]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
Merge tag 'hppa-boot-reboot-fixes-pull-request' of https://github.com/hdeller/qemu...
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
11b76fda 60#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
2c4a7cc5 61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
62
63#define ARMV7M_EXCP_RESET 1
64#define ARMV7M_EXCP_NMI 2
65#define ARMV7M_EXCP_HARD 3
66#define ARMV7M_EXCP_MEM 4
67#define ARMV7M_EXCP_BUS 5
68#define ARMV7M_EXCP_USAGE 6
1e577cc7 69#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
70#define ARMV7M_EXCP_SVC 11
71#define ARMV7M_EXCP_DEBUG 12
72#define ARMV7M_EXCP_PENDSV 14
73#define ARMV7M_EXCP_SYSTICK 15
2c0262af 74
acf94941
PM
75/* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
4a16724f
PM
84enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88};
acf94941 89
403946c0
RH
90/* ARM-specific interrupt pending bits. */
91#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
92#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 94#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 95
e4fe830b
PM
96/* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
e03b5686 102#if HOST_BIG_ENDIAN
5cd8a118 103#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 104#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
105#else
106#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 107#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
108#endif
109
136e67e9 110/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
111#define ARM_CPU_IRQ 0
112#define ARM_CPU_FIQ 1
136e67e9
EI
113#define ARM_CPU_VIRQ 2
114#define ARM_CPU_VFIQ 3
403946c0 115
aaa1f954
EI
116/* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120#define TARGET_INSN_START_EXTRA_WORDS 2
121
122/* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 129
b7bcbe95
FB
130/* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
b7bcbe95 137
200bf5b7
AB
138/**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
448d4d14
AB
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
200bf5b7
AB
146 */
147typedef struct DynamicGDBXMLInfo {
148 char *desc;
448d4d14
AB
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
200bf5b7
AB
155} DynamicGDBXMLInfo;
156
55d284af
PM
157/* CPU state for each instance of a generic timer (in cp15 c14) */
158typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 160 uint64_t ctl; /* Timer Control register */
55d284af
PM
161} ARMGenericTimer;
162
8c94b071
RH
163#define GTIMER_PHYS 0
164#define GTIMER_VIRT 1
165#define GTIMER_HYP 2
166#define GTIMER_SEC 3
167#define GTIMER_HYPVIRT 4
168#define NUM_GTIMERS 5
55d284af 169
e9152ee9
RDC
170#define VTCR_NSW (1u << 29)
171#define VTCR_NSA (1u << 30)
172#define VSTCR_SW VTCR_NSW
173#define VSTCR_SA VTCR_NSA
174
c39c2b90
RH
175/* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 192 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201#ifdef TARGET_AARCH64
202# define ARM_MAX_VQ 16
203#else
204# define ARM_MAX_VQ 1
205#endif
206
207typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209} ARMVectorReg;
210
3c7d3086 211#ifdef TARGET_AARCH64
991ad91b 212/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 213typedef struct ARMPredicateReg {
46417784 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 215} ARMPredicateReg;
991ad91b
RH
216
217/* In AArch32 mode, PAC keys do not exist at all. */
218typedef struct ARMPACKey {
219 uint64_t lo, hi;
220} ARMPACKey;
3c7d3086
RH
221#endif
222
3902bfc6
RH
223/* See the commentary above the TBFLAG field definitions. */
224typedef struct CPUARMTBFlags {
225 uint32_t flags;
a378206a 226 target_ulong flags2;
3902bfc6 227} CPUARMTBFlags;
c39c2b90 228
f3639a64
RH
229typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
8f4e07c9
PMD
231typedef struct NVICState NVICState;
232
1ea4a06a 233typedef struct CPUArchState {
b5ff1b31 234 /* Regs for current mode. */
2c0262af 235 uint32_t regs[16];
3926cc84
AG
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
d356312f
PM
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 252 * DAIF (exception masks) are kept in env->daif
f6e52eaa 253 * BTYPE is kept in env->btype
c37e6ac9 254 * SM and ZA are kept in env->svcr
d356312f 255 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
256 */
257 uint32_t pstate;
53221552 258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 260
fdd1b228 261 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 262 CPUARMTBFlags hflags;
fdd1b228 263
b90372ad 264 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 265 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
28c9457d 271 uint64_t banked_spsr[8];
0b7d409d
FA
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
3b46e624 274
b5ff1b31
FB
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
3b46e624 278
2c0262af
FB
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
99c475ab 284 uint32_t QF; /* 0 or 1 */
9ee6e8bb 285 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 290
1b174238 291 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 293
b5ff1b31
FB
294 /* System control coprocessor (cp15) */
295 struct {
40f137e1 296 uint32_t c0_cpuid;
b85a1fd6
FA
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
137feaa9
FA
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
761c4642 315 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 316 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 319 uint64_t sder; /* Secure debug enable register. */
77022576 320 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
b698e9cf 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 341 /* MMU translation table base control. */
cb4a0a34 342 uint64_t tcr_el[4];
988cc190
PM
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
7e09797c
PM
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 360 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 362 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
4a7e2d73
FA
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
ce819861 381 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
e03b5686 385#if HOST_BIG_ENDIAN
b848ce2b
FA
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390#else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395#endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
59e05530 400 uint64_t hpfar_el2;
2a5a9abd 401 uint64_t hstr_el2;
01c097f7
FA
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
6cb0b013 411
b5ff1b31
FB
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
8521466b
AF
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 418 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 419 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
420 union { /* Memory attribute redirection */
421 struct {
e03b5686 422#if HOST_BIG_ENDIAN
be693c87
GB
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429#else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436#endif
437 };
438 uint64_t mair_el[4];
439 };
fb6c91ba
GB
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
e89e51a1 449 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
9e5ec745 473 uint64_t tpidr2_el0;
54bf36ed
FA
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
a7adc4b7
PM
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 487 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
0b45451e
PM
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 501 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 502 uint64_t mdscr_el1;
1424ca8d 503 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 504 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 505 uint64_t mdcr_el2;
5513c3ab 506 uint64_t mdcr_el3;
5d05b9d4
AL
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
7c2cb42b 511 */
c92c0687 512 uint64_t c15_ccnt;
5d05b9d4
AL
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
8521466b 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
58e93b48
RH
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
15126d9c
PM
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
b5ff1b31 550 } cp15;
40f137e1 551
9ee6e8bb 552 struct {
fb602cb7
PM
553 /* M profile has up to 4 stack pointers:
554 * a Main Stack Pointer and a Process Stack Pointer for each
555 * of the Secure and Non-Secure states. (If the CPU doesn't support
556 * the security extension then it has only two SPs.)
557 * In QEMU we always store the currently active SP in regs[13],
558 * and the non-active SP for the current security state in
559 * v7m.other_sp. The stack pointers for the inactive security state
560 * are stored in other_ss_msp and other_ss_psp.
561 * switch_v7m_security_state() is responsible for rearranging them
562 * when we change security state.
563 */
9ee6e8bb 564 uint32_t other_sp;
fb602cb7
PM
565 uint32_t other_ss_msp;
566 uint32_t other_ss_psp;
4a16724f
PM
567 uint32_t vecbase[M_REG_NUM_BANKS];
568 uint32_t basepri[M_REG_NUM_BANKS];
569 uint32_t control[M_REG_NUM_BANKS];
570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
572 uint32_t hfsr; /* HardFault Status */
573 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 574 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 576 uint32_t bfar; /* BusFault Address */
bed079da 577 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 579 int exception;
4a16724f
PM
580 uint32_t primask[M_REG_NUM_BANKS];
581 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 582 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 584 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 585 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
586 uint32_t msplim[M_REG_NUM_BANKS];
587 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
588 uint32_t fpcar[M_REG_NUM_BANKS];
589 uint32_t fpccr[M_REG_NUM_BANKS];
590 uint32_t fpdscr[M_REG_NUM_BANKS];
591 uint32_t cpacr[M_REG_NUM_BANKS];
592 uint32_t nsacr;
b26b5629 593 uint32_t ltpsize;
7c3d47da 594 uint32_t vpr;
9ee6e8bb
PB
595 } v7m;
596
abf1172f
PM
597 /* Information associated with an exception about to be taken:
598 * code which raises an exception must set cs->exception_index and
599 * the relevant parts of this structure; the cpu_do_interrupt function
600 * will then set the guest-visible registers as part of the exception
601 * entry process.
602 */
603 struct {
604 uint32_t syndrome; /* AArch64 format syndrome register */
605 uint32_t fsr; /* AArch32 format fault status register info */
606 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 607 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
608 /* If we implement EL2 we will also need to store information
609 * about the intermediate physical address for stage 2 faults.
610 */
611 } exception;
612
202ccb6b
DG
613 /* Information associated with an SError */
614 struct {
615 uint8_t pending;
616 uint8_t has_esr;
617 uint64_t esr;
618 } serror;
619
1711bfa5
BM
620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621
ed89f078
PM
622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623 uint32_t irq_line_state;
624
fe1479c3
PB
625 /* Thumb-2 EE state. */
626 uint32_t teecr;
627 uint32_t teehbr;
628
b7bcbe95
FB
629 /* VFP coprocessor state. */
630 struct {
c39c2b90 631 ARMVectorReg zregs[32];
b7bcbe95 632
3c7d3086
RH
633#ifdef TARGET_AARCH64
634 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 635#define FFR_PRED_NUM 16
3c7d3086 636 ARMPredicateReg pregs[17];
516e246a
RH
637 /* Scratch space for aa64 sve predicate temporary. */
638 ARMPredicateReg preg_tmp;
3c7d3086
RH
639#endif
640
b7bcbe95 641 /* We store these fpcsr fields separately for convenience. */
a4d58462 642 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
643 int vec_len;
644 int vec_stride;
645
a4d58462
RH
646 uint32_t xregs[16];
647
516e246a 648 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 649 uint32_t scratch[8];
3b46e624 650
d81ce0ef
AB
651 /* There are a number of distinct float control structures:
652 *
653 * fp_status: is the "normal" fp status.
654 * fp_status_fp16: used for half-precision calculations
655 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
656 * standard_fp_status_fp16 : used for half-precision
657 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
658 *
659 * Half-precision operations are governed by a separate
660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661 * status structure to control this.
662 *
663 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664 * round-to-nearest and is used by any operations (generally
665 * Neon) which the architecture defines as controlled by the
666 * standard FPSCR value rather than the FPSCR.
3a492f3a 667 *
aaae563b
PM
668 * The "standard FPSCR but for fp16 ops" is needed because
669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670 * using a fixed value for it.
671 *
3a492f3a
PM
672 * To avoid having to transfer exception bits around, we simply
673 * say that the FPSCR cumulative exception flags are the logical
aaae563b 674 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
675 * only thing which needs to read the exception flags being
676 * an explicit FPSCR read.
677 */
53cd6637 678 float_status fp_status;
d81ce0ef 679 float_status fp_status_f16;
3a492f3a 680 float_status standard_fp_status;
aaae563b 681 float_status standard_fp_status_f16;
5be5e8ed 682
de561988
RH
683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 685 } vfp;
0f08429c 686
03d05e2d
PM
687 uint64_t exclusive_addr;
688 uint64_t exclusive_val;
0f08429c
RH
689 /*
690 * Contains the 'val' for the second 64-bit register of LDXP, which comes
691 * from the higher address, not the high part of a complete 128-bit value.
692 * In some ways it might be more convenient to record the exclusive value
693 * as the low and high halves of a 128 bit data value, but the current
694 * semantics of these fields are baked into the migration format.
695 */
03d05e2d 696 uint64_t exclusive_high;
b7bcbe95 697
18c9b560
AZ
698 /* iwMMXt coprocessor state. */
699 struct {
700 uint64_t regs[16];
701 uint64_t val;
702
703 uint32_t cregs[16];
704 } iwmmxt;
705
991ad91b 706#ifdef TARGET_AARCH64
108b3ba8
RH
707 struct {
708 ARMPACKey apia;
709 ARMPACKey apib;
710 ARMPACKey apda;
711 ARMPACKey apdb;
712 ARMPACKey apga;
713 } keys;
7cb1e618
RH
714
715 uint64_t scxtnum_el[4];
dc993a01
RH
716
717 /*
718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721 * When SVL is less than the architectural maximum, the accessible
722 * storage is restricted, such that if the SVL is X bytes the guest can
723 * see only the bottom X elements of zarray[], and only the least
724 * significant X bytes of each element of the array. (In other words,
725 * the observable part is always square.)
726 *
727 * The ZA storage can also be considered as a set of square tiles of
728 * elements of different sizes. The mapping from tiles to the ZA array
729 * is architecturally defined, such that for tiles of elements of esz
730 * bytes, the Nth row (or "horizontal slice") of tile T is in
731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732 * in the ZA storage, because its rows are striped through the ZA array.
733 *
734 * Because this is so large, keep this toward the end of the reset area,
735 * to keep the offsets into the rest of the structure smaller.
736 */
737 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
738#endif
739
46747d15 740 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
741 struct CPUWatchpoint *cpu_watchpoint[16];
742
f3639a64
RH
743 /* Optional fault info across tlb lookup. */
744 ARMMMUFaultInfo *tlb_fi;
745
1f5c00cf
AB
746 /* Fields up to this point are cleared by a CPU reset */
747 struct {} end_reset_fields;
748
e8b5fae5 749 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 750
581be094 751 /* Internal CPU feature flags. */
918f5dca 752 uint64_t features;
581be094 753
6cb0b013
PC
754 /* PMSAv7 MPU */
755 struct {
756 uint32_t *drbar;
757 uint32_t *drsr;
758 uint32_t *dracr;
4a16724f 759 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
760 } pmsav7;
761
0e1a46bb
PM
762 /* PMSAv8 MPU */
763 struct {
764 /* The PMSAv8 implementation also shares some PMSAv7 config
765 * and state:
766 * pmsav7.rnr (region number register)
767 * pmsav7_dregion (number of configured regions)
768 */
4a16724f
PM
769 uint32_t *rbar[M_REG_NUM_BANKS];
770 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
771 uint32_t *hprbar;
772 uint32_t *hprlar;
4a16724f
PM
773 uint32_t mair0[M_REG_NUM_BANKS];
774 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 775 uint32_t hprselr;
0e1a46bb
PM
776 } pmsav8;
777
9901c576
PM
778 /* v8M SAU */
779 struct {
780 uint32_t *rbar;
781 uint32_t *rlar;
782 uint32_t rnr;
783 uint32_t ctrl;
784 } sau;
785
1701d70e 786#if !defined(CONFIG_USER_ONLY)
8f4e07c9 787 NVICState *nvic;
2a94a507 788 const struct arm_boot_info *boot_info;
d3a3e529
VK
789 /* Store GICv3CPUState to access from this struct */
790 void *gicv3state;
1701d70e 791#else /* CONFIG_USER_ONLY */
26f08561
PMD
792 /* For usermode syscall translation. */
793 bool eabi;
794#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
795
796#ifdef TARGET_TAGGED_ADDRESSES
797 /* Linux syscall tagged address support */
798 bool tagged_addr_enable;
799#endif
2c0262af
FB
800} CPUARMState;
801
5fda9504
TH
802static inline void set_feature(CPUARMState *env, int feature)
803{
804 env->features |= 1ULL << feature;
805}
806
807static inline void unset_feature(CPUARMState *env, int feature)
808{
809 env->features &= ~(1ULL << feature);
810}
811
bd7d00fc 812/**
08267487 813 * ARMELChangeHookFn:
bd7d00fc
PM
814 * type of a function which can be registered via arm_register_el_change_hook()
815 * to get callbacks when the CPU changes its exception level or mode.
816 */
08267487
AL
817typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818typedef struct ARMELChangeHook ARMELChangeHook;
819struct ARMELChangeHook {
820 ARMELChangeHookFn *hook;
821 void *opaque;
822 QLIST_ENTRY(ARMELChangeHook) node;
823};
062ba099
AB
824
825/* These values map onto the return values for
826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827typedef enum ARMPSCIState {
d5affb0d
AJ
828 PSCI_ON = 0,
829 PSCI_OFF = 1,
062ba099
AB
830 PSCI_ON_PENDING = 2
831} ARMPSCIState;
832
962fcbf2
RH
833typedef struct ARMISARegisters ARMISARegisters;
834
7f9e25a6
RH
835/*
836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838 *
839 * While processing properties during initialization, corresponding init bits
840 * are set for bits in sve_vq_map that have been set by properties.
841 *
842 * Bits set in supported represent valid vector lengths for the CPU type.
843 */
844typedef struct {
845 uint32_t map, init, supported;
846} ARMVQMap;
847
74e75564
PB
848/**
849 * ARMCPU:
850 * @env: #CPUARMState
851 *
852 * An ARM CPU core.
853 */
b36e239e 854struct ArchCPU {
74e75564
PB
855 /*< private >*/
856 CPUState parent_obj;
857 /*< public >*/
858
5b146dc7 859 CPUNegativeOffsetState neg;
74e75564
PB
860 CPUARMState env;
861
862 /* Coprocessor information */
863 GHashTable *cp_regs;
864 /* For marshalling (mostly coprocessor) register state between the
865 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
866 * we use these arrays.
867 */
868 /* List of register indexes managed via these arrays; (full KVM style
869 * 64 bit indexes, not CPRegInfo 32 bit indexes)
870 */
871 uint64_t *cpreg_indexes;
872 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
873 uint64_t *cpreg_values;
874 /* Length of the indexes, values, reset_values arrays */
875 int32_t cpreg_array_len;
876 /* These are used only for migration: incoming data arrives in
877 * these fields and is sanity checked in post_load before copying
878 * to the working data structures above.
879 */
880 uint64_t *cpreg_vmstate_indexes;
881 uint64_t *cpreg_vmstate_values;
882 int32_t cpreg_vmstate_array_len;
883
448d4d14 884 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 885 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
886 DynamicGDBXMLInfo dyn_m_systemreg_xml;
887 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 888
74e75564
PB
889 /* Timers used by the generic (architected) timer */
890 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
891 /*
892 * Timer used by the PMU. Its state is restored after migration by
893 * pmu_op_finish() - it does not need other handling during migration
894 */
895 QEMUTimer *pmu_timer;
74e75564
PB
896 /* GPIO outputs for generic timer */
897 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
898 /* GPIO output for GICv3 maintenance interrupt signal */
899 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
900 /* GPIO output for the PMU interrupt */
901 qemu_irq pmu_interrupt;
74e75564
PB
902
903 /* MemoryRegion to use for secure physical accesses */
904 MemoryRegion *secure_memory;
905
8bce44a2
RH
906 /* MemoryRegion to use for allocation tag accesses */
907 MemoryRegion *tag_memory;
908 MemoryRegion *secure_tag_memory;
909
181962fd
PM
910 /* For v8M, pointer to the IDAU interface provided by board/SoC */
911 Object *idau;
912
74e75564
PB
913 /* 'compatible' string for this CPU for Linux device trees */
914 const char *dtb_compatible;
915
916 /* PSCI version for this CPU
917 * Bits[31:16] = Major Version
918 * Bits[15:0] = Minor Version
919 */
920 uint32_t psci_version;
921
062ba099
AB
922 /* Current power state, access guarded by BQL */
923 ARMPSCIState power_state;
924
c25bd18a
PM
925 /* CPU has virtualization extension */
926 bool has_el2;
74e75564
PB
927 /* CPU has security extension */
928 bool has_el3;
5c0a3819
SZ
929 /* CPU has PMU (Performance Monitor Unit) */
930 bool has_pmu;
97a28b0e
PM
931 /* CPU has VFP */
932 bool has_vfp;
42bea956
CLG
933 /* CPU has 32 VFP registers */
934 bool has_vfp_d32;
97a28b0e
PM
935 /* CPU has Neon */
936 bool has_neon;
ea90db0a
PM
937 /* CPU has M-profile DSP extension */
938 bool has_dsp;
74e75564
PB
939
940 /* CPU has memory protection unit */
941 bool has_mpu;
942 /* PMSAv7 MPU number of supported regions */
943 uint32_t pmsav7_dregion;
761c4642
TR
944 /* PMSAv8 MPU number of supported hyp regions */
945 uint32_t pmsav8r_hdregion;
9901c576
PM
946 /* v8M SAU number of supported regions */
947 uint32_t sau_sregion;
74e75564
PB
948
949 /* PSCI conduit used to invoke PSCI methods
950 * 0 - disabled, 1 - smc, 2 - hvc
951 */
952 uint32_t psci_conduit;
953
38e2a77c
PM
954 /* For v8M, initial value of the Secure VTOR */
955 uint32_t init_svtor;
7cda2149
PM
956 /* For v8M, initial value of the Non-secure VTOR */
957 uint32_t init_nsvtor;
38e2a77c 958
74e75564
PB
959 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
960 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
961 */
962 uint32_t kvm_target;
963
964 /* KVM init features for this CPU */
965 uint32_t kvm_init_features[7];
966
e5ac4200
AJ
967 /* KVM CPU state */
968
969 /* KVM virtual time adjustment */
970 bool kvm_adjvtime;
971 bool kvm_vtime_dirty;
972 uint64_t kvm_vtime;
973
68970d1e
AJ
974 /* KVM steal time */
975 OnOffAuto kvm_steal_time;
976
74e75564
PB
977 /* Uniprocessor system with MP extensions */
978 bool mp_is_up;
979
c4487d76
PM
980 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
981 * and the probe failed (so we need to report the error in realize)
982 */
983 bool host_cpu_probe_failed;
984
f9a69711
AF
985 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
986 * register.
987 */
988 int32_t core_count;
989
74e75564
PB
990 /* The instance init functions for implementation-specific subclasses
991 * set these fields to specify the implementation-dependent values of
992 * various constant registers and reset values of non-constant
993 * registers.
994 * Some of these might become QOM properties eventually.
995 * Field names match the official register names as defined in the
996 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
997 * is used for reset values of non-constant registers; no reset_
998 * prefix means a constant register.
47576b94
RH
999 * Some of these registers are split out into a substructure that
1000 * is shared with the translators to control the ISA.
1548a7b2
PM
1001 *
1002 * Note that if you add an ID register to the ARMISARegisters struct
1003 * you need to also update the 32-bit and 64-bit versions of the
1004 * kvm_arm_get_host_cpu_features() function to correctly populate the
1005 * field by reading the value from the KVM vCPU.
74e75564 1006 */
47576b94
RH
1007 struct ARMISARegisters {
1008 uint32_t id_isar0;
1009 uint32_t id_isar1;
1010 uint32_t id_isar2;
1011 uint32_t id_isar3;
1012 uint32_t id_isar4;
1013 uint32_t id_isar5;
1014 uint32_t id_isar6;
10054016
PM
1015 uint32_t id_mmfr0;
1016 uint32_t id_mmfr1;
1017 uint32_t id_mmfr2;
1018 uint32_t id_mmfr3;
1019 uint32_t id_mmfr4;
32957aad 1020 uint32_t id_mmfr5;
8a130a7b
PM
1021 uint32_t id_pfr0;
1022 uint32_t id_pfr1;
1d51bc96 1023 uint32_t id_pfr2;
47576b94
RH
1024 uint32_t mvfr0;
1025 uint32_t mvfr1;
1026 uint32_t mvfr2;
a6179538 1027 uint32_t id_dfr0;
d22c5649 1028 uint32_t id_dfr1;
4426d361 1029 uint32_t dbgdidr;
09754ca8
PM
1030 uint32_t dbgdevid;
1031 uint32_t dbgdevid1;
47576b94
RH
1032 uint64_t id_aa64isar0;
1033 uint64_t id_aa64isar1;
1034 uint64_t id_aa64pfr0;
1035 uint64_t id_aa64pfr1;
3dc91ddb
PM
1036 uint64_t id_aa64mmfr0;
1037 uint64_t id_aa64mmfr1;
64761e10 1038 uint64_t id_aa64mmfr2;
2a609df8
PM
1039 uint64_t id_aa64dfr0;
1040 uint64_t id_aa64dfr1;
2dc10fa2 1041 uint64_t id_aa64zfr0;
414c54d5 1042 uint64_t id_aa64smfr0;
24526bb9 1043 uint64_t reset_pmcr_el0;
47576b94 1044 } isar;
e544f800 1045 uint64_t midr;
74e75564
PB
1046 uint32_t revidr;
1047 uint32_t reset_fpsid;
a5fd319a 1048 uint64_t ctr;
74e75564 1049 uint32_t reset_sctlr;
cad86737
AL
1050 uint64_t pmceid0;
1051 uint64_t pmceid1;
74e75564 1052 uint32_t id_afr0;
74e75564
PB
1053 uint64_t id_aa64afr0;
1054 uint64_t id_aa64afr1;
f6450bcb 1055 uint64_t clidr;
74e75564
PB
1056 uint64_t mp_affinity; /* MP ID without feature bits */
1057 /* The elements of this array are the CCSIDR values for each cache,
1058 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1059 */
957e6155 1060 uint64_t ccsidr[16];
74e75564
PB
1061 uint64_t reset_cbar;
1062 uint32_t reset_auxcr;
1063 bool reset_hivecs;
ef1febe7 1064 uint8_t reset_l0gptsz;
eb94284d
RH
1065
1066 /*
1067 * Intermediate values used during property parsing.
69b2265d 1068 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1069 */
1070 bool prop_pauth;
1071 bool prop_pauth_impdef;
69b2265d 1072 bool prop_lpa2;
eb94284d 1073
74e75564
PB
1074 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1075 uint32_t dcz_blocksize;
4a7319b7 1076 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1077
e45868a3
PM
1078 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1079 int gic_num_lrs; /* number of list registers */
1080 int gic_vpribits; /* number of virtual priority bits */
1081 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1082 int gic_pribits; /* number of physical priority bits */
e45868a3 1083
3a062d57
JB
1084 /* Whether the cfgend input is high (i.e. this CPU should reset into
1085 * big-endian mode). This setting isn't used directly: instead it modifies
1086 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1087 * architecture version.
1088 */
1089 bool cfgend;
1090
b5c53d1b 1091 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1092 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1093
1094 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1095
1096 /* Used to synchronize KVM and QEMU in-kernel device levels */
1097 uint8_t device_irq_level;
adf92eab
RH
1098
1099 /* Used to set the maximum vector length the cpu will support. */
1100 uint32_t sve_max_vq;
0df9142d 1101
b3d52804
RH
1102#ifdef CONFIG_USER_ONLY
1103 /* Used to set the default vector length at process start. */
1104 uint32_t sve_default_vq;
e74c0976 1105 uint32_t sme_default_vq;
b3d52804
RH
1106#endif
1107
7f9e25a6 1108 ARMVQMap sve_vq;
e74c0976 1109 ARMVQMap sme_vq;
7def8754
AJ
1110
1111 /* Generic timer counter frequency, in Hz */
1112 uint64_t gt_cntfrq_hz;
74e75564
PB
1113};
1114
7def8754
AJ
1115unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1116
51e5ef45
MAL
1117void arm_cpu_post_init(Object *obj);
1118
46de5913
IM
1119uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1120
74e75564 1121#ifndef CONFIG_USER_ONLY
8a9358cc 1122extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1123
1124void arm_cpu_do_interrupt(CPUState *cpu);
1125void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1126
74e75564
PB
1127hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1128 MemTxAttrs *attrs);
6d2d454a 1129#endif /* !CONFIG_USER_ONLY */
74e75564 1130
a010bdbe 1131int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1132int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1133
200bf5b7
AB
1134/* Returns the dynamically generated XML for the gdb stub.
1135 * Returns a pointer to the XML contents for the specified XML file or NULL
1136 * if the XML name doesn't match the predefined one.
1137 */
1138const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1139
74e75564 1140int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1141 int cpuid, DumpState *s);
74e75564 1142int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1143 int cpuid, DumpState *s);
74e75564
PB
1144
1145#ifdef TARGET_AARCH64
a010bdbe 1146int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1147int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1148void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1149void aarch64_sve_change_el(CPUARMState *env, int old_el,
1150 int new_el, bool el0_a64);
2a8af382 1151void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1152
1153/*
1154 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1155 * The byte at offset i from the start of the in-memory representation contains
1156 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1157 * lowest offsets are stored in the lowest memory addresses, then that nearly
1158 * matches QEMU's representation, which is to use an array of host-endian
1159 * uint64_t's, where the lower offsets are at the lower indices. To complete
1160 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1161 */
1162static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1163{
e03b5686 1164#if HOST_BIG_ENDIAN
538baab2
AJ
1165 int i;
1166
1167 for (i = 0; i < nr; ++i) {
1168 dst[i] = bswap64(src[i]);
1169 }
1170
1171 return dst;
1172#else
1173 return src;
1174#endif
1175}
1176
0ab5953b
RH
1177#else
1178static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1179static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1180 int n, bool a)
1181{ }
74e75564 1182#endif
778c3a06 1183
ce02049d
GB
1184void aarch64_sync_32_to_64(CPUARMState *env);
1185void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1186
ced31551
RH
1187int fp_exception_el(CPUARMState *env, int cur_el);
1188int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1189int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1190
1191/**
6ca54aa9 1192 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1193 * @env: CPUARMState
1194 * @el: exception level
6ca54aa9 1195 * @sm: streaming mode
5ef3cc56 1196 *
6ca54aa9 1197 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1198 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1199 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1200 */
6ca54aa9
RH
1201uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1202
1203/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1204uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1205
3926cc84
AG
1206static inline bool is_a64(CPUARMState *env)
1207{
1208 return env->aarch64;
1209}
1210
5d05b9d4
AL
1211/**
1212 * pmu_op_start/finish
ec7b4ce4
AF
1213 * @env: CPUARMState
1214 *
5d05b9d4
AL
1215 * Convert all PMU counters between their delta form (the typical mode when
1216 * they are enabled) and the guest-visible values. These two calls must
1217 * surround any action which might affect the counters.
ec7b4ce4 1218 */
5d05b9d4
AL
1219void pmu_op_start(CPUARMState *env);
1220void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1221
4e7beb0c
AL
1222/*
1223 * Called when a PMU counter is due to overflow
1224 */
1225void arm_pmu_timer_cb(void *opaque);
1226
033614c4
AL
1227/**
1228 * Functions to register as EL change hooks for PMU mode filtering
1229 */
1230void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1231void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1232
57a4a11b 1233/*
bf8d0969
AL
1234 * pmu_init
1235 * @cpu: ARMCPU
57a4a11b 1236 *
bf8d0969
AL
1237 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1238 * for the current configuration
57a4a11b 1239 */
bf8d0969 1240void pmu_init(ARMCPU *cpu);
57a4a11b 1241
76e3e1bc
PM
1242/* SCTLR bit meanings. Several bits have been reused in newer
1243 * versions of the architecture; in that case we define constants
1244 * for both old and new bit meanings. Code which tests against those
1245 * bits should probably check or otherwise arrange that the CPU
1246 * is the architectural version it expects.
1247 */
1248#define SCTLR_M (1U << 0)
1249#define SCTLR_A (1U << 1)
1250#define SCTLR_C (1U << 2)
1251#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1252#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1253#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1254#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1255#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1256#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1257#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1258#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1259#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1260#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1261#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1262#define SCTLR_ITD (1U << 7) /* v8 onward */
1263#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1264#define SCTLR_SED (1U << 8) /* v8 onward */
1265#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1266#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1267#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1268#define SCTLR_SW (1U << 10) /* v7 */
1269#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1270#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1271#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1272#define SCTLR_I (1U << 12)
b2af69d0
RH
1273#define SCTLR_V (1U << 13) /* AArch32 only */
1274#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1275#define SCTLR_RR (1U << 14) /* up to v7 */
1276#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1277#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1278#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1279#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1280#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1281#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1282#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1283#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1284#define SCTLR_nTWE (1U << 18) /* v8 onward */
1285#define SCTLR_WXN (1U << 19)
1286#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1287#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1288#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1289#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1290#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1291#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1292#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1293#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1294#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1295#define SCTLR_VE (1U << 24) /* up to v7 */
1296#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1297#define SCTLR_EE (1U << 25)
1298#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1299#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1300#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1301#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1302#define SCTLR_TRE (1U << 28) /* AArch32 only */
1303#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1304#define SCTLR_AFE (1U << 29) /* AArch32 only */
1305#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1306#define SCTLR_TE (1U << 30) /* AArch32 only */
1307#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1308#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1309#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1310#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1311#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1312#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1313#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1314#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1315#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1316#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1317#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1318#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1319#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1320#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1321#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1322#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1323#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1324#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1325#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1326#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1327#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1328#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1329#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1330#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1331#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1332
fab8ad39
RH
1333/* Bit definitions for CPACR (AArch32 only) */
1334FIELD(CPACR, CP10, 20, 2)
1335FIELD(CPACR, CP11, 22, 2)
1336FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1337FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1338FIELD(CPACR, ASEDIS, 31, 1)
1339
1340/* Bit definitions for CPACR_EL1 (AArch64 only) */
1341FIELD(CPACR_EL1, ZEN, 16, 2)
1342FIELD(CPACR_EL1, FPEN, 20, 2)
1343FIELD(CPACR_EL1, SMEN, 24, 2)
1344FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1345
1346/* Bit definitions for HCPTR (AArch32 only) */
1347FIELD(HCPTR, TCP10, 10, 1)
1348FIELD(HCPTR, TCP11, 11, 1)
1349FIELD(HCPTR, TASE, 15, 1)
1350FIELD(HCPTR, TTA, 20, 1)
1351FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1352FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1353
1354/* Bit definitions for CPTR_EL2 (AArch64 only) */
1355FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1356FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1357FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1358FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1359FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1360FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1361FIELD(CPTR_EL2, TTA, 28, 1)
1362FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1363FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1364
1365/* Bit definitions for CPTR_EL3 (AArch64 only) */
1366FIELD(CPTR_EL3, EZ, 8, 1)
1367FIELD(CPTR_EL3, TFP, 10, 1)
1368FIELD(CPTR_EL3, ESM, 12, 1)
1369FIELD(CPTR_EL3, TTA, 20, 1)
1370FIELD(CPTR_EL3, TAM, 30, 1)
1371FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1372
f190bd1d
PM
1373#define MDCR_MTPME (1U << 28)
1374#define MDCR_TDCC (1U << 27)
47b385da 1375#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1376#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1377#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1378#define MDCR_EPMAD (1U << 21)
1379#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1380#define MDCR_TTRF (1U << 19)
1381#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1382#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1383#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1384#define MDCR_SDD (1U << 16)
a8d64e73 1385#define MDCR_SPD (3U << 14)
187f678d
PM
1386#define MDCR_TDRA (1U << 11)
1387#define MDCR_TDOSA (1U << 10)
1388#define MDCR_TDA (1U << 9)
1389#define MDCR_TDE (1U << 8)
1390#define MDCR_HPME (1U << 7)
1391#define MDCR_TPM (1U << 6)
1392#define MDCR_TPMCR (1U << 5)
033614c4 1393#define MDCR_HPMN (0x1fU)
187f678d 1394
a8d64e73 1395/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1396#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1397 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1398 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1399
78dbbbe4
PM
1400#define CPSR_M (0x1fU)
1401#define CPSR_T (1U << 5)
1402#define CPSR_F (1U << 6)
1403#define CPSR_I (1U << 7)
1404#define CPSR_A (1U << 8)
1405#define CPSR_E (1U << 9)
1406#define CPSR_IT_2_7 (0xfc00U)
1407#define CPSR_GE (0xfU << 16)
4051e12c 1408#define CPSR_IL (1U << 20)
dc8b1853 1409#define CPSR_DIT (1U << 21)
220f508f 1410#define CPSR_PAN (1U << 22)
f2f68a78 1411#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1412#define CPSR_J (1U << 24)
1413#define CPSR_IT_0_1 (3U << 25)
1414#define CPSR_Q (1U << 27)
1415#define CPSR_V (1U << 28)
1416#define CPSR_C (1U << 29)
1417#define CPSR_Z (1U << 30)
1418#define CPSR_N (1U << 31)
9ee6e8bb 1419#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1420#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1421
1422#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1423#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1424 | CPSR_NZCV)
9ee6e8bb 1425/* Bits writable in user mode. */
268b1b3d 1426#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1427/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1428#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1429
987ab45e
PM
1430/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1431#define XPSR_EXCP 0x1ffU
1432#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1433#define XPSR_IT_2_7 CPSR_IT_2_7
1434#define XPSR_GE CPSR_GE
1435#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1436#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1437#define XPSR_IT_0_1 CPSR_IT_0_1
1438#define XPSR_Q CPSR_Q
1439#define XPSR_V CPSR_V
1440#define XPSR_C CPSR_C
1441#define XPSR_Z CPSR_Z
1442#define XPSR_N CPSR_N
1443#define XPSR_NZCV CPSR_NZCV
1444#define XPSR_IT CPSR_IT
1445
e389be16
FA
1446#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1447#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1448#define TTBCR_PD0 (1U << 4)
1449#define TTBCR_PD1 (1U << 5)
1450#define TTBCR_EPD0 (1U << 7)
1451#define TTBCR_IRGN0 (3U << 8)
1452#define TTBCR_ORGN0 (3U << 10)
1453#define TTBCR_SH0 (3U << 12)
1454#define TTBCR_T1SZ (3U << 16)
1455#define TTBCR_A1 (1U << 22)
1456#define TTBCR_EPD1 (1U << 23)
1457#define TTBCR_IRGN1 (3U << 24)
1458#define TTBCR_ORGN1 (3U << 26)
1459#define TTBCR_SH1 (1U << 28)
1460#define TTBCR_EAE (1U << 31)
1461
f04383e7
PM
1462FIELD(VTCR, T0SZ, 0, 6)
1463FIELD(VTCR, SL0, 6, 2)
1464FIELD(VTCR, IRGN0, 8, 2)
1465FIELD(VTCR, ORGN0, 10, 2)
1466FIELD(VTCR, SH0, 12, 2)
1467FIELD(VTCR, TG0, 14, 2)
1468FIELD(VTCR, PS, 16, 3)
1469FIELD(VTCR, VS, 19, 1)
1470FIELD(VTCR, HA, 21, 1)
1471FIELD(VTCR, HD, 22, 1)
1472FIELD(VTCR, HWU59, 25, 1)
1473FIELD(VTCR, HWU60, 26, 1)
1474FIELD(VTCR, HWU61, 27, 1)
1475FIELD(VTCR, HWU62, 28, 1)
1476FIELD(VTCR, NSW, 29, 1)
1477FIELD(VTCR, NSA, 30, 1)
1478FIELD(VTCR, DS, 32, 1)
1479FIELD(VTCR, SL2, 33, 1)
1480
d356312f
PM
1481/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1482 * Only these are valid when in AArch64 mode; in
1483 * AArch32 mode SPSRs are basically CPSR-format.
1484 */
f502cfc2 1485#define PSTATE_SP (1U)
d356312f
PM
1486#define PSTATE_M (0xFU)
1487#define PSTATE_nRW (1U << 4)
1488#define PSTATE_F (1U << 6)
1489#define PSTATE_I (1U << 7)
1490#define PSTATE_A (1U << 8)
1491#define PSTATE_D (1U << 9)
f6e52eaa 1492#define PSTATE_BTYPE (3U << 10)
f2f68a78 1493#define PSTATE_SSBS (1U << 12)
d356312f
PM
1494#define PSTATE_IL (1U << 20)
1495#define PSTATE_SS (1U << 21)
220f508f 1496#define PSTATE_PAN (1U << 22)
9eeb7a1c 1497#define PSTATE_UAO (1U << 23)
dc8b1853 1498#define PSTATE_DIT (1U << 24)
4b779ceb 1499#define PSTATE_TCO (1U << 25)
d356312f
PM
1500#define PSTATE_V (1U << 28)
1501#define PSTATE_C (1U << 29)
1502#define PSTATE_Z (1U << 30)
1503#define PSTATE_N (1U << 31)
1504#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1505#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1506#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1507/* Mode values for AArch64 */
1508#define PSTATE_MODE_EL3h 13
1509#define PSTATE_MODE_EL3t 12
1510#define PSTATE_MODE_EL2h 9
1511#define PSTATE_MODE_EL2t 8
1512#define PSTATE_MODE_EL1h 5
1513#define PSTATE_MODE_EL1t 4
1514#define PSTATE_MODE_EL0t 0
1515
c37e6ac9
RH
1516/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1517FIELD(SVCR, SM, 0, 1)
1518FIELD(SVCR, ZA, 1, 1)
1519
de561988
RH
1520/* Fields for SMCR_ELx. */
1521FIELD(SMCR, LEN, 0, 4)
1522FIELD(SMCR, FA64, 31, 1)
1523
de2db7ec
PM
1524/* Write a new value to v7m.exception, thus transitioning into or out
1525 * of Handler mode; this may result in a change of active stack pointer.
1526 */
1527void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1528
9e729b57
EI
1529/* Map EL and handler into a PSTATE_MODE. */
1530static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1531{
1532 return (el << 2) | handler;
1533}
1534
d356312f
PM
1535/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1536 * interprocessing, so we don't attempt to sync with the cpsr state used by
1537 * the 32 bit decoder.
1538 */
1539static inline uint32_t pstate_read(CPUARMState *env)
1540{
1541 int ZF;
1542
1543 ZF = (env->ZF == 0);
1544 return (env->NF & 0x80000000) | (ZF << 30)
1545 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1546 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1547}
1548
1549static inline void pstate_write(CPUARMState *env, uint32_t val)
1550{
1551 env->ZF = (~val) & PSTATE_Z;
1552 env->NF = val;
1553 env->CF = (val >> 29) & 1;
1554 env->VF = (val << 3) & 0x80000000;
4cc35614 1555 env->daif = val & PSTATE_DAIF;
f6e52eaa 1556 env->btype = (val >> 10) & 3;
d356312f
PM
1557 env->pstate = val & ~CACHED_PSTATE_BITS;
1558}
1559
b5ff1b31 1560/* Return the current CPSR value. */
2f4a40e5 1561uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1562
1563typedef enum CPSRWriteType {
1564 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1565 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1566 CPSRWriteRaw = 2,
1567 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1568 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1569} CPSRWriteType;
1570
e784807c
PM
1571/*
1572 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1573 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1574 * correspond to TB flags bits cached in the hflags, unless @write_type
1575 * is CPSRWriteRaw.
1576 */
50866ba5
PM
1577void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1578 CPSRWriteType write_type);
9ee6e8bb
PB
1579
1580/* Return the current xPSR value. */
1581static inline uint32_t xpsr_read(CPUARMState *env)
1582{
1583 int ZF;
6fbe23d5
PB
1584 ZF = (env->ZF == 0);
1585 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1586 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1587 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1588 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1589 | (env->GE << 16)
9ee6e8bb 1590 | env->v7m.exception;
b5ff1b31
FB
1591}
1592
9ee6e8bb
PB
1593/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1594static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1595{
987ab45e
PM
1596 if (mask & XPSR_NZCV) {
1597 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1598 env->NF = val;
9ee6e8bb
PB
1599 env->CF = (val >> 29) & 1;
1600 env->VF = (val << 3) & 0x80000000;
1601 }
987ab45e
PM
1602 if (mask & XPSR_Q) {
1603 env->QF = ((val & XPSR_Q) != 0);
1604 }
f1e2598c
PM
1605 if (mask & XPSR_GE) {
1606 env->GE = (val & XPSR_GE) >> 16;
1607 }
04c9c81b 1608#ifndef CONFIG_USER_ONLY
987ab45e
PM
1609 if (mask & XPSR_T) {
1610 env->thumb = ((val & XPSR_T) != 0);
1611 }
1612 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1613 env->condexec_bits &= ~3;
1614 env->condexec_bits |= (val >> 25) & 3;
1615 }
987ab45e 1616 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1617 env->condexec_bits &= 3;
1618 env->condexec_bits |= (val >> 8) & 0xfc;
1619 }
987ab45e 1620 if (mask & XPSR_EXCP) {
de2db7ec
PM
1621 /* Note that this only happens on exception exit */
1622 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1623 }
04c9c81b 1624#endif
9ee6e8bb
PB
1625}
1626
f149e3e8
EI
1627#define HCR_VM (1ULL << 0)
1628#define HCR_SWIO (1ULL << 1)
1629#define HCR_PTW (1ULL << 2)
1630#define HCR_FMO (1ULL << 3)
1631#define HCR_IMO (1ULL << 4)
1632#define HCR_AMO (1ULL << 5)
1633#define HCR_VF (1ULL << 6)
1634#define HCR_VI (1ULL << 7)
1635#define HCR_VSE (1ULL << 8)
1636#define HCR_FB (1ULL << 9)
1637#define HCR_BSU_MASK (3ULL << 10)
1638#define HCR_DC (1ULL << 12)
1639#define HCR_TWI (1ULL << 13)
1640#define HCR_TWE (1ULL << 14)
1641#define HCR_TID0 (1ULL << 15)
1642#define HCR_TID1 (1ULL << 16)
1643#define HCR_TID2 (1ULL << 17)
1644#define HCR_TID3 (1ULL << 18)
1645#define HCR_TSC (1ULL << 19)
1646#define HCR_TIDCP (1ULL << 20)
1647#define HCR_TACR (1ULL << 21)
1648#define HCR_TSW (1ULL << 22)
099bf53b 1649#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1650#define HCR_TPU (1ULL << 24)
1651#define HCR_TTLB (1ULL << 25)
1652#define HCR_TVM (1ULL << 26)
1653#define HCR_TGE (1ULL << 27)
1654#define HCR_TDZ (1ULL << 28)
1655#define HCR_HCD (1ULL << 29)
1656#define HCR_TRVM (1ULL << 30)
1657#define HCR_RW (1ULL << 31)
1658#define HCR_CD (1ULL << 32)
1659#define HCR_ID (1ULL << 33)
ac656b16 1660#define HCR_E2H (1ULL << 34)
099bf53b
RH
1661#define HCR_TLOR (1ULL << 35)
1662#define HCR_TERR (1ULL << 36)
1663#define HCR_TEA (1ULL << 37)
1664#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1665#define HCR_TME (1ULL << 39)
099bf53b
RH
1666#define HCR_APK (1ULL << 40)
1667#define HCR_API (1ULL << 41)
1668#define HCR_NV (1ULL << 42)
1669#define HCR_NV1 (1ULL << 43)
1670#define HCR_AT (1ULL << 44)
1671#define HCR_NV2 (1ULL << 45)
1672#define HCR_FWB (1ULL << 46)
1673#define HCR_FIEN (1ULL << 47)
aa3cc42c 1674#define HCR_GPF (1ULL << 48)
099bf53b
RH
1675#define HCR_TID4 (1ULL << 49)
1676#define HCR_TICAB (1ULL << 50)
e0a38bb3 1677#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1678#define HCR_TOCU (1ULL << 52)
e0a38bb3 1679#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1680#define HCR_TTLBIS (1ULL << 54)
1681#define HCR_TTLBOS (1ULL << 55)
1682#define HCR_ATA (1ULL << 56)
1683#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1684#define HCR_TID5 (1ULL << 58)
1685#define HCR_TWEDEN (1ULL << 59)
1686#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1687
5814d587
RH
1688#define HCRX_ENAS0 (1ULL << 0)
1689#define HCRX_ENALS (1ULL << 1)
1690#define HCRX_ENASR (1ULL << 2)
1691#define HCRX_FNXS (1ULL << 3)
1692#define HCRX_FGTNXS (1ULL << 4)
1693#define HCRX_SMPME (1ULL << 5)
1694#define HCRX_TALLINT (1ULL << 6)
1695#define HCRX_VINMI (1ULL << 7)
1696#define HCRX_VFNMI (1ULL << 8)
1697#define HCRX_CMOW (1ULL << 9)
1698#define HCRX_MCE2 (1ULL << 10)
1699#define HCRX_MSCEN (1ULL << 11)
1700
9861248f
RDC
1701#define HPFAR_NS (1ULL << 63)
1702
06f2adcc
JF
1703#define SCR_NS (1ULL << 0)
1704#define SCR_IRQ (1ULL << 1)
1705#define SCR_FIQ (1ULL << 2)
1706#define SCR_EA (1ULL << 3)
1707#define SCR_FW (1ULL << 4)
1708#define SCR_AW (1ULL << 5)
1709#define SCR_NET (1ULL << 6)
1710#define SCR_SMD (1ULL << 7)
1711#define SCR_HCE (1ULL << 8)
1712#define SCR_SIF (1ULL << 9)
1713#define SCR_RW (1ULL << 10)
1714#define SCR_ST (1ULL << 11)
1715#define SCR_TWI (1ULL << 12)
1716#define SCR_TWE (1ULL << 13)
1717#define SCR_TLOR (1ULL << 14)
1718#define SCR_TERR (1ULL << 15)
1719#define SCR_APK (1ULL << 16)
1720#define SCR_API (1ULL << 17)
1721#define SCR_EEL2 (1ULL << 18)
1722#define SCR_EASE (1ULL << 19)
1723#define SCR_NMEA (1ULL << 20)
1724#define SCR_FIEN (1ULL << 21)
1725#define SCR_ENSCXT (1ULL << 25)
1726#define SCR_ATA (1ULL << 26)
1727#define SCR_FGTEN (1ULL << 27)
1728#define SCR_ECVEN (1ULL << 28)
1729#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1730#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1731#define SCR_TME (1ULL << 34)
1732#define SCR_AMVOFFEN (1ULL << 35)
1733#define SCR_ENAS0 (1ULL << 36)
1734#define SCR_ADEN (1ULL << 37)
1735#define SCR_HXEN (1ULL << 38)
1736#define SCR_TRNDR (1ULL << 40)
1737#define SCR_ENTP2 (1ULL << 41)
1738#define SCR_GPF (1ULL << 48)
aa3cc42c 1739#define SCR_NSE (1ULL << 62)
64e0e2de 1740
cc7613bf 1741#define HSTR_TTEE (1 << 16)
8e228c9e 1742#define HSTR_TJDBX (1 << 17)
cc7613bf 1743
01653295
PM
1744/* Return the current FPSCR value. */
1745uint32_t vfp_get_fpscr(CPUARMState *env);
1746void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1747
d81ce0ef
AB
1748/* FPCR, Floating Point Control Register
1749 * FPSR, Floating Poiht Status Register
1750 *
1751 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1752 * FPCR and FPSR. However since they still use non-overlapping bits
1753 * we store the underlying state in fpscr and just mask on read/write.
1754 */
1755#define FPSR_MASK 0xf800009f
0b62159b 1756#define FPCR_MASK 0x07ff9f00
d81ce0ef 1757
a15945d9
PM
1758#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1759#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1760#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1761#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1762#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1763#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1764#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1765#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1766#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1767#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1768#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1769#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1770#define FPCR_V (1 << 28) /* FP overflow flag */
1771#define FPCR_C (1 << 29) /* FP carry flag */
1772#define FPCR_Z (1 << 30) /* FP zero flag */
1773#define FPCR_N (1 << 31) /* FP negative flag */
1774
99c7834f
PM
1775#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1776#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1777#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1778
9542c30b
PM
1779#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1780#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1781
f903fa22
PM
1782static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1783{
1784 return vfp_get_fpscr(env) & FPSR_MASK;
1785}
1786
1787static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1788{
1789 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1790 vfp_set_fpscr(env, new_fpscr);
1791}
1792
1793static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1794{
1795 return vfp_get_fpscr(env) & FPCR_MASK;
1796}
1797
1798static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1799{
1800 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1801 vfp_set_fpscr(env, new_fpscr);
1802}
1803
b5ff1b31
FB
1804enum arm_cpu_mode {
1805 ARM_CPU_MODE_USR = 0x10,
1806 ARM_CPU_MODE_FIQ = 0x11,
1807 ARM_CPU_MODE_IRQ = 0x12,
1808 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1809 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1810 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1811 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1812 ARM_CPU_MODE_UND = 0x1b,
1813 ARM_CPU_MODE_SYS = 0x1f
1814};
1815
40f137e1
PB
1816/* VFP system registers. */
1817#define ARM_VFP_FPSID 0
1818#define ARM_VFP_FPSCR 1
a50c0f51 1819#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1820#define ARM_VFP_MVFR1 6
1821#define ARM_VFP_MVFR0 7
40f137e1
PB
1822#define ARM_VFP_FPEXC 8
1823#define ARM_VFP_FPINST 9
1824#define ARM_VFP_FPINST2 10
9542c30b
PM
1825/* These ones are M-profile only */
1826#define ARM_VFP_FPSCR_NZCVQC 2
1827#define ARM_VFP_VPR 12
1828#define ARM_VFP_P0 13
1829#define ARM_VFP_FPCXT_NS 14
1830#define ARM_VFP_FPCXT_S 15
40f137e1 1831
32a290b8
PM
1832/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1833#define QEMU_VFP_FPSCR_NZCV 0xffff
1834
18c9b560 1835/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1836#define ARM_IWMMXT_wCID 0
1837#define ARM_IWMMXT_wCon 1
1838#define ARM_IWMMXT_wCSSF 2
1839#define ARM_IWMMXT_wCASF 3
1840#define ARM_IWMMXT_wCGR0 8
1841#define ARM_IWMMXT_wCGR1 9
1842#define ARM_IWMMXT_wCGR2 10
1843#define ARM_IWMMXT_wCGR3 11
18c9b560 1844
2c4da50d
PM
1845/* V7M CCR bits */
1846FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1847FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1848FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1849FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1850FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1851FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1852FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1853FIELD(V7M_CCR, DC, 16, 1)
1854FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1855FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1856FIELD(V7M_CCR, LOB, 19, 1)
1857FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1858
24ac0fb1
PM
1859/* V7M SCR bits */
1860FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1861FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1862FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1863FIELD(V7M_SCR, SEVONPEND, 4, 1)
1864
3b2e9344
PM
1865/* V7M AIRCR bits */
1866FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1867FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1868FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1869FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1870FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1871FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1872FIELD(V7M_AIRCR, PRIS, 14, 1)
1873FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1874FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1875
2c4da50d
PM
1876/* V7M CFSR bits for MMFSR */
1877FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1878FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1879FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1880FIELD(V7M_CFSR, MSTKERR, 4, 1)
1881FIELD(V7M_CFSR, MLSPERR, 5, 1)
1882FIELD(V7M_CFSR, MMARVALID, 7, 1)
1883
1884/* V7M CFSR bits for BFSR */
1885FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1886FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1887FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1888FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1889FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1890FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1891FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1892
1893/* V7M CFSR bits for UFSR */
1894FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1895FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1896FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1897FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1898FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1899FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1900FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1901
334e8dad
PM
1902/* V7M CFSR bit masks covering all of the subregister bits */
1903FIELD(V7M_CFSR, MMFSR, 0, 8)
1904FIELD(V7M_CFSR, BFSR, 8, 8)
1905FIELD(V7M_CFSR, UFSR, 16, 16)
1906
2c4da50d
PM
1907/* V7M HFSR bits */
1908FIELD(V7M_HFSR, VECTTBL, 1, 1)
1909FIELD(V7M_HFSR, FORCED, 30, 1)
1910FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1911
1912/* V7M DFSR bits */
1913FIELD(V7M_DFSR, HALTED, 0, 1)
1914FIELD(V7M_DFSR, BKPT, 1, 1)
1915FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1916FIELD(V7M_DFSR, VCATCH, 3, 1)
1917FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1918
bed079da
PM
1919/* V7M SFSR bits */
1920FIELD(V7M_SFSR, INVEP, 0, 1)
1921FIELD(V7M_SFSR, INVIS, 1, 1)
1922FIELD(V7M_SFSR, INVER, 2, 1)
1923FIELD(V7M_SFSR, AUVIOL, 3, 1)
1924FIELD(V7M_SFSR, INVTRAN, 4, 1)
1925FIELD(V7M_SFSR, LSPERR, 5, 1)
1926FIELD(V7M_SFSR, SFARVALID, 6, 1)
1927FIELD(V7M_SFSR, LSERR, 7, 1)
1928
29c483a5
MD
1929/* v7M MPU_CTRL bits */
1930FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1931FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1932FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1933
43bbce7f
PM
1934/* v7M CLIDR bits */
1935FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1936FIELD(V7M_CLIDR, LOUIS, 21, 3)
1937FIELD(V7M_CLIDR, LOC, 24, 3)
1938FIELD(V7M_CLIDR, LOUU, 27, 3)
1939FIELD(V7M_CLIDR, ICB, 30, 2)
1940
1941FIELD(V7M_CSSELR, IND, 0, 1)
1942FIELD(V7M_CSSELR, LEVEL, 1, 3)
1943/* We use the combination of InD and Level to index into cpu->ccsidr[];
1944 * define a mask for this and check that it doesn't permit running off
1945 * the end of the array.
1946 */
1947FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1948
1949/* v7M FPCCR bits */
1950FIELD(V7M_FPCCR, LSPACT, 0, 1)
1951FIELD(V7M_FPCCR, USER, 1, 1)
1952FIELD(V7M_FPCCR, S, 2, 1)
1953FIELD(V7M_FPCCR, THREAD, 3, 1)
1954FIELD(V7M_FPCCR, HFRDY, 4, 1)
1955FIELD(V7M_FPCCR, MMRDY, 5, 1)
1956FIELD(V7M_FPCCR, BFRDY, 6, 1)
1957FIELD(V7M_FPCCR, SFRDY, 7, 1)
1958FIELD(V7M_FPCCR, MONRDY, 8, 1)
1959FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1960FIELD(V7M_FPCCR, UFRDY, 10, 1)
1961FIELD(V7M_FPCCR, RES0, 11, 15)
1962FIELD(V7M_FPCCR, TS, 26, 1)
1963FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1964FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1965FIELD(V7M_FPCCR, LSPENS, 29, 1)
1966FIELD(V7M_FPCCR, LSPEN, 30, 1)
1967FIELD(V7M_FPCCR, ASPEN, 31, 1)
1968/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1969#define R_V7M_FPCCR_BANKED_MASK \
1970 (R_V7M_FPCCR_LSPACT_MASK | \
1971 R_V7M_FPCCR_USER_MASK | \
1972 R_V7M_FPCCR_THREAD_MASK | \
1973 R_V7M_FPCCR_MMRDY_MASK | \
1974 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1975 R_V7M_FPCCR_UFRDY_MASK | \
1976 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1977
7c3d47da
PM
1978/* v7M VPR bits */
1979FIELD(V7M_VPR, P0, 0, 16)
1980FIELD(V7M_VPR, MASK01, 16, 4)
1981FIELD(V7M_VPR, MASK23, 20, 4)
1982
a62e62af
RH
1983/*
1984 * System register ID fields.
1985 */
2a14526a
LL
1986FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1987FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1988FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1989FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1990FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1991FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1992FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1993FIELD(CLIDR_EL1, LOUIS, 21, 3)
1994FIELD(CLIDR_EL1, LOC, 24, 3)
1995FIELD(CLIDR_EL1, LOUU, 27, 3)
1996FIELD(CLIDR_EL1, ICB, 30, 3)
1997
1998/* When FEAT_CCIDX is implemented */
1999FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2000FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2001FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2002
2003/* When FEAT_CCIDX is not implemented */
2004FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2005FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2006FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2007
2008FIELD(CTR_EL0, IMINLINE, 0, 4)
2009FIELD(CTR_EL0, L1IP, 14, 2)
2010FIELD(CTR_EL0, DMINLINE, 16, 4)
2011FIELD(CTR_EL0, ERG, 20, 4)
2012FIELD(CTR_EL0, CWG, 24, 4)
2013FIELD(CTR_EL0, IDC, 28, 1)
2014FIELD(CTR_EL0, DIC, 29, 1)
2015FIELD(CTR_EL0, TMINLINE, 32, 6)
2016
2bd5f41c
AB
2017FIELD(MIDR_EL1, REVISION, 0, 4)
2018FIELD(MIDR_EL1, PARTNUM, 4, 12)
2019FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2020FIELD(MIDR_EL1, VARIANT, 20, 4)
2021FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2022
a62e62af
RH
2023FIELD(ID_ISAR0, SWAP, 0, 4)
2024FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2025FIELD(ID_ISAR0, BITFIELD, 8, 4)
2026FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2027FIELD(ID_ISAR0, COPROC, 16, 4)
2028FIELD(ID_ISAR0, DEBUG, 20, 4)
2029FIELD(ID_ISAR0, DIVIDE, 24, 4)
2030
2031FIELD(ID_ISAR1, ENDIAN, 0, 4)
2032FIELD(ID_ISAR1, EXCEPT, 4, 4)
2033FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2034FIELD(ID_ISAR1, EXTEND, 12, 4)
2035FIELD(ID_ISAR1, IFTHEN, 16, 4)
2036FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2037FIELD(ID_ISAR1, INTERWORK, 24, 4)
2038FIELD(ID_ISAR1, JAZELLE, 28, 4)
2039
2040FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2041FIELD(ID_ISAR2, MEMHINT, 4, 4)
2042FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2043FIELD(ID_ISAR2, MULT, 12, 4)
2044FIELD(ID_ISAR2, MULTS, 16, 4)
2045FIELD(ID_ISAR2, MULTU, 20, 4)
2046FIELD(ID_ISAR2, PSR_AR, 24, 4)
2047FIELD(ID_ISAR2, REVERSAL, 28, 4)
2048
2049FIELD(ID_ISAR3, SATURATE, 0, 4)
2050FIELD(ID_ISAR3, SIMD, 4, 4)
2051FIELD(ID_ISAR3, SVC, 8, 4)
2052FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2053FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2054FIELD(ID_ISAR3, T32COPY, 20, 4)
2055FIELD(ID_ISAR3, TRUENOP, 24, 4)
2056FIELD(ID_ISAR3, T32EE, 28, 4)
2057
2058FIELD(ID_ISAR4, UNPRIV, 0, 4)
2059FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2060FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2061FIELD(ID_ISAR4, SMC, 12, 4)
2062FIELD(ID_ISAR4, BARRIER, 16, 4)
2063FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2064FIELD(ID_ISAR4, PSR_M, 24, 4)
2065FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2066
2067FIELD(ID_ISAR5, SEVL, 0, 4)
2068FIELD(ID_ISAR5, AES, 4, 4)
2069FIELD(ID_ISAR5, SHA1, 8, 4)
2070FIELD(ID_ISAR5, SHA2, 12, 4)
2071FIELD(ID_ISAR5, CRC32, 16, 4)
2072FIELD(ID_ISAR5, RDM, 24, 4)
2073FIELD(ID_ISAR5, VCMA, 28, 4)
2074
2075FIELD(ID_ISAR6, JSCVT, 0, 4)
2076FIELD(ID_ISAR6, DP, 4, 4)
2077FIELD(ID_ISAR6, FHM, 8, 4)
2078FIELD(ID_ISAR6, SB, 12, 4)
2079FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2080FIELD(ID_ISAR6, BF16, 20, 4)
2081FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2082
0ae0326b
PM
2083FIELD(ID_MMFR0, VMSA, 0, 4)
2084FIELD(ID_MMFR0, PMSA, 4, 4)
2085FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2086FIELD(ID_MMFR0, SHARELVL, 12, 4)
2087FIELD(ID_MMFR0, TCM, 16, 4)
2088FIELD(ID_MMFR0, AUXREG, 20, 4)
2089FIELD(ID_MMFR0, FCSE, 24, 4)
2090FIELD(ID_MMFR0, INNERSHR, 28, 4)
2091
bd78b6be
LL
2092FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2093FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2094FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2095FIELD(ID_MMFR1, L1UNISW, 12, 4)
2096FIELD(ID_MMFR1, L1HVD, 16, 4)
2097FIELD(ID_MMFR1, L1UNI, 20, 4)
2098FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2099FIELD(ID_MMFR1, BPRED, 28, 4)
2100
2101FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2102FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2103FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2104FIELD(ID_MMFR2, HVDTLB, 12, 4)
2105FIELD(ID_MMFR2, UNITLB, 16, 4)
2106FIELD(ID_MMFR2, MEMBARR, 20, 4)
2107FIELD(ID_MMFR2, WFISTALL, 24, 4)
2108FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2109
3d6ad6bb
RH
2110FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2111FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2112FIELD(ID_MMFR3, BPMAINT, 8, 4)
2113FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2114FIELD(ID_MMFR3, PAN, 16, 4)
2115FIELD(ID_MMFR3, COHWALK, 20, 4)
2116FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2117FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2118
ab638a32
RH
2119FIELD(ID_MMFR4, SPECSEI, 0, 4)
2120FIELD(ID_MMFR4, AC2, 4, 4)
2121FIELD(ID_MMFR4, XNX, 8, 4)
2122FIELD(ID_MMFR4, CNP, 12, 4)
2123FIELD(ID_MMFR4, HPDS, 16, 4)
2124FIELD(ID_MMFR4, LSM, 20, 4)
2125FIELD(ID_MMFR4, CCIDX, 24, 4)
2126FIELD(ID_MMFR4, EVT, 28, 4)
2127
bd78b6be 2128FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2129FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2130
46f4976f
PM
2131FIELD(ID_PFR0, STATE0, 0, 4)
2132FIELD(ID_PFR0, STATE1, 4, 4)
2133FIELD(ID_PFR0, STATE2, 8, 4)
2134FIELD(ID_PFR0, STATE3, 12, 4)
2135FIELD(ID_PFR0, CSV2, 16, 4)
2136FIELD(ID_PFR0, AMU, 20, 4)
2137FIELD(ID_PFR0, DIT, 24, 4)
2138FIELD(ID_PFR0, RAS, 28, 4)
2139
dfc523a8
PM
2140FIELD(ID_PFR1, PROGMOD, 0, 4)
2141FIELD(ID_PFR1, SECURITY, 4, 4)
2142FIELD(ID_PFR1, MPROGMOD, 8, 4)
2143FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2144FIELD(ID_PFR1, GENTIMER, 16, 4)
2145FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2146FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2147FIELD(ID_PFR1, GIC, 28, 4)
2148
bd78b6be
LL
2149FIELD(ID_PFR2, CSV3, 0, 4)
2150FIELD(ID_PFR2, SSBS, 4, 4)
2151FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2152
a62e62af
RH
2153FIELD(ID_AA64ISAR0, AES, 4, 4)
2154FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2155FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2156FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2157FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2158FIELD(ID_AA64ISAR0, RDM, 28, 4)
2159FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2160FIELD(ID_AA64ISAR0, SM3, 36, 4)
2161FIELD(ID_AA64ISAR0, SM4, 40, 4)
2162FIELD(ID_AA64ISAR0, DP, 44, 4)
2163FIELD(ID_AA64ISAR0, FHM, 48, 4)
2164FIELD(ID_AA64ISAR0, TS, 52, 4)
2165FIELD(ID_AA64ISAR0, TLB, 56, 4)
2166FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2167
2168FIELD(ID_AA64ISAR1, DPB, 0, 4)
2169FIELD(ID_AA64ISAR1, APA, 4, 4)
2170FIELD(ID_AA64ISAR1, API, 8, 4)
2171FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2172FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2173FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2174FIELD(ID_AA64ISAR1, GPA, 24, 4)
2175FIELD(ID_AA64ISAR1, GPI, 28, 4)
2176FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2177FIELD(ID_AA64ISAR1, SB, 36, 4)
2178FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2179FIELD(ID_AA64ISAR1, BF16, 44, 4)
2180FIELD(ID_AA64ISAR1, DGH, 48, 4)
2181FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2182FIELD(ID_AA64ISAR1, XS, 56, 4)
2183FIELD(ID_AA64ISAR1, LS64, 60, 4)
2184
2185FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2186FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2187FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2188FIELD(ID_AA64ISAR2, APA3, 12, 4)
2189FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2190FIELD(ID_AA64ISAR2, BC, 20, 4)
2191FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2192
cd208a1c
RH
2193FIELD(ID_AA64PFR0, EL0, 0, 4)
2194FIELD(ID_AA64PFR0, EL1, 4, 4)
2195FIELD(ID_AA64PFR0, EL2, 8, 4)
2196FIELD(ID_AA64PFR0, EL3, 12, 4)
2197FIELD(ID_AA64PFR0, FP, 16, 4)
2198FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2199FIELD(ID_AA64PFR0, GIC, 24, 4)
2200FIELD(ID_AA64PFR0, RAS, 28, 4)
2201FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2202FIELD(ID_AA64PFR0, SEL2, 36, 4)
2203FIELD(ID_AA64PFR0, MPAM, 40, 4)
2204FIELD(ID_AA64PFR0, AMU, 44, 4)
2205FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2206FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2207FIELD(ID_AA64PFR0, CSV2, 56, 4)
2208FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2209
be53b6f4 2210FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2211FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2212FIELD(ID_AA64PFR1, MTE, 8, 4)
2213FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2214FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2215FIELD(ID_AA64PFR1, SME, 24, 4)
2216FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2217FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2218FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2219
3dc91ddb
PM
2220FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2221FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2222FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2223FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2224FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2225FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2226FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2227FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2228FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2229FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2230FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2231FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2232FIELD(ID_AA64MMFR0, FGT, 56, 4)
2233FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2234
2235FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2236FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2237FIELD(ID_AA64MMFR1, VH, 8, 4)
2238FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2239FIELD(ID_AA64MMFR1, LO, 16, 4)
2240FIELD(ID_AA64MMFR1, PAN, 20, 4)
2241FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2242FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2243FIELD(ID_AA64MMFR1, TWED, 32, 4)
2244FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2245FIELD(ID_AA64MMFR1, HCX, 40, 4)
2246FIELD(ID_AA64MMFR1, AFP, 44, 4)
2247FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2248FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2249FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2250
64761e10
RH
2251FIELD(ID_AA64MMFR2, CNP, 0, 4)
2252FIELD(ID_AA64MMFR2, UAO, 4, 4)
2253FIELD(ID_AA64MMFR2, LSM, 8, 4)
2254FIELD(ID_AA64MMFR2, IESB, 12, 4)
2255FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2256FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2257FIELD(ID_AA64MMFR2, NV, 24, 4)
2258FIELD(ID_AA64MMFR2, ST, 28, 4)
2259FIELD(ID_AA64MMFR2, AT, 32, 4)
2260FIELD(ID_AA64MMFR2, IDS, 36, 4)
2261FIELD(ID_AA64MMFR2, FWB, 40, 4)
2262FIELD(ID_AA64MMFR2, TTL, 48, 4)
2263FIELD(ID_AA64MMFR2, BBM, 52, 4)
2264FIELD(ID_AA64MMFR2, EVT, 56, 4)
2265FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2266
ceb2744b
PM
2267FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2268FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2269FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2270FIELD(ID_AA64DFR0, BRPS, 12, 4)
2271FIELD(ID_AA64DFR0, WRPS, 20, 4)
2272FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2273FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2274FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2275FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2276FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2277FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2278FIELD(ID_AA64DFR0, BRBE, 52, 4)
2279FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2280
2dc10fa2
RH
2281FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2282FIELD(ID_AA64ZFR0, AES, 4, 4)
2283FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2284FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2285FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2286FIELD(ID_AA64ZFR0, SM4, 40, 4)
2287FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2288FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2289FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2290
414c54d5
RH
2291FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2292FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2293FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2294FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2295FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2296FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2297FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2298FIELD(ID_AA64SMFR0, FA64, 63, 1)
2299
beceb99c
AL
2300FIELD(ID_DFR0, COPDBG, 0, 4)
2301FIELD(ID_DFR0, COPSDBG, 4, 4)
2302FIELD(ID_DFR0, MMAPDBG, 8, 4)
2303FIELD(ID_DFR0, COPTRC, 12, 4)
2304FIELD(ID_DFR0, MMAPTRC, 16, 4)
2305FIELD(ID_DFR0, MPROFDBG, 20, 4)
2306FIELD(ID_DFR0, PERFMON, 24, 4)
2307FIELD(ID_DFR0, TRACEFILT, 28, 4)
2308
bd78b6be 2309FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2310FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2311
88ce6c6e
PM
2312FIELD(DBGDIDR, SE_IMP, 12, 1)
2313FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2314FIELD(DBGDIDR, VERSION, 16, 4)
2315FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2316FIELD(DBGDIDR, BRPS, 24, 4)
2317FIELD(DBGDIDR, WRPS, 28, 4)
2318
f94a6df5
PM
2319FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2320FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2321FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2322FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2323FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2324FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2325FIELD(DBGDEVID, AUXREGS, 24, 4)
2326FIELD(DBGDEVID, CIDMASK, 28, 4)
2327
602f6e42
PM
2328FIELD(MVFR0, SIMDREG, 0, 4)
2329FIELD(MVFR0, FPSP, 4, 4)
2330FIELD(MVFR0, FPDP, 8, 4)
2331FIELD(MVFR0, FPTRAP, 12, 4)
2332FIELD(MVFR0, FPDIVIDE, 16, 4)
2333FIELD(MVFR0, FPSQRT, 20, 4)
2334FIELD(MVFR0, FPSHVEC, 24, 4)
2335FIELD(MVFR0, FPROUND, 28, 4)
2336
2337FIELD(MVFR1, FPFTZ, 0, 4)
2338FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2339FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2340FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2341FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2342FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2343FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2344FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2345FIELD(MVFR1, FPHP, 24, 4)
2346FIELD(MVFR1, SIMDFMAC, 28, 4)
2347
2348FIELD(MVFR2, SIMDMISC, 0, 4)
2349FIELD(MVFR2, FPMISC, 4, 4)
2350
ef1febe7
RH
2351FIELD(GPCCR, PPS, 0, 3)
2352FIELD(GPCCR, IRGN, 8, 2)
2353FIELD(GPCCR, ORGN, 10, 2)
2354FIELD(GPCCR, SH, 12, 2)
2355FIELD(GPCCR, PGS, 14, 2)
2356FIELD(GPCCR, GPC, 16, 1)
2357FIELD(GPCCR, GPCP, 17, 1)
2358FIELD(GPCCR, L0GPTSZ, 20, 4)
2359
2360FIELD(MFAR, FPA, 12, 40)
2361FIELD(MFAR, NSE, 62, 1)
2362FIELD(MFAR, NS, 63, 1)
2363
43bbce7f
PM
2364QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2365
ce854d7c
BC
2366/* If adding a feature bit which corresponds to a Linux ELF
2367 * HWCAP bit, remember to update the feature-bit-to-hwcap
2368 * mapping in linux-user/elfload.c:get_elf_hwcap().
2369 */
40f137e1 2370enum arm_features {
c1713132
AZ
2371 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2372 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2373 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2374 ARM_FEATURE_V6,
2375 ARM_FEATURE_V6K,
2376 ARM_FEATURE_V7,
2377 ARM_FEATURE_THUMB2,
452a0955 2378 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2379 ARM_FEATURE_NEON,
9ee6e8bb 2380 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2381 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2382 ARM_FEATURE_THUMB2EE,
be5e7a76 2383 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2384 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2385 ARM_FEATURE_V4T,
2386 ARM_FEATURE_V5,
5bc95aa2 2387 ARM_FEATURE_STRONGARM,
906879a9 2388 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2389 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2390 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2391 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2392 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2393 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2394 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2395 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2396 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2397 ARM_FEATURE_V8,
3926cc84 2398 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2399 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2400 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2401 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2402 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2403 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2404 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2405 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2406 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2407 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2408 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2409};
2410
2411static inline int arm_feature(CPUARMState *env, int feature)
2412{
918f5dca 2413 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2414}
2415
0df9142d
AJ
2416void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2417
fcc7404e 2418/*
5d28ac0c
RH
2419 * ARM v9 security states.
2420 * The ordering of the enumeration corresponds to the low 2 bits
2421 * of the GPI value, and (except for Root) the concat of NSE:NS.
2422 */
2423
2424typedef enum ARMSecuritySpace {
2425 ARMSS_Secure = 0,
2426 ARMSS_NonSecure = 1,
2427 ARMSS_Root = 2,
2428 ARMSS_Realm = 3,
2429} ARMSecuritySpace;
2430
2431/* Return true if @space is secure, in the pre-v9 sense. */
2432static inline bool arm_space_is_secure(ARMSecuritySpace space)
2433{
2434 return space == ARMSS_Secure || space == ARMSS_Root;
2435}
2436
2437/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2438static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2439{
2440 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2441}
2442
2443#if !defined(CONFIG_USER_ONLY)
2444/**
2445 * arm_security_space_below_el3:
2446 * @env: cpu context
2447 *
2448 * Return the security space of exception levels below EL3, following
2449 * an exception return to those levels. Unlike arm_security_space,
2450 * this doesn't care about the current EL.
2451 */
2452ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2453
2454/**
2455 * arm_is_secure_below_el3:
2456 * @env: cpu context
2457 *
fcc7404e 2458 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2459 * or would be following an exception return to those levels.
19e0fefa
FA
2460 */
2461static inline bool arm_is_secure_below_el3(CPUARMState *env)
2462{
5d28ac0c
RH
2463 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2464 return ss == ARMSS_Secure;
19e0fefa
FA
2465}
2466
71205876
PM
2467/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2468static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2469{
fcc7404e 2470 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2471 if (arm_feature(env, ARM_FEATURE_EL3)) {
2472 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2473 /* CPU currently in AArch64 state and EL3 */
2474 return true;
2475 } else if (!is_a64(env) &&
2476 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2477 /* CPU currently in AArch32 state and monitor mode */
2478 return true;
2479 }
2480 }
71205876
PM
2481 return false;
2482}
2483
5d28ac0c
RH
2484/**
2485 * arm_security_space:
2486 * @env: cpu context
2487 *
2488 * Return the current security space of the cpu.
2489 */
2490ARMSecuritySpace arm_security_space(CPUARMState *env);
2491
2492/**
2493 * arm_is_secure:
2494 * @env: cpu context
2495 *
2496 * Return true if the processor is in secure state.
2497 */
71205876
PM
2498static inline bool arm_is_secure(CPUARMState *env)
2499{
5d28ac0c 2500 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2501}
2502
f3ee5160
RDC
2503/*
2504 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2505 * This corresponds to the pseudocode EL2Enabled()
2506 */
b74c0443
RH
2507static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2508{
2509 return arm_feature(env, ARM_FEATURE_EL2)
2510 && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2511}
2512
f3ee5160
RDC
2513static inline bool arm_is_el2_enabled(CPUARMState *env)
2514{
b74c0443 2515 return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
f3ee5160
RDC
2516}
2517
19e0fefa 2518#else
5d28ac0c
RH
2519static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2520{
2521 return ARMSS_NonSecure;
2522}
2523
19e0fefa
FA
2524static inline bool arm_is_secure_below_el3(CPUARMState *env)
2525{
2526 return false;
2527}
2528
5d28ac0c
RH
2529static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2530{
2531 return ARMSS_NonSecure;
2532}
2533
19e0fefa
FA
2534static inline bool arm_is_secure(CPUARMState *env)
2535{
2536 return false;
2537}
f3ee5160 2538
b74c0443
RH
2539static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2540{
2541 return false;
2542}
2543
f3ee5160
RDC
2544static inline bool arm_is_el2_enabled(CPUARMState *env)
2545{
2546 return false;
2547}
19e0fefa
FA
2548#endif
2549
f7778444
RH
2550/**
2551 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2552 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2553 * "for all purposes other than a direct read or write access of HCR_EL2."
2554 * Not included here is HCR_RW.
2555 */
b74c0443 2556uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
f7778444 2557uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2558uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2559
1f79ee32
PM
2560/* Return true if the specified exception level is running in AArch64 state. */
2561static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2562{
446c81ab
PM
2563 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2564 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2565 */
446c81ab
PM
2566 assert(el >= 1 && el <= 3);
2567 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2568
446c81ab
PM
2569 /* The highest exception level is always at the maximum supported
2570 * register width, and then lower levels have a register width controlled
2571 * by bits in the SCR or HCR registers.
1f79ee32 2572 */
446c81ab
PM
2573 if (el == 3) {
2574 return aa64;
2575 }
2576
926c1b97
RDC
2577 if (arm_feature(env, ARM_FEATURE_EL3) &&
2578 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2579 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2580 }
2581
2582 if (el == 2) {
2583 return aa64;
2584 }
2585
e6ef0169 2586 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2587 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2588 }
2589
2590 return aa64;
1f79ee32
PM
2591}
2592
3f342b9e
SF
2593/* Function for determing whether guest cp register reads and writes should
2594 * access the secure or non-secure bank of a cp register. When EL3 is
2595 * operating in AArch32 state, the NS-bit determines whether the secure
2596 * instance of a cp register should be used. When EL3 is AArch64 (or if
2597 * it doesn't exist at all) then there is no register banking, and all
2598 * accesses are to the non-secure version.
2599 */
2600static inline bool access_secure_reg(CPUARMState *env)
2601{
2602 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2603 !arm_el_is_aa64(env, 3) &&
2604 !(env->cp15.scr_el3 & SCR_NS));
2605
2606 return ret;
2607}
2608
ea30a4b8
FA
2609/* Macros for accessing a specified CP register bank */
2610#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2611 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2612
2613#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2614 do { \
2615 if (_secure) { \
2616 (_env)->cp15._regname##_s = (_val); \
2617 } else { \
2618 (_env)->cp15._regname##_ns = (_val); \
2619 } \
2620 } while (0)
2621
2622/* Macros for automatically accessing a specific CP register bank depending on
2623 * the current secure state of the system. These macros are not intended for
2624 * supporting instruction translation reads/writes as these are dependent
2625 * solely on the SCR.NS bit and not the mode.
2626 */
2627#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2628 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2629 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2630
2631#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2632 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2633 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2634 (_val))
2635
0442428a 2636void arm_cpu_list(void);
012a906b
GB
2637uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2638 uint32_t cur_el, bool secure);
40f137e1 2639
75502672
PM
2640/* Return the highest implemented Exception Level */
2641static inline int arm_highest_el(CPUARMState *env)
2642{
2643 if (arm_feature(env, ARM_FEATURE_EL3)) {
2644 return 3;
2645 }
2646 if (arm_feature(env, ARM_FEATURE_EL2)) {
2647 return 2;
2648 }
2649 return 1;
2650}
2651
15b3f556
PM
2652/* Return true if a v7M CPU is in Handler mode */
2653static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2654{
2655 return env->v7m.exception != 0;
2656}
2657
dcbff19b
GB
2658/* Return the current Exception Level (as per ARMv8; note that this differs
2659 * from the ARMv7 Privilege Level).
2660 */
2661static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2662{
6d54ed3c 2663 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2664 return arm_v7m_is_handler_mode(env) ||
2665 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2666 }
2667
592125f8 2668 if (is_a64(env)) {
f5a0a5a5
PM
2669 return extract32(env->pstate, 2, 2);
2670 }
2671
592125f8
FA
2672 switch (env->uncached_cpsr & 0x1f) {
2673 case ARM_CPU_MODE_USR:
4b6a83fb 2674 return 0;
592125f8
FA
2675 case ARM_CPU_MODE_HYP:
2676 return 2;
2677 case ARM_CPU_MODE_MON:
2678 return 3;
2679 default:
2680 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2681 /* If EL3 is 32-bit then all secure privileged modes run in
2682 * EL3
2683 */
2684 return 3;
2685 }
2686
2687 return 1;
4b6a83fb 2688 }
4b6a83fb
PM
2689}
2690
721fae12
PM
2691/**
2692 * write_list_to_cpustate
2693 * @cpu: ARMCPU
2694 *
2695 * For each register listed in the ARMCPU cpreg_indexes list, write
2696 * its value from the cpreg_values list into the ARMCPUState structure.
2697 * This updates TCG's working data structures from KVM data or
2698 * from incoming migration state.
2699 *
2700 * Returns: true if all register values were updated correctly,
2701 * false if some register was unknown or could not be written.
2702 * Note that we do not stop early on failure -- we will attempt
2703 * writing all registers in the list.
2704 */
2705bool write_list_to_cpustate(ARMCPU *cpu);
2706
2707/**
2708 * write_cpustate_to_list:
2709 * @cpu: ARMCPU
b698e4ee 2710 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2711 *
2712 * For each register listed in the ARMCPU cpreg_indexes list, write
2713 * its value from the ARMCPUState structure into the cpreg_values list.
2714 * This is used to copy info from TCG's working data structures into
2715 * KVM or for outbound migration.
2716 *
b698e4ee
PM
2717 * @kvm_sync is true if we are doing this in order to sync the
2718 * register state back to KVM. In this case we will only update
2719 * values in the list if the previous list->cpustate sync actually
2720 * successfully wrote the CPU state. Otherwise we will keep the value
2721 * that is in the list.
2722 *
721fae12
PM
2723 * Returns: true if all register values were read correctly,
2724 * false if some register was unknown or could not be read.
2725 * Note that we do not stop early on failure -- we will attempt
2726 * reading all registers in the list.
2727 */
b698e4ee 2728bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2729
9ee6e8bb
PB
2730#define ARM_CPUID_TI915T 0x54029152
2731#define ARM_CPUID_TI925T 0x54029252
40f137e1 2732
ba1ba5cc
IM
2733#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2734#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2735#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2736
585df85e
PM
2737#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2738
c732abe2 2739#define cpu_list arm_cpu_list
9467d44c 2740
c1e37810
PM
2741/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2742 *
2743 * If EL3 is 64-bit:
2744 * + NonSecure EL1 & 0 stage 1
2745 * + NonSecure EL1 & 0 stage 2
2746 * + NonSecure EL2
b9f6033c
RH
2747 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2748 * + Secure EL1 & 0
c1e37810
PM
2749 * + Secure EL3
2750 * If EL3 is 32-bit:
2751 * + NonSecure PL1 & 0 stage 1
2752 * + NonSecure PL1 & 0 stage 2
2753 * + NonSecure PL2
b9f6033c
RH
2754 * + Secure PL0
2755 * + Secure PL1
c1e37810
PM
2756 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2757 *
2758 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2759 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2760 * because they may differ in access permissions even if the VA->PA map is
2761 * the same
c1e37810
PM
2762 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2763 * translation, which means that we have one mmu_idx that deals with two
2764 * concatenated translation regimes [this sort of combined s1+2 TLB is
2765 * architecturally permitted]
2766 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2767 * handling via the TLB. The only way to do a stage 1 translation without
2768 * the immediate stage 2 translation is via the ATS or AT system insns,
2769 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2770 * The only use of stage 2 translations is either as part of an s1+2
2771 * lookup or when loading the descriptors during a stage 1 page table walk,
2772 * and in both those cases we don't use the TLB.
c1e37810
PM
2773 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2774 * translation regimes, because they map reasonably well to each other
2775 * and they can't both be active at the same time.
b9f6033c
RH
2776 * 5. we want to be able to use the TLB for accesses done as part of a
2777 * stage1 page table walk, rather than having to walk the stage2 page
2778 * table over and over.
452ef8cb
RH
2779 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2780 * Never (PAN) bit within PSTATE.
d902ae75
RH
2781 * 7. we fold together the secure and non-secure regimes for A-profile,
2782 * because there are no banked system registers for aarch64, so the
2783 * process of switching between secure and non-secure is
2784 * already heavyweight.
c1e37810 2785 *
b9f6033c
RH
2786 * This gives us the following list of cases:
2787 *
d902ae75
RH
2788 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2789 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2790 * EL1 EL1&0 stage 1+2 +PAN
2791 * EL0 EL2&0
2792 * EL2 EL2&0
2793 * EL2 EL2&0 +PAN
2794 * EL2 (aka NS PL2)
2795 * EL3 (aka S PL1)
a1ce3084 2796 * Physical (NS & S)
575a94af 2797 * Stage2 (NS & S)
c1e37810 2798 *
575a94af 2799 * for a total of 12 different mmu_idx.
c1e37810 2800 *
3bef7012 2801 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2802 * as A profile. They only need to distinguish EL0 and EL1 (and
2803 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2804 *
2805 * M profile CPUs are rather different as they do not have a true MMU.
2806 * They have the following different MMU indexes:
2807 * User
2808 * Privileged
62593718
PM
2809 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2810 * Privileged, execution priority negative (ditto)
66787c78
PM
2811 * If the CPU supports the v8M Security Extension then there are also:
2812 * Secure User
2813 * Secure Privileged
62593718
PM
2814 * Secure User, execution priority negative
2815 * Secure Privileged, execution priority negative
3bef7012 2816 *
8bd5c820
PM
2817 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2818 * are not quite the same -- different CPU types (most notably M profile
2819 * vs A/R profile) would like to use MMU indexes with different semantics,
2820 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2821 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2822 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2823 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2824 * the same for any particular CPU.
2825 * Variables of type ARMMUIdx are always full values, and the core
2826 * index values are in variables of type 'int'.
2827 *
c1e37810
PM
2828 * Our enumeration includes at the end some entries which are not "true"
2829 * mmu_idx values in that they don't have corresponding TLBs and are only
2830 * valid for doing slow path page table walks.
2831 *
2832 * The constant names here are patterned after the general style of the names
2833 * of the AT/ATS operations.
2834 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2835 * For M profile we arrange them to have a bit for priv, a bit for negpri
2836 * and a bit for secure.
c1e37810 2837 */
b9f6033c
RH
2838#define ARM_MMU_IDX_A 0x10 /* A profile */
2839#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2840#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2841
b9f6033c
RH
2842/* Meanings of the bits for M profile mmu idx values */
2843#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2844#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2845#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2846
b9f6033c
RH
2847#define ARM_MMU_IDX_TYPE_MASK \
2848 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2849#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2850
c1e37810 2851typedef enum ARMMMUIdx {
b9f6033c
RH
2852 /*
2853 * A-profile.
2854 */
d902ae75
RH
2855 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2856 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2857 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2858 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2859 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2860 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2861 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2862 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2863
575a94af
RH
2864 /*
2865 * Used for second stage of an S12 page table walk, or for descriptor
2866 * loads during first stage of an S1 page table walk. Note that both
2867 * are in use simultaneously for SecureEL2: the security state for
2868 * the S2 ptw is selected by the NS bit from the S1 ptw.
2869 */
d38fa967
RH
2870 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2871 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2872
2873 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2874 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2875 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2876 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2877 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2878
b9f6033c
RH
2879 /*
2880 * These are not allocated TLBs and are used only for AT system
2881 * instructions or for the first stage of an S12 page table walk.
2882 */
2883 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2884 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2885 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2886
2887 /*
2888 * M-profile.
2889 */
25568316
RH
2890 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2891 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2892 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2893 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2894 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2895 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2896 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2897 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2898} ARMMMUIdx;
2899
5f09a6df
RH
2900/*
2901 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2902 * for use when calling tlb_flush_by_mmuidx() and friends.
2903 */
5f09a6df
RH
2904#define TO_CORE_BIT(NAME) \
2905 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2906
8bd5c820 2907typedef enum ARMMMUIdxBit {
5f09a6df 2908 TO_CORE_BIT(E10_0),
b9f6033c 2909 TO_CORE_BIT(E20_0),
5f09a6df 2910 TO_CORE_BIT(E10_1),
452ef8cb 2911 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2912 TO_CORE_BIT(E2),
b9f6033c 2913 TO_CORE_BIT(E20_2),
452ef8cb 2914 TO_CORE_BIT(E20_2_PAN),
d902ae75 2915 TO_CORE_BIT(E3),
575a94af
RH
2916 TO_CORE_BIT(Stage2),
2917 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2918
2919 TO_CORE_BIT(MUser),
2920 TO_CORE_BIT(MPriv),
2921 TO_CORE_BIT(MUserNegPri),
2922 TO_CORE_BIT(MPrivNegPri),
2923 TO_CORE_BIT(MSUser),
2924 TO_CORE_BIT(MSPriv),
2925 TO_CORE_BIT(MSUserNegPri),
2926 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2927} ARMMMUIdxBit;
2928
5f09a6df
RH
2929#undef TO_CORE_BIT
2930
f79fbf39 2931#define MMU_USER_IDX 0
c1e37810 2932
9e273ef2
PM
2933/* Indexes used when registering address spaces with cpu_address_space_init */
2934typedef enum ARMASIdx {
2935 ARMASIdx_NS = 0,
2936 ARMASIdx_S = 1,
8bce44a2
RH
2937 ARMASIdx_TagNS = 2,
2938 ARMASIdx_TagS = 3,
9e273ef2
PM
2939} ARMASIdx;
2940
bb5cc2c8
RH
2941static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2942{
2943 /* Assert the relative order of the physical mmu indexes. */
2944 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2945 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2946 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2947 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2948
2949 return ARMMMUIdx_Phys_S + space;
2950}
2951
2952static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2953{
2954 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2955 return idx - ARMMMUIdx_Phys_S;
2956}
2957
43bbce7f
PM
2958static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2959{
2960 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2961 * CSSELR is RAZ/WI.
2962 */
2963 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2964}
2965
f9fd40eb
PB
2966static inline bool arm_sctlr_b(CPUARMState *env)
2967{
2968 return
2969 /* We need not implement SCTLR.ITD in user-mode emulation, so
2970 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2971 * This lets people run BE32 binaries with "-cpu any".
2972 */
2973#ifndef CONFIG_USER_ONLY
2974 !arm_feature(env, ARM_FEATURE_V7) &&
2975#endif
2976 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2977}
2978
aaec1432 2979uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 2980
8061a649
RH
2981static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2982 bool sctlr_b)
2983{
2984#ifdef CONFIG_USER_ONLY
2985 /*
2986 * In system mode, BE32 is modelled in line with the
2987 * architecture (as word-invariant big-endianness), where loads
2988 * and stores are done little endian but from addresses which
2989 * are adjusted by XORing with the appropriate constant. So the
2990 * endianness to use for the raw data access is not affected by
2991 * SCTLR.B.
2992 * In user mode, however, we model BE32 as byte-invariant
2993 * big-endianness (because user-only code cannot tell the
2994 * difference), and so we need to use a data access endianness
2995 * that depends on SCTLR.B.
2996 */
2997 if (sctlr_b) {
2998 return true;
2999 }
3000#endif
3001 /* In 32bit endianness is determined by looking at CPSR's E bit */
3002 return env->uncached_cpsr & CPSR_E;
3003}
3004
3005static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3006{
3007 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3008}
64e40755 3009
ed50ff78
PC
3010/* Return true if the processor is in big-endian mode. */
3011static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3012{
ed50ff78 3013 if (!is_a64(env)) {
8061a649 3014 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3015 } else {
3016 int cur_el = arm_current_el(env);
3017 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3018 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3019 }
ed50ff78
PC
3020}
3021
022c62cb 3022#include "exec/cpu-all.h"
622ed360 3023
fdd1b228 3024/*
a378206a
RH
3025 * We have more than 32-bits worth of state per TB, so we split the data
3026 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3027 * We collect these two parts in CPUARMTBFlags where they are named
3028 * flags and flags2 respectively.
fdd1b228 3029 *
a378206a
RH
3030 * The flags that are shared between all execution modes, TBFLAG_ANY,
3031 * are stored in flags. The flags that are specific to a given mode
3032 * are stores in flags2. Since cs_base is sized on the configured
3033 * address size, flags2 always has 64-bits for A64, and a minimum of
3034 * 32-bits for A32 and M32.
3035 *
3036 * The bits for 32-bit A-profile and M-profile partially overlap:
3037 *
5896f392
RH
3038 * 31 23 11 10 0
3039 * +-------------+----------+----------------+
3040 * | | | TBFLAG_A32 |
3041 * | TBFLAG_AM32 | +-----+----------+
3042 * | | |TBFLAG_M32|
3043 * +-------------+----------------+----------+
26702213 3044 * 31 23 6 5 0
79cabf1f 3045 *
fdd1b228 3046 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3047 */
eee81d41
RH
3048FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3049FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3050FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3051FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3052FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3053/* Target EL if we take a floating-point-disabled exception */
eee81d41 3054FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3055/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3056FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3057FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3058FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3059FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3060
8bd587c1 3061/*
79cabf1f 3062 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3063 */
5896f392
RH
3064FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3065FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3066
79cabf1f
RH
3067/*
3068 * Bit usage when in AArch32 state, for A-profile only.
3069 */
5896f392
RH
3070FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3071FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3072/*
3073 * We store the bottom two bits of the CPAR as TB flags and handle
3074 * checks on the other bits at runtime. This shares the same bits as
3075 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3076 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3077 */
5896f392
RH
3078FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3079FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3080FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3081FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3082/*
3083 * Indicates whether cp register reads and writes by guest code should access
3084 * the secure or nonsecure bank of banked registers; note that this is not
3085 * the same thing as the current security state of the processor!
3086 */
5896f392 3087FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3088/*
3089 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3090 * This requires an SME trap from AArch32 mode when using NEON.
3091 */
3092FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3093
3094/*
3095 * Bit usage when in AArch32 state, for M-profile only.
3096 */
3097/* Handler (ie not Thread) mode */
5896f392 3098FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3099/* Whether we should generate stack-limit checks */
5896f392 3100FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3101/* Set if FPCCR.LSPACT is set */
5896f392 3102FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3103/* Set if we must create a new FP context */
5896f392 3104FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3105/* Set if FPCCR.S does not match current security state */
5896f392 3106FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3107/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3108FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3109/* Set if in secure mode */
3110FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3111
3112/*
3113 * Bit usage when in AArch64 state
3114 */
476a4692 3115FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3116FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3117/* The current vector length, either NVL or SVL. */
3118FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3119FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3120FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3121FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3122FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3123FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3124FIELD(TBFLAG_A64, ATA, 15, 1)
3125FIELD(TBFLAG_A64, TCMA, 16, 2)
3126FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3127FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3128FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3129FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3130FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3131FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3132/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3133FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
5572f755 3134FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
83f624d9 3135FIELD(TBFLAG_A64, NAA, 30, 1)
a1705768 3136
a729a46b
RH
3137/*
3138 * Helpers for using the above.
3139 */
3140#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3141 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3142#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3143 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3144#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3145 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3146#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3147 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3148#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3149 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3150
3902bfc6 3151#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3152#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3153#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3154#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3155#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3156
fb901c90
RH
3157/**
3158 * cpu_mmu_index:
3159 * @env: The cpu environment
3160 * @ifetch: True for code access, false for data access.
3161 *
3162 * Return the core mmu index for the current translation regime.
3163 * This function is used by generic TCG code paths.
3164 */
3165static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3166{
a729a46b 3167 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3168}
3169
8b599e5c
RH
3170/**
3171 * sve_vq
3172 * @env: the cpu context
3173 *
3174 * Return the VL cached within env->hflags, in units of quadwords.
3175 */
3176static inline int sve_vq(CPUARMState *env)
3177{
3178 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3179}
3180
5d7953ad
RH
3181/**
3182 * sme_vq
3183 * @env: the cpu context
3184 *
3185 * Return the SVL cached within env->hflags, in units of quadwords.
3186 */
3187static inline int sme_vq(CPUARMState *env)
3188{
3189 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3190}
3191
f9fd40eb
PB
3192static inline bool bswap_code(bool sctlr_b)
3193{
3194#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3195 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3196 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3197 * would also end up as a mixed-endian mode with BE code, LE data.
3198 */
3199 return
ee3eb3a7 3200#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3201 1 ^
3202#endif
3203 sctlr_b;
3204#else
e334bd31
PB
3205 /* All code access in ARM is little endian, and there are no loaders
3206 * doing swaps that need to be reversed
f9fd40eb
PB
3207 */
3208 return 0;
3209#endif
3210}
3211
c3ae85fc
PB
3212#ifdef CONFIG_USER_ONLY
3213static inline bool arm_cpu_bswap_data(CPUARMState *env)
3214{
3215 return
ee3eb3a7 3216#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3217 1 ^
3218#endif
3219 arm_cpu_data_is_big_endian(env);
3220}
3221#endif
3222
a9e01311
RH
3223void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3224 target_ulong *cs_base, uint32_t *flags);
6b917547 3225
98128601
RH
3226enum {
3227 QEMU_PSCI_CONDUIT_DISABLED = 0,
3228 QEMU_PSCI_CONDUIT_SMC = 1,
3229 QEMU_PSCI_CONDUIT_HVC = 2,
3230};
3231
017518c1
PM
3232#ifndef CONFIG_USER_ONLY
3233/* Return the address space index to use for a memory access */
3234static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3235{
3236 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3237}
5ce4ff65
PM
3238
3239/* Return the AddressSpace to use for a memory access
3240 * (which depends on whether the access is S or NS, and whether
3241 * the board gave us a separate AddressSpace for S accesses).
3242 */
3243static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3244{
3245 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3246}
017518c1
PM
3247#endif
3248
bd7d00fc 3249/**
b5c53d1b
AL
3250 * arm_register_pre_el_change_hook:
3251 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3252 * CPU changes exception level or mode. The hook function will be
3253 * passed a pointer to the ARMCPU and the opaque data pointer passed
3254 * to this function when the hook was registered.
b5c53d1b
AL
3255 *
3256 * Note that if a pre-change hook is called, any registered post-change hooks
3257 * are guaranteed to subsequently be called.
bd7d00fc 3258 */
b5c53d1b 3259void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3260 void *opaque);
b5c53d1b
AL
3261/**
3262 * arm_register_el_change_hook:
3263 * Register a hook function which will be called immediately after this
3264 * CPU changes exception level or mode. The hook function will be
3265 * passed a pointer to the ARMCPU and the opaque data pointer passed
3266 * to this function when the hook was registered.
3267 *
3268 * Note that any registered hooks registered here are guaranteed to be called
3269 * if pre-change hooks have been.
3270 */
3271void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3272 *opaque);
bd7d00fc 3273
3d74e2e9
RH
3274/**
3275 * arm_rebuild_hflags:
3276 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3277 */
3278void arm_rebuild_hflags(CPUARMState *env);
3279
9a2b5256
RH
3280/**
3281 * aa32_vfp_dreg:
3282 * Return a pointer to the Dn register within env in 32-bit mode.
3283 */
3284static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3285{
c39c2b90 3286 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3287}
3288
3289/**
3290 * aa32_vfp_qreg:
3291 * Return a pointer to the Qn register within env in 32-bit mode.
3292 */
3293static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3294{
c39c2b90 3295 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3296}
3297
3298/**
3299 * aa64_vfp_qreg:
3300 * Return a pointer to the Qn register within env in 64-bit mode.
3301 */
3302static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3303{
c39c2b90 3304 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3305}
3306
028e2a7b 3307/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3308extern const uint64_t pred_esz_masks[5];
028e2a7b 3309
be5d6f48
RH
3310/*
3311 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3312 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3313 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3314 */
7f2cf760
RH
3315#define PAGE_BTI PAGE_TARGET_1
3316#define PAGE_MTE PAGE_TARGET_2
3317#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3318
50d4c8c1
RH
3319/* We associate one allocation tag per 16 bytes, the minimum. */
3320#define LOG2_TAG_GRANULE 4
3321#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3322
3323#ifdef CONFIG_USER_ONLY
3324#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3325#endif
3326
0e0c030c
RH
3327#ifdef TARGET_TAGGED_ADDRESSES
3328/**
3329 * cpu_untagged_addr:
3330 * @cs: CPU context
3331 * @x: tagged address
3332 *
3333 * Remove any address tag from @x. This is explicitly related to the
3334 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3335 *
3336 * There should be a better place to put this, but we need this in
3337 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3338 */
3339static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3340{
3341 ARMCPU *cpu = ARM_CPU(cs);
3342 if (cpu->env.tagged_addr_enable) {
3343 /*
3344 * TBI is enabled for userspace but not kernelspace addresses.
3345 * Only clear the tag if bit 55 is clear.
3346 */
3347 x &= sextract64(x, 0, 56);
3348 }
3349 return x;
3350}
3351#endif
3352
873b73c0
PM
3353/*
3354 * Naming convention for isar_feature functions:
3355 * Functions which test 32-bit ID registers should have _aa32_ in
3356 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3357 * _aa64_ in their name. These must only be used in code where we
3358 * know for certain that the CPU has AArch32 or AArch64 respectively
3359 * or where the correct answer for a CPU which doesn't implement that
3360 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3361 * system registers that are specific to that CPU state, for "should
3362 * we let this system register bit be set" tests where the 32-bit
3363 * flavour of the register doesn't have the bit, and so on).
3364 * Functions which simply ask "does this feature exist at all" have
3365 * _any_ in their name, and always return the logical OR of the _aa64_
3366 * and the _aa32_ function.
873b73c0
PM
3367 */
3368
962fcbf2
RH
3369/*
3370 * 32-bit feature tests via id registers.
3371 */
873b73c0 3372static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3373{
3374 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3375}
3376
873b73c0 3377static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3378{
3379 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3380}
05903f03
PM
3381
3382static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3383{
3384 /* (M-profile) low-overhead loops and branch future */
3385 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3386}
7e0cf8b4 3387
873b73c0 3388static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3389{
3390 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3391}
3392
962fcbf2
RH
3393static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3394{
3395 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3396}
3397
3398static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3399{
3400 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3401}
3402
3403static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3404{
3405 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3406}
3407
3408static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3409{
3410 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3411}
3412
3413static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3414{
3415 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3416}
3417
3418static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3419{
3420 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3421}
3422
3423static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3424{
3425 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3426}
3427
6c1f6f27
RH
3428static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3429{
3430 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3431}
3432
962fcbf2
RH
3433static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3434{
3435 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3436}
3437
87732318
RH
3438static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3439{
3440 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3441}
3442
9888bd1e
RH
3443static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3444{
3445 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3446}
3447
cb570bd3
RH
3448static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3449{
3450 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3451}
3452
c0b9e8a4
RH
3453static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3454{
3455 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3456}
3457
51879c67
RH
3458static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3459{
3460 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3461}
3462
46f4976f
PM
3463static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3464{
3465 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3466}
3467
dfc523a8
PM
3468static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3469{
3470 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3471}
3472
83ff3d6a
PM
3473static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3474{
3475 /*
3476 * Return true if M-profile state handling insns
3477 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3478 */
3479 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3480}
3481
5763190f
RH
3482static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3483{
dfc523a8
PM
3484 /* Sadly this is encoded differently for A-profile and M-profile */
3485 if (isar_feature_aa32_mprofile(id)) {
3486 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3487 } else {
3488 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3489 }
5763190f
RH
3490}
3491
7df6a1ff
PM
3492static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3493{
3494 /*
3495 * Return true if MVE is supported (either integer or floating point).
3496 * We must check for M-profile as the MVFR1 field means something
3497 * else for A-profile.
3498 */
3499 return isar_feature_aa32_mprofile(id) &&
3500 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3501}
3502
3503static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3504{
3505 /*
3506 * Return true if MVE is supported (either integer or floating point).
3507 * We must check for M-profile as the MVFR1 field means something
3508 * else for A-profile.
3509 */
3510 return isar_feature_aa32_mprofile(id) &&
3511 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3512}
3513
7fbc6a40
RH
3514static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3515{
3516 /*
3517 * Return true if either VFP or SIMD is implemented.
3518 * In this case, a minimum of VFP w/ D0-D15.
3519 */
3520 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3521}
3522
0e13ba78 3523static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3524{
3525 /* Return true if D16-D31 are implemented */
b3a816f6 3526 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3527}
3528
266bd25c
PM
3529static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3530{
b3a816f6 3531 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3532}
3533
f67957e1
RH
3534static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3535{
3536 /* Return true if CPU supports single precision floating point, VFPv2 */
3537 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3538}
3539
3540static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3541{
3542 /* Return true if CPU supports single precision floating point, VFPv3 */
3543 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3544}
3545
c4ff8735 3546static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3547{
c4ff8735 3548 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3549 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3550}
3551
f67957e1
RH
3552static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3553{
3554 /* Return true if CPU supports double precision floating point, VFPv3 */
3555 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3556}
3557
7d63183f
RH
3558static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3559{
3560 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3561}
3562
602f6e42
PM
3563/*
3564 * We always set the FP and SIMD FP16 fields to indicate identical
3565 * levels of support (assuming SIMD is implemented at all), so
3566 * we only need one set of accessors.
3567 */
3568static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3569{
b3a816f6 3570 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3571}
3572
3573static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3574{
b3a816f6 3575 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3576}
3577
c52881bb
RH
3578/*
3579 * Note that this ID register field covers both VFP and Neon FMAC,
3580 * so should usually be tested in combination with some other
3581 * check that confirms the presence of whichever of VFP or Neon is
3582 * relevant, to avoid accidentally enabling a Neon feature on
3583 * a VFP-no-Neon core or vice-versa.
3584 */
3585static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3586{
3587 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3588}
3589
c0c760af
PM
3590static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3591{
b3a816f6 3592 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3593}
3594
3595static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3596{
b3a816f6 3597 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3598}
3599
3600static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3601{
b3a816f6 3602 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3603}
3604
3605static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3606{
b3a816f6 3607 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3608}
3609
0ae0326b
PM
3610static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3611{
3612 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3613}
3614
3d6ad6bb
RH
3615static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3616{
10054016 3617 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3618}
3619
3620static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3621{
10054016 3622 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3623}
3624
a793bcd0 3625static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3626{
3627 /* 0xf means "non-standard IMPDEF PMU" */
3628 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3629 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3630}
3631
a793bcd0 3632static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3633{
3634 /* 0xf means "non-standard IMPDEF PMU" */
3635 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3636 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3637}
3638
0b42f4fa
PM
3639static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3640{
3641 /* 0xf means "non-standard IMPDEF PMU" */
3642 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3643 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3644}
3645
4036b7d1
PM
3646static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3647{
3648 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3649}
3650
f6287c24
PM
3651static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3652{
3653 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3654}
3655
957e6155
PM
3656static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3657{
3658 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3659}
3660
ce3125be
PM
3661static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3662{
3663 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3664}
3665
d2fd9313
PM
3666static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3667{
3668 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3669}
3670
3671static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3672{
3673 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3674}
3675
dc8b1853
RC
3676static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3677{
3678 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3679}
3680
f2f68a78
RC
3681static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3682{
3683 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3684}
3685
09754ca8
PM
3686static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3687{
3688 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3689}
3690
ca56aac5
RH
3691static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3692{
3693 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3694}
3695
f94a6df5
PM
3696static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3697{
3698 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3699}
3700
962fcbf2
RH
3701/*
3702 * 64-bit feature tests via id registers.
3703 */
3704static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3705{
3706 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3707}
3708
3709static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3710{
3711 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3712}
3713
3714static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3715{
3716 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3717}
3718
3719static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3720{
3721 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3722}
3723
3724static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3725{
3726 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3727}
3728
3729static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3730{
3731 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3732}
3733
3734static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3735{
3736 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3737}
3738
3739static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3740{
3741 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3742}
3743
3744static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3745{
3746 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3747}
3748
3749static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3750{
3751 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3752}
3753
3754static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3755{
3756 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3757}
3758
3759static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3760{
3761 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3762}
3763
0caa5af8
RH
3764static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3765{
3766 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3767}
3768
b89d9c98
RH
3769static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3770{
3771 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3772}
3773
5ef84f11
RH
3774static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3775{
3776 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3777}
3778
de390645
RH
3779static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3780{
3781 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3782}
3783
6c1f6f27
RH
3784static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3785{
3786 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3787}
3788
962fcbf2
RH
3789static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3790{
3791 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3792}
3793
991ad91b
RH
3794static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3795{
3796 /*
283fc52a
RH
3797 * Return true if any form of pauth is enabled, as this
3798 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3799 */
3800 return (id->id_aa64isar1 &
3801 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3802 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3803 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3804 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3805}
3806
283fc52a
RH
3807static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3808{
3809 /*
3810 * Return true if pauth is enabled with the architected QARMA algorithm.
3811 * QEMU will always set APA+GPA to the same value.
3812 */
3813 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3814}
3815
84940ed8
RC
3816static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3817{
3818 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3819}
3820
7113d618
RC
3821static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3822{
3823 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3824}
3825
9888bd1e
RH
3826static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3827{
3828 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3829}
3830
cb570bd3
RH
3831static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3832{
3833 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3834}
3835
6bea2563
RH
3836static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3837{
3838 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3839}
3840
0d57b499
BM
3841static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3842{
3843 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3844}
3845
3846static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3847{
3848 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3849}
3850
c0b9e8a4
RH
3851static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3852{
3853 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3854}
3855
7d63183f
RH
3856static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3857{
3858 /* We always set the AdvSIMD and FP fields identically. */
3859 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3860}
3861
5763190f
RH
3862static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3863{
3864 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3865 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3866}
3867
0f8d06f1
RH
3868static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3869{
3870 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3871}
3872
10d0ef3e
MN
3873static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3874{
3875 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3876}
3877
6bcbb07a
RH
3878static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3879{
3880 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3881}
3882
25e168ab
RH
3883static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3884{
3885 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3886}
3887
7ac61020
PM
3888static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3889{
3890 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3891}
3892
cd208a1c
RH
3893static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3894{
3895 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3896}
3897
5ca192df
RDC
3898static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3899{
3900 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3901}
3902
b9f335c2
RH
3903static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
3904{
3905 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
3906}
3907
8fc2ea21
RH
3908static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3909{
3910 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3911}
3912
2d7137c1
RH
3913static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3914{
3915 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3916}
3917
3d6ad6bb
RH
3918static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3919{
3920 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3921}
3922
3923static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3924{
3925 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3926}
3927
dd17143f
PM
3928static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3929{
3930 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3931}
3932
5814d587
RH
3933static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3934{
3935 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3936}
3937
9eeb7a1c
RH
3938static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3939{
3940 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3941}
3942
c36c65ea
RDC
3943static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3944{
3945 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3946}
3947
cf1cbf50
RH
3948static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
3949{
3950 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
3951}
3952
8c7e17ef
PM
3953static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3954{
3955 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3956}
3957
75662f36
PM
3958static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3959{
3960 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3961}
3962
d2fd9313
PM
3963static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
3964{
3965 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
3966}
3967
3968static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
3969{
3970 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
3971}
3972
be53b6f4
RH
3973static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3974{
3975 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3976}
3977
c7fd0baa
RH
3978static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3979{
3980 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3981}
3982
3983static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3984{
3985 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3986}
3987
f305bf94
RH
3988static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3989{
3990 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3991}
3992
a793bcd0 3993static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
3994{
3995 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3996 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3997}
3998
a793bcd0 3999static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4000{
54117b90
PM
4001 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4002 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4003}
4004
0b42f4fa
PM
4005static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4006{
4007 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4008 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4009}
4010
2677cf9f
PM
4011static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4012{
4013 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4014}
4015
a1229109
PM
4016static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4017{
4018 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4019}
4020
f7da051f
RH
4021static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4022{
4023 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4024}
4025
ef56c242
RH
4026static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4027{
4028 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4029}
4030
4031static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4032{
4033 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4034 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4035}
4036
4037static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4038{
4039 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4040}
4041
4042static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4043{
4044 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4045 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4046}
4047
104f703d
PM
4048static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4049{
4050 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4051}
4052
4053static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4054{
4055 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4056}
4057
4058static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4059{
4060 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4061}
4062
4063static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4064{
4065 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4066 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4067}
4068
4069static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4070{
4071 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4072 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4073}
4074
4075static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4076{
4077 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4078 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4079}
4080
15126d9c
PM
4081static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4082{
4083 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4084}
4085
957e6155
PM
4086static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4087{
4088 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4089}
4090
0af312b6
RH
4091static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4092{
4093 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4094}
4095
e4c93e44
PM
4096static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4097{
4098 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4099}
4100
980a6892
RH
4101static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4102{
4103 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4104}
4105
4106static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4107{
4108 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4109}
4110
ce3125be
PM
4111static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4112{
4113 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4114}
4115
dc8b1853
RC
4116static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4117{
4118 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4119}
4120
7cb1e618
RH
4121static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4122{
4123 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4124 if (key >= 2) {
4125 return true; /* FEAT_CSV2_2 */
4126 }
4127 if (key == 1) {
4128 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4129 return key >= 2; /* FEAT_CSV2_1p2 */
4130 }
4131 return false;
4132}
4133
f2f68a78
RC
4134static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4135{
4136 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4137}
4138
ca56aac5
RH
4139static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4140{
4141 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4142}
4143
2dc10fa2
RH
4144static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4145{
4146 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4147}
4148
e3a56131
RH
4149static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4150{
4151 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4152}
4153
4154static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4155{
4156 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4157}
4158
cb9c33b8
RH
4159static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4160{
4161 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4162}
4163
c0b9e8a4
RH
4164static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4165{
4166 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4167}
4168
3358eb3f
RH
4169static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4170{
4171 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4172}
4173
3cc7a88e
RH
4174static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4175{
4176 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4177}
4178
2867039a
RH
4179static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4180{
4181 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4182}
4183
4f26756b
SL
4184static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4185{
4186 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4187}
4188
4189static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4190{
4191 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4192}
4193
414c54d5
RH
4194static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4195{
4196 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4197}
4198
4199static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4200{
4201 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4202}
4203
4204static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4205{
4206 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4207}
4208
f94a6df5
PM
4209static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4210{
4211 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4212}
4213
6e61f839
PM
4214/*
4215 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4216 */
4217static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4218{
4219 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4220}
4221
22e57073
PM
4222static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4223{
4224 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4225}
4226
a793bcd0 4227static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4228{
a793bcd0 4229 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4230}
4231
a793bcd0 4232static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4233{
a793bcd0 4234 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4235}
4236
0b42f4fa
PM
4237static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4238{
4239 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4240}
4241
957e6155
PM
4242static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4243{
4244 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4245}
4246
ce3125be
PM
4247static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4248{
4249 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4250}
4251
ca56aac5
RH
4252static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4253{
4254 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4255}
4256
25e168ab
RH
4257static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4258{
4259 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4260}
4261
d2fd9313
PM
4262static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4263{
4264 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4265}
4266
4267static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4268{
4269 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4270}
4271
962fcbf2
RH
4272/*
4273 * Forward to the above feature tests given an ARMCPU pointer.
4274 */
4275#define cpu_isar_feature(name, cpu) \
4276 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4277
2c0262af 4278#endif