]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Make writes to MDCR_EL3 use PMU start/finish calls
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
e9152ee9
RDC
169#define VTCR_NSW (1u << 29)
170#define VTCR_NSA (1u << 30)
171#define VSTCR_SW VTCR_NSW
172#define VSTCR_SA VTCR_NSA
173
c39c2b90
RH
174/* Define a maximum sized vector register.
175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176 * For 64-bit, this is a 2048-bit SVE register.
177 *
178 * Note that the mapping between S, D, and Q views of the register bank
179 * differs between AArch64 and AArch32.
180 * In AArch32:
181 * Qn = regs[n].d[1]:regs[n].d[0]
182 * Dn = regs[n / 2].d[n & 1]
183 * Sn = regs[n / 4].d[n % 4 / 2],
184 * bits 31..0 for even n, and bits 63..32 for odd n
185 * (and regs[16] to regs[31] are inaccessible)
186 * In AArch64:
187 * Zn = regs[n].d[*]
188 * Qn = regs[n].d[1]:regs[n].d[0]
189 * Dn = regs[n].d[0]
190 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 191 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
192 *
193 * This corresponds to the architecturally defined mapping between
194 * the two execution states, and means we do not need to explicitly
195 * map these registers when changing states.
196 *
197 * Align the data for use with TCG host vector operations.
198 */
199
200#ifdef TARGET_AARCH64
201# define ARM_MAX_VQ 16
202#else
203# define ARM_MAX_VQ 1
204#endif
205
206typedef struct ARMVectorReg {
207 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208} ARMVectorReg;
209
3c7d3086 210#ifdef TARGET_AARCH64
991ad91b 211/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 212typedef struct ARMPredicateReg {
46417784 213 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 214} ARMPredicateReg;
991ad91b
RH
215
216/* In AArch32 mode, PAC keys do not exist at all. */
217typedef struct ARMPACKey {
218 uint64_t lo, hi;
219} ARMPACKey;
3c7d3086
RH
220#endif
221
3902bfc6
RH
222/* See the commentary above the TBFLAG field definitions. */
223typedef struct CPUARMTBFlags {
224 uint32_t flags;
a378206a 225 target_ulong flags2;
3902bfc6 226} CPUARMTBFlags;
c39c2b90 227
1ea4a06a 228typedef struct CPUArchState {
b5ff1b31 229 /* Regs for current mode. */
2c0262af 230 uint32_t regs[16];
3926cc84
AG
231
232 /* 32/64 switch only happens when taking and returning from
233 * exceptions so the overlap semantics are taken care of then
234 * instead of having a complicated union.
235 */
236 /* Regs for A64 mode. */
237 uint64_t xregs[32];
238 uint64_t pc;
d356312f
PM
239 /* PSTATE isn't an architectural register for ARMv8. However, it is
240 * convenient for us to assemble the underlying state into a 32 bit format
241 * identical to the architectural format used for the SPSR. (This is also
242 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
243 * 'pstate' register are.) Of the PSTATE bits:
244 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
245 * semantics as for AArch32, as described in the comments on each field)
246 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 247 * DAIF (exception masks) are kept in env->daif
f6e52eaa 248 * BTYPE is kept in env->btype
c37e6ac9 249 * SM and ZA are kept in env->svcr
d356312f 250 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
251 */
252 uint32_t pstate;
53221552 253 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 254 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 255
fdd1b228 256 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 257 CPUARMTBFlags hflags;
fdd1b228 258
b90372ad 259 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 260 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
261 the whole CPSR. */
262 uint32_t uncached_cpsr;
263 uint32_t spsr;
264
265 /* Banked registers. */
28c9457d 266 uint64_t banked_spsr[8];
0b7d409d
FA
267 uint32_t banked_r13[8];
268 uint32_t banked_r14[8];
3b46e624 269
b5ff1b31
FB
270 /* These hold r8-r12. */
271 uint32_t usr_regs[5];
272 uint32_t fiq_regs[5];
3b46e624 273
2c0262af
FB
274 /* cpsr flag cache for faster execution */
275 uint32_t CF; /* 0 or 1 */
276 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
277 uint32_t NF; /* N is bit 31. All other bits are undefined. */
278 uint32_t ZF; /* Z set if zero. */
99c475ab 279 uint32_t QF; /* 0 or 1 */
9ee6e8bb 280 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 281 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 282 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 283 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 284 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 285
1b174238 286 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 287 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 288
b5ff1b31
FB
289 /* System control coprocessor (cp15) */
290 struct {
40f137e1 291 uint32_t c0_cpuid;
b85a1fd6
FA
292 union { /* Cache size selection */
293 struct {
294 uint64_t _unused_csselr0;
295 uint64_t csselr_ns;
296 uint64_t _unused_csselr1;
297 uint64_t csselr_s;
298 };
299 uint64_t csselr_el[4];
300 };
137feaa9
FA
301 union { /* System control register. */
302 struct {
303 uint64_t _unused_sctlr;
304 uint64_t sctlr_ns;
305 uint64_t hsctlr;
306 uint64_t sctlr_s;
307 };
308 uint64_t sctlr_el[4];
309 };
7ebd5f2e 310 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 311 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 312 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 313 uint64_t sder; /* Secure debug enable register. */
77022576 314 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
315 union { /* MMU translation table base 0. */
316 struct {
317 uint64_t _unused_ttbr0_0;
318 uint64_t ttbr0_ns;
319 uint64_t _unused_ttbr0_1;
320 uint64_t ttbr0_s;
321 };
322 uint64_t ttbr0_el[4];
323 };
324 union { /* MMU translation table base 1. */
325 struct {
326 uint64_t _unused_ttbr1_0;
327 uint64_t ttbr1_ns;
328 uint64_t _unused_ttbr1_1;
329 uint64_t ttbr1_s;
330 };
331 uint64_t ttbr1_el[4];
332 };
b698e9cf 333 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 334 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 335 /* MMU translation table base control. */
cb4a0a34 336 uint64_t tcr_el[4];
988cc190
PM
337 uint64_t vtcr_el2; /* Virtualization Translation Control. */
338 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
339 uint32_t c2_data; /* MPU data cacheable bits. */
340 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
341 union { /* MMU domain access control register
342 * MPU write buffer control.
343 */
344 struct {
345 uint64_t dacr_ns;
346 uint64_t dacr_s;
347 };
348 struct {
349 uint64_t dacr32_el2;
350 };
351 };
7e09797c
PM
352 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
353 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 354 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 355 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 356 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
357 union { /* Fault status registers. */
358 struct {
359 uint64_t ifsr_ns;
360 uint64_t ifsr_s;
361 };
362 struct {
363 uint64_t ifsr32_el2;
364 };
365 };
4a7e2d73
FA
366 union {
367 struct {
368 uint64_t _unused_dfsr;
369 uint64_t dfsr_ns;
370 uint64_t hsr;
371 uint64_t dfsr_s;
372 };
373 uint64_t esr_el[4];
374 };
ce819861 375 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
376 union { /* Fault address registers. */
377 struct {
378 uint64_t _unused_far0;
e03b5686 379#if HOST_BIG_ENDIAN
b848ce2b
FA
380 uint32_t ifar_ns;
381 uint32_t dfar_ns;
382 uint32_t ifar_s;
383 uint32_t dfar_s;
384#else
385 uint32_t dfar_ns;
386 uint32_t ifar_ns;
387 uint32_t dfar_s;
388 uint32_t ifar_s;
389#endif
390 uint64_t _unused_far3;
391 };
392 uint64_t far_el[4];
393 };
59e05530 394 uint64_t hpfar_el2;
2a5a9abd 395 uint64_t hstr_el2;
01c097f7
FA
396 union { /* Translation result. */
397 struct {
398 uint64_t _unused_par_0;
399 uint64_t par_ns;
400 uint64_t _unused_par_1;
401 uint64_t par_s;
402 };
403 uint64_t par_el[4];
404 };
6cb0b013 405
b5ff1b31
FB
406 uint32_t c9_insn; /* Cache lockdown registers. */
407 uint32_t c9_data;
8521466b
AF
408 uint64_t c9_pmcr; /* performance monitor control register */
409 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
410 uint64_t c9_pmovsr; /* perf monitor overflow status */
411 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 412 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 413 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
414 union { /* Memory attribute redirection */
415 struct {
e03b5686 416#if HOST_BIG_ENDIAN
be693c87
GB
417 uint64_t _unused_mair_0;
418 uint32_t mair1_ns;
419 uint32_t mair0_ns;
420 uint64_t _unused_mair_1;
421 uint32_t mair1_s;
422 uint32_t mair0_s;
423#else
424 uint64_t _unused_mair_0;
425 uint32_t mair0_ns;
426 uint32_t mair1_ns;
427 uint64_t _unused_mair_1;
428 uint32_t mair0_s;
429 uint32_t mair1_s;
430#endif
431 };
432 uint64_t mair_el[4];
433 };
fb6c91ba
GB
434 union { /* vector base address register */
435 struct {
436 uint64_t _unused_vbar;
437 uint64_t vbar_ns;
438 uint64_t hvbar;
439 uint64_t vbar_s;
440 };
441 uint64_t vbar_el[4];
442 };
e89e51a1 443 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 444 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
445 struct { /* FCSE PID. */
446 uint32_t fcseidr_ns;
447 uint32_t fcseidr_s;
448 };
449 union { /* Context ID. */
450 struct {
451 uint64_t _unused_contextidr_0;
452 uint64_t contextidr_ns;
453 uint64_t _unused_contextidr_1;
454 uint64_t contextidr_s;
455 };
456 uint64_t contextidr_el[4];
457 };
458 union { /* User RW Thread register. */
459 struct {
460 uint64_t tpidrurw_ns;
461 uint64_t tpidrprw_ns;
462 uint64_t htpidr;
463 uint64_t _tpidr_el3;
464 };
465 uint64_t tpidr_el[4];
466 };
9e5ec745 467 uint64_t tpidr2_el0;
54bf36ed
FA
468 /* The secure banks of these registers don't map anywhere */
469 uint64_t tpidrurw_s;
470 uint64_t tpidrprw_s;
471 uint64_t tpidruro_s;
472
473 union { /* User RO Thread register. */
474 uint64_t tpidruro_ns;
475 uint64_t tpidrro_el[1];
476 };
a7adc4b7
PM
477 uint64_t c14_cntfrq; /* Counter Frequency register */
478 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 479 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 480 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 481 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 482 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
483 uint32_t c15_ticonfig; /* TI925T configuration byte. */
484 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
485 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
486 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
487 uint32_t c15_config_base_address; /* SCU base address. */
488 uint32_t c15_diagnostic; /* diagnostic register */
489 uint32_t c15_power_diagnostic;
490 uint32_t c15_power_control; /* power control */
0b45451e
PM
491 uint64_t dbgbvr[16]; /* breakpoint value registers */
492 uint64_t dbgbcr[16]; /* breakpoint control registers */
493 uint64_t dbgwvr[16]; /* watchpoint value registers */
494 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 495 uint64_t mdscr_el1;
1424ca8d 496 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 497 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 498 uint64_t mdcr_el2;
5513c3ab 499 uint64_t mdcr_el3;
5d05b9d4
AL
500 /* Stores the architectural value of the counter *the last time it was
501 * updated* by pmccntr_op_start. Accesses should always be surrounded
502 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
503 * architecturally-correct value is being read/set.
7c2cb42b 504 */
c92c0687 505 uint64_t c15_ccnt;
5d05b9d4
AL
506 /* Stores the delta between the architectural value and the underlying
507 * cycle count during normal operation. It is used to update c15_ccnt
508 * to be the correct architectural value before accesses. During
509 * accesses, c15_ccnt_delta contains the underlying count being used
510 * for the access, after which it reverts to the delta value in
511 * pmccntr_op_finish.
512 */
513 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
514 uint64_t c14_pmevcntr[31];
515 uint64_t c14_pmevcntr_delta[31];
516 uint64_t c14_pmevtyper[31];
8521466b 517 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 518 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 519 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
520 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
521 uint64_t gcr_el1;
522 uint64_t rgsr_el1;
58e93b48
RH
523
524 /* Minimal RAS registers */
525 uint64_t disr_el1;
526 uint64_t vdisr_el2;
527 uint64_t vsesr_el2;
b5ff1b31 528 } cp15;
40f137e1 529
9ee6e8bb 530 struct {
fb602cb7
PM
531 /* M profile has up to 4 stack pointers:
532 * a Main Stack Pointer and a Process Stack Pointer for each
533 * of the Secure and Non-Secure states. (If the CPU doesn't support
534 * the security extension then it has only two SPs.)
535 * In QEMU we always store the currently active SP in regs[13],
536 * and the non-active SP for the current security state in
537 * v7m.other_sp. The stack pointers for the inactive security state
538 * are stored in other_ss_msp and other_ss_psp.
539 * switch_v7m_security_state() is responsible for rearranging them
540 * when we change security state.
541 */
9ee6e8bb 542 uint32_t other_sp;
fb602cb7
PM
543 uint32_t other_ss_msp;
544 uint32_t other_ss_psp;
4a16724f
PM
545 uint32_t vecbase[M_REG_NUM_BANKS];
546 uint32_t basepri[M_REG_NUM_BANKS];
547 uint32_t control[M_REG_NUM_BANKS];
548 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
549 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
550 uint32_t hfsr; /* HardFault Status */
551 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 552 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 553 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 554 uint32_t bfar; /* BusFault Address */
bed079da 555 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 556 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 557 int exception;
4a16724f
PM
558 uint32_t primask[M_REG_NUM_BANKS];
559 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 560 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 561 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 562 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 563 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
564 uint32_t msplim[M_REG_NUM_BANKS];
565 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
566 uint32_t fpcar[M_REG_NUM_BANKS];
567 uint32_t fpccr[M_REG_NUM_BANKS];
568 uint32_t fpdscr[M_REG_NUM_BANKS];
569 uint32_t cpacr[M_REG_NUM_BANKS];
570 uint32_t nsacr;
b26b5629 571 uint32_t ltpsize;
7c3d47da 572 uint32_t vpr;
9ee6e8bb
PB
573 } v7m;
574
abf1172f
PM
575 /* Information associated with an exception about to be taken:
576 * code which raises an exception must set cs->exception_index and
577 * the relevant parts of this structure; the cpu_do_interrupt function
578 * will then set the guest-visible registers as part of the exception
579 * entry process.
580 */
581 struct {
582 uint32_t syndrome; /* AArch64 format syndrome register */
583 uint32_t fsr; /* AArch32 format fault status register info */
584 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 585 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
586 /* If we implement EL2 we will also need to store information
587 * about the intermediate physical address for stage 2 faults.
588 */
589 } exception;
590
202ccb6b
DG
591 /* Information associated with an SError */
592 struct {
593 uint8_t pending;
594 uint8_t has_esr;
595 uint64_t esr;
596 } serror;
597
1711bfa5
BM
598 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
599
ed89f078
PM
600 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
601 uint32_t irq_line_state;
602
fe1479c3
PB
603 /* Thumb-2 EE state. */
604 uint32_t teecr;
605 uint32_t teehbr;
606
b7bcbe95
FB
607 /* VFP coprocessor state. */
608 struct {
c39c2b90 609 ARMVectorReg zregs[32];
b7bcbe95 610
3c7d3086
RH
611#ifdef TARGET_AARCH64
612 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 613#define FFR_PRED_NUM 16
3c7d3086 614 ARMPredicateReg pregs[17];
516e246a
RH
615 /* Scratch space for aa64 sve predicate temporary. */
616 ARMPredicateReg preg_tmp;
3c7d3086
RH
617#endif
618
b7bcbe95 619 /* We store these fpcsr fields separately for convenience. */
a4d58462 620 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
621 int vec_len;
622 int vec_stride;
623
a4d58462
RH
624 uint32_t xregs[16];
625
516e246a 626 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 627 uint32_t scratch[8];
3b46e624 628
d81ce0ef
AB
629 /* There are a number of distinct float control structures:
630 *
631 * fp_status: is the "normal" fp status.
632 * fp_status_fp16: used for half-precision calculations
633 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
634 * standard_fp_status_fp16 : used for half-precision
635 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
636 *
637 * Half-precision operations are governed by a separate
638 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
639 * status structure to control this.
640 *
641 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
642 * round-to-nearest and is used by any operations (generally
643 * Neon) which the architecture defines as controlled by the
644 * standard FPSCR value rather than the FPSCR.
3a492f3a 645 *
aaae563b
PM
646 * The "standard FPSCR but for fp16 ops" is needed because
647 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
648 * using a fixed value for it.
649 *
3a492f3a
PM
650 * To avoid having to transfer exception bits around, we simply
651 * say that the FPSCR cumulative exception flags are the logical
aaae563b 652 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
653 * only thing which needs to read the exception flags being
654 * an explicit FPSCR read.
655 */
53cd6637 656 float_status fp_status;
d81ce0ef 657 float_status fp_status_f16;
3a492f3a 658 float_status standard_fp_status;
aaae563b 659 float_status standard_fp_status_f16;
5be5e8ed 660
de561988
RH
661 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
662 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 663 } vfp;
03d05e2d
PM
664 uint64_t exclusive_addr;
665 uint64_t exclusive_val;
666 uint64_t exclusive_high;
b7bcbe95 667
18c9b560
AZ
668 /* iwMMXt coprocessor state. */
669 struct {
670 uint64_t regs[16];
671 uint64_t val;
672
673 uint32_t cregs[16];
674 } iwmmxt;
675
991ad91b 676#ifdef TARGET_AARCH64
108b3ba8
RH
677 struct {
678 ARMPACKey apia;
679 ARMPACKey apib;
680 ARMPACKey apda;
681 ARMPACKey apdb;
682 ARMPACKey apga;
683 } keys;
7cb1e618
RH
684
685 uint64_t scxtnum_el[4];
dc993a01
RH
686
687 /*
688 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
689 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
690 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
691 * When SVL is less than the architectural maximum, the accessible
692 * storage is restricted, such that if the SVL is X bytes the guest can
693 * see only the bottom X elements of zarray[], and only the least
694 * significant X bytes of each element of the array. (In other words,
695 * the observable part is always square.)
696 *
697 * The ZA storage can also be considered as a set of square tiles of
698 * elements of different sizes. The mapping from tiles to the ZA array
699 * is architecturally defined, such that for tiles of elements of esz
700 * bytes, the Nth row (or "horizontal slice") of tile T is in
701 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
702 * in the ZA storage, because its rows are striped through the ZA array.
703 *
704 * Because this is so large, keep this toward the end of the reset area,
705 * to keep the offsets into the rest of the structure smaller.
706 */
707 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
708#endif
709
ce4defa0
PB
710#if defined(CONFIG_USER_ONLY)
711 /* For usermode syscall translation. */
712 int eabi;
713#endif
714
46747d15 715 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
716 struct CPUWatchpoint *cpu_watchpoint[16];
717
1f5c00cf
AB
718 /* Fields up to this point are cleared by a CPU reset */
719 struct {} end_reset_fields;
720
e8b5fae5 721 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 722
581be094 723 /* Internal CPU feature flags. */
918f5dca 724 uint64_t features;
581be094 725
6cb0b013
PC
726 /* PMSAv7 MPU */
727 struct {
728 uint32_t *drbar;
729 uint32_t *drsr;
730 uint32_t *dracr;
4a16724f 731 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
732 } pmsav7;
733
0e1a46bb
PM
734 /* PMSAv8 MPU */
735 struct {
736 /* The PMSAv8 implementation also shares some PMSAv7 config
737 * and state:
738 * pmsav7.rnr (region number register)
739 * pmsav7_dregion (number of configured regions)
740 */
4a16724f
PM
741 uint32_t *rbar[M_REG_NUM_BANKS];
742 uint32_t *rlar[M_REG_NUM_BANKS];
743 uint32_t mair0[M_REG_NUM_BANKS];
744 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
745 } pmsav8;
746
9901c576
PM
747 /* v8M SAU */
748 struct {
749 uint32_t *rbar;
750 uint32_t *rlar;
751 uint32_t rnr;
752 uint32_t ctrl;
753 } sau;
754
983fe826 755 void *nvic;
462a8bc6 756 const struct arm_boot_info *boot_info;
d3a3e529
VK
757 /* Store GICv3CPUState to access from this struct */
758 void *gicv3state;
0e0c030c
RH
759
760#ifdef TARGET_TAGGED_ADDRESSES
761 /* Linux syscall tagged address support */
762 bool tagged_addr_enable;
763#endif
2c0262af
FB
764} CPUARMState;
765
5fda9504
TH
766static inline void set_feature(CPUARMState *env, int feature)
767{
768 env->features |= 1ULL << feature;
769}
770
771static inline void unset_feature(CPUARMState *env, int feature)
772{
773 env->features &= ~(1ULL << feature);
774}
775
bd7d00fc 776/**
08267487 777 * ARMELChangeHookFn:
bd7d00fc
PM
778 * type of a function which can be registered via arm_register_el_change_hook()
779 * to get callbacks when the CPU changes its exception level or mode.
780 */
08267487
AL
781typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
782typedef struct ARMELChangeHook ARMELChangeHook;
783struct ARMELChangeHook {
784 ARMELChangeHookFn *hook;
785 void *opaque;
786 QLIST_ENTRY(ARMELChangeHook) node;
787};
062ba099
AB
788
789/* These values map onto the return values for
790 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
791typedef enum ARMPSCIState {
d5affb0d
AJ
792 PSCI_ON = 0,
793 PSCI_OFF = 1,
062ba099
AB
794 PSCI_ON_PENDING = 2
795} ARMPSCIState;
796
962fcbf2
RH
797typedef struct ARMISARegisters ARMISARegisters;
798
7f9e25a6
RH
799/*
800 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
801 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
802 *
803 * While processing properties during initialization, corresponding init bits
804 * are set for bits in sve_vq_map that have been set by properties.
805 *
806 * Bits set in supported represent valid vector lengths for the CPU type.
807 */
808typedef struct {
809 uint32_t map, init, supported;
810} ARMVQMap;
811
74e75564
PB
812/**
813 * ARMCPU:
814 * @env: #CPUARMState
815 *
816 * An ARM CPU core.
817 */
b36e239e 818struct ArchCPU {
74e75564
PB
819 /*< private >*/
820 CPUState parent_obj;
821 /*< public >*/
822
5b146dc7 823 CPUNegativeOffsetState neg;
74e75564
PB
824 CPUARMState env;
825
826 /* Coprocessor information */
827 GHashTable *cp_regs;
828 /* For marshalling (mostly coprocessor) register state between the
829 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
830 * we use these arrays.
831 */
832 /* List of register indexes managed via these arrays; (full KVM style
833 * 64 bit indexes, not CPRegInfo 32 bit indexes)
834 */
835 uint64_t *cpreg_indexes;
836 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
837 uint64_t *cpreg_values;
838 /* Length of the indexes, values, reset_values arrays */
839 int32_t cpreg_array_len;
840 /* These are used only for migration: incoming data arrives in
841 * these fields and is sanity checked in post_load before copying
842 * to the working data structures above.
843 */
844 uint64_t *cpreg_vmstate_indexes;
845 uint64_t *cpreg_vmstate_values;
846 int32_t cpreg_vmstate_array_len;
847
448d4d14 848 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 849 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 850
74e75564
PB
851 /* Timers used by the generic (architected) timer */
852 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
853 /*
854 * Timer used by the PMU. Its state is restored after migration by
855 * pmu_op_finish() - it does not need other handling during migration
856 */
857 QEMUTimer *pmu_timer;
74e75564
PB
858 /* GPIO outputs for generic timer */
859 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
860 /* GPIO output for GICv3 maintenance interrupt signal */
861 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
862 /* GPIO output for the PMU interrupt */
863 qemu_irq pmu_interrupt;
74e75564
PB
864
865 /* MemoryRegion to use for secure physical accesses */
866 MemoryRegion *secure_memory;
867
8bce44a2
RH
868 /* MemoryRegion to use for allocation tag accesses */
869 MemoryRegion *tag_memory;
870 MemoryRegion *secure_tag_memory;
871
181962fd
PM
872 /* For v8M, pointer to the IDAU interface provided by board/SoC */
873 Object *idau;
874
74e75564
PB
875 /* 'compatible' string for this CPU for Linux device trees */
876 const char *dtb_compatible;
877
878 /* PSCI version for this CPU
879 * Bits[31:16] = Major Version
880 * Bits[15:0] = Minor Version
881 */
882 uint32_t psci_version;
883
062ba099
AB
884 /* Current power state, access guarded by BQL */
885 ARMPSCIState power_state;
886
c25bd18a
PM
887 /* CPU has virtualization extension */
888 bool has_el2;
74e75564
PB
889 /* CPU has security extension */
890 bool has_el3;
5c0a3819
SZ
891 /* CPU has PMU (Performance Monitor Unit) */
892 bool has_pmu;
97a28b0e
PM
893 /* CPU has VFP */
894 bool has_vfp;
895 /* CPU has Neon */
896 bool has_neon;
ea90db0a
PM
897 /* CPU has M-profile DSP extension */
898 bool has_dsp;
74e75564
PB
899
900 /* CPU has memory protection unit */
901 bool has_mpu;
902 /* PMSAv7 MPU number of supported regions */
903 uint32_t pmsav7_dregion;
9901c576
PM
904 /* v8M SAU number of supported regions */
905 uint32_t sau_sregion;
74e75564
PB
906
907 /* PSCI conduit used to invoke PSCI methods
908 * 0 - disabled, 1 - smc, 2 - hvc
909 */
910 uint32_t psci_conduit;
911
38e2a77c
PM
912 /* For v8M, initial value of the Secure VTOR */
913 uint32_t init_svtor;
7cda2149
PM
914 /* For v8M, initial value of the Non-secure VTOR */
915 uint32_t init_nsvtor;
38e2a77c 916
74e75564
PB
917 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
918 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
919 */
920 uint32_t kvm_target;
921
922 /* KVM init features for this CPU */
923 uint32_t kvm_init_features[7];
924
e5ac4200
AJ
925 /* KVM CPU state */
926
927 /* KVM virtual time adjustment */
928 bool kvm_adjvtime;
929 bool kvm_vtime_dirty;
930 uint64_t kvm_vtime;
931
68970d1e
AJ
932 /* KVM steal time */
933 OnOffAuto kvm_steal_time;
934
74e75564
PB
935 /* Uniprocessor system with MP extensions */
936 bool mp_is_up;
937
c4487d76
PM
938 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
939 * and the probe failed (so we need to report the error in realize)
940 */
941 bool host_cpu_probe_failed;
942
f9a69711
AF
943 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
944 * register.
945 */
946 int32_t core_count;
947
74e75564
PB
948 /* The instance init functions for implementation-specific subclasses
949 * set these fields to specify the implementation-dependent values of
950 * various constant registers and reset values of non-constant
951 * registers.
952 * Some of these might become QOM properties eventually.
953 * Field names match the official register names as defined in the
954 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
955 * is used for reset values of non-constant registers; no reset_
956 * prefix means a constant register.
47576b94
RH
957 * Some of these registers are split out into a substructure that
958 * is shared with the translators to control the ISA.
1548a7b2
PM
959 *
960 * Note that if you add an ID register to the ARMISARegisters struct
961 * you need to also update the 32-bit and 64-bit versions of the
962 * kvm_arm_get_host_cpu_features() function to correctly populate the
963 * field by reading the value from the KVM vCPU.
74e75564 964 */
47576b94
RH
965 struct ARMISARegisters {
966 uint32_t id_isar0;
967 uint32_t id_isar1;
968 uint32_t id_isar2;
969 uint32_t id_isar3;
970 uint32_t id_isar4;
971 uint32_t id_isar5;
972 uint32_t id_isar6;
10054016
PM
973 uint32_t id_mmfr0;
974 uint32_t id_mmfr1;
975 uint32_t id_mmfr2;
976 uint32_t id_mmfr3;
977 uint32_t id_mmfr4;
32957aad 978 uint32_t id_mmfr5;
8a130a7b
PM
979 uint32_t id_pfr0;
980 uint32_t id_pfr1;
1d51bc96 981 uint32_t id_pfr2;
47576b94
RH
982 uint32_t mvfr0;
983 uint32_t mvfr1;
984 uint32_t mvfr2;
a6179538 985 uint32_t id_dfr0;
d22c5649 986 uint32_t id_dfr1;
4426d361 987 uint32_t dbgdidr;
09754ca8
PM
988 uint32_t dbgdevid;
989 uint32_t dbgdevid1;
47576b94
RH
990 uint64_t id_aa64isar0;
991 uint64_t id_aa64isar1;
992 uint64_t id_aa64pfr0;
993 uint64_t id_aa64pfr1;
3dc91ddb
PM
994 uint64_t id_aa64mmfr0;
995 uint64_t id_aa64mmfr1;
64761e10 996 uint64_t id_aa64mmfr2;
2a609df8
PM
997 uint64_t id_aa64dfr0;
998 uint64_t id_aa64dfr1;
2dc10fa2 999 uint64_t id_aa64zfr0;
414c54d5 1000 uint64_t id_aa64smfr0;
24526bb9 1001 uint64_t reset_pmcr_el0;
47576b94 1002 } isar;
e544f800 1003 uint64_t midr;
74e75564
PB
1004 uint32_t revidr;
1005 uint32_t reset_fpsid;
a5fd319a 1006 uint64_t ctr;
74e75564 1007 uint32_t reset_sctlr;
cad86737
AL
1008 uint64_t pmceid0;
1009 uint64_t pmceid1;
74e75564 1010 uint32_t id_afr0;
74e75564
PB
1011 uint64_t id_aa64afr0;
1012 uint64_t id_aa64afr1;
f6450bcb 1013 uint64_t clidr;
74e75564
PB
1014 uint64_t mp_affinity; /* MP ID without feature bits */
1015 /* The elements of this array are the CCSIDR values for each cache,
1016 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1017 */
957e6155 1018 uint64_t ccsidr[16];
74e75564
PB
1019 uint64_t reset_cbar;
1020 uint32_t reset_auxcr;
1021 bool reset_hivecs;
eb94284d
RH
1022
1023 /*
1024 * Intermediate values used during property parsing.
69b2265d 1025 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1026 */
1027 bool prop_pauth;
1028 bool prop_pauth_impdef;
69b2265d 1029 bool prop_lpa2;
eb94284d 1030
74e75564
PB
1031 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1032 uint32_t dcz_blocksize;
4a7319b7 1033 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1034
e45868a3
PM
1035 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1036 int gic_num_lrs; /* number of list registers */
1037 int gic_vpribits; /* number of virtual priority bits */
1038 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1039 int gic_pribits; /* number of physical priority bits */
e45868a3 1040
3a062d57
JB
1041 /* Whether the cfgend input is high (i.e. this CPU should reset into
1042 * big-endian mode). This setting isn't used directly: instead it modifies
1043 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1044 * architecture version.
1045 */
1046 bool cfgend;
1047
b5c53d1b 1048 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1049 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1050
1051 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1052
1053 /* Used to synchronize KVM and QEMU in-kernel device levels */
1054 uint8_t device_irq_level;
adf92eab
RH
1055
1056 /* Used to set the maximum vector length the cpu will support. */
1057 uint32_t sve_max_vq;
0df9142d 1058
b3d52804
RH
1059#ifdef CONFIG_USER_ONLY
1060 /* Used to set the default vector length at process start. */
1061 uint32_t sve_default_vq;
e74c0976 1062 uint32_t sme_default_vq;
b3d52804
RH
1063#endif
1064
7f9e25a6 1065 ARMVQMap sve_vq;
e74c0976 1066 ARMVQMap sme_vq;
7def8754
AJ
1067
1068 /* Generic timer counter frequency, in Hz */
1069 uint64_t gt_cntfrq_hz;
74e75564
PB
1070};
1071
7def8754
AJ
1072unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1073
51e5ef45
MAL
1074void arm_cpu_post_init(Object *obj);
1075
46de5913
IM
1076uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1077
74e75564 1078#ifndef CONFIG_USER_ONLY
8a9358cc 1079extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1080
1081void arm_cpu_do_interrupt(CPUState *cpu);
1082void arm_v7m_cpu_do_interrupt(CPUState *cpu);
083afd18 1083#endif /* !CONFIG_USER_ONLY */
74e75564 1084
74e75564
PB
1085hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1086 MemTxAttrs *attrs);
1087
a010bdbe 1088int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1089int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1090
d12379c5
AB
1091/*
1092 * Helpers to dynamically generates XML descriptions of the sysregs
1093 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1094 */
32d6e32a 1095int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1096int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1097
1098/* Returns the dynamically generated XML for the gdb stub.
1099 * Returns a pointer to the XML contents for the specified XML file or NULL
1100 * if the XML name doesn't match the predefined one.
1101 */
1102const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1103
74e75564
PB
1104int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1105 int cpuid, void *opaque);
1106int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1107 int cpuid, void *opaque);
1108
1109#ifdef TARGET_AARCH64
a010bdbe 1110int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1111int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1112void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1113void aarch64_sve_change_el(CPUARMState *env, int old_el,
1114 int new_el, bool el0_a64);
f84734b8 1115void arm_reset_sve_state(CPUARMState *env);
538baab2
AJ
1116
1117/*
1118 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1119 * The byte at offset i from the start of the in-memory representation contains
1120 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1121 * lowest offsets are stored in the lowest memory addresses, then that nearly
1122 * matches QEMU's representation, which is to use an array of host-endian
1123 * uint64_t's, where the lower offsets are at the lower indices. To complete
1124 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1125 */
1126static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1127{
e03b5686 1128#if HOST_BIG_ENDIAN
538baab2
AJ
1129 int i;
1130
1131 for (i = 0; i < nr; ++i) {
1132 dst[i] = bswap64(src[i]);
1133 }
1134
1135 return dst;
1136#else
1137 return src;
1138#endif
1139}
1140
0ab5953b
RH
1141#else
1142static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1143static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1144 int n, bool a)
1145{ }
74e75564 1146#endif
778c3a06 1147
ce02049d
GB
1148void aarch64_sync_32_to_64(CPUARMState *env);
1149void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1150
ced31551
RH
1151int fp_exception_el(CPUARMState *env, int cur_el);
1152int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1153int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1154
1155/**
6ca54aa9 1156 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1157 * @env: CPUARMState
1158 * @el: exception level
6ca54aa9 1159 * @sm: streaming mode
5ef3cc56 1160 *
6ca54aa9 1161 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1162 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1163 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1164 */
6ca54aa9
RH
1165uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1166
1167/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1168uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1169
3926cc84
AG
1170static inline bool is_a64(CPUARMState *env)
1171{
1172 return env->aarch64;
1173}
1174
5d05b9d4
AL
1175/**
1176 * pmu_op_start/finish
ec7b4ce4
AF
1177 * @env: CPUARMState
1178 *
5d05b9d4
AL
1179 * Convert all PMU counters between their delta form (the typical mode when
1180 * they are enabled) and the guest-visible values. These two calls must
1181 * surround any action which might affect the counters.
ec7b4ce4 1182 */
5d05b9d4
AL
1183void pmu_op_start(CPUARMState *env);
1184void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1185
4e7beb0c
AL
1186/*
1187 * Called when a PMU counter is due to overflow
1188 */
1189void arm_pmu_timer_cb(void *opaque);
1190
033614c4
AL
1191/**
1192 * Functions to register as EL change hooks for PMU mode filtering
1193 */
1194void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1195void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1196
57a4a11b 1197/*
bf8d0969
AL
1198 * pmu_init
1199 * @cpu: ARMCPU
57a4a11b 1200 *
bf8d0969
AL
1201 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1202 * for the current configuration
57a4a11b 1203 */
bf8d0969 1204void pmu_init(ARMCPU *cpu);
57a4a11b 1205
76e3e1bc
PM
1206/* SCTLR bit meanings. Several bits have been reused in newer
1207 * versions of the architecture; in that case we define constants
1208 * for both old and new bit meanings. Code which tests against those
1209 * bits should probably check or otherwise arrange that the CPU
1210 * is the architectural version it expects.
1211 */
1212#define SCTLR_M (1U << 0)
1213#define SCTLR_A (1U << 1)
1214#define SCTLR_C (1U << 2)
1215#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1216#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1217#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1218#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1219#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1220#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1221#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1222#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1223#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1224#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1225#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1226#define SCTLR_ITD (1U << 7) /* v8 onward */
1227#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1228#define SCTLR_SED (1U << 8) /* v8 onward */
1229#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1230#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1231#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1232#define SCTLR_SW (1U << 10) /* v7 */
1233#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1234#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1235#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1236#define SCTLR_I (1U << 12)
b2af69d0
RH
1237#define SCTLR_V (1U << 13) /* AArch32 only */
1238#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1239#define SCTLR_RR (1U << 14) /* up to v7 */
1240#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1241#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1242#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1243#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1244#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1245#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1246#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1247#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1248#define SCTLR_nTWE (1U << 18) /* v8 onward */
1249#define SCTLR_WXN (1U << 19)
1250#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1251#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1252#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1253#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1254#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1255#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1256#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1257#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1258#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1259#define SCTLR_VE (1U << 24) /* up to v7 */
1260#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1261#define SCTLR_EE (1U << 25)
1262#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1263#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1264#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1265#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1266#define SCTLR_TRE (1U << 28) /* AArch32 only */
1267#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1268#define SCTLR_AFE (1U << 29) /* AArch32 only */
1269#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1270#define SCTLR_TE (1U << 30) /* AArch32 only */
1271#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1272#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1273#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1274#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1275#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1276#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1277#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1278#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1279#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1280#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1281#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1282#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1283#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1284#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1285#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1286#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1287#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1288#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1289#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1290#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1291#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1292#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1293#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1294#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1295#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1296
fab8ad39
RH
1297/* Bit definitions for CPACR (AArch32 only) */
1298FIELD(CPACR, CP10, 20, 2)
1299FIELD(CPACR, CP11, 22, 2)
1300FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1301FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1302FIELD(CPACR, ASEDIS, 31, 1)
1303
1304/* Bit definitions for CPACR_EL1 (AArch64 only) */
1305FIELD(CPACR_EL1, ZEN, 16, 2)
1306FIELD(CPACR_EL1, FPEN, 20, 2)
1307FIELD(CPACR_EL1, SMEN, 24, 2)
1308FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1309
1310/* Bit definitions for HCPTR (AArch32 only) */
1311FIELD(HCPTR, TCP10, 10, 1)
1312FIELD(HCPTR, TCP11, 11, 1)
1313FIELD(HCPTR, TASE, 15, 1)
1314FIELD(HCPTR, TTA, 20, 1)
1315FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1316FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1317
1318/* Bit definitions for CPTR_EL2 (AArch64 only) */
1319FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1320FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1321FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1322FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1323FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1324FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1325FIELD(CPTR_EL2, TTA, 28, 1)
1326FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1327FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1328
1329/* Bit definitions for CPTR_EL3 (AArch64 only) */
1330FIELD(CPTR_EL3, EZ, 8, 1)
1331FIELD(CPTR_EL3, TFP, 10, 1)
1332FIELD(CPTR_EL3, ESM, 12, 1)
1333FIELD(CPTR_EL3, TTA, 20, 1)
1334FIELD(CPTR_EL3, TAM, 30, 1)
1335FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1336
47b385da 1337#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1338#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1339#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1340#define MDCR_EPMAD (1U << 21)
1341#define MDCR_EDAD (1U << 20)
033614c4
AL
1342#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1343#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1344#define MDCR_SDD (1U << 16)
a8d64e73 1345#define MDCR_SPD (3U << 14)
187f678d
PM
1346#define MDCR_TDRA (1U << 11)
1347#define MDCR_TDOSA (1U << 10)
1348#define MDCR_TDA (1U << 9)
1349#define MDCR_TDE (1U << 8)
1350#define MDCR_HPME (1U << 7)
1351#define MDCR_TPM (1U << 6)
1352#define MDCR_TPMCR (1U << 5)
033614c4 1353#define MDCR_HPMN (0x1fU)
187f678d 1354
a8d64e73
PM
1355/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1356#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1357
78dbbbe4
PM
1358#define CPSR_M (0x1fU)
1359#define CPSR_T (1U << 5)
1360#define CPSR_F (1U << 6)
1361#define CPSR_I (1U << 7)
1362#define CPSR_A (1U << 8)
1363#define CPSR_E (1U << 9)
1364#define CPSR_IT_2_7 (0xfc00U)
1365#define CPSR_GE (0xfU << 16)
4051e12c 1366#define CPSR_IL (1U << 20)
dc8b1853 1367#define CPSR_DIT (1U << 21)
220f508f 1368#define CPSR_PAN (1U << 22)
f2f68a78 1369#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1370#define CPSR_J (1U << 24)
1371#define CPSR_IT_0_1 (3U << 25)
1372#define CPSR_Q (1U << 27)
1373#define CPSR_V (1U << 28)
1374#define CPSR_C (1U << 29)
1375#define CPSR_Z (1U << 30)
1376#define CPSR_N (1U << 31)
9ee6e8bb 1377#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1378#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1379
1380#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1381#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1382 | CPSR_NZCV)
9ee6e8bb 1383/* Bits writable in user mode. */
268b1b3d 1384#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1385/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1386#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1387
987ab45e
PM
1388/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1389#define XPSR_EXCP 0x1ffU
1390#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1391#define XPSR_IT_2_7 CPSR_IT_2_7
1392#define XPSR_GE CPSR_GE
1393#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1394#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1395#define XPSR_IT_0_1 CPSR_IT_0_1
1396#define XPSR_Q CPSR_Q
1397#define XPSR_V CPSR_V
1398#define XPSR_C CPSR_C
1399#define XPSR_Z CPSR_Z
1400#define XPSR_N CPSR_N
1401#define XPSR_NZCV CPSR_NZCV
1402#define XPSR_IT CPSR_IT
1403
e389be16
FA
1404#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1405#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1406#define TTBCR_PD0 (1U << 4)
1407#define TTBCR_PD1 (1U << 5)
1408#define TTBCR_EPD0 (1U << 7)
1409#define TTBCR_IRGN0 (3U << 8)
1410#define TTBCR_ORGN0 (3U << 10)
1411#define TTBCR_SH0 (3U << 12)
1412#define TTBCR_T1SZ (3U << 16)
1413#define TTBCR_A1 (1U << 22)
1414#define TTBCR_EPD1 (1U << 23)
1415#define TTBCR_IRGN1 (3U << 24)
1416#define TTBCR_ORGN1 (3U << 26)
1417#define TTBCR_SH1 (1U << 28)
1418#define TTBCR_EAE (1U << 31)
1419
f04383e7
PM
1420FIELD(VTCR, T0SZ, 0, 6)
1421FIELD(VTCR, SL0, 6, 2)
1422FIELD(VTCR, IRGN0, 8, 2)
1423FIELD(VTCR, ORGN0, 10, 2)
1424FIELD(VTCR, SH0, 12, 2)
1425FIELD(VTCR, TG0, 14, 2)
1426FIELD(VTCR, PS, 16, 3)
1427FIELD(VTCR, VS, 19, 1)
1428FIELD(VTCR, HA, 21, 1)
1429FIELD(VTCR, HD, 22, 1)
1430FIELD(VTCR, HWU59, 25, 1)
1431FIELD(VTCR, HWU60, 26, 1)
1432FIELD(VTCR, HWU61, 27, 1)
1433FIELD(VTCR, HWU62, 28, 1)
1434FIELD(VTCR, NSW, 29, 1)
1435FIELD(VTCR, NSA, 30, 1)
1436FIELD(VTCR, DS, 32, 1)
1437FIELD(VTCR, SL2, 33, 1)
1438
d356312f
PM
1439/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1440 * Only these are valid when in AArch64 mode; in
1441 * AArch32 mode SPSRs are basically CPSR-format.
1442 */
f502cfc2 1443#define PSTATE_SP (1U)
d356312f
PM
1444#define PSTATE_M (0xFU)
1445#define PSTATE_nRW (1U << 4)
1446#define PSTATE_F (1U << 6)
1447#define PSTATE_I (1U << 7)
1448#define PSTATE_A (1U << 8)
1449#define PSTATE_D (1U << 9)
f6e52eaa 1450#define PSTATE_BTYPE (3U << 10)
f2f68a78 1451#define PSTATE_SSBS (1U << 12)
d356312f
PM
1452#define PSTATE_IL (1U << 20)
1453#define PSTATE_SS (1U << 21)
220f508f 1454#define PSTATE_PAN (1U << 22)
9eeb7a1c 1455#define PSTATE_UAO (1U << 23)
dc8b1853 1456#define PSTATE_DIT (1U << 24)
4b779ceb 1457#define PSTATE_TCO (1U << 25)
d356312f
PM
1458#define PSTATE_V (1U << 28)
1459#define PSTATE_C (1U << 29)
1460#define PSTATE_Z (1U << 30)
1461#define PSTATE_N (1U << 31)
1462#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1463#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1464#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1465/* Mode values for AArch64 */
1466#define PSTATE_MODE_EL3h 13
1467#define PSTATE_MODE_EL3t 12
1468#define PSTATE_MODE_EL2h 9
1469#define PSTATE_MODE_EL2t 8
1470#define PSTATE_MODE_EL1h 5
1471#define PSTATE_MODE_EL1t 4
1472#define PSTATE_MODE_EL0t 0
1473
c37e6ac9
RH
1474/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1475FIELD(SVCR, SM, 0, 1)
1476FIELD(SVCR, ZA, 1, 1)
1477
de561988
RH
1478/* Fields for SMCR_ELx. */
1479FIELD(SMCR, LEN, 0, 4)
1480FIELD(SMCR, FA64, 31, 1)
1481
de2db7ec
PM
1482/* Write a new value to v7m.exception, thus transitioning into or out
1483 * of Handler mode; this may result in a change of active stack pointer.
1484 */
1485void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1486
9e729b57
EI
1487/* Map EL and handler into a PSTATE_MODE. */
1488static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1489{
1490 return (el << 2) | handler;
1491}
1492
d356312f
PM
1493/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1494 * interprocessing, so we don't attempt to sync with the cpsr state used by
1495 * the 32 bit decoder.
1496 */
1497static inline uint32_t pstate_read(CPUARMState *env)
1498{
1499 int ZF;
1500
1501 ZF = (env->ZF == 0);
1502 return (env->NF & 0x80000000) | (ZF << 30)
1503 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1504 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1505}
1506
1507static inline void pstate_write(CPUARMState *env, uint32_t val)
1508{
1509 env->ZF = (~val) & PSTATE_Z;
1510 env->NF = val;
1511 env->CF = (val >> 29) & 1;
1512 env->VF = (val << 3) & 0x80000000;
4cc35614 1513 env->daif = val & PSTATE_DAIF;
f6e52eaa 1514 env->btype = (val >> 10) & 3;
d356312f
PM
1515 env->pstate = val & ~CACHED_PSTATE_BITS;
1516}
1517
b5ff1b31 1518/* Return the current CPSR value. */
2f4a40e5 1519uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1520
1521typedef enum CPSRWriteType {
1522 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1523 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1524 CPSRWriteRaw = 2,
1525 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1526 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1527} CPSRWriteType;
1528
e784807c
PM
1529/*
1530 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1531 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1532 * correspond to TB flags bits cached in the hflags, unless @write_type
1533 * is CPSRWriteRaw.
1534 */
50866ba5
PM
1535void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1536 CPSRWriteType write_type);
9ee6e8bb
PB
1537
1538/* Return the current xPSR value. */
1539static inline uint32_t xpsr_read(CPUARMState *env)
1540{
1541 int ZF;
6fbe23d5
PB
1542 ZF = (env->ZF == 0);
1543 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1544 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1545 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1546 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1547 | (env->GE << 16)
9ee6e8bb 1548 | env->v7m.exception;
b5ff1b31
FB
1549}
1550
9ee6e8bb
PB
1551/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1552static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1553{
987ab45e
PM
1554 if (mask & XPSR_NZCV) {
1555 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1556 env->NF = val;
9ee6e8bb
PB
1557 env->CF = (val >> 29) & 1;
1558 env->VF = (val << 3) & 0x80000000;
1559 }
987ab45e
PM
1560 if (mask & XPSR_Q) {
1561 env->QF = ((val & XPSR_Q) != 0);
1562 }
f1e2598c
PM
1563 if (mask & XPSR_GE) {
1564 env->GE = (val & XPSR_GE) >> 16;
1565 }
04c9c81b 1566#ifndef CONFIG_USER_ONLY
987ab45e
PM
1567 if (mask & XPSR_T) {
1568 env->thumb = ((val & XPSR_T) != 0);
1569 }
1570 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1571 env->condexec_bits &= ~3;
1572 env->condexec_bits |= (val >> 25) & 3;
1573 }
987ab45e 1574 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1575 env->condexec_bits &= 3;
1576 env->condexec_bits |= (val >> 8) & 0xfc;
1577 }
987ab45e 1578 if (mask & XPSR_EXCP) {
de2db7ec
PM
1579 /* Note that this only happens on exception exit */
1580 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1581 }
04c9c81b 1582#endif
9ee6e8bb
PB
1583}
1584
f149e3e8
EI
1585#define HCR_VM (1ULL << 0)
1586#define HCR_SWIO (1ULL << 1)
1587#define HCR_PTW (1ULL << 2)
1588#define HCR_FMO (1ULL << 3)
1589#define HCR_IMO (1ULL << 4)
1590#define HCR_AMO (1ULL << 5)
1591#define HCR_VF (1ULL << 6)
1592#define HCR_VI (1ULL << 7)
1593#define HCR_VSE (1ULL << 8)
1594#define HCR_FB (1ULL << 9)
1595#define HCR_BSU_MASK (3ULL << 10)
1596#define HCR_DC (1ULL << 12)
1597#define HCR_TWI (1ULL << 13)
1598#define HCR_TWE (1ULL << 14)
1599#define HCR_TID0 (1ULL << 15)
1600#define HCR_TID1 (1ULL << 16)
1601#define HCR_TID2 (1ULL << 17)
1602#define HCR_TID3 (1ULL << 18)
1603#define HCR_TSC (1ULL << 19)
1604#define HCR_TIDCP (1ULL << 20)
1605#define HCR_TACR (1ULL << 21)
1606#define HCR_TSW (1ULL << 22)
099bf53b 1607#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1608#define HCR_TPU (1ULL << 24)
1609#define HCR_TTLB (1ULL << 25)
1610#define HCR_TVM (1ULL << 26)
1611#define HCR_TGE (1ULL << 27)
1612#define HCR_TDZ (1ULL << 28)
1613#define HCR_HCD (1ULL << 29)
1614#define HCR_TRVM (1ULL << 30)
1615#define HCR_RW (1ULL << 31)
1616#define HCR_CD (1ULL << 32)
1617#define HCR_ID (1ULL << 33)
ac656b16 1618#define HCR_E2H (1ULL << 34)
099bf53b
RH
1619#define HCR_TLOR (1ULL << 35)
1620#define HCR_TERR (1ULL << 36)
1621#define HCR_TEA (1ULL << 37)
1622#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1623/* RES0 bit 39 */
099bf53b
RH
1624#define HCR_APK (1ULL << 40)
1625#define HCR_API (1ULL << 41)
1626#define HCR_NV (1ULL << 42)
1627#define HCR_NV1 (1ULL << 43)
1628#define HCR_AT (1ULL << 44)
1629#define HCR_NV2 (1ULL << 45)
1630#define HCR_FWB (1ULL << 46)
1631#define HCR_FIEN (1ULL << 47)
e0a38bb3 1632/* RES0 bit 48 */
099bf53b
RH
1633#define HCR_TID4 (1ULL << 49)
1634#define HCR_TICAB (1ULL << 50)
e0a38bb3 1635#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1636#define HCR_TOCU (1ULL << 52)
e0a38bb3 1637#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1638#define HCR_TTLBIS (1ULL << 54)
1639#define HCR_TTLBOS (1ULL << 55)
1640#define HCR_ATA (1ULL << 56)
1641#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1642#define HCR_TID5 (1ULL << 58)
1643#define HCR_TWEDEN (1ULL << 59)
1644#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1645
5814d587
RH
1646#define HCRX_ENAS0 (1ULL << 0)
1647#define HCRX_ENALS (1ULL << 1)
1648#define HCRX_ENASR (1ULL << 2)
1649#define HCRX_FNXS (1ULL << 3)
1650#define HCRX_FGTNXS (1ULL << 4)
1651#define HCRX_SMPME (1ULL << 5)
1652#define HCRX_TALLINT (1ULL << 6)
1653#define HCRX_VINMI (1ULL << 7)
1654#define HCRX_VFNMI (1ULL << 8)
1655#define HCRX_CMOW (1ULL << 9)
1656#define HCRX_MCE2 (1ULL << 10)
1657#define HCRX_MSCEN (1ULL << 11)
1658
9861248f
RDC
1659#define HPFAR_NS (1ULL << 63)
1660
64e0e2de
EI
1661#define SCR_NS (1U << 0)
1662#define SCR_IRQ (1U << 1)
1663#define SCR_FIQ (1U << 2)
1664#define SCR_EA (1U << 3)
1665#define SCR_FW (1U << 4)
1666#define SCR_AW (1U << 5)
1667#define SCR_NET (1U << 6)
1668#define SCR_SMD (1U << 7)
1669#define SCR_HCE (1U << 8)
1670#define SCR_SIF (1U << 9)
1671#define SCR_RW (1U << 10)
1672#define SCR_ST (1U << 11)
1673#define SCR_TWI (1U << 12)
1674#define SCR_TWE (1U << 13)
99f8f86d
RH
1675#define SCR_TLOR (1U << 14)
1676#define SCR_TERR (1U << 15)
1677#define SCR_APK (1U << 16)
1678#define SCR_API (1U << 17)
1679#define SCR_EEL2 (1U << 18)
1680#define SCR_EASE (1U << 19)
1681#define SCR_NMEA (1U << 20)
1682#define SCR_FIEN (1U << 21)
1683#define SCR_ENSCXT (1U << 25)
1684#define SCR_ATA (1U << 26)
f527d661
RH
1685#define SCR_FGTEN (1U << 27)
1686#define SCR_ECVEN (1U << 28)
1687#define SCR_TWEDEN (1U << 29)
1688#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1689#define SCR_TME (1ULL << 34)
1690#define SCR_AMVOFFEN (1ULL << 35)
1691#define SCR_ENAS0 (1ULL << 36)
1692#define SCR_ADEN (1ULL << 37)
1693#define SCR_HXEN (1ULL << 38)
1694#define SCR_TRNDR (1ULL << 40)
1695#define SCR_ENTP2 (1ULL << 41)
1696#define SCR_GPF (1ULL << 48)
64e0e2de 1697
cc7613bf 1698#define HSTR_TTEE (1 << 16)
8e228c9e 1699#define HSTR_TJDBX (1 << 17)
cc7613bf 1700
01653295
PM
1701/* Return the current FPSCR value. */
1702uint32_t vfp_get_fpscr(CPUARMState *env);
1703void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1704
d81ce0ef
AB
1705/* FPCR, Floating Point Control Register
1706 * FPSR, Floating Poiht Status Register
1707 *
1708 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1709 * FPCR and FPSR. However since they still use non-overlapping bits
1710 * we store the underlying state in fpscr and just mask on read/write.
1711 */
1712#define FPSR_MASK 0xf800009f
0b62159b 1713#define FPCR_MASK 0x07ff9f00
d81ce0ef 1714
a15945d9
PM
1715#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1716#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1717#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1718#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1719#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1720#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1721#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1722#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1723#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1724#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1725#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1726#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1727#define FPCR_V (1 << 28) /* FP overflow flag */
1728#define FPCR_C (1 << 29) /* FP carry flag */
1729#define FPCR_Z (1 << 30) /* FP zero flag */
1730#define FPCR_N (1 << 31) /* FP negative flag */
1731
99c7834f
PM
1732#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1733#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1734#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1735
9542c30b
PM
1736#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1737#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1738
f903fa22
PM
1739static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1740{
1741 return vfp_get_fpscr(env) & FPSR_MASK;
1742}
1743
1744static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1745{
1746 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1747 vfp_set_fpscr(env, new_fpscr);
1748}
1749
1750static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1751{
1752 return vfp_get_fpscr(env) & FPCR_MASK;
1753}
1754
1755static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1756{
1757 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1758 vfp_set_fpscr(env, new_fpscr);
1759}
1760
b5ff1b31
FB
1761enum arm_cpu_mode {
1762 ARM_CPU_MODE_USR = 0x10,
1763 ARM_CPU_MODE_FIQ = 0x11,
1764 ARM_CPU_MODE_IRQ = 0x12,
1765 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1766 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1767 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1768 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1769 ARM_CPU_MODE_UND = 0x1b,
1770 ARM_CPU_MODE_SYS = 0x1f
1771};
1772
40f137e1
PB
1773/* VFP system registers. */
1774#define ARM_VFP_FPSID 0
1775#define ARM_VFP_FPSCR 1
a50c0f51 1776#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1777#define ARM_VFP_MVFR1 6
1778#define ARM_VFP_MVFR0 7
40f137e1
PB
1779#define ARM_VFP_FPEXC 8
1780#define ARM_VFP_FPINST 9
1781#define ARM_VFP_FPINST2 10
9542c30b
PM
1782/* These ones are M-profile only */
1783#define ARM_VFP_FPSCR_NZCVQC 2
1784#define ARM_VFP_VPR 12
1785#define ARM_VFP_P0 13
1786#define ARM_VFP_FPCXT_NS 14
1787#define ARM_VFP_FPCXT_S 15
40f137e1 1788
32a290b8
PM
1789/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1790#define QEMU_VFP_FPSCR_NZCV 0xffff
1791
18c9b560 1792/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1793#define ARM_IWMMXT_wCID 0
1794#define ARM_IWMMXT_wCon 1
1795#define ARM_IWMMXT_wCSSF 2
1796#define ARM_IWMMXT_wCASF 3
1797#define ARM_IWMMXT_wCGR0 8
1798#define ARM_IWMMXT_wCGR1 9
1799#define ARM_IWMMXT_wCGR2 10
1800#define ARM_IWMMXT_wCGR3 11
18c9b560 1801
2c4da50d
PM
1802/* V7M CCR bits */
1803FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1804FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1805FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1806FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1807FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1808FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1809FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1810FIELD(V7M_CCR, DC, 16, 1)
1811FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1812FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1813FIELD(V7M_CCR, LOB, 19, 1)
1814FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1815
24ac0fb1
PM
1816/* V7M SCR bits */
1817FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1818FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1819FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1820FIELD(V7M_SCR, SEVONPEND, 4, 1)
1821
3b2e9344
PM
1822/* V7M AIRCR bits */
1823FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1824FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1825FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1826FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1827FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1828FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1829FIELD(V7M_AIRCR, PRIS, 14, 1)
1830FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1831FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1832
2c4da50d
PM
1833/* V7M CFSR bits for MMFSR */
1834FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1835FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1836FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1837FIELD(V7M_CFSR, MSTKERR, 4, 1)
1838FIELD(V7M_CFSR, MLSPERR, 5, 1)
1839FIELD(V7M_CFSR, MMARVALID, 7, 1)
1840
1841/* V7M CFSR bits for BFSR */
1842FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1843FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1844FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1845FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1846FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1847FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1848FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1849
1850/* V7M CFSR bits for UFSR */
1851FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1852FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1853FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1854FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1855FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1856FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1857FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1858
334e8dad
PM
1859/* V7M CFSR bit masks covering all of the subregister bits */
1860FIELD(V7M_CFSR, MMFSR, 0, 8)
1861FIELD(V7M_CFSR, BFSR, 8, 8)
1862FIELD(V7M_CFSR, UFSR, 16, 16)
1863
2c4da50d
PM
1864/* V7M HFSR bits */
1865FIELD(V7M_HFSR, VECTTBL, 1, 1)
1866FIELD(V7M_HFSR, FORCED, 30, 1)
1867FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1868
1869/* V7M DFSR bits */
1870FIELD(V7M_DFSR, HALTED, 0, 1)
1871FIELD(V7M_DFSR, BKPT, 1, 1)
1872FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1873FIELD(V7M_DFSR, VCATCH, 3, 1)
1874FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1875
bed079da
PM
1876/* V7M SFSR bits */
1877FIELD(V7M_SFSR, INVEP, 0, 1)
1878FIELD(V7M_SFSR, INVIS, 1, 1)
1879FIELD(V7M_SFSR, INVER, 2, 1)
1880FIELD(V7M_SFSR, AUVIOL, 3, 1)
1881FIELD(V7M_SFSR, INVTRAN, 4, 1)
1882FIELD(V7M_SFSR, LSPERR, 5, 1)
1883FIELD(V7M_SFSR, SFARVALID, 6, 1)
1884FIELD(V7M_SFSR, LSERR, 7, 1)
1885
29c483a5
MD
1886/* v7M MPU_CTRL bits */
1887FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1888FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1889FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1890
43bbce7f
PM
1891/* v7M CLIDR bits */
1892FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1893FIELD(V7M_CLIDR, LOUIS, 21, 3)
1894FIELD(V7M_CLIDR, LOC, 24, 3)
1895FIELD(V7M_CLIDR, LOUU, 27, 3)
1896FIELD(V7M_CLIDR, ICB, 30, 2)
1897
1898FIELD(V7M_CSSELR, IND, 0, 1)
1899FIELD(V7M_CSSELR, LEVEL, 1, 3)
1900/* We use the combination of InD and Level to index into cpu->ccsidr[];
1901 * define a mask for this and check that it doesn't permit running off
1902 * the end of the array.
1903 */
1904FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1905
1906/* v7M FPCCR bits */
1907FIELD(V7M_FPCCR, LSPACT, 0, 1)
1908FIELD(V7M_FPCCR, USER, 1, 1)
1909FIELD(V7M_FPCCR, S, 2, 1)
1910FIELD(V7M_FPCCR, THREAD, 3, 1)
1911FIELD(V7M_FPCCR, HFRDY, 4, 1)
1912FIELD(V7M_FPCCR, MMRDY, 5, 1)
1913FIELD(V7M_FPCCR, BFRDY, 6, 1)
1914FIELD(V7M_FPCCR, SFRDY, 7, 1)
1915FIELD(V7M_FPCCR, MONRDY, 8, 1)
1916FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1917FIELD(V7M_FPCCR, UFRDY, 10, 1)
1918FIELD(V7M_FPCCR, RES0, 11, 15)
1919FIELD(V7M_FPCCR, TS, 26, 1)
1920FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1921FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1922FIELD(V7M_FPCCR, LSPENS, 29, 1)
1923FIELD(V7M_FPCCR, LSPEN, 30, 1)
1924FIELD(V7M_FPCCR, ASPEN, 31, 1)
1925/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1926#define R_V7M_FPCCR_BANKED_MASK \
1927 (R_V7M_FPCCR_LSPACT_MASK | \
1928 R_V7M_FPCCR_USER_MASK | \
1929 R_V7M_FPCCR_THREAD_MASK | \
1930 R_V7M_FPCCR_MMRDY_MASK | \
1931 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1932 R_V7M_FPCCR_UFRDY_MASK | \
1933 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1934
7c3d47da
PM
1935/* v7M VPR bits */
1936FIELD(V7M_VPR, P0, 0, 16)
1937FIELD(V7M_VPR, MASK01, 16, 4)
1938FIELD(V7M_VPR, MASK23, 20, 4)
1939
a62e62af
RH
1940/*
1941 * System register ID fields.
1942 */
2a14526a
LL
1943FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1944FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1945FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1946FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1947FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1948FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1949FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1950FIELD(CLIDR_EL1, LOUIS, 21, 3)
1951FIELD(CLIDR_EL1, LOC, 24, 3)
1952FIELD(CLIDR_EL1, LOUU, 27, 3)
1953FIELD(CLIDR_EL1, ICB, 30, 3)
1954
1955/* When FEAT_CCIDX is implemented */
1956FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1957FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1958FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1959
1960/* When FEAT_CCIDX is not implemented */
1961FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1962FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1963FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1964
1965FIELD(CTR_EL0, IMINLINE, 0, 4)
1966FIELD(CTR_EL0, L1IP, 14, 2)
1967FIELD(CTR_EL0, DMINLINE, 16, 4)
1968FIELD(CTR_EL0, ERG, 20, 4)
1969FIELD(CTR_EL0, CWG, 24, 4)
1970FIELD(CTR_EL0, IDC, 28, 1)
1971FIELD(CTR_EL0, DIC, 29, 1)
1972FIELD(CTR_EL0, TMINLINE, 32, 6)
1973
2bd5f41c
AB
1974FIELD(MIDR_EL1, REVISION, 0, 4)
1975FIELD(MIDR_EL1, PARTNUM, 4, 12)
1976FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1977FIELD(MIDR_EL1, VARIANT, 20, 4)
1978FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1979
a62e62af
RH
1980FIELD(ID_ISAR0, SWAP, 0, 4)
1981FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1982FIELD(ID_ISAR0, BITFIELD, 8, 4)
1983FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1984FIELD(ID_ISAR0, COPROC, 16, 4)
1985FIELD(ID_ISAR0, DEBUG, 20, 4)
1986FIELD(ID_ISAR0, DIVIDE, 24, 4)
1987
1988FIELD(ID_ISAR1, ENDIAN, 0, 4)
1989FIELD(ID_ISAR1, EXCEPT, 4, 4)
1990FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1991FIELD(ID_ISAR1, EXTEND, 12, 4)
1992FIELD(ID_ISAR1, IFTHEN, 16, 4)
1993FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1994FIELD(ID_ISAR1, INTERWORK, 24, 4)
1995FIELD(ID_ISAR1, JAZELLE, 28, 4)
1996
1997FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1998FIELD(ID_ISAR2, MEMHINT, 4, 4)
1999FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2000FIELD(ID_ISAR2, MULT, 12, 4)
2001FIELD(ID_ISAR2, MULTS, 16, 4)
2002FIELD(ID_ISAR2, MULTU, 20, 4)
2003FIELD(ID_ISAR2, PSR_AR, 24, 4)
2004FIELD(ID_ISAR2, REVERSAL, 28, 4)
2005
2006FIELD(ID_ISAR3, SATURATE, 0, 4)
2007FIELD(ID_ISAR3, SIMD, 4, 4)
2008FIELD(ID_ISAR3, SVC, 8, 4)
2009FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2010FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2011FIELD(ID_ISAR3, T32COPY, 20, 4)
2012FIELD(ID_ISAR3, TRUENOP, 24, 4)
2013FIELD(ID_ISAR3, T32EE, 28, 4)
2014
2015FIELD(ID_ISAR4, UNPRIV, 0, 4)
2016FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2017FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2018FIELD(ID_ISAR4, SMC, 12, 4)
2019FIELD(ID_ISAR4, BARRIER, 16, 4)
2020FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2021FIELD(ID_ISAR4, PSR_M, 24, 4)
2022FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2023
2024FIELD(ID_ISAR5, SEVL, 0, 4)
2025FIELD(ID_ISAR5, AES, 4, 4)
2026FIELD(ID_ISAR5, SHA1, 8, 4)
2027FIELD(ID_ISAR5, SHA2, 12, 4)
2028FIELD(ID_ISAR5, CRC32, 16, 4)
2029FIELD(ID_ISAR5, RDM, 24, 4)
2030FIELD(ID_ISAR5, VCMA, 28, 4)
2031
2032FIELD(ID_ISAR6, JSCVT, 0, 4)
2033FIELD(ID_ISAR6, DP, 4, 4)
2034FIELD(ID_ISAR6, FHM, 8, 4)
2035FIELD(ID_ISAR6, SB, 12, 4)
2036FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2037FIELD(ID_ISAR6, BF16, 20, 4)
2038FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2039
0ae0326b
PM
2040FIELD(ID_MMFR0, VMSA, 0, 4)
2041FIELD(ID_MMFR0, PMSA, 4, 4)
2042FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2043FIELD(ID_MMFR0, SHARELVL, 12, 4)
2044FIELD(ID_MMFR0, TCM, 16, 4)
2045FIELD(ID_MMFR0, AUXREG, 20, 4)
2046FIELD(ID_MMFR0, FCSE, 24, 4)
2047FIELD(ID_MMFR0, INNERSHR, 28, 4)
2048
bd78b6be
LL
2049FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2050FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2051FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2052FIELD(ID_MMFR1, L1UNISW, 12, 4)
2053FIELD(ID_MMFR1, L1HVD, 16, 4)
2054FIELD(ID_MMFR1, L1UNI, 20, 4)
2055FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2056FIELD(ID_MMFR1, BPRED, 28, 4)
2057
2058FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2059FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2060FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2061FIELD(ID_MMFR2, HVDTLB, 12, 4)
2062FIELD(ID_MMFR2, UNITLB, 16, 4)
2063FIELD(ID_MMFR2, MEMBARR, 20, 4)
2064FIELD(ID_MMFR2, WFISTALL, 24, 4)
2065FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2066
3d6ad6bb
RH
2067FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2068FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2069FIELD(ID_MMFR3, BPMAINT, 8, 4)
2070FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2071FIELD(ID_MMFR3, PAN, 16, 4)
2072FIELD(ID_MMFR3, COHWALK, 20, 4)
2073FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2074FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2075
ab638a32
RH
2076FIELD(ID_MMFR4, SPECSEI, 0, 4)
2077FIELD(ID_MMFR4, AC2, 4, 4)
2078FIELD(ID_MMFR4, XNX, 8, 4)
2079FIELD(ID_MMFR4, CNP, 12, 4)
2080FIELD(ID_MMFR4, HPDS, 16, 4)
2081FIELD(ID_MMFR4, LSM, 20, 4)
2082FIELD(ID_MMFR4, CCIDX, 24, 4)
2083FIELD(ID_MMFR4, EVT, 28, 4)
2084
bd78b6be 2085FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2086FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2087
46f4976f
PM
2088FIELD(ID_PFR0, STATE0, 0, 4)
2089FIELD(ID_PFR0, STATE1, 4, 4)
2090FIELD(ID_PFR0, STATE2, 8, 4)
2091FIELD(ID_PFR0, STATE3, 12, 4)
2092FIELD(ID_PFR0, CSV2, 16, 4)
2093FIELD(ID_PFR0, AMU, 20, 4)
2094FIELD(ID_PFR0, DIT, 24, 4)
2095FIELD(ID_PFR0, RAS, 28, 4)
2096
dfc523a8
PM
2097FIELD(ID_PFR1, PROGMOD, 0, 4)
2098FIELD(ID_PFR1, SECURITY, 4, 4)
2099FIELD(ID_PFR1, MPROGMOD, 8, 4)
2100FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2101FIELD(ID_PFR1, GENTIMER, 16, 4)
2102FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2103FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2104FIELD(ID_PFR1, GIC, 28, 4)
2105
bd78b6be
LL
2106FIELD(ID_PFR2, CSV3, 0, 4)
2107FIELD(ID_PFR2, SSBS, 4, 4)
2108FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2109
a62e62af
RH
2110FIELD(ID_AA64ISAR0, AES, 4, 4)
2111FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2112FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2113FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2114FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2115FIELD(ID_AA64ISAR0, RDM, 28, 4)
2116FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2117FIELD(ID_AA64ISAR0, SM3, 36, 4)
2118FIELD(ID_AA64ISAR0, SM4, 40, 4)
2119FIELD(ID_AA64ISAR0, DP, 44, 4)
2120FIELD(ID_AA64ISAR0, FHM, 48, 4)
2121FIELD(ID_AA64ISAR0, TS, 52, 4)
2122FIELD(ID_AA64ISAR0, TLB, 56, 4)
2123FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2124
2125FIELD(ID_AA64ISAR1, DPB, 0, 4)
2126FIELD(ID_AA64ISAR1, APA, 4, 4)
2127FIELD(ID_AA64ISAR1, API, 8, 4)
2128FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2129FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2130FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2131FIELD(ID_AA64ISAR1, GPA, 24, 4)
2132FIELD(ID_AA64ISAR1, GPI, 28, 4)
2133FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2134FIELD(ID_AA64ISAR1, SB, 36, 4)
2135FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2136FIELD(ID_AA64ISAR1, BF16, 44, 4)
2137FIELD(ID_AA64ISAR1, DGH, 48, 4)
2138FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2139FIELD(ID_AA64ISAR1, XS, 56, 4)
2140FIELD(ID_AA64ISAR1, LS64, 60, 4)
2141
2142FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2143FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2144FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2145FIELD(ID_AA64ISAR2, APA3, 12, 4)
2146FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2147FIELD(ID_AA64ISAR2, BC, 20, 4)
2148FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2149
cd208a1c
RH
2150FIELD(ID_AA64PFR0, EL0, 0, 4)
2151FIELD(ID_AA64PFR0, EL1, 4, 4)
2152FIELD(ID_AA64PFR0, EL2, 8, 4)
2153FIELD(ID_AA64PFR0, EL3, 12, 4)
2154FIELD(ID_AA64PFR0, FP, 16, 4)
2155FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2156FIELD(ID_AA64PFR0, GIC, 24, 4)
2157FIELD(ID_AA64PFR0, RAS, 28, 4)
2158FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2159FIELD(ID_AA64PFR0, SEL2, 36, 4)
2160FIELD(ID_AA64PFR0, MPAM, 40, 4)
2161FIELD(ID_AA64PFR0, AMU, 44, 4)
2162FIELD(ID_AA64PFR0, DIT, 48, 4)
2163FIELD(ID_AA64PFR0, CSV2, 56, 4)
2164FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2165
be53b6f4 2166FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2167FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2168FIELD(ID_AA64PFR1, MTE, 8, 4)
2169FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2170FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2171FIELD(ID_AA64PFR1, SME, 24, 4)
2172FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2173FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2174FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2175
3dc91ddb
PM
2176FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2177FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2178FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2179FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2180FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2181FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2182FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2183FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2184FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2185FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2186FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2187FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2188FIELD(ID_AA64MMFR0, FGT, 56, 4)
2189FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2190
2191FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2192FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2193FIELD(ID_AA64MMFR1, VH, 8, 4)
2194FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2195FIELD(ID_AA64MMFR1, LO, 16, 4)
2196FIELD(ID_AA64MMFR1, PAN, 20, 4)
2197FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2198FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2199FIELD(ID_AA64MMFR1, TWED, 32, 4)
2200FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2201FIELD(ID_AA64MMFR1, HCX, 40, 4)
2202FIELD(ID_AA64MMFR1, AFP, 44, 4)
2203FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2204FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2205FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2206
64761e10
RH
2207FIELD(ID_AA64MMFR2, CNP, 0, 4)
2208FIELD(ID_AA64MMFR2, UAO, 4, 4)
2209FIELD(ID_AA64MMFR2, LSM, 8, 4)
2210FIELD(ID_AA64MMFR2, IESB, 12, 4)
2211FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2212FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2213FIELD(ID_AA64MMFR2, NV, 24, 4)
2214FIELD(ID_AA64MMFR2, ST, 28, 4)
2215FIELD(ID_AA64MMFR2, AT, 32, 4)
2216FIELD(ID_AA64MMFR2, IDS, 36, 4)
2217FIELD(ID_AA64MMFR2, FWB, 40, 4)
2218FIELD(ID_AA64MMFR2, TTL, 48, 4)
2219FIELD(ID_AA64MMFR2, BBM, 52, 4)
2220FIELD(ID_AA64MMFR2, EVT, 56, 4)
2221FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2222
ceb2744b
PM
2223FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2224FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2225FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2226FIELD(ID_AA64DFR0, BRPS, 12, 4)
2227FIELD(ID_AA64DFR0, WRPS, 20, 4)
2228FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2229FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2230FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2231FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2232FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2233FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2234FIELD(ID_AA64DFR0, BRBE, 52, 4)
2235FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2236
2dc10fa2
RH
2237FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2238FIELD(ID_AA64ZFR0, AES, 4, 4)
2239FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2240FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2241FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2242FIELD(ID_AA64ZFR0, SM4, 40, 4)
2243FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2244FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2245FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2246
414c54d5
RH
2247FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2248FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2249FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2250FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2251FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2252FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2253FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2254FIELD(ID_AA64SMFR0, FA64, 63, 1)
2255
beceb99c
AL
2256FIELD(ID_DFR0, COPDBG, 0, 4)
2257FIELD(ID_DFR0, COPSDBG, 4, 4)
2258FIELD(ID_DFR0, MMAPDBG, 8, 4)
2259FIELD(ID_DFR0, COPTRC, 12, 4)
2260FIELD(ID_DFR0, MMAPTRC, 16, 4)
2261FIELD(ID_DFR0, MPROFDBG, 20, 4)
2262FIELD(ID_DFR0, PERFMON, 24, 4)
2263FIELD(ID_DFR0, TRACEFILT, 28, 4)
2264
bd78b6be 2265FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2266FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2267
88ce6c6e
PM
2268FIELD(DBGDIDR, SE_IMP, 12, 1)
2269FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2270FIELD(DBGDIDR, VERSION, 16, 4)
2271FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2272FIELD(DBGDIDR, BRPS, 24, 4)
2273FIELD(DBGDIDR, WRPS, 28, 4)
2274
f94a6df5
PM
2275FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2276FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2277FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2278FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2279FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2280FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2281FIELD(DBGDEVID, AUXREGS, 24, 4)
2282FIELD(DBGDEVID, CIDMASK, 28, 4)
2283
602f6e42
PM
2284FIELD(MVFR0, SIMDREG, 0, 4)
2285FIELD(MVFR0, FPSP, 4, 4)
2286FIELD(MVFR0, FPDP, 8, 4)
2287FIELD(MVFR0, FPTRAP, 12, 4)
2288FIELD(MVFR0, FPDIVIDE, 16, 4)
2289FIELD(MVFR0, FPSQRT, 20, 4)
2290FIELD(MVFR0, FPSHVEC, 24, 4)
2291FIELD(MVFR0, FPROUND, 28, 4)
2292
2293FIELD(MVFR1, FPFTZ, 0, 4)
2294FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2295FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2296FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2297FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2298FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2299FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2300FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2301FIELD(MVFR1, FPHP, 24, 4)
2302FIELD(MVFR1, SIMDFMAC, 28, 4)
2303
2304FIELD(MVFR2, SIMDMISC, 0, 4)
2305FIELD(MVFR2, FPMISC, 4, 4)
2306
43bbce7f
PM
2307QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2308
ce854d7c
BC
2309/* If adding a feature bit which corresponds to a Linux ELF
2310 * HWCAP bit, remember to update the feature-bit-to-hwcap
2311 * mapping in linux-user/elfload.c:get_elf_hwcap().
2312 */
40f137e1 2313enum arm_features {
c1713132
AZ
2314 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2315 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2316 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2317 ARM_FEATURE_V6,
2318 ARM_FEATURE_V6K,
2319 ARM_FEATURE_V7,
2320 ARM_FEATURE_THUMB2,
452a0955 2321 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2322 ARM_FEATURE_NEON,
9ee6e8bb 2323 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2324 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2325 ARM_FEATURE_THUMB2EE,
be5e7a76 2326 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2327 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2328 ARM_FEATURE_V4T,
2329 ARM_FEATURE_V5,
5bc95aa2 2330 ARM_FEATURE_STRONGARM,
906879a9 2331 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2332 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2333 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2334 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2335 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2336 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2337 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2338 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2339 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2340 ARM_FEATURE_V8,
3926cc84 2341 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2342 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2343 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2344 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2345 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2346 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2347 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2348 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2349 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2350 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2351 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2352};
2353
2354static inline int arm_feature(CPUARMState *env, int feature)
2355{
918f5dca 2356 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2357}
2358
0df9142d
AJ
2359void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2360
19e0fefa
FA
2361#if !defined(CONFIG_USER_ONLY)
2362/* Return true if exception levels below EL3 are in secure state,
2363 * or would be following an exception return to that level.
2364 * Unlike arm_is_secure() (which is always a question about the
2365 * _current_ state of the CPU) this doesn't care about the current
2366 * EL or mode.
2367 */
2368static inline bool arm_is_secure_below_el3(CPUARMState *env)
2369{
2370 if (arm_feature(env, ARM_FEATURE_EL3)) {
2371 return !(env->cp15.scr_el3 & SCR_NS);
2372 } else {
6b7f0b61 2373 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2374 * defined, in which case QEMU defaults to non-secure.
2375 */
2376 return false;
2377 }
2378}
2379
71205876
PM
2380/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2381static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2382{
2383 if (arm_feature(env, ARM_FEATURE_EL3)) {
2384 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2385 /* CPU currently in AArch64 state and EL3 */
2386 return true;
2387 } else if (!is_a64(env) &&
2388 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2389 /* CPU currently in AArch32 state and monitor mode */
2390 return true;
2391 }
2392 }
71205876
PM
2393 return false;
2394}
2395
2396/* Return true if the processor is in secure state */
2397static inline bool arm_is_secure(CPUARMState *env)
2398{
2399 if (arm_is_el3_or_mon(env)) {
2400 return true;
2401 }
19e0fefa
FA
2402 return arm_is_secure_below_el3(env);
2403}
2404
f3ee5160
RDC
2405/*
2406 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2407 * This corresponds to the pseudocode EL2Enabled()
2408 */
2409static inline bool arm_is_el2_enabled(CPUARMState *env)
2410{
2411 if (arm_feature(env, ARM_FEATURE_EL2)) {
926c1b97
RDC
2412 if (arm_is_secure_below_el3(env)) {
2413 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2414 }
2415 return true;
f3ee5160
RDC
2416 }
2417 return false;
2418}
2419
19e0fefa
FA
2420#else
2421static inline bool arm_is_secure_below_el3(CPUARMState *env)
2422{
2423 return false;
2424}
2425
2426static inline bool arm_is_secure(CPUARMState *env)
2427{
2428 return false;
2429}
f3ee5160
RDC
2430
2431static inline bool arm_is_el2_enabled(CPUARMState *env)
2432{
2433 return false;
2434}
19e0fefa
FA
2435#endif
2436
f7778444
RH
2437/**
2438 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2439 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2440 * "for all purposes other than a direct read or write access of HCR_EL2."
2441 * Not included here is HCR_RW.
2442 */
2443uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2444uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2445
1f79ee32
PM
2446/* Return true if the specified exception level is running in AArch64 state. */
2447static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2448{
446c81ab
PM
2449 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2450 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2451 */
446c81ab
PM
2452 assert(el >= 1 && el <= 3);
2453 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2454
446c81ab
PM
2455 /* The highest exception level is always at the maximum supported
2456 * register width, and then lower levels have a register width controlled
2457 * by bits in the SCR or HCR registers.
1f79ee32 2458 */
446c81ab
PM
2459 if (el == 3) {
2460 return aa64;
2461 }
2462
926c1b97
RDC
2463 if (arm_feature(env, ARM_FEATURE_EL3) &&
2464 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2465 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2466 }
2467
2468 if (el == 2) {
2469 return aa64;
2470 }
2471
e6ef0169 2472 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2473 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2474 }
2475
2476 return aa64;
1f79ee32
PM
2477}
2478
3f342b9e
SF
2479/* Function for determing whether guest cp register reads and writes should
2480 * access the secure or non-secure bank of a cp register. When EL3 is
2481 * operating in AArch32 state, the NS-bit determines whether the secure
2482 * instance of a cp register should be used. When EL3 is AArch64 (or if
2483 * it doesn't exist at all) then there is no register banking, and all
2484 * accesses are to the non-secure version.
2485 */
2486static inline bool access_secure_reg(CPUARMState *env)
2487{
2488 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2489 !arm_el_is_aa64(env, 3) &&
2490 !(env->cp15.scr_el3 & SCR_NS));
2491
2492 return ret;
2493}
2494
ea30a4b8
FA
2495/* Macros for accessing a specified CP register bank */
2496#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2497 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2498
2499#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2500 do { \
2501 if (_secure) { \
2502 (_env)->cp15._regname##_s = (_val); \
2503 } else { \
2504 (_env)->cp15._regname##_ns = (_val); \
2505 } \
2506 } while (0)
2507
2508/* Macros for automatically accessing a specific CP register bank depending on
2509 * the current secure state of the system. These macros are not intended for
2510 * supporting instruction translation reads/writes as these are dependent
2511 * solely on the SCR.NS bit and not the mode.
2512 */
2513#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2514 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2515 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2516
2517#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2518 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2519 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2520 (_val))
2521
0442428a 2522void arm_cpu_list(void);
012a906b
GB
2523uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2524 uint32_t cur_el, bool secure);
40f137e1 2525
9ee6e8bb 2526/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2527#ifndef CONFIG_USER_ONLY
2528bool armv7m_nvic_can_take_pending_exception(void *opaque);
2529#else
2530static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2531{
2532 return true;
2533}
2534#endif
2fb50a33
PM
2535/**
2536 * armv7m_nvic_set_pending: mark the specified exception as pending
2537 * @opaque: the NVIC
2538 * @irq: the exception number to mark pending
2539 * @secure: false for non-banked exceptions or for the nonsecure
2540 * version of a banked exception, true for the secure version of a banked
2541 * exception.
2542 *
2543 * Marks the specified exception as pending. Note that we will assert()
2544 * if @secure is true and @irq does not specify one of the fixed set
2545 * of architecturally banked exceptions.
2546 */
2547void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2548/**
2549 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2550 * @opaque: the NVIC
2551 * @irq: the exception number to mark pending
2552 * @secure: false for non-banked exceptions or for the nonsecure
2553 * version of a banked exception, true for the secure version of a banked
2554 * exception.
2555 *
2556 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2557 * exceptions (exceptions generated in the course of trying to take
2558 * a different exception).
2559 */
2560void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2561/**
2562 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2563 * @opaque: the NVIC
2564 * @irq: the exception number to mark pending
2565 * @secure: false for non-banked exceptions or for the nonsecure
2566 * version of a banked exception, true for the secure version of a banked
2567 * exception.
2568 *
2569 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2570 * generated in the course of lazy stacking of FP registers.
2571 */
2572void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2573/**
2574 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2575 * exception, and whether it targets Secure state
2576 * @opaque: the NVIC
2577 * @pirq: set to pending exception number
2578 * @ptargets_secure: set to whether pending exception targets Secure
2579 *
2580 * This function writes the number of the highest priority pending
2581 * exception (the one which would be made active by
2582 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2583 * to true if the current highest priority pending exception should
2584 * be taken to Secure state, false for NS.
2585 */
2586void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2587 bool *ptargets_secure);
5cb18069
PM
2588/**
2589 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2590 * @opaque: the NVIC
2591 *
2592 * Move the current highest priority pending exception from the pending
2593 * state to the active state, and update v7m.exception to indicate that
2594 * it is the exception currently being handled.
5cb18069 2595 */
6c948518 2596void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2597/**
2598 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2599 * @opaque: the NVIC
2600 * @irq: the exception number to complete
5cb18069 2601 * @secure: true if this exception was secure
aa488fe3
PM
2602 *
2603 * Returns: -1 if the irq was not active
2604 * 1 if completing this irq brought us back to base (no active irqs)
2605 * 0 if there is still an irq active after this one was completed
2606 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2607 */
5cb18069 2608int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2609/**
2610 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2611 * @opaque: the NVIC
2612 * @irq: the exception number to mark pending
2613 * @secure: false for non-banked exceptions or for the nonsecure
2614 * version of a banked exception, true for the secure version of a banked
2615 * exception.
2616 *
2617 * Return whether an exception is "ready", i.e. whether the exception is
2618 * enabled and is configured at a priority which would allow it to
2619 * interrupt the current execution priority. This controls whether the
2620 * RDY bit for it in the FPCCR is set.
2621 */
2622bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2623/**
2624 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2625 * @opaque: the NVIC
2626 *
2627 * Returns: the raw execution priority as defined by the v8M architecture.
2628 * This is the execution priority minus the effects of AIRCR.PRIS,
2629 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2630 * (v8M ARM ARM I_PKLD.)
2631 */
2632int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2633/**
2634 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2635 * priority is negative for the specified security state.
2636 * @opaque: the NVIC
2637 * @secure: the security state to test
2638 * This corresponds to the pseudocode IsReqExecPriNeg().
2639 */
2640#ifndef CONFIG_USER_ONLY
2641bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2642#else
2643static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2644{
2645 return false;
2646}
2647#endif
9ee6e8bb 2648
4b6a83fb
PM
2649/* Interface for defining coprocessor registers.
2650 * Registers are defined in tables of arm_cp_reginfo structs
2651 * which are passed to define_arm_cp_regs().
2652 */
2653
2654/* When looking up a coprocessor register we look for it
2655 * via an integer which encodes all of:
2656 * coprocessor number
2657 * Crn, Crm, opc1, opc2 fields
2658 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2659 * or via MRRC/MCRR?)
51a79b03 2660 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2661 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2662 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2663 * For AArch64, there is no 32/64 bit size distinction;
2664 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2665 * and 4 bit CRn and CRm. The encoding patterns are chosen
2666 * to be easy to convert to and from the KVM encodings, and also
2667 * so that the hashtable can contain both AArch32 and AArch64
2668 * registers (to allow for interprocessing where we might run
2669 * 32 bit code on a 64 bit core).
4b6a83fb 2670 */
f5a0a5a5
PM
2671/* This bit is private to our hashtable cpreg; in KVM register
2672 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2673 * in the upper bits of the 64 bit ID.
2674 */
2675#define CP_REG_AA64_SHIFT 28
2676#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2677
51a79b03
PM
2678/* To enable banking of coprocessor registers depending on ns-bit we
2679 * add a bit to distinguish between secure and non-secure cpregs in the
2680 * hashtable.
2681 */
2682#define CP_REG_NS_SHIFT 29
2683#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2684
2685#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2686 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2687 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2688
f5a0a5a5
PM
2689#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2690 (CP_REG_AA64_MASK | \
2691 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2692 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2693 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2694 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2695 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2696 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2697
721fae12
PM
2698/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2699 * version used as a key for the coprocessor register hashtable
2700 */
2701static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2702{
2703 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2704 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2705 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2706 } else {
2707 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2708 cpregid |= (1 << 15);
2709 }
2710
2711 /* KVM is always non-secure so add the NS flag on AArch32 register
2712 * entries.
2713 */
2714 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2715 }
2716 return cpregid;
2717}
2718
2719/* Convert a truncated 32 bit hashtable key into the full
2720 * 64 bit KVM register ID.
2721 */
2722static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2723{
f5a0a5a5
PM
2724 uint64_t kvmid;
2725
2726 if (cpregid & CP_REG_AA64_MASK) {
2727 kvmid = cpregid & ~CP_REG_AA64_MASK;
2728 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2729 } else {
f5a0a5a5
PM
2730 kvmid = cpregid & ~(1 << 15);
2731 if (cpregid & (1 << 15)) {
2732 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2733 } else {
2734 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2735 }
721fae12
PM
2736 }
2737 return kvmid;
2738}
2739
75502672
PM
2740/* Return the highest implemented Exception Level */
2741static inline int arm_highest_el(CPUARMState *env)
2742{
2743 if (arm_feature(env, ARM_FEATURE_EL3)) {
2744 return 3;
2745 }
2746 if (arm_feature(env, ARM_FEATURE_EL2)) {
2747 return 2;
2748 }
2749 return 1;
2750}
2751
15b3f556
PM
2752/* Return true if a v7M CPU is in Handler mode */
2753static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2754{
2755 return env->v7m.exception != 0;
2756}
2757
dcbff19b
GB
2758/* Return the current Exception Level (as per ARMv8; note that this differs
2759 * from the ARMv7 Privilege Level).
2760 */
2761static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2762{
6d54ed3c 2763 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2764 return arm_v7m_is_handler_mode(env) ||
2765 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2766 }
2767
592125f8 2768 if (is_a64(env)) {
f5a0a5a5
PM
2769 return extract32(env->pstate, 2, 2);
2770 }
2771
592125f8
FA
2772 switch (env->uncached_cpsr & 0x1f) {
2773 case ARM_CPU_MODE_USR:
4b6a83fb 2774 return 0;
592125f8
FA
2775 case ARM_CPU_MODE_HYP:
2776 return 2;
2777 case ARM_CPU_MODE_MON:
2778 return 3;
2779 default:
2780 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2781 /* If EL3 is 32-bit then all secure privileged modes run in
2782 * EL3
2783 */
2784 return 3;
2785 }
2786
2787 return 1;
4b6a83fb 2788 }
4b6a83fb
PM
2789}
2790
721fae12
PM
2791/**
2792 * write_list_to_cpustate
2793 * @cpu: ARMCPU
2794 *
2795 * For each register listed in the ARMCPU cpreg_indexes list, write
2796 * its value from the cpreg_values list into the ARMCPUState structure.
2797 * This updates TCG's working data structures from KVM data or
2798 * from incoming migration state.
2799 *
2800 * Returns: true if all register values were updated correctly,
2801 * false if some register was unknown or could not be written.
2802 * Note that we do not stop early on failure -- we will attempt
2803 * writing all registers in the list.
2804 */
2805bool write_list_to_cpustate(ARMCPU *cpu);
2806
2807/**
2808 * write_cpustate_to_list:
2809 * @cpu: ARMCPU
b698e4ee 2810 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2811 *
2812 * For each register listed in the ARMCPU cpreg_indexes list, write
2813 * its value from the ARMCPUState structure into the cpreg_values list.
2814 * This is used to copy info from TCG's working data structures into
2815 * KVM or for outbound migration.
2816 *
b698e4ee
PM
2817 * @kvm_sync is true if we are doing this in order to sync the
2818 * register state back to KVM. In this case we will only update
2819 * values in the list if the previous list->cpustate sync actually
2820 * successfully wrote the CPU state. Otherwise we will keep the value
2821 * that is in the list.
2822 *
721fae12
PM
2823 * Returns: true if all register values were read correctly,
2824 * false if some register was unknown or could not be read.
2825 * Note that we do not stop early on failure -- we will attempt
2826 * reading all registers in the list.
2827 */
b698e4ee 2828bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2829
9ee6e8bb
PB
2830#define ARM_CPUID_TI915T 0x54029152
2831#define ARM_CPUID_TI925T 0x54029252
40f137e1 2832
ba1ba5cc
IM
2833#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2834#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2835#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2836
585df85e
PM
2837#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2838
c732abe2 2839#define cpu_list arm_cpu_list
9467d44c 2840
c1e37810
PM
2841/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2842 *
2843 * If EL3 is 64-bit:
2844 * + NonSecure EL1 & 0 stage 1
2845 * + NonSecure EL1 & 0 stage 2
2846 * + NonSecure EL2
b9f6033c
RH
2847 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2848 * + Secure EL1 & 0
c1e37810
PM
2849 * + Secure EL3
2850 * If EL3 is 32-bit:
2851 * + NonSecure PL1 & 0 stage 1
2852 * + NonSecure PL1 & 0 stage 2
2853 * + NonSecure PL2
b9f6033c
RH
2854 * + Secure PL0
2855 * + Secure PL1
c1e37810
PM
2856 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2857 *
2858 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2859 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2860 * because they may differ in access permissions even if the VA->PA map is
2861 * the same
c1e37810
PM
2862 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2863 * translation, which means that we have one mmu_idx that deals with two
2864 * concatenated translation regimes [this sort of combined s1+2 TLB is
2865 * architecturally permitted]
2866 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2867 * handling via the TLB. The only way to do a stage 1 translation without
2868 * the immediate stage 2 translation is via the ATS or AT system insns,
2869 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2870 * The only use of stage 2 translations is either as part of an s1+2
2871 * lookup or when loading the descriptors during a stage 1 page table walk,
2872 * and in both those cases we don't use the TLB.
c1e37810
PM
2873 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2874 * translation regimes, because they map reasonably well to each other
2875 * and they can't both be active at the same time.
b9f6033c
RH
2876 * 5. we want to be able to use the TLB for accesses done as part of a
2877 * stage1 page table walk, rather than having to walk the stage2 page
2878 * table over and over.
452ef8cb
RH
2879 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2880 * Never (PAN) bit within PSTATE.
c1e37810 2881 *
b9f6033c
RH
2882 * This gives us the following list of cases:
2883 *
2884 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2885 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2886 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2887 * NS EL0 EL2&0
bf05340c 2888 * NS EL2 EL2&0
452ef8cb 2889 * NS EL2 EL2&0 +PAN
c1e37810 2890 * NS EL2 (aka NS PL2)
b9f6033c
RH
2891 * S EL0 EL1&0 (aka S PL0)
2892 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2893 * S EL1 EL1&0 +PAN
c1e37810 2894 * S EL3 (aka S PL1)
c1e37810 2895 *
bf05340c 2896 * for a total of 11 different mmu_idx.
c1e37810 2897 *
3bef7012
PM
2898 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2899 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2900 * NS EL2 if we ever model a Cortex-R52).
2901 *
2902 * M profile CPUs are rather different as they do not have a true MMU.
2903 * They have the following different MMU indexes:
2904 * User
2905 * Privileged
62593718
PM
2906 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2907 * Privileged, execution priority negative (ditto)
66787c78
PM
2908 * If the CPU supports the v8M Security Extension then there are also:
2909 * Secure User
2910 * Secure Privileged
62593718
PM
2911 * Secure User, execution priority negative
2912 * Secure Privileged, execution priority negative
3bef7012 2913 *
8bd5c820
PM
2914 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2915 * are not quite the same -- different CPU types (most notably M profile
2916 * vs A/R profile) would like to use MMU indexes with different semantics,
2917 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2918 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2919 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2920 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2921 * the same for any particular CPU.
2922 * Variables of type ARMMUIdx are always full values, and the core
2923 * index values are in variables of type 'int'.
2924 *
c1e37810
PM
2925 * Our enumeration includes at the end some entries which are not "true"
2926 * mmu_idx values in that they don't have corresponding TLBs and are only
2927 * valid for doing slow path page table walks.
2928 *
2929 * The constant names here are patterned after the general style of the names
2930 * of the AT/ATS operations.
2931 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2932 * For M profile we arrange them to have a bit for priv, a bit for negpri
2933 * and a bit for secure.
c1e37810 2934 */
b9f6033c
RH
2935#define ARM_MMU_IDX_A 0x10 /* A profile */
2936#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2937#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2938
b6ad6062
RDC
2939/* Meanings of the bits for A profile mmu idx values */
2940#define ARM_MMU_IDX_A_NS 0x8
2941
b9f6033c
RH
2942/* Meanings of the bits for M profile mmu idx values */
2943#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2944#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2945#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2946
b9f6033c
RH
2947#define ARM_MMU_IDX_TYPE_MASK \
2948 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2949#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2950
c1e37810 2951typedef enum ARMMMUIdx {
b9f6033c
RH
2952 /*
2953 * A-profile.
2954 */
b6ad6062
RDC
2955 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
2956 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
2957 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
2958 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
2959 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
2960 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
2961 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
2962 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
2963
2964 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2965 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2966 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2967 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2968 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2969 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2970 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
b9f6033c 2971
b9f6033c
RH
2972 /*
2973 * These are not allocated TLBs and are used only for AT system
2974 * instructions or for the first stage of an S12 page table walk.
2975 */
2976 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2977 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2978 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b1a10c86
RDC
2979 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2980 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2981 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2982 /*
2983 * Not allocated a TLB: used only for second stage of an S12 page
2984 * table walk, or for descriptor loads during first stage of an S1
2985 * page table walk. Note that if we ever want to have a TLB for this
2986 * then various TLB flush insns which currently are no-ops or flush
2987 * only stage 1 MMU indexes will need to change to flush stage 2.
2988 */
b1a10c86
RDC
2989 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
2990 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2991
2992 /*
2993 * M-profile.
2994 */
25568316
RH
2995 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2996 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2997 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2998 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2999 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3000 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3001 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3002 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
3003} ARMMMUIdx;
3004
5f09a6df
RH
3005/*
3006 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
3007 * for use when calling tlb_flush_by_mmuidx() and friends.
3008 */
5f09a6df
RH
3009#define TO_CORE_BIT(NAME) \
3010 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3011
8bd5c820 3012typedef enum ARMMMUIdxBit {
5f09a6df 3013 TO_CORE_BIT(E10_0),
b9f6033c 3014 TO_CORE_BIT(E20_0),
5f09a6df 3015 TO_CORE_BIT(E10_1),
452ef8cb 3016 TO_CORE_BIT(E10_1_PAN),
5f09a6df 3017 TO_CORE_BIT(E2),
b9f6033c 3018 TO_CORE_BIT(E20_2),
452ef8cb 3019 TO_CORE_BIT(E20_2_PAN),
5f09a6df 3020 TO_CORE_BIT(SE10_0),
b6ad6062 3021 TO_CORE_BIT(SE20_0),
5f09a6df 3022 TO_CORE_BIT(SE10_1),
b6ad6062 3023 TO_CORE_BIT(SE20_2),
452ef8cb 3024 TO_CORE_BIT(SE10_1_PAN),
b6ad6062
RDC
3025 TO_CORE_BIT(SE20_2_PAN),
3026 TO_CORE_BIT(SE2),
5f09a6df 3027 TO_CORE_BIT(SE3),
5f09a6df
RH
3028
3029 TO_CORE_BIT(MUser),
3030 TO_CORE_BIT(MPriv),
3031 TO_CORE_BIT(MUserNegPri),
3032 TO_CORE_BIT(MPrivNegPri),
3033 TO_CORE_BIT(MSUser),
3034 TO_CORE_BIT(MSPriv),
3035 TO_CORE_BIT(MSUserNegPri),
3036 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3037} ARMMMUIdxBit;
3038
5f09a6df
RH
3039#undef TO_CORE_BIT
3040
f79fbf39 3041#define MMU_USER_IDX 0
c1e37810 3042
9e273ef2
PM
3043/* Indexes used when registering address spaces with cpu_address_space_init */
3044typedef enum ARMASIdx {
3045 ARMASIdx_NS = 0,
3046 ARMASIdx_S = 1,
8bce44a2
RH
3047 ARMASIdx_TagNS = 2,
3048 ARMASIdx_TagS = 3,
9e273ef2
PM
3049} ARMASIdx;
3050
43bbce7f
PM
3051static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3052{
3053 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3054 * CSSELR is RAZ/WI.
3055 */
3056 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3057}
3058
f9fd40eb
PB
3059static inline bool arm_sctlr_b(CPUARMState *env)
3060{
3061 return
3062 /* We need not implement SCTLR.ITD in user-mode emulation, so
3063 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3064 * This lets people run BE32 binaries with "-cpu any".
3065 */
3066#ifndef CONFIG_USER_ONLY
3067 !arm_feature(env, ARM_FEATURE_V7) &&
3068#endif
3069 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3070}
3071
aaec1432 3072uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3073
8061a649
RH
3074static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3075 bool sctlr_b)
3076{
3077#ifdef CONFIG_USER_ONLY
3078 /*
3079 * In system mode, BE32 is modelled in line with the
3080 * architecture (as word-invariant big-endianness), where loads
3081 * and stores are done little endian but from addresses which
3082 * are adjusted by XORing with the appropriate constant. So the
3083 * endianness to use for the raw data access is not affected by
3084 * SCTLR.B.
3085 * In user mode, however, we model BE32 as byte-invariant
3086 * big-endianness (because user-only code cannot tell the
3087 * difference), and so we need to use a data access endianness
3088 * that depends on SCTLR.B.
3089 */
3090 if (sctlr_b) {
3091 return true;
3092 }
3093#endif
3094 /* In 32bit endianness is determined by looking at CPSR's E bit */
3095 return env->uncached_cpsr & CPSR_E;
3096}
3097
3098static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3099{
3100 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3101}
64e40755 3102
ed50ff78
PC
3103/* Return true if the processor is in big-endian mode. */
3104static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3105{
ed50ff78 3106 if (!is_a64(env)) {
8061a649 3107 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3108 } else {
3109 int cur_el = arm_current_el(env);
3110 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3111 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3112 }
ed50ff78
PC
3113}
3114
022c62cb 3115#include "exec/cpu-all.h"
622ed360 3116
fdd1b228 3117/*
a378206a
RH
3118 * We have more than 32-bits worth of state per TB, so we split the data
3119 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3120 * We collect these two parts in CPUARMTBFlags where they are named
3121 * flags and flags2 respectively.
fdd1b228 3122 *
a378206a
RH
3123 * The flags that are shared between all execution modes, TBFLAG_ANY,
3124 * are stored in flags. The flags that are specific to a given mode
3125 * are stores in flags2. Since cs_base is sized on the configured
3126 * address size, flags2 always has 64-bits for A64, and a minimum of
3127 * 32-bits for A32 and M32.
3128 *
3129 * The bits for 32-bit A-profile and M-profile partially overlap:
3130 *
5896f392
RH
3131 * 31 23 11 10 0
3132 * +-------------+----------+----------------+
3133 * | | | TBFLAG_A32 |
3134 * | TBFLAG_AM32 | +-----+----------+
3135 * | | |TBFLAG_M32|
3136 * +-------------+----------------+----------+
26702213 3137 * 31 23 6 5 0
79cabf1f 3138 *
fdd1b228 3139 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3140 */
eee81d41
RH
3141FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3142FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3143FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3144FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3145FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3146/* Target EL if we take a floating-point-disabled exception */
eee81d41 3147FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3148/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3149FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3150FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
79cabf1f 3151
8bd587c1 3152/*
79cabf1f 3153 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3154 */
5896f392
RH
3155FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3156FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3157
79cabf1f
RH
3158/*
3159 * Bit usage when in AArch32 state, for A-profile only.
3160 */
5896f392
RH
3161FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3162FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3163/*
3164 * We store the bottom two bits of the CPAR as TB flags and handle
3165 * checks on the other bits at runtime. This shares the same bits as
3166 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3167 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3168 */
5896f392
RH
3169FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3170FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3171FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3172FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3173/*
3174 * Indicates whether cp register reads and writes by guest code should access
3175 * the secure or nonsecure bank of banked registers; note that this is not
3176 * the same thing as the current security state of the processor!
3177 */
5896f392 3178FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3179/*
3180 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3181 * This requires an SME trap from AArch32 mode when using NEON.
3182 */
3183FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3184
3185/*
3186 * Bit usage when in AArch32 state, for M-profile only.
3187 */
3188/* Handler (ie not Thread) mode */
5896f392 3189FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3190/* Whether we should generate stack-limit checks */
5896f392 3191FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3192/* Set if FPCCR.LSPACT is set */
5896f392 3193FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3194/* Set if we must create a new FP context */
5896f392 3195FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3196/* Set if FPCCR.S does not match current security state */
5896f392 3197FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3198/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3199FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
79cabf1f
RH
3200
3201/*
3202 * Bit usage when in AArch64 state
3203 */
476a4692 3204FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3205FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3206/* The current vector length, either NVL or SVL. */
3207FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3208FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3209FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3210FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3211FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3212FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3213FIELD(TBFLAG_A64, ATA, 15, 1)
3214FIELD(TBFLAG_A64, TCMA, 16, 2)
3215FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3216FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3217FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3218FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3219FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3220FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3221/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3222FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
a1705768 3223
a729a46b
RH
3224/*
3225 * Helpers for using the above.
3226 */
3227#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3228 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3229#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3230 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3231#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3232 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3233#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3234 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3235#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3236 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3237
3902bfc6 3238#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3239#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3240#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3241#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3242#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3243
fb901c90
RH
3244/**
3245 * cpu_mmu_index:
3246 * @env: The cpu environment
3247 * @ifetch: True for code access, false for data access.
3248 *
3249 * Return the core mmu index for the current translation regime.
3250 * This function is used by generic TCG code paths.
3251 */
3252static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3253{
a729a46b 3254 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3255}
3256
8b599e5c
RH
3257/**
3258 * sve_vq
3259 * @env: the cpu context
3260 *
3261 * Return the VL cached within env->hflags, in units of quadwords.
3262 */
3263static inline int sve_vq(CPUARMState *env)
3264{
3265 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3266}
3267
5d7953ad
RH
3268/**
3269 * sme_vq
3270 * @env: the cpu context
3271 *
3272 * Return the SVL cached within env->hflags, in units of quadwords.
3273 */
3274static inline int sme_vq(CPUARMState *env)
3275{
3276 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3277}
3278
f9fd40eb
PB
3279static inline bool bswap_code(bool sctlr_b)
3280{
3281#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3282 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3283 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3284 * would also end up as a mixed-endian mode with BE code, LE data.
3285 */
3286 return
ee3eb3a7 3287#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3288 1 ^
3289#endif
3290 sctlr_b;
3291#else
e334bd31
PB
3292 /* All code access in ARM is little endian, and there are no loaders
3293 * doing swaps that need to be reversed
f9fd40eb
PB
3294 */
3295 return 0;
3296#endif
3297}
3298
c3ae85fc
PB
3299#ifdef CONFIG_USER_ONLY
3300static inline bool arm_cpu_bswap_data(CPUARMState *env)
3301{
3302 return
ee3eb3a7 3303#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3304 1 ^
3305#endif
3306 arm_cpu_data_is_big_endian(env);
3307}
3308#endif
3309
a9e01311
RH
3310void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3311 target_ulong *cs_base, uint32_t *flags);
6b917547 3312
98128601
RH
3313enum {
3314 QEMU_PSCI_CONDUIT_DISABLED = 0,
3315 QEMU_PSCI_CONDUIT_SMC = 1,
3316 QEMU_PSCI_CONDUIT_HVC = 2,
3317};
3318
017518c1
PM
3319#ifndef CONFIG_USER_ONLY
3320/* Return the address space index to use for a memory access */
3321static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3322{
3323 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3324}
5ce4ff65
PM
3325
3326/* Return the AddressSpace to use for a memory access
3327 * (which depends on whether the access is S or NS, and whether
3328 * the board gave us a separate AddressSpace for S accesses).
3329 */
3330static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3331{
3332 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3333}
017518c1
PM
3334#endif
3335
bd7d00fc 3336/**
b5c53d1b
AL
3337 * arm_register_pre_el_change_hook:
3338 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3339 * CPU changes exception level or mode. The hook function will be
3340 * passed a pointer to the ARMCPU and the opaque data pointer passed
3341 * to this function when the hook was registered.
b5c53d1b
AL
3342 *
3343 * Note that if a pre-change hook is called, any registered post-change hooks
3344 * are guaranteed to subsequently be called.
bd7d00fc 3345 */
b5c53d1b 3346void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3347 void *opaque);
b5c53d1b
AL
3348/**
3349 * arm_register_el_change_hook:
3350 * Register a hook function which will be called immediately after this
3351 * CPU changes exception level or mode. The hook function will be
3352 * passed a pointer to the ARMCPU and the opaque data pointer passed
3353 * to this function when the hook was registered.
3354 *
3355 * Note that any registered hooks registered here are guaranteed to be called
3356 * if pre-change hooks have been.
3357 */
3358void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3359 *opaque);
bd7d00fc 3360
3d74e2e9
RH
3361/**
3362 * arm_rebuild_hflags:
3363 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3364 */
3365void arm_rebuild_hflags(CPUARMState *env);
3366
9a2b5256
RH
3367/**
3368 * aa32_vfp_dreg:
3369 * Return a pointer to the Dn register within env in 32-bit mode.
3370 */
3371static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3372{
c39c2b90 3373 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3374}
3375
3376/**
3377 * aa32_vfp_qreg:
3378 * Return a pointer to the Qn register within env in 32-bit mode.
3379 */
3380static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3381{
c39c2b90 3382 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3383}
3384
3385/**
3386 * aa64_vfp_qreg:
3387 * Return a pointer to the Qn register within env in 64-bit mode.
3388 */
3389static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3390{
c39c2b90 3391 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3392}
3393
028e2a7b 3394/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3395extern const uint64_t pred_esz_masks[5];
028e2a7b 3396
149d3b31
RH
3397/* Helper for the macros below, validating the argument type. */
3398static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3399{
3400 return x;
3401}
3402
3403/*
3404 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3405 * Using these should be a bit more self-documenting than using the
3406 * generic target bits directly.
3407 */
3408#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3409#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3410
be5d6f48
RH
3411/*
3412 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3413 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3414 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3415 */
7f2cf760
RH
3416#define PAGE_BTI PAGE_TARGET_1
3417#define PAGE_MTE PAGE_TARGET_2
3418#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3419
0e0c030c
RH
3420#ifdef TARGET_TAGGED_ADDRESSES
3421/**
3422 * cpu_untagged_addr:
3423 * @cs: CPU context
3424 * @x: tagged address
3425 *
3426 * Remove any address tag from @x. This is explicitly related to the
3427 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3428 *
3429 * There should be a better place to put this, but we need this in
3430 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3431 */
3432static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3433{
3434 ARMCPU *cpu = ARM_CPU(cs);
3435 if (cpu->env.tagged_addr_enable) {
3436 /*
3437 * TBI is enabled for userspace but not kernelspace addresses.
3438 * Only clear the tag if bit 55 is clear.
3439 */
3440 x &= sextract64(x, 0, 56);
3441 }
3442 return x;
3443}
3444#endif
3445
873b73c0
PM
3446/*
3447 * Naming convention for isar_feature functions:
3448 * Functions which test 32-bit ID registers should have _aa32_ in
3449 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3450 * _aa64_ in their name. These must only be used in code where we
3451 * know for certain that the CPU has AArch32 or AArch64 respectively
3452 * or where the correct answer for a CPU which doesn't implement that
3453 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3454 * system registers that are specific to that CPU state, for "should
3455 * we let this system register bit be set" tests where the 32-bit
3456 * flavour of the register doesn't have the bit, and so on).
3457 * Functions which simply ask "does this feature exist at all" have
3458 * _any_ in their name, and always return the logical OR of the _aa64_
3459 * and the _aa32_ function.
873b73c0
PM
3460 */
3461
962fcbf2
RH
3462/*
3463 * 32-bit feature tests via id registers.
3464 */
873b73c0 3465static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3466{
3467 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3468}
3469
873b73c0 3470static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3471{
3472 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3473}
05903f03
PM
3474
3475static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3476{
3477 /* (M-profile) low-overhead loops and branch future */
3478 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3479}
7e0cf8b4 3480
873b73c0 3481static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3482{
3483 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3484}
3485
962fcbf2
RH
3486static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3487{
3488 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3489}
3490
3491static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3492{
3493 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3494}
3495
3496static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3497{
3498 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3499}
3500
3501static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3502{
3503 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3504}
3505
3506static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3507{
3508 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3509}
3510
3511static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3512{
3513 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3514}
3515
3516static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3517{
3518 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3519}
3520
6c1f6f27
RH
3521static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3522{
3523 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3524}
3525
962fcbf2
RH
3526static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3527{
3528 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3529}
3530
87732318
RH
3531static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3532{
3533 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3534}
3535
9888bd1e
RH
3536static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3537{
3538 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3539}
3540
cb570bd3
RH
3541static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3542{
3543 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3544}
3545
c0b9e8a4
RH
3546static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3547{
3548 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3549}
3550
51879c67
RH
3551static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3552{
3553 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3554}
3555
46f4976f
PM
3556static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3557{
3558 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3559}
3560
dfc523a8
PM
3561static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3562{
3563 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3564}
3565
83ff3d6a
PM
3566static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3567{
3568 /*
3569 * Return true if M-profile state handling insns
3570 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3571 */
3572 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3573}
3574
5763190f
RH
3575static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3576{
dfc523a8
PM
3577 /* Sadly this is encoded differently for A-profile and M-profile */
3578 if (isar_feature_aa32_mprofile(id)) {
3579 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3580 } else {
3581 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3582 }
5763190f
RH
3583}
3584
7df6a1ff
PM
3585static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3586{
3587 /*
3588 * Return true if MVE is supported (either integer or floating point).
3589 * We must check for M-profile as the MVFR1 field means something
3590 * else for A-profile.
3591 */
3592 return isar_feature_aa32_mprofile(id) &&
3593 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3594}
3595
3596static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3597{
3598 /*
3599 * Return true if MVE is supported (either integer or floating point).
3600 * We must check for M-profile as the MVFR1 field means something
3601 * else for A-profile.
3602 */
3603 return isar_feature_aa32_mprofile(id) &&
3604 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3605}
3606
7fbc6a40
RH
3607static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3608{
3609 /*
3610 * Return true if either VFP or SIMD is implemented.
3611 * In this case, a minimum of VFP w/ D0-D15.
3612 */
3613 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3614}
3615
0e13ba78 3616static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3617{
3618 /* Return true if D16-D31 are implemented */
b3a816f6 3619 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3620}
3621
266bd25c
PM
3622static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3623{
b3a816f6 3624 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3625}
3626
f67957e1
RH
3627static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3628{
3629 /* Return true if CPU supports single precision floating point, VFPv2 */
3630 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3631}
3632
3633static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3634{
3635 /* Return true if CPU supports single precision floating point, VFPv3 */
3636 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3637}
3638
c4ff8735 3639static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3640{
c4ff8735 3641 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3642 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3643}
3644
f67957e1
RH
3645static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3646{
3647 /* Return true if CPU supports double precision floating point, VFPv3 */
3648 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3649}
3650
7d63183f
RH
3651static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3652{
3653 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3654}
3655
602f6e42
PM
3656/*
3657 * We always set the FP and SIMD FP16 fields to indicate identical
3658 * levels of support (assuming SIMD is implemented at all), so
3659 * we only need one set of accessors.
3660 */
3661static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3662{
b3a816f6 3663 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3664}
3665
3666static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3667{
b3a816f6 3668 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3669}
3670
c52881bb
RH
3671/*
3672 * Note that this ID register field covers both VFP and Neon FMAC,
3673 * so should usually be tested in combination with some other
3674 * check that confirms the presence of whichever of VFP or Neon is
3675 * relevant, to avoid accidentally enabling a Neon feature on
3676 * a VFP-no-Neon core or vice-versa.
3677 */
3678static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3679{
3680 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3681}
3682
c0c760af
PM
3683static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3684{
b3a816f6 3685 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3686}
3687
3688static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3689{
b3a816f6 3690 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3691}
3692
3693static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3694{
b3a816f6 3695 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3696}
3697
3698static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3699{
b3a816f6 3700 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3701}
3702
0ae0326b
PM
3703static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3704{
3705 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3706}
3707
3d6ad6bb
RH
3708static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3709{
10054016 3710 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3711}
3712
3713static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3714{
10054016 3715 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3716}
3717
a793bcd0 3718static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3719{
3720 /* 0xf means "non-standard IMPDEF PMU" */
3721 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3722 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3723}
3724
a793bcd0 3725static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3726{
3727 /* 0xf means "non-standard IMPDEF PMU" */
3728 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3729 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3730}
3731
0b42f4fa
PM
3732static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3733{
3734 /* 0xf means "non-standard IMPDEF PMU" */
3735 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3736 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3737}
3738
4036b7d1
PM
3739static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3740{
3741 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3742}
3743
f6287c24
PM
3744static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3745{
3746 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3747}
3748
957e6155
PM
3749static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3750{
3751 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3752}
3753
ce3125be
PM
3754static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3755{
3756 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3757}
3758
dc8b1853
RC
3759static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3760{
3761 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3762}
3763
f2f68a78
RC
3764static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3765{
3766 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3767}
3768
09754ca8
PM
3769static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3770{
3771 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3772}
3773
ca56aac5
RH
3774static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3775{
3776 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3777}
3778
f94a6df5
PM
3779static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3780{
3781 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3782}
3783
962fcbf2
RH
3784/*
3785 * 64-bit feature tests via id registers.
3786 */
3787static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3788{
3789 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3790}
3791
3792static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3793{
3794 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3795}
3796
3797static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3798{
3799 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3800}
3801
3802static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3803{
3804 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3805}
3806
3807static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3808{
3809 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3810}
3811
3812static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3813{
3814 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3815}
3816
3817static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3818{
3819 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3820}
3821
3822static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3823{
3824 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3825}
3826
3827static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3828{
3829 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3830}
3831
3832static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3833{
3834 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3835}
3836
3837static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3838{
3839 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3840}
3841
3842static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3843{
3844 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3845}
3846
0caa5af8
RH
3847static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3848{
3849 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3850}
3851
b89d9c98
RH
3852static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3853{
3854 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3855}
3856
5ef84f11
RH
3857static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3858{
3859 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3860}
3861
de390645
RH
3862static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3863{
3864 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3865}
3866
6c1f6f27
RH
3867static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3868{
3869 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3870}
3871
962fcbf2
RH
3872static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3873{
3874 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3875}
3876
991ad91b
RH
3877static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3878{
3879 /*
283fc52a
RH
3880 * Return true if any form of pauth is enabled, as this
3881 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3882 */
3883 return (id->id_aa64isar1 &
3884 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3885 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3886 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3887 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3888}
3889
283fc52a
RH
3890static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3891{
3892 /*
3893 * Return true if pauth is enabled with the architected QARMA algorithm.
3894 * QEMU will always set APA+GPA to the same value.
3895 */
3896 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3897}
3898
84940ed8
RC
3899static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3900{
3901 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3902}
3903
7113d618
RC
3904static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3905{
3906 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3907}
3908
9888bd1e
RH
3909static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3910{
3911 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3912}
3913
cb570bd3
RH
3914static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3915{
3916 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3917}
3918
6bea2563
RH
3919static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3920{
3921 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3922}
3923
0d57b499
BM
3924static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3925{
3926 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3927}
3928
3929static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3930{
3931 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3932}
3933
c0b9e8a4
RH
3934static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3935{
3936 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3937}
3938
7d63183f
RH
3939static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3940{
3941 /* We always set the AdvSIMD and FP fields identically. */
3942 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3943}
3944
5763190f
RH
3945static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3946{
3947 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3948 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3949}
3950
0f8d06f1
RH
3951static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3952{
3953 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3954}
3955
10d0ef3e
MN
3956static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3957{
3958 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3959}
3960
6bcbb07a
RH
3961static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3962{
3963 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3964}
3965
25e168ab
RH
3966static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3967{
3968 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3969}
3970
7ac61020
PM
3971static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3972{
3973 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3974}
3975
cd208a1c
RH
3976static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3977{
3978 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3979}
3980
5ca192df
RDC
3981static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3982{
3983 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3984}
3985
8fc2ea21
RH
3986static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3987{
3988 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3989}
3990
2d7137c1
RH
3991static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3992{
3993 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3994}
3995
3d6ad6bb
RH
3996static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3997{
3998 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3999}
4000
4001static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4002{
4003 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4004}
4005
5814d587
RH
4006static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
4007{
4008 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
4009}
4010
9eeb7a1c
RH
4011static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4012{
4013 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4014}
4015
c36c65ea
RDC
4016static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4017{
4018 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4019}
4020
8c7e17ef
PM
4021static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4022{
4023 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4024}
4025
75662f36
PM
4026static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4027{
4028 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4029}
4030
be53b6f4
RH
4031static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4032{
4033 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4034}
4035
c7fd0baa
RH
4036static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4037{
4038 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4039}
4040
4041static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4042{
4043 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4044}
4045
f305bf94
RH
4046static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4047{
4048 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4049}
4050
a793bcd0 4051static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
4052{
4053 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4054 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4055}
4056
a793bcd0 4057static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4058{
54117b90
PM
4059 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4060 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4061}
4062
0b42f4fa
PM
4063static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4064{
4065 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4066 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4067}
4068
2677cf9f
PM
4069static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4070{
4071 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4072}
4073
a1229109
PM
4074static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4075{
4076 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4077}
4078
f7da051f
RH
4079static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4080{
4081 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4082}
4083
ef56c242
RH
4084static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4085{
4086 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4087}
4088
4089static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4090{
4091 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4092 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4093}
4094
4095static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4096{
4097 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4098}
4099
4100static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4101{
4102 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4103 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4104}
4105
957e6155
PM
4106static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4107{
4108 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4109}
4110
0af312b6
RH
4111static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4112{
4113 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4114}
4115
ce3125be
PM
4116static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4117{
4118 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4119}
4120
dc8b1853
RC
4121static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4122{
4123 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4124}
4125
7cb1e618
RH
4126static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4127{
4128 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4129 if (key >= 2) {
4130 return true; /* FEAT_CSV2_2 */
4131 }
4132 if (key == 1) {
4133 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4134 return key >= 2; /* FEAT_CSV2_1p2 */
4135 }
4136 return false;
4137}
4138
f2f68a78
RC
4139static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4140{
4141 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4142}
4143
ca56aac5
RH
4144static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4145{
4146 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4147}
4148
2dc10fa2
RH
4149static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4150{
4151 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4152}
4153
e3a56131
RH
4154static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4155{
4156 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4157}
4158
4159static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4160{
4161 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4162}
4163
cb9c33b8
RH
4164static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4165{
4166 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4167}
4168
c0b9e8a4
RH
4169static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4170{
4171 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4172}
4173
3358eb3f
RH
4174static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4175{
4176 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4177}
4178
3cc7a88e
RH
4179static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4180{
4181 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4182}
4183
2867039a
RH
4184static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4185{
4186 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4187}
4188
4f26756b
SL
4189static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4190{
4191 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4192}
4193
4194static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4195{
4196 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4197}
4198
414c54d5
RH
4199static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4200{
4201 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4202}
4203
4204static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4205{
4206 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4207}
4208
4209static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4210{
4211 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4212}
4213
f94a6df5
PM
4214static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4215{
4216 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4217}
4218
6e61f839
PM
4219/*
4220 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4221 */
4222static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4223{
4224 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4225}
4226
22e57073
PM
4227static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4228{
4229 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4230}
4231
a793bcd0 4232static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4233{
a793bcd0 4234 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4235}
4236
a793bcd0 4237static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4238{
a793bcd0 4239 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4240}
4241
0b42f4fa
PM
4242static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4243{
4244 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4245}
4246
957e6155
PM
4247static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4248{
4249 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4250}
4251
ce3125be
PM
4252static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4253{
4254 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4255}
4256
ca56aac5
RH
4257static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4258{
4259 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4260}
4261
25e168ab
RH
4262static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4263{
4264 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4265}
4266
962fcbf2
RH
4267/*
4268 * Forward to the above feature tests given an ARMCPU pointer.
4269 */
4270#define cpu_isar_feature(name, cpu) \
4271 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4272
2c0262af 4273#endif