]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Stop assuming DBGDIDR always exists
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
b8a9e8f1
FB
31#define EXCP_UDEF 1 /* undefined instruction */
32#define EXCP_SWI 2 /* software interrupt */
33#define EXCP_PREFETCH_ABORT 3
34#define EXCP_DATA_ABORT 4
b5ff1b31
FB
35#define EXCP_IRQ 5
36#define EXCP_FIQ 6
06c949e6 37#define EXCP_BKPT 7
9ee6e8bb 38#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 39#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 40#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 41#define EXCP_HYP_TRAP 12
e0d6e6a5 42#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
43#define EXCP_VIRQ 14
44#define EXCP_VFIQ 15
19a6e31c 45#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 46#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 47#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 48#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 49#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
50#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
53
54#define ARMV7M_EXCP_RESET 1
55#define ARMV7M_EXCP_NMI 2
56#define ARMV7M_EXCP_HARD 3
57#define ARMV7M_EXCP_MEM 4
58#define ARMV7M_EXCP_BUS 5
59#define ARMV7M_EXCP_USAGE 6
1e577cc7 60#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
acf94941
PM
66/* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
74 */
4a16724f
PM
75enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
79};
acf94941 80
403946c0
RH
81/* ARM-specific interrupt pending bits. */
82#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
83#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 85
e4fe830b
PM
86/* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
91 */
92#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 94#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
95#else
96#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
98#endif
99
136e67e9 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
101#define ARM_CPU_IRQ 0
102#define ARM_CPU_FIQ 1
136e67e9
EI
103#define ARM_CPU_VIRQ 2
104#define ARM_CPU_VFIQ 3
403946c0 105
aaa1f954
EI
106/* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
109 */
110#define TARGET_INSN_START_EXTRA_WORDS 2
111
112/* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
116 */
117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 119
b7bcbe95
FB
120/* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
126 */
b7bcbe95 127
200bf5b7
AB
128/**
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
134 */
135typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139} DynamicGDBXMLInfo;
140
55d284af
PM
141/* CPU state for each instance of a generic timer (in cp15 c14) */
142typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 144 uint64_t ctl; /* Timer Control register */
55d284af
PM
145} ARMGenericTimer;
146
8c94b071
RH
147#define GTIMER_PHYS 0
148#define GTIMER_VIRT 1
149#define GTIMER_HYP 2
150#define GTIMER_SEC 3
151#define GTIMER_HYPVIRT 4
152#define NUM_GTIMERS 5
55d284af 153
11f136ee
FA
154typedef struct {
155 uint64_t raw_tcr;
156 uint32_t mask;
157 uint32_t base_mask;
158} TCR;
159
c39c2b90
RH
160/* Define a maximum sized vector register.
161 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
162 * For 64-bit, this is a 2048-bit SVE register.
163 *
164 * Note that the mapping between S, D, and Q views of the register bank
165 * differs between AArch64 and AArch32.
166 * In AArch32:
167 * Qn = regs[n].d[1]:regs[n].d[0]
168 * Dn = regs[n / 2].d[n & 1]
169 * Sn = regs[n / 4].d[n % 4 / 2],
170 * bits 31..0 for even n, and bits 63..32 for odd n
171 * (and regs[16] to regs[31] are inaccessible)
172 * In AArch64:
173 * Zn = regs[n].d[*]
174 * Qn = regs[n].d[1]:regs[n].d[0]
175 * Dn = regs[n].d[0]
176 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 177 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
178 *
179 * This corresponds to the architecturally defined mapping between
180 * the two execution states, and means we do not need to explicitly
181 * map these registers when changing states.
182 *
183 * Align the data for use with TCG host vector operations.
184 */
185
186#ifdef TARGET_AARCH64
187# define ARM_MAX_VQ 16
0df9142d 188void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
189#else
190# define ARM_MAX_VQ 1
0df9142d 191static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
192#endif
193
194typedef struct ARMVectorReg {
195 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
196} ARMVectorReg;
197
3c7d3086 198#ifdef TARGET_AARCH64
991ad91b 199/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 200typedef struct ARMPredicateReg {
46417784 201 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 202} ARMPredicateReg;
991ad91b
RH
203
204/* In AArch32 mode, PAC keys do not exist at all. */
205typedef struct ARMPACKey {
206 uint64_t lo, hi;
207} ARMPACKey;
3c7d3086
RH
208#endif
209
c39c2b90 210
2c0262af 211typedef struct CPUARMState {
b5ff1b31 212 /* Regs for current mode. */
2c0262af 213 uint32_t regs[16];
3926cc84
AG
214
215 /* 32/64 switch only happens when taking and returning from
216 * exceptions so the overlap semantics are taken care of then
217 * instead of having a complicated union.
218 */
219 /* Regs for A64 mode. */
220 uint64_t xregs[32];
221 uint64_t pc;
d356312f
PM
222 /* PSTATE isn't an architectural register for ARMv8. However, it is
223 * convenient for us to assemble the underlying state into a 32 bit format
224 * identical to the architectural format used for the SPSR. (This is also
225 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
226 * 'pstate' register are.) Of the PSTATE bits:
227 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
228 * semantics as for AArch32, as described in the comments on each field)
229 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 230 * DAIF (exception masks) are kept in env->daif
f6e52eaa 231 * BTYPE is kept in env->btype
d356312f 232 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
233 */
234 uint32_t pstate;
235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236
fdd1b228
RH
237 /* Cached TBFLAGS state. See below for which bits are included. */
238 uint32_t hflags;
239
b90372ad 240 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 241 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
242 the whole CPSR. */
243 uint32_t uncached_cpsr;
244 uint32_t spsr;
245
246 /* Banked registers. */
28c9457d 247 uint64_t banked_spsr[8];
0b7d409d
FA
248 uint32_t banked_r13[8];
249 uint32_t banked_r14[8];
3b46e624 250
b5ff1b31
FB
251 /* These hold r8-r12. */
252 uint32_t usr_regs[5];
253 uint32_t fiq_regs[5];
3b46e624 254
2c0262af
FB
255 /* cpsr flag cache for faster execution */
256 uint32_t CF; /* 0 or 1 */
257 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
258 uint32_t NF; /* N is bit 31. All other bits are undefined. */
259 uint32_t ZF; /* Z set if zero. */
99c475ab 260 uint32_t QF; /* 0 or 1 */
9ee6e8bb 261 uint32_t GE; /* cpsr[19:16] */
b26eefb6 262 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 263 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 264 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 265 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 266
1b174238 267 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 268 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 269
b5ff1b31
FB
270 /* System control coprocessor (cp15) */
271 struct {
40f137e1 272 uint32_t c0_cpuid;
b85a1fd6
FA
273 union { /* Cache size selection */
274 struct {
275 uint64_t _unused_csselr0;
276 uint64_t csselr_ns;
277 uint64_t _unused_csselr1;
278 uint64_t csselr_s;
279 };
280 uint64_t csselr_el[4];
281 };
137feaa9
FA
282 union { /* System control register. */
283 struct {
284 uint64_t _unused_sctlr;
285 uint64_t sctlr_ns;
286 uint64_t hsctlr;
287 uint64_t sctlr_s;
288 };
289 uint64_t sctlr_el[4];
290 };
7ebd5f2e 291 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 292 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 293 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 294 uint64_t sder; /* Secure debug enable register. */
77022576 295 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
296 union { /* MMU translation table base 0. */
297 struct {
298 uint64_t _unused_ttbr0_0;
299 uint64_t ttbr0_ns;
300 uint64_t _unused_ttbr0_1;
301 uint64_t ttbr0_s;
302 };
303 uint64_t ttbr0_el[4];
304 };
305 union { /* MMU translation table base 1. */
306 struct {
307 uint64_t _unused_ttbr1_0;
308 uint64_t ttbr1_ns;
309 uint64_t _unused_ttbr1_1;
310 uint64_t ttbr1_s;
311 };
312 uint64_t ttbr1_el[4];
313 };
b698e9cf 314 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
315 /* MMU translation table base control. */
316 TCR tcr_el[4];
68e9c2fe 317 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
318 uint32_t c2_data; /* MPU data cacheable bits. */
319 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
320 union { /* MMU domain access control register
321 * MPU write buffer control.
322 */
323 struct {
324 uint64_t dacr_ns;
325 uint64_t dacr_s;
326 };
327 struct {
328 uint64_t dacr32_el2;
329 };
330 };
7e09797c
PM
331 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
332 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 333 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 334 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
335 union { /* Fault status registers. */
336 struct {
337 uint64_t ifsr_ns;
338 uint64_t ifsr_s;
339 };
340 struct {
341 uint64_t ifsr32_el2;
342 };
343 };
4a7e2d73
FA
344 union {
345 struct {
346 uint64_t _unused_dfsr;
347 uint64_t dfsr_ns;
348 uint64_t hsr;
349 uint64_t dfsr_s;
350 };
351 uint64_t esr_el[4];
352 };
ce819861 353 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
354 union { /* Fault address registers. */
355 struct {
356 uint64_t _unused_far0;
357#ifdef HOST_WORDS_BIGENDIAN
358 uint32_t ifar_ns;
359 uint32_t dfar_ns;
360 uint32_t ifar_s;
361 uint32_t dfar_s;
362#else
363 uint32_t dfar_ns;
364 uint32_t ifar_ns;
365 uint32_t dfar_s;
366 uint32_t ifar_s;
367#endif
368 uint64_t _unused_far3;
369 };
370 uint64_t far_el[4];
371 };
59e05530 372 uint64_t hpfar_el2;
2a5a9abd 373 uint64_t hstr_el2;
01c097f7
FA
374 union { /* Translation result. */
375 struct {
376 uint64_t _unused_par_0;
377 uint64_t par_ns;
378 uint64_t _unused_par_1;
379 uint64_t par_s;
380 };
381 uint64_t par_el[4];
382 };
6cb0b013 383
b5ff1b31
FB
384 uint32_t c9_insn; /* Cache lockdown registers. */
385 uint32_t c9_data;
8521466b
AF
386 uint64_t c9_pmcr; /* performance monitor control register */
387 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
388 uint64_t c9_pmovsr; /* perf monitor overflow status */
389 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 390 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 391 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
392 union { /* Memory attribute redirection */
393 struct {
394#ifdef HOST_WORDS_BIGENDIAN
395 uint64_t _unused_mair_0;
396 uint32_t mair1_ns;
397 uint32_t mair0_ns;
398 uint64_t _unused_mair_1;
399 uint32_t mair1_s;
400 uint32_t mair0_s;
401#else
402 uint64_t _unused_mair_0;
403 uint32_t mair0_ns;
404 uint32_t mair1_ns;
405 uint64_t _unused_mair_1;
406 uint32_t mair0_s;
407 uint32_t mair1_s;
408#endif
409 };
410 uint64_t mair_el[4];
411 };
fb6c91ba
GB
412 union { /* vector base address register */
413 struct {
414 uint64_t _unused_vbar;
415 uint64_t vbar_ns;
416 uint64_t hvbar;
417 uint64_t vbar_s;
418 };
419 uint64_t vbar_el[4];
420 };
e89e51a1 421 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
422 struct { /* FCSE PID. */
423 uint32_t fcseidr_ns;
424 uint32_t fcseidr_s;
425 };
426 union { /* Context ID. */
427 struct {
428 uint64_t _unused_contextidr_0;
429 uint64_t contextidr_ns;
430 uint64_t _unused_contextidr_1;
431 uint64_t contextidr_s;
432 };
433 uint64_t contextidr_el[4];
434 };
435 union { /* User RW Thread register. */
436 struct {
437 uint64_t tpidrurw_ns;
438 uint64_t tpidrprw_ns;
439 uint64_t htpidr;
440 uint64_t _tpidr_el3;
441 };
442 uint64_t tpidr_el[4];
443 };
444 /* The secure banks of these registers don't map anywhere */
445 uint64_t tpidrurw_s;
446 uint64_t tpidrprw_s;
447 uint64_t tpidruro_s;
448
449 union { /* User RO Thread register. */
450 uint64_t tpidruro_ns;
451 uint64_t tpidrro_el[1];
452 };
a7adc4b7
PM
453 uint64_t c14_cntfrq; /* Counter Frequency register */
454 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 455 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 456 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 457 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 458 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
459 uint32_t c15_ticonfig; /* TI925T configuration byte. */
460 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
461 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
462 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
463 uint32_t c15_config_base_address; /* SCU base address. */
464 uint32_t c15_diagnostic; /* diagnostic register */
465 uint32_t c15_power_diagnostic;
466 uint32_t c15_power_control; /* power control */
0b45451e
PM
467 uint64_t dbgbvr[16]; /* breakpoint value registers */
468 uint64_t dbgbcr[16]; /* breakpoint control registers */
469 uint64_t dbgwvr[16]; /* watchpoint value registers */
470 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 471 uint64_t mdscr_el1;
1424ca8d 472 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 473 uint64_t mdcr_el2;
5513c3ab 474 uint64_t mdcr_el3;
5d05b9d4
AL
475 /* Stores the architectural value of the counter *the last time it was
476 * updated* by pmccntr_op_start. Accesses should always be surrounded
477 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
478 * architecturally-correct value is being read/set.
7c2cb42b 479 */
c92c0687 480 uint64_t c15_ccnt;
5d05b9d4
AL
481 /* Stores the delta between the architectural value and the underlying
482 * cycle count during normal operation. It is used to update c15_ccnt
483 * to be the correct architectural value before accesses. During
484 * accesses, c15_ccnt_delta contains the underlying count being used
485 * for the access, after which it reverts to the delta value in
486 * pmccntr_op_finish.
487 */
488 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
489 uint64_t c14_pmevcntr[31];
490 uint64_t c14_pmevcntr_delta[31];
491 uint64_t c14_pmevtyper[31];
8521466b 492 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 493 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 494 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 495 } cp15;
40f137e1 496
9ee6e8bb 497 struct {
fb602cb7
PM
498 /* M profile has up to 4 stack pointers:
499 * a Main Stack Pointer and a Process Stack Pointer for each
500 * of the Secure and Non-Secure states. (If the CPU doesn't support
501 * the security extension then it has only two SPs.)
502 * In QEMU we always store the currently active SP in regs[13],
503 * and the non-active SP for the current security state in
504 * v7m.other_sp. The stack pointers for the inactive security state
505 * are stored in other_ss_msp and other_ss_psp.
506 * switch_v7m_security_state() is responsible for rearranging them
507 * when we change security state.
508 */
9ee6e8bb 509 uint32_t other_sp;
fb602cb7
PM
510 uint32_t other_ss_msp;
511 uint32_t other_ss_psp;
4a16724f
PM
512 uint32_t vecbase[M_REG_NUM_BANKS];
513 uint32_t basepri[M_REG_NUM_BANKS];
514 uint32_t control[M_REG_NUM_BANKS];
515 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
516 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
517 uint32_t hfsr; /* HardFault Status */
518 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 519 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 520 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 521 uint32_t bfar; /* BusFault Address */
bed079da 522 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 523 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 524 int exception;
4a16724f
PM
525 uint32_t primask[M_REG_NUM_BANKS];
526 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 527 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 528 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 529 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 530 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
531 uint32_t msplim[M_REG_NUM_BANKS];
532 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
533 uint32_t fpcar[M_REG_NUM_BANKS];
534 uint32_t fpccr[M_REG_NUM_BANKS];
535 uint32_t fpdscr[M_REG_NUM_BANKS];
536 uint32_t cpacr[M_REG_NUM_BANKS];
537 uint32_t nsacr;
9ee6e8bb
PB
538 } v7m;
539
abf1172f
PM
540 /* Information associated with an exception about to be taken:
541 * code which raises an exception must set cs->exception_index and
542 * the relevant parts of this structure; the cpu_do_interrupt function
543 * will then set the guest-visible registers as part of the exception
544 * entry process.
545 */
546 struct {
547 uint32_t syndrome; /* AArch64 format syndrome register */
548 uint32_t fsr; /* AArch32 format fault status register info */
549 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 550 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
551 /* If we implement EL2 we will also need to store information
552 * about the intermediate physical address for stage 2 faults.
553 */
554 } exception;
555
202ccb6b
DG
556 /* Information associated with an SError */
557 struct {
558 uint8_t pending;
559 uint8_t has_esr;
560 uint64_t esr;
561 } serror;
562
ed89f078
PM
563 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
564 uint32_t irq_line_state;
565
fe1479c3
PB
566 /* Thumb-2 EE state. */
567 uint32_t teecr;
568 uint32_t teehbr;
569
b7bcbe95
FB
570 /* VFP coprocessor state. */
571 struct {
c39c2b90 572 ARMVectorReg zregs[32];
b7bcbe95 573
3c7d3086
RH
574#ifdef TARGET_AARCH64
575 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 576#define FFR_PRED_NUM 16
3c7d3086 577 ARMPredicateReg pregs[17];
516e246a
RH
578 /* Scratch space for aa64 sve predicate temporary. */
579 ARMPredicateReg preg_tmp;
3c7d3086
RH
580#endif
581
b7bcbe95 582 /* We store these fpcsr fields separately for convenience. */
a4d58462 583 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
584 int vec_len;
585 int vec_stride;
586
a4d58462
RH
587 uint32_t xregs[16];
588
516e246a 589 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 590 uint32_t scratch[8];
3b46e624 591
d81ce0ef
AB
592 /* There are a number of distinct float control structures:
593 *
594 * fp_status: is the "normal" fp status.
595 * fp_status_fp16: used for half-precision calculations
596 * standard_fp_status : the ARM "Standard FPSCR Value"
597 *
598 * Half-precision operations are governed by a separate
599 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
600 * status structure to control this.
601 *
602 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
603 * round-to-nearest and is used by any operations (generally
604 * Neon) which the architecture defines as controlled by the
605 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
606 *
607 * To avoid having to transfer exception bits around, we simply
608 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 609 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
610 * only thing which needs to read the exception flags being
611 * an explicit FPSCR read.
612 */
53cd6637 613 float_status fp_status;
d81ce0ef 614 float_status fp_status_f16;
3a492f3a 615 float_status standard_fp_status;
5be5e8ed
RH
616
617 /* ZCR_EL[1-3] */
618 uint64_t zcr_el[4];
b7bcbe95 619 } vfp;
03d05e2d
PM
620 uint64_t exclusive_addr;
621 uint64_t exclusive_val;
622 uint64_t exclusive_high;
b7bcbe95 623
18c9b560
AZ
624 /* iwMMXt coprocessor state. */
625 struct {
626 uint64_t regs[16];
627 uint64_t val;
628
629 uint32_t cregs[16];
630 } iwmmxt;
631
991ad91b 632#ifdef TARGET_AARCH64
108b3ba8
RH
633 struct {
634 ARMPACKey apia;
635 ARMPACKey apib;
636 ARMPACKey apda;
637 ARMPACKey apdb;
638 ARMPACKey apga;
639 } keys;
991ad91b
RH
640#endif
641
ce4defa0
PB
642#if defined(CONFIG_USER_ONLY)
643 /* For usermode syscall translation. */
644 int eabi;
645#endif
646
46747d15 647 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
648 struct CPUWatchpoint *cpu_watchpoint[16];
649
1f5c00cf
AB
650 /* Fields up to this point are cleared by a CPU reset */
651 struct {} end_reset_fields;
652
e8b5fae5 653 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 654
581be094 655 /* Internal CPU feature flags. */
918f5dca 656 uint64_t features;
581be094 657
6cb0b013
PC
658 /* PMSAv7 MPU */
659 struct {
660 uint32_t *drbar;
661 uint32_t *drsr;
662 uint32_t *dracr;
4a16724f 663 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
664 } pmsav7;
665
0e1a46bb
PM
666 /* PMSAv8 MPU */
667 struct {
668 /* The PMSAv8 implementation also shares some PMSAv7 config
669 * and state:
670 * pmsav7.rnr (region number register)
671 * pmsav7_dregion (number of configured regions)
672 */
4a16724f
PM
673 uint32_t *rbar[M_REG_NUM_BANKS];
674 uint32_t *rlar[M_REG_NUM_BANKS];
675 uint32_t mair0[M_REG_NUM_BANKS];
676 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
677 } pmsav8;
678
9901c576
PM
679 /* v8M SAU */
680 struct {
681 uint32_t *rbar;
682 uint32_t *rlar;
683 uint32_t rnr;
684 uint32_t ctrl;
685 } sau;
686
983fe826 687 void *nvic;
462a8bc6 688 const struct arm_boot_info *boot_info;
d3a3e529
VK
689 /* Store GICv3CPUState to access from this struct */
690 void *gicv3state;
2c0262af
FB
691} CPUARMState;
692
bd7d00fc 693/**
08267487 694 * ARMELChangeHookFn:
bd7d00fc
PM
695 * type of a function which can be registered via arm_register_el_change_hook()
696 * to get callbacks when the CPU changes its exception level or mode.
697 */
08267487
AL
698typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
699typedef struct ARMELChangeHook ARMELChangeHook;
700struct ARMELChangeHook {
701 ARMELChangeHookFn *hook;
702 void *opaque;
703 QLIST_ENTRY(ARMELChangeHook) node;
704};
062ba099
AB
705
706/* These values map onto the return values for
707 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
708typedef enum ARMPSCIState {
d5affb0d
AJ
709 PSCI_ON = 0,
710 PSCI_OFF = 1,
062ba099
AB
711 PSCI_ON_PENDING = 2
712} ARMPSCIState;
713
962fcbf2
RH
714typedef struct ARMISARegisters ARMISARegisters;
715
74e75564
PB
716/**
717 * ARMCPU:
718 * @env: #CPUARMState
719 *
720 * An ARM CPU core.
721 */
722struct ARMCPU {
723 /*< private >*/
724 CPUState parent_obj;
725 /*< public >*/
726
5b146dc7 727 CPUNegativeOffsetState neg;
74e75564
PB
728 CPUARMState env;
729
730 /* Coprocessor information */
731 GHashTable *cp_regs;
732 /* For marshalling (mostly coprocessor) register state between the
733 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
734 * we use these arrays.
735 */
736 /* List of register indexes managed via these arrays; (full KVM style
737 * 64 bit indexes, not CPRegInfo 32 bit indexes)
738 */
739 uint64_t *cpreg_indexes;
740 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
741 uint64_t *cpreg_values;
742 /* Length of the indexes, values, reset_values arrays */
743 int32_t cpreg_array_len;
744 /* These are used only for migration: incoming data arrives in
745 * these fields and is sanity checked in post_load before copying
746 * to the working data structures above.
747 */
748 uint64_t *cpreg_vmstate_indexes;
749 uint64_t *cpreg_vmstate_values;
750 int32_t cpreg_vmstate_array_len;
751
200bf5b7
AB
752 DynamicGDBXMLInfo dyn_xml;
753
74e75564
PB
754 /* Timers used by the generic (architected) timer */
755 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
756 /*
757 * Timer used by the PMU. Its state is restored after migration by
758 * pmu_op_finish() - it does not need other handling during migration
759 */
760 QEMUTimer *pmu_timer;
74e75564
PB
761 /* GPIO outputs for generic timer */
762 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
763 /* GPIO output for GICv3 maintenance interrupt signal */
764 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
765 /* GPIO output for the PMU interrupt */
766 qemu_irq pmu_interrupt;
74e75564
PB
767
768 /* MemoryRegion to use for secure physical accesses */
769 MemoryRegion *secure_memory;
770
181962fd
PM
771 /* For v8M, pointer to the IDAU interface provided by board/SoC */
772 Object *idau;
773
74e75564
PB
774 /* 'compatible' string for this CPU for Linux device trees */
775 const char *dtb_compatible;
776
777 /* PSCI version for this CPU
778 * Bits[31:16] = Major Version
779 * Bits[15:0] = Minor Version
780 */
781 uint32_t psci_version;
782
783 /* Should CPU start in PSCI powered-off state? */
784 bool start_powered_off;
062ba099
AB
785
786 /* Current power state, access guarded by BQL */
787 ARMPSCIState power_state;
788
c25bd18a
PM
789 /* CPU has virtualization extension */
790 bool has_el2;
74e75564
PB
791 /* CPU has security extension */
792 bool has_el3;
5c0a3819
SZ
793 /* CPU has PMU (Performance Monitor Unit) */
794 bool has_pmu;
97a28b0e
PM
795 /* CPU has VFP */
796 bool has_vfp;
797 /* CPU has Neon */
798 bool has_neon;
ea90db0a
PM
799 /* CPU has M-profile DSP extension */
800 bool has_dsp;
74e75564
PB
801
802 /* CPU has memory protection unit */
803 bool has_mpu;
804 /* PMSAv7 MPU number of supported regions */
805 uint32_t pmsav7_dregion;
9901c576
PM
806 /* v8M SAU number of supported regions */
807 uint32_t sau_sregion;
74e75564
PB
808
809 /* PSCI conduit used to invoke PSCI methods
810 * 0 - disabled, 1 - smc, 2 - hvc
811 */
812 uint32_t psci_conduit;
813
38e2a77c
PM
814 /* For v8M, initial value of the Secure VTOR */
815 uint32_t init_svtor;
816
74e75564
PB
817 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
818 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
819 */
820 uint32_t kvm_target;
821
822 /* KVM init features for this CPU */
823 uint32_t kvm_init_features[7];
824
e5ac4200
AJ
825 /* KVM CPU state */
826
827 /* KVM virtual time adjustment */
828 bool kvm_adjvtime;
829 bool kvm_vtime_dirty;
830 uint64_t kvm_vtime;
831
74e75564
PB
832 /* Uniprocessor system with MP extensions */
833 bool mp_is_up;
834
c4487d76
PM
835 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
836 * and the probe failed (so we need to report the error in realize)
837 */
838 bool host_cpu_probe_failed;
839
f9a69711
AF
840 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
841 * register.
842 */
843 int32_t core_count;
844
74e75564
PB
845 /* The instance init functions for implementation-specific subclasses
846 * set these fields to specify the implementation-dependent values of
847 * various constant registers and reset values of non-constant
848 * registers.
849 * Some of these might become QOM properties eventually.
850 * Field names match the official register names as defined in the
851 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
852 * is used for reset values of non-constant registers; no reset_
853 * prefix means a constant register.
47576b94
RH
854 * Some of these registers are split out into a substructure that
855 * is shared with the translators to control the ISA.
74e75564 856 */
47576b94
RH
857 struct ARMISARegisters {
858 uint32_t id_isar0;
859 uint32_t id_isar1;
860 uint32_t id_isar2;
861 uint32_t id_isar3;
862 uint32_t id_isar4;
863 uint32_t id_isar5;
864 uint32_t id_isar6;
865 uint32_t mvfr0;
866 uint32_t mvfr1;
867 uint32_t mvfr2;
a6179538 868 uint32_t id_dfr0;
47576b94
RH
869 uint64_t id_aa64isar0;
870 uint64_t id_aa64isar1;
871 uint64_t id_aa64pfr0;
872 uint64_t id_aa64pfr1;
3dc91ddb
PM
873 uint64_t id_aa64mmfr0;
874 uint64_t id_aa64mmfr1;
64761e10 875 uint64_t id_aa64mmfr2;
2a609df8
PM
876 uint64_t id_aa64dfr0;
877 uint64_t id_aa64dfr1;
47576b94 878 } isar;
74e75564
PB
879 uint32_t midr;
880 uint32_t revidr;
881 uint32_t reset_fpsid;
74e75564
PB
882 uint32_t ctr;
883 uint32_t reset_sctlr;
884 uint32_t id_pfr0;
885 uint32_t id_pfr1;
cad86737
AL
886 uint64_t pmceid0;
887 uint64_t pmceid1;
74e75564
PB
888 uint32_t id_afr0;
889 uint32_t id_mmfr0;
890 uint32_t id_mmfr1;
891 uint32_t id_mmfr2;
892 uint32_t id_mmfr3;
893 uint32_t id_mmfr4;
74e75564
PB
894 uint64_t id_aa64afr0;
895 uint64_t id_aa64afr1;
74e75564
PB
896 uint32_t dbgdidr;
897 uint32_t clidr;
898 uint64_t mp_affinity; /* MP ID without feature bits */
899 /* The elements of this array are the CCSIDR values for each cache,
900 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
901 */
902 uint32_t ccsidr[16];
903 uint64_t reset_cbar;
904 uint32_t reset_auxcr;
905 bool reset_hivecs;
906 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
907 uint32_t dcz_blocksize;
908 uint64_t rvbar;
bd7d00fc 909
e45868a3
PM
910 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
911 int gic_num_lrs; /* number of list registers */
912 int gic_vpribits; /* number of virtual priority bits */
913 int gic_vprebits; /* number of virtual preemption bits */
914
3a062d57
JB
915 /* Whether the cfgend input is high (i.e. this CPU should reset into
916 * big-endian mode). This setting isn't used directly: instead it modifies
917 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
918 * architecture version.
919 */
920 bool cfgend;
921
b5c53d1b 922 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 923 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
924
925 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
926
927 /* Used to synchronize KVM and QEMU in-kernel device levels */
928 uint8_t device_irq_level;
adf92eab
RH
929
930 /* Used to set the maximum vector length the cpu will support. */
931 uint32_t sve_max_vq;
0df9142d
AJ
932
933 /*
934 * In sve_vq_map each set bit is a supported vector length of
935 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
936 * length in quadwords.
937 *
938 * While processing properties during initialization, corresponding
939 * sve_vq_init bits are set for bits in sve_vq_map that have been
940 * set by properties.
941 */
942 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
943 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
944
945 /* Generic timer counter frequency, in Hz */
946 uint64_t gt_cntfrq_hz;
74e75564
PB
947};
948
7def8754
AJ
949unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
950
51e5ef45
MAL
951void arm_cpu_post_init(Object *obj);
952
46de5913
IM
953uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
954
74e75564 955#ifndef CONFIG_USER_ONLY
8a9358cc 956extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
957#endif
958
959void arm_cpu_do_interrupt(CPUState *cpu);
960void arm_v7m_cpu_do_interrupt(CPUState *cpu);
961bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
962
74e75564
PB
963hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
964 MemTxAttrs *attrs);
965
966int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
967int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
968
200bf5b7
AB
969/* Dynamically generates for gdb stub an XML description of the sysregs from
970 * the cp_regs hashtable. Returns the registered sysregs number.
971 */
972int arm_gen_dynamic_xml(CPUState *cpu);
973
974/* Returns the dynamically generated XML for the gdb stub.
975 * Returns a pointer to the XML contents for the specified XML file or NULL
976 * if the XML name doesn't match the predefined one.
977 */
978const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
979
74e75564
PB
980int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
981 int cpuid, void *opaque);
982int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
983 int cpuid, void *opaque);
984
985#ifdef TARGET_AARCH64
986int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
987int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 988void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
989void aarch64_sve_change_el(CPUARMState *env, int old_el,
990 int new_el, bool el0_a64);
87014c6b 991void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
992
993/*
994 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
995 * The byte at offset i from the start of the in-memory representation contains
996 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
997 * lowest offsets are stored in the lowest memory addresses, then that nearly
998 * matches QEMU's representation, which is to use an array of host-endian
999 * uint64_t's, where the lower offsets are at the lower indices. To complete
1000 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1001 */
1002static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1003{
1004#ifdef HOST_WORDS_BIGENDIAN
1005 int i;
1006
1007 for (i = 0; i < nr; ++i) {
1008 dst[i] = bswap64(src[i]);
1009 }
1010
1011 return dst;
1012#else
1013 return src;
1014#endif
1015}
1016
0ab5953b
RH
1017#else
1018static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1019static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1020 int n, bool a)
1021{ }
87014c6b 1022static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1023#endif
778c3a06 1024
91f78c58
PMD
1025#if !defined(CONFIG_TCG)
1026static inline target_ulong do_arm_semihosting(CPUARMState *env)
1027{
1028 g_assert_not_reached();
1029}
1030#else
faacc041 1031target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 1032#endif
ce02049d
GB
1033void aarch64_sync_32_to_64(CPUARMState *env);
1034void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1035
ced31551
RH
1036int fp_exception_el(CPUARMState *env, int cur_el);
1037int sve_exception_el(CPUARMState *env, int cur_el);
1038uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1039
3926cc84
AG
1040static inline bool is_a64(CPUARMState *env)
1041{
1042 return env->aarch64;
1043}
1044
2c0262af
FB
1045/* you can call this signal handler from your SIGBUS and SIGSEGV
1046 signal handlers to inform the virtual CPU of exceptions. non zero
1047 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1048int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1049 void *puc);
1050
5d05b9d4
AL
1051/**
1052 * pmu_op_start/finish
ec7b4ce4
AF
1053 * @env: CPUARMState
1054 *
5d05b9d4
AL
1055 * Convert all PMU counters between their delta form (the typical mode when
1056 * they are enabled) and the guest-visible values. These two calls must
1057 * surround any action which might affect the counters.
ec7b4ce4 1058 */
5d05b9d4
AL
1059void pmu_op_start(CPUARMState *env);
1060void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1061
4e7beb0c
AL
1062/*
1063 * Called when a PMU counter is due to overflow
1064 */
1065void arm_pmu_timer_cb(void *opaque);
1066
033614c4
AL
1067/**
1068 * Functions to register as EL change hooks for PMU mode filtering
1069 */
1070void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1071void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1072
57a4a11b 1073/*
bf8d0969
AL
1074 * pmu_init
1075 * @cpu: ARMCPU
57a4a11b 1076 *
bf8d0969
AL
1077 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1078 * for the current configuration
57a4a11b 1079 */
bf8d0969 1080void pmu_init(ARMCPU *cpu);
57a4a11b 1081
76e3e1bc
PM
1082/* SCTLR bit meanings. Several bits have been reused in newer
1083 * versions of the architecture; in that case we define constants
1084 * for both old and new bit meanings. Code which tests against those
1085 * bits should probably check or otherwise arrange that the CPU
1086 * is the architectural version it expects.
1087 */
1088#define SCTLR_M (1U << 0)
1089#define SCTLR_A (1U << 1)
1090#define SCTLR_C (1U << 2)
1091#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1092#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1093#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1094#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1095#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1096#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1097#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1098#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1099#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1100#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1101#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1102#define SCTLR_ITD (1U << 7) /* v8 onward */
1103#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1104#define SCTLR_SED (1U << 8) /* v8 onward */
1105#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1106#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1107#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1108#define SCTLR_SW (1U << 10) /* v7 */
1109#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1110#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1111#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1112#define SCTLR_I (1U << 12)
b2af69d0
RH
1113#define SCTLR_V (1U << 13) /* AArch32 only */
1114#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1115#define SCTLR_RR (1U << 14) /* up to v7 */
1116#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1117#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1118#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1119#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1120#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1121#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1122#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1123#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1124#define SCTLR_nTWE (1U << 18) /* v8 onward */
1125#define SCTLR_WXN (1U << 19)
1126#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1127#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1128#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1129#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1130#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1131#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1132#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1133#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1134#define SCTLR_VE (1U << 24) /* up to v7 */
1135#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1136#define SCTLR_EE (1U << 25)
1137#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1138#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1139#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1140#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1141#define SCTLR_TRE (1U << 28) /* AArch32 only */
1142#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1143#define SCTLR_AFE (1U << 29) /* AArch32 only */
1144#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1145#define SCTLR_TE (1U << 30) /* AArch32 only */
1146#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1147#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1148#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1149#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1150#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1151#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1152#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1153#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1154#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1155#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1156
c6f19164
GB
1157#define CPTR_TCPAC (1U << 31)
1158#define CPTR_TTA (1U << 20)
1159#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1160#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1161#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1162
187f678d
PM
1163#define MDCR_EPMAD (1U << 21)
1164#define MDCR_EDAD (1U << 20)
033614c4
AL
1165#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1166#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1167#define MDCR_SDD (1U << 16)
a8d64e73 1168#define MDCR_SPD (3U << 14)
187f678d
PM
1169#define MDCR_TDRA (1U << 11)
1170#define MDCR_TDOSA (1U << 10)
1171#define MDCR_TDA (1U << 9)
1172#define MDCR_TDE (1U << 8)
1173#define MDCR_HPME (1U << 7)
1174#define MDCR_TPM (1U << 6)
1175#define MDCR_TPMCR (1U << 5)
033614c4 1176#define MDCR_HPMN (0x1fU)
187f678d 1177
a8d64e73
PM
1178/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1179#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1180
78dbbbe4
PM
1181#define CPSR_M (0x1fU)
1182#define CPSR_T (1U << 5)
1183#define CPSR_F (1U << 6)
1184#define CPSR_I (1U << 7)
1185#define CPSR_A (1U << 8)
1186#define CPSR_E (1U << 9)
1187#define CPSR_IT_2_7 (0xfc00U)
1188#define CPSR_GE (0xfU << 16)
4051e12c 1189#define CPSR_IL (1U << 20)
220f508f 1190#define CPSR_PAN (1U << 22)
78dbbbe4
PM
1191#define CPSR_J (1U << 24)
1192#define CPSR_IT_0_1 (3U << 25)
1193#define CPSR_Q (1U << 27)
1194#define CPSR_V (1U << 28)
1195#define CPSR_C (1U << 29)
1196#define CPSR_Z (1U << 30)
1197#define CPSR_N (1U << 31)
9ee6e8bb 1198#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1199#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1200
1201#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1202#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1203 | CPSR_NZCV)
9ee6e8bb
PB
1204/* Bits writable in user mode. */
1205#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1206/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1207#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1208
987ab45e
PM
1209/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1210#define XPSR_EXCP 0x1ffU
1211#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1212#define XPSR_IT_2_7 CPSR_IT_2_7
1213#define XPSR_GE CPSR_GE
1214#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1215#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1216#define XPSR_IT_0_1 CPSR_IT_0_1
1217#define XPSR_Q CPSR_Q
1218#define XPSR_V CPSR_V
1219#define XPSR_C CPSR_C
1220#define XPSR_Z CPSR_Z
1221#define XPSR_N CPSR_N
1222#define XPSR_NZCV CPSR_NZCV
1223#define XPSR_IT CPSR_IT
1224
e389be16
FA
1225#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1226#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1227#define TTBCR_PD0 (1U << 4)
1228#define TTBCR_PD1 (1U << 5)
1229#define TTBCR_EPD0 (1U << 7)
1230#define TTBCR_IRGN0 (3U << 8)
1231#define TTBCR_ORGN0 (3U << 10)
1232#define TTBCR_SH0 (3U << 12)
1233#define TTBCR_T1SZ (3U << 16)
1234#define TTBCR_A1 (1U << 22)
1235#define TTBCR_EPD1 (1U << 23)
1236#define TTBCR_IRGN1 (3U << 24)
1237#define TTBCR_ORGN1 (3U << 26)
1238#define TTBCR_SH1 (1U << 28)
1239#define TTBCR_EAE (1U << 31)
1240
d356312f
PM
1241/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1242 * Only these are valid when in AArch64 mode; in
1243 * AArch32 mode SPSRs are basically CPSR-format.
1244 */
f502cfc2 1245#define PSTATE_SP (1U)
d356312f
PM
1246#define PSTATE_M (0xFU)
1247#define PSTATE_nRW (1U << 4)
1248#define PSTATE_F (1U << 6)
1249#define PSTATE_I (1U << 7)
1250#define PSTATE_A (1U << 8)
1251#define PSTATE_D (1U << 9)
f6e52eaa 1252#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1253#define PSTATE_IL (1U << 20)
1254#define PSTATE_SS (1U << 21)
220f508f 1255#define PSTATE_PAN (1U << 22)
9eeb7a1c 1256#define PSTATE_UAO (1U << 23)
d356312f
PM
1257#define PSTATE_V (1U << 28)
1258#define PSTATE_C (1U << 29)
1259#define PSTATE_Z (1U << 30)
1260#define PSTATE_N (1U << 31)
1261#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1262#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1263#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1264/* Mode values for AArch64 */
1265#define PSTATE_MODE_EL3h 13
1266#define PSTATE_MODE_EL3t 12
1267#define PSTATE_MODE_EL2h 9
1268#define PSTATE_MODE_EL2t 8
1269#define PSTATE_MODE_EL1h 5
1270#define PSTATE_MODE_EL1t 4
1271#define PSTATE_MODE_EL0t 0
1272
de2db7ec
PM
1273/* Write a new value to v7m.exception, thus transitioning into or out
1274 * of Handler mode; this may result in a change of active stack pointer.
1275 */
1276void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1277
9e729b57
EI
1278/* Map EL and handler into a PSTATE_MODE. */
1279static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1280{
1281 return (el << 2) | handler;
1282}
1283
d356312f
PM
1284/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1285 * interprocessing, so we don't attempt to sync with the cpsr state used by
1286 * the 32 bit decoder.
1287 */
1288static inline uint32_t pstate_read(CPUARMState *env)
1289{
1290 int ZF;
1291
1292 ZF = (env->ZF == 0);
1293 return (env->NF & 0x80000000) | (ZF << 30)
1294 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1295 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1296}
1297
1298static inline void pstate_write(CPUARMState *env, uint32_t val)
1299{
1300 env->ZF = (~val) & PSTATE_Z;
1301 env->NF = val;
1302 env->CF = (val >> 29) & 1;
1303 env->VF = (val << 3) & 0x80000000;
4cc35614 1304 env->daif = val & PSTATE_DAIF;
f6e52eaa 1305 env->btype = (val >> 10) & 3;
d356312f
PM
1306 env->pstate = val & ~CACHED_PSTATE_BITS;
1307}
1308
b5ff1b31 1309/* Return the current CPSR value. */
2f4a40e5 1310uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1311
1312typedef enum CPSRWriteType {
1313 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1314 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1315 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1316 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1317} CPSRWriteType;
1318
1319/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1320void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1321 CPSRWriteType write_type);
9ee6e8bb
PB
1322
1323/* Return the current xPSR value. */
1324static inline uint32_t xpsr_read(CPUARMState *env)
1325{
1326 int ZF;
6fbe23d5
PB
1327 ZF = (env->ZF == 0);
1328 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1329 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1330 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1331 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1332 | (env->GE << 16)
9ee6e8bb 1333 | env->v7m.exception;
b5ff1b31
FB
1334}
1335
9ee6e8bb
PB
1336/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1337static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1338{
987ab45e
PM
1339 if (mask & XPSR_NZCV) {
1340 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1341 env->NF = val;
9ee6e8bb
PB
1342 env->CF = (val >> 29) & 1;
1343 env->VF = (val << 3) & 0x80000000;
1344 }
987ab45e
PM
1345 if (mask & XPSR_Q) {
1346 env->QF = ((val & XPSR_Q) != 0);
1347 }
f1e2598c
PM
1348 if (mask & XPSR_GE) {
1349 env->GE = (val & XPSR_GE) >> 16;
1350 }
04c9c81b 1351#ifndef CONFIG_USER_ONLY
987ab45e
PM
1352 if (mask & XPSR_T) {
1353 env->thumb = ((val & XPSR_T) != 0);
1354 }
1355 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1356 env->condexec_bits &= ~3;
1357 env->condexec_bits |= (val >> 25) & 3;
1358 }
987ab45e 1359 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1360 env->condexec_bits &= 3;
1361 env->condexec_bits |= (val >> 8) & 0xfc;
1362 }
987ab45e 1363 if (mask & XPSR_EXCP) {
de2db7ec
PM
1364 /* Note that this only happens on exception exit */
1365 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1366 }
04c9c81b 1367#endif
9ee6e8bb
PB
1368}
1369
f149e3e8
EI
1370#define HCR_VM (1ULL << 0)
1371#define HCR_SWIO (1ULL << 1)
1372#define HCR_PTW (1ULL << 2)
1373#define HCR_FMO (1ULL << 3)
1374#define HCR_IMO (1ULL << 4)
1375#define HCR_AMO (1ULL << 5)
1376#define HCR_VF (1ULL << 6)
1377#define HCR_VI (1ULL << 7)
1378#define HCR_VSE (1ULL << 8)
1379#define HCR_FB (1ULL << 9)
1380#define HCR_BSU_MASK (3ULL << 10)
1381#define HCR_DC (1ULL << 12)
1382#define HCR_TWI (1ULL << 13)
1383#define HCR_TWE (1ULL << 14)
1384#define HCR_TID0 (1ULL << 15)
1385#define HCR_TID1 (1ULL << 16)
1386#define HCR_TID2 (1ULL << 17)
1387#define HCR_TID3 (1ULL << 18)
1388#define HCR_TSC (1ULL << 19)
1389#define HCR_TIDCP (1ULL << 20)
1390#define HCR_TACR (1ULL << 21)
1391#define HCR_TSW (1ULL << 22)
099bf53b 1392#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1393#define HCR_TPU (1ULL << 24)
1394#define HCR_TTLB (1ULL << 25)
1395#define HCR_TVM (1ULL << 26)
1396#define HCR_TGE (1ULL << 27)
1397#define HCR_TDZ (1ULL << 28)
1398#define HCR_HCD (1ULL << 29)
1399#define HCR_TRVM (1ULL << 30)
1400#define HCR_RW (1ULL << 31)
1401#define HCR_CD (1ULL << 32)
1402#define HCR_ID (1ULL << 33)
ac656b16 1403#define HCR_E2H (1ULL << 34)
099bf53b
RH
1404#define HCR_TLOR (1ULL << 35)
1405#define HCR_TERR (1ULL << 36)
1406#define HCR_TEA (1ULL << 37)
1407#define HCR_MIOCNCE (1ULL << 38)
1408#define HCR_APK (1ULL << 40)
1409#define HCR_API (1ULL << 41)
1410#define HCR_NV (1ULL << 42)
1411#define HCR_NV1 (1ULL << 43)
1412#define HCR_AT (1ULL << 44)
1413#define HCR_NV2 (1ULL << 45)
1414#define HCR_FWB (1ULL << 46)
1415#define HCR_FIEN (1ULL << 47)
1416#define HCR_TID4 (1ULL << 49)
1417#define HCR_TICAB (1ULL << 50)
1418#define HCR_TOCU (1ULL << 52)
1419#define HCR_TTLBIS (1ULL << 54)
1420#define HCR_TTLBOS (1ULL << 55)
1421#define HCR_ATA (1ULL << 56)
1422#define HCR_DCT (1ULL << 57)
1423
64e0e2de
EI
1424#define SCR_NS (1U << 0)
1425#define SCR_IRQ (1U << 1)
1426#define SCR_FIQ (1U << 2)
1427#define SCR_EA (1U << 3)
1428#define SCR_FW (1U << 4)
1429#define SCR_AW (1U << 5)
1430#define SCR_NET (1U << 6)
1431#define SCR_SMD (1U << 7)
1432#define SCR_HCE (1U << 8)
1433#define SCR_SIF (1U << 9)
1434#define SCR_RW (1U << 10)
1435#define SCR_ST (1U << 11)
1436#define SCR_TWI (1U << 12)
1437#define SCR_TWE (1U << 13)
99f8f86d
RH
1438#define SCR_TLOR (1U << 14)
1439#define SCR_TERR (1U << 15)
1440#define SCR_APK (1U << 16)
1441#define SCR_API (1U << 17)
1442#define SCR_EEL2 (1U << 18)
1443#define SCR_EASE (1U << 19)
1444#define SCR_NMEA (1U << 20)
1445#define SCR_FIEN (1U << 21)
1446#define SCR_ENSCXT (1U << 25)
1447#define SCR_ATA (1U << 26)
64e0e2de 1448
01653295
PM
1449/* Return the current FPSCR value. */
1450uint32_t vfp_get_fpscr(CPUARMState *env);
1451void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1452
d81ce0ef
AB
1453/* FPCR, Floating Point Control Register
1454 * FPSR, Floating Poiht Status Register
1455 *
1456 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1457 * FPCR and FPSR. However since they still use non-overlapping bits
1458 * we store the underlying state in fpscr and just mask on read/write.
1459 */
1460#define FPSR_MASK 0xf800009f
0b62159b 1461#define FPCR_MASK 0x07ff9f00
d81ce0ef 1462
a15945d9
PM
1463#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1464#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1465#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1466#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1467#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1468#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1469#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1470#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1471#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1472#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1473
f903fa22
PM
1474static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1475{
1476 return vfp_get_fpscr(env) & FPSR_MASK;
1477}
1478
1479static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1480{
1481 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1482 vfp_set_fpscr(env, new_fpscr);
1483}
1484
1485static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1486{
1487 return vfp_get_fpscr(env) & FPCR_MASK;
1488}
1489
1490static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1491{
1492 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1493 vfp_set_fpscr(env, new_fpscr);
1494}
1495
b5ff1b31
FB
1496enum arm_cpu_mode {
1497 ARM_CPU_MODE_USR = 0x10,
1498 ARM_CPU_MODE_FIQ = 0x11,
1499 ARM_CPU_MODE_IRQ = 0x12,
1500 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1501 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1502 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1503 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1504 ARM_CPU_MODE_UND = 0x1b,
1505 ARM_CPU_MODE_SYS = 0x1f
1506};
1507
40f137e1
PB
1508/* VFP system registers. */
1509#define ARM_VFP_FPSID 0
1510#define ARM_VFP_FPSCR 1
a50c0f51 1511#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1512#define ARM_VFP_MVFR1 6
1513#define ARM_VFP_MVFR0 7
40f137e1
PB
1514#define ARM_VFP_FPEXC 8
1515#define ARM_VFP_FPINST 9
1516#define ARM_VFP_FPINST2 10
1517
18c9b560 1518/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1519#define ARM_IWMMXT_wCID 0
1520#define ARM_IWMMXT_wCon 1
1521#define ARM_IWMMXT_wCSSF 2
1522#define ARM_IWMMXT_wCASF 3
1523#define ARM_IWMMXT_wCGR0 8
1524#define ARM_IWMMXT_wCGR1 9
1525#define ARM_IWMMXT_wCGR2 10
1526#define ARM_IWMMXT_wCGR3 11
18c9b560 1527
2c4da50d
PM
1528/* V7M CCR bits */
1529FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1530FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1531FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1532FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1533FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1534FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1535FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1536FIELD(V7M_CCR, DC, 16, 1)
1537FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1538FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1539
24ac0fb1
PM
1540/* V7M SCR bits */
1541FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1542FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1543FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1544FIELD(V7M_SCR, SEVONPEND, 4, 1)
1545
3b2e9344
PM
1546/* V7M AIRCR bits */
1547FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1548FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1549FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1550FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1551FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1552FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1553FIELD(V7M_AIRCR, PRIS, 14, 1)
1554FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1555FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1556
2c4da50d
PM
1557/* V7M CFSR bits for MMFSR */
1558FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1559FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1560FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1561FIELD(V7M_CFSR, MSTKERR, 4, 1)
1562FIELD(V7M_CFSR, MLSPERR, 5, 1)
1563FIELD(V7M_CFSR, MMARVALID, 7, 1)
1564
1565/* V7M CFSR bits for BFSR */
1566FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1567FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1568FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1569FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1570FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1571FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1572FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1573
1574/* V7M CFSR bits for UFSR */
1575FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1576FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1577FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1578FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1579FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1580FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1581FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1582
334e8dad
PM
1583/* V7M CFSR bit masks covering all of the subregister bits */
1584FIELD(V7M_CFSR, MMFSR, 0, 8)
1585FIELD(V7M_CFSR, BFSR, 8, 8)
1586FIELD(V7M_CFSR, UFSR, 16, 16)
1587
2c4da50d
PM
1588/* V7M HFSR bits */
1589FIELD(V7M_HFSR, VECTTBL, 1, 1)
1590FIELD(V7M_HFSR, FORCED, 30, 1)
1591FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1592
1593/* V7M DFSR bits */
1594FIELD(V7M_DFSR, HALTED, 0, 1)
1595FIELD(V7M_DFSR, BKPT, 1, 1)
1596FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1597FIELD(V7M_DFSR, VCATCH, 3, 1)
1598FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1599
bed079da
PM
1600/* V7M SFSR bits */
1601FIELD(V7M_SFSR, INVEP, 0, 1)
1602FIELD(V7M_SFSR, INVIS, 1, 1)
1603FIELD(V7M_SFSR, INVER, 2, 1)
1604FIELD(V7M_SFSR, AUVIOL, 3, 1)
1605FIELD(V7M_SFSR, INVTRAN, 4, 1)
1606FIELD(V7M_SFSR, LSPERR, 5, 1)
1607FIELD(V7M_SFSR, SFARVALID, 6, 1)
1608FIELD(V7M_SFSR, LSERR, 7, 1)
1609
29c483a5
MD
1610/* v7M MPU_CTRL bits */
1611FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1612FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1613FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1614
43bbce7f
PM
1615/* v7M CLIDR bits */
1616FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1617FIELD(V7M_CLIDR, LOUIS, 21, 3)
1618FIELD(V7M_CLIDR, LOC, 24, 3)
1619FIELD(V7M_CLIDR, LOUU, 27, 3)
1620FIELD(V7M_CLIDR, ICB, 30, 2)
1621
1622FIELD(V7M_CSSELR, IND, 0, 1)
1623FIELD(V7M_CSSELR, LEVEL, 1, 3)
1624/* We use the combination of InD and Level to index into cpu->ccsidr[];
1625 * define a mask for this and check that it doesn't permit running off
1626 * the end of the array.
1627 */
1628FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1629
1630/* v7M FPCCR bits */
1631FIELD(V7M_FPCCR, LSPACT, 0, 1)
1632FIELD(V7M_FPCCR, USER, 1, 1)
1633FIELD(V7M_FPCCR, S, 2, 1)
1634FIELD(V7M_FPCCR, THREAD, 3, 1)
1635FIELD(V7M_FPCCR, HFRDY, 4, 1)
1636FIELD(V7M_FPCCR, MMRDY, 5, 1)
1637FIELD(V7M_FPCCR, BFRDY, 6, 1)
1638FIELD(V7M_FPCCR, SFRDY, 7, 1)
1639FIELD(V7M_FPCCR, MONRDY, 8, 1)
1640FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1641FIELD(V7M_FPCCR, UFRDY, 10, 1)
1642FIELD(V7M_FPCCR, RES0, 11, 15)
1643FIELD(V7M_FPCCR, TS, 26, 1)
1644FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1645FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1646FIELD(V7M_FPCCR, LSPENS, 29, 1)
1647FIELD(V7M_FPCCR, LSPEN, 30, 1)
1648FIELD(V7M_FPCCR, ASPEN, 31, 1)
1649/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1650#define R_V7M_FPCCR_BANKED_MASK \
1651 (R_V7M_FPCCR_LSPACT_MASK | \
1652 R_V7M_FPCCR_USER_MASK | \
1653 R_V7M_FPCCR_THREAD_MASK | \
1654 R_V7M_FPCCR_MMRDY_MASK | \
1655 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1656 R_V7M_FPCCR_UFRDY_MASK | \
1657 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1658
a62e62af
RH
1659/*
1660 * System register ID fields.
1661 */
2bd5f41c
AB
1662FIELD(MIDR_EL1, REVISION, 0, 4)
1663FIELD(MIDR_EL1, PARTNUM, 4, 12)
1664FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1665FIELD(MIDR_EL1, VARIANT, 20, 4)
1666FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1667
a62e62af
RH
1668FIELD(ID_ISAR0, SWAP, 0, 4)
1669FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1670FIELD(ID_ISAR0, BITFIELD, 8, 4)
1671FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1672FIELD(ID_ISAR0, COPROC, 16, 4)
1673FIELD(ID_ISAR0, DEBUG, 20, 4)
1674FIELD(ID_ISAR0, DIVIDE, 24, 4)
1675
1676FIELD(ID_ISAR1, ENDIAN, 0, 4)
1677FIELD(ID_ISAR1, EXCEPT, 4, 4)
1678FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1679FIELD(ID_ISAR1, EXTEND, 12, 4)
1680FIELD(ID_ISAR1, IFTHEN, 16, 4)
1681FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1682FIELD(ID_ISAR1, INTERWORK, 24, 4)
1683FIELD(ID_ISAR1, JAZELLE, 28, 4)
1684
1685FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1686FIELD(ID_ISAR2, MEMHINT, 4, 4)
1687FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1688FIELD(ID_ISAR2, MULT, 12, 4)
1689FIELD(ID_ISAR2, MULTS, 16, 4)
1690FIELD(ID_ISAR2, MULTU, 20, 4)
1691FIELD(ID_ISAR2, PSR_AR, 24, 4)
1692FIELD(ID_ISAR2, REVERSAL, 28, 4)
1693
1694FIELD(ID_ISAR3, SATURATE, 0, 4)
1695FIELD(ID_ISAR3, SIMD, 4, 4)
1696FIELD(ID_ISAR3, SVC, 8, 4)
1697FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1698FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1699FIELD(ID_ISAR3, T32COPY, 20, 4)
1700FIELD(ID_ISAR3, TRUENOP, 24, 4)
1701FIELD(ID_ISAR3, T32EE, 28, 4)
1702
1703FIELD(ID_ISAR4, UNPRIV, 0, 4)
1704FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1705FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1706FIELD(ID_ISAR4, SMC, 12, 4)
1707FIELD(ID_ISAR4, BARRIER, 16, 4)
1708FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1709FIELD(ID_ISAR4, PSR_M, 24, 4)
1710FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1711
1712FIELD(ID_ISAR5, SEVL, 0, 4)
1713FIELD(ID_ISAR5, AES, 4, 4)
1714FIELD(ID_ISAR5, SHA1, 8, 4)
1715FIELD(ID_ISAR5, SHA2, 12, 4)
1716FIELD(ID_ISAR5, CRC32, 16, 4)
1717FIELD(ID_ISAR5, RDM, 24, 4)
1718FIELD(ID_ISAR5, VCMA, 28, 4)
1719
1720FIELD(ID_ISAR6, JSCVT, 0, 4)
1721FIELD(ID_ISAR6, DP, 4, 4)
1722FIELD(ID_ISAR6, FHM, 8, 4)
1723FIELD(ID_ISAR6, SB, 12, 4)
1724FIELD(ID_ISAR6, SPECRES, 16, 4)
1725
3d6ad6bb
RH
1726FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1727FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1728FIELD(ID_MMFR3, BPMAINT, 8, 4)
1729FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1730FIELD(ID_MMFR3, PAN, 16, 4)
1731FIELD(ID_MMFR3, COHWALK, 20, 4)
1732FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1733FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1734
ab638a32
RH
1735FIELD(ID_MMFR4, SPECSEI, 0, 4)
1736FIELD(ID_MMFR4, AC2, 4, 4)
1737FIELD(ID_MMFR4, XNX, 8, 4)
1738FIELD(ID_MMFR4, CNP, 12, 4)
1739FIELD(ID_MMFR4, HPDS, 16, 4)
1740FIELD(ID_MMFR4, LSM, 20, 4)
1741FIELD(ID_MMFR4, CCIDX, 24, 4)
1742FIELD(ID_MMFR4, EVT, 28, 4)
1743
a62e62af
RH
1744FIELD(ID_AA64ISAR0, AES, 4, 4)
1745FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1746FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1747FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1748FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1749FIELD(ID_AA64ISAR0, RDM, 28, 4)
1750FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1751FIELD(ID_AA64ISAR0, SM3, 36, 4)
1752FIELD(ID_AA64ISAR0, SM4, 40, 4)
1753FIELD(ID_AA64ISAR0, DP, 44, 4)
1754FIELD(ID_AA64ISAR0, FHM, 48, 4)
1755FIELD(ID_AA64ISAR0, TS, 52, 4)
1756FIELD(ID_AA64ISAR0, TLB, 56, 4)
1757FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1758
1759FIELD(ID_AA64ISAR1, DPB, 0, 4)
1760FIELD(ID_AA64ISAR1, APA, 4, 4)
1761FIELD(ID_AA64ISAR1, API, 8, 4)
1762FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1763FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1764FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1765FIELD(ID_AA64ISAR1, GPA, 24, 4)
1766FIELD(ID_AA64ISAR1, GPI, 28, 4)
1767FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1768FIELD(ID_AA64ISAR1, SB, 36, 4)
1769FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1770
cd208a1c
RH
1771FIELD(ID_AA64PFR0, EL0, 0, 4)
1772FIELD(ID_AA64PFR0, EL1, 4, 4)
1773FIELD(ID_AA64PFR0, EL2, 8, 4)
1774FIELD(ID_AA64PFR0, EL3, 12, 4)
1775FIELD(ID_AA64PFR0, FP, 16, 4)
1776FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1777FIELD(ID_AA64PFR0, GIC, 24, 4)
1778FIELD(ID_AA64PFR0, RAS, 28, 4)
1779FIELD(ID_AA64PFR0, SVE, 32, 4)
1780
be53b6f4
RH
1781FIELD(ID_AA64PFR1, BT, 0, 4)
1782FIELD(ID_AA64PFR1, SBSS, 4, 4)
1783FIELD(ID_AA64PFR1, MTE, 8, 4)
1784FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1785
3dc91ddb
PM
1786FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1787FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1788FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1789FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1790FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1791FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1792FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1793FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1794FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1795FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1796FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1797FIELD(ID_AA64MMFR0, EXS, 44, 4)
1798
1799FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1800FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1801FIELD(ID_AA64MMFR1, VH, 8, 4)
1802FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1803FIELD(ID_AA64MMFR1, LO, 16, 4)
1804FIELD(ID_AA64MMFR1, PAN, 20, 4)
1805FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1806FIELD(ID_AA64MMFR1, XNX, 28, 4)
1807
64761e10
RH
1808FIELD(ID_AA64MMFR2, CNP, 0, 4)
1809FIELD(ID_AA64MMFR2, UAO, 4, 4)
1810FIELD(ID_AA64MMFR2, LSM, 8, 4)
1811FIELD(ID_AA64MMFR2, IESB, 12, 4)
1812FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1813FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1814FIELD(ID_AA64MMFR2, NV, 24, 4)
1815FIELD(ID_AA64MMFR2, ST, 28, 4)
1816FIELD(ID_AA64MMFR2, AT, 32, 4)
1817FIELD(ID_AA64MMFR2, IDS, 36, 4)
1818FIELD(ID_AA64MMFR2, FWB, 40, 4)
1819FIELD(ID_AA64MMFR2, TTL, 48, 4)
1820FIELD(ID_AA64MMFR2, BBM, 52, 4)
1821FIELD(ID_AA64MMFR2, EVT, 56, 4)
1822FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1823
ceb2744b
PM
1824FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1825FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1826FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1827FIELD(ID_AA64DFR0, BRPS, 12, 4)
1828FIELD(ID_AA64DFR0, WRPS, 20, 4)
1829FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1830FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1831FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1832FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1833
beceb99c
AL
1834FIELD(ID_DFR0, COPDBG, 0, 4)
1835FIELD(ID_DFR0, COPSDBG, 4, 4)
1836FIELD(ID_DFR0, MMAPDBG, 8, 4)
1837FIELD(ID_DFR0, COPTRC, 12, 4)
1838FIELD(ID_DFR0, MMAPTRC, 16, 4)
1839FIELD(ID_DFR0, MPROFDBG, 20, 4)
1840FIELD(ID_DFR0, PERFMON, 24, 4)
1841FIELD(ID_DFR0, TRACEFILT, 28, 4)
1842
88ce6c6e
PM
1843FIELD(DBGDIDR, SE_IMP, 12, 1)
1844FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1845FIELD(DBGDIDR, VERSION, 16, 4)
1846FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1847FIELD(DBGDIDR, BRPS, 24, 4)
1848FIELD(DBGDIDR, WRPS, 28, 4)
1849
602f6e42
PM
1850FIELD(MVFR0, SIMDREG, 0, 4)
1851FIELD(MVFR0, FPSP, 4, 4)
1852FIELD(MVFR0, FPDP, 8, 4)
1853FIELD(MVFR0, FPTRAP, 12, 4)
1854FIELD(MVFR0, FPDIVIDE, 16, 4)
1855FIELD(MVFR0, FPSQRT, 20, 4)
1856FIELD(MVFR0, FPSHVEC, 24, 4)
1857FIELD(MVFR0, FPROUND, 28, 4)
1858
1859FIELD(MVFR1, FPFTZ, 0, 4)
1860FIELD(MVFR1, FPDNAN, 4, 4)
1861FIELD(MVFR1, SIMDLS, 8, 4)
1862FIELD(MVFR1, SIMDINT, 12, 4)
1863FIELD(MVFR1, SIMDSP, 16, 4)
1864FIELD(MVFR1, SIMDHP, 20, 4)
1865FIELD(MVFR1, FPHP, 24, 4)
1866FIELD(MVFR1, SIMDFMAC, 28, 4)
1867
1868FIELD(MVFR2, SIMDMISC, 0, 4)
1869FIELD(MVFR2, FPMISC, 4, 4)
1870
43bbce7f
PM
1871QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1872
ce854d7c
BC
1873/* If adding a feature bit which corresponds to a Linux ELF
1874 * HWCAP bit, remember to update the feature-bit-to-hwcap
1875 * mapping in linux-user/elfload.c:get_elf_hwcap().
1876 */
40f137e1
PB
1877enum arm_features {
1878 ARM_FEATURE_VFP,
c1713132
AZ
1879 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1880 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1881 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1882 ARM_FEATURE_V6,
1883 ARM_FEATURE_V6K,
1884 ARM_FEATURE_V7,
1885 ARM_FEATURE_THUMB2,
452a0955 1886 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1887 ARM_FEATURE_VFP3,
1888 ARM_FEATURE_NEON,
9ee6e8bb 1889 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1890 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1891 ARM_FEATURE_THUMB2EE,
be5e7a76 1892 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1893 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1894 ARM_FEATURE_V4T,
1895 ARM_FEATURE_V5,
5bc95aa2 1896 ARM_FEATURE_STRONGARM,
906879a9 1897 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1898 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1899 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1900 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1901 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1902 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1903 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1904 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1905 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1906 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1907 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1908 ARM_FEATURE_V8,
3926cc84 1909 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1910 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1911 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1912 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1913 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1914 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1915 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1916 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1917 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1918 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1919 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1920};
1921
1922static inline int arm_feature(CPUARMState *env, int feature)
1923{
918f5dca 1924 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1925}
1926
0df9142d
AJ
1927void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1928
19e0fefa
FA
1929#if !defined(CONFIG_USER_ONLY)
1930/* Return true if exception levels below EL3 are in secure state,
1931 * or would be following an exception return to that level.
1932 * Unlike arm_is_secure() (which is always a question about the
1933 * _current_ state of the CPU) this doesn't care about the current
1934 * EL or mode.
1935 */
1936static inline bool arm_is_secure_below_el3(CPUARMState *env)
1937{
1938 if (arm_feature(env, ARM_FEATURE_EL3)) {
1939 return !(env->cp15.scr_el3 & SCR_NS);
1940 } else {
6b7f0b61 1941 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1942 * defined, in which case QEMU defaults to non-secure.
1943 */
1944 return false;
1945 }
1946}
1947
71205876
PM
1948/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1949static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1950{
1951 if (arm_feature(env, ARM_FEATURE_EL3)) {
1952 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1953 /* CPU currently in AArch64 state and EL3 */
1954 return true;
1955 } else if (!is_a64(env) &&
1956 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1957 /* CPU currently in AArch32 state and monitor mode */
1958 return true;
1959 }
1960 }
71205876
PM
1961 return false;
1962}
1963
1964/* Return true if the processor is in secure state */
1965static inline bool arm_is_secure(CPUARMState *env)
1966{
1967 if (arm_is_el3_or_mon(env)) {
1968 return true;
1969 }
19e0fefa
FA
1970 return arm_is_secure_below_el3(env);
1971}
1972
1973#else
1974static inline bool arm_is_secure_below_el3(CPUARMState *env)
1975{
1976 return false;
1977}
1978
1979static inline bool arm_is_secure(CPUARMState *env)
1980{
1981 return false;
1982}
1983#endif
1984
f7778444
RH
1985/**
1986 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1987 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1988 * "for all purposes other than a direct read or write access of HCR_EL2."
1989 * Not included here is HCR_RW.
1990 */
1991uint64_t arm_hcr_el2_eff(CPUARMState *env);
1992
1f79ee32
PM
1993/* Return true if the specified exception level is running in AArch64 state. */
1994static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1995{
446c81ab
PM
1996 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1997 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1998 */
446c81ab
PM
1999 assert(el >= 1 && el <= 3);
2000 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2001
446c81ab
PM
2002 /* The highest exception level is always at the maximum supported
2003 * register width, and then lower levels have a register width controlled
2004 * by bits in the SCR or HCR registers.
1f79ee32 2005 */
446c81ab
PM
2006 if (el == 3) {
2007 return aa64;
2008 }
2009
2010 if (arm_feature(env, ARM_FEATURE_EL3)) {
2011 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2012 }
2013
2014 if (el == 2) {
2015 return aa64;
2016 }
2017
2018 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2019 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2020 }
2021
2022 return aa64;
1f79ee32
PM
2023}
2024
3f342b9e
SF
2025/* Function for determing whether guest cp register reads and writes should
2026 * access the secure or non-secure bank of a cp register. When EL3 is
2027 * operating in AArch32 state, the NS-bit determines whether the secure
2028 * instance of a cp register should be used. When EL3 is AArch64 (or if
2029 * it doesn't exist at all) then there is no register banking, and all
2030 * accesses are to the non-secure version.
2031 */
2032static inline bool access_secure_reg(CPUARMState *env)
2033{
2034 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2035 !arm_el_is_aa64(env, 3) &&
2036 !(env->cp15.scr_el3 & SCR_NS));
2037
2038 return ret;
2039}
2040
ea30a4b8
FA
2041/* Macros for accessing a specified CP register bank */
2042#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2043 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2044
2045#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2046 do { \
2047 if (_secure) { \
2048 (_env)->cp15._regname##_s = (_val); \
2049 } else { \
2050 (_env)->cp15._regname##_ns = (_val); \
2051 } \
2052 } while (0)
2053
2054/* Macros for automatically accessing a specific CP register bank depending on
2055 * the current secure state of the system. These macros are not intended for
2056 * supporting instruction translation reads/writes as these are dependent
2057 * solely on the SCR.NS bit and not the mode.
2058 */
2059#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2060 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2061 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2062
2063#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2064 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2065 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2066 (_val))
2067
0442428a 2068void arm_cpu_list(void);
012a906b
GB
2069uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2070 uint32_t cur_el, bool secure);
40f137e1 2071
9ee6e8bb 2072/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2073#ifndef CONFIG_USER_ONLY
2074bool armv7m_nvic_can_take_pending_exception(void *opaque);
2075#else
2076static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2077{
2078 return true;
2079}
2080#endif
2fb50a33
PM
2081/**
2082 * armv7m_nvic_set_pending: mark the specified exception as pending
2083 * @opaque: the NVIC
2084 * @irq: the exception number to mark pending
2085 * @secure: false for non-banked exceptions or for the nonsecure
2086 * version of a banked exception, true for the secure version of a banked
2087 * exception.
2088 *
2089 * Marks the specified exception as pending. Note that we will assert()
2090 * if @secure is true and @irq does not specify one of the fixed set
2091 * of architecturally banked exceptions.
2092 */
2093void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2094/**
2095 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2096 * @opaque: the NVIC
2097 * @irq: the exception number to mark pending
2098 * @secure: false for non-banked exceptions or for the nonsecure
2099 * version of a banked exception, true for the secure version of a banked
2100 * exception.
2101 *
2102 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2103 * exceptions (exceptions generated in the course of trying to take
2104 * a different exception).
2105 */
2106void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2107/**
2108 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2109 * @opaque: the NVIC
2110 * @irq: the exception number to mark pending
2111 * @secure: false for non-banked exceptions or for the nonsecure
2112 * version of a banked exception, true for the secure version of a banked
2113 * exception.
2114 *
2115 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2116 * generated in the course of lazy stacking of FP registers.
2117 */
2118void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2119/**
2120 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2121 * exception, and whether it targets Secure state
2122 * @opaque: the NVIC
2123 * @pirq: set to pending exception number
2124 * @ptargets_secure: set to whether pending exception targets Secure
2125 *
2126 * This function writes the number of the highest priority pending
2127 * exception (the one which would be made active by
2128 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2129 * to true if the current highest priority pending exception should
2130 * be taken to Secure state, false for NS.
2131 */
2132void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2133 bool *ptargets_secure);
5cb18069
PM
2134/**
2135 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2136 * @opaque: the NVIC
2137 *
2138 * Move the current highest priority pending exception from the pending
2139 * state to the active state, and update v7m.exception to indicate that
2140 * it is the exception currently being handled.
5cb18069 2141 */
6c948518 2142void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2143/**
2144 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2145 * @opaque: the NVIC
2146 * @irq: the exception number to complete
5cb18069 2147 * @secure: true if this exception was secure
aa488fe3
PM
2148 *
2149 * Returns: -1 if the irq was not active
2150 * 1 if completing this irq brought us back to base (no active irqs)
2151 * 0 if there is still an irq active after this one was completed
2152 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2153 */
5cb18069 2154int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2155/**
2156 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2157 * @opaque: the NVIC
2158 * @irq: the exception number to mark pending
2159 * @secure: false for non-banked exceptions or for the nonsecure
2160 * version of a banked exception, true for the secure version of a banked
2161 * exception.
2162 *
2163 * Return whether an exception is "ready", i.e. whether the exception is
2164 * enabled and is configured at a priority which would allow it to
2165 * interrupt the current execution priority. This controls whether the
2166 * RDY bit for it in the FPCCR is set.
2167 */
2168bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2169/**
2170 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2171 * @opaque: the NVIC
2172 *
2173 * Returns: the raw execution priority as defined by the v8M architecture.
2174 * This is the execution priority minus the effects of AIRCR.PRIS,
2175 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2176 * (v8M ARM ARM I_PKLD.)
2177 */
2178int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2179/**
2180 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2181 * priority is negative for the specified security state.
2182 * @opaque: the NVIC
2183 * @secure: the security state to test
2184 * This corresponds to the pseudocode IsReqExecPriNeg().
2185 */
2186#ifndef CONFIG_USER_ONLY
2187bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2188#else
2189static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2190{
2191 return false;
2192}
2193#endif
9ee6e8bb 2194
4b6a83fb
PM
2195/* Interface for defining coprocessor registers.
2196 * Registers are defined in tables of arm_cp_reginfo structs
2197 * which are passed to define_arm_cp_regs().
2198 */
2199
2200/* When looking up a coprocessor register we look for it
2201 * via an integer which encodes all of:
2202 * coprocessor number
2203 * Crn, Crm, opc1, opc2 fields
2204 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2205 * or via MRRC/MCRR?)
51a79b03 2206 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2207 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2208 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2209 * For AArch64, there is no 32/64 bit size distinction;
2210 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2211 * and 4 bit CRn and CRm. The encoding patterns are chosen
2212 * to be easy to convert to and from the KVM encodings, and also
2213 * so that the hashtable can contain both AArch32 and AArch64
2214 * registers (to allow for interprocessing where we might run
2215 * 32 bit code on a 64 bit core).
4b6a83fb 2216 */
f5a0a5a5
PM
2217/* This bit is private to our hashtable cpreg; in KVM register
2218 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2219 * in the upper bits of the 64 bit ID.
2220 */
2221#define CP_REG_AA64_SHIFT 28
2222#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2223
51a79b03
PM
2224/* To enable banking of coprocessor registers depending on ns-bit we
2225 * add a bit to distinguish between secure and non-secure cpregs in the
2226 * hashtable.
2227 */
2228#define CP_REG_NS_SHIFT 29
2229#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2230
2231#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2232 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2233 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2234
f5a0a5a5
PM
2235#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2236 (CP_REG_AA64_MASK | \
2237 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2238 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2239 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2240 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2241 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2242 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2243
721fae12
PM
2244/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2245 * version used as a key for the coprocessor register hashtable
2246 */
2247static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2248{
2249 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2250 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2251 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2252 } else {
2253 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2254 cpregid |= (1 << 15);
2255 }
2256
2257 /* KVM is always non-secure so add the NS flag on AArch32 register
2258 * entries.
2259 */
2260 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2261 }
2262 return cpregid;
2263}
2264
2265/* Convert a truncated 32 bit hashtable key into the full
2266 * 64 bit KVM register ID.
2267 */
2268static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2269{
f5a0a5a5
PM
2270 uint64_t kvmid;
2271
2272 if (cpregid & CP_REG_AA64_MASK) {
2273 kvmid = cpregid & ~CP_REG_AA64_MASK;
2274 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2275 } else {
f5a0a5a5
PM
2276 kvmid = cpregid & ~(1 << 15);
2277 if (cpregid & (1 << 15)) {
2278 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2279 } else {
2280 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2281 }
721fae12
PM
2282 }
2283 return kvmid;
2284}
2285
4b6a83fb 2286/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2287 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2288 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2289 * TCG can assume the value to be constant (ie load at translate time)
2290 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2291 * indicates that the TB should not be ended after a write to this register
2292 * (the default is that the TB ends after cp writes). OVERRIDE permits
2293 * a register definition to override a previous definition for the
2294 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2295 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2296 * ALIAS indicates that this register is an alias view of some underlying
2297 * state which is also visible via another register, and that the other
b061a82b
SF
2298 * register is handling migration and reset; registers marked ALIAS will not be
2299 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2300 * NO_RAW indicates that this register has no underlying state and does not
2301 * support raw access for state saving/loading; it will not be used for either
2302 * migration or KVM state synchronization. (Typically this is for "registers"
2303 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2304 * IO indicates that this register does I/O and therefore its accesses
2305 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2306 * registers which implement clocks or timers require this.
37ff584c
PM
2307 * RAISES_EXC is for when the read or write hook might raise an exception;
2308 * the generated code will synchronize the CPU state before calling the hook
2309 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2310 * NEWEL is for writes to registers that might change the exception
2311 * level - typically on older ARM chips. For those cases we need to
2312 * re-read the new el when recomputing the translation flags.
4b6a83fb 2313 */
fe03d45f
RH
2314#define ARM_CP_SPECIAL 0x0001
2315#define ARM_CP_CONST 0x0002
2316#define ARM_CP_64BIT 0x0004
2317#define ARM_CP_SUPPRESS_TB_END 0x0008
2318#define ARM_CP_OVERRIDE 0x0010
2319#define ARM_CP_ALIAS 0x0020
2320#define ARM_CP_IO 0x0040
2321#define ARM_CP_NO_RAW 0x0080
2322#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2323#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2324#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2325#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2326#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2327#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2328#define ARM_CP_FPU 0x1000
490aa7f1 2329#define ARM_CP_SVE 0x2000
1f163787 2330#define ARM_CP_NO_GDB 0x4000
37ff584c 2331#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2332#define ARM_CP_NEWEL 0x10000
4b6a83fb 2333/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2334#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2335/* Mask of only the flag bits in a type field */
f80741d1 2336#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2337
f5a0a5a5
PM
2338/* Valid values for ARMCPRegInfo state field, indicating which of
2339 * the AArch32 and AArch64 execution states this register is visible in.
2340 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2341 * If the reginfo is declared to be visible in both states then a second
2342 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2343 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2344 * Note that we rely on the values of these enums as we iterate through
2345 * the various states in some places.
2346 */
2347enum {
2348 ARM_CP_STATE_AA32 = 0,
2349 ARM_CP_STATE_AA64 = 1,
2350 ARM_CP_STATE_BOTH = 2,
2351};
2352
c3e30260
FA
2353/* ARM CP register secure state flags. These flags identify security state
2354 * attributes for a given CP register entry.
2355 * The existence of both or neither secure and non-secure flags indicates that
2356 * the register has both a secure and non-secure hash entry. A single one of
2357 * these flags causes the register to only be hashed for the specified
2358 * security state.
2359 * Although definitions may have any combination of the S/NS bits, each
2360 * registered entry will only have one to identify whether the entry is secure
2361 * or non-secure.
2362 */
2363enum {
2364 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2365 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2366};
2367
4b6a83fb
PM
2368/* Return true if cptype is a valid type field. This is used to try to
2369 * catch errors where the sentinel has been accidentally left off the end
2370 * of a list of registers.
2371 */
2372static inline bool cptype_valid(int cptype)
2373{
2374 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2375 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2376 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2377}
2378
2379/* Access rights:
2380 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2381 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2382 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2383 * (ie any of the privileged modes in Secure state, or Monitor mode).
2384 * If a register is accessible in one privilege level it's always accessible
2385 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2386 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2387 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2388 * terminology a little and call this PL3.
f5a0a5a5
PM
2389 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2390 * with the ELx exception levels.
4b6a83fb
PM
2391 *
2392 * If access permissions for a register are more complex than can be
2393 * described with these bits, then use a laxer set of restrictions, and
2394 * do the more restrictive/complex check inside a helper function.
2395 */
2396#define PL3_R 0x80
2397#define PL3_W 0x40
2398#define PL2_R (0x20 | PL3_R)
2399#define PL2_W (0x10 | PL3_W)
2400#define PL1_R (0x08 | PL2_R)
2401#define PL1_W (0x04 | PL2_W)
2402#define PL0_R (0x02 | PL1_R)
2403#define PL0_W (0x01 | PL1_W)
2404
b5bd7440
AB
2405/*
2406 * For user-mode some registers are accessible to EL0 via a kernel
2407 * trap-and-emulate ABI. In this case we define the read permissions
2408 * as actually being PL0_R. However some bits of any given register
2409 * may still be masked.
2410 */
2411#ifdef CONFIG_USER_ONLY
2412#define PL0U_R PL0_R
2413#else
2414#define PL0U_R PL1_R
2415#endif
2416
4b6a83fb
PM
2417#define PL3_RW (PL3_R | PL3_W)
2418#define PL2_RW (PL2_R | PL2_W)
2419#define PL1_RW (PL1_R | PL1_W)
2420#define PL0_RW (PL0_R | PL0_W)
2421
75502672
PM
2422/* Return the highest implemented Exception Level */
2423static inline int arm_highest_el(CPUARMState *env)
2424{
2425 if (arm_feature(env, ARM_FEATURE_EL3)) {
2426 return 3;
2427 }
2428 if (arm_feature(env, ARM_FEATURE_EL2)) {
2429 return 2;
2430 }
2431 return 1;
2432}
2433
15b3f556
PM
2434/* Return true if a v7M CPU is in Handler mode */
2435static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2436{
2437 return env->v7m.exception != 0;
2438}
2439
dcbff19b
GB
2440/* Return the current Exception Level (as per ARMv8; note that this differs
2441 * from the ARMv7 Privilege Level).
2442 */
2443static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2444{
6d54ed3c 2445 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2446 return arm_v7m_is_handler_mode(env) ||
2447 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2448 }
2449
592125f8 2450 if (is_a64(env)) {
f5a0a5a5
PM
2451 return extract32(env->pstate, 2, 2);
2452 }
2453
592125f8
FA
2454 switch (env->uncached_cpsr & 0x1f) {
2455 case ARM_CPU_MODE_USR:
4b6a83fb 2456 return 0;
592125f8
FA
2457 case ARM_CPU_MODE_HYP:
2458 return 2;
2459 case ARM_CPU_MODE_MON:
2460 return 3;
2461 default:
2462 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2463 /* If EL3 is 32-bit then all secure privileged modes run in
2464 * EL3
2465 */
2466 return 3;
2467 }
2468
2469 return 1;
4b6a83fb 2470 }
4b6a83fb
PM
2471}
2472
2473typedef struct ARMCPRegInfo ARMCPRegInfo;
2474
f59df3f2
PM
2475typedef enum CPAccessResult {
2476 /* Access is permitted */
2477 CP_ACCESS_OK = 0,
2478 /* Access fails due to a configurable trap or enable which would
2479 * result in a categorized exception syndrome giving information about
2480 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2481 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2482 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2483 */
2484 CP_ACCESS_TRAP = 1,
2485 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2486 * Note that this is not a catch-all case -- the set of cases which may
2487 * result in this failure is specifically defined by the architecture.
2488 */
2489 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2490 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2491 CP_ACCESS_TRAP_EL2 = 3,
2492 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2493 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2494 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2495 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2496 /* Access fails and results in an exception syndrome for an FP access,
2497 * trapped directly to EL2 or EL3
2498 */
2499 CP_ACCESS_TRAP_FP_EL2 = 7,
2500 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2501} CPAccessResult;
2502
c4241c7d
PM
2503/* Access functions for coprocessor registers. These cannot fail and
2504 * may not raise exceptions.
2505 */
2506typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2507typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2508 uint64_t value);
f59df3f2 2509/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2510typedef CPAccessResult CPAccessFn(CPUARMState *env,
2511 const ARMCPRegInfo *opaque,
2512 bool isread);
4b6a83fb
PM
2513/* Hook function for register reset */
2514typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2515
2516#define CP_ANY 0xff
2517
2518/* Definition of an ARM coprocessor register */
2519struct ARMCPRegInfo {
2520 /* Name of register (useful mainly for debugging, need not be unique) */
2521 const char *name;
2522 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2523 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2524 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2525 * will be decoded to this register. The register read and write
2526 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2527 * used by the program, so it is possible to register a wildcard and
2528 * then behave differently on read/write if necessary.
2529 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2530 * must both be zero.
f5a0a5a5
PM
2531 * For AArch64-visible registers, opc0 is also used.
2532 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2533 * way to distinguish (for KVM's benefit) guest-visible system registers
2534 * from demuxed ones provided to preserve the "no side effects on
2535 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2536 * visible (to match KVM's encoding); cp==0 will be converted to
2537 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2538 */
2539 uint8_t cp;
2540 uint8_t crn;
2541 uint8_t crm;
f5a0a5a5 2542 uint8_t opc0;
4b6a83fb
PM
2543 uint8_t opc1;
2544 uint8_t opc2;
f5a0a5a5
PM
2545 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2546 int state;
4b6a83fb
PM
2547 /* Register type: ARM_CP_* bits/values */
2548 int type;
2549 /* Access rights: PL*_[RW] */
2550 int access;
c3e30260
FA
2551 /* Security state: ARM_CP_SECSTATE_* bits/values */
2552 int secure;
4b6a83fb
PM
2553 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2554 * this register was defined: can be used to hand data through to the
2555 * register read/write functions, since they are passed the ARMCPRegInfo*.
2556 */
2557 void *opaque;
2558 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2559 * fieldoffset is non-zero, the reset value of the register.
2560 */
2561 uint64_t resetvalue;
c3e30260
FA
2562 /* Offset of the field in CPUARMState for this register.
2563 *
2564 * This is not needed if either:
4b6a83fb
PM
2565 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2566 * 2. both readfn and writefn are specified
2567 */
2568 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2569
2570 /* Offsets of the secure and non-secure fields in CPUARMState for the
2571 * register if it is banked. These fields are only used during the static
2572 * registration of a register. During hashing the bank associated
2573 * with a given security state is copied to fieldoffset which is used from
2574 * there on out.
2575 *
2576 * It is expected that register definitions use either fieldoffset or
2577 * bank_fieldoffsets in the definition but not both. It is also expected
2578 * that both bank offsets are set when defining a banked register. This
2579 * use indicates that a register is banked.
2580 */
2581 ptrdiff_t bank_fieldoffsets[2];
2582
f59df3f2
PM
2583 /* Function for making any access checks for this register in addition to
2584 * those specified by the 'access' permissions bits. If NULL, no extra
2585 * checks required. The access check is performed at runtime, not at
2586 * translate time.
2587 */
2588 CPAccessFn *accessfn;
4b6a83fb
PM
2589 /* Function for handling reads of this register. If NULL, then reads
2590 * will be done by loading from the offset into CPUARMState specified
2591 * by fieldoffset.
2592 */
2593 CPReadFn *readfn;
2594 /* Function for handling writes of this register. If NULL, then writes
2595 * will be done by writing to the offset into CPUARMState specified
2596 * by fieldoffset.
2597 */
2598 CPWriteFn *writefn;
7023ec7e
PM
2599 /* Function for doing a "raw" read; used when we need to copy
2600 * coprocessor state to the kernel for KVM or out for
2601 * migration. This only needs to be provided if there is also a
c4241c7d 2602 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2603 */
2604 CPReadFn *raw_readfn;
2605 /* Function for doing a "raw" write; used when we need to copy KVM
2606 * kernel coprocessor state into userspace, or for inbound
2607 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2608 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2609 * or similar behaviour.
7023ec7e
PM
2610 */
2611 CPWriteFn *raw_writefn;
4b6a83fb
PM
2612 /* Function for resetting the register. If NULL, then reset will be done
2613 * by writing resetvalue to the field specified in fieldoffset. If
2614 * fieldoffset is 0 then no reset will be done.
2615 */
2616 CPResetFn *resetfn;
e2cce18f
RH
2617
2618 /*
2619 * "Original" writefn and readfn.
2620 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2621 * accessor functions of various EL1/EL0 to perform the runtime
2622 * check for which sysreg should actually be modified, and then
2623 * forwards the operation. Before overwriting the accessors,
2624 * the original function is copied here, so that accesses that
2625 * really do go to the EL1/EL0 version proceed normally.
2626 * (The corresponding EL2 register is linked via opaque.)
2627 */
2628 CPReadFn *orig_readfn;
2629 CPWriteFn *orig_writefn;
4b6a83fb
PM
2630};
2631
2632/* Macros which are lvalues for the field in CPUARMState for the
2633 * ARMCPRegInfo *ri.
2634 */
2635#define CPREG_FIELD32(env, ri) \
2636 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2637#define CPREG_FIELD64(env, ri) \
2638 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2639
2640#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2641
2642void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2643 const ARMCPRegInfo *regs, void *opaque);
2644void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2645 const ARMCPRegInfo *regs, void *opaque);
2646static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2647{
2648 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2649}
2650static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2651{
2652 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2653}
60322b39 2654const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2655
6c5c0fec
AB
2656/*
2657 * Definition of an ARM co-processor register as viewed from
2658 * userspace. This is used for presenting sanitised versions of
2659 * registers to userspace when emulating the Linux AArch64 CPU
2660 * ID/feature ABI (advertised as HWCAP_CPUID).
2661 */
2662typedef struct ARMCPRegUserSpaceInfo {
2663 /* Name of register */
2664 const char *name;
2665
d040242e
AB
2666 /* Is the name actually a glob pattern */
2667 bool is_glob;
2668
6c5c0fec
AB
2669 /* Only some bits are exported to user space */
2670 uint64_t exported_bits;
2671
2672 /* Fixed bits are applied after the mask */
2673 uint64_t fixed_bits;
2674} ARMCPRegUserSpaceInfo;
2675
2676#define REGUSERINFO_SENTINEL { .name = NULL }
2677
2678void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2679
4b6a83fb 2680/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2681void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2682 uint64_t value);
4b6a83fb 2683/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2684uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2685
f5a0a5a5
PM
2686/* CPResetFn that does nothing, for use if no reset is required even
2687 * if fieldoffset is non zero.
2688 */
2689void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2690
67ed771d
PM
2691/* Return true if this reginfo struct's field in the cpu state struct
2692 * is 64 bits wide.
2693 */
2694static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2695{
2696 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2697}
2698
dcbff19b 2699static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2700 const ARMCPRegInfo *ri, int isread)
2701{
dcbff19b 2702 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2703}
2704
49a66191
PM
2705/* Raw read of a coprocessor register (as needed for migration, etc) */
2706uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2707
721fae12
PM
2708/**
2709 * write_list_to_cpustate
2710 * @cpu: ARMCPU
2711 *
2712 * For each register listed in the ARMCPU cpreg_indexes list, write
2713 * its value from the cpreg_values list into the ARMCPUState structure.
2714 * This updates TCG's working data structures from KVM data or
2715 * from incoming migration state.
2716 *
2717 * Returns: true if all register values were updated correctly,
2718 * false if some register was unknown or could not be written.
2719 * Note that we do not stop early on failure -- we will attempt
2720 * writing all registers in the list.
2721 */
2722bool write_list_to_cpustate(ARMCPU *cpu);
2723
2724/**
2725 * write_cpustate_to_list:
2726 * @cpu: ARMCPU
b698e4ee 2727 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2728 *
2729 * For each register listed in the ARMCPU cpreg_indexes list, write
2730 * its value from the ARMCPUState structure into the cpreg_values list.
2731 * This is used to copy info from TCG's working data structures into
2732 * KVM or for outbound migration.
2733 *
b698e4ee
PM
2734 * @kvm_sync is true if we are doing this in order to sync the
2735 * register state back to KVM. In this case we will only update
2736 * values in the list if the previous list->cpustate sync actually
2737 * successfully wrote the CPU state. Otherwise we will keep the value
2738 * that is in the list.
2739 *
721fae12
PM
2740 * Returns: true if all register values were read correctly,
2741 * false if some register was unknown or could not be read.
2742 * Note that we do not stop early on failure -- we will attempt
2743 * reading all registers in the list.
2744 */
b698e4ee 2745bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2746
9ee6e8bb
PB
2747#define ARM_CPUID_TI915T 0x54029152
2748#define ARM_CPUID_TI925T 0x54029252
40f137e1 2749
ba1ba5cc
IM
2750#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2751#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2752#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2753
9467d44c 2754#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2755#define cpu_list arm_cpu_list
9467d44c 2756
c1e37810
PM
2757/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2758 *
2759 * If EL3 is 64-bit:
2760 * + NonSecure EL1 & 0 stage 1
2761 * + NonSecure EL1 & 0 stage 2
2762 * + NonSecure EL2
b9f6033c
RH
2763 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2764 * + Secure EL1 & 0
c1e37810
PM
2765 * + Secure EL3
2766 * If EL3 is 32-bit:
2767 * + NonSecure PL1 & 0 stage 1
2768 * + NonSecure PL1 & 0 stage 2
2769 * + NonSecure PL2
b9f6033c
RH
2770 * + Secure PL0
2771 * + Secure PL1
c1e37810
PM
2772 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2773 *
2774 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2775 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2776 * because they may differ in access permissions even if the VA->PA map is
2777 * the same
c1e37810
PM
2778 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2779 * translation, which means that we have one mmu_idx that deals with two
2780 * concatenated translation regimes [this sort of combined s1+2 TLB is
2781 * architecturally permitted]
2782 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2783 * handling via the TLB. The only way to do a stage 1 translation without
2784 * the immediate stage 2 translation is via the ATS or AT system insns,
2785 * which can be slow-pathed and always do a page table walk.
2786 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2787 * translation regimes, because they map reasonably well to each other
2788 * and they can't both be active at the same time.
b9f6033c
RH
2789 * 5. we want to be able to use the TLB for accesses done as part of a
2790 * stage1 page table walk, rather than having to walk the stage2 page
2791 * table over and over.
452ef8cb
RH
2792 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2793 * Never (PAN) bit within PSTATE.
c1e37810 2794 *
b9f6033c
RH
2795 * This gives us the following list of cases:
2796 *
2797 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2798 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2799 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2800 * NS EL0 EL2&0
452ef8cb 2801 * NS EL2 EL2&0 +PAN
c1e37810 2802 * NS EL2 (aka NS PL2)
b9f6033c
RH
2803 * S EL0 EL1&0 (aka S PL0)
2804 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2805 * S EL1 EL1&0 +PAN
c1e37810 2806 * S EL3 (aka S PL1)
b9f6033c 2807 * NS EL1&0 stage 2
c1e37810 2808 *
452ef8cb 2809 * for a total of 12 different mmu_idx.
c1e37810 2810 *
3bef7012
PM
2811 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2812 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2813 * NS EL2 if we ever model a Cortex-R52).
2814 *
2815 * M profile CPUs are rather different as they do not have a true MMU.
2816 * They have the following different MMU indexes:
2817 * User
2818 * Privileged
62593718
PM
2819 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2820 * Privileged, execution priority negative (ditto)
66787c78
PM
2821 * If the CPU supports the v8M Security Extension then there are also:
2822 * Secure User
2823 * Secure Privileged
62593718
PM
2824 * Secure User, execution priority negative
2825 * Secure Privileged, execution priority negative
3bef7012 2826 *
8bd5c820
PM
2827 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2828 * are not quite the same -- different CPU types (most notably M profile
2829 * vs A/R profile) would like to use MMU indexes with different semantics,
2830 * but since we don't ever need to use all of those in a single CPU we
2831 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2832 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2833 * the same for any particular CPU.
2834 * Variables of type ARMMUIdx are always full values, and the core
2835 * index values are in variables of type 'int'.
2836 *
c1e37810
PM
2837 * Our enumeration includes at the end some entries which are not "true"
2838 * mmu_idx values in that they don't have corresponding TLBs and are only
2839 * valid for doing slow path page table walks.
2840 *
2841 * The constant names here are patterned after the general style of the names
2842 * of the AT/ATS operations.
2843 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2844 * For M profile we arrange them to have a bit for priv, a bit for negpri
2845 * and a bit for secure.
c1e37810 2846 */
b9f6033c
RH
2847#define ARM_MMU_IDX_A 0x10 /* A profile */
2848#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2849#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2850
b9f6033c
RH
2851/* Meanings of the bits for M profile mmu idx values */
2852#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2853#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2854#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2855
b9f6033c
RH
2856#define ARM_MMU_IDX_TYPE_MASK \
2857 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2858#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2859
c1e37810 2860typedef enum ARMMMUIdx {
b9f6033c
RH
2861 /*
2862 * A-profile.
2863 */
452ef8cb
RH
2864 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2865 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
b9f6033c 2866
452ef8cb
RH
2867 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2868 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
b9f6033c 2869
452ef8cb
RH
2870 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
2871 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
2872 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
b9f6033c 2873
452ef8cb
RH
2874 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
2875 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
2876 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2877 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
b9f6033c 2878
452ef8cb 2879 ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A,
b9f6033c
RH
2880
2881 /*
2882 * These are not allocated TLBs and are used only for AT system
2883 * instructions or for the first stage of an S12 page table walk.
2884 */
2885 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2886 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2887 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2888
2889 /*
2890 * M-profile.
2891 */
25568316
RH
2892 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2893 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2894 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2895 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2896 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2897 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2898 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2899 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2900} ARMMMUIdx;
2901
5f09a6df
RH
2902/*
2903 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2904 * for use when calling tlb_flush_by_mmuidx() and friends.
2905 */
5f09a6df
RH
2906#define TO_CORE_BIT(NAME) \
2907 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2908
8bd5c820 2909typedef enum ARMMMUIdxBit {
5f09a6df 2910 TO_CORE_BIT(E10_0),
b9f6033c 2911 TO_CORE_BIT(E20_0),
5f09a6df 2912 TO_CORE_BIT(E10_1),
452ef8cb 2913 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2914 TO_CORE_BIT(E2),
b9f6033c 2915 TO_CORE_BIT(E20_2),
452ef8cb 2916 TO_CORE_BIT(E20_2_PAN),
5f09a6df
RH
2917 TO_CORE_BIT(SE10_0),
2918 TO_CORE_BIT(SE10_1),
452ef8cb 2919 TO_CORE_BIT(SE10_1_PAN),
5f09a6df
RH
2920 TO_CORE_BIT(SE3),
2921 TO_CORE_BIT(Stage2),
2922
2923 TO_CORE_BIT(MUser),
2924 TO_CORE_BIT(MPriv),
2925 TO_CORE_BIT(MUserNegPri),
2926 TO_CORE_BIT(MPrivNegPri),
2927 TO_CORE_BIT(MSUser),
2928 TO_CORE_BIT(MSPriv),
2929 TO_CORE_BIT(MSUserNegPri),
2930 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2931} ARMMMUIdxBit;
2932
5f09a6df
RH
2933#undef TO_CORE_BIT
2934
f79fbf39 2935#define MMU_USER_IDX 0
c1e37810 2936
50494a27
RH
2937/**
2938 * cpu_mmu_index:
2939 * @env: The cpu environment
2940 * @ifetch: True for code access, false for data access.
2941 *
2942 * Return the core mmu index for the current translation regime.
2943 * This function is used by generic TCG code paths.
2944 */
65e4655c 2945int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2946
9e273ef2
PM
2947/* Indexes used when registering address spaces with cpu_address_space_init */
2948typedef enum ARMASIdx {
2949 ARMASIdx_NS = 0,
2950 ARMASIdx_S = 1,
2951} ARMASIdx;
2952
533e93f1 2953/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2954static inline int arm_debug_target_el(CPUARMState *env)
2955{
81669b8b
SF
2956 bool secure = arm_is_secure(env);
2957 bool route_to_el2 = false;
2958
2959 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2960 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2961 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2962 }
2963
2964 if (route_to_el2) {
2965 return 2;
2966 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2967 !arm_el_is_aa64(env, 3) && secure) {
2968 return 3;
2969 } else {
2970 return 1;
2971 }
3a298203
PM
2972}
2973
43bbce7f
PM
2974static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2975{
2976 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2977 * CSSELR is RAZ/WI.
2978 */
2979 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2980}
2981
22af9025 2982/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2983static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2984{
22af9025
AB
2985 int cur_el = arm_current_el(env);
2986 int debug_el;
2987
2988 if (cur_el == 3) {
2989 return false;
533e93f1
PM
2990 }
2991
22af9025
AB
2992 /* MDCR_EL3.SDD disables debug events from Secure state */
2993 if (arm_is_secure_below_el3(env)
2994 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2995 return false;
3a298203 2996 }
22af9025
AB
2997
2998 /*
2999 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3000 * while not masking the (D)ebug bit in DAIF.
3001 */
3002 debug_el = arm_debug_target_el(env);
3003
3004 if (cur_el == debug_el) {
3005 return extract32(env->cp15.mdscr_el1, 13, 1)
3006 && !(env->daif & PSTATE_D);
3007 }
3008
3009 /* Otherwise the debug target needs to be a higher EL */
3010 return debug_el > cur_el;
3a298203
PM
3011}
3012
3013static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3014{
533e93f1
PM
3015 int el = arm_current_el(env);
3016
3017 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3018 return aa64_generate_debug_exceptions(env);
3019 }
533e93f1
PM
3020
3021 if (arm_is_secure(env)) {
3022 int spd;
3023
3024 if (el == 0 && (env->cp15.sder & 1)) {
3025 /* SDER.SUIDEN means debug exceptions from Secure EL0
3026 * are always enabled. Otherwise they are controlled by
3027 * SDCR.SPD like those from other Secure ELs.
3028 */
3029 return true;
3030 }
3031
3032 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3033 switch (spd) {
3034 case 1:
3035 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3036 case 0:
3037 /* For 0b00 we return true if external secure invasive debug
3038 * is enabled. On real hardware this is controlled by external
3039 * signals to the core. QEMU always permits debug, and behaves
3040 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3041 */
3042 return true;
3043 case 2:
3044 return false;
3045 case 3:
3046 return true;
3047 }
3048 }
3049
3050 return el != 2;
3a298203
PM
3051}
3052
3053/* Return true if debugging exceptions are currently enabled.
3054 * This corresponds to what in ARM ARM pseudocode would be
3055 * if UsingAArch32() then
3056 * return AArch32.GenerateDebugExceptions()
3057 * else
3058 * return AArch64.GenerateDebugExceptions()
3059 * We choose to push the if() down into this function for clarity,
3060 * since the pseudocode has it at all callsites except for the one in
3061 * CheckSoftwareStep(), where it is elided because both branches would
3062 * always return the same value.
3a298203
PM
3063 */
3064static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3065{
3066 if (env->aarch64) {
3067 return aa64_generate_debug_exceptions(env);
3068 } else {
3069 return aa32_generate_debug_exceptions(env);
3070 }
3071}
3072
3073/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3074 * implicitly means this always returns false in pre-v8 CPUs.)
3075 */
3076static inline bool arm_singlestep_active(CPUARMState *env)
3077{
3078 return extract32(env->cp15.mdscr_el1, 0, 1)
3079 && arm_el_is_aa64(env, arm_debug_target_el(env))
3080 && arm_generate_debug_exceptions(env);
3081}
3082
f9fd40eb
PB
3083static inline bool arm_sctlr_b(CPUARMState *env)
3084{
3085 return
3086 /* We need not implement SCTLR.ITD in user-mode emulation, so
3087 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3088 * This lets people run BE32 binaries with "-cpu any".
3089 */
3090#ifndef CONFIG_USER_ONLY
3091 !arm_feature(env, ARM_FEATURE_V7) &&
3092#endif
3093 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3094}
3095
aaec1432 3096uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3097
8061a649
RH
3098static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3099 bool sctlr_b)
3100{
3101#ifdef CONFIG_USER_ONLY
3102 /*
3103 * In system mode, BE32 is modelled in line with the
3104 * architecture (as word-invariant big-endianness), where loads
3105 * and stores are done little endian but from addresses which
3106 * are adjusted by XORing with the appropriate constant. So the
3107 * endianness to use for the raw data access is not affected by
3108 * SCTLR.B.
3109 * In user mode, however, we model BE32 as byte-invariant
3110 * big-endianness (because user-only code cannot tell the
3111 * difference), and so we need to use a data access endianness
3112 * that depends on SCTLR.B.
3113 */
3114 if (sctlr_b) {
3115 return true;
3116 }
3117#endif
3118 /* In 32bit endianness is determined by looking at CPSR's E bit */
3119 return env->uncached_cpsr & CPSR_E;
3120}
3121
3122static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3123{
3124 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3125}
64e40755 3126
ed50ff78
PC
3127/* Return true if the processor is in big-endian mode. */
3128static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3129{
ed50ff78 3130 if (!is_a64(env)) {
8061a649 3131 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3132 } else {
3133 int cur_el = arm_current_el(env);
3134 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3135 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3136 }
ed50ff78
PC
3137}
3138
4f7c64b3 3139typedef CPUARMState CPUArchState;
2161a612 3140typedef ARMCPU ArchCPU;
4f7c64b3 3141
022c62cb 3142#include "exec/cpu-all.h"
622ed360 3143
fdd1b228
RH
3144/*
3145 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3146 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3147 * We put flags which are shared between 32 and 64 bit mode at the top
3148 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3149 *
506f1498 3150 * 31 20 18 14 9 0
79cabf1f
RH
3151 * +--------------+-----+-----+----------+--------------+
3152 * | | | TBFLAG_A32 | |
3153 * | | +-----+----------+ TBFLAG_AM32 |
3154 * | TBFLAG_ANY | |TBFLAG_M32| |
cc28fc30
RH
3155 * | | +-+----------+--------------|
3156 * | | | TBFLAG_A64 |
3157 * +--------------+---------+---------------------------+
3158 * 31 20 15 0
79cabf1f 3159 *
fdd1b228 3160 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3161 */
aad821ac 3162FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3163FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3164FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3165FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3166FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3167/* Target EL if we take a floating-point-disabled exception */
506f1498 3168FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3169/* For A-profile only, target EL for debug exceptions. */
506f1498 3170FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3171
8bd587c1 3172/*
79cabf1f 3173 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3174 */
79cabf1f
RH
3175FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3176FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3177
79cabf1f
RH
3178/*
3179 * Bit usage when in AArch32 state, for A-profile only.
3180 */
3181FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3182FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3183/*
3184 * We store the bottom two bits of the CPAR as TB flags and handle
3185 * checks on the other bits at runtime. This shares the same bits as
3186 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3187 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3188 */
79cabf1f
RH
3189FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3190FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3191FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3192FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3193/*
3194 * Indicates whether cp register reads and writes by guest code should access
3195 * the secure or nonsecure bank of banked registers; note that this is not
3196 * the same thing as the current security state of the processor!
3197 */
79cabf1f
RH
3198FIELD(TBFLAG_A32, NS, 17, 1)
3199
3200/*
3201 * Bit usage when in AArch32 state, for M-profile only.
3202 */
3203/* Handler (ie not Thread) mode */
3204FIELD(TBFLAG_M32, HANDLER, 9, 1)
3205/* Whether we should generate stack-limit checks */
3206FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3207/* Set if FPCCR.LSPACT is set */
3208FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3209/* Set if we must create a new FP context */
3210FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3211/* Set if FPCCR.S does not match current security state */
3212FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3213
3214/*
3215 * Bit usage when in AArch64 state
3216 */
476a4692 3217FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3218FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3219FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3220FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3221FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3222FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3223FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3224FIELD(TBFLAG_A64, UNPRIV, 14, 1)
a1705768 3225
f9fd40eb
PB
3226static inline bool bswap_code(bool sctlr_b)
3227{
3228#ifdef CONFIG_USER_ONLY
3229 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3230 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3231 * would also end up as a mixed-endian mode with BE code, LE data.
3232 */
3233 return
3234#ifdef TARGET_WORDS_BIGENDIAN
3235 1 ^
3236#endif
3237 sctlr_b;
3238#else
e334bd31
PB
3239 /* All code access in ARM is little endian, and there are no loaders
3240 * doing swaps that need to be reversed
f9fd40eb
PB
3241 */
3242 return 0;
3243#endif
3244}
3245
c3ae85fc
PB
3246#ifdef CONFIG_USER_ONLY
3247static inline bool arm_cpu_bswap_data(CPUARMState *env)
3248{
3249 return
3250#ifdef TARGET_WORDS_BIGENDIAN
3251 1 ^
3252#endif
3253 arm_cpu_data_is_big_endian(env);
3254}
3255#endif
3256
a9e01311
RH
3257void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3258 target_ulong *cs_base, uint32_t *flags);
6b917547 3259
98128601
RH
3260enum {
3261 QEMU_PSCI_CONDUIT_DISABLED = 0,
3262 QEMU_PSCI_CONDUIT_SMC = 1,
3263 QEMU_PSCI_CONDUIT_HVC = 2,
3264};
3265
017518c1
PM
3266#ifndef CONFIG_USER_ONLY
3267/* Return the address space index to use for a memory access */
3268static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3269{
3270 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3271}
5ce4ff65
PM
3272
3273/* Return the AddressSpace to use for a memory access
3274 * (which depends on whether the access is S or NS, and whether
3275 * the board gave us a separate AddressSpace for S accesses).
3276 */
3277static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3278{
3279 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3280}
017518c1
PM
3281#endif
3282
bd7d00fc 3283/**
b5c53d1b
AL
3284 * arm_register_pre_el_change_hook:
3285 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3286 * CPU changes exception level or mode. The hook function will be
3287 * passed a pointer to the ARMCPU and the opaque data pointer passed
3288 * to this function when the hook was registered.
b5c53d1b
AL
3289 *
3290 * Note that if a pre-change hook is called, any registered post-change hooks
3291 * are guaranteed to subsequently be called.
bd7d00fc 3292 */
b5c53d1b 3293void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3294 void *opaque);
b5c53d1b
AL
3295/**
3296 * arm_register_el_change_hook:
3297 * Register a hook function which will be called immediately after this
3298 * CPU changes exception level or mode. The hook function will be
3299 * passed a pointer to the ARMCPU and the opaque data pointer passed
3300 * to this function when the hook was registered.
3301 *
3302 * Note that any registered hooks registered here are guaranteed to be called
3303 * if pre-change hooks have been.
3304 */
3305void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3306 *opaque);
bd7d00fc 3307
3d74e2e9
RH
3308/**
3309 * arm_rebuild_hflags:
3310 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3311 */
3312void arm_rebuild_hflags(CPUARMState *env);
3313
9a2b5256
RH
3314/**
3315 * aa32_vfp_dreg:
3316 * Return a pointer to the Dn register within env in 32-bit mode.
3317 */
3318static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3319{
c39c2b90 3320 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3321}
3322
3323/**
3324 * aa32_vfp_qreg:
3325 * Return a pointer to the Qn register within env in 32-bit mode.
3326 */
3327static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3328{
c39c2b90 3329 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3330}
3331
3332/**
3333 * aa64_vfp_qreg:
3334 * Return a pointer to the Qn register within env in 64-bit mode.
3335 */
3336static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3337{
c39c2b90 3338 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3339}
3340
028e2a7b
RH
3341/* Shared between translate-sve.c and sve_helper.c. */
3342extern const uint64_t pred_esz_masks[4];
3343
873b73c0
PM
3344/*
3345 * Naming convention for isar_feature functions:
3346 * Functions which test 32-bit ID registers should have _aa32_ in
3347 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3348 * _aa64_ in their name. These must only be used in code where we
3349 * know for certain that the CPU has AArch32 or AArch64 respectively
3350 * or where the correct answer for a CPU which doesn't implement that
3351 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3352 * system registers that are specific to that CPU state, for "should
3353 * we let this system register bit be set" tests where the 32-bit
3354 * flavour of the register doesn't have the bit, and so on).
3355 * Functions which simply ask "does this feature exist at all" have
3356 * _any_ in their name, and always return the logical OR of the _aa64_
3357 * and the _aa32_ function.
873b73c0
PM
3358 */
3359
962fcbf2
RH
3360/*
3361 * 32-bit feature tests via id registers.
3362 */
873b73c0 3363static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3364{
3365 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3366}
3367
873b73c0 3368static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3369{
3370 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3371}
3372
873b73c0 3373static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3374{
3375 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3376}
3377
962fcbf2
RH
3378static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3379{
3380 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3381}
3382
3383static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3384{
3385 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3386}
3387
3388static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3389{
3390 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3391}
3392
3393static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3394{
3395 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3396}
3397
3398static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3399{
3400 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3401}
3402
3403static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3404{
3405 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3406}
3407
3408static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3409{
3410 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3411}
3412
6c1f6f27
RH
3413static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3414{
3415 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3416}
3417
962fcbf2
RH
3418static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3419{
3420 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3421}
3422
87732318
RH
3423static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3424{
3425 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3426}
3427
9888bd1e
RH
3428static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3429{
3430 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3431}
3432
cb570bd3
RH
3433static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3434{
3435 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3436}
3437
5763190f
RH
3438static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3439{
3440 /*
3441 * This is a placeholder for use by VCMA until the rest of
3442 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3443 * At which point we can properly set and check MVFR1.FPHP.
3444 */
3445 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3446}
3447
b3ff4b87
PM
3448static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3449{
3450 /* Return true if D16-D31 are implemented */
3451 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3452}
3453
266bd25c
PM
3454static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3455{
3456 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3457}
3458
1120827f
PM
3459static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3460{
3461 /* Return true if CPU supports double precision floating point */
3462 return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3463}
3464
602f6e42
PM
3465/*
3466 * We always set the FP and SIMD FP16 fields to indicate identical
3467 * levels of support (assuming SIMD is implemented at all), so
3468 * we only need one set of accessors.
3469 */
3470static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3471{
3472 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3473}
3474
3475static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3476{
3477 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3478}
3479
c0c760af
PM
3480static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3481{
3482 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3483}
3484
3485static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3486{
3487 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3488}
3489
3490static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3491{
3492 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3493}
3494
3495static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3496{
3497 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3498}
3499
3d6ad6bb
RH
3500static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3501{
3502 return FIELD_EX64(id->mvfr0, ID_MMFR3, PAN) != 0;
3503}
3504
3505static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3506{
3507 return FIELD_EX64(id->mvfr0, ID_MMFR3, PAN) >= 2;
3508}
3509
a6179538
PM
3510static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3511{
3512 /* 0xf means "non-standard IMPDEF PMU" */
3513 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3514 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3515}
3516
962fcbf2
RH
3517/*
3518 * 64-bit feature tests via id registers.
3519 */
3520static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3521{
3522 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3523}
3524
3525static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3526{
3527 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3528}
3529
3530static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3531{
3532 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3533}
3534
3535static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3536{
3537 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3538}
3539
3540static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3541{
3542 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3543}
3544
3545static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3546{
3547 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3548}
3549
3550static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3551{
3552 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3553}
3554
3555static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3556{
3557 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3558}
3559
3560static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3561{
3562 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3563}
3564
3565static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3566{
3567 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3568}
3569
3570static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3571{
3572 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3573}
3574
3575static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3576{
3577 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3578}
3579
0caa5af8
RH
3580static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3581{
3582 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3583}
3584
b89d9c98
RH
3585static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3586{
3587 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3588}
3589
5ef84f11
RH
3590static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3591{
3592 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3593}
3594
de390645
RH
3595static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3596{
3597 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3598}
3599
6c1f6f27
RH
3600static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3601{
3602 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3603}
3604
962fcbf2
RH
3605static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3606{
3607 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3608}
3609
991ad91b
RH
3610static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3611{
3612 /*
3613 * Note that while QEMU will only implement the architected algorithm
3614 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3615 * defined algorithms, and thus API+GPI, and this predicate controls
3616 * migration of the 128-bit keys.
3617 */
3618 return (id->id_aa64isar1 &
3619 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3620 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3621 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3622 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3623}
3624
9888bd1e
RH
3625static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3626{
3627 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3628}
3629
cb570bd3
RH
3630static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3631{
3632 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3633}
3634
6bea2563
RH
3635static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3636{
3637 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3638}
3639
0d57b499
BM
3640static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3641{
3642 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3643}
3644
3645static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3646{
3647 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3648}
3649
5763190f
RH
3650static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3651{
3652 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3653 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3654}
3655
0f8d06f1
RH
3656static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3657{
3658 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3659}
3660
cd208a1c
RH
3661static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3662{
3663 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3664}
3665
8fc2ea21
RH
3666static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3667{
3668 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3669}
3670
2d7137c1
RH
3671static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3672{
3673 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3674}
3675
3d6ad6bb
RH
3676static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3677{
3678 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3679}
3680
3681static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3682{
3683 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3684}
3685
9eeb7a1c
RH
3686static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3687{
3688 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3689}
3690
be53b6f4
RH
3691static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3692{
3693 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3694}
3695
2a609df8
PM
3696static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3697{
3698 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3699 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3700}
3701
6e61f839
PM
3702/*
3703 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3704 */
3705static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3706{
3707 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3708}
3709
22e57073
PM
3710static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3711{
3712 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3713}
3714
2a609df8
PM
3715static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3716{
3717 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3718}
3719
962fcbf2
RH
3720/*
3721 * Forward to the above feature tests given an ARMCPU pointer.
3722 */
3723#define cpu_isar_feature(name, cpu) \
3724 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3725
2c0262af 3726#endif