match the official register names as defined in the
835 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
836 * is used for reset values of non-constant registers; no reset_
837 * prefix means a constant register.
47576b94
RH
838 * Some of these registers are split out into a substructure that
839 * is shared with the translators to control the ISA.
74e75564 840 */
47576b94
RH
841 struct ARMISARegisters {
842 uint32_t id_isar0;
843 uint32_t id_isar1;
844 uint32_t id_isar2;
845 uint32_t id_isar3;
846 uint32_t id_isar4;
847 uint32_t id_isar5;
848 uint32_t id_isar6;
849 uint32_t mvfr0;
850 uint32_t mvfr1;
851 uint32_t mvfr2;
852 uint64_t id_aa64isar0;
853 uint64_t id_aa64isar1;
854 uint64_t id_aa64pfr0;
855 uint64_t id_aa64pfr1;
3dc91ddb
PM
856 uint64_t id_aa64mmfr0;
857 uint64_t id_aa64mmfr1;
47576b94 858 } isar;
74e75564
PB
859 uint32_t midr;
860 uint32_t revidr;
861 uint32_t reset_fpsid;
74e75564
PB
862 uint32_t ctr;
863 uint32_t reset_sctlr;
864 uint32_t id_pfr0;
865 uint32_t id_pfr1;
866 uint32_t id_dfr0;
cad86737
AL
867 uint64_t pmceid0;
868 uint64_t pmceid1;
74e75564
PB
869 uint32_t id_afr0;
870 uint32_t id_mmfr0;
871 uint32_t id_mmfr1;
872 uint32_t id_mmfr2;
873 uint32_t id_mmfr3;
874 uint32_t id_mmfr4;
74e75564
PB
875 uint64_t id_aa64dfr0;
876 uint64_t id_aa64dfr1;
877 uint64_t id_aa64afr0;
878 uint64_t id_aa64afr1;
74e75564
PB
879 uint32_t dbgdidr;
880 uint32_t clidr;
881 uint64_t mp_affinity; /* MP ID without feature bits */
882 /* The elements of this array are the CCSIDR values for each cache,
883 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
884 */
885 uint32_t ccsidr[16];
886 uint64_t reset_cbar;
887 uint32_t reset_auxcr;
888 bool reset_hivecs;
889 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
890 uint32_t dcz_blocksize;
891 uint64_t rvbar;
bd7d00fc 892
e45868a3
PM
893 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
894 int gic_num_lrs; /* number of list registers */
895 int gic_vpribits; /* number of virtual priority bits */
896 int gic_vprebits; /* number of virtual preemption bits */
897
3a062d57
JB
898 /* Whether the cfgend input is high (i.e. this CPU should reset into
899 * big-endian mode). This setting isn't used directly: instead it modifies
900 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
901 * architecture version.
902 */
903 bool cfgend;
904
b5c53d1b 905 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 906 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
907
908 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
909
910 /* Used to synchronize KVM and QEMU in-kernel device levels */
911 uint8_t device_irq_level;
adf92eab
RH
912
913 /* Used to set the maximum vector length the cpu will support. */
914 uint32_t sve_max_vq;
74e75564
PB
915};
916
917static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
918{
919 return container_of(env, ARMCPU, env);
920}
921
51e5ef45
MAL
922void arm_cpu_post_init(Object *obj);
923
46de5913
IM
924uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
925
74e75564
PB
926#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
927
928#define ENV_OFFSET offsetof(ARMCPU, env)
929
930#ifndef CONFIG_USER_ONLY
931extern const struct VMStateDescription vmstate_arm_cpu;
932#endif
933
934void arm_cpu_do_interrupt(CPUState *cpu);
935void arm_v7m_cpu_do_interrupt(CPUState *cpu);
936bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
937
938void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
939 int flags);
940
941hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
942 MemTxAttrs *attrs);
943
944int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
945int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
946
200bf5b7
AB
947/* Dynamically generates for gdb stub an XML description of the sysregs from
948 * the cp_regs hashtable. Returns the registered sysregs number.
949 */
950int arm_gen_dynamic_xml(CPUState *cpu);
951
952/* Returns the dynamically generated XML for the gdb stub.
953 * Returns a pointer to the XML contents for the specified XML file or NULL
954 * if the XML name doesn't match the predefined one.
955 */
956const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
957
74e75564
PB
958int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
959 int cpuid, void *opaque);
960int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
961 int cpuid, void *opaque);
962
963#ifdef TARGET_AARCH64
964int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
965int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 966void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
967void aarch64_sve_change_el(CPUARMState *env, int old_el,
968 int new_el, bool el0_a64);
0ab5953b
RH
969#else
970static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
971static inline void aarch64_sve_change_el(CPUARMState *env, int o,
972 int n, bool a)
973{ }
74e75564 974#endif
778c3a06 975
faacc041 976target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
977void aarch64_sync_32_to_64(CPUARMState *env);
978void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 979
ced31551
RH
980int fp_exception_el(CPUARMState *env, int cur_el);
981int sve_exception_el(CPUARMState *env, int cur_el);
982uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
983
3926cc84
AG
984static inline bool is_a64(CPUARMState *env)
985{
986 return env->aarch64;
987}
988
2c0262af
FB
989/* you can call this signal handler from your SIGBUS and SIGSEGV
990 signal handlers to inform the virtual CPU of exceptions. non zero
991 is returned if the signal was handled by the virtual CPU. */
5fafdf24 992int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
993 void *puc);
994
ec7b4ce4 995/**
5d05b9d4
AL
996 * pmccntr_op_start/finish
997 * @env: CPUARMState
998 *
999 * Convert the counter in the PMCCNTR between its delta form (the typical mode
1000 * when it's enabled) and the guest-visible value. These two calls must always
1001 * surround any action which might affect the counter.
1002 */
1003void pmccntr_op_start(CPUARMState *env);
1004void pmccntr_op_finish(CPUARMState *env);
1005
1006/**
1007 * pmu_op_start/finish
ec7b4ce4
AF
1008 * @env: CPUARMState
1009 *
5d05b9d4
AL
1010 * Convert all PMU counters between their delta form (the typical mode when
1011 * they are enabled) and the guest-visible values. These two calls must
1012 * surround any action which might affect the counters.
ec7b4ce4 1013 */
5d05b9d4
AL
1014void pmu_op_start(CPUARMState *env);
1015void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1016
4e7beb0c
AL
1017/*
1018 * Called when a PMU counter is due to overflow
1019 */
1020void arm_pmu_timer_cb(void *opaque);
1021
033614c4
AL
1022/**
1023 * Functions to register as EL change hooks for PMU mode filtering
1024 */
1025void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1026void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1027
57a4a11b 1028/*
bf8d0969
AL
1029 * pmu_init
1030 * @cpu: ARMCPU
57a4a11b 1031 *
bf8d0969
AL
1032 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1033 * for the current configuration
57a4a11b 1034 */
bf8d0969 1035void pmu_init(ARMCPU *cpu);
57a4a11b 1036
76e3e1bc
PM
1037/* SCTLR bit meanings. Several bits have been reused in newer
1038 * versions of the architecture; in that case we define constants
1039 * for both old and new bit meanings. Code which tests against those
1040 * bits should probably check or otherwise arrange that the CPU
1041 * is the architectural version it expects.
1042 */
1043#define SCTLR_M (1U << 0)
1044#define SCTLR_A (1U << 1)
1045#define SCTLR_C (1U << 2)
1046#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1047#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1048#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1049#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1050#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1051#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1052#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1053#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1054#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1055#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1056#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1057#define SCTLR_ITD (1U << 7) /* v8 onward */
1058#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1059#define SCTLR_SED (1U << 8) /* v8 onward */
1060#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1061#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1062#define SCTLR_F (1U << 10) /* up to v6 */
b2af69d0
RH
1063#define SCTLR_SW (1U << 10) /* v7, RES0 in v8 */
1064#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1065#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1066#define SCTLR_I (1U << 12)
b2af69d0
RH
1067#define SCTLR_V (1U << 13) /* AArch32 only */
1068#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1069#define SCTLR_RR (1U << 14) /* up to v7 */
1070#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1071#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1072#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1073#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1074#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1075#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1076#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1077#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1078#define SCTLR_nTWE (1U << 18) /* v8 onward */
1079#define SCTLR_WXN (1U << 19)
1080#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1081#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1082#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1083#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1084#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1085#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1086#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1087#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1088#define SCTLR_VE (1U << 24) /* up to v7 */
1089#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1090#define SCTLR_EE (1U << 25)
1091#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1092#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1093#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1094#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1095#define SCTLR_TRE (1U << 28) /* AArch32 only */
1096#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1097#define SCTLR_AFE (1U << 29) /* AArch32 only */
1098#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1099#define SCTLR_TE (1U << 30) /* AArch32 only */
1100#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1101#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1102#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1103#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1104#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1105#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1106#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1107#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1108#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1109#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1110
c6f19164
GB
1111#define CPTR_TCPAC (1U << 31)
1112#define CPTR_TTA (1U << 20)
1113#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1114#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1115#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1116
187f678d
PM
1117#define MDCR_EPMAD (1U << 21)
1118#define MDCR_EDAD (1U << 20)
033614c4
AL
1119#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1120#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1121#define MDCR_SDD (1U << 16)
a8d64e73 1122#define MDCR_SPD (3U << 14)
187f678d
PM
1123#define MDCR_TDRA (1U << 11)
1124#define MDCR_TDOSA (1U << 10)
1125#define MDCR_TDA (1U << 9)
1126#define MDCR_TDE (1U << 8)
1127#define MDCR_HPME (1U << 7)
1128#define MDCR_TPM (1U << 6)
1129#define MDCR_TPMCR (1U << 5)
033614c4 1130#define MDCR_HPMN (0x1fU)
187f678d 1131
a8d64e73
PM
1132/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1133#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1134
78dbbbe4
PM
1135#define CPSR_M (0x1fU)
1136#define CPSR_T (1U << 5)
1137#define CPSR_F (1U << 6)
1138#define CPSR_I (1U << 7)
1139#define CPSR_A (1U << 8)
1140#define CPSR_E (1U << 9)
1141#define CPSR_IT_2_7 (0xfc00U)
1142#define CPSR_GE (0xfU << 16)
4051e12c
PM
1143#define CPSR_IL (1U << 20)
1144/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1145 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1146 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1147 * where it is live state but not accessible to the AArch32 code.
1148 */
1149#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1150#define CPSR_J (1U << 24)
1151#define CPSR_IT_0_1 (3U << 25)
1152#define CPSR_Q (1U << 27)
1153#define CPSR_V (1U << 28)
1154#define CPSR_C (1U << 29)
1155#define CPSR_Z (1U << 30)
1156#define CPSR_N (1U << 31)
9ee6e8bb 1157#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1158#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1159
1160#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1161#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1162 | CPSR_NZCV)
9ee6e8bb
PB
1163/* Bits writable in user mode. */
1164#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1165/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1166#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1167/* Mask of bits which may be set by exception return copying them from SPSR */
1168#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1169
987ab45e
PM
1170/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1171#define XPSR_EXCP 0x1ffU
1172#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1173#define XPSR_IT_2_7 CPSR_IT_2_7
1174#define XPSR_GE CPSR_GE
1175#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1176#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1177#define XPSR_IT_0_1 CPSR_IT_0_1
1178#define XPSR_Q CPSR_Q
1179#define XPSR_V CPSR_V
1180#define XPSR_C CPSR_C
1181#define XPSR_Z CPSR_Z
1182#define XPSR_N CPSR_N
1183#define XPSR_NZCV CPSR_NZCV
1184#define XPSR_IT CPSR_IT
1185
e389be16
FA
1186#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1187#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1188#define TTBCR_PD0 (1U << 4)
1189#define TTBCR_PD1 (1U << 5)
1190#define TTBCR_EPD0 (1U << 7)
1191#define TTBCR_IRGN0 (3U << 8)
1192#define TTBCR_ORGN0 (3U << 10)
1193#define TTBCR_SH0 (3U << 12)
1194#define TTBCR_T1SZ (3U << 16)
1195#define TTBCR_A1 (1U << 22)
1196#define TTBCR_EPD1 (1U << 23)
1197#define TTBCR_IRGN1 (3U << 24)
1198#define TTBCR_ORGN1 (3U << 26)
1199#define TTBCR_SH1 (1U << 28)
1200#define TTBCR_EAE (1U << 31)
1201
d356312f
PM
1202/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1203 * Only these are valid when in AArch64 mode; in
1204 * AArch32 mode SPSRs are basically CPSR-format.
1205 */
f502cfc2 1206#define PSTATE_SP (1U)
d356312f
PM
1207#define PSTATE_M (0xFU)
1208#define PSTATE_nRW (1U << 4)
1209#define PSTATE_F (1U << 6)
1210#define PSTATE_I (1U << 7)
1211#define PSTATE_A (1U << 8)
1212#define PSTATE_D (1U << 9)
f6e52eaa 1213#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1214#define PSTATE_IL (1U << 20)
1215#define PSTATE_SS (1U << 21)
1216#define PSTATE_V (1U << 28)
1217#define PSTATE_C (1U << 29)
1218#define PSTATE_Z (1U << 30)
1219#define PSTATE_N (1U << 31)
1220#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1221#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1222#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1223/* Mode values for AArch64 */
1224#define PSTATE_MODE_EL3h 13
1225#define PSTATE_MODE_EL3t 12
1226#define PSTATE_MODE_EL2h 9
1227#define PSTATE_MODE_EL2t 8
1228#define PSTATE_MODE_EL1h 5
1229#define PSTATE_MODE_EL1t 4
1230#define PSTATE_MODE_EL0t 0
1231
de2db7ec
PM
1232/* Write a new value to v7m.exception, thus transitioning into or out
1233 * of Handler mode; this may result in a change of active stack pointer.
1234 */
1235void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1236
9e729b57
EI
1237/* Map EL and handler into a PSTATE_MODE. */
1238static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1239{
1240 return (el << 2) | handler;
1241}
1242
d356312f
PM
1243/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1244 * interprocessing, so we don't attempt to sync with the cpsr state used by
1245 * the 32 bit decoder.
1246 */
1247static inline uint32_t pstate_read(CPUARMState *env)
1248{
1249 int ZF;
1250
1251 ZF = (env->ZF == 0);
1252 return (env->NF & 0x80000000) | (ZF << 30)
1253 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1254 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1255}
1256
1257static inline void pstate_write(CPUARMState *env, uint32_t val)
1258{
1259 env->ZF = (~val) & PSTATE_Z;
1260 env->NF = val;
1261 env->CF = (val >> 29) & 1;
1262 env->VF = (val << 3) & 0x80000000;
4cc35614 1263 env->daif = val & PSTATE_DAIF;
f6e52eaa 1264 env->btype = (val >> 10) & 3;
d356312f
PM
1265 env->pstate = val & ~CACHED_PSTATE_BITS;
1266}
1267
b5ff1b31 1268/* Return the current CPSR value. */
2f4a40e5 1269uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1270
1271typedef enum CPSRWriteType {
1272 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1273 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1274 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1275 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1276} CPSRWriteType;
1277
1278/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1279void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1280 CPSRWriteType write_type);
9ee6e8bb
PB
1281
1282/* Return the current xPSR value. */
1283static inline uint32_t xpsr_read(CPUARMState *env)
1284{
1285 int ZF;
6fbe23d5
PB
1286 ZF = (env->ZF == 0);
1287 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1288 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1289 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1290 | ((env->condexec_bits & 0xfc) << 8)
1291 | env->v7m.exception;
b5ff1b31
FB
1292}
1293
9ee6e8bb
PB
1294/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1295static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1296{
987ab45e
PM
1297 if (mask & XPSR_NZCV) {
1298 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1299 env->NF = val;
9ee6e8bb
PB
1300 env->CF = (val >> 29) & 1;
1301 env->VF = (val << 3) & 0x80000000;
1302 }
987ab45e
PM
1303 if (mask & XPSR_Q) {
1304 env->QF = ((val & XPSR_Q) != 0);
1305 }
1306 if (mask & XPSR_T) {
1307 env->thumb = ((val & XPSR_T) != 0);
1308 }
1309 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1310 env->condexec_bits &= ~3;
1311 env->condexec_bits |= (val >> 25) & 3;
1312 }
987ab45e 1313 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1314 env->condexec_bits &= 3;
1315 env->condexec_bits |= (val >> 8) & 0xfc;
1316 }
987ab45e 1317 if (mask & XPSR_EXCP) {
de2db7ec
PM
1318 /* Note that this only happens on exception exit */
1319 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1320 }
1321}
1322
f149e3e8
EI
1323#define HCR_VM (1ULL << 0)
1324#define HCR_SWIO (1ULL << 1)
1325#define HCR_PTW (1ULL << 2)
1326#define HCR_FMO (1ULL << 3)
1327#define HCR_IMO (1ULL << 4)
1328#define HCR_AMO (1ULL << 5)
1329#define HCR_VF (1ULL << 6)
1330#define HCR_VI (1ULL << 7)
1331#define HCR_VSE (1ULL << 8)
1332#define HCR_FB (1ULL << 9)
1333#define HCR_BSU_MASK (3ULL << 10)
1334#define HCR_DC (1ULL << 12)
1335#define HCR_TWI (1ULL << 13)
1336#define HCR_TWE (1ULL << 14)
1337#define HCR_TID0 (1ULL << 15)
1338#define HCR_TID1 (1ULL << 16)
1339#define HCR_TID2 (1ULL << 17)
1340#define HCR_TID3 (1ULL << 18)
1341#define HCR_TSC (1ULL << 19)
1342#define HCR_TIDCP (1ULL << 20)
1343#define HCR_TACR (1ULL << 21)
1344#define HCR_TSW (1ULL << 22)
099bf53b 1345#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1346#define HCR_TPU (1ULL << 24)
1347#define HCR_TTLB (1ULL << 25)
1348#define HCR_TVM (1ULL << 26)
1349#define HCR_TGE (1ULL << 27)
1350#define HCR_TDZ (1ULL << 28)
1351#define HCR_HCD (1ULL << 29)
1352#define HCR_TRVM (1ULL << 30)
1353#define HCR_RW (1ULL << 31)
1354#define HCR_CD (1ULL << 32)
1355#define HCR_ID (1ULL << 33)
ac656b16 1356#define HCR_E2H (1ULL << 34)
099bf53b
RH
1357#define HCR_TLOR (1ULL << 35)
1358#define HCR_TERR (1ULL << 36)
1359#define HCR_TEA (1ULL << 37)
1360#define HCR_MIOCNCE (1ULL << 38)
1361#define HCR_APK (1ULL << 40)
1362#define HCR_API (1ULL << 41)
1363#define HCR_NV (1ULL << 42)
1364#define HCR_NV1 (1ULL << 43)
1365#define HCR_AT (1ULL << 44)
1366#define HCR_NV2 (1ULL << 45)
1367#define HCR_FWB (1ULL << 46)
1368#define HCR_FIEN (1ULL << 47)
1369#define HCR_TID4 (1ULL << 49)
1370#define HCR_TICAB (1ULL << 50)
1371#define HCR_TOCU (1ULL << 52)
1372#define HCR_TTLBIS (1ULL << 54)
1373#define HCR_TTLBOS (1ULL << 55)
1374#define HCR_ATA (1ULL << 56)
1375#define HCR_DCT (1ULL << 57)
1376
ac656b16
PM
1377/*
1378 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1379 * HCR_MASK and then clear it again if the feature bit is not set in
1380 * hcr_write().
1381 */
f149e3e8
EI
1382#define HCR_MASK ((1ULL << 34) - 1)
1383
64e0e2de
EI
1384#define SCR_NS (1U << 0)
1385#define SCR_IRQ (1U << 1)
1386#define SCR_FIQ (1U << 2)
1387#define SCR_EA (1U << 3)
1388#define SCR_FW (1U << 4)
1389#define SCR_AW (1U << 5)
1390#define SCR_NET (1U << 6)
1391#define SCR_SMD (1U << 7)
1392#define SCR_HCE (1U << 8)
1393#define SCR_SIF (1U << 9)
1394#define SCR_RW (1U << 10)
1395#define SCR_ST (1U << 11)
1396#define SCR_TWI (1U << 12)
1397#define SCR_TWE (1U << 13)
99f8f86d
RH
1398#define SCR_TLOR (1U << 14)
1399#define SCR_TERR (1U << 15)
1400#define SCR_APK (1U << 16)
1401#define SCR_API (1U << 17)
1402#define SCR_EEL2 (1U << 18)
1403#define SCR_EASE (1U << 19)
1404#define SCR_NMEA (1U << 20)
1405#define SCR_FIEN (1U << 21)
1406#define SCR_ENSCXT (1U << 25)
1407#define SCR_ATA (1U << 26)
64e0e2de 1408
01653295
PM
1409/* Return the current FPSCR value. */
1410uint32_t vfp_get_fpscr(CPUARMState *env);
1411void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1412
d81ce0ef
AB
1413/* FPCR, Floating Point Control Register
1414 * FPSR, Floating Poiht Status Register
1415 *
1416 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1417 * FPCR and FPSR. However since they still use non-overlapping bits
1418 * we store the underlying state in fpscr and just mask on read/write.
1419 */
1420#define FPSR_MASK 0xf800009f
0b62159b 1421#define FPCR_MASK 0x07ff9f00
d81ce0ef 1422
a15945d9
PM
1423#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1424#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1425#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1426#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1427#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1428#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1429#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1430#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1431#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1432#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1433
f903fa22
PM
1434static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1435{
1436 return vfp_get_fpscr(env) & FPSR_MASK;
1437}
1438
1439static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1440{
1441 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1442 vfp_set_fpscr(env, new_fpscr);
1443}
1444
1445static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1446{
1447 return vfp_get_fpscr(env) & FPCR_MASK;
1448}
1449
1450static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1451{
1452 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1453 vfp_set_fpscr(env, new_fpscr);
1454}
1455
b5ff1b31
FB
1456enum arm_cpu_mode {
1457 ARM_CPU_MODE_USR = 0x10,
1458 ARM_CPU_MODE_FIQ = 0x11,
1459 ARM_CPU_MODE_IRQ = 0x12,
1460 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1461 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1462 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1463 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1464 ARM_CPU_MODE_UND = 0x1b,
1465 ARM_CPU_MODE_SYS = 0x1f
1466};
1467
40f137e1
PB
1468/* VFP system registers. */
1469#define ARM_VFP_FPSID 0
1470#define ARM_VFP_FPSCR 1
a50c0f51 1471#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1472#define ARM_VFP_MVFR1 6
1473#define ARM_VFP_MVFR0 7
40f137e1
PB
1474#define ARM_VFP_FPEXC 8
1475#define ARM_VFP_FPINST 9
1476#define ARM_VFP_FPINST2 10
1477
18c9b560 1478/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1479#define ARM_IWMMXT_wCID 0
1480#define ARM_IWMMXT_wCon 1
1481#define ARM_IWMMXT_wCSSF 2
1482#define ARM_IWMMXT_wCASF 3
1483#define ARM_IWMMXT_wCGR0 8
1484#define ARM_IWMMXT_wCGR1 9
1485#define ARM_IWMMXT_wCGR2 10
1486#define ARM_IWMMXT_wCGR3 11
18c9b560 1487
2c4da50d
PM
1488/* V7M CCR bits */
1489FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1490FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1491FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1492FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1493FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1494FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1495FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1496FIELD(V7M_CCR, DC, 16, 1)
1497FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1498FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1499
24ac0fb1
PM
1500/* V7M SCR bits */
1501FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1502FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1503FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1504FIELD(V7M_SCR, SEVONPEND, 4, 1)
1505
3b2e9344
PM
1506/* V7M AIRCR bits */
1507FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1508FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1509FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1510FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1511FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1512FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1513FIELD(V7M_AIRCR, PRIS, 14, 1)
1514FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1515FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1516
2c4da50d
PM
1517/* V7M CFSR bits for MMFSR */
1518FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1519FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1520FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1521FIELD(V7M_CFSR, MSTKERR, 4, 1)
1522FIELD(V7M_CFSR, MLSPERR, 5, 1)
1523FIELD(V7M_CFSR, MMARVALID, 7, 1)
1524
1525/* V7M CFSR bits for BFSR */
1526FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1527FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1528FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1529FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1530FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1531FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1532FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1533
1534/* V7M CFSR bits for UFSR */
1535FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1536FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1537FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1538FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1539FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1540FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1541FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1542
334e8dad
PM
1543/* V7M CFSR bit masks covering all of the subregister bits */
1544FIELD(V7M_CFSR, MMFSR, 0, 8)
1545FIELD(V7M_CFSR, BFSR, 8, 8)
1546FIELD(V7M_CFSR, UFSR, 16, 16)
1547
2c4da50d
PM
1548/* V7M HFSR bits */
1549FIELD(V7M_HFSR, VECTTBL, 1, 1)
1550FIELD(V7M_HFSR, FORCED, 30, 1)
1551FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1552
1553/* V7M DFSR bits */
1554FIELD(V7M_DFSR, HALTED, 0, 1)
1555FIELD(V7M_DFSR, BKPT, 1, 1)
1556FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1557FIELD(V7M_DFSR, VCATCH, 3, 1)
1558FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1559
bed079da
PM
1560/* V7M SFSR bits */
1561FIELD(V7M_SFSR, INVEP, 0, 1)
1562FIELD(V7M_SFSR, INVIS, 1, 1)
1563FIELD(V7M_SFSR, INVER, 2, 1)
1564FIELD(V7M_SFSR, AUVIOL, 3, 1)
1565FIELD(V7M_SFSR, INVTRAN, 4, 1)
1566FIELD(V7M_SFSR, LSPERR, 5, 1)
1567FIELD(V7M_SFSR, SFARVALID, 6, 1)
1568FIELD(V7M_SFSR, LSERR, 7, 1)
1569
29c483a5
MD
1570/* v7M MPU_CTRL bits */
1571FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1572FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1573FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1574
43bbce7f
PM
1575/* v7M CLIDR bits */
1576FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1577FIELD(V7M_CLIDR, LOUIS, 21, 3)
1578FIELD(V7M_CLIDR, LOC, 24, 3)
1579FIELD(V7M_CLIDR, LOUU, 27, 3)
1580FIELD(V7M_CLIDR, ICB, 30, 2)
1581
1582FIELD(V7M_CSSELR, IND, 0, 1)
1583FIELD(V7M_CSSELR, LEVEL, 1, 3)
1584/* We use the combination of InD and Level to index into cpu->ccsidr[];
1585 * define a mask for this and check that it doesn't permit running off
1586 * the end of the array.
1587 */
1588FIELD(V7M_CSSELR, INDEX, 0, 4)
1589
a62e62af
RH
1590/*
1591 * System register ID fields.
1592 */
1593FIELD(ID_ISAR0, SWAP, 0, 4)
1594FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1595FIELD(ID_ISAR0, BITFIELD, 8, 4)
1596FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1597FIELD(ID_ISAR0, COPROC, 16, 4)
1598FIELD(ID_ISAR0, DEBUG, 20, 4)
1599FIELD(ID_ISAR0, DIVIDE, 24, 4)
1600
1601FIELD(ID_ISAR1, ENDIAN, 0, 4)
1602FIELD(ID_ISAR1, EXCEPT, 4, 4)
1603FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1604FIELD(ID_ISAR1, EXTEND, 12, 4)
1605FIELD(ID_ISAR1, IFTHEN, 16, 4)
1606FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1607FIELD(ID_ISAR1, INTERWORK, 24, 4)
1608FIELD(ID_ISAR1, JAZELLE, 28, 4)
1609
1610FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1611FIELD(ID_ISAR2, MEMHINT, 4, 4)
1612FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1613FIELD(ID_ISAR2, MULT, 12, 4)
1614FIELD(ID_ISAR2, MULTS, 16, 4)
1615FIELD(ID_ISAR2, MULTU, 20, 4)
1616FIELD(ID_ISAR2, PSR_AR, 24, 4)
1617FIELD(ID_ISAR2, REVERSAL, 28, 4)
1618
1619FIELD(ID_ISAR3, SATURATE, 0, 4)
1620FIELD(ID_ISAR3, SIMD, 4, 4)
1621FIELD(ID_ISAR3, SVC, 8, 4)
1622FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1623FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1624FIELD(ID_ISAR3, T32COPY, 20, 4)
1625FIELD(ID_ISAR3, TRUENOP, 24, 4)
1626FIELD(ID_ISAR3, T32EE, 28, 4)
1627
1628FIELD(ID_ISAR4, UNPRIV, 0, 4)
1629FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1630FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1631FIELD(ID_ISAR4, SMC, 12, 4)
1632FIELD(ID_ISAR4, BARRIER, 16, 4)
1633FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1634FIELD(ID_ISAR4, PSR_M, 24, 4)
1635FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1636
1637FIELD(ID_ISAR5, SEVL, 0, 4)
1638FIELD(ID_ISAR5, AES, 4, 4)
1639FIELD(ID_ISAR5, SHA1, 8, 4)
1640FIELD(ID_ISAR5, SHA2, 12, 4)
1641FIELD(ID_ISAR5, CRC32, 16, 4)
1642FIELD(ID_ISAR5, RDM, 24, 4)
1643FIELD(ID_ISAR5, VCMA, 28, 4)
1644
1645FIELD(ID_ISAR6, JSCVT, 0, 4)
1646FIELD(ID_ISAR6, DP, 4, 4)
1647FIELD(ID_ISAR6, FHM, 8, 4)
1648FIELD(ID_ISAR6, SB, 12, 4)
1649FIELD(ID_ISAR6, SPECRES, 16, 4)
1650
ab638a32
RH
1651FIELD(ID_MMFR4, SPECSEI, 0, 4)
1652FIELD(ID_MMFR4, AC2, 4, 4)
1653FIELD(ID_MMFR4, XNX, 8, 4)
1654FIELD(ID_MMFR4, CNP, 12, 4)
1655FIELD(ID_MMFR4, HPDS, 16, 4)
1656FIELD(ID_MMFR4, LSM, 20, 4)
1657FIELD(ID_MMFR4, CCIDX, 24, 4)
1658FIELD(ID_MMFR4, EVT, 28, 4)
1659
a62e62af
RH
1660FIELD(ID_AA64ISAR0, AES, 4, 4)
1661FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1662FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1663FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1664FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1665FIELD(ID_AA64ISAR0, RDM, 28, 4)
1666FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1667FIELD(ID_AA64ISAR0, SM3, 36, 4)
1668FIELD(ID_AA64ISAR0, SM4, 40, 4)
1669FIELD(ID_AA64ISAR0, DP, 44, 4)
1670FIELD(ID_AA64ISAR0, FHM, 48, 4)
1671FIELD(ID_AA64ISAR0, TS, 52, 4)
1672FIELD(ID_AA64ISAR0, TLB, 56, 4)
1673FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1674
1675FIELD(ID_AA64ISAR1, DPB, 0, 4)
1676FIELD(ID_AA64ISAR1, APA, 4, 4)
1677FIELD(ID_AA64ISAR1, API, 8, 4)
1678FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1679FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1680FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1681FIELD(ID_AA64ISAR1, GPA, 24, 4)
1682FIELD(ID_AA64ISAR1, GPI, 28, 4)
1683FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1684FIELD(ID_AA64ISAR1, SB, 36, 4)
1685FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1686
cd208a1c
RH
1687FIELD(ID_AA64PFR0, EL0, 0, 4)
1688FIELD(ID_AA64PFR0, EL1, 4, 4)
1689FIELD(ID_AA64PFR0, EL2, 8, 4)
1690FIELD(ID_AA64PFR0, EL3, 12, 4)
1691FIELD(ID_AA64PFR0, FP, 16, 4)
1692FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1693FIELD(ID_AA64PFR0, GIC, 24, 4)
1694FIELD(ID_AA64PFR0, RAS, 28, 4)
1695FIELD(ID_AA64PFR0, SVE, 32, 4)
1696
be53b6f4
RH
1697FIELD(ID_AA64PFR1, BT, 0, 4)
1698FIELD(ID_AA64PFR1, SBSS, 4, 4)
1699FIELD(ID_AA64PFR1, MTE, 8, 4)
1700FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1701
3dc91ddb
PM
1702FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1703FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1704FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1705FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1706FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1707FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1708FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1709FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1710FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1711FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1712FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1713FIELD(ID_AA64MMFR0, EXS, 44, 4)
1714
1715FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1716FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1717FIELD(ID_AA64MMFR1, VH, 8, 4)
1718FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1719FIELD(ID_AA64MMFR1, LO, 16, 4)
1720FIELD(ID_AA64MMFR1, PAN, 20, 4)
1721FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1722FIELD(ID_AA64MMFR1, XNX, 28, 4)
1723
beceb99c
AL
1724FIELD(ID_DFR0, COPDBG, 0, 4)
1725FIELD(ID_DFR0, COPSDBG, 4, 4)
1726FIELD(ID_DFR0, MMAPDBG, 8, 4)
1727FIELD(ID_DFR0, COPTRC, 12, 4)
1728FIELD(ID_DFR0, MMAPTRC, 16, 4)
1729FIELD(ID_DFR0, MPROFDBG, 20, 4)
1730FIELD(ID_DFR0, PERFMON, 24, 4)
1731FIELD(ID_DFR0, TRACEFILT, 28, 4)
1732
43bbce7f
PM
1733QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1734
ce854d7c
BC
1735/* If adding a feature bit which corresponds to a Linux ELF
1736 * HWCAP bit, remember to update the feature-bit-to-hwcap
1737 * mapping in linux-user/elfload.c:get_elf_hwcap().
1738 */
40f137e1
PB
1739enum arm_features {
1740 ARM_FEATURE_VFP,
c1713132
AZ
1741 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1742 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1743 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1744 ARM_FEATURE_V6,
1745 ARM_FEATURE_V6K,
1746 ARM_FEATURE_V7,
1747 ARM_FEATURE_THUMB2,
452a0955 1748 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1749 ARM_FEATURE_VFP3,
60011498 1750 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1751 ARM_FEATURE_NEON,
9ee6e8bb 1752 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1753 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1754 ARM_FEATURE_THUMB2EE,
be5e7a76 1755 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1756 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1757 ARM_FEATURE_V4T,
1758 ARM_FEATURE_V5,
5bc95aa2 1759 ARM_FEATURE_STRONGARM,
906879a9 1760 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1761 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1762 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1763 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1764 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1765 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1766 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1767 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1768 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1769 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1770 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1771 ARM_FEATURE_V8,
3926cc84 1772 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1773 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1774 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1775 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1776 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1777 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1778 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1779 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1780 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1781 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1782 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1783};
1784
1785static inline int arm_feature(CPUARMState *env, int feature)
1786{
918f5dca 1787 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1788}
1789
19e0fefa
FA
1790#if !defined(CONFIG_USER_ONLY)
1791/* Return true if exception levels below EL3 are in secure state,
1792 * or would be following an exception return to that level.
1793 * Unlike arm_is_secure() (which is always a question about the
1794 * _current_ state of the CPU) this doesn't care about the current
1795 * EL or mode.
1796 */
1797static inline bool arm_is_secure_below_el3(CPUARMState *env)
1798{
1799 if (arm_feature(env, ARM_FEATURE_EL3)) {
1800 return !(env->cp15.scr_el3 & SCR_NS);
1801 } else {
6b7f0b61 1802 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1803 * defined, in which case QEMU defaults to non-secure.
1804 */
1805 return false;
1806 }
1807}
1808
71205876
PM
1809/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1810static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1811{
1812 if (arm_feature(env, ARM_FEATURE_EL3)) {
1813 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1814 /* CPU currently in AArch64 state and EL3 */
1815 return true;
1816 } else if (!is_a64(env) &&
1817 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1818 /* CPU currently in AArch32 state and monitor mode */
1819 return true;
1820 }
1821 }
71205876
PM
1822 return false;
1823}
1824
1825/* Return true if the processor is in secure state */
1826static inline bool arm_is_secure(CPUARMState *env)
1827{
1828 if (arm_is_el3_or_mon(env)) {
1829 return true;
1830 }
19e0fefa
FA
1831 return arm_is_secure_below_el3(env);
1832}
1833
1834#else
1835static inline bool arm_is_secure_below_el3(CPUARMState *env)
1836{
1837 return false;
1838}
1839
1840static inline bool arm_is_secure(CPUARMState *env)
1841{
1842 return false;
1843}
1844#endif
1845
f7778444
RH
1846/**
1847 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1848 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1849 * "for all purposes other than a direct read or write access of HCR_EL2."
1850 * Not included here is HCR_RW.
1851 */
1852uint64_t arm_hcr_el2_eff(CPUARMState *env);
1853
1f79ee32
PM
1854/* Return true if the specified exception level is running in AArch64 state. */
1855static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1856{
446c81ab
PM
1857 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1858 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1859 */
446c81ab
PM
1860 assert(el >= 1 && el <= 3);
1861 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1862
446c81ab
PM
1863 /* The highest exception level is always at the maximum supported
1864 * register width, and then lower levels have a register width controlled
1865 * by bits in the SCR or HCR registers.
1f79ee32 1866 */
446c81ab
PM
1867 if (el == 3) {
1868 return aa64;
1869 }
1870
1871 if (arm_feature(env, ARM_FEATURE_EL3)) {
1872 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1873 }
1874
1875 if (el == 2) {
1876 return aa64;
1877 }
1878
1879 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1880 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1881 }
1882
1883 return aa64;
1f79ee32
PM
1884}
1885
3f342b9e
SF
1886/* Function for determing whether guest cp register reads and writes should
1887 * access the secure or non-secure bank of a cp register. When EL3 is
1888 * operating in AArch32 state, the NS-bit determines whether the secure
1889 * instance of a cp register should be used. When EL3 is AArch64 (or if
1890 * it doesn't exist at all) then there is no register banking, and all
1891 * accesses are to the non-secure version.
1892 */
1893static inline bool access_secure_reg(CPUARMState *env)
1894{
1895 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1896 !arm_el_is_aa64(env, 3) &&
1897 !(env->cp15.scr_el3 & SCR_NS));
1898
1899 return ret;
1900}
1901
ea30a4b8
FA
1902/* Macros for accessing a specified CP register bank */
1903#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1904 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1905
1906#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1907 do { \
1908 if (_secure) { \
1909 (_env)->cp15._regname##_s = (_val); \
1910 } else { \
1911 (_env)->cp15._regname##_ns = (_val); \
1912 } \
1913 } while (0)
1914
1915/* Macros for automatically accessing a specific CP register bank depending on
1916 * the current secure state of the system. These macros are not intended for
1917 * supporting instruction translation reads/writes as these are dependent
1918 * solely on the SCR.NS bit and not the mode.
1919 */
1920#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1921 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1922 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1923
1924#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1925 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1926 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1927 (_val))
1928
9a78eead 1929void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1930uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1931 uint32_t cur_el, bool secure);
40f137e1 1932
9ee6e8bb 1933/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1934#ifndef CONFIG_USER_ONLY
1935bool armv7m_nvic_can_take_pending_exception(void *opaque);
1936#else
1937static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1938{
1939 return true;
1940}
1941#endif
2fb50a33
PM
1942/**
1943 * armv7m_nvic_set_pending: mark the specified exception as pending
1944 * @opaque: the NVIC
1945 * @irq: the exception number to mark pending
1946 * @secure: false for non-banked exceptions or for the nonsecure
1947 * version of a banked exception, true for the secure version of a banked
1948 * exception.
1949 *
1950 * Marks the specified exception as pending. Note that we will assert()
1951 * if @secure is true and @irq does not specify one of the fixed set
1952 * of architecturally banked exceptions.
1953 */
1954void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1955/**
1956 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1957 * @opaque: the NVIC
1958 * @irq: the exception number to mark pending
1959 * @secure: false for non-banked exceptions or for the nonsecure
1960 * version of a banked exception, true for the secure version of a banked
1961 * exception.
1962 *
1963 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1964 * exceptions (exceptions generated in the course of trying to take
1965 * a different exception).
1966 */
1967void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1968/**
1969 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1970 * exception, and whether it targets Secure state
1971 * @opaque: the NVIC
1972 * @pirq: set to pending exception number
1973 * @ptargets_secure: set to whether pending exception targets Secure
1974 *
1975 * This function writes the number of the highest priority pending
1976 * exception (the one which would be made active by
1977 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1978 * to true if the current highest priority pending exception should
1979 * be taken to Secure state, false for NS.
1980 */
1981void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1982 bool *ptargets_secure);
5cb18069
PM
1983/**
1984 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1985 * @opaque: the NVIC
1986 *
1987 * Move the current highest priority pending exception from the pending
1988 * state to the active state, and update v7m.exception to indicate that
1989 * it is the exception currently being handled.
5cb18069 1990 */
6c948518 1991void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1992/**
1993 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1994 * @opaque: the NVIC
1995 * @irq: the exception number to complete
5cb18069 1996 * @secure: true if this exception was secure
aa488fe3
PM
1997 *
1998 * Returns: -1 if the irq was not active
1999 * 1 if completing this irq brought us back to base (no active irqs)
2000 * 0 if there is still an irq active after this one was completed
2001 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2002 */
5cb18069 2003int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
2004/**
2005 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2006 * @opaque: the NVIC
2007 *
2008 * Returns: the raw execution priority as defined by the v8M architecture.
2009 * This is the execution priority minus the effects of AIRCR.PRIS,
2010 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2011 * (v8M ARM ARM I_PKLD.)
2012 */
2013int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2014/**
2015 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2016 * priority is negative for the specified security state.
2017 * @opaque: the NVIC
2018 * @secure: the security state to test
2019 * This corresponds to the pseudocode IsReqExecPriNeg().
2020 */
2021#ifndef CONFIG_USER_ONLY
2022bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2023#else
2024static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2025{
2026 return false;
2027}
2028#endif
9ee6e8bb 2029
4b6a83fb
PM
2030/* Interface for defining coprocessor registers.
2031 * Registers are defined in tables of arm_cp_reginfo structs
2032 * which are passed to define_arm_cp_regs().
2033 */
2034
2035/* When looking up a coprocessor register we look for it
2036 * via an integer which encodes all of:
2037 * coprocessor number
2038 * Crn, Crm, opc1, opc2 fields
2039 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2040 * or via MRRC/MCRR?)
51a79b03 2041 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2042 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2043 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2044 * For AArch64, there is no 32/64 bit size distinction;
2045 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2046 * and 4 bit CRn and CRm. The encoding patterns are chosen
2047 * to be easy to convert to and from the KVM encodings, and also
2048 * so that the hashtable can contain both AArch32 and AArch64
2049 * registers (to allow for interprocessing where we might run
2050 * 32 bit code on a 64 bit core).
4b6a83fb 2051 */
f5a0a5a5
PM
2052/* This bit is private to our hashtable cpreg; in KVM register
2053 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2054 * in the upper bits of the 64 bit ID.
2055 */
2056#define CP_REG_AA64_SHIFT 28
2057#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2058
51a79b03
PM
2059/* To enable banking of coprocessor registers depending on ns-bit we
2060 * add a bit to distinguish between secure and non-secure cpregs in the
2061 * hashtable.
2062 */
2063#define CP_REG_NS_SHIFT 29
2064#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2065
2066#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2067 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2068 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2069
f5a0a5a5
PM
2070#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2071 (CP_REG_AA64_MASK | \
2072 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2073 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2074 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2075 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2076 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2077 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2078
721fae12
PM
2079/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2080 * version used as a key for the coprocessor register hashtable
2081 */
2082static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2083{
2084 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2085 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2086 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2087 } else {
2088 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2089 cpregid |= (1 << 15);
2090 }
2091
2092 /* KVM is always non-secure so add the NS flag on AArch32 register
2093 * entries.
2094 */
2095 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2096 }
2097 return cpregid;
2098}
2099
2100/* Convert a truncated 32 bit hashtable key into the full
2101 * 64 bit KVM register ID.
2102 */
2103static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2104{
f5a0a5a5
PM
2105 uint64_t kvmid;
2106
2107 if (cpregid & CP_REG_AA64_MASK) {
2108 kvmid = cpregid & ~CP_REG_AA64_MASK;
2109 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2110 } else {
f5a0a5a5
PM
2111 kvmid = cpregid & ~(1 << 15);
2112 if (cpregid & (1 << 15)) {
2113 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2114 } else {
2115 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2116 }
721fae12
PM
2117 }
2118 return kvmid;
2119}
2120
4b6a83fb 2121/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2122 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2123 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2124 * TCG can assume the value to be constant (ie load at translate time)
2125 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2126 * indicates that the TB should not be ended after a write to this register
2127 * (the default is that the TB ends after cp writes). OVERRIDE permits
2128 * a register definition to override a previous definition for the
2129 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2130 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2131 * ALIAS indicates that this register is an alias view of some underlying
2132 * state which is also visible via another register, and that the other
b061a82b
SF
2133 * register is handling migration and reset; registers marked ALIAS will not be
2134 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2135 * NO_RAW indicates that this register has no underlying state and does not
2136 * support raw access for state saving/loading; it will not be used for either
2137 * migration or KVM state synchronization. (Typically this is for "registers"
2138 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2139 * IO indicates that this register does I/O and therefore its accesses
2140 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2141 * registers which implement clocks or timers require this.
4b6a83fb 2142 */
fe03d45f
RH
2143#define ARM_CP_SPECIAL 0x0001
2144#define ARM_CP_CONST 0x0002
2145#define ARM_CP_64BIT 0x0004
2146#define ARM_CP_SUPPRESS_TB_END 0x0008
2147#define ARM_CP_OVERRIDE 0x0010
2148#define ARM_CP_ALIAS 0x0020
2149#define ARM_CP_IO 0x0040
2150#define ARM_CP_NO_RAW 0x0080
2151#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2152#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2153#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2154#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2155#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2156#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2157#define ARM_CP_FPU 0x1000
490aa7f1 2158#define ARM_CP_SVE 0x2000
1f163787 2159#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2160/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2161#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2162/* Mask of only the flag bits in a type field */
1f163787 2163#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2164
f5a0a5a5
PM
2165/* Valid values for ARMCPRegInfo state field, indicating which of
2166 * the AArch32 and AArch64 execution states this register is visible in.
2167 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2168 * If the reginfo is declared to be visible in both states then a second
2169 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2170 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2171 * Note that we rely on the values of these enums as we iterate through
2172 * the various states in some places.
2173 */
2174enum {
2175 ARM_CP_STATE_AA32 = 0,
2176 ARM_CP_STATE_AA64 = 1,
2177 ARM_CP_STATE_BOTH = 2,
2178};
2179
c3e30260
FA
2180/* ARM CP register secure state flags. These flags identify security state
2181 * attributes for a given CP register entry.
2182 * The existence of both or neither secure and non-secure flags indicates that
2183 * the register has both a secure and non-secure hash entry. A single one of
2184 * these flags causes the register to only be hashed for the specified
2185 * security state.
2186 * Although definitions may have any combination of the S/NS bits, each
2187 * registered entry will only have one to identify whether the entry is secure
2188 * or non-secure.
2189 */
2190enum {
2191 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2192 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2193};
2194
4b6a83fb
PM
2195/* Return true if cptype is a valid type field. This is used to try to
2196 * catch errors where the sentinel has been accidentally left off the end
2197 * of a list of registers.
2198 */
2199static inline bool cptype_valid(int cptype)
2200{
2201 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2202 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2203 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2204}
2205
2206/* Access rights:
2207 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2208 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2209 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2210 * (ie any of the privileged modes in Secure state, or Monitor mode).
2211 * If a register is accessible in one privilege level it's always accessible
2212 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2213 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2214 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2215 * terminology a little and call this PL3.
f5a0a5a5
PM
2216 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2217 * with the ELx exception levels.
4b6a83fb
PM
2218 *
2219 * If access permissions for a register are more complex than can be
2220 * described with these bits, then use a laxer set of restrictions, and
2221 * do the more restrictive/complex check inside a helper function.
2222 */
2223#define PL3_R 0x80
2224#define PL3_W 0x40
2225#define PL2_R (0x20 | PL3_R)
2226#define PL2_W (0x10 | PL3_W)
2227#define PL1_R (0x08 | PL2_R)
2228#define PL1_W (0x04 | PL2_W)
2229#define PL0_R (0x02 | PL1_R)
2230#define PL0_W (0x01 | PL1_W)
2231
b5bd7440
AB
2232/*
2233 * For user-mode some registers are accessible to EL0 via a kernel
2234 * trap-and-emulate ABI. In this case we define the read permissions
2235 * as actually being PL0_R. However some bits of any given register
2236 * may still be masked.
2237 */
2238#ifdef CONFIG_USER_ONLY
2239#define PL0U_R PL0_R
2240#else
2241#define PL0U_R PL1_R
2242#endif
2243
4b6a83fb
PM
2244#define PL3_RW (PL3_R | PL3_W)
2245#define PL2_RW (PL2_R | PL2_W)
2246#define PL1_RW (PL1_R | PL1_W)
2247#define PL0_RW (PL0_R | PL0_W)
2248
75502672
PM
2249/* Return the highest implemented Exception Level */
2250static inline int arm_highest_el(CPUARMState *env)
2251{
2252 if (arm_feature(env, ARM_FEATURE_EL3)) {
2253 return 3;
2254 }
2255 if (arm_feature(env, ARM_FEATURE_EL2)) {
2256 return 2;
2257 }
2258 return 1;
2259}
2260
15b3f556
PM
2261/* Return true if a v7M CPU is in Handler mode */
2262static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2263{
2264 return env->v7m.exception != 0;
2265}
2266
dcbff19b
GB
2267/* Return the current Exception Level (as per ARMv8; note that this differs
2268 * from the ARMv7 Privilege Level).
2269 */
2270static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2271{
6d54ed3c 2272 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2273 return arm_v7m_is_handler_mode(env) ||
2274 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2275 }
2276
592125f8 2277 if (is_a64(env)) {
f5a0a5a5
PM
2278 return extract32(env->pstate, 2, 2);
2279 }
2280
592125f8
FA
2281 switch (env->uncached_cpsr & 0x1f) {
2282 case ARM_CPU_MODE_USR:
4b6a83fb 2283 return 0;
592125f8
FA
2284 case ARM_CPU_MODE_HYP:
2285 return 2;
2286 case ARM_CPU_MODE_MON:
2287 return 3;
2288 default:
2289 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2290 /* If EL3 is 32-bit then all secure privileged modes run in
2291 * EL3
2292 */
2293 return 3;
2294 }
2295
2296 return 1;
4b6a83fb 2297 }
4b6a83fb
PM
2298}
2299
2300typedef struct ARMCPRegInfo ARMCPRegInfo;
2301
f59df3f2
PM
2302typedef enum CPAccessResult {
2303 /* Access is permitted */
2304 CP_ACCESS_OK = 0,
2305 /* Access fails due to a configurable trap or enable which would
2306 * result in a categorized exception syndrome giving information about
2307 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2308 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2309 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2310 */
2311 CP_ACCESS_TRAP = 1,
2312 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2313 * Note that this is not a catch-all case -- the set of cases which may
2314 * result in this failure is specifically defined by the architecture.
2315 */
2316 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2317 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2318 CP_ACCESS_TRAP_EL2 = 3,
2319 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2320 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2321 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2322 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2323 /* Access fails and results in an exception syndrome for an FP access,
2324 * trapped directly to EL2 or EL3
2325 */
2326 CP_ACCESS_TRAP_FP_EL2 = 7,
2327 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2328} CPAccessResult;
2329
c4241c7d
PM
2330/* Access functions for coprocessor registers. These cannot fail and
2331 * may not raise exceptions.
2332 */
2333typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2334typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2335 uint64_t value);
f59df3f2 2336/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2337typedef CPAccessResult CPAccessFn(CPUARMState *env,
2338 const ARMCPRegInfo *opaque,
2339 bool isread);
4b6a83fb
PM
2340/* Hook function for register reset */
2341typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2342
2343#define CP_ANY 0xff
2344
2345/* Definition of an ARM coprocessor register */
2346struct ARMCPRegInfo {
2347 /* Name of register (useful mainly for debugging, need not be unique) */
2348 const char *name;
2349 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2350 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2351 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2352 * will be decoded to this register. The register read and write
2353 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2354 * used by the program, so it is possible to register a wildcard and
2355 * then behave differently on read/write if necessary.
2356 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2357 * must both be zero.
f5a0a5a5
PM
2358 * For AArch64-visible registers, opc0 is also used.
2359 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2360 * way to distinguish (for KVM's benefit) guest-visible system registers
2361 * from demuxed ones provided to preserve the "no side effects on
2362 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2363 * visible (to match KVM's encoding); cp==0 will be converted to
2364 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2365 */
2366 uint8_t cp;
2367 uint8_t crn;
2368 uint8_t crm;
f5a0a5a5 2369 uint8_t opc0;
4b6a83fb
PM
2370 uint8_t opc1;
2371 uint8_t opc2;
f5a0a5a5
PM
2372 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2373 int state;
4b6a83fb
PM
2374 /* Register type: ARM_CP_* bits/values */
2375 int type;
2376 /* Access rights: PL*_[RW] */
2377 int access;
c3e30260
FA
2378 /* Security state: ARM_CP_SECSTATE_* bits/values */
2379 int secure;
4b6a83fb
PM
2380 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2381 * this register was defined: can be used to hand data through to the
2382 * register read/write functions, since they are passed the ARMCPRegInfo*.
2383 */
2384 void *opaque;
2385 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2386 * fieldoffset is non-zero, the reset value of the register.
2387 */
2388 uint64_t resetvalue;
c3e30260
FA
2389 /* Offset of the field in CPUARMState for this register.
2390 *
2391 * This is not needed if either:
4b6a83fb
PM
2392 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2393 * 2. both readfn and writefn are specified
2394 */
2395 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2396
2397 /* Offsets of the secure and non-secure fields in CPUARMState for the
2398 * register if it is banked. These fields are only used during the static
2399 * registration of a register. During hashing the bank associated
2400 * with a given security state is copied to fieldoffset which is used from
2401 * there on out.
2402 *
2403 * It is expected that register definitions use either fieldoffset or
2404 * bank_fieldoffsets in the definition but not both. It is also expected
2405 * that both bank offsets are set when defining a banked register. This
2406 * use indicates that a register is banked.
2407 */
2408 ptrdiff_t bank_fieldoffsets[2];
2409
f59df3f2
PM
2410 /* Function for making any access checks for this register in addition to
2411 * those specified by the 'access' permissions bits. If NULL, no extra
2412 * checks required. The access check is performed at runtime, not at
2413 * translate time.
2414 */
2415 CPAccessFn *accessfn;
4b6a83fb
PM
2416 /* Function for handling reads of this register. If NULL, then reads
2417 * will be done by loading from the offset into CPUARMState specified
2418 * by fieldoffset.
2419 */
2420 CPReadFn *readfn;
2421 /* Function for handling writes of this register. If NULL, then writes
2422 * will be done by writing to the offset into CPUARMState specified
2423 * by fieldoffset.
2424 */
2425 CPWriteFn *writefn;
7023ec7e
PM
2426 /* Function for doing a "raw" read; used when we need to copy
2427 * coprocessor state to the kernel for KVM or out for
2428 * migration. This only needs to be provided if there is also a
c4241c7d 2429 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2430 */
2431 CPReadFn *raw_readfn;
2432 /* Function for doing a "raw" write; used when we need to copy KVM
2433 * kernel coprocessor state into userspace, or for inbound
2434 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2435 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2436 * or similar behaviour.
7023ec7e
PM
2437 */
2438 CPWriteFn *raw_writefn;
4b6a83fb
PM
2439 /* Function for resetting the register. If NULL, then reset will be done
2440 * by writing resetvalue to the field specified in fieldoffset. If
2441 * fieldoffset is 0 then no reset will be done.
2442 */
2443 CPResetFn *resetfn;
2444};
2445
2446/* Macros which are lvalues for the field in CPUARMState for the
2447 * ARMCPRegInfo *ri.
2448 */
2449#define CPREG_FIELD32(env, ri) \
2450 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2451#define CPREG_FIELD64(env, ri) \
2452 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2453
2454#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2455
2456void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2457 const ARMCPRegInfo *regs, void *opaque);
2458void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2459 const ARMCPRegInfo *regs, void *opaque);
2460static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2461{
2462 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2463}
2464static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2465{
2466 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2467}
60322b39 2468const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2469
6c5c0fec
AB
2470/*
2471 * Definition of an ARM co-processor register as viewed from
2472 * userspace. This is used for presenting sanitised versions of
2473 * registers to userspace when emulating the Linux AArch64 CPU
2474 * ID/feature ABI (advertised as HWCAP_CPUID).
2475 */
2476typedef struct ARMCPRegUserSpaceInfo {
2477 /* Name of register */
2478 const char *name;
2479
d040242e
AB
2480 /* Is the name actually a glob pattern */
2481 bool is_glob;
2482
6c5c0fec
AB
2483 /* Only some bits are exported to user space */
2484 uint64_t exported_bits;
2485
2486 /* Fixed bits are applied after the mask */
2487 uint64_t fixed_bits;
2488} ARMCPRegUserSpaceInfo;
2489
2490#define REGUSERINFO_SENTINEL { .name = NULL }
2491
2492void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2493
4b6a83fb 2494/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2495void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2496 uint64_t value);
4b6a83fb 2497/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2498uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2499
f5a0a5a5
PM
2500/* CPResetFn that does nothing, for use if no reset is required even
2501 * if fieldoffset is non zero.
2502 */
2503void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2504
67ed771d
PM
2505/* Return true if this reginfo struct's field in the cpu state struct
2506 * is 64 bits wide.
2507 */
2508static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2509{
2510 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2511}
2512
dcbff19b 2513static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2514 const ARMCPRegInfo *ri, int isread)
2515{
dcbff19b 2516 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2517}
2518
49a66191
PM
2519/* Raw read of a coprocessor register (as needed for migration, etc) */
2520uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2521
721fae12
PM
2522/**
2523 * write_list_to_cpustate
2524 * @cpu: ARMCPU
2525 *
2526 * For each register listed in the ARMCPU cpreg_indexes list, write
2527 * its value from the cpreg_values list into the ARMCPUState structure.
2528 * This updates TCG's working data structures from KVM data or
2529 * from incoming migration state.
2530 *
2531 * Returns: true if all register values were updated correctly,
2532 * false if some register was unknown or could not be written.
2533 * Note that we do not stop early on failure -- we will attempt
2534 * writing all registers in the list.
2535 */
2536bool write_list_to_cpustate(ARMCPU *cpu);
2537
2538/**
2539 * write_cpustate_to_list:
2540 * @cpu: ARMCPU
823e1b38 2541 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2542 *
2543 * For each register listed in the ARMCPU cpreg_indexes list, write
2544 * its value from the ARMCPUState structure into the cpreg_values list.
2545 * This is used to copy info from TCG's working data structures into
2546 * KVM or for outbound migration.
2547 *
823e1b38
PM
2548 * @kvm_sync is true if we are doing this in order to sync the
2549 * register state back to KVM. In this case we will only update
2550 * values in the list if the previous list->cpustate sync actually
2551 * successfully wrote the CPU state. Otherwise we will keep the value
2552 * that is in the list.
2553 *
721fae12
PM
2554 * Returns: true if all register values were read correctly,
2555 * false if some register was unknown or could not be read.
2556 * Note that we do not stop early on failure -- we will attempt
2557 * reading all registers in the list.
2558 */
823e1b38 2559bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2560
9ee6e8bb
PB
2561#define ARM_CPUID_TI915T 0x54029152
2562#define ARM_CPUID_TI925T 0x54029252
40f137e1 2563
b5ff1b31 2564#if defined(CONFIG_USER_ONLY)
2c0262af 2565#define TARGET_PAGE_BITS 12
b5ff1b31 2566#else
e97da98f
PM
2567/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2568 * have to support 1K tiny pages.
2569 */
2570#define TARGET_PAGE_BITS_VARY
2571#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2572#endif
9467d44c 2573
3926cc84
AG
2574#if defined(TARGET_AARCH64)
2575# define TARGET_PHYS_ADDR_SPACE_BITS 48
f6768aa1 2576# define TARGET_VIRT_ADDR_SPACE_BITS 48
3926cc84
AG
2577#else
2578# define TARGET_PHYS_ADDR_SPACE_BITS 40
2579# define TARGET_VIRT_ADDR_SPACE_BITS 32
2580#endif
52705890 2581
012a906b
GB
2582static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2583 unsigned int target_el)
043b7f8d
EI
2584{
2585 CPUARMState *env = cs->env_ptr;
dcbff19b 2586 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2587 bool secure = arm_is_secure(env);
57e3a0c7
GB
2588 bool pstate_unmasked;
2589 int8_t unmasked = 0;
f7778444 2590 uint64_t hcr_el2;
57e3a0c7
GB
2591
2592 /* Don't take exceptions if they target a lower EL.
2593 * This check should catch any exceptions that would not be taken but left
2594 * pending.
2595 */
dfafd090
EI
2596 if (cur_el > target_el) {
2597 return false;
2598 }
043b7f8d 2599
f7778444
RH
2600 hcr_el2 = arm_hcr_el2_eff(env);
2601
043b7f8d
EI
2602 switch (excp_idx) {
2603 case EXCP_FIQ:
57e3a0c7
GB
2604 pstate_unmasked = !(env->daif & PSTATE_F);
2605 break;
2606
043b7f8d 2607 case EXCP_IRQ:
57e3a0c7
GB
2608 pstate_unmasked = !(env->daif & PSTATE_I);
2609 break;
2610
136e67e9 2611 case EXCP_VFIQ:
f7778444 2612 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2613 /* VFIQs are only taken when hypervized and non-secure. */
2614 return false;
2615 }
2616 return !(env->daif & PSTATE_F);
2617 case EXCP_VIRQ:
f7778444 2618 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2619 /* VIRQs are only taken when hypervized and non-secure. */
2620 return false;
2621 }
b5c633c5 2622 return !(env->daif & PSTATE_I);
043b7f8d
EI
2623 default:
2624 g_assert_not_reached();
2625 }
57e3a0c7
GB
2626
2627 /* Use the target EL, current execution state and SCR/HCR settings to
2628 * determine whether the corresponding CPSR bit is used to mask the
2629 * interrupt.
2630 */
2631 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2632 /* Exceptions targeting a higher EL may not be maskable */
2633 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2634 /* 64-bit masking rules are simple: exceptions to EL3
2635 * can't be masked, and exceptions to EL2 can only be
2636 * masked from Secure state. The HCR and SCR settings
2637 * don't affect the masking logic, only the interrupt routing.
2638 */
2639 if (target_el == 3 || !secure) {
2640 unmasked = 1;
2641 }
2642 } else {
2643 /* The old 32-bit-only environment has a more complicated
2644 * masking setup. HCR and SCR bits not only affect interrupt
2645 * routing but also change the behaviour of masking.
2646 */
2647 bool hcr, scr;
2648
2649 switch (excp_idx) {
2650 case EXCP_FIQ:
2651 /* If FIQs are routed to EL3 or EL2 then there are cases where
2652 * we override the CPSR.F in determining if the exception is
2653 * masked or not. If neither of these are set then we fall back
2654 * to the CPSR.F setting otherwise we further assess the state
2655 * below.
2656 */
f7778444 2657 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2658 scr = (env->cp15.scr_el3 & SCR_FIQ);
2659
2660 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2661 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2662 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2663 * when non-secure but only when FIQs are only routed to EL3.
2664 */
2665 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2666 break;
2667 case EXCP_IRQ:
2668 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2669 * we may override the CPSR.I masking when in non-secure state.
2670 * The SCR.IRQ setting has already been taken into consideration
2671 * when setting the target EL, so it does not have a further
2672 * affect here.
2673 */
f7778444 2674 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2675 scr = false;
2676 break;
2677 default:
2678 g_assert_not_reached();
2679 }
2680
2681 if ((scr || hcr) && !secure) {
2682 unmasked = 1;
2683 }
57e3a0c7
GB
2684 }
2685 }
2686
2687 /* The PSTATE bits only mask the interrupt if we have not overriden the
2688 * ability above.
2689 */
2690 return unmasked || pstate_unmasked;
043b7f8d
EI
2691}
2692
ba1ba5cc
IM
2693#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2694#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2695#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2696
9467d44c 2697#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2698#define cpu_list arm_cpu_list
9467d44c 2699
c1e37810
PM
2700/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2701 *
2702 * If EL3 is 64-bit:
2703 * + NonSecure EL1 & 0 stage 1
2704 * + NonSecure EL1 & 0 stage 2
2705 * + NonSecure EL2
2706 * + Secure EL1 & EL0
2707 * + Secure EL3
2708 * If EL3 is 32-bit:
2709 * + NonSecure PL1 & 0 stage 1
2710 * + NonSecure PL1 & 0 stage 2
2711 * + NonSecure PL2
2712 * + Secure PL0 & PL1
2713 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2714 *
2715 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2716 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2717 * may differ in access permissions even if the VA->PA map is the same
2718 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2719 * translation, which means that we have one mmu_idx that deals with two
2720 * concatenated translation regimes [this sort of combined s1+2 TLB is
2721 * architecturally permitted]
2722 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2723 * handling via the TLB. The only way to do a stage 1 translation without
2724 * the immediate stage 2 translation is via the ATS or AT system insns,
2725 * which can be slow-pathed and always do a page table walk.
2726 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2727 * translation regimes, because they map reasonably well to each other
2728 * and they can't both be active at the same time.
2729 * This gives us the following list of mmu_idx values:
2730 *
2731 * NS EL0 (aka NS PL0) stage 1+2
2732 * NS EL1 (aka NS PL1) stage 1+2
2733 * NS EL2 (aka NS PL2)
2734 * S EL3 (aka S PL1)
2735 * S EL0 (aka S PL0)
2736 * S EL1 (not used if EL3 is 32 bit)
2737 * NS EL0+1 stage 2
2738 *
2739 * (The last of these is an mmu_idx because we want to be able to use the TLB
2740 * for the accesses done as part of a stage 1 page table walk, rather than
2741 * having to walk the stage 2 page table over and over.)
2742 *
3bef7012
PM
2743 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2744 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2745 * NS EL2 if we ever model a Cortex-R52).
2746 *
2747 * M profile CPUs are rather different as they do not have a true MMU.
2748 * They have the following different MMU indexes:
2749 * User
2750 * Privileged
62593718
PM
2751 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2752 * Privileged, execution priority negative (ditto)
66787c78
PM
2753 * If the CPU supports the v8M Security Extension then there are also:
2754 * Secure User
2755 * Secure Privileged
62593718
PM
2756 * Secure User, execution priority negative
2757 * Secure Privileged, execution priority negative
3bef7012 2758 *
8bd5c820
PM
2759 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2760 * are not quite the same -- different CPU types (most notably M profile
2761 * vs A/R profile) would like to use MMU indexes with different semantics,
2762 * but since we don't ever need to use all of those in a single CPU we
2763 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2764 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2765 * the same for any particular CPU.
2766 * Variables of type ARMMUIdx are always full values, and the core
2767 * index values are in variables of type 'int'.
2768 *
c1e37810
PM
2769 * Our enumeration includes at the end some entries which are not "true"
2770 * mmu_idx values in that they don't have corresponding TLBs and are only
2771 * valid for doing slow path page table walks.
2772 *
2773 * The constant names here are patterned after the general style of the names
2774 * of the AT/ATS operations.
2775 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2776 * For M profile we arrange them to have a bit for priv, a bit for negpri
2777 * and a bit for secure.
c1e37810 2778 */
e7b921c2 2779#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2780#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2781#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2782
62593718
PM
2783/* meanings of the bits for M profile mmu idx values */
2784#define ARM_MMU_IDX_M_PRIV 0x1
2785#define ARM_MMU_IDX_M_NEGPRI 0x2
2786#define ARM_MMU_IDX_M_S 0x4
2787
8bd5c820
PM
2788#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2789#define ARM_MMU_IDX_COREIDX_MASK 0x7
2790
c1e37810 2791typedef enum ARMMMUIdx {
8bd5c820
PM
2792 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2793 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2794 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2795 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2796 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2797 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2798 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2799 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2800 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2801 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2802 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2803 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2804 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2805 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2806 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2807 /* Indexes below here don't have TLBs and are used only for AT system
2808 * instructions or for the first stage of an S12 page table walk.
2809 */
8bd5c820
PM
2810 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2811 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2812} ARMMMUIdx;
2813
8bd5c820
PM
2814/* Bit macros for the core-mmu-index values for each index,
2815 * for use when calling tlb_flush_by_mmuidx() and friends.
2816 */
2817typedef enum ARMMMUIdxBit {
2818 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2819 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2820 ARMMMUIdxBit_S1E2 = 1 << 2,
2821 ARMMMUIdxBit_S1E3 = 1 << 3,
2822 ARMMMUIdxBit_S1SE0 = 1 << 4,
2823 ARMMMUIdxBit_S1SE1 = 1 << 5,
2824 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2825 ARMMMUIdxBit_MUser = 1 << 0,
2826 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2827 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2828 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2829 ARMMMUIdxBit_MSUser = 1 << 4,
2830 ARMMMUIdxBit_MSPriv = 1 << 5,
2831 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2832 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2833} ARMMMUIdxBit;
2834
f79fbf39 2835#define MMU_USER_IDX 0
c1e37810 2836
8bd5c820
PM
2837static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2838{
2839 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2840}
2841
2842static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2843{
e7b921c2
PM
2844 if (arm_feature(env, ARM_FEATURE_M)) {
2845 return mmu_idx | ARM_MMU_IDX_M;
2846 } else {
2847 return mmu_idx | ARM_MMU_IDX_A;
2848 }
8bd5c820
PM
2849}
2850
c1e37810
PM
2851/* Return the exception level we're running at if this is our mmu_idx */
2852static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2853{
8bd5c820
PM
2854 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2855 case ARM_MMU_IDX_A:
2856 return mmu_idx & 3;
e7b921c2 2857 case ARM_MMU_IDX_M:
62593718 2858 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2859 default:
2860 g_assert_not_reached();
2861 }
c1e37810
PM
2862}
2863
ec8e3340 2864/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2865 * privilege state.
ec8e3340 2866 */
65e4655c
RH
2867ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2868 bool secstate, bool priv);
b81ac0eb 2869
ec8e3340 2870/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2871ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2872
50494a27
RH
2873/**
2874 * cpu_mmu_index:
2875 * @env: The cpu environment
2876 * @ifetch: True for code access, false for data access.
2877 *
2878 * Return the core mmu index for the current translation regime.
2879 * This function is used by generic TCG code paths.
2880 */
65e4655c 2881int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2882
9e273ef2
PM
2883/* Indexes used when registering address spaces with cpu_address_space_init */
2884typedef enum ARMASIdx {
2885 ARMASIdx_NS = 0,
2886 ARMASIdx_S = 1,
2887} ARMASIdx;
2888
533e93f1 2889/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2890static inline int arm_debug_target_el(CPUARMState *env)
2891{
81669b8b
SF
2892 bool secure = arm_is_secure(env);
2893 bool route_to_el2 = false;
2894
2895 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2896 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2897 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2898 }
2899
2900 if (route_to_el2) {
2901 return 2;
2902 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2903 !arm_el_is_aa64(env, 3) && secure) {
2904 return 3;
2905 } else {
2906 return 1;
2907 }
3a298203
PM
2908}
2909
43bbce7f
PM
2910static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2911{
2912 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2913 * CSSELR is RAZ/WI.
2914 */
2915 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2916}
2917
22af9025 2918/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2919static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2920{
22af9025
AB
2921 int cur_el = arm_current_el(env);
2922 int debug_el;
2923
2924 if (cur_el == 3) {
2925 return false;
533e93f1
PM
2926 }
2927
22af9025
AB
2928 /* MDCR_EL3.SDD disables debug events from Secure state */
2929 if (arm_is_secure_below_el3(env)
2930 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2931 return false;
3a298203 2932 }
22af9025
AB
2933
2934 /*
2935 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2936 * while not masking the (D)ebug bit in DAIF.
2937 */
2938 debug_el = arm_debug_target_el(env);
2939
2940 if (cur_el == debug_el) {
2941 return extract32(env->cp15.mdscr_el1, 13, 1)
2942 && !(env->daif & PSTATE_D);
2943 }
2944
2945 /* Otherwise the debug target needs to be a higher EL */
2946 return debug_el > cur_el;
3a298203
PM
2947}
2948
2949static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2950{
533e93f1
PM
2951 int el = arm_current_el(env);
2952
2953 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2954 return aa64_generate_debug_exceptions(env);
2955 }
533e93f1
PM
2956
2957 if (arm_is_secure(env)) {
2958 int spd;
2959
2960 if (el == 0 && (env->cp15.sder & 1)) {
2961 /* SDER.SUIDEN means debug exceptions from Secure EL0
2962 * are always enabled. Otherwise they are controlled by
2963 * SDCR.SPD like those from other Secure ELs.
2964 */
2965 return true;
2966 }
2967
2968 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2969 switch (spd) {
2970 case 1:
2971 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2972 case 0:
2973 /* For 0b00 we return true if external secure invasive debug
2974 * is enabled. On real hardware this is controlled by external
2975 * signals to the core. QEMU always permits debug, and behaves
2976 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2977 */
2978 return true;
2979 case 2:
2980 return false;
2981 case 3:
2982 return true;
2983 }
2984 }
2985
2986 return el != 2;
3a298203
PM
2987}
2988
2989/* Return true if debugging exceptions are currently enabled.
2990 * This corresponds to what in ARM ARM pseudocode would be
2991 * if UsingAArch32() then
2992 * return AArch32.GenerateDebugExceptions()
2993 * else
2994 * return AArch64.GenerateDebugExceptions()
2995 * We choose to push the if() down into this function for clarity,
2996 * since the pseudocode has it at all callsites except for the one in
2997 * CheckSoftwareStep(), where it is elided because both branches would
2998 * always return the same value.
3a298203
PM
2999 */
3000static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3001{
3002 if (env->aarch64) {
3003 return aa64_generate_debug_exceptions(env);
3004 } else {
3005 return aa32_generate_debug_exceptions(env);
3006 }
3007}
3008
3009/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3010 * implicitly means this always returns false in pre-v8 CPUs.)
3011 */
3012static inline bool arm_singlestep_active(CPUARMState *env)
3013{
3014 return extract32(env->cp15.mdscr_el1, 0, 1)
3015 && arm_el_is_aa64(env, arm_debug_target_el(env))
3016 && arm_generate_debug_exceptions(env);
3017}
3018
f9fd40eb
PB
3019static inline bool arm_sctlr_b(CPUARMState *env)
3020{
3021 return
3022 /* We need not implement SCTLR.ITD in user-mode emulation, so
3023 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3024 * This lets people run BE32 binaries with "-cpu any".
3025 */
3026#ifndef CONFIG_USER_ONLY
3027 !arm_feature(env, ARM_FEATURE_V7) &&
3028#endif
3029 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3030}
3031
ed50ff78
PC
3032/* Return true if the processor is in big-endian mode. */
3033static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3034{
3035 int cur_el;
3036
3037 /* In 32bit endianness is determined by looking at CPSR's E bit */
3038 if (!is_a64(env)) {
b2e62d9a
PC
3039 return
3040#ifdef CONFIG_USER_ONLY
3041 /* In system mode, BE32 is modelled in line with the
3042 * architecture (as word-invariant big-endianness), where loads
3043 * and stores are done little endian but from addresses which
3044 * are adjusted by XORing with the appropriate constant. So the
3045 * endianness to use for the raw data access is not affected by
3046 * SCTLR.B.
3047 * In user mode, however, we model BE32 as byte-invariant
3048 * big-endianness (because user-only code cannot tell the
3049 * difference), and so we need to use a data access endianness
3050 * that depends on SCTLR.B.
3051 */
3052 arm_sctlr_b(env) ||
3053#endif
3054 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
3055 }
3056
3057 cur_el = arm_current_el(env);
3058
3059 if (cur_el == 0) {
3060 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
3061 }
3062
3063 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
3064}
3065
022c62cb 3066#include "exec/cpu-all.h"
622ed360 3067
3926cc84
AG
3068/* Bit usage in the TB flags field: bit 31 indicates whether we are
3069 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3070 * We put flags which are shared between 32 and 64 bit mode at the top
3071 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3072 */
aad821ac
RH
3073FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3074FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3075FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3076FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3077/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3078FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3079FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3080
3081/* Bit usage when in AArch32 state: */
aad821ac
RH
3082FIELD(TBFLAG_A32, THUMB, 0, 1)
3083FIELD(TBFLAG_A32, VECLEN, 1, 3)
3084FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3085FIELD(TBFLAG_A32, VFPEN, 7, 1)
3086FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3087FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
c0f4af17
PM
3088/* We store the bottom two bits of the CPAR as TB flags and handle
3089 * checks on the other bits at runtime
3090 */
aad821ac 3091FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3f342b9e
SF
3092/* Indicates whether cp register reads and writes by guest code should access
3093 * the secure or nonsecure bank of banked registers; note that this is not
3094 * the same thing as the current security state of the processor!
3095 */
aad821ac 3096FIELD(TBFLAG_A32, NS, 19, 1)
064c379c 3097/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3098FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3099/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3100FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3101
86fb3fa4 3102/* Bit usage when in AArch64 state */
476a4692 3103FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3104FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3105FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3106FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a
RH
3107FIELD(TBFLAG_A64, BT, 9, 1)
3108FIELD(TBFLAG_A64, BTYPE, 10, 2)
4a9ee99d 3109FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3110
f9fd40eb
PB
3111static inline bool bswap_code(bool sctlr_b)
3112{
3113#ifdef CONFIG_USER_ONLY
3114 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3115 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3116 * would also end up as a mixed-endian mode with BE code, LE data.
3117 */
3118 return
3119#ifdef TARGET_WORDS_BIGENDIAN
3120 1 ^
3121#endif
3122 sctlr_b;
3123#else
e334bd31
PB
3124 /* All code access in ARM is little endian, and there are no loaders
3125 * doing swaps that need to be reversed
f9fd40eb
PB
3126 */
3127 return 0;
3128#endif
3129}
3130
c3ae85fc
PB
3131#ifdef CONFIG_USER_ONLY
3132static inline bool arm_cpu_bswap_data(CPUARMState *env)
3133{
3134 return
3135#ifdef TARGET_WORDS_BIGENDIAN
3136 1 ^
3137#endif
3138 arm_cpu_data_is_big_endian(env);
3139}
3140#endif
3141
a9e01311
RH
3142void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3143 target_ulong *cs_base, uint32_t *flags);
6b917547 3144
98128601
RH
3145enum {
3146 QEMU_PSCI_CONDUIT_DISABLED = 0,
3147 QEMU_PSCI_CONDUIT_SMC = 1,
3148 QEMU_PSCI_CONDUIT_HVC = 2,
3149};
3150
017518c1
PM
3151#ifndef CONFIG_USER_ONLY
3152/* Return the address space index to use for a memory access */
3153static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3154{
3155 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3156}
5ce4ff65
PM
3157
3158/* Return the AddressSpace to use for a memory access
3159 * (which depends on whether the access is S or NS, and whether
3160 * the board gave us a separate AddressSpace for S accesses).
3161 */
3162static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3163{
3164 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3165}
017518c1
PM
3166#endif
3167
bd7d00fc 3168/**
b5c53d1b
AL
3169 * arm_register_pre_el_change_hook:
3170 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3171 * CPU changes exception level or mode. The hook function will be
3172 * passed a pointer to the ARMCPU and the opaque data pointer passed
3173 * to this function when the hook was registered.
b5c53d1b
AL
3174 *
3175 * Note that if a pre-change hook is called, any registered post-change hooks
3176 * are guaranteed to subsequently be called.
bd7d00fc 3177 */
b5c53d1b 3178void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3179 void *opaque);
b5c53d1b
AL
3180/**
3181 * arm_register_el_change_hook:
3182 * Register a hook function which will be called immediately after this
3183 * CPU changes exception level or mode. The hook function will be
3184 * passed a pointer to the ARMCPU and the opaque data pointer passed
3185 * to this function when the hook was registered.
3186 *
3187 * Note that any registered hooks registered here are guaranteed to be called
3188 * if pre-change hooks have been.
3189 */
3190void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3191 *opaque);
bd7d00fc 3192
9a2b5256
RH
3193/**
3194 * aa32_vfp_dreg:
3195 * Return a pointer to the Dn register within env in 32-bit mode.
3196 */
3197static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3198{
c39c2b90 3199 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3200}
3201
3202/**
3203 * aa32_vfp_qreg:
3204 * Return a pointer to the Qn register within env in 32-bit mode.
3205 */
3206static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3207{
c39c2b90 3208 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3209}
3210
3211/**
3212 * aa64_vfp_qreg:
3213 * Return a pointer to the Qn register within env in 64-bit mode.
3214 */
3215static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3216{
c39c2b90 3217 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3218}
3219
028e2a7b
RH
3220/* Shared between translate-sve.c and sve_helper.c. */
3221extern const uint64_t pred_esz_masks[4];
3222
962fcbf2
RH
3223/*
3224 * 32-bit feature tests via id registers.
3225 */
7e0cf8b4
RH
3226static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3227{
3228 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3229}
3230
3231static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3232{
3233 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3234}
3235
09cbd501
RH
3236static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3237{
3238 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3239}
3240
962fcbf2
RH
3241static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3242{
3243 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3244}
3245
3246static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3247{
3248 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3249}
3250
3251static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3252{
3253 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3254}
3255
3256static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3257{
3258 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3259}
3260
3261static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3262{
3263 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3264}
3265
3266static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3267{
3268 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3269}
3270
3271static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3272{
3273 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3274}
3275
6c1f6f27
RH
3276static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3277{
3278 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3279}
3280
962fcbf2
RH
3281static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3282{
3283 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3284}
3285
5763190f
RH
3286static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3287{
3288 /*
3289 * This is a placeholder for use by VCMA until the rest of
3290 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3291 * At which point we can properly set and check MVFR1.FPHP.
3292 */
3293 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3294}
3295
962fcbf2
RH
3296/*
3297 * 64-bit feature tests via id registers.
3298 */
3299static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3300{
3301 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3302}
3303
3304static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3305{
3306 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3307}
3308
3309static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3310{
3311 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3312}
3313
3314static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3315{
3316 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3317}
3318
3319static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3320{
3321 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3322}
3323
3324static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3325{
3326 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3327}
3328
3329static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3330{
3331 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3332}
3333
3334static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3335{
3336 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3337}
3338
3339static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3340{
3341 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3342}
3343
3344static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3345{
3346 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3347}
3348
3349static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3350{
3351 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3352}
3353
3354static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3355{
3356 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3357}
3358
6c1f6f27
RH
3359static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3360{
3361 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3362}
3363
962fcbf2
RH
3364static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3365{
3366 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3367}
3368
991ad91b
RH
3369static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3370{
3371 /*
3372 * Note that while QEMU will only implement the architected algorithm
3373 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3374 * defined algorithms, and thus API+GPI, and this predicate controls
3375 * migration of the 128-bit keys.
3376 */
3377 return (id->id_aa64isar1 &
3378 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3379 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3380 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3381 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3382}
3383
5763190f
RH
3384static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3385{
3386 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3387 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3388}
3389
0f8d06f1
RH
3390static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3391{
3392 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3393}
3394
cd208a1c
RH
3395static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3396{
3397 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3398}
3399
2d7137c1
RH
3400static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3401{
3402 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3403}
3404
be53b6f4
RH
3405static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3406{
3407 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3408}
3409
962fcbf2
RH
3410/*
3411 * Forward to the above feature tests given an ARMCPU pointer.
3412 */
3413#define cpu_isar_feature(name, cpu) \
3414 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3415
2c0262af 3416#endif