]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Enable FEAT_CSV2 for -cpu max
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
11f136ee
FA
169typedef struct {
170 uint64_t raw_tcr;
171 uint32_t mask;
172 uint32_t base_mask;
173} TCR;
174
e9152ee9
RDC
175#define VTCR_NSW (1u << 29)
176#define VTCR_NSA (1u << 30)
177#define VSTCR_SW VTCR_NSW
178#define VSTCR_SA VTCR_NSA
179
c39c2b90
RH
180/* Define a maximum sized vector register.
181 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182 * For 64-bit, this is a 2048-bit SVE register.
183 *
184 * Note that the mapping between S, D, and Q views of the register bank
185 * differs between AArch64 and AArch32.
186 * In AArch32:
187 * Qn = regs[n].d[1]:regs[n].d[0]
188 * Dn = regs[n / 2].d[n & 1]
189 * Sn = regs[n / 4].d[n % 4 / 2],
190 * bits 31..0 for even n, and bits 63..32 for odd n
191 * (and regs[16] to regs[31] are inaccessible)
192 * In AArch64:
193 * Zn = regs[n].d[*]
194 * Qn = regs[n].d[1]:regs[n].d[0]
195 * Dn = regs[n].d[0]
196 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 197 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
198 *
199 * This corresponds to the architecturally defined mapping between
200 * the two execution states, and means we do not need to explicitly
201 * map these registers when changing states.
202 *
203 * Align the data for use with TCG host vector operations.
204 */
205
206#ifdef TARGET_AARCH64
207# define ARM_MAX_VQ 16
0df9142d 208void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
eb94284d 209void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
69b2265d 210void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
211#else
212# define ARM_MAX_VQ 1
0df9142d 213static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
eb94284d 214static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
69b2265d 215static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
216#endif
217
218typedef struct ARMVectorReg {
219 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220} ARMVectorReg;
221
3c7d3086 222#ifdef TARGET_AARCH64
991ad91b 223/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 224typedef struct ARMPredicateReg {
46417784 225 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 226} ARMPredicateReg;
991ad91b
RH
227
228/* In AArch32 mode, PAC keys do not exist at all. */
229typedef struct ARMPACKey {
230 uint64_t lo, hi;
231} ARMPACKey;
3c7d3086
RH
232#endif
233
3902bfc6
RH
234/* See the commentary above the TBFLAG field definitions. */
235typedef struct CPUARMTBFlags {
236 uint32_t flags;
a378206a 237 target_ulong flags2;
3902bfc6 238} CPUARMTBFlags;
c39c2b90 239
1ea4a06a 240typedef struct CPUArchState {
b5ff1b31 241 /* Regs for current mode. */
2c0262af 242 uint32_t regs[16];
3926cc84
AG
243
244 /* 32/64 switch only happens when taking and returning from
245 * exceptions so the overlap semantics are taken care of then
246 * instead of having a complicated union.
247 */
248 /* Regs for A64 mode. */
249 uint64_t xregs[32];
250 uint64_t pc;
d356312f
PM
251 /* PSTATE isn't an architectural register for ARMv8. However, it is
252 * convenient for us to assemble the underlying state into a 32 bit format
253 * identical to the architectural format used for the SPSR. (This is also
254 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255 * 'pstate' register are.) Of the PSTATE bits:
256 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257 * semantics as for AArch32, as described in the comments on each field)
258 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 259 * DAIF (exception masks) are kept in env->daif
f6e52eaa 260 * BTYPE is kept in env->btype
d356312f 261 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
262 */
263 uint32_t pstate;
53221552 264 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 265 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 266
fdd1b228 267 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 268 CPUARMTBFlags hflags;
fdd1b228 269
b90372ad 270 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 271 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
272 the whole CPSR. */
273 uint32_t uncached_cpsr;
274 uint32_t spsr;
275
276 /* Banked registers. */
28c9457d 277 uint64_t banked_spsr[8];
0b7d409d
FA
278 uint32_t banked_r13[8];
279 uint32_t banked_r14[8];
3b46e624 280
b5ff1b31
FB
281 /* These hold r8-r12. */
282 uint32_t usr_regs[5];
283 uint32_t fiq_regs[5];
3b46e624 284
2c0262af
FB
285 /* cpsr flag cache for faster execution */
286 uint32_t CF; /* 0 or 1 */
287 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
288 uint32_t NF; /* N is bit 31. All other bits are undefined. */
289 uint32_t ZF; /* Z set if zero. */
99c475ab 290 uint32_t QF; /* 0 or 1 */
9ee6e8bb 291 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 292 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 293 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 294 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 295
1b174238 296 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 297 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 298
b5ff1b31
FB
299 /* System control coprocessor (cp15) */
300 struct {
40f137e1 301 uint32_t c0_cpuid;
b85a1fd6
FA
302 union { /* Cache size selection */
303 struct {
304 uint64_t _unused_csselr0;
305 uint64_t csselr_ns;
306 uint64_t _unused_csselr1;
307 uint64_t csselr_s;
308 };
309 uint64_t csselr_el[4];
310 };
137feaa9
FA
311 union { /* System control register. */
312 struct {
313 uint64_t _unused_sctlr;
314 uint64_t sctlr_ns;
315 uint64_t hsctlr;
316 uint64_t sctlr_s;
317 };
318 uint64_t sctlr_el[4];
319 };
7ebd5f2e 320 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 321 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 322 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 323 uint64_t sder; /* Secure debug enable register. */
77022576 324 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
325 union { /* MMU translation table base 0. */
326 struct {
327 uint64_t _unused_ttbr0_0;
328 uint64_t ttbr0_ns;
329 uint64_t _unused_ttbr0_1;
330 uint64_t ttbr0_s;
331 };
332 uint64_t ttbr0_el[4];
333 };
334 union { /* MMU translation table base 1. */
335 struct {
336 uint64_t _unused_ttbr1_0;
337 uint64_t ttbr1_ns;
338 uint64_t _unused_ttbr1_1;
339 uint64_t ttbr1_s;
340 };
341 uint64_t ttbr1_el[4];
342 };
b698e9cf 343 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 344 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee
FA
345 /* MMU translation table base control. */
346 TCR tcr_el[4];
68e9c2fe 347 TCR vtcr_el2; /* Virtualization Translation Control. */
e9152ee9 348 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
349 uint32_t c2_data; /* MPU data cacheable bits. */
350 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
351 union { /* MMU domain access control register
352 * MPU write buffer control.
353 */
354 struct {
355 uint64_t dacr_ns;
356 uint64_t dacr_s;
357 };
358 struct {
359 uint64_t dacr32_el2;
360 };
361 };
7e09797c
PM
362 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
363 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 364 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 365 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
366 union { /* Fault status registers. */
367 struct {
368 uint64_t ifsr_ns;
369 uint64_t ifsr_s;
370 };
371 struct {
372 uint64_t ifsr32_el2;
373 };
374 };
4a7e2d73
FA
375 union {
376 struct {
377 uint64_t _unused_dfsr;
378 uint64_t dfsr_ns;
379 uint64_t hsr;
380 uint64_t dfsr_s;
381 };
382 uint64_t esr_el[4];
383 };
ce819861 384 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
385 union { /* Fault address registers. */
386 struct {
387 uint64_t _unused_far0;
e03b5686 388#if HOST_BIG_ENDIAN
b848ce2b
FA
389 uint32_t ifar_ns;
390 uint32_t dfar_ns;
391 uint32_t ifar_s;
392 uint32_t dfar_s;
393#else
394 uint32_t dfar_ns;
395 uint32_t ifar_ns;
396 uint32_t dfar_s;
397 uint32_t ifar_s;
398#endif
399 uint64_t _unused_far3;
400 };
401 uint64_t far_el[4];
402 };
59e05530 403 uint64_t hpfar_el2;
2a5a9abd 404 uint64_t hstr_el2;
01c097f7
FA
405 union { /* Translation result. */
406 struct {
407 uint64_t _unused_par_0;
408 uint64_t par_ns;
409 uint64_t _unused_par_1;
410 uint64_t par_s;
411 };
412 uint64_t par_el[4];
413 };
6cb0b013 414
b5ff1b31
FB
415 uint32_t c9_insn; /* Cache lockdown registers. */
416 uint32_t c9_data;
8521466b
AF
417 uint64_t c9_pmcr; /* performance monitor control register */
418 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
419 uint64_t c9_pmovsr; /* perf monitor overflow status */
420 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 421 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 422 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
423 union { /* Memory attribute redirection */
424 struct {
e03b5686 425#if HOST_BIG_ENDIAN
be693c87
GB
426 uint64_t _unused_mair_0;
427 uint32_t mair1_ns;
428 uint32_t mair0_ns;
429 uint64_t _unused_mair_1;
430 uint32_t mair1_s;
431 uint32_t mair0_s;
432#else
433 uint64_t _unused_mair_0;
434 uint32_t mair0_ns;
435 uint32_t mair1_ns;
436 uint64_t _unused_mair_1;
437 uint32_t mair0_s;
438 uint32_t mair1_s;
439#endif
440 };
441 uint64_t mair_el[4];
442 };
fb6c91ba
GB
443 union { /* vector base address register */
444 struct {
445 uint64_t _unused_vbar;
446 uint64_t vbar_ns;
447 uint64_t hvbar;
448 uint64_t vbar_s;
449 };
450 uint64_t vbar_el[4];
451 };
e89e51a1 452 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 453 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
454 struct { /* FCSE PID. */
455 uint32_t fcseidr_ns;
456 uint32_t fcseidr_s;
457 };
458 union { /* Context ID. */
459 struct {
460 uint64_t _unused_contextidr_0;
461 uint64_t contextidr_ns;
462 uint64_t _unused_contextidr_1;
463 uint64_t contextidr_s;
464 };
465 uint64_t contextidr_el[4];
466 };
467 union { /* User RW Thread register. */
468 struct {
469 uint64_t tpidrurw_ns;
470 uint64_t tpidrprw_ns;
471 uint64_t htpidr;
472 uint64_t _tpidr_el3;
473 };
474 uint64_t tpidr_el[4];
475 };
476 /* The secure banks of these registers don't map anywhere */
477 uint64_t tpidrurw_s;
478 uint64_t tpidrprw_s;
479 uint64_t tpidruro_s;
480
481 union { /* User RO Thread register. */
482 uint64_t tpidruro_ns;
483 uint64_t tpidrro_el[1];
484 };
a7adc4b7
PM
485 uint64_t c14_cntfrq; /* Counter Frequency register */
486 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 487 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 488 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 489 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 490 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
491 uint32_t c15_ticonfig; /* TI925T configuration byte. */
492 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
493 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
494 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
495 uint32_t c15_config_base_address; /* SCU base address. */
496 uint32_t c15_diagnostic; /* diagnostic register */
497 uint32_t c15_power_diagnostic;
498 uint32_t c15_power_control; /* power control */
0b45451e
PM
499 uint64_t dbgbvr[16]; /* breakpoint value registers */
500 uint64_t dbgbcr[16]; /* breakpoint control registers */
501 uint64_t dbgwvr[16]; /* watchpoint value registers */
502 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 503 uint64_t mdscr_el1;
1424ca8d 504 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 505 uint64_t mdcr_el2;
5513c3ab 506 uint64_t mdcr_el3;
5d05b9d4
AL
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
7c2cb42b 511 */
c92c0687 512 uint64_t c15_ccnt;
5d05b9d4
AL
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
8521466b 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
58e93b48
RH
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
b5ff1b31 535 } cp15;
40f137e1 536
9ee6e8bb 537 struct {
fb602cb7
PM
538 /* M profile has up to 4 stack pointers:
539 * a Main Stack Pointer and a Process Stack Pointer for each
540 * of the Secure and Non-Secure states. (If the CPU doesn't support
541 * the security extension then it has only two SPs.)
542 * In QEMU we always store the currently active SP in regs[13],
543 * and the non-active SP for the current security state in
544 * v7m.other_sp. The stack pointers for the inactive security state
545 * are stored in other_ss_msp and other_ss_psp.
546 * switch_v7m_security_state() is responsible for rearranging them
547 * when we change security state.
548 */
9ee6e8bb 549 uint32_t other_sp;
fb602cb7
PM
550 uint32_t other_ss_msp;
551 uint32_t other_ss_psp;
4a16724f
PM
552 uint32_t vecbase[M_REG_NUM_BANKS];
553 uint32_t basepri[M_REG_NUM_BANKS];
554 uint32_t control[M_REG_NUM_BANKS];
555 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
556 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
557 uint32_t hfsr; /* HardFault Status */
558 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 559 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 560 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 561 uint32_t bfar; /* BusFault Address */
bed079da 562 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 563 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 564 int exception;
4a16724f
PM
565 uint32_t primask[M_REG_NUM_BANKS];
566 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 567 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 568 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 569 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 570 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
571 uint32_t msplim[M_REG_NUM_BANKS];
572 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
573 uint32_t fpcar[M_REG_NUM_BANKS];
574 uint32_t fpccr[M_REG_NUM_BANKS];
575 uint32_t fpdscr[M_REG_NUM_BANKS];
576 uint32_t cpacr[M_REG_NUM_BANKS];
577 uint32_t nsacr;
b26b5629 578 uint32_t ltpsize;
7c3d47da 579 uint32_t vpr;
9ee6e8bb
PB
580 } v7m;
581
abf1172f
PM
582 /* Information associated with an exception about to be taken:
583 * code which raises an exception must set cs->exception_index and
584 * the relevant parts of this structure; the cpu_do_interrupt function
585 * will then set the guest-visible registers as part of the exception
586 * entry process.
587 */
588 struct {
589 uint32_t syndrome; /* AArch64 format syndrome register */
590 uint32_t fsr; /* AArch32 format fault status register info */
591 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 592 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
593 /* If we implement EL2 we will also need to store information
594 * about the intermediate physical address for stage 2 faults.
595 */
596 } exception;
597
202ccb6b
DG
598 /* Information associated with an SError */
599 struct {
600 uint8_t pending;
601 uint8_t has_esr;
602 uint64_t esr;
603 } serror;
604
1711bfa5
BM
605 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
606
ed89f078
PM
607 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
608 uint32_t irq_line_state;
609
fe1479c3
PB
610 /* Thumb-2 EE state. */
611 uint32_t teecr;
612 uint32_t teehbr;
613
b7bcbe95
FB
614 /* VFP coprocessor state. */
615 struct {
c39c2b90 616 ARMVectorReg zregs[32];
b7bcbe95 617
3c7d3086
RH
618#ifdef TARGET_AARCH64
619 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 620#define FFR_PRED_NUM 16
3c7d3086 621 ARMPredicateReg pregs[17];
516e246a
RH
622 /* Scratch space for aa64 sve predicate temporary. */
623 ARMPredicateReg preg_tmp;
3c7d3086
RH
624#endif
625
b7bcbe95 626 /* We store these fpcsr fields separately for convenience. */
a4d58462 627 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
628 int vec_len;
629 int vec_stride;
630
a4d58462
RH
631 uint32_t xregs[16];
632
516e246a 633 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 634 uint32_t scratch[8];
3b46e624 635
d81ce0ef
AB
636 /* There are a number of distinct float control structures:
637 *
638 * fp_status: is the "normal" fp status.
639 * fp_status_fp16: used for half-precision calculations
640 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
641 * standard_fp_status_fp16 : used for half-precision
642 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
643 *
644 * Half-precision operations are governed by a separate
645 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
646 * status structure to control this.
647 *
648 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
649 * round-to-nearest and is used by any operations (generally
650 * Neon) which the architecture defines as controlled by the
651 * standard FPSCR value rather than the FPSCR.
3a492f3a 652 *
aaae563b
PM
653 * The "standard FPSCR but for fp16 ops" is needed because
654 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
655 * using a fixed value for it.
656 *
3a492f3a
PM
657 * To avoid having to transfer exception bits around, we simply
658 * say that the FPSCR cumulative exception flags are the logical
aaae563b 659 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
660 * only thing which needs to read the exception flags being
661 * an explicit FPSCR read.
662 */
53cd6637 663 float_status fp_status;
d81ce0ef 664 float_status fp_status_f16;
3a492f3a 665 float_status standard_fp_status;
aaae563b 666 float_status standard_fp_status_f16;
5be5e8ed
RH
667
668 /* ZCR_EL[1-3] */
669 uint64_t zcr_el[4];
b7bcbe95 670 } vfp;
03d05e2d
PM
671 uint64_t exclusive_addr;
672 uint64_t exclusive_val;
673 uint64_t exclusive_high;
b7bcbe95 674
18c9b560
AZ
675 /* iwMMXt coprocessor state. */
676 struct {
677 uint64_t regs[16];
678 uint64_t val;
679
680 uint32_t cregs[16];
681 } iwmmxt;
682
991ad91b 683#ifdef TARGET_AARCH64
108b3ba8
RH
684 struct {
685 ARMPACKey apia;
686 ARMPACKey apib;
687 ARMPACKey apda;
688 ARMPACKey apdb;
689 ARMPACKey apga;
690 } keys;
991ad91b
RH
691#endif
692
ce4defa0
PB
693#if defined(CONFIG_USER_ONLY)
694 /* For usermode syscall translation. */
695 int eabi;
696#endif
697
46747d15 698 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
699 struct CPUWatchpoint *cpu_watchpoint[16];
700
1f5c00cf
AB
701 /* Fields up to this point are cleared by a CPU reset */
702 struct {} end_reset_fields;
703
e8b5fae5 704 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 705
581be094 706 /* Internal CPU feature flags. */
918f5dca 707 uint64_t features;
581be094 708
6cb0b013
PC
709 /* PMSAv7 MPU */
710 struct {
711 uint32_t *drbar;
712 uint32_t *drsr;
713 uint32_t *dracr;
4a16724f 714 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
715 } pmsav7;
716
0e1a46bb
PM
717 /* PMSAv8 MPU */
718 struct {
719 /* The PMSAv8 implementation also shares some PMSAv7 config
720 * and state:
721 * pmsav7.rnr (region number register)
722 * pmsav7_dregion (number of configured regions)
723 */
4a16724f
PM
724 uint32_t *rbar[M_REG_NUM_BANKS];
725 uint32_t *rlar[M_REG_NUM_BANKS];
726 uint32_t mair0[M_REG_NUM_BANKS];
727 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
728 } pmsav8;
729
9901c576
PM
730 /* v8M SAU */
731 struct {
732 uint32_t *rbar;
733 uint32_t *rlar;
734 uint32_t rnr;
735 uint32_t ctrl;
736 } sau;
737
983fe826 738 void *nvic;
462a8bc6 739 const struct arm_boot_info *boot_info;
d3a3e529
VK
740 /* Store GICv3CPUState to access from this struct */
741 void *gicv3state;
0e0c030c
RH
742
743#ifdef TARGET_TAGGED_ADDRESSES
744 /* Linux syscall tagged address support */
745 bool tagged_addr_enable;
746#endif
2c0262af
FB
747} CPUARMState;
748
5fda9504
TH
749static inline void set_feature(CPUARMState *env, int feature)
750{
751 env->features |= 1ULL << feature;
752}
753
754static inline void unset_feature(CPUARMState *env, int feature)
755{
756 env->features &= ~(1ULL << feature);
757}
758
bd7d00fc 759/**
08267487 760 * ARMELChangeHookFn:
bd7d00fc
PM
761 * type of a function which can be registered via arm_register_el_change_hook()
762 * to get callbacks when the CPU changes its exception level or mode.
763 */
08267487
AL
764typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
765typedef struct ARMELChangeHook ARMELChangeHook;
766struct ARMELChangeHook {
767 ARMELChangeHookFn *hook;
768 void *opaque;
769 QLIST_ENTRY(ARMELChangeHook) node;
770};
062ba099
AB
771
772/* These values map onto the return values for
773 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
774typedef enum ARMPSCIState {
d5affb0d
AJ
775 PSCI_ON = 0,
776 PSCI_OFF = 1,
062ba099
AB
777 PSCI_ON_PENDING = 2
778} ARMPSCIState;
779
962fcbf2
RH
780typedef struct ARMISARegisters ARMISARegisters;
781
74e75564
PB
782/**
783 * ARMCPU:
784 * @env: #CPUARMState
785 *
786 * An ARM CPU core.
787 */
b36e239e 788struct ArchCPU {
74e75564
PB
789 /*< private >*/
790 CPUState parent_obj;
791 /*< public >*/
792
5b146dc7 793 CPUNegativeOffsetState neg;
74e75564
PB
794 CPUARMState env;
795
796 /* Coprocessor information */
797 GHashTable *cp_regs;
798 /* For marshalling (mostly coprocessor) register state between the
799 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
800 * we use these arrays.
801 */
802 /* List of register indexes managed via these arrays; (full KVM style
803 * 64 bit indexes, not CPRegInfo 32 bit indexes)
804 */
805 uint64_t *cpreg_indexes;
806 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
807 uint64_t *cpreg_values;
808 /* Length of the indexes, values, reset_values arrays */
809 int32_t cpreg_array_len;
810 /* These are used only for migration: incoming data arrives in
811 * these fields and is sanity checked in post_load before copying
812 * to the working data structures above.
813 */
814 uint64_t *cpreg_vmstate_indexes;
815 uint64_t *cpreg_vmstate_values;
816 int32_t cpreg_vmstate_array_len;
817
448d4d14 818 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 819 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 820
74e75564
PB
821 /* Timers used by the generic (architected) timer */
822 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
823 /*
824 * Timer used by the PMU. Its state is restored after migration by
825 * pmu_op_finish() - it does not need other handling during migration
826 */
827 QEMUTimer *pmu_timer;
74e75564
PB
828 /* GPIO outputs for generic timer */
829 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
830 /* GPIO output for GICv3 maintenance interrupt signal */
831 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
832 /* GPIO output for the PMU interrupt */
833 qemu_irq pmu_interrupt;
74e75564
PB
834
835 /* MemoryRegion to use for secure physical accesses */
836 MemoryRegion *secure_memory;
837
8bce44a2
RH
838 /* MemoryRegion to use for allocation tag accesses */
839 MemoryRegion *tag_memory;
840 MemoryRegion *secure_tag_memory;
841
181962fd
PM
842 /* For v8M, pointer to the IDAU interface provided by board/SoC */
843 Object *idau;
844
74e75564
PB
845 /* 'compatible' string for this CPU for Linux device trees */
846 const char *dtb_compatible;
847
848 /* PSCI version for this CPU
849 * Bits[31:16] = Major Version
850 * Bits[15:0] = Minor Version
851 */
852 uint32_t psci_version;
853
062ba099
AB
854 /* Current power state, access guarded by BQL */
855 ARMPSCIState power_state;
856
c25bd18a
PM
857 /* CPU has virtualization extension */
858 bool has_el2;
74e75564
PB
859 /* CPU has security extension */
860 bool has_el3;
5c0a3819
SZ
861 /* CPU has PMU (Performance Monitor Unit) */
862 bool has_pmu;
97a28b0e
PM
863 /* CPU has VFP */
864 bool has_vfp;
865 /* CPU has Neon */
866 bool has_neon;
ea90db0a
PM
867 /* CPU has M-profile DSP extension */
868 bool has_dsp;
74e75564
PB
869
870 /* CPU has memory protection unit */
871 bool has_mpu;
872 /* PMSAv7 MPU number of supported regions */
873 uint32_t pmsav7_dregion;
9901c576
PM
874 /* v8M SAU number of supported regions */
875 uint32_t sau_sregion;
74e75564
PB
876
877 /* PSCI conduit used to invoke PSCI methods
878 * 0 - disabled, 1 - smc, 2 - hvc
879 */
880 uint32_t psci_conduit;
881
38e2a77c
PM
882 /* For v8M, initial value of the Secure VTOR */
883 uint32_t init_svtor;
7cda2149
PM
884 /* For v8M, initial value of the Non-secure VTOR */
885 uint32_t init_nsvtor;
38e2a77c 886
74e75564
PB
887 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
888 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
889 */
890 uint32_t kvm_target;
891
892 /* KVM init features for this CPU */
893 uint32_t kvm_init_features[7];
894
e5ac4200
AJ
895 /* KVM CPU state */
896
897 /* KVM virtual time adjustment */
898 bool kvm_adjvtime;
899 bool kvm_vtime_dirty;
900 uint64_t kvm_vtime;
901
68970d1e
AJ
902 /* KVM steal time */
903 OnOffAuto kvm_steal_time;
904
74e75564
PB
905 /* Uniprocessor system with MP extensions */
906 bool mp_is_up;
907
c4487d76
PM
908 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
909 * and the probe failed (so we need to report the error in realize)
910 */
911 bool host_cpu_probe_failed;
912
f9a69711
AF
913 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
914 * register.
915 */
916 int32_t core_count;
917
74e75564
PB
918 /* The instance init functions for implementation-specific subclasses
919 * set these fields to specify the implementation-dependent values of
920 * various constant registers and reset values of non-constant
921 * registers.
922 * Some of these might become QOM properties eventually.
923 * Field names match the official register names as defined in the
924 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
925 * is used for reset values of non-constant registers; no reset_
926 * prefix means a constant register.
47576b94
RH
927 * Some of these registers are split out into a substructure that
928 * is shared with the translators to control the ISA.
1548a7b2
PM
929 *
930 * Note that if you add an ID register to the ARMISARegisters struct
931 * you need to also update the 32-bit and 64-bit versions of the
932 * kvm_arm_get_host_cpu_features() function to correctly populate the
933 * field by reading the value from the KVM vCPU.
74e75564 934 */
47576b94
RH
935 struct ARMISARegisters {
936 uint32_t id_isar0;
937 uint32_t id_isar1;
938 uint32_t id_isar2;
939 uint32_t id_isar3;
940 uint32_t id_isar4;
941 uint32_t id_isar5;
942 uint32_t id_isar6;
10054016
PM
943 uint32_t id_mmfr0;
944 uint32_t id_mmfr1;
945 uint32_t id_mmfr2;
946 uint32_t id_mmfr3;
947 uint32_t id_mmfr4;
8a130a7b
PM
948 uint32_t id_pfr0;
949 uint32_t id_pfr1;
1d51bc96 950 uint32_t id_pfr2;
47576b94
RH
951 uint32_t mvfr0;
952 uint32_t mvfr1;
953 uint32_t mvfr2;
a6179538 954 uint32_t id_dfr0;
4426d361 955 uint32_t dbgdidr;
47576b94
RH
956 uint64_t id_aa64isar0;
957 uint64_t id_aa64isar1;
958 uint64_t id_aa64pfr0;
959 uint64_t id_aa64pfr1;
3dc91ddb
PM
960 uint64_t id_aa64mmfr0;
961 uint64_t id_aa64mmfr1;
64761e10 962 uint64_t id_aa64mmfr2;
2a609df8
PM
963 uint64_t id_aa64dfr0;
964 uint64_t id_aa64dfr1;
2dc10fa2 965 uint64_t id_aa64zfr0;
47576b94 966 } isar;
e544f800 967 uint64_t midr;
74e75564
PB
968 uint32_t revidr;
969 uint32_t reset_fpsid;
a5fd319a 970 uint64_t ctr;
74e75564 971 uint32_t reset_sctlr;
cad86737
AL
972 uint64_t pmceid0;
973 uint64_t pmceid1;
74e75564 974 uint32_t id_afr0;
74e75564
PB
975 uint64_t id_aa64afr0;
976 uint64_t id_aa64afr1;
f6450bcb 977 uint64_t clidr;
74e75564
PB
978 uint64_t mp_affinity; /* MP ID without feature bits */
979 /* The elements of this array are the CCSIDR values for each cache,
980 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
981 */
957e6155 982 uint64_t ccsidr[16];
74e75564
PB
983 uint64_t reset_cbar;
984 uint32_t reset_auxcr;
985 bool reset_hivecs;
eb94284d
RH
986
987 /*
988 * Intermediate values used during property parsing.
69b2265d 989 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
990 */
991 bool prop_pauth;
992 bool prop_pauth_impdef;
69b2265d 993 bool prop_lpa2;
eb94284d 994
74e75564
PB
995 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
996 uint32_t dcz_blocksize;
4a7319b7 997 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 998
e45868a3
PM
999 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1000 int gic_num_lrs; /* number of list registers */
1001 int gic_vpribits; /* number of virtual priority bits */
1002 int gic_vprebits; /* number of virtual preemption bits */
1003
3a062d57
JB
1004 /* Whether the cfgend input is high (i.e. this CPU should reset into
1005 * big-endian mode). This setting isn't used directly: instead it modifies
1006 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1007 * architecture version.
1008 */
1009 bool cfgend;
1010
b5c53d1b 1011 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1012 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1013
1014 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1015
1016 /* Used to synchronize KVM and QEMU in-kernel device levels */
1017 uint8_t device_irq_level;
adf92eab
RH
1018
1019 /* Used to set the maximum vector length the cpu will support. */
1020 uint32_t sve_max_vq;
0df9142d 1021
b3d52804
RH
1022#ifdef CONFIG_USER_ONLY
1023 /* Used to set the default vector length at process start. */
1024 uint32_t sve_default_vq;
1025#endif
1026
0df9142d
AJ
1027 /*
1028 * In sve_vq_map each set bit is a supported vector length of
1029 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1030 * length in quadwords.
1031 *
1032 * While processing properties during initialization, corresponding
1033 * sve_vq_init bits are set for bits in sve_vq_map that have been
1034 * set by properties.
5401b1e0
AJ
1035 *
1036 * Bits set in sve_vq_supported represent valid vector lengths for
1037 * the CPU type.
0df9142d
AJ
1038 */
1039 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1040 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
5401b1e0 1041 DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
7def8754
AJ
1042
1043 /* Generic timer counter frequency, in Hz */
1044 uint64_t gt_cntfrq_hz;
74e75564
PB
1045};
1046
7def8754
AJ
1047unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1048
51e5ef45
MAL
1049void arm_cpu_post_init(Object *obj);
1050
46de5913
IM
1051uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1052
74e75564 1053#ifndef CONFIG_USER_ONLY
8a9358cc 1054extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1055
1056void arm_cpu_do_interrupt(CPUState *cpu);
1057void arm_v7m_cpu_do_interrupt(CPUState *cpu);
083afd18 1058#endif /* !CONFIG_USER_ONLY */
74e75564 1059
74e75564
PB
1060hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1061 MemTxAttrs *attrs);
1062
a010bdbe 1063int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1064int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1065
d12379c5
AB
1066/*
1067 * Helpers to dynamically generates XML descriptions of the sysregs
1068 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1069 */
32d6e32a 1070int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1071int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1072
1073/* Returns the dynamically generated XML for the gdb stub.
1074 * Returns a pointer to the XML contents for the specified XML file or NULL
1075 * if the XML name doesn't match the predefined one.
1076 */
1077const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1078
74e75564
PB
1079int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1080 int cpuid, void *opaque);
1081int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1082 int cpuid, void *opaque);
1083
1084#ifdef TARGET_AARCH64
a010bdbe 1085int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1086int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1087void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1088void aarch64_sve_change_el(CPUARMState *env, int old_el,
1089 int new_el, bool el0_a64);
87014c6b 1090void aarch64_add_sve_properties(Object *obj);
95ea96e8 1091void aarch64_add_pauth_properties(Object *obj);
538baab2
AJ
1092
1093/*
1094 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1095 * The byte at offset i from the start of the in-memory representation contains
1096 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1097 * lowest offsets are stored in the lowest memory addresses, then that nearly
1098 * matches QEMU's representation, which is to use an array of host-endian
1099 * uint64_t's, where the lower offsets are at the lower indices. To complete
1100 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1101 */
1102static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1103{
e03b5686 1104#if HOST_BIG_ENDIAN
538baab2
AJ
1105 int i;
1106
1107 for (i = 0; i < nr; ++i) {
1108 dst[i] = bswap64(src[i]);
1109 }
1110
1111 return dst;
1112#else
1113 return src;
1114#endif
1115}
1116
0ab5953b
RH
1117#else
1118static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1119static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1120 int n, bool a)
1121{ }
87014c6b 1122static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1123#endif
778c3a06 1124
ce02049d
GB
1125void aarch64_sync_32_to_64(CPUARMState *env);
1126void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1127
ced31551
RH
1128int fp_exception_el(CPUARMState *env, int cur_el);
1129int sve_exception_el(CPUARMState *env, int cur_el);
1130uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1131
3926cc84
AG
1132static inline bool is_a64(CPUARMState *env)
1133{
1134 return env->aarch64;
1135}
1136
5d05b9d4
AL
1137/**
1138 * pmu_op_start/finish
ec7b4ce4
AF
1139 * @env: CPUARMState
1140 *
5d05b9d4
AL
1141 * Convert all PMU counters between their delta form (the typical mode when
1142 * they are enabled) and the guest-visible values. These two calls must
1143 * surround any action which might affect the counters.
ec7b4ce4 1144 */
5d05b9d4
AL
1145void pmu_op_start(CPUARMState *env);
1146void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1147
4e7beb0c
AL
1148/*
1149 * Called when a PMU counter is due to overflow
1150 */
1151void arm_pmu_timer_cb(void *opaque);
1152
033614c4
AL
1153/**
1154 * Functions to register as EL change hooks for PMU mode filtering
1155 */
1156void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1157void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1158
57a4a11b 1159/*
bf8d0969
AL
1160 * pmu_init
1161 * @cpu: ARMCPU
57a4a11b 1162 *
bf8d0969
AL
1163 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1164 * for the current configuration
57a4a11b 1165 */
bf8d0969 1166void pmu_init(ARMCPU *cpu);
57a4a11b 1167
76e3e1bc
PM
1168/* SCTLR bit meanings. Several bits have been reused in newer
1169 * versions of the architecture; in that case we define constants
1170 * for both old and new bit meanings. Code which tests against those
1171 * bits should probably check or otherwise arrange that the CPU
1172 * is the architectural version it expects.
1173 */
1174#define SCTLR_M (1U << 0)
1175#define SCTLR_A (1U << 1)
1176#define SCTLR_C (1U << 2)
1177#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1178#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1179#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1180#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1181#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1182#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1183#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1184#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1185#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1186#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1187#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1188#define SCTLR_ITD (1U << 7) /* v8 onward */
1189#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1190#define SCTLR_SED (1U << 8) /* v8 onward */
1191#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1192#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1193#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1194#define SCTLR_SW (1U << 10) /* v7 */
1195#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1196#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1197#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1198#define SCTLR_I (1U << 12)
b2af69d0
RH
1199#define SCTLR_V (1U << 13) /* AArch32 only */
1200#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1201#define SCTLR_RR (1U << 14) /* up to v7 */
1202#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1203#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1204#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1205#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1206#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1207#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1208#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1209#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1210#define SCTLR_nTWE (1U << 18) /* v8 onward */
1211#define SCTLR_WXN (1U << 19)
1212#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1213#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1214#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1215#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1216#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1217#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1218#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1219#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1220#define SCTLR_VE (1U << 24) /* up to v7 */
1221#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1222#define SCTLR_EE (1U << 25)
1223#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1224#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1225#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1226#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1227#define SCTLR_TRE (1U << 28) /* AArch32 only */
1228#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1229#define SCTLR_AFE (1U << 29) /* AArch32 only */
1230#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1231#define SCTLR_TE (1U << 30) /* AArch32 only */
1232#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1233#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1234#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1235#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1236#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1237#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1238#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1239#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1240#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1241#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1242#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1243#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1244#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1245#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1246#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1247#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1248#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1249#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1250#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1251#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1252#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1253#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1254#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1255#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1256#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1257
c6f19164
GB
1258#define CPTR_TCPAC (1U << 31)
1259#define CPTR_TTA (1U << 20)
1260#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1261#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1262#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1263
187f678d
PM
1264#define MDCR_EPMAD (1U << 21)
1265#define MDCR_EDAD (1U << 20)
033614c4
AL
1266#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1267#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1268#define MDCR_SDD (1U << 16)
a8d64e73 1269#define MDCR_SPD (3U << 14)
187f678d
PM
1270#define MDCR_TDRA (1U << 11)
1271#define MDCR_TDOSA (1U << 10)
1272#define MDCR_TDA (1U << 9)
1273#define MDCR_TDE (1U << 8)
1274#define MDCR_HPME (1U << 7)
1275#define MDCR_TPM (1U << 6)
1276#define MDCR_TPMCR (1U << 5)
033614c4 1277#define MDCR_HPMN (0x1fU)
187f678d 1278
a8d64e73
PM
1279/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1280#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1281
78dbbbe4
PM
1282#define CPSR_M (0x1fU)
1283#define CPSR_T (1U << 5)
1284#define CPSR_F (1U << 6)
1285#define CPSR_I (1U << 7)
1286#define CPSR_A (1U << 8)
1287#define CPSR_E (1U << 9)
1288#define CPSR_IT_2_7 (0xfc00U)
1289#define CPSR_GE (0xfU << 16)
4051e12c 1290#define CPSR_IL (1U << 20)
dc8b1853 1291#define CPSR_DIT (1U << 21)
220f508f 1292#define CPSR_PAN (1U << 22)
f2f68a78 1293#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1294#define CPSR_J (1U << 24)
1295#define CPSR_IT_0_1 (3U << 25)
1296#define CPSR_Q (1U << 27)
1297#define CPSR_V (1U << 28)
1298#define CPSR_C (1U << 29)
1299#define CPSR_Z (1U << 30)
1300#define CPSR_N (1U << 31)
9ee6e8bb 1301#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1302#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1303
1304#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1305#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1306 | CPSR_NZCV)
9ee6e8bb 1307/* Bits writable in user mode. */
268b1b3d 1308#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1309/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1310#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1311
987ab45e
PM
1312/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1313#define XPSR_EXCP 0x1ffU
1314#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1315#define XPSR_IT_2_7 CPSR_IT_2_7
1316#define XPSR_GE CPSR_GE
1317#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1318#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1319#define XPSR_IT_0_1 CPSR_IT_0_1
1320#define XPSR_Q CPSR_Q
1321#define XPSR_V CPSR_V
1322#define XPSR_C CPSR_C
1323#define XPSR_Z CPSR_Z
1324#define XPSR_N CPSR_N
1325#define XPSR_NZCV CPSR_NZCV
1326#define XPSR_IT CPSR_IT
1327
e389be16
FA
1328#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1329#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1330#define TTBCR_PD0 (1U << 4)
1331#define TTBCR_PD1 (1U << 5)
1332#define TTBCR_EPD0 (1U << 7)
1333#define TTBCR_IRGN0 (3U << 8)
1334#define TTBCR_ORGN0 (3U << 10)
1335#define TTBCR_SH0 (3U << 12)
1336#define TTBCR_T1SZ (3U << 16)
1337#define TTBCR_A1 (1U << 22)
1338#define TTBCR_EPD1 (1U << 23)
1339#define TTBCR_IRGN1 (3U << 24)
1340#define TTBCR_ORGN1 (3U << 26)
1341#define TTBCR_SH1 (1U << 28)
1342#define TTBCR_EAE (1U << 31)
1343
d356312f
PM
1344/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1345 * Only these are valid when in AArch64 mode; in
1346 * AArch32 mode SPSRs are basically CPSR-format.
1347 */
f502cfc2 1348#define PSTATE_SP (1U)
d356312f
PM
1349#define PSTATE_M (0xFU)
1350#define PSTATE_nRW (1U << 4)
1351#define PSTATE_F (1U << 6)
1352#define PSTATE_I (1U << 7)
1353#define PSTATE_A (1U << 8)
1354#define PSTATE_D (1U << 9)
f6e52eaa 1355#define PSTATE_BTYPE (3U << 10)
f2f68a78 1356#define PSTATE_SSBS (1U << 12)
d356312f
PM
1357#define PSTATE_IL (1U << 20)
1358#define PSTATE_SS (1U << 21)
220f508f 1359#define PSTATE_PAN (1U << 22)
9eeb7a1c 1360#define PSTATE_UAO (1U << 23)
dc8b1853 1361#define PSTATE_DIT (1U << 24)
4b779ceb 1362#define PSTATE_TCO (1U << 25)
d356312f
PM
1363#define PSTATE_V (1U << 28)
1364#define PSTATE_C (1U << 29)
1365#define PSTATE_Z (1U << 30)
1366#define PSTATE_N (1U << 31)
1367#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1368#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1369#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1370/* Mode values for AArch64 */
1371#define PSTATE_MODE_EL3h 13
1372#define PSTATE_MODE_EL3t 12
1373#define PSTATE_MODE_EL2h 9
1374#define PSTATE_MODE_EL2t 8
1375#define PSTATE_MODE_EL1h 5
1376#define PSTATE_MODE_EL1t 4
1377#define PSTATE_MODE_EL0t 0
1378
de2db7ec
PM
1379/* Write a new value to v7m.exception, thus transitioning into or out
1380 * of Handler mode; this may result in a change of active stack pointer.
1381 */
1382void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1383
9e729b57
EI
1384/* Map EL and handler into a PSTATE_MODE. */
1385static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1386{
1387 return (el << 2) | handler;
1388}
1389
d356312f
PM
1390/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1391 * interprocessing, so we don't attempt to sync with the cpsr state used by
1392 * the 32 bit decoder.
1393 */
1394static inline uint32_t pstate_read(CPUARMState *env)
1395{
1396 int ZF;
1397
1398 ZF = (env->ZF == 0);
1399 return (env->NF & 0x80000000) | (ZF << 30)
1400 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1401 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1402}
1403
1404static inline void pstate_write(CPUARMState *env, uint32_t val)
1405{
1406 env->ZF = (~val) & PSTATE_Z;
1407 env->NF = val;
1408 env->CF = (val >> 29) & 1;
1409 env->VF = (val << 3) & 0x80000000;
4cc35614 1410 env->daif = val & PSTATE_DAIF;
f6e52eaa 1411 env->btype = (val >> 10) & 3;
d356312f
PM
1412 env->pstate = val & ~CACHED_PSTATE_BITS;
1413}
1414
b5ff1b31 1415/* Return the current CPSR value. */
2f4a40e5 1416uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1417
1418typedef enum CPSRWriteType {
1419 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1420 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1421 CPSRWriteRaw = 2,
1422 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1423 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1424} CPSRWriteType;
1425
e784807c
PM
1426/*
1427 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1428 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1429 * correspond to TB flags bits cached in the hflags, unless @write_type
1430 * is CPSRWriteRaw.
1431 */
50866ba5
PM
1432void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1433 CPSRWriteType write_type);
9ee6e8bb
PB
1434
1435/* Return the current xPSR value. */
1436static inline uint32_t xpsr_read(CPUARMState *env)
1437{
1438 int ZF;
6fbe23d5
PB
1439 ZF = (env->ZF == 0);
1440 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1441 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1442 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1443 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1444 | (env->GE << 16)
9ee6e8bb 1445 | env->v7m.exception;
b5ff1b31
FB
1446}
1447
9ee6e8bb
PB
1448/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1449static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1450{
987ab45e
PM
1451 if (mask & XPSR_NZCV) {
1452 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1453 env->NF = val;
9ee6e8bb
PB
1454 env->CF = (val >> 29) & 1;
1455 env->VF = (val << 3) & 0x80000000;
1456 }
987ab45e
PM
1457 if (mask & XPSR_Q) {
1458 env->QF = ((val & XPSR_Q) != 0);
1459 }
f1e2598c
PM
1460 if (mask & XPSR_GE) {
1461 env->GE = (val & XPSR_GE) >> 16;
1462 }
04c9c81b 1463#ifndef CONFIG_USER_ONLY
987ab45e
PM
1464 if (mask & XPSR_T) {
1465 env->thumb = ((val & XPSR_T) != 0);
1466 }
1467 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1468 env->condexec_bits &= ~3;
1469 env->condexec_bits |= (val >> 25) & 3;
1470 }
987ab45e 1471 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1472 env->condexec_bits &= 3;
1473 env->condexec_bits |= (val >> 8) & 0xfc;
1474 }
987ab45e 1475 if (mask & XPSR_EXCP) {
de2db7ec
PM
1476 /* Note that this only happens on exception exit */
1477 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1478 }
04c9c81b 1479#endif
9ee6e8bb
PB
1480}
1481
f149e3e8
EI
1482#define HCR_VM (1ULL << 0)
1483#define HCR_SWIO (1ULL << 1)
1484#define HCR_PTW (1ULL << 2)
1485#define HCR_FMO (1ULL << 3)
1486#define HCR_IMO (1ULL << 4)
1487#define HCR_AMO (1ULL << 5)
1488#define HCR_VF (1ULL << 6)
1489#define HCR_VI (1ULL << 7)
1490#define HCR_VSE (1ULL << 8)
1491#define HCR_FB (1ULL << 9)
1492#define HCR_BSU_MASK (3ULL << 10)
1493#define HCR_DC (1ULL << 12)
1494#define HCR_TWI (1ULL << 13)
1495#define HCR_TWE (1ULL << 14)
1496#define HCR_TID0 (1ULL << 15)
1497#define HCR_TID1 (1ULL << 16)
1498#define HCR_TID2 (1ULL << 17)
1499#define HCR_TID3 (1ULL << 18)
1500#define HCR_TSC (1ULL << 19)
1501#define HCR_TIDCP (1ULL << 20)
1502#define HCR_TACR (1ULL << 21)
1503#define HCR_TSW (1ULL << 22)
099bf53b 1504#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1505#define HCR_TPU (1ULL << 24)
1506#define HCR_TTLB (1ULL << 25)
1507#define HCR_TVM (1ULL << 26)
1508#define HCR_TGE (1ULL << 27)
1509#define HCR_TDZ (1ULL << 28)
1510#define HCR_HCD (1ULL << 29)
1511#define HCR_TRVM (1ULL << 30)
1512#define HCR_RW (1ULL << 31)
1513#define HCR_CD (1ULL << 32)
1514#define HCR_ID (1ULL << 33)
ac656b16 1515#define HCR_E2H (1ULL << 34)
099bf53b
RH
1516#define HCR_TLOR (1ULL << 35)
1517#define HCR_TERR (1ULL << 36)
1518#define HCR_TEA (1ULL << 37)
1519#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1520/* RES0 bit 39 */
099bf53b
RH
1521#define HCR_APK (1ULL << 40)
1522#define HCR_API (1ULL << 41)
1523#define HCR_NV (1ULL << 42)
1524#define HCR_NV1 (1ULL << 43)
1525#define HCR_AT (1ULL << 44)
1526#define HCR_NV2 (1ULL << 45)
1527#define HCR_FWB (1ULL << 46)
1528#define HCR_FIEN (1ULL << 47)
e0a38bb3 1529/* RES0 bit 48 */
099bf53b
RH
1530#define HCR_TID4 (1ULL << 49)
1531#define HCR_TICAB (1ULL << 50)
e0a38bb3 1532#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1533#define HCR_TOCU (1ULL << 52)
e0a38bb3 1534#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1535#define HCR_TTLBIS (1ULL << 54)
1536#define HCR_TTLBOS (1ULL << 55)
1537#define HCR_ATA (1ULL << 56)
1538#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1539#define HCR_TID5 (1ULL << 58)
1540#define HCR_TWEDEN (1ULL << 59)
1541#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1542
9861248f
RDC
1543#define HPFAR_NS (1ULL << 63)
1544
64e0e2de
EI
1545#define SCR_NS (1U << 0)
1546#define SCR_IRQ (1U << 1)
1547#define SCR_FIQ (1U << 2)
1548#define SCR_EA (1U << 3)
1549#define SCR_FW (1U << 4)
1550#define SCR_AW (1U << 5)
1551#define SCR_NET (1U << 6)
1552#define SCR_SMD (1U << 7)
1553#define SCR_HCE (1U << 8)
1554#define SCR_SIF (1U << 9)
1555#define SCR_RW (1U << 10)
1556#define SCR_ST (1U << 11)
1557#define SCR_TWI (1U << 12)
1558#define SCR_TWE (1U << 13)
99f8f86d
RH
1559#define SCR_TLOR (1U << 14)
1560#define SCR_TERR (1U << 15)
1561#define SCR_APK (1U << 16)
1562#define SCR_API (1U << 17)
1563#define SCR_EEL2 (1U << 18)
1564#define SCR_EASE (1U << 19)
1565#define SCR_NMEA (1U << 20)
1566#define SCR_FIEN (1U << 21)
1567#define SCR_ENSCXT (1U << 25)
1568#define SCR_ATA (1U << 26)
f527d661
RH
1569#define SCR_FGTEN (1U << 27)
1570#define SCR_ECVEN (1U << 28)
1571#define SCR_TWEDEN (1U << 29)
1572#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1573#define SCR_TME (1ULL << 34)
1574#define SCR_AMVOFFEN (1ULL << 35)
1575#define SCR_ENAS0 (1ULL << 36)
1576#define SCR_ADEN (1ULL << 37)
1577#define SCR_HXEN (1ULL << 38)
1578#define SCR_TRNDR (1ULL << 40)
1579#define SCR_ENTP2 (1ULL << 41)
1580#define SCR_GPF (1ULL << 48)
64e0e2de 1581
cc7613bf 1582#define HSTR_TTEE (1 << 16)
8e228c9e 1583#define HSTR_TJDBX (1 << 17)
cc7613bf 1584
01653295
PM
1585/* Return the current FPSCR value. */
1586uint32_t vfp_get_fpscr(CPUARMState *env);
1587void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1588
d81ce0ef
AB
1589/* FPCR, Floating Point Control Register
1590 * FPSR, Floating Poiht Status Register
1591 *
1592 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1593 * FPCR and FPSR. However since they still use non-overlapping bits
1594 * we store the underlying state in fpscr and just mask on read/write.
1595 */
1596#define FPSR_MASK 0xf800009f
0b62159b 1597#define FPCR_MASK 0x07ff9f00
d81ce0ef 1598
a15945d9
PM
1599#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1600#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1601#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1602#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1603#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1604#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1605#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1606#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1607#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1608#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1609#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1610#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1611#define FPCR_V (1 << 28) /* FP overflow flag */
1612#define FPCR_C (1 << 29) /* FP carry flag */
1613#define FPCR_Z (1 << 30) /* FP zero flag */
1614#define FPCR_N (1 << 31) /* FP negative flag */
1615
99c7834f
PM
1616#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1617#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1618#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1619
9542c30b
PM
1620#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1621#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1622
f903fa22
PM
1623static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1624{
1625 return vfp_get_fpscr(env) & FPSR_MASK;
1626}
1627
1628static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1629{
1630 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1631 vfp_set_fpscr(env, new_fpscr);
1632}
1633
1634static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1635{
1636 return vfp_get_fpscr(env) & FPCR_MASK;
1637}
1638
1639static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1640{
1641 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1642 vfp_set_fpscr(env, new_fpscr);
1643}
1644
b5ff1b31
FB
1645enum arm_cpu_mode {
1646 ARM_CPU_MODE_USR = 0x10,
1647 ARM_CPU_MODE_FIQ = 0x11,
1648 ARM_CPU_MODE_IRQ = 0x12,
1649 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1650 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1651 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1652 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1653 ARM_CPU_MODE_UND = 0x1b,
1654 ARM_CPU_MODE_SYS = 0x1f
1655};
1656
40f137e1
PB
1657/* VFP system registers. */
1658#define ARM_VFP_FPSID 0
1659#define ARM_VFP_FPSCR 1
a50c0f51 1660#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1661#define ARM_VFP_MVFR1 6
1662#define ARM_VFP_MVFR0 7
40f137e1
PB
1663#define ARM_VFP_FPEXC 8
1664#define ARM_VFP_FPINST 9
1665#define ARM_VFP_FPINST2 10
9542c30b
PM
1666/* These ones are M-profile only */
1667#define ARM_VFP_FPSCR_NZCVQC 2
1668#define ARM_VFP_VPR 12
1669#define ARM_VFP_P0 13
1670#define ARM_VFP_FPCXT_NS 14
1671#define ARM_VFP_FPCXT_S 15
40f137e1 1672
32a290b8
PM
1673/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1674#define QEMU_VFP_FPSCR_NZCV 0xffff
1675
18c9b560 1676/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1677#define ARM_IWMMXT_wCID 0
1678#define ARM_IWMMXT_wCon 1
1679#define ARM_IWMMXT_wCSSF 2
1680#define ARM_IWMMXT_wCASF 3
1681#define ARM_IWMMXT_wCGR0 8
1682#define ARM_IWMMXT_wCGR1 9
1683#define ARM_IWMMXT_wCGR2 10
1684#define ARM_IWMMXT_wCGR3 11
18c9b560 1685
2c4da50d
PM
1686/* V7M CCR bits */
1687FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1688FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1689FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1690FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1691FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1692FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1693FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1694FIELD(V7M_CCR, DC, 16, 1)
1695FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1696FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1697FIELD(V7M_CCR, LOB, 19, 1)
1698FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1699
24ac0fb1
PM
1700/* V7M SCR bits */
1701FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1702FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1703FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1704FIELD(V7M_SCR, SEVONPEND, 4, 1)
1705
3b2e9344
PM
1706/* V7M AIRCR bits */
1707FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1708FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1709FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1710FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1711FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1712FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1713FIELD(V7M_AIRCR, PRIS, 14, 1)
1714FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1715FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1716
2c4da50d
PM
1717/* V7M CFSR bits for MMFSR */
1718FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1719FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1720FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1721FIELD(V7M_CFSR, MSTKERR, 4, 1)
1722FIELD(V7M_CFSR, MLSPERR, 5, 1)
1723FIELD(V7M_CFSR, MMARVALID, 7, 1)
1724
1725/* V7M CFSR bits for BFSR */
1726FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1727FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1728FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1729FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1730FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1731FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1732FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1733
1734/* V7M CFSR bits for UFSR */
1735FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1736FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1737FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1738FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1739FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1740FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1741FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1742
334e8dad
PM
1743/* V7M CFSR bit masks covering all of the subregister bits */
1744FIELD(V7M_CFSR, MMFSR, 0, 8)
1745FIELD(V7M_CFSR, BFSR, 8, 8)
1746FIELD(V7M_CFSR, UFSR, 16, 16)
1747
2c4da50d
PM
1748/* V7M HFSR bits */
1749FIELD(V7M_HFSR, VECTTBL, 1, 1)
1750FIELD(V7M_HFSR, FORCED, 30, 1)
1751FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1752
1753/* V7M DFSR bits */
1754FIELD(V7M_DFSR, HALTED, 0, 1)
1755FIELD(V7M_DFSR, BKPT, 1, 1)
1756FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1757FIELD(V7M_DFSR, VCATCH, 3, 1)
1758FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1759
bed079da
PM
1760/* V7M SFSR bits */
1761FIELD(V7M_SFSR, INVEP, 0, 1)
1762FIELD(V7M_SFSR, INVIS, 1, 1)
1763FIELD(V7M_SFSR, INVER, 2, 1)
1764FIELD(V7M_SFSR, AUVIOL, 3, 1)
1765FIELD(V7M_SFSR, INVTRAN, 4, 1)
1766FIELD(V7M_SFSR, LSPERR, 5, 1)
1767FIELD(V7M_SFSR, SFARVALID, 6, 1)
1768FIELD(V7M_SFSR, LSERR, 7, 1)
1769
29c483a5
MD
1770/* v7M MPU_CTRL bits */
1771FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1772FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1773FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1774
43bbce7f
PM
1775/* v7M CLIDR bits */
1776FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1777FIELD(V7M_CLIDR, LOUIS, 21, 3)
1778FIELD(V7M_CLIDR, LOC, 24, 3)
1779FIELD(V7M_CLIDR, LOUU, 27, 3)
1780FIELD(V7M_CLIDR, ICB, 30, 2)
1781
1782FIELD(V7M_CSSELR, IND, 0, 1)
1783FIELD(V7M_CSSELR, LEVEL, 1, 3)
1784/* We use the combination of InD and Level to index into cpu->ccsidr[];
1785 * define a mask for this and check that it doesn't permit running off
1786 * the end of the array.
1787 */
1788FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1789
1790/* v7M FPCCR bits */
1791FIELD(V7M_FPCCR, LSPACT, 0, 1)
1792FIELD(V7M_FPCCR, USER, 1, 1)
1793FIELD(V7M_FPCCR, S, 2, 1)
1794FIELD(V7M_FPCCR, THREAD, 3, 1)
1795FIELD(V7M_FPCCR, HFRDY, 4, 1)
1796FIELD(V7M_FPCCR, MMRDY, 5, 1)
1797FIELD(V7M_FPCCR, BFRDY, 6, 1)
1798FIELD(V7M_FPCCR, SFRDY, 7, 1)
1799FIELD(V7M_FPCCR, MONRDY, 8, 1)
1800FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1801FIELD(V7M_FPCCR, UFRDY, 10, 1)
1802FIELD(V7M_FPCCR, RES0, 11, 15)
1803FIELD(V7M_FPCCR, TS, 26, 1)
1804FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1805FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1806FIELD(V7M_FPCCR, LSPENS, 29, 1)
1807FIELD(V7M_FPCCR, LSPEN, 30, 1)
1808FIELD(V7M_FPCCR, ASPEN, 31, 1)
1809/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1810#define R_V7M_FPCCR_BANKED_MASK \
1811 (R_V7M_FPCCR_LSPACT_MASK | \
1812 R_V7M_FPCCR_USER_MASK | \
1813 R_V7M_FPCCR_THREAD_MASK | \
1814 R_V7M_FPCCR_MMRDY_MASK | \
1815 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1816 R_V7M_FPCCR_UFRDY_MASK | \
1817 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1818
7c3d47da
PM
1819/* v7M VPR bits */
1820FIELD(V7M_VPR, P0, 0, 16)
1821FIELD(V7M_VPR, MASK01, 16, 4)
1822FIELD(V7M_VPR, MASK23, 20, 4)
1823
a62e62af
RH
1824/*
1825 * System register ID fields.
1826 */
2a14526a
LL
1827FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1828FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1829FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1830FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1831FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1832FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1833FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1834FIELD(CLIDR_EL1, LOUIS, 21, 3)
1835FIELD(CLIDR_EL1, LOC, 24, 3)
1836FIELD(CLIDR_EL1, LOUU, 27, 3)
1837FIELD(CLIDR_EL1, ICB, 30, 3)
1838
1839/* When FEAT_CCIDX is implemented */
1840FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1841FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1842FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1843
1844/* When FEAT_CCIDX is not implemented */
1845FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1846FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1847FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1848
1849FIELD(CTR_EL0, IMINLINE, 0, 4)
1850FIELD(CTR_EL0, L1IP, 14, 2)
1851FIELD(CTR_EL0, DMINLINE, 16, 4)
1852FIELD(CTR_EL0, ERG, 20, 4)
1853FIELD(CTR_EL0, CWG, 24, 4)
1854FIELD(CTR_EL0, IDC, 28, 1)
1855FIELD(CTR_EL0, DIC, 29, 1)
1856FIELD(CTR_EL0, TMINLINE, 32, 6)
1857
2bd5f41c
AB
1858FIELD(MIDR_EL1, REVISION, 0, 4)
1859FIELD(MIDR_EL1, PARTNUM, 4, 12)
1860FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1861FIELD(MIDR_EL1, VARIANT, 20, 4)
1862FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1863
a62e62af
RH
1864FIELD(ID_ISAR0, SWAP, 0, 4)
1865FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1866FIELD(ID_ISAR0, BITFIELD, 8, 4)
1867FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1868FIELD(ID_ISAR0, COPROC, 16, 4)
1869FIELD(ID_ISAR0, DEBUG, 20, 4)
1870FIELD(ID_ISAR0, DIVIDE, 24, 4)
1871
1872FIELD(ID_ISAR1, ENDIAN, 0, 4)
1873FIELD(ID_ISAR1, EXCEPT, 4, 4)
1874FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1875FIELD(ID_ISAR1, EXTEND, 12, 4)
1876FIELD(ID_ISAR1, IFTHEN, 16, 4)
1877FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1878FIELD(ID_ISAR1, INTERWORK, 24, 4)
1879FIELD(ID_ISAR1, JAZELLE, 28, 4)
1880
1881FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1882FIELD(ID_ISAR2, MEMHINT, 4, 4)
1883FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1884FIELD(ID_ISAR2, MULT, 12, 4)
1885FIELD(ID_ISAR2, MULTS, 16, 4)
1886FIELD(ID_ISAR2, MULTU, 20, 4)
1887FIELD(ID_ISAR2, PSR_AR, 24, 4)
1888FIELD(ID_ISAR2, REVERSAL, 28, 4)
1889
1890FIELD(ID_ISAR3, SATURATE, 0, 4)
1891FIELD(ID_ISAR3, SIMD, 4, 4)
1892FIELD(ID_ISAR3, SVC, 8, 4)
1893FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1894FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1895FIELD(ID_ISAR3, T32COPY, 20, 4)
1896FIELD(ID_ISAR3, TRUENOP, 24, 4)
1897FIELD(ID_ISAR3, T32EE, 28, 4)
1898
1899FIELD(ID_ISAR4, UNPRIV, 0, 4)
1900FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1901FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1902FIELD(ID_ISAR4, SMC, 12, 4)
1903FIELD(ID_ISAR4, BARRIER, 16, 4)
1904FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1905FIELD(ID_ISAR4, PSR_M, 24, 4)
1906FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1907
1908FIELD(ID_ISAR5, SEVL, 0, 4)
1909FIELD(ID_ISAR5, AES, 4, 4)
1910FIELD(ID_ISAR5, SHA1, 8, 4)
1911FIELD(ID_ISAR5, SHA2, 12, 4)
1912FIELD(ID_ISAR5, CRC32, 16, 4)
1913FIELD(ID_ISAR5, RDM, 24, 4)
1914FIELD(ID_ISAR5, VCMA, 28, 4)
1915
1916FIELD(ID_ISAR6, JSCVT, 0, 4)
1917FIELD(ID_ISAR6, DP, 4, 4)
1918FIELD(ID_ISAR6, FHM, 8, 4)
1919FIELD(ID_ISAR6, SB, 12, 4)
1920FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
1921FIELD(ID_ISAR6, BF16, 20, 4)
1922FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 1923
0ae0326b
PM
1924FIELD(ID_MMFR0, VMSA, 0, 4)
1925FIELD(ID_MMFR0, PMSA, 4, 4)
1926FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1927FIELD(ID_MMFR0, SHARELVL, 12, 4)
1928FIELD(ID_MMFR0, TCM, 16, 4)
1929FIELD(ID_MMFR0, AUXREG, 20, 4)
1930FIELD(ID_MMFR0, FCSE, 24, 4)
1931FIELD(ID_MMFR0, INNERSHR, 28, 4)
1932
bd78b6be
LL
1933FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1934FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1935FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1936FIELD(ID_MMFR1, L1UNISW, 12, 4)
1937FIELD(ID_MMFR1, L1HVD, 16, 4)
1938FIELD(ID_MMFR1, L1UNI, 20, 4)
1939FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1940FIELD(ID_MMFR1, BPRED, 28, 4)
1941
1942FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1943FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1944FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1945FIELD(ID_MMFR2, HVDTLB, 12, 4)
1946FIELD(ID_MMFR2, UNITLB, 16, 4)
1947FIELD(ID_MMFR2, MEMBARR, 20, 4)
1948FIELD(ID_MMFR2, WFISTALL, 24, 4)
1949FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1950
3d6ad6bb
RH
1951FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1952FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1953FIELD(ID_MMFR3, BPMAINT, 8, 4)
1954FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1955FIELD(ID_MMFR3, PAN, 16, 4)
1956FIELD(ID_MMFR3, COHWALK, 20, 4)
1957FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1958FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1959
ab638a32
RH
1960FIELD(ID_MMFR4, SPECSEI, 0, 4)
1961FIELD(ID_MMFR4, AC2, 4, 4)
1962FIELD(ID_MMFR4, XNX, 8, 4)
1963FIELD(ID_MMFR4, CNP, 12, 4)
1964FIELD(ID_MMFR4, HPDS, 16, 4)
1965FIELD(ID_MMFR4, LSM, 20, 4)
1966FIELD(ID_MMFR4, CCIDX, 24, 4)
1967FIELD(ID_MMFR4, EVT, 28, 4)
1968
bd78b6be 1969FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 1970FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 1971
46f4976f
PM
1972FIELD(ID_PFR0, STATE0, 0, 4)
1973FIELD(ID_PFR0, STATE1, 4, 4)
1974FIELD(ID_PFR0, STATE2, 8, 4)
1975FIELD(ID_PFR0, STATE3, 12, 4)
1976FIELD(ID_PFR0, CSV2, 16, 4)
1977FIELD(ID_PFR0, AMU, 20, 4)
1978FIELD(ID_PFR0, DIT, 24, 4)
1979FIELD(ID_PFR0, RAS, 28, 4)
1980
dfc523a8
PM
1981FIELD(ID_PFR1, PROGMOD, 0, 4)
1982FIELD(ID_PFR1, SECURITY, 4, 4)
1983FIELD(ID_PFR1, MPROGMOD, 8, 4)
1984FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1985FIELD(ID_PFR1, GENTIMER, 16, 4)
1986FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1987FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1988FIELD(ID_PFR1, GIC, 28, 4)
1989
bd78b6be
LL
1990FIELD(ID_PFR2, CSV3, 0, 4)
1991FIELD(ID_PFR2, SSBS, 4, 4)
1992FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1993
a62e62af
RH
1994FIELD(ID_AA64ISAR0, AES, 4, 4)
1995FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1996FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1997FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1998FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1999FIELD(ID_AA64ISAR0, RDM, 28, 4)
2000FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2001FIELD(ID_AA64ISAR0, SM3, 36, 4)
2002FIELD(ID_AA64ISAR0, SM4, 40, 4)
2003FIELD(ID_AA64ISAR0, DP, 44, 4)
2004FIELD(ID_AA64ISAR0, FHM, 48, 4)
2005FIELD(ID_AA64ISAR0, TS, 52, 4)
2006FIELD(ID_AA64ISAR0, TLB, 56, 4)
2007FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2008
2009FIELD(ID_AA64ISAR1, DPB, 0, 4)
2010FIELD(ID_AA64ISAR1, APA, 4, 4)
2011FIELD(ID_AA64ISAR1, API, 8, 4)
2012FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2013FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2014FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2015FIELD(ID_AA64ISAR1, GPA, 24, 4)
2016FIELD(ID_AA64ISAR1, GPI, 28, 4)
2017FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2018FIELD(ID_AA64ISAR1, SB, 36, 4)
2019FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2020FIELD(ID_AA64ISAR1, BF16, 44, 4)
2021FIELD(ID_AA64ISAR1, DGH, 48, 4)
2022FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2023FIELD(ID_AA64ISAR1, XS, 56, 4)
2024FIELD(ID_AA64ISAR1, LS64, 60, 4)
2025
2026FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2027FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2028FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2029FIELD(ID_AA64ISAR2, APA3, 12, 4)
2030FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2031FIELD(ID_AA64ISAR2, BC, 20, 4)
2032FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2033
cd208a1c
RH
2034FIELD(ID_AA64PFR0, EL0, 0, 4)
2035FIELD(ID_AA64PFR0, EL1, 4, 4)
2036FIELD(ID_AA64PFR0, EL2, 8, 4)
2037FIELD(ID_AA64PFR0, EL3, 12, 4)
2038FIELD(ID_AA64PFR0, FP, 16, 4)
2039FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2040FIELD(ID_AA64PFR0, GIC, 24, 4)
2041FIELD(ID_AA64PFR0, RAS, 28, 4)
2042FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2043FIELD(ID_AA64PFR0, SEL2, 36, 4)
2044FIELD(ID_AA64PFR0, MPAM, 40, 4)
2045FIELD(ID_AA64PFR0, AMU, 44, 4)
2046FIELD(ID_AA64PFR0, DIT, 48, 4)
2047FIELD(ID_AA64PFR0, CSV2, 56, 4)
2048FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2049
be53b6f4 2050FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2051FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2052FIELD(ID_AA64PFR1, MTE, 8, 4)
2053FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2054FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2055FIELD(ID_AA64PFR1, SME, 24, 4)
2056FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2057FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2058FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2059
3dc91ddb
PM
2060FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2061FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2062FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2063FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2064FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2065FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2066FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2067FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2068FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2069FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2070FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2071FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2072FIELD(ID_AA64MMFR0, FGT, 56, 4)
2073FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2074
2075FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2076FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2077FIELD(ID_AA64MMFR1, VH, 8, 4)
2078FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2079FIELD(ID_AA64MMFR1, LO, 16, 4)
2080FIELD(ID_AA64MMFR1, PAN, 20, 4)
2081FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2082FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2083FIELD(ID_AA64MMFR1, TWED, 32, 4)
2084FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2085FIELD(ID_AA64MMFR1, HCX, 40, 4)
2086FIELD(ID_AA64MMFR1, AFP, 44, 4)
2087FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2088FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2089FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2090
64761e10
RH
2091FIELD(ID_AA64MMFR2, CNP, 0, 4)
2092FIELD(ID_AA64MMFR2, UAO, 4, 4)
2093FIELD(ID_AA64MMFR2, LSM, 8, 4)
2094FIELD(ID_AA64MMFR2, IESB, 12, 4)
2095FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2096FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2097FIELD(ID_AA64MMFR2, NV, 24, 4)
2098FIELD(ID_AA64MMFR2, ST, 28, 4)
2099FIELD(ID_AA64MMFR2, AT, 32, 4)
2100FIELD(ID_AA64MMFR2, IDS, 36, 4)
2101FIELD(ID_AA64MMFR2, FWB, 40, 4)
2102FIELD(ID_AA64MMFR2, TTL, 48, 4)
2103FIELD(ID_AA64MMFR2, BBM, 52, 4)
2104FIELD(ID_AA64MMFR2, EVT, 56, 4)
2105FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2106
ceb2744b
PM
2107FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2108FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2109FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2110FIELD(ID_AA64DFR0, BRPS, 12, 4)
2111FIELD(ID_AA64DFR0, WRPS, 20, 4)
2112FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2113FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2114FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2115FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2116FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2117FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2118FIELD(ID_AA64DFR0, BRBE, 52, 4)
2119FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2120
2dc10fa2
RH
2121FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2122FIELD(ID_AA64ZFR0, AES, 4, 4)
2123FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2124FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2125FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2126FIELD(ID_AA64ZFR0, SM4, 40, 4)
2127FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2128FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2129FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2130
beceb99c
AL
2131FIELD(ID_DFR0, COPDBG, 0, 4)
2132FIELD(ID_DFR0, COPSDBG, 4, 4)
2133FIELD(ID_DFR0, MMAPDBG, 8, 4)
2134FIELD(ID_DFR0, COPTRC, 12, 4)
2135FIELD(ID_DFR0, MMAPTRC, 16, 4)
2136FIELD(ID_DFR0, MPROFDBG, 20, 4)
2137FIELD(ID_DFR0, PERFMON, 24, 4)
2138FIELD(ID_DFR0, TRACEFILT, 28, 4)
2139
bd78b6be 2140FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2141FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2142
88ce6c6e
PM
2143FIELD(DBGDIDR, SE_IMP, 12, 1)
2144FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2145FIELD(DBGDIDR, VERSION, 16, 4)
2146FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2147FIELD(DBGDIDR, BRPS, 24, 4)
2148FIELD(DBGDIDR, WRPS, 28, 4)
2149
602f6e42
PM
2150FIELD(MVFR0, SIMDREG, 0, 4)
2151FIELD(MVFR0, FPSP, 4, 4)
2152FIELD(MVFR0, FPDP, 8, 4)
2153FIELD(MVFR0, FPTRAP, 12, 4)
2154FIELD(MVFR0, FPDIVIDE, 16, 4)
2155FIELD(MVFR0, FPSQRT, 20, 4)
2156FIELD(MVFR0, FPSHVEC, 24, 4)
2157FIELD(MVFR0, FPROUND, 28, 4)
2158
2159FIELD(MVFR1, FPFTZ, 0, 4)
2160FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2161FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2162FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2163FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2164FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2165FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2166FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2167FIELD(MVFR1, FPHP, 24, 4)
2168FIELD(MVFR1, SIMDFMAC, 28, 4)
2169
2170FIELD(MVFR2, SIMDMISC, 0, 4)
2171FIELD(MVFR2, FPMISC, 4, 4)
2172
43bbce7f
PM
2173QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2174
ce854d7c
BC
2175/* If adding a feature bit which corresponds to a Linux ELF
2176 * HWCAP bit, remember to update the feature-bit-to-hwcap
2177 * mapping in linux-user/elfload.c:get_elf_hwcap().
2178 */
40f137e1 2179enum arm_features {
c1713132
AZ
2180 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2181 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2182 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2183 ARM_FEATURE_V6,
2184 ARM_FEATURE_V6K,
2185 ARM_FEATURE_V7,
2186 ARM_FEATURE_THUMB2,
452a0955 2187 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2188 ARM_FEATURE_NEON,
9ee6e8bb 2189 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2190 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2191 ARM_FEATURE_THUMB2EE,
be5e7a76 2192 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2193 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2194 ARM_FEATURE_V4T,
2195 ARM_FEATURE_V5,
5bc95aa2 2196 ARM_FEATURE_STRONGARM,
906879a9 2197 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2198 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2199 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2200 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2201 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2202 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2203 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2204 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2205 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2206 ARM_FEATURE_V8,
3926cc84 2207 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2208 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2209 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2210 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2211 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2212 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2213 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2214 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2215 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2216 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2217 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2218};
2219
2220static inline int arm_feature(CPUARMState *env, int feature)
2221{
918f5dca 2222 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2223}
2224
0df9142d
AJ
2225void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2226
19e0fefa
FA
2227#if !defined(CONFIG_USER_ONLY)
2228/* Return true if exception levels below EL3 are in secure state,
2229 * or would be following an exception return to that level.
2230 * Unlike arm_is_secure() (which is always a question about the
2231 * _current_ state of the CPU) this doesn't care about the current
2232 * EL or mode.
2233 */
2234static inline bool arm_is_secure_below_el3(CPUARMState *env)
2235{
2236 if (arm_feature(env, ARM_FEATURE_EL3)) {
2237 return !(env->cp15.scr_el3 & SCR_NS);
2238 } else {
6b7f0b61 2239 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2240 * defined, in which case QEMU defaults to non-secure.
2241 */
2242 return false;
2243 }
2244}
2245
71205876
PM
2246/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2247static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2248{
2249 if (arm_feature(env, ARM_FEATURE_EL3)) {
2250 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2251 /* CPU currently in AArch64 state and EL3 */
2252 return true;
2253 } else if (!is_a64(env) &&
2254 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2255 /* CPU currently in AArch32 state and monitor mode */
2256 return true;
2257 }
2258 }
71205876
PM
2259 return false;
2260}
2261
2262/* Return true if the processor is in secure state */
2263static inline bool arm_is_secure(CPUARMState *env)
2264{
2265 if (arm_is_el3_or_mon(env)) {
2266 return true;
2267 }
19e0fefa
FA
2268 return arm_is_secure_below_el3(env);
2269}
2270
f3ee5160
RDC
2271/*
2272 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2273 * This corresponds to the pseudocode EL2Enabled()
2274 */
2275static inline bool arm_is_el2_enabled(CPUARMState *env)
2276{
2277 if (arm_feature(env, ARM_FEATURE_EL2)) {
926c1b97
RDC
2278 if (arm_is_secure_below_el3(env)) {
2279 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2280 }
2281 return true;
f3ee5160
RDC
2282 }
2283 return false;
2284}
2285
19e0fefa
FA
2286#else
2287static inline bool arm_is_secure_below_el3(CPUARMState *env)
2288{
2289 return false;
2290}
2291
2292static inline bool arm_is_secure(CPUARMState *env)
2293{
2294 return false;
2295}
f3ee5160
RDC
2296
2297static inline bool arm_is_el2_enabled(CPUARMState *env)
2298{
2299 return false;
2300}
19e0fefa
FA
2301#endif
2302
f7778444
RH
2303/**
2304 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2305 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2306 * "for all purposes other than a direct read or write access of HCR_EL2."
2307 * Not included here is HCR_RW.
2308 */
2309uint64_t arm_hcr_el2_eff(CPUARMState *env);
2310
1f79ee32
PM
2311/* Return true if the specified exception level is running in AArch64 state. */
2312static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2313{
446c81ab
PM
2314 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2315 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2316 */
446c81ab
PM
2317 assert(el >= 1 && el <= 3);
2318 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2319
446c81ab
PM
2320 /* The highest exception level is always at the maximum supported
2321 * register width, and then lower levels have a register width controlled
2322 * by bits in the SCR or HCR registers.
1f79ee32 2323 */
446c81ab
PM
2324 if (el == 3) {
2325 return aa64;
2326 }
2327
926c1b97
RDC
2328 if (arm_feature(env, ARM_FEATURE_EL3) &&
2329 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2330 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2331 }
2332
2333 if (el == 2) {
2334 return aa64;
2335 }
2336
e6ef0169 2337 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2338 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2339 }
2340
2341 return aa64;
1f79ee32
PM
2342}
2343
3f342b9e
SF
2344/* Function for determing whether guest cp register reads and writes should
2345 * access the secure or non-secure bank of a cp register. When EL3 is
2346 * operating in AArch32 state, the NS-bit determines whether the secure
2347 * instance of a cp register should be used. When EL3 is AArch64 (or if
2348 * it doesn't exist at all) then there is no register banking, and all
2349 * accesses are to the non-secure version.
2350 */
2351static inline bool access_secure_reg(CPUARMState *env)
2352{
2353 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2354 !arm_el_is_aa64(env, 3) &&
2355 !(env->cp15.scr_el3 & SCR_NS));
2356
2357 return ret;
2358}
2359
ea30a4b8
FA
2360/* Macros for accessing a specified CP register bank */
2361#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2362 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2363
2364#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2365 do { \
2366 if (_secure) { \
2367 (_env)->cp15._regname##_s = (_val); \
2368 } else { \
2369 (_env)->cp15._regname##_ns = (_val); \
2370 } \
2371 } while (0)
2372
2373/* Macros for automatically accessing a specific CP register bank depending on
2374 * the current secure state of the system. These macros are not intended for
2375 * supporting instruction translation reads/writes as these are dependent
2376 * solely on the SCR.NS bit and not the mode.
2377 */
2378#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2379 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2380 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2381
2382#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2383 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2384 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2385 (_val))
2386
0442428a 2387void arm_cpu_list(void);
012a906b
GB
2388uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2389 uint32_t cur_el, bool secure);
40f137e1 2390
9ee6e8bb 2391/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2392#ifndef CONFIG_USER_ONLY
2393bool armv7m_nvic_can_take_pending_exception(void *opaque);
2394#else
2395static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2396{
2397 return true;
2398}
2399#endif
2fb50a33
PM
2400/**
2401 * armv7m_nvic_set_pending: mark the specified exception as pending
2402 * @opaque: the NVIC
2403 * @irq: the exception number to mark pending
2404 * @secure: false for non-banked exceptions or for the nonsecure
2405 * version of a banked exception, true for the secure version of a banked
2406 * exception.
2407 *
2408 * Marks the specified exception as pending. Note that we will assert()
2409 * if @secure is true and @irq does not specify one of the fixed set
2410 * of architecturally banked exceptions.
2411 */
2412void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2413/**
2414 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2415 * @opaque: the NVIC
2416 * @irq: the exception number to mark pending
2417 * @secure: false for non-banked exceptions or for the nonsecure
2418 * version of a banked exception, true for the secure version of a banked
2419 * exception.
2420 *
2421 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2422 * exceptions (exceptions generated in the course of trying to take
2423 * a different exception).
2424 */
2425void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2426/**
2427 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2428 * @opaque: the NVIC
2429 * @irq: the exception number to mark pending
2430 * @secure: false for non-banked exceptions or for the nonsecure
2431 * version of a banked exception, true for the secure version of a banked
2432 * exception.
2433 *
2434 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2435 * generated in the course of lazy stacking of FP registers.
2436 */
2437void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2438/**
2439 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2440 * exception, and whether it targets Secure state
2441 * @opaque: the NVIC
2442 * @pirq: set to pending exception number
2443 * @ptargets_secure: set to whether pending exception targets Secure
2444 *
2445 * This function writes the number of the highest priority pending
2446 * exception (the one which would be made active by
2447 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2448 * to true if the current highest priority pending exception should
2449 * be taken to Secure state, false for NS.
2450 */
2451void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2452 bool *ptargets_secure);
5cb18069
PM
2453/**
2454 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2455 * @opaque: the NVIC
2456 *
2457 * Move the current highest priority pending exception from the pending
2458 * state to the active state, and update v7m.exception to indicate that
2459 * it is the exception currently being handled.
5cb18069 2460 */
6c948518 2461void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2462/**
2463 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2464 * @opaque: the NVIC
2465 * @irq: the exception number to complete
5cb18069 2466 * @secure: true if this exception was secure
aa488fe3
PM
2467 *
2468 * Returns: -1 if the irq was not active
2469 * 1 if completing this irq brought us back to base (no active irqs)
2470 * 0 if there is still an irq active after this one was completed
2471 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2472 */
5cb18069 2473int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2474/**
2475 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2476 * @opaque: the NVIC
2477 * @irq: the exception number to mark pending
2478 * @secure: false for non-banked exceptions or for the nonsecure
2479 * version of a banked exception, true for the secure version of a banked
2480 * exception.
2481 *
2482 * Return whether an exception is "ready", i.e. whether the exception is
2483 * enabled and is configured at a priority which would allow it to
2484 * interrupt the current execution priority. This controls whether the
2485 * RDY bit for it in the FPCCR is set.
2486 */
2487bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2488/**
2489 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2490 * @opaque: the NVIC
2491 *
2492 * Returns: the raw execution priority as defined by the v8M architecture.
2493 * This is the execution priority minus the effects of AIRCR.PRIS,
2494 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2495 * (v8M ARM ARM I_PKLD.)
2496 */
2497int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2498/**
2499 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2500 * priority is negative for the specified security state.
2501 * @opaque: the NVIC
2502 * @secure: the security state to test
2503 * This corresponds to the pseudocode IsReqExecPriNeg().
2504 */
2505#ifndef CONFIG_USER_ONLY
2506bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2507#else
2508static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2509{
2510 return false;
2511}
2512#endif
9ee6e8bb 2513
4b6a83fb
PM
2514/* Interface for defining coprocessor registers.
2515 * Registers are defined in tables of arm_cp_reginfo structs
2516 * which are passed to define_arm_cp_regs().
2517 */
2518
2519/* When looking up a coprocessor register we look for it
2520 * via an integer which encodes all of:
2521 * coprocessor number
2522 * Crn, Crm, opc1, opc2 fields
2523 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2524 * or via MRRC/MCRR?)
51a79b03 2525 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2526 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2527 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2528 * For AArch64, there is no 32/64 bit size distinction;
2529 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2530 * and 4 bit CRn and CRm. The encoding patterns are chosen
2531 * to be easy to convert to and from the KVM encodings, and also
2532 * so that the hashtable can contain both AArch32 and AArch64
2533 * registers (to allow for interprocessing where we might run
2534 * 32 bit code on a 64 bit core).
4b6a83fb 2535 */
f5a0a5a5
PM
2536/* This bit is private to our hashtable cpreg; in KVM register
2537 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2538 * in the upper bits of the 64 bit ID.
2539 */
2540#define CP_REG_AA64_SHIFT 28
2541#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2542
51a79b03
PM
2543/* To enable banking of coprocessor registers depending on ns-bit we
2544 * add a bit to distinguish between secure and non-secure cpregs in the
2545 * hashtable.
2546 */
2547#define CP_REG_NS_SHIFT 29
2548#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2549
2550#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2551 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2552 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2553
f5a0a5a5
PM
2554#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2555 (CP_REG_AA64_MASK | \
2556 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2557 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2558 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2559 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2560 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2561 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2562
721fae12
PM
2563/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2564 * version used as a key for the coprocessor register hashtable
2565 */
2566static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2567{
2568 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2569 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2570 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2571 } else {
2572 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2573 cpregid |= (1 << 15);
2574 }
2575
2576 /* KVM is always non-secure so add the NS flag on AArch32 register
2577 * entries.
2578 */
2579 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2580 }
2581 return cpregid;
2582}
2583
2584/* Convert a truncated 32 bit hashtable key into the full
2585 * 64 bit KVM register ID.
2586 */
2587static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2588{
f5a0a5a5
PM
2589 uint64_t kvmid;
2590
2591 if (cpregid & CP_REG_AA64_MASK) {
2592 kvmid = cpregid & ~CP_REG_AA64_MASK;
2593 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2594 } else {
f5a0a5a5
PM
2595 kvmid = cpregid & ~(1 << 15);
2596 if (cpregid & (1 << 15)) {
2597 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2598 } else {
2599 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2600 }
721fae12
PM
2601 }
2602 return kvmid;
2603}
2604
75502672
PM
2605/* Return the highest implemented Exception Level */
2606static inline int arm_highest_el(CPUARMState *env)
2607{
2608 if (arm_feature(env, ARM_FEATURE_EL3)) {
2609 return 3;
2610 }
2611 if (arm_feature(env, ARM_FEATURE_EL2)) {
2612 return 2;
2613 }
2614 return 1;
2615}
2616
15b3f556
PM
2617/* Return true if a v7M CPU is in Handler mode */
2618static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2619{
2620 return env->v7m.exception != 0;
2621}
2622
dcbff19b
GB
2623/* Return the current Exception Level (as per ARMv8; note that this differs
2624 * from the ARMv7 Privilege Level).
2625 */
2626static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2627{
6d54ed3c 2628 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2629 return arm_v7m_is_handler_mode(env) ||
2630 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2631 }
2632
592125f8 2633 if (is_a64(env)) {
f5a0a5a5
PM
2634 return extract32(env->pstate, 2, 2);
2635 }
2636
592125f8
FA
2637 switch (env->uncached_cpsr & 0x1f) {
2638 case ARM_CPU_MODE_USR:
4b6a83fb 2639 return 0;
592125f8
FA
2640 case ARM_CPU_MODE_HYP:
2641 return 2;
2642 case ARM_CPU_MODE_MON:
2643 return 3;
2644 default:
2645 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2646 /* If EL3 is 32-bit then all secure privileged modes run in
2647 * EL3
2648 */
2649 return 3;
2650 }
2651
2652 return 1;
4b6a83fb 2653 }
4b6a83fb
PM
2654}
2655
721fae12
PM
2656/**
2657 * write_list_to_cpustate
2658 * @cpu: ARMCPU
2659 *
2660 * For each register listed in the ARMCPU cpreg_indexes list, write
2661 * its value from the cpreg_values list into the ARMCPUState structure.
2662 * This updates TCG's working data structures from KVM data or
2663 * from incoming migration state.
2664 *
2665 * Returns: true if all register values were updated correctly,
2666 * false if some register was unknown or could not be written.
2667 * Note that we do not stop early on failure -- we will attempt
2668 * writing all registers in the list.
2669 */
2670bool write_list_to_cpustate(ARMCPU *cpu);
2671
2672/**
2673 * write_cpustate_to_list:
2674 * @cpu: ARMCPU
b698e4ee 2675 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2676 *
2677 * For each register listed in the ARMCPU cpreg_indexes list, write
2678 * its value from the ARMCPUState structure into the cpreg_values list.
2679 * This is used to copy info from TCG's working data structures into
2680 * KVM or for outbound migration.
2681 *
b698e4ee
PM
2682 * @kvm_sync is true if we are doing this in order to sync the
2683 * register state back to KVM. In this case we will only update
2684 * values in the list if the previous list->cpustate sync actually
2685 * successfully wrote the CPU state. Otherwise we will keep the value
2686 * that is in the list.
2687 *
721fae12
PM
2688 * Returns: true if all register values were read correctly,
2689 * false if some register was unknown or could not be read.
2690 * Note that we do not stop early on failure -- we will attempt
2691 * reading all registers in the list.
2692 */
b698e4ee 2693bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2694
9ee6e8bb
PB
2695#define ARM_CPUID_TI915T 0x54029152
2696#define ARM_CPUID_TI925T 0x54029252
40f137e1 2697
ba1ba5cc
IM
2698#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2699#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2700#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2701
585df85e
PM
2702#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2703
c732abe2 2704#define cpu_list arm_cpu_list
9467d44c 2705
c1e37810
PM
2706/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2707 *
2708 * If EL3 is 64-bit:
2709 * + NonSecure EL1 & 0 stage 1
2710 * + NonSecure EL1 & 0 stage 2
2711 * + NonSecure EL2
b9f6033c
RH
2712 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2713 * + Secure EL1 & 0
c1e37810
PM
2714 * + Secure EL3
2715 * If EL3 is 32-bit:
2716 * + NonSecure PL1 & 0 stage 1
2717 * + NonSecure PL1 & 0 stage 2
2718 * + NonSecure PL2
b9f6033c
RH
2719 * + Secure PL0
2720 * + Secure PL1
c1e37810
PM
2721 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2722 *
2723 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2724 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2725 * because they may differ in access permissions even if the VA->PA map is
2726 * the same
c1e37810
PM
2727 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2728 * translation, which means that we have one mmu_idx that deals with two
2729 * concatenated translation regimes [this sort of combined s1+2 TLB is
2730 * architecturally permitted]
2731 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2732 * handling via the TLB. The only way to do a stage 1 translation without
2733 * the immediate stage 2 translation is via the ATS or AT system insns,
2734 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2735 * The only use of stage 2 translations is either as part of an s1+2
2736 * lookup or when loading the descriptors during a stage 1 page table walk,
2737 * and in both those cases we don't use the TLB.
c1e37810
PM
2738 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2739 * translation regimes, because they map reasonably well to each other
2740 * and they can't both be active at the same time.
b9f6033c
RH
2741 * 5. we want to be able to use the TLB for accesses done as part of a
2742 * stage1 page table walk, rather than having to walk the stage2 page
2743 * table over and over.
452ef8cb
RH
2744 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2745 * Never (PAN) bit within PSTATE.
c1e37810 2746 *
b9f6033c
RH
2747 * This gives us the following list of cases:
2748 *
2749 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2750 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2751 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2752 * NS EL0 EL2&0
bf05340c 2753 * NS EL2 EL2&0
452ef8cb 2754 * NS EL2 EL2&0 +PAN
c1e37810 2755 * NS EL2 (aka NS PL2)
b9f6033c
RH
2756 * S EL0 EL1&0 (aka S PL0)
2757 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2758 * S EL1 EL1&0 +PAN
c1e37810 2759 * S EL3 (aka S PL1)
c1e37810 2760 *
bf05340c 2761 * for a total of 11 different mmu_idx.
c1e37810 2762 *
3bef7012
PM
2763 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2764 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2765 * NS EL2 if we ever model a Cortex-R52).
2766 *
2767 * M profile CPUs are rather different as they do not have a true MMU.
2768 * They have the following different MMU indexes:
2769 * User
2770 * Privileged
62593718
PM
2771 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2772 * Privileged, execution priority negative (ditto)
66787c78
PM
2773 * If the CPU supports the v8M Security Extension then there are also:
2774 * Secure User
2775 * Secure Privileged
62593718
PM
2776 * Secure User, execution priority negative
2777 * Secure Privileged, execution priority negative
3bef7012 2778 *
8bd5c820
PM
2779 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2780 * are not quite the same -- different CPU types (most notably M profile
2781 * vs A/R profile) would like to use MMU indexes with different semantics,
2782 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2783 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2784 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2785 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2786 * the same for any particular CPU.
2787 * Variables of type ARMMUIdx are always full values, and the core
2788 * index values are in variables of type 'int'.
2789 *
c1e37810
PM
2790 * Our enumeration includes at the end some entries which are not "true"
2791 * mmu_idx values in that they don't have corresponding TLBs and are only
2792 * valid for doing slow path page table walks.
2793 *
2794 * The constant names here are patterned after the general style of the names
2795 * of the AT/ATS operations.
2796 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2797 * For M profile we arrange them to have a bit for priv, a bit for negpri
2798 * and a bit for secure.
c1e37810 2799 */
b9f6033c
RH
2800#define ARM_MMU_IDX_A 0x10 /* A profile */
2801#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2802#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2803
b6ad6062
RDC
2804/* Meanings of the bits for A profile mmu idx values */
2805#define ARM_MMU_IDX_A_NS 0x8
2806
b9f6033c
RH
2807/* Meanings of the bits for M profile mmu idx values */
2808#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2809#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2810#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2811
b9f6033c
RH
2812#define ARM_MMU_IDX_TYPE_MASK \
2813 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2814#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2815
c1e37810 2816typedef enum ARMMMUIdx {
b9f6033c
RH
2817 /*
2818 * A-profile.
2819 */
b6ad6062
RDC
2820 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
2821 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
2822 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
2823 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
2824 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
2825 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
2826 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
2827 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
2828
2829 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2830 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2831 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2832 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2833 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2834 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2835 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
b9f6033c 2836
b9f6033c
RH
2837 /*
2838 * These are not allocated TLBs and are used only for AT system
2839 * instructions or for the first stage of an S12 page table walk.
2840 */
2841 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2842 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2843 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b1a10c86
RDC
2844 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2845 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2846 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2847 /*
2848 * Not allocated a TLB: used only for second stage of an S12 page
2849 * table walk, or for descriptor loads during first stage of an S1
2850 * page table walk. Note that if we ever want to have a TLB for this
2851 * then various TLB flush insns which currently are no-ops or flush
2852 * only stage 1 MMU indexes will need to change to flush stage 2.
2853 */
b1a10c86
RDC
2854 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
2855 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2856
2857 /*
2858 * M-profile.
2859 */
25568316
RH
2860 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2861 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2862 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2863 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2864 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2865 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2866 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2867 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2868} ARMMMUIdx;
2869
5f09a6df
RH
2870/*
2871 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2872 * for use when calling tlb_flush_by_mmuidx() and friends.
2873 */
5f09a6df
RH
2874#define TO_CORE_BIT(NAME) \
2875 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2876
8bd5c820 2877typedef enum ARMMMUIdxBit {
5f09a6df 2878 TO_CORE_BIT(E10_0),
b9f6033c 2879 TO_CORE_BIT(E20_0),
5f09a6df 2880 TO_CORE_BIT(E10_1),
452ef8cb 2881 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2882 TO_CORE_BIT(E2),
b9f6033c 2883 TO_CORE_BIT(E20_2),
452ef8cb 2884 TO_CORE_BIT(E20_2_PAN),
5f09a6df 2885 TO_CORE_BIT(SE10_0),
b6ad6062 2886 TO_CORE_BIT(SE20_0),
5f09a6df 2887 TO_CORE_BIT(SE10_1),
b6ad6062 2888 TO_CORE_BIT(SE20_2),
452ef8cb 2889 TO_CORE_BIT(SE10_1_PAN),
b6ad6062
RDC
2890 TO_CORE_BIT(SE20_2_PAN),
2891 TO_CORE_BIT(SE2),
5f09a6df 2892 TO_CORE_BIT(SE3),
5f09a6df
RH
2893
2894 TO_CORE_BIT(MUser),
2895 TO_CORE_BIT(MPriv),
2896 TO_CORE_BIT(MUserNegPri),
2897 TO_CORE_BIT(MPrivNegPri),
2898 TO_CORE_BIT(MSUser),
2899 TO_CORE_BIT(MSPriv),
2900 TO_CORE_BIT(MSUserNegPri),
2901 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2902} ARMMMUIdxBit;
2903
5f09a6df
RH
2904#undef TO_CORE_BIT
2905
f79fbf39 2906#define MMU_USER_IDX 0
c1e37810 2907
9e273ef2
PM
2908/* Indexes used when registering address spaces with cpu_address_space_init */
2909typedef enum ARMASIdx {
2910 ARMASIdx_NS = 0,
2911 ARMASIdx_S = 1,
8bce44a2
RH
2912 ARMASIdx_TagNS = 2,
2913 ARMASIdx_TagS = 3,
9e273ef2
PM
2914} ARMASIdx;
2915
533e93f1 2916/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2917static inline int arm_debug_target_el(CPUARMState *env)
2918{
81669b8b
SF
2919 bool secure = arm_is_secure(env);
2920 bool route_to_el2 = false;
2921
e6ef0169 2922 if (arm_is_el2_enabled(env)) {
81669b8b 2923 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2924 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2925 }
2926
2927 if (route_to_el2) {
2928 return 2;
2929 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2930 !arm_el_is_aa64(env, 3) && secure) {
2931 return 3;
2932 } else {
2933 return 1;
2934 }
3a298203
PM
2935}
2936
43bbce7f
PM
2937static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2938{
2939 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2940 * CSSELR is RAZ/WI.
2941 */
2942 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2943}
2944
22af9025 2945/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2946static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2947{
22af9025
AB
2948 int cur_el = arm_current_el(env);
2949 int debug_el;
2950
2951 if (cur_el == 3) {
2952 return false;
533e93f1
PM
2953 }
2954
22af9025
AB
2955 /* MDCR_EL3.SDD disables debug events from Secure state */
2956 if (arm_is_secure_below_el3(env)
2957 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2958 return false;
3a298203 2959 }
22af9025
AB
2960
2961 /*
2962 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2963 * while not masking the (D)ebug bit in DAIF.
2964 */
2965 debug_el = arm_debug_target_el(env);
2966
2967 if (cur_el == debug_el) {
2968 return extract32(env->cp15.mdscr_el1, 13, 1)
2969 && !(env->daif & PSTATE_D);
2970 }
2971
2972 /* Otherwise the debug target needs to be a higher EL */
2973 return debug_el > cur_el;
3a298203
PM
2974}
2975
2976static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2977{
533e93f1
PM
2978 int el = arm_current_el(env);
2979
2980 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2981 return aa64_generate_debug_exceptions(env);
2982 }
533e93f1
PM
2983
2984 if (arm_is_secure(env)) {
2985 int spd;
2986
2987 if (el == 0 && (env->cp15.sder & 1)) {
2988 /* SDER.SUIDEN means debug exceptions from Secure EL0
2989 * are always enabled. Otherwise they are controlled by
2990 * SDCR.SPD like those from other Secure ELs.
2991 */
2992 return true;
2993 }
2994
2995 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2996 switch (spd) {
2997 case 1:
2998 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2999 case 0:
3000 /* For 0b00 we return true if external secure invasive debug
3001 * is enabled. On real hardware this is controlled by external
3002 * signals to the core. QEMU always permits debug, and behaves
3003 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3004 */
3005 return true;
3006 case 2:
3007 return false;
3008 case 3:
3009 return true;
3010 }
3011 }
3012
3013 return el != 2;
3a298203
PM
3014}
3015
3016/* Return true if debugging exceptions are currently enabled.
3017 * This corresponds to what in ARM ARM pseudocode would be
3018 * if UsingAArch32() then
3019 * return AArch32.GenerateDebugExceptions()
3020 * else
3021 * return AArch64.GenerateDebugExceptions()
3022 * We choose to push the if() down into this function for clarity,
3023 * since the pseudocode has it at all callsites except for the one in
3024 * CheckSoftwareStep(), where it is elided because both branches would
3025 * always return the same value.
3a298203
PM
3026 */
3027static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3028{
3029 if (env->aarch64) {
3030 return aa64_generate_debug_exceptions(env);
3031 } else {
3032 return aa32_generate_debug_exceptions(env);
3033 }
3034}
3035
3036/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3037 * implicitly means this always returns false in pre-v8 CPUs.)
3038 */
3039static inline bool arm_singlestep_active(CPUARMState *env)
3040{
3041 return extract32(env->cp15.mdscr_el1, 0, 1)
3042 && arm_el_is_aa64(env, arm_debug_target_el(env))
3043 && arm_generate_debug_exceptions(env);
3044}
3045
f9fd40eb
PB
3046static inline bool arm_sctlr_b(CPUARMState *env)
3047{
3048 return
3049 /* We need not implement SCTLR.ITD in user-mode emulation, so
3050 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3051 * This lets people run BE32 binaries with "-cpu any".
3052 */
3053#ifndef CONFIG_USER_ONLY
3054 !arm_feature(env, ARM_FEATURE_V7) &&
3055#endif
3056 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3057}
3058
aaec1432 3059uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3060
8061a649
RH
3061static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3062 bool sctlr_b)
3063{
3064#ifdef CONFIG_USER_ONLY
3065 /*
3066 * In system mode, BE32 is modelled in line with the
3067 * architecture (as word-invariant big-endianness), where loads
3068 * and stores are done little endian but from addresses which
3069 * are adjusted by XORing with the appropriate constant. So the
3070 * endianness to use for the raw data access is not affected by
3071 * SCTLR.B.
3072 * In user mode, however, we model BE32 as byte-invariant
3073 * big-endianness (because user-only code cannot tell the
3074 * difference), and so we need to use a data access endianness
3075 * that depends on SCTLR.B.
3076 */
3077 if (sctlr_b) {
3078 return true;
3079 }
3080#endif
3081 /* In 32bit endianness is determined by looking at CPSR's E bit */
3082 return env->uncached_cpsr & CPSR_E;
3083}
3084
3085static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3086{
3087 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3088}
64e40755 3089
ed50ff78
PC
3090/* Return true if the processor is in big-endian mode. */
3091static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3092{
ed50ff78 3093 if (!is_a64(env)) {
8061a649 3094 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3095 } else {
3096 int cur_el = arm_current_el(env);
3097 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3098 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3099 }
ed50ff78
PC
3100}
3101
022c62cb 3102#include "exec/cpu-all.h"
622ed360 3103
fdd1b228 3104/*
a378206a
RH
3105 * We have more than 32-bits worth of state per TB, so we split the data
3106 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3107 * We collect these two parts in CPUARMTBFlags where they are named
3108 * flags and flags2 respectively.
fdd1b228 3109 *
a378206a
RH
3110 * The flags that are shared between all execution modes, TBFLAG_ANY,
3111 * are stored in flags. The flags that are specific to a given mode
3112 * are stores in flags2. Since cs_base is sized on the configured
3113 * address size, flags2 always has 64-bits for A64, and a minimum of
3114 * 32-bits for A32 and M32.
3115 *
3116 * The bits for 32-bit A-profile and M-profile partially overlap:
3117 *
5896f392
RH
3118 * 31 23 11 10 0
3119 * +-------------+----------+----------------+
3120 * | | | TBFLAG_A32 |
3121 * | TBFLAG_AM32 | +-----+----------+
3122 * | | |TBFLAG_M32|
3123 * +-------------+----------------+----------+
26702213 3124 * 31 23 6 5 0
79cabf1f 3125 *
fdd1b228 3126 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3127 */
eee81d41
RH
3128FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3129FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3130FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3131FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3132FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3133/* Target EL if we take a floating-point-disabled exception */
eee81d41 3134FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
79cabf1f 3135/* For A-profile only, target EL for debug exceptions. */
eee81d41 3136FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
4479ec30
RH
3137/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3138FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
520d1621 3139FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
79cabf1f 3140
8bd587c1 3141/*
79cabf1f 3142 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3143 */
5896f392
RH
3144FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3145FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3146
79cabf1f
RH
3147/*
3148 * Bit usage when in AArch32 state, for A-profile only.
3149 */
5896f392
RH
3150FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3151FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3152/*
3153 * We store the bottom two bits of the CPAR as TB flags and handle
3154 * checks on the other bits at runtime. This shares the same bits as
3155 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3156 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3157 */
5896f392
RH
3158FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3159FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3160FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3161FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3162/*
3163 * Indicates whether cp register reads and writes by guest code should access
3164 * the secure or nonsecure bank of banked registers; note that this is not
3165 * the same thing as the current security state of the processor!
3166 */
5896f392 3167FIELD(TBFLAG_A32, NS, 10, 1)
79cabf1f
RH
3168
3169/*
3170 * Bit usage when in AArch32 state, for M-profile only.
3171 */
3172/* Handler (ie not Thread) mode */
5896f392 3173FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3174/* Whether we should generate stack-limit checks */
5896f392 3175FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3176/* Set if FPCCR.LSPACT is set */
5896f392 3177FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3178/* Set if we must create a new FP context */
5896f392 3179FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3180/* Set if FPCCR.S does not match current security state */
5896f392 3181FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3182/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3183FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
79cabf1f
RH
3184
3185/*
3186 * Bit usage when in AArch64 state
3187 */
476a4692 3188FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3189FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3190FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3191FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3192FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3193FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3194FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3195FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3196FIELD(TBFLAG_A64, ATA, 15, 1)
3197FIELD(TBFLAG_A64, TCMA, 16, 2)
3198FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3199FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
a1705768 3200
a729a46b
RH
3201/*
3202 * Helpers for using the above.
3203 */
3204#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3205 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3206#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3207 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3208#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3209 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3210#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3211 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3212#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3213 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3214
3902bfc6 3215#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3216#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3217#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3218#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3219#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3220
fb901c90
RH
3221/**
3222 * cpu_mmu_index:
3223 * @env: The cpu environment
3224 * @ifetch: True for code access, false for data access.
3225 *
3226 * Return the core mmu index for the current translation regime.
3227 * This function is used by generic TCG code paths.
3228 */
3229static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3230{
a729a46b 3231 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3232}
3233
f9fd40eb
PB
3234static inline bool bswap_code(bool sctlr_b)
3235{
3236#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3237 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3238 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3239 * would also end up as a mixed-endian mode with BE code, LE data.
3240 */
3241 return
ee3eb3a7 3242#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3243 1 ^
3244#endif
3245 sctlr_b;
3246#else
e334bd31
PB
3247 /* All code access in ARM is little endian, and there are no loaders
3248 * doing swaps that need to be reversed
f9fd40eb
PB
3249 */
3250 return 0;
3251#endif
3252}
3253
c3ae85fc
PB
3254#ifdef CONFIG_USER_ONLY
3255static inline bool arm_cpu_bswap_data(CPUARMState *env)
3256{
3257 return
ee3eb3a7 3258#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3259 1 ^
3260#endif
3261 arm_cpu_data_is_big_endian(env);
3262}
3263#endif
3264
a9e01311
RH
3265void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3266 target_ulong *cs_base, uint32_t *flags);
6b917547 3267
98128601
RH
3268enum {
3269 QEMU_PSCI_CONDUIT_DISABLED = 0,
3270 QEMU_PSCI_CONDUIT_SMC = 1,
3271 QEMU_PSCI_CONDUIT_HVC = 2,
3272};
3273
017518c1
PM
3274#ifndef CONFIG_USER_ONLY
3275/* Return the address space index to use for a memory access */
3276static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3277{
3278 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3279}
5ce4ff65
PM
3280
3281/* Return the AddressSpace to use for a memory access
3282 * (which depends on whether the access is S or NS, and whether
3283 * the board gave us a separate AddressSpace for S accesses).
3284 */
3285static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3286{
3287 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3288}
017518c1
PM
3289#endif
3290
bd7d00fc 3291/**
b5c53d1b
AL
3292 * arm_register_pre_el_change_hook:
3293 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3294 * CPU changes exception level or mode. The hook function will be
3295 * passed a pointer to the ARMCPU and the opaque data pointer passed
3296 * to this function when the hook was registered.
b5c53d1b
AL
3297 *
3298 * Note that if a pre-change hook is called, any registered post-change hooks
3299 * are guaranteed to subsequently be called.
bd7d00fc 3300 */
b5c53d1b 3301void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3302 void *opaque);
b5c53d1b
AL
3303/**
3304 * arm_register_el_change_hook:
3305 * Register a hook function which will be called immediately after this
3306 * CPU changes exception level or mode. The hook function will be
3307 * passed a pointer to the ARMCPU and the opaque data pointer passed
3308 * to this function when the hook was registered.
3309 *
3310 * Note that any registered hooks registered here are guaranteed to be called
3311 * if pre-change hooks have been.
3312 */
3313void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3314 *opaque);
bd7d00fc 3315
3d74e2e9
RH
3316/**
3317 * arm_rebuild_hflags:
3318 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3319 */
3320void arm_rebuild_hflags(CPUARMState *env);
3321
9a2b5256
RH
3322/**
3323 * aa32_vfp_dreg:
3324 * Return a pointer to the Dn register within env in 32-bit mode.
3325 */
3326static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3327{
c39c2b90 3328 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3329}
3330
3331/**
3332 * aa32_vfp_qreg:
3333 * Return a pointer to the Qn register within env in 32-bit mode.
3334 */
3335static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3336{
c39c2b90 3337 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3338}
3339
3340/**
3341 * aa64_vfp_qreg:
3342 * Return a pointer to the Qn register within env in 64-bit mode.
3343 */
3344static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3345{
c39c2b90 3346 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3347}
3348
028e2a7b
RH
3349/* Shared between translate-sve.c and sve_helper.c. */
3350extern const uint64_t pred_esz_masks[4];
3351
149d3b31
RH
3352/* Helper for the macros below, validating the argument type. */
3353static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3354{
3355 return x;
3356}
3357
3358/*
3359 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3360 * Using these should be a bit more self-documenting than using the
3361 * generic target bits directly.
3362 */
3363#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3364#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3365
be5d6f48
RH
3366/*
3367 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3368 */
3369#define PAGE_BTI PAGE_TARGET_1
d109b46d 3370#define PAGE_MTE PAGE_TARGET_2
be5d6f48 3371
0e0c030c
RH
3372#ifdef TARGET_TAGGED_ADDRESSES
3373/**
3374 * cpu_untagged_addr:
3375 * @cs: CPU context
3376 * @x: tagged address
3377 *
3378 * Remove any address tag from @x. This is explicitly related to the
3379 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3380 *
3381 * There should be a better place to put this, but we need this in
3382 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3383 */
3384static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3385{
3386 ARMCPU *cpu = ARM_CPU(cs);
3387 if (cpu->env.tagged_addr_enable) {
3388 /*
3389 * TBI is enabled for userspace but not kernelspace addresses.
3390 * Only clear the tag if bit 55 is clear.
3391 */
3392 x &= sextract64(x, 0, 56);
3393 }
3394 return x;
3395}
3396#endif
3397
873b73c0
PM
3398/*
3399 * Naming convention for isar_feature functions:
3400 * Functions which test 32-bit ID registers should have _aa32_ in
3401 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3402 * _aa64_ in their name. These must only be used in code where we
3403 * know for certain that the CPU has AArch32 or AArch64 respectively
3404 * or where the correct answer for a CPU which doesn't implement that
3405 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3406 * system registers that are specific to that CPU state, for "should
3407 * we let this system register bit be set" tests where the 32-bit
3408 * flavour of the register doesn't have the bit, and so on).
3409 * Functions which simply ask "does this feature exist at all" have
3410 * _any_ in their name, and always return the logical OR of the _aa64_
3411 * and the _aa32_ function.
873b73c0
PM
3412 */
3413
962fcbf2
RH
3414/*
3415 * 32-bit feature tests via id registers.
3416 */
873b73c0 3417static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3418{
3419 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3420}
3421
873b73c0 3422static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3423{
3424 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3425}
05903f03
PM
3426
3427static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3428{
3429 /* (M-profile) low-overhead loops and branch future */
3430 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3431}
7e0cf8b4 3432
873b73c0 3433static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3434{
3435 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3436}
3437
962fcbf2
RH
3438static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3439{
3440 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3441}
3442
3443static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3444{
3445 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3446}
3447
3448static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3449{
3450 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3451}
3452
3453static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3454{
3455 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3456}
3457
3458static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3459{
3460 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3461}
3462
3463static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3464{
3465 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3466}
3467
3468static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3469{
3470 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3471}
3472
6c1f6f27
RH
3473static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3474{
3475 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3476}
3477
962fcbf2
RH
3478static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3479{
3480 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3481}
3482
87732318
RH
3483static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3484{
3485 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3486}
3487
9888bd1e
RH
3488static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3489{
3490 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3491}
3492
cb570bd3
RH
3493static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3494{
3495 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3496}
3497
c0b9e8a4
RH
3498static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3499{
3500 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3501}
3502
51879c67
RH
3503static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3504{
3505 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3506}
3507
46f4976f
PM
3508static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3509{
3510 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3511}
3512
dfc523a8
PM
3513static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3514{
3515 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3516}
3517
83ff3d6a
PM
3518static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3519{
3520 /*
3521 * Return true if M-profile state handling insns
3522 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3523 */
3524 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3525}
3526
5763190f
RH
3527static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3528{
dfc523a8
PM
3529 /* Sadly this is encoded differently for A-profile and M-profile */
3530 if (isar_feature_aa32_mprofile(id)) {
3531 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3532 } else {
3533 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3534 }
5763190f
RH
3535}
3536
7df6a1ff
PM
3537static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3538{
3539 /*
3540 * Return true if MVE is supported (either integer or floating point).
3541 * We must check for M-profile as the MVFR1 field means something
3542 * else for A-profile.
3543 */
3544 return isar_feature_aa32_mprofile(id) &&
3545 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3546}
3547
3548static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3549{
3550 /*
3551 * Return true if MVE is supported (either integer or floating point).
3552 * We must check for M-profile as the MVFR1 field means something
3553 * else for A-profile.
3554 */
3555 return isar_feature_aa32_mprofile(id) &&
3556 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3557}
3558
7fbc6a40
RH
3559static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3560{
3561 /*
3562 * Return true if either VFP or SIMD is implemented.
3563 * In this case, a minimum of VFP w/ D0-D15.
3564 */
3565 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3566}
3567
0e13ba78 3568static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3569{
3570 /* Return true if D16-D31 are implemented */
b3a816f6 3571 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3572}
3573
266bd25c
PM
3574static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3575{
b3a816f6 3576 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3577}
3578
f67957e1
RH
3579static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3580{
3581 /* Return true if CPU supports single precision floating point, VFPv2 */
3582 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3583}
3584
3585static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3586{
3587 /* Return true if CPU supports single precision floating point, VFPv3 */
3588 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3589}
3590
c4ff8735 3591static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3592{
c4ff8735 3593 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3594 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3595}
3596
f67957e1
RH
3597static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3598{
3599 /* Return true if CPU supports double precision floating point, VFPv3 */
3600 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3601}
3602
7d63183f
RH
3603static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3604{
3605 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3606}
3607
602f6e42
PM
3608/*
3609 * We always set the FP and SIMD FP16 fields to indicate identical
3610 * levels of support (assuming SIMD is implemented at all), so
3611 * we only need one set of accessors.
3612 */
3613static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3614{
b3a816f6 3615 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3616}
3617
3618static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3619{
b3a816f6 3620 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3621}
3622
c52881bb
RH
3623/*
3624 * Note that this ID register field covers both VFP and Neon FMAC,
3625 * so should usually be tested in combination with some other
3626 * check that confirms the presence of whichever of VFP or Neon is
3627 * relevant, to avoid accidentally enabling a Neon feature on
3628 * a VFP-no-Neon core or vice-versa.
3629 */
3630static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3631{
3632 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3633}
3634
c0c760af
PM
3635static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3636{
b3a816f6 3637 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3638}
3639
3640static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3641{
b3a816f6 3642 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3643}
3644
3645static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3646{
b3a816f6 3647 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3648}
3649
3650static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3651{
b3a816f6 3652 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3653}
3654
0ae0326b
PM
3655static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3656{
3657 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3658}
3659
3d6ad6bb
RH
3660static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3661{
10054016 3662 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3663}
3664
3665static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3666{
10054016 3667 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3668}
3669
a6179538
PM
3670static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3671{
3672 /* 0xf means "non-standard IMPDEF PMU" */
3673 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3674 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3675}
3676
15dd1ebd
PM
3677static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3678{
3679 /* 0xf means "non-standard IMPDEF PMU" */
3680 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3681 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3682}
3683
4036b7d1
PM
3684static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3685{
3686 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3687}
3688
f6287c24
PM
3689static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3690{
3691 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3692}
3693
957e6155
PM
3694static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3695{
3696 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3697}
3698
ce3125be
PM
3699static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3700{
3701 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3702}
3703
dc8b1853
RC
3704static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3705{
3706 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3707}
3708
f2f68a78
RC
3709static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3710{
3711 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3712}
3713
ca56aac5
RH
3714static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3715{
3716 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3717}
3718
962fcbf2
RH
3719/*
3720 * 64-bit feature tests via id registers.
3721 */
3722static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3723{
3724 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3725}
3726
3727static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3728{
3729 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3730}
3731
3732static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3733{
3734 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3735}
3736
3737static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3738{
3739 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3740}
3741
3742static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3743{
3744 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3745}
3746
3747static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3748{
3749 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3750}
3751
3752static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3753{
3754 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3755}
3756
3757static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3758{
3759 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3760}
3761
3762static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3763{
3764 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3765}
3766
3767static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3768{
3769 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3770}
3771
3772static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3773{
3774 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3775}
3776
3777static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3778{
3779 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3780}
3781
0caa5af8
RH
3782static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3783{
3784 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3785}
3786
b89d9c98
RH
3787static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3788{
3789 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3790}
3791
5ef84f11
RH
3792static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3793{
3794 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3795}
3796
de390645
RH
3797static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3798{
3799 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3800}
3801
6c1f6f27
RH
3802static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3803{
3804 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3805}
3806
962fcbf2
RH
3807static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3808{
3809 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3810}
3811
991ad91b
RH
3812static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3813{
3814 /*
283fc52a
RH
3815 * Return true if any form of pauth is enabled, as this
3816 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3817 */
3818 return (id->id_aa64isar1 &
3819 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3820 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3821 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3822 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3823}
3824
283fc52a
RH
3825static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3826{
3827 /*
3828 * Return true if pauth is enabled with the architected QARMA algorithm.
3829 * QEMU will always set APA+GPA to the same value.
3830 */
3831 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3832}
3833
84940ed8
RC
3834static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3835{
3836 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3837}
3838
7113d618
RC
3839static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3840{
3841 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3842}
3843
9888bd1e
RH
3844static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3845{
3846 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3847}
3848
cb570bd3
RH
3849static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3850{
3851 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3852}
3853
6bea2563
RH
3854static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3855{
3856 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3857}
3858
0d57b499
BM
3859static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3860{
3861 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3862}
3863
3864static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3865{
3866 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3867}
3868
c0b9e8a4
RH
3869static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3870{
3871 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3872}
3873
7d63183f
RH
3874static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3875{
3876 /* We always set the AdvSIMD and FP fields identically. */
3877 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3878}
3879
5763190f
RH
3880static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3881{
3882 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3883 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3884}
3885
0f8d06f1
RH
3886static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3887{
3888 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3889}
3890
10d0ef3e
MN
3891static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3892{
3893 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3894}
3895
25e168ab
RH
3896static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3897{
3898 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3899}
3900
cd208a1c
RH
3901static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3902{
3903 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3904}
3905
5ca192df
RDC
3906static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3907{
3908 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3909}
3910
8fc2ea21
RH
3911static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3912{
3913 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3914}
3915
2d7137c1
RH
3916static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3917{
3918 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3919}
3920
3d6ad6bb
RH
3921static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3922{
3923 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3924}
3925
3926static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3927{
3928 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3929}
3930
9eeb7a1c
RH
3931static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3932{
3933 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3934}
3935
c36c65ea
RDC
3936static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3937{
3938 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3939}
3940
be53b6f4
RH
3941static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3942{
3943 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3944}
3945
c7fd0baa
RH
3946static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3947{
3948 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3949}
3950
3951static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3952{
3953 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3954}
3955
2a609df8
PM
3956static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3957{
3958 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3959 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3960}
3961
15dd1ebd
PM
3962static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3963{
54117b90
PM
3964 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3965 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3966}
3967
2677cf9f
PM
3968static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3969{
3970 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3971}
3972
a1229109
PM
3973static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3974{
3975 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3976}
3977
f7da051f
RH
3978static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3979{
3980 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3981}
3982
ef56c242
RH
3983static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3984{
3985 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3986}
3987
3988static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3989{
3990 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3991 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
3992}
3993
3994static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
3995{
3996 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
3997}
3998
3999static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4000{
4001 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4002 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4003}
4004
957e6155
PM
4005static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4006{
4007 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4008}
4009
0af312b6
RH
4010static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4011{
4012 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4013}
4014
ce3125be
PM
4015static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4016{
4017 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4018}
4019
dc8b1853
RC
4020static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4021{
4022 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4023}
4024
f2f68a78
RC
4025static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4026{
4027 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4028}
4029
ca56aac5
RH
4030static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4031{
4032 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4033}
4034
2dc10fa2
RH
4035static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4036{
4037 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4038}
4039
e3a56131
RH
4040static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4041{
4042 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4043}
4044
4045static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4046{
4047 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4048}
4049
cb9c33b8
RH
4050static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4051{
4052 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4053}
4054
c0b9e8a4
RH
4055static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4056{
4057 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4058}
4059
3358eb3f
RH
4060static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4061{
4062 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4063}
4064
3cc7a88e
RH
4065static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4066{
4067 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4068}
4069
2867039a
RH
4070static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4071{
4072 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4073}
4074
4f26756b
SL
4075static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4076{
4077 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4078}
4079
4080static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4081{
4082 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4083}
4084
6e61f839
PM
4085/*
4086 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4087 */
4088static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4089{
4090 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4091}
4092
22e57073
PM
4093static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4094{
4095 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4096}
4097
2a609df8
PM
4098static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4099{
4100 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4101}
4102
15dd1ebd
PM
4103static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4104{
4105 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4106}
4107
957e6155
PM
4108static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4109{
4110 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4111}
4112
ce3125be
PM
4113static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4114{
4115 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4116}
4117
ca56aac5
RH
4118static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4119{
4120 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4121}
4122
25e168ab
RH
4123static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4124{
4125 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4126}
4127
962fcbf2
RH
4128/*
4129 * Forward to the above feature tests given an ARMCPU pointer.
4130 */
4131#define cpu_isar_feature(name, cpu) \
4132 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4133
2c0262af 4134#endif